diff options
-rw-r--r-- | src/ChangeLog | 4 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 4 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 4 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 1 | ||||
-rw-r--r-- | src/algebra/syntax.spad.pamphlet | 17 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3342 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 7173 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 2013 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10356 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32444 |
10 files changed, 26639 insertions, 28719 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 7f9357b9..2c8a4b0e 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,7 @@ +2010-03-12 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/syntax.spad.pamphlet (InternalRepresentationForm): New. + 2010-03-10 Gabriel Dos Reis <gdr@cs.tamu.edu> * interp/nruncomp.boot (genDeltaEntry): Take a second, environment diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index fef42f50..dd691b5a 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -939,7 +939,7 @@ axiom_algebra_layer_user = \ ASP73 ASP27 ASP28 ASP33 ASP49 ASP7 \ ASP78 ASP9 ASP12 ASP55 ASP8 ASP19 \ ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ - ASP74 ASP77 ASP80 ASP29 + ASP74 ASP77 ASP80 ASP29 IRFORM axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1013,6 +1013,8 @@ $(OUT)/INETCLTS.$(FASLEXT): $(OUT)/NETCLT.$(FASLEXT) $(OUT)/ASP34.$(FASLEXT): $(OUT)/FMC.$(FASLEXT) +$(OUT)/IRFORM.$(FASLEXT): $(OUT)/SYNTAX.$(FASLEXT) + .PHONY: all all-algebra mkdir-output-directory all: all-ax diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 7c4f46fd..5833260b 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -1018,7 +1018,7 @@ axiom_algebra_layer_user = \ ASP73 ASP27 ASP28 ASP33 ASP49 ASP7 \ ASP78 ASP9 ASP12 ASP55 ASP8 ASP19 \ ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ - ASP74 ASP77 ASP80 ASP29 + ASP74 ASP77 ASP80 ASP29 IRFORM axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1092,6 +1092,8 @@ $(OUT)/INETCLTS.$(FASLEXT): $(OUT)/NETCLT.$(FASLEXT) $(OUT)/ASP34.$(FASLEXT): $(OUT)/FMC.$(FASLEXT) +$(OUT)/IRFORM.$(FASLEXT): $(OUT)/SYNTAX.$(FASLEXT) + @ \section{Broken Files} diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 075a425c..c0a74e16 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -212,6 +212,7 @@ (|IntegrationResultFunctions2| . IR2) (|IntegrationResultRFToFunction| . IRRF2F) (|IntegrationResultToFunction| . IR2F) + (|InternalRepresentationForm| . IRFORM) (|Interval| . INTRVL) (|InventorDataSink| . IVDATA) (|InventorViewPort| . IVVIEW) diff --git a/src/algebra/syntax.spad.pamphlet b/src/algebra/syntax.spad.pamphlet index 74076b45..bca2f627 100644 --- a/src/algebra/syntax.spad.pamphlet +++ b/src/algebra/syntax.spad.pamphlet @@ -298,6 +298,22 @@ ElaboratedExpression(): Public == Private where "failed" @ +\section{Compiler Intermediate Form} +<<domain IRFORM InternalRepresentationForm>>= +)abbrev domain IRFORM InternalRepresentationForm +++ Author: Gabriel Dos Reis +++ Date Created: March 12, 2010 +++ Date Last Modified: March 12, 2010 +++ Description: +++ This domain provides representations for the intermediate +++ form data structure used by the Spad elaborator. +InternalRepresentationForm(): Public == Private where + Public == CoercibleTo OutputForm + Private == add + coerce(x: %): OutputForm == + (x : Syntax)::OutputForm +@ + \section{SpadAbstractSyntaxCategory} @@ -1904,6 +1920,7 @@ SpadAst(): SpadAstExports() == add <<domain QQUTAST QuasiquoteAst>> <<domain DEFAST DefinitionAst>> <<domain MACROAST MacroAst>> +<<domain IRFORM InternalRepresentationForm>> @ diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 20f43bb5..3f31c23d 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2264863 . 3474699321) +(2263487 . 3477417265) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4419 . T) (-4417 . T) (-4416 . T) ((-4424 "*") . T) (-4415 . T) (-4420 . T) (-4414 . T)) +((-4422 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4418 . T) (-4423 . T) (-4417 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1676) +(-32 R -3496) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) +((|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4422))) +((|HasAttribute| |#1| (QUOTE -4425))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4422 . T) (-4423 . T)) +((-4425 . T) (-4426 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1676 UP UPUP -4190) +(-40 -3496 UP UPUP -3014) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4415 |has| (-410 |#2|) (-365)) (-4420 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2836 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2836 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2836 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2836 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) -(-41 R -1676) +((-4418 |has| (-410 |#2|) (-365)) (-4423 |has| (-410 |#2|) (-365)) (-4417 |has| (-410 |#2|) (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-352))) (-3960 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-352)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-3960 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-352)))) (-3960 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-352))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) +(-41 R -3496) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -433) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -424) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,45 +106,45 @@ NIL ((|HasCategory| |#1| (QUOTE (-308)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4419 |has| |#1| (-559)) (-4417 . T) (-4416 . T)) -((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) +((-4422 |has| |#1| (-560)) (-4420 . T) (-4419 . T)) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4422 . T) (-4423 . T)) -((-2836 (-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|))))))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|))))))) +((-4425 . T) (-4426 . T)) +((-3960 (-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-852)))) (-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-852))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-852))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567))))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| $ (QUOTE (-1052))) (|HasCategory| $ (LIST (QUOTE -1041) (QUOTE (-549))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4419 . T)) +((-4422 . T)) NIL -(-51 S) -((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) +(-51) +((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) NIL NIL -(-52) -((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) +(-52 S) +((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) NIL NIL (-53 R M P) ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1676) +(-54 |Base| R -3496) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,133 +158,133 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4422 . T) (-4423 . T)) +((-4425 . T) (-4426 . T)) NIL -(-58 A B) +(-58 S) +((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-59 S) -((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-61 -1646) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-61 -3973) +((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +NIL +NIL +(-62 -3973) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -1646) +(-63 -3973) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -1646) +(-64 -3973) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -1646) -((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) -NIL -NIL -(-65 -1646) +(-65 -3973) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -1646) +(-66 -3973) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -1646) +(-67 -3973) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -1646) +(-68 -3973) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -1646) +(-69 -3973) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -1646) +(-70 -3973) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -1646) +(-71 -3973) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -1646) +(-72 -3973) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -1646) +(-73 -3973) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -1646) +(-74 -3973) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 |nameOne| |nameTwo| |nameThree|) -((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +(-75 -3973) +((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-76 |nameOne| |nameTwo| |nameThree|) -((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -1646) -((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +(-77 |nameOne| |nameTwo| |nameThree|) +((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -1646) -((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) +(-78 -3973) +((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -1646) +(-79 -3973) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -1646) +(-80 -3973) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -1646) +(-81 -3973) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -1646) +(-82 -3973) +((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +NIL +NIL +(-83 -3973) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -1646) +(-84 -3973) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -1646) +(-85 -3973) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -1646) +(-86 -3973) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -1646) -((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) +(-87 -3973) +((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-87 -1646) +(-88 -3973) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -1646) -((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) -NIL -NIL -(-89 -1646) +(-89 -3973) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-365)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4422 . T)) +((-4425 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4422 . T) ((-4424 "*") . T) (-4423 . T) (-4419 . T) (-4417 . T) (-4416 . T) (-4415 . T) (-4420 . T) (-4414 . T) (-4413 . T) (-4412 . T) (-4411 . T) (-4410 . T) (-4418 . T) (-4421 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4409 . T)) +((-4425 . T) ((-4427 "*") . T) (-4426 . T) (-4422 . T) (-4420 . T) (-4419 . T) (-4418 . T) (-4423 . T) (-4417 . T) (-4416 . T) (-4415 . T) (-4414 . T) (-4413 . T) (-4421 . T) (-4424 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4412 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4419 . T)) +((-4422 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4424 "*")))) +((|HasAttribute| |#1| (QUOTE (-4427 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4422 . T)) +((-4425 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,52 +358,52 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4423 . T)) +((-4426 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2836 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1154))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145))))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-549) (QUOTE (-913))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-147))) (|HasCategory| (-549) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-1023))) (|HasCategory| (-549) (QUOTE (-822))) (-3960 (|HasCategory| (-549) (QUOTE (-822))) (|HasCategory| (-549) (QUOTE (-852)))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1154))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-233))) (|HasCategory| (-549) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-549) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -310) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -287) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-308))) (|HasCategory| (-549) (QUOTE (-548))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-549) (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (|HasCategory| (-549) (QUOTE (-145))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1104))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-112) (QUOTE (-1104))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-865))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4417 . T) (-4416 . T)) +((-4420 . T) (-4419 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) NIL NIL -(-113 A) -((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) +(-113) +((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-114) -((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) +(-114 A) +((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-115 -1676 UP) +(-115 -3496 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-911))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-116 |#1|) (QUOTE (-1024))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-2836 (|HasCategory| (-116 |#1|) (QUOTE (-821))) (|HasCategory| (-116 |#1|) (QUOTE (-851)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-1154))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-548))) (|HasCategory| (-116 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-911)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-913))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1023))) (|HasCategory| (-116 |#1|) (QUOTE (-822))) (-3960 (|HasCategory| (-116 |#1|) (QUOTE (-822))) (|HasCategory| (-116 |#1|) (QUOTE (-852)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (QUOTE (-1154))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-548))) (|HasCategory| (-116 |#1|) (QUOTE (-852))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-913)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4423))) +((|HasAttribute| |#1| (QUOTE -4426))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,24 +430,24 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4422 . T) (-4423 . T)) +((-4425 . T) (-4426 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-128) -((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2836 (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-129) (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1102)))) (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-129) (QUOTE (-1102))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) -(-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL +(-129) +((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| (-128) (QUOTE (-852))) (|HasCategory| (-128) (LIST (QUOTE -310) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1104))) (|HasCategory| (-128) (LIST (QUOTE -310) (QUOTE (-128)))))) (-3960 (-12 (|HasCategory| (-128) (QUOTE (-1104))) (|HasCategory| (-128) (LIST (QUOTE -310) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-128) (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| (-128) (QUOTE (-852))) (|HasCategory| (-128) (QUOTE (-1104)))) (|HasCategory| (-128) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-128) (QUOTE (-1104))) (|HasCategory| (-128) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-128) (QUOTE (-1104))) (|HasCategory| (-128) (LIST (QUOTE -310) (QUOTE (-128)))))) (-130) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -466,14 +466,14 @@ NIL NIL (-134) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4424 "*") . T)) +(((-4427 "*") . T)) NIL -(-135 |minix| -2424 S T$) -((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) +(-135 |minix| -3021 R) +((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-136 |minix| -2424 R) -((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) +(-136 |minix| -3021 S T$) +((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL (-137) @@ -494,8 +494,8 @@ NIL NIL (-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4422 . T) (-4412 . T) (-4423 . T)) -((-2836 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +((-4425 . T) (-4415 . T) (-4426 . T)) +((-3960 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-142 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -510,7 +510,7 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4419 . T)) +((-4422 . T)) NIL (-146 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -518,9 +518,9 @@ NIL NIL (-147) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4419 . T)) +((-4422 . T)) NIL -(-148 -1676 UP UPUP) +(-148 -3496 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -531,14 +531,14 @@ NIL (-150 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasAttribute| |#1| (QUOTE -4422))) +((|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasAttribute| |#1| (QUOTE -4425))) (-151 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-152 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4417 . T) (-4416 . T) (-4419 . T)) +((-4420 . T) (-4419 . T) (-4422 . T)) NIL (-153) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -560,7 +560,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -1676) +(-158 R -3496) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -573,11 +573,11 @@ NIL NIL NIL (-161) -((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) +((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL (-162) -((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) +((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL (-163) @@ -591,23 +591,23 @@ NIL (-165 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1204))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4418)) (|HasAttribute| |#2| (QUOTE -4421)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559)))) +((|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1205))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasAttribute| |#2| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-560)))) (-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4415 -2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4418 |has| |#1| (-6 -4418)) (-4421 |has| |#1| (-6 -4421)) (-3100 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 -3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4421 |has| |#1| (-6 -4421)) (-4424 |has| |#1| (-6 -4424)) (-1463 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-168 R S) +(-168 R) +((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) +((-4418 -3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4421 |has| |#1| (-6 -4421)) (-4424 |has| |#1| (-6 -4424)) (-1463 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-352))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-1205)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-352)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-823)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-1023))))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-913))))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1205)))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1063))) (-12 (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-1205)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasAttribute| |#1| (QUOTE -4424)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-352))))) +(-169 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-169 R) -((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4415 -2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4418 |has| |#1| (-6 -4418)) (-4421 |has| |#1| (-6 -4421)) (-3100 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1204)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-911))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-911))))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1204)))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-1062))) (-12 (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-1204)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasAttribute| |#1| (QUOTE -4418)) (|HasAttribute| |#1| (QUOTE -4421)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-351))))) (-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -618,7 +618,7 @@ NIL NIL (-172) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-173) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -626,7 +626,7 @@ NIL NIL (-174 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4424 "*") . T) (-4415 . T) (-4420 . T) (-4414 . T) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") . T) (-4418 . T) (-4423 . T) (-4417 . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-175) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -643,7 +643,7 @@ NIL (-178 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-954 |#2|) (LIST (QUOTE -888) (|devaluate| |#1|)))) +((|HasCategory| (-949 |#2|) (LIST (QUOTE -889) (|devaluate| |#1|)))) (-179 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -660,27 +660,27 @@ NIL ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-183 C) -((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) +(-183) +((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-184 S) -((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) +(-184 C) +((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-185) +(-185 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL (-186) -((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) +((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL (-187) -((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) +((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-188 R -1676) +(-188 R -3496) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -788,28 +788,28 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-215 -1676 UP UPUP R) +(-215 -3496 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-216 -1676 FP) +(-216 -3496 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-217) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2836 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1154))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145))))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-549) (QUOTE (-913))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-147))) (|HasCategory| (-549) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-1023))) (|HasCategory| (-549) (QUOTE (-822))) (-3960 (|HasCategory| (-549) (QUOTE (-822))) (|HasCategory| (-549) (QUOTE (-852)))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1154))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-233))) (|HasCategory| (-549) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-549) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -310) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -287) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-308))) (|HasCategory| (-549) (QUOTE (-548))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-549) (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (|HasCategory| (-549) (QUOTE (-145))))) (-218) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-219 R -1676) -((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +(-219 R -3496) +((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-220 R) -((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) +((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL (-221 R1 R2) @@ -818,19 +818,19 @@ NIL NIL (-222 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-223 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4419 . T)) +((-4422 . T)) NIL -(-224 R -1676) +(-224 R -3496) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-225) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3092 . T) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4201 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-226) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -838,23 +838,23 @@ NIL NIL (-227 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4424 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-560))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-228 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-229 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4423 . T)) +((-4426 . T)) NIL (-230 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233)))) +((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233)))) (-231 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4419 . T)) +((-4422 . T)) NIL (-232 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -862,36 +862,36 @@ NIL NIL (-233) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4419 . T)) +((-4422 . T)) NIL (-234 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4422))) +((|HasAttribute| |#1| (QUOTE -4425))) (-235 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4423 . T)) +((-4426 . T)) NIL (-236) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-237 S -2424 R) +(-237 S -3021 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasAttribute| |#3| (QUOTE -4419)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-1102)))) -(-238 -2424 R) +((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-850))) (|HasAttribute| |#3| (QUOTE -4422)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-1104)))) +(-238 -3021 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4416 |has| |#2| (-1051)) (-4417 |has| |#2| (-1051)) (-4419 |has| |#2| (-6 -4419)) ((-4424 "*") |has| |#2| (-172)) (-4422 . T)) +((-4419 |has| |#2| (-1052)) (-4420 |has| |#2| (-1052)) (-4422 |has| |#2| (-6 -4422)) ((-4427 "*") |has| |#2| (-172)) (-4425 . T)) NIL -(-239 -2424 A B) +(-239 -3021 R) +((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) +((-4419 |has| |#2| (-1052)) (-4420 |has| |#2| (-1052)) (-4422 |has| |#2| (-6 -4422)) ((-4427 "*") |has| |#2| (-172)) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-365))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-795))) (-3960 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-728))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-233))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +(-240 -3021 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-240 -2424 R) -((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4416 |has| |#2| (-1051)) (-4417 |has| |#2| (-1051)) (-4419 |has| |#2| (-6 -4419)) ((-4424 "*") |has| |#2| (-172)) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2836 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2836 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-241) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -902,7 +902,7 @@ NIL NIL (-243) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4415 . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-244 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -910,16 +910,16 @@ NIL NIL (-245 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-246 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-247 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-911))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) +(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-913))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) (-248) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -934,64 +934,64 @@ NIL NIL (-251 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4419 -2836 (-1750 (|has| |#4| (-1051)) (|has| |#4| (-233))) (-1750 (|has| |#4| (-1051)) (|has| |#4| (-902 (-1179)))) (|has| |#4| (-6 -4419)) (-1750 (|has| |#4| (-1051)) (|has| |#4| (-640 (-567))))) (-4416 |has| |#4| (-1051)) (-4417 |has| |#4| (-1051)) ((-4424 "*") |has| |#4| (-172)) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2836 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1051)))) (-2836 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-794))) (-2836 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (QUOTE (-849)))) (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (QUOTE (-727))) (-2836 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2836 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-727)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-794)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-849)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1051)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1102))))) (-2836 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1051))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (-2836 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (|HasCategory| |#4| (QUOTE (-727))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2836 (|HasCategory| |#4| (QUOTE (-1051))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1102)))) (-2836 (|HasAttribute| |#4| (QUOTE -4419)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1051)))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1051))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) +((-4422 -3960 (-3256 (|has| |#4| (-1052)) (|has| |#4| (-233))) (-3256 (|has| |#4| (-1052)) (|has| |#4| (-903 (-1180)))) (|has| |#4| (-6 -4422)) (-3256 (|has| |#4| (-1052)) (|has| |#4| (-641 (-549))))) (-4419 |has| |#4| (-1052)) (-4420 |has| |#4| (-1052)) ((-4427 "*") |has| |#4| (-172)) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-365))) (-3960 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1052)))) (-3960 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-795))) (-3960 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (QUOTE (-850)))) (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (QUOTE (-728))) (-3960 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1052)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-728))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-850))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1052)))) (|HasCategory| |#4| (QUOTE (-728)))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#4| (QUOTE (-1052)))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#4| (QUOTE (-1052))) (|HasCategory| |#4| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasAttribute| |#4| (QUOTE -4422)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1052))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))))) (-252 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4419 -2836 (-1750 (|has| |#3| (-1051)) (|has| |#3| (-233))) (-1750 (|has| |#3| (-1051)) (|has| |#3| (-902 (-1179)))) (|has| |#3| (-6 -4419)) (-1750 (|has| |#3| (-1051)) (|has| |#3| (-640 (-567))))) (-4416 |has| |#3| (-1051)) (-4417 |has| |#3| (-1051)) ((-4424 "*") |has| |#3| (-172)) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2836 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2836 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2836 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2836 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2836 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102))))) (-2836 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2836 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-727))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2836 (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (-2836 (|HasAttribute| |#3| (QUOTE -4419)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) +((-4422 -3960 (-3256 (|has| |#3| (-1052)) (|has| |#3| (-233))) (-3256 (|has| |#3| (-1052)) (|has| |#3| (-903 (-1180)))) (|has| |#3| (-6 -4422)) (-3256 (|has| |#3| (-1052)) (|has| |#3| (-641 (-549))))) (-4419 |has| |#3| (-1052)) (-4420 |has| |#3| (-1052)) ((-4427 "*") |has| |#3| (-172)) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-365))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-795))) (-3960 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-850)))) (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (QUOTE (-728))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1052)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052)))) (|HasCategory| |#3| (QUOTE (-728)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1052)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasAttribute| |#3| (QUOTE -4422)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (-253 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-233)))) (-254 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) NIL (-255 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4422 . T) (-4423 . T)) +((-4425 . T) (-4426 . T)) NIL -(-256) +(-256 |Ex|) +((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) +NIL +NIL +(-257) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-257 R |Ex|) +(-258 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-258) +(-259) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-259 R) +(-260 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-260 |Ex|) -((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) -NIL -NIL (-261) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL (-262) -((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) +((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-263 S) -((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) +(-263) +((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-264) -((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) +(-264 S) +((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL (-265 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#3| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#3| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#3| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) (-266 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1036,11 +1036,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-277 R -1676) +(-277 R -3496) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-278 R -1676) +(-278 R -3496) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1059,10 +1059,10 @@ NIL (-282 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102)))) +((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104)))) (-283 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4423 . T)) +((-4426 . T)) NIL (-284 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1083,18 +1083,18 @@ NIL (-288 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4423))) +((|HasAttribute| |#1| (QUOTE -4426))) (-289 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-290 S R |Mod| -3461 -1315 |exactQuo|) +(-290 S R |Mod| -2215 -3941 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-291) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4415 . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-292) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,p,v,e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1104,65 +1104,65 @@ NIL ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-294 S R) +(-294 S) +((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) +((-4422 -3960 (|has| |#1| (-1052)) (|has| |#1| (-476))) (-4419 |has| |#1| (-1052)) (-4420 |has| |#1| (-1052))) +((|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1052)))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1052)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-728)))) (|HasCategory| |#1| (QUOTE (-476))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-299))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476)))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-728)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-728)))) +(-295 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-295 S) -((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4419 -2836 (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4416 |has| |#1| (-1051)) (-4417 |has| |#1| (-1051))) -((|HasCategory| |#1| (QUOTE (-365))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2836 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727)))) (|HasCategory| |#1| (QUOTE (-476))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2836 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-303))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476)))) (-2836 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727)))) (-2836 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-727)))) (-296 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|)))))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) (-297) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-298 -1676 S) -((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) +(-298 S) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL +((|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1052)))) +(-299) +((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -(-299 E -1676) -((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL +(-300 -3496 S) +((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL -(-300 A B) -((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) +NIL +(-301 E -3496) +((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-301) +(-302) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-302 S) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +(-303 A B) +((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1051)))) -(-303) -((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) +NIL +(-304) +((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-304 R1) +(-305 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-305 R1 R2) +(-306 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-306) -((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) -NIL -NIL (-307 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL (-308) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-309 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1172,35 +1172,35 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-311 -1676) +(-311 -3496) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL (-312) -((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) +((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL (-313) -((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) +((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL (-314 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-1024))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-2836 (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-851)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-1154))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1255) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1255) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1255) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1255) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-548))) (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-851))) (-12 (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| $ (QUOTE (-145)))) (-2836 (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1255 |#1| |#2| |#3| |#4|) (QUOTE (-911))) (|HasCategory| $ (QUOTE (-145)))))) -(-315 R S) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-913))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-1023))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (-3960 (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-852)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-1154))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-548))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-852))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-913)))) (|HasCategory| (-1256 |#1| |#2| |#3| |#4|) (QUOTE (-145))))) +(-315 R) +((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) +((-4422 -3960 (-3256 (|has| |#1| (-1052)) (|has| |#1| (-641 (-549)))) (-12 (|has| |#1| (-560)) (-3960 (-3256 (|has| |#1| (-1052)) (|has| |#1| (-641 (-549)))) (|has| |#1| (-1052)) (|has| |#1| (-476)))) (|has| |#1| (-1052)) (|has| |#1| (-476))) (-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) ((-4427 "*") |has| |#1| (-560)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-560)) (-4417 |has| |#1| (-560))) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (QUOTE (-21))) (-3960 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1115)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1115)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3960 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| $ (QUOTE (-1052))) (|HasCategory| $ (LIST (QUOTE -1041) (QUOTE (-549))))) +(-316 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-316 R FE) +(-317 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-317 R) -((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4419 -2836 (-1750 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-12 (|has| |#1| (-559)) (-2836 (-1750 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (|has| |#1| (-1051)) (|has| |#1| (-476)))) (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) ((-4424 "*") |has| |#1| (-559)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-559)) (-4414 |has| |#1| (-559))) -((-2836 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (-2836 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (QUOTE (-21))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1114)))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1114)))) (-2836 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2836 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1114)))) (-2836 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2836 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1051)))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1114))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567))))) -(-318 R -1676) +(-318 R -3496) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1210,8 +1210,8 @@ NIL NIL (-320 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|))))))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) (-321 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1222,8 +1222,8 @@ NIL NIL (-323 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4417 . T) (-4416 . T)) -((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-793)))) +((-4420 . T) (-4419 . T)) +((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-794)))) (-324 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1231,26 +1231,26 @@ NIL (-325 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-772) (QUOTE (-793)))) +((|HasCategory| (-773) (QUOTE (-794)))) (-326 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172)))) +((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172)))) (-327 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-328 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-329 S -1676) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-329 S -3496) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-370)))) -(-330 -1676) +(-330 -3496) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-331) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1268,121 +1268,121 @@ NIL ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-335 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-335 -3496 UP UPUP R) +((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) +NIL +NIL +(-336 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-336 S -1676 UP UPUP R) +(-337 S -3496 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-337 -1676 UP UPUP R) +(-338 -3496 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-338 -1676 UP UPUP R) -((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) -NIL -NIL (-339 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-340 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-341 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567))))) -(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) -((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) -NIL -NIL -(-343 S -1676 UP UPUP) +((-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-380)))) (|HasCategory| $ (QUOTE (-1052))) (|HasCategory| $ (LIST (QUOTE -1041) (QUOTE (-549))))) +(-342 |p| |n|) +((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| (-909 |#1|) (QUOTE (-145))) (|HasCategory| (-909 |#1|) (QUOTE (-370)))) (|HasCategory| (-909 |#1|) (QUOTE (-147))) (|HasCategory| (-909 |#1|) (QUOTE (-370))) (|HasCategory| (-909 |#1|) (QUOTE (-145)))) +(-343 S -3496 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365)))) -(-344 -1676 UP UPUP) +(-344 -3496 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4415 |has| (-410 |#2|) (-365)) (-4420 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 |has| (-410 |#2|) (-365)) (-4423 |has| (-410 |#2|) (-365)) (-4417 |has| (-410 |#2|) (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +NIL +(-345 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) +NIL NIL -(-345 |p| |extdeg|) +(-346 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145)))) -(-346 GF |defpol|) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| (-909 |#1|) (QUOTE (-145))) (|HasCategory| (-909 |#1|) (QUOTE (-370)))) (|HasCategory| (-909 |#1|) (QUOTE (-147))) (|HasCategory| (-909 |#1|) (QUOTE (-370))) (|HasCategory| (-909 |#1|) (QUOTE (-145)))) +(-347 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-347 GF |extdeg|) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-348 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-348 GF) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-349 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-349 F1 GF F2) +(-350 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-350 S) +(-351 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-351) +(-352) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-352 R UP -1676) +(-353 R UP -3496) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-353 |p| |extdeg|) +(-354 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145)))) -(-354 GF |uni|) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| (-909 |#1|) (QUOTE (-145))) (|HasCategory| (-909 |#1|) (QUOTE (-370)))) (|HasCategory| (-909 |#1|) (QUOTE (-147))) (|HasCategory| (-909 |#1|) (QUOTE (-370))) (|HasCategory| (-909 |#1|) (QUOTE (-145)))) +(-355 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-355 GF |extdeg|) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-356 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-356 |p| |n|) -((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| (-912 |#1|) (QUOTE (-145))) (|HasCategory| (-912 |#1|) (QUOTE (-370)))) (|HasCategory| (-912 |#1|) (QUOTE (-147))) (|HasCategory| (-912 |#1|) (QUOTE (-370))) (|HasCategory| (-912 |#1|) (QUOTE (-145)))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-357 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) -(-358 -1676 GF) -((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +(-358 GF) +((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-359 GF) -((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) +(-359 -3496 GF) +((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-360 -1676 FP FPP) +(-360 -3496 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-361 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145)))) (-362 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-363 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4419 . T)) +((-4422 . T)) NIL (-364 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1390,23 +1390,23 @@ NIL NIL (-365) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-366 |Name| S) -((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) +(-366 S) +((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-367 S) -((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) +(-367 |Name| S) +((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL (-368 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-559)))) +((|HasCategory| |#2| (QUOTE (-560)))) (-369 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4419 |has| |#1| (-559)) (-4417 . T) (-4416 . T)) +((-4422 |has| |#1| (-560)) (-4420 . T) (-4419 . T)) NIL (-370) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1418,23 +1418,23 @@ NIL ((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-365)))) (-372 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-373 S A R B) -((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) -NIL -NIL -(-374 A S) +(-373 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102)))) -(-375 S) +((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104)))) +(-374 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4422 . T)) +((-4425 . T)) +NIL +(-375 S A R B) +((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) +NIL NIL (-376 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4417 . T) (-4416 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) NIL (-377 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1443,43 +1443,43 @@ NIL (-378 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) +((|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-379 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4419 . T)) +((-4422 . T)) NIL -(-380 |Par|) +(-380) +((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) +((-4408 . T) (-4416 . T) (-4201 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +NIL +(-381 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-381) -((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4405 . T) (-4413 . T) (-3092 . T) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -NIL (-382 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL (-383 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-4420 . T) (-4419 . T)) +((|HasCategory| |#1| (QUOTE (-172)))) +(-384 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4417 . T) (-4416 . T)) +((-4420 . T) (-4419 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) -(-384 R |Basis|) -((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4417 . T) (-4416 . T)) -NIL (-385) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-386) +(-386 R |Basis|) +((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) +((-4420 . T) (-4419 . T)) +NIL +(-387) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-387 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4417 . T) (-4416 . T)) -((|HasCategory| |#1| (QUOTE (-172)))) (-388 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL @@ -1487,10 +1487,10 @@ NIL (-389 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-851)))) +((|HasCategory| |#1| (QUOTE (-852)))) (-390) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-391) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1502,41 +1502,41 @@ NIL NIL (-393 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4417 . T) (-4416 . T)) +((-4420 . T) (-4419 . T)) NIL (-394) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-395 -1676 UP UPUP R) +(-395 -3496 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-396 S) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) +(-396) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-397) -((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) +(-397 S) +((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL (-398) -((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) +((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL (-399) -((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) +((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL (-400) -((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) +((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-401 -1646 |returnType| -4028 |symbols|) +(-401 -3973 |returnType| -1507 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-402 -1676 UP) +(-402 -3496 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1550,129 +1550,129 @@ NIL NIL (-405) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-406 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4413))) +((|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4416))) (-407) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3092 . T) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4201 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-408 R S) +(-408 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1224))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-1224)))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-455)))) +(-409 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-409 A B) +(-410 S) +((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) +((-4412 -12 (|has| |#1| (-6 -4423)) (|has| |#1| (-455)) (|has| |#1| (-6 -4412))) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-822))) (-3960 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-852)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-548))) (-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-411 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-410 S) -((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4409 -12 (|has| |#1| (-6 -4420)) (|has| |#1| (-455)) (|has| |#1| (-6 -4409))) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-821))) (-2836 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-851)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-548))) (-12 (|HasAttribute| |#1| (QUOTE -4420)) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-455)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-411 S R UP) +(-412 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-412 R UP) +(-413 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-413 A S) +(-414 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) -(-414 S) +((|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) +(-415 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-415 R1 F1 U1 A1 R2 F2 U2 A2) +(-416 R -3496 UP A) +((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) +((-4422 . T)) +NIL +(-417 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-416 R -1676 UP A) -((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4419 . T)) -NIL -(-417 R -1676 UP A |ibasis|) +(-418 R -3496 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1040) (|devaluate| |#2|)))) -(-418 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1041) (|devaluate| |#2|)))) +(-419 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-419 S R) +(-420 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) -(-420 R) +(-421 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4419 |has| |#1| (-559)) (-4417 . T) (-4416 . T)) +((-4422 |has| |#1| (-560)) (-4420 . T) (-4419 . T)) NIL -(-421 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1223))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-455)))) (-422 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-423 R FE |x| |cen|) -((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) +(-423 S R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL +((|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) +(-424 R) +((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) +((-4422 -3960 (|has| |#1| (-1052)) (|has| |#1| (-476))) (-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) ((-4427 "*") |has| |#1| (-560)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-560)) (-4417 |has| |#1| (-560))) NIL -(-424 R A S B) +(-425 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-425 R FE |Expon| UPS TRAN |x|) -((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) +(-426 R FE |x| |cen|) +((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-426 S A R B) -((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +(-427 R FE |Expon| UPS TRAN |x|) +((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-427 A S) +(-428 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370)))) -(-428 S) +((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-370)))) +(-429 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4422 . T) (-4412 . T) (-4423 . T)) +((-4425 . T) (-4415 . T) (-4426 . T)) NIL -(-429 R -1676) +(-430 S A R B) +((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) +NIL +NIL +(-431 R -3496) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-430 R E) +(-432 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4409 -12 (|has| |#1| (-6 -4409)) (|has| |#2| (-6 -4409))) (-4416 . T) (-4417 . T) (-4419 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4409)) (|HasAttribute| |#2| (QUOTE -4409)))) -(-431 R -1676) +((-4412 -12 (|has| |#1| (-6 -4412)) (|has| |#2| (-6 -4412))) (-4419 . T) (-4420 . T) (-4422 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#2| (QUOTE -4412)))) +(-433 R -3496) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-432 S R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -NIL -((|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-1114))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) -(-433 R) -((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4419 -2836 (|has| |#1| (-1051)) (|has| |#1| (-476))) (-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) ((-4424 "*") |has| |#1| (-559)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-559)) (-4414 |has| |#1| (-559))) -NIL -(-434 R -1676) +(-434 R -3496) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-435 R -1676) +(-435 R -3496) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-436 R -1676) +(-436 R -3496) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1680,16 +1680,16 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-438 R -1676 UP) +(-438 R -3496 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-48))))) (-439) -((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) +((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL (-440) -((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) +((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL (-441 |f|) @@ -1712,7 +1712,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-446 R UP -1676) +(-446 R UP -3496) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1729,37 +1729,37 @@ NIL NIL NIL (-450 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) -NIL +((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL +((|HasCategory| |#1| (QUOTE (-365)))) (-451 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) +((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL (-452 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) +((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL (-453 |Dom| |Expon| |VarSet| |Dpol|) -((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) +((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) +NIL NIL -((|HasCategory| |#1| (QUOTE (-365)))) (-454 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL (-455) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-456 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4419 |has| (-410 (-954 |#1|)) (-559)) (-4417 . T) (-4416 . T)) -((|HasCategory| (-410 (-954 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-410 (-954 |#1|)) (QUOTE (-559)))) +((-4422 |has| (-410 (-949 |#1|)) (-560)) (-4420 . T) (-4419 . T)) +((|HasCategory| (-410 (-949 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| (-410 (-949 |#1|)) (QUOTE (-560)))) (-457 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-911))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) +(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-913))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) (-458 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1786,7 +1786,7 @@ NIL NIL (-464 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4417 . T) (-4416 . T)) +((-4420 . T) (-4419 . T)) NIL (-465 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1794,8 +1794,8 @@ NIL NIL (-466 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) (-467 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1824,7 +1824,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-474 |lv| -1676 R) +(-474 |lv| -3496 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1834,23 +1834,23 @@ NIL NIL (-476) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4419 . T)) +((-4422 . T)) NIL (-477 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|))))))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) (-478 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|)))))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102)))) +((-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-852))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-479 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) (-480) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-481) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1858,29 +1858,29 @@ NIL NIL (-482 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|)))))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) (-483) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-484 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-911))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-485 -2424 S) +(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-913))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-485 -3021 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4416 |has| |#2| (-1051)) (-4417 |has| |#2| (-1051)) (-4419 |has| |#2| (-6 -4419)) ((-4424 "*") |has| |#2| (-172)) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2836 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2836 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +((-4419 |has| |#2| (-1052)) (-4420 |has| |#2| (-1052)) (-4422 |has| |#2| (-6 -4422)) ((-4427 "*") |has| |#2| (-172)) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-365))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-795))) (-3960 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-728))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-233))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-486) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-487 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-488 -1676 UP UPUP R) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-488 -3496 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1890,12 +1890,12 @@ NIL NIL (-490) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2836 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1154))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145))))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-549) (QUOTE (-913))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-147))) (|HasCategory| (-549) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-1023))) (|HasCategory| (-549) (QUOTE (-822))) (-3960 (|HasCategory| (-549) (QUOTE (-822))) (|HasCategory| (-549) (QUOTE (-852)))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1154))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-233))) (|HasCategory| (-549) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-549) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -310) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -287) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-308))) (|HasCategory| (-549) (QUOTE (-548))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-549) (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (|HasCategory| (-549) (QUOTE (-145))))) (-491 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4422)) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) +((|HasAttribute| |#1| (QUOTE -4425)) (|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (-492 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1916,34 +1916,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-497 -1676 UP |AlExt| |AlPol|) +(-497 -3496 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-498) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| $ (QUOTE (-1051))) (|HasCategory| $ (LIST (QUOTE -1040) (QUOTE (-567))))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| $ (QUOTE (-1052))) (|HasCategory| $ (LIST (QUOTE -1041) (QUOTE (-549))))) (-499 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-500 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-501 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-502 R UP -1676) +(-502 R UP -3496) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-503 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1102))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863))))) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1104))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-112) (QUOTE (-1104))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-865))))) (-504 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1956,10 +1956,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-507 -1676 |Expon| |VarSet| |DPoly|) +(-507 -3496 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-1179))))) +((|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-1180))))) (-508 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -1981,15 +1981,15 @@ NIL NIL NIL (-513 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL (-514 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL (-515 A S) -((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) +((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL (-516 S A B) @@ -2003,39 +2003,39 @@ NIL (-518 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-793)))) +((|HasCategory| |#2| (QUOTE (-794)))) (-519 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-520) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-521 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| (-584 |#1|) (QUOTE (-145))) (|HasCategory| (-584 |#1|) (QUOTE (-370)))) (|HasCategory| (-584 |#1|) (QUOTE (-147))) (|HasCategory| (-584 |#1|) (QUOTE (-370))) (|HasCategory| (-584 |#1|) (QUOTE (-145)))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (|HasCategory| (-584 |#1|) (QUOTE (-145))) (|HasCategory| (-584 |#1|) (QUOTE (-370)))) (|HasCategory| (-584 |#1|) (QUOTE (-147))) (|HasCategory| (-584 |#1|) (QUOTE (-370))) (|HasCategory| (-584 |#1|) (QUOTE (-145)))) (-522 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-523 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-524 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4423))) +((|HasAttribute| |#3| (QUOTE -4426))) (-525 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4423))) +((|HasAttribute| |#7| (QUOTE -4426))) (-526 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4424 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-560))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (-527) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2068,7 +2068,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-535 K -1676 |Par|) +(-535 K -3496 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2080,19 +2080,19 @@ NIL ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-538 R) -((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) +(-538) +((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-539) -((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) +(-539 R) +((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL (-540 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-541 K -1676 |Par|) +(-541 K -3496 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2113,7 +2113,7 @@ NIL NIL NIL (-546 R UP) -((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) +((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL (-547 S) @@ -2122,97 +2122,97 @@ NIL NIL (-548) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4420 . T) (-4421 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-549) +((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) +((-4407 . T) (-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +NIL +(-550) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-550) +(-551) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-551) +(-552) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-552) +(-553) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-553 |Key| |Entry| |addDom|) +(-554 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|)))))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-554 R -1676) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) +(-555 R -3496) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-555 R0 -1676 UP UPUP R) +(-556 R0 -3496 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-556) +(-557) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-557 R) +(-558 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3092 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4201 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-558 S) +(-559 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-559) +(-560) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-560 R -1676) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) +(-561 R -3496) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-561 I) +(-562 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-562) -((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) +(-563) +((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-563 R -1676 L) -((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) +(-564 R -3496 L) +((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -657) (|devaluate| |#2|)))) -(-564) +((|HasCategory| |#3| (LIST (QUOTE -660) (|devaluate| |#2|)))) +(-565) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-565 -1676 UP UPUP R) +(-566 -3496 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-566 -1676 UP) +(-567 -3496 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-567) -((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4404 . T) (-4410 . T) (-4414 . T) (-4409 . T) (-4420 . T) (-4421 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -NIL (-568) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-569 R -1676 L) -((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) +(-569 R -3496 L) +((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -657) (|devaluate| |#2|)))) -(-570 R -1676) +((|HasCategory| |#3| (LIST (QUOTE -660) (|devaluate| |#2|)))) +(-570 R -3496) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1141)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-630))))) -(-571 -1676 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1142)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-632))))) +(-571 -3496 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2220,27 +2220,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-573 -1676) +(-573 -3496) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-574 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3092 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4201 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-575) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-576 R -1676) +(-576 R -3496) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-630))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-559)))) -(-577 -1676 UP) -((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) +((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-632))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-560)))) +(-577 -3496 UP) +((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-578 R -1676) +(-578 R -3496) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2262,2094 +2262,2094 @@ NIL NIL (-583 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-584 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) ((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) (-585) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-586 R -1676) +(-586 -3496) +((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) +((-4420 . T) (-4419 . T)) +((|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-1180))))) +(-587 E -3496) +((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) +NIL +NIL +(-588 R -3496) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-587 E -1676) -((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) +(-589) NIL NIL -(-588 -1676) -((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4417 . T) (-4416 . T)) -((|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-1179))))) -(-589 I) +NIL +(-590 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-590 GF) +(-591 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-591 R) +(-592 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-147)))) -(-592) +(-593) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-593 R E V P TS) +(-594 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-594) +(-595) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-595 |mn|) +(-596 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2836 (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) -(-596 E V R P) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-3960 (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-144) (QUOTE (-1104)))) (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +(-597 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-597 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))) (|HasCategory| (-567) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567)))))) (-598 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))) (|HasCategory| (-549) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549)))))) +(-599 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4424 "*") |has| |#1| (-559)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-559)))) -(-599 A B) +(((-4427 "*") |has| |#1| (-560)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-560)))) +(-600 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-600 A B C) +(-601 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-601 R -1676 FG) +(-602 R -3496 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-602 S) +(-603 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-603 R |mn|) +(-604 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-604 S |Index| |Entry|) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-605 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-851))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#3| (QUOTE (-1102)))) -(-605 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-852))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#3| (QUOTE (-1104)))) +(-606 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-606) +(-607) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-607) +(-608) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-608 R A) +(-609 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4419 -2836 (-1750 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4417 . T) (-4416 . T)) -((-2836 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) -(-609 |Entry|) +((-4422 -3960 (-3256 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))) (-4420 . T) (-4419 . T)) +((-3960 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) +(-610 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (QUOTE (-1161))) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| (-1161) (QUOTE (-851))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-610 S |Key| |Entry|) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1162))) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| (-1162) (QUOTE (-852))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -615) (QUOTE (-865))))) +(-611 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-611 |Key| |Entry|) +(-612 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4423 . T)) -NIL -(-612 R S) -((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) -NIL +((-4426 . T)) NIL (-613 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) -(-614 S) -((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) +((|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) +(-614 R S) +((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL (-615 S) +((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) +NIL +NIL +(-616 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-616 -1676 UP) +(-617 -3496 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-617 S) +(-618 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-618) +(-619) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-619 S) +(-620 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-620 S R) +(-621 A R S) +((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-850)))) +(-622 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-621 R) +(-623 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4419 . T)) +((-4422 . T)) NIL -(-622 A R S) -((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-849)))) -(-623 R -1676) +(-624 R -3496) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-624 R UP) +(-625 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4417 . T) (-4416 . T) ((-4424 "*") . T) (-4415 . T) (-4419 . T)) -((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) -(-625 R E V P TS ST) +((-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4418 . T) (-4422 . T)) +((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) +(-626 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-626 OV E Z P) +(-627 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-627) +(-628) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-628 |VarSet| R |Order|) +(-629 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4419 . T)) +((-4422 . T)) NIL -(-629 R |ls|) +(-630 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-630) -((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) +(-631 R -3496) +((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-631 R -1676) -((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) +(-632) +((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-632 |lv| -1676) +(-633 |lv| -3496) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-633) +(-634) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (QUOTE (-1161))) (LIST (QUOTE |:|) (QUOTE -2265) (QUOTE (-52))))))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1161) (QUOTE (-851))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (QUOTE (-1102)))) -(-634 S R) +((-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1162))) (LIST (QUOTE |:|) (QUOTE -2254) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -310) (QUOTE (-51))))) (|HasCategory| (-1162) (QUOTE (-852))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (QUOTE (-1104)))) +(-635 R A) +((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) +((-4422 -3960 (-3256 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))) (-4420 . T) (-4419 . T)) +((-3960 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -421) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) +(-636 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) -(-635 R) +(-637 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4417 . T) (-4416 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) NIL -(-636 R A) -((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4419 -2836 (-1750 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4417 . T) (-4416 . T)) -((-2836 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) -(-637 R FE) -((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) +(-638 R FE) +((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-638 R) -((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) +(-639 R) +((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-639 S R) +(-640 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-1736 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365)))) -(-640 R) +((-3746 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365)))) +(-641 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4419 . T)) +((-4422 . T)) NIL -(-641 R) +(-642 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-642 A B) -((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) +(-643 S) +((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-644 A B) +((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-643 A B) -((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) +(-645 A B) +((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-644 A B C) +(-646 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-645 S) -((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-646 T$) +(-647 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-647 R) +(-648 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-648 S) +(-649 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-649 R) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-650 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-650 S E |un|) +(-651 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-651 A S) +(-652 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4423))) -(-652 S) +((|HasAttribute| |#1| (QUOTE -4426))) +(-653 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-653 R -1676 L) +(-654 M R S) +((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) +((-4420 . T) (-4419 . T)) +((|HasCategory| |#1| (QUOTE (-793)))) +(-655 R -3496 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-654 A) +(-656 A -2820) +((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) +((-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) +(-657 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-655 A M) +((-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) +(-658 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-656 S A) +((-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) +(-659 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) -(-657 A) +(-660 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-658 -1676 UP) +(-661 -3496 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-659 A -2078) -((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-660 A L) +(-662 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-661 S) +(-663 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-662) +(-664) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-663 M R S) -((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4417 . T) (-4416 . T)) -((|HasCategory| |#1| (QUOTE (-792)))) -(-664 R) +(-665 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-665 |VarSet| R) +(-666 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4417 . T) (-4416 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) ((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-172)))) -(-666 A S) +(-667 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-667 S) +(-668 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-668 -1676) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-669 -3496 |Row| |Col| M) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-669 -1676 |Row| |Col| M) -((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) +(-670 -3496) +((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-670 R E OV P) +(-671 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-671 |n| R) +(-672 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4419 . T) (-4422 . T) (-4416 . T) (-4417 . T)) -((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))) (-2836 (|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-672) +((-4422 . T) (-4425 . T) (-4419 . T) (-4420 . T)) +((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4427 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-560))) (-3960 (|HasAttribute| |#2| (QUOTE (-4427 #1#))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-673) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-673 |VarSet|) +(-674 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-674 A S) +(-675 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-675 S) +(-676 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-676 R) +(-677 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-677) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-678) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-678 |VarSet|) +(-679 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-679 A) +(-680 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-680 A C) +(-681 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-681 A B C) +(-682 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-682) +(-683) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-683 A) +(-684 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-684 A C) +(-685 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-685 A B C) +(-686 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-686 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) -((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) -NIL -NIL (-687 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559)))) +((|HasAttribute| |#2| (QUOTE (-4427 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-560)))) (-688 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4422 . T) (-4423 . T)) +((-4425 . T) (-4426 . T)) +NIL +(-689 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) +NIL NIL -(-689 R |Row| |Col| M) +(-690 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559)))) -(-690 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4422 . T) (-4423 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4424 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-560)))) (-691 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4425 . T) (-4426 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-560))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-692 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-692 T$) +(-693 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-693 S -1676 FLAF FLAS) +(-694 S -3496 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-694 R Q) +(-695 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-695) +(-696) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4415 . T) (-4420 |has| (-700) (-365)) (-4414 |has| (-700) (-365)) (-3100 . T) (-4421 |has| (-700) (-6 -4421)) (-4418 |has| (-700) (-6 -4418)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-700) (QUOTE (-147))) (|HasCategory| (-700) (QUOTE (-145))) (|HasCategory| (-700) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-370))) (|HasCategory| (-700) (QUOTE (-365))) (-2836 (|HasCategory| (-700) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-700) (QUOTE (-233))) (-2836 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (LIST (QUOTE -287) (QUOTE (-700)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -310) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-700) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (-2836 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-700) (QUOTE (-1024))) (|HasCategory| (-700) (QUOTE (-1204))) (-12 (|HasCategory| (-700) (QUOTE (-1004))) (|HasCategory| (-700) (QUOTE (-1204)))) (-2836 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-365))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-911))))) (-2836 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (-12 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-911)))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-911))))) (|HasCategory| (-700) (QUOTE (-548))) (-12 (|HasCategory| (-700) (QUOTE (-1062))) (|HasCategory| (-700) (QUOTE (-1204)))) (|HasCategory| (-700) (QUOTE (-1062))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911))) (-2836 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-365)))) (-2836 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-559)))) (-12 (|HasCategory| (-700) (QUOTE (-233))) (|HasCategory| (-700) (QUOTE (-365)))) (-12 (|HasCategory| (-700) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-559))) (|HasAttribute| (-700) (QUOTE -4421)) (|HasAttribute| (-700) (QUOTE -4418)) (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-145)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-911)))) (|HasCategory| (-700) (QUOTE (-351))))) -(-696 S) +((-4418 . T) (-4423 |has| (-701) (-365)) (-4417 |has| (-701) (-365)) (-1463 . T) (-4424 |has| (-701) (-6 -4424)) (-4421 |has| (-701) (-6 -4421)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-701) (QUOTE (-147))) (|HasCategory| (-701) (QUOTE (-145))) (|HasCategory| (-701) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-701) (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| (-701) (QUOTE (-370))) (|HasCategory| (-701) (QUOTE (-365))) (-3960 (|HasCategory| (-701) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-701) (QUOTE (-365)))) (|HasCategory| (-701) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-701) (QUOTE (-233))) (-3960 (|HasCategory| (-701) (QUOTE (-365))) (|HasCategory| (-701) (QUOTE (-352)))) (|HasCategory| (-701) (QUOTE (-352))) (|HasCategory| (-701) (LIST (QUOTE -287) (QUOTE (-701)) (QUOTE (-701)))) (|HasCategory| (-701) (LIST (QUOTE -310) (QUOTE (-701)))) (|HasCategory| (-701) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-701)))) (|HasCategory| (-701) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-701) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-701) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-701) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (-3960 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-365))) (|HasCategory| (-701) (QUOTE (-352)))) (|HasCategory| (-701) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-701) (QUOTE (-1023))) (|HasCategory| (-701) (QUOTE (-1205))) (-12 (|HasCategory| (-701) (QUOTE (-1005))) (|HasCategory| (-701) (QUOTE (-1205)))) (-3960 (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (-12 (|HasCategory| (-701) (QUOTE (-352))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-365)))) (-3960 (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (-12 (|HasCategory| (-701) (QUOTE (-365))) (|HasCategory| (-701) (QUOTE (-913)))) (-12 (|HasCategory| (-701) (QUOTE (-352))) (|HasCategory| (-701) (QUOTE (-913))))) (|HasCategory| (-701) (QUOTE (-548))) (-12 (|HasCategory| (-701) (QUOTE (-1063))) (|HasCategory| (-701) (QUOTE (-1205)))) (|HasCategory| (-701) (QUOTE (-1063))) (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913))) (-3960 (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-365)))) (-3960 (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-560)))) (-12 (|HasCategory| (-701) (QUOTE (-233))) (|HasCategory| (-701) (QUOTE (-365)))) (-12 (|HasCategory| (-701) (QUOTE (-365))) (|HasCategory| (-701) (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| (-701) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-701) (QUOTE (-560))) (|HasAttribute| (-701) (QUOTE -4424)) (|HasAttribute| (-701) (QUOTE -4421)) (-12 (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-145)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-701) (QUOTE (-308))) (|HasCategory| (-701) (QUOTE (-913)))) (|HasCategory| (-701) (QUOTE (-352))))) +(-697 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4423 . T)) +((-4426 . T)) NIL -(-697 U) +(-698 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-698) -((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) +(-699) +((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-699 OV E -1676 PG) +(-700 OV E -3496 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-700) +(-701) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3092 . T) (-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4201 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-701 R) +(-702 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-702) +(-703) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4421 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4424 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-703 S D1 D2 I) +(-704 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-704 S) +(-705 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-705 S) +(-706 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-706 S T$) +(-707 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-707 S -2856 I) +(-708 S -3072 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-708 E OV R P) +(-709 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-709 R) +(-710 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-710 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-711 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-711) +(-712) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-712 R |Mod| -3461 -1315 |exactQuo|) +(-713 R |Mod| -2215 -3941 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-713 R |Rep|) +(-714 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4418 |has| |#1| (-365)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-714 IS E |ff|) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4421 |has| |#1| (-365)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1085) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-715 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-715 R M) +(-716 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T)) +((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-716 R |Mod| -3461 -1315 |exactQuo|) +(-717 R |Mod| -2215 -3941 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4419 . T)) +((-4422 . T)) NIL -(-717 S R) +(-718 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-718 R) +(-719 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4417 . T) (-4416 . T)) +((-4420 . T) (-4419 . T)) NIL -(-719 -1676) +(-720 -3496) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4419 . T)) +((-4422 . T)) NIL -(-720 S) +(-721 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-721) +(-722) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-722 S) +(-723 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-723) +(-724) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-724 S R UP) +(-725 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-351))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370)))) -(-725 R UP) +((|HasCategory| |#2| (QUOTE (-352))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370)))) +(-726 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4415 |has| |#1| (-365)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 |has| |#1| (-365)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-726 S) +(-727 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-727) +(-728) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-728 -1676 UP) +(-729 -3496 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-729 |VarSet| E1 E2 R S PR PS) +(-730 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-730 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-731 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-731 E OV R PPR) +(-732 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-732 |vl| R) +(-733 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-911))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-733 E OV R PRF) +(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-913))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-734 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-734 E OV R P) +(-735 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-735 R S M) +(-736 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-736 R M) +(-737 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-851)))) -(-737 S) -((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4412 . T) (-4423 . T)) -NIL +((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-852)))) (-738 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4422 . T) (-4412 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-739) +((-4425 . T) (-4415 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-739 S) +((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) +((-4415 . T) (-4426 . T)) +NIL +(-740) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-740 S) +(-741 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-741 |Coef| |Var|) +(-742 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4417 . T) (-4416 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4420 . T) (-4419 . T) (-4422 . T)) NIL -(-742 OV E R P) +(-743 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-743 E OV R P) +(-744 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-744 S R) +(-745 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-745 R) +(-746 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4417 . T) (-4416 . T)) +((-4420 . T) (-4419 . T)) NIL -(-746) +(-747) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-747) +(-748) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-748) +(-749) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-750) +(-751) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-751) +(-752) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-752) +(-753) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-754) +(-755) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-756) +(-757) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-757) +(-758) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-758) +(-759) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-759) +(-760) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-761 S) +(-762 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-762) +(-763) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-763 S) +(-764 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-764) +(-765) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-765 |Par|) +(-766 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-766 -1676) +(-767 -3496) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-767 P -1676) +(-768 P -3496) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-768 T$) +(-769 T$) NIL NIL NIL -(-769 UP -1676) +(-770 UP -3496) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-770) +(-771) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-771 R) +(-772 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-772) +(-773) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4424 "*") . T)) +(((-4427 "*") . T)) NIL -(-773 R -1676) +(-774 R -3496) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-774 S) -((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) -NIL -NIL (-775) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-776 R |PolR| E |PolE|) +(-776 S) +((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) +NIL +NIL +(-777 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-777 R E V P TS) +(-778 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-778 -1676 |ExtF| |SUEx| |ExtP| |n|) +(-779 -3496 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-779 BP E OV R P) +(-780 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-780 |Par|) +(-781 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-781 R |VarSet|) +(-782 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (-1736 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (-1736 (|HasCategory| |#1| (QUOTE (-548)))) (-1736 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (-1736 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567))))) (-1736 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1179)))) (-1736 (|HasCategory| |#1| (LIST (QUOTE -994) (QUOTE (-567))))))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-782 R S) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))))) (-3960 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (-3746 (|HasCategory| |#1| (QUOTE (-548)))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-549))))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-1180)))) (-3746 (|HasCategory| |#1| (LIST (QUOTE -994) (QUOTE (-549))))))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-783 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4421 |has| |#1| (-365)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1085) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-784 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-783 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4418 |has| |#1| (-365)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-784 R) +(-785 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) -(-785 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) +(-786 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-786 S) +(-787 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-172)))) -(-787) +((-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-172)))) +(-788) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-788) +(-789) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-789) +(-790) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-790) +(-791) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-791 |Curve|) +(-792 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-792) -((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) -NIL -NIL (-793) -((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) +((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL (-794) -((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) +((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL (-795) -((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) +((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL (-796) -((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) +((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL (-797 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370)))) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-370)))) (-798 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-799 -2836 R OS S) -((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) +(-799) +((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL (-800 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2836 (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2836 (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1001 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) -(-801) +((-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-3960 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) +(-801 -3960 R OS S) +((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) +NIL +NIL +(-802) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-802 R -1676 L) +(-803 R -3496 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-803 R -1676) -((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) +(-804 R -3496) +((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-804) +(-805) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-805 R -1676) +(-806 R -3496) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-806) +(-807) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-807 -1676 UP UPUP R) +(-808 -3496 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-808 -1676 UP L LQ) +(-809 -3496 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-809) +(-810) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-810 -1676 UP L LQ) +(-811 -3496 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-811 -1676 UP) -((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) +(-812 -3496 UP) +((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-812 -1676 L UP A LO) +(-813 -3496 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-813 -1676 UP) +(-814 -3496 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-814 -1676 LO) +(-815 -3496 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-815 -1676 LODO) +(-816 -3496 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-816 -2424 S |f|) +(-817 -3021 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4416 |has| |#2| (-1051)) (-4417 |has| |#2| (-1051)) (-4419 |has| |#2| (-6 -4419)) ((-4424 "*") |has| |#2| (-172)) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2836 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (|HasCategory| |#2| (QUOTE (-233))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2836 (|HasCategory| |#2| (QUOTE (-1051))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1102)))) (|HasAttribute| |#2| (QUOTE -4419)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) -(-817 R) +((-4419 |has| |#2| (-1052)) (-4420 |has| |#2| (-1052)) (-4422 |has| |#2| (-6 -4422)) ((-4427 "*") |has| |#2| (-172)) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-365))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-795))) (-3960 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-728))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1052)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-233))) (-3960 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))))) +(-818 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-819 (-1179)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-818 |Kernels| R |var|) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-820 (-1180)) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-819 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4424 "*") |has| |#2| (-365)) (-4415 |has| |#2| (-365)) (-4420 |has| |#2| (-365)) (-4414 |has| |#2| (-365)) (-4419 . T) (-4417 . T) (-4416 . T)) +(((-4427 "*") |has| |#2| (-365)) (-4418 |has| |#2| (-365)) (-4423 |has| |#2| (-365)) (-4417 |has| |#2| (-365)) (-4422 . T) (-4420 . T) (-4419 . T)) ((|HasCategory| |#2| (QUOTE (-365)))) -(-819 S) +(-820 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-820 S) +(-821 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-851)))) -(-821) -((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -NIL +((|HasCategory| |#1| (QUOTE (-852)))) (-822) -((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) -NIL +((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-823) -((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) +((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL (-824) -((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) +((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL (-825) -((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) +((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL (-826) +((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) +NIL +NIL +(-827) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-827 R) +(-828) +((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) +NIL +NIL +(-829 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-828 P R) +(-830 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233)))) -(-829) -((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) -NIL -NIL -(-830) +(-831) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-831 S) +(-832 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4422 . T) (-4412 . T) (-4423 . T)) +((-4425 . T) (-4415 . T) (-4426 . T)) NIL -(-832) +(-833) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-833 R S) +(-834 R) +((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) +((-4422 |has| |#1| (-850))) +((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-21))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-548)))) +(-835 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-834 R) -((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4419 |has| |#1| (-849))) -((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2836 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2836 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548)))) -(-835 A S) +(-836 R) +((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) +((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) +(-837 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-836 S) +(-838 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-837 R) -((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-838) +(-839) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-839) +(-840) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-840) +(-841) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-841) +(-842) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-842) +(-843) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-843 R S) +(-844 R) +((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) +((-4422 |has| |#1| (-850))) +((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-21))) (-3960 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-548)))) +(-845 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-844 R) -((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4419 |has| |#1| (-849))) -((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2836 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2836 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548)))) -(-845) +(-846) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-846 -2424 S) +(-847 -3021 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-847) +(-848) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-848 S) +(-849 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-849) +(-850) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4419 . T)) +((-4422 . T)) NIL -(-850 S) +(-851 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-851) +(-852) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-852 S R) +(-853 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172)))) -(-853 R) +((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172)))) +(-854 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-854 R C) +(-855 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) -(-855 R |sigma| -2582) +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) +(-856 R |sigma| -3665) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) -(-856 |x| R |sigma| -2582) +((-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365)))) +(-857 |x| R |sigma| -3665) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-365)))) -(-857 R) +((-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-365)))) +(-858 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) -(-858) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) +(-859) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-859) +(-860) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-860 S) +(-861) +((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) +NIL +NIL +(-862 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-861) +(-863) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-862) +(-864) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-863) +(-865) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-864) -((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) -NIL -NIL -(-865 |VariableList|) +(-866 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-866) +(-867) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-867 R |vl| |wl| |wtlevel|) +(-868 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T)) +((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) -(-868 R PS UP) +(-869 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-869 R |x| |pt|) +(-870 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-870 |p|) -((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -NIL (-871 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL (-872 |p|) +((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +NIL +(-873 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-871 |#1|) (QUOTE (-911))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-147))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-871 |#1|) (QUOTE (-1024))) (|HasCategory| (-871 |#1|) (QUOTE (-821))) (-2836 (|HasCategory| (-871 |#1|) (QUOTE (-821))) (|HasCategory| (-871 |#1|) (QUOTE (-851)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-1154))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-233))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -871) (|devaluate| |#1|)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (QUOTE (-308))) (|HasCategory| (-871 |#1|) (QUOTE (-548))) (|HasCategory| (-871 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-911)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))))) -(-873 |p| PADIC) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-871 |#1|) (QUOTE (-913))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-147))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-871 |#1|) (QUOTE (-1023))) (|HasCategory| (-871 |#1|) (QUOTE (-822))) (-3960 (|HasCategory| (-871 |#1|) (QUOTE (-822))) (|HasCategory| (-871 |#1|) (QUOTE (-852)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-871 |#1|) (QUOTE (-1154))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| (-871 |#1|) (QUOTE (-233))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -871) (|devaluate| |#1|)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (QUOTE (-308))) (|HasCategory| (-871 |#1|) (QUOTE (-548))) (|HasCategory| (-871 |#1|) (QUOTE (-852))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-913)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))))) +(-874 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-821))) (-2836 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1154))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-874 S T$) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-822))) (-3960 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1154))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-852))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-875 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) -(-875) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-1104)))) (-3960 (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-1104))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))))) +(-876) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-876) +(-877) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-877) +(-878) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-878 CF1 CF2) +(-879 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-879 |ComponentFunction|) +(-880 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-880 CF1 CF2) +(-881 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-881 |ComponentFunction|) +(-882 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-882) +(-883) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-883 CF1 CF2) +(-884 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-884 |ComponentFunction|) +(-885 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-885) +(-886) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,l,n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-886 R) +(-887 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-887 R S L) +(-888 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-888 S) +(-889 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-889 |Base| |Subject| |Pat|) +(-890 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-1736 (|HasCategory| |#2| (QUOTE (-1051)))) (-1736 (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))) (-12 (|HasCategory| |#2| (QUOTE (-1051))) (-1736 (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179))))) -(-890 R A B) +((-12 (-3746 (|HasCategory| |#2| (QUOTE (-1052)))) (-3746 (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180)))))) (-12 (|HasCategory| |#2| (QUOTE (-1052))) (-3746 (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) +(-891 R S) +((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) +NIL +NIL +(-892 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-891 R S) -((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) +(-893 R) +((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-892 R -2856) +(-894 R -3072) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-893 R S) +(-895 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-894 R) -((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) -NIL -NIL -(-895 |VarSet|) +(-896 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-896 UP R) +(-897 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-897) +(-898) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-898 UP -1676) +(-899 UP -3496) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-899) +(-900) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-900) +(-901) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-901 A S) +(-902 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-902 S) +(-903 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4419 . T)) +((-4422 . T)) NIL -(-903 S) +(-904 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-904 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-905 S) +((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) +((-4422 . T)) +((-3960 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-852)))) +(-906 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-905 S) +(-907 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4419 . T)) +((-4422 . T)) NIL -(-906 S) +(-908 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-907 S) -((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4419 . T)) -((-2836 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) -(-908 R E |VarSet| S) +(-909 |p|) +((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) +(-910 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-909 R S) +(-911 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-910 S) +(-912 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-911) +(-913) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-912 |p|) -((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370)))) -(-913 R0 -1676 UP UPUP R) +(-914 R0 -3496 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-914 UP UPUP R) +(-915 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-915 UP UPUP) +(-916 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-916 R) +(-917 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-917 R) +(-918 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-918 E OV R P) +(-919 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-919) +(-920) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-920 -1676) +(-921 -3496) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-921 R) -((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) -NIL -NIL (-922) -((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -NIL -(-923) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4424 "*") . T)) +(((-4427 "*") . T)) NIL -(-924 -1676 P) -((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) +(-923 R) +((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-925 |xx| -1676) +(-924) +((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +NIL +(-925 |xx| -3496) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-926 R |Var| |Expon| GR) -((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) +(-926 -3496 P) +((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-927 S) -((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) +(-927 R |Var| |Expon| GR) +((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL (-928) -((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) +((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-929) -((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) +(-929 S) +((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL (-930) -((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) +((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-931 R -1676) -((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) +(-931) +((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL (-932) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-933 S A B) +(-933 R -3496) +((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) +NIL +NIL +(-934 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-934 S R -1676) +(-935 S R -3496) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-935 I) +(-936 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-936 S E) +(-937 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-937 S R L) +(-938 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-938 S E V R P) +(-939 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -888) (|devaluate| |#1|)))) -(-939 R -1676 -2856) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) +((|HasCategory| |#3| (LIST (QUOTE -889) (|devaluate| |#1|)))) +(-940 -3072) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-940 -2856) -((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) +(-941 R -3496 -3072) +((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-941 S R Q) +(-942 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-942 S) +(-943 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-943 S R P) +(-944 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-944) +(-945) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-945 R) +(-946 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-946 |lv| R) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-947 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-947 |TheField| |ThePols|) +(-948 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-849)))) -(-948 R S) +((|HasCategory| |#1| (QUOTE (-850)))) +(-949 R) +((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1180) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1180) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1180) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1180) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1180) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-950 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-949 |x| R) +(-951 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-950 S R E |VarSet|) +(-952 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-911))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) -(-951 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-913))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#4| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#4| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#4| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) +(-953 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) NIL -(-952 E V R P -1676) +(-954 E V R P -3496) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-953 E |Vars| R P S) +(-955 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-954 R) -((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1179) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-955 E V R P -1676) +(-956 E V R P -3496) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-455)))) -(-956) +(-957) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-957) +(-958) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-958 R L) +(-959 R E) +((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4423))) +(-960 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-959 A B) +(-961 S) +((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-962 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-960 S) -((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-961) +(-963) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-962 -1676) +(-964 -3496) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-963 I) +(-965 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-964) +(-966) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-965 R E) -((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4420))) -(-966 A B) +(-967 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4419 -12 (|has| |#2| (-476)) (|has| |#1| (-476)))) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) -(-967) +((-4422 -12 (|has| |#2| (-476)) (|has| |#1| (-476)))) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-852))))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728))))) (-12 (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-728)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-852))))) +(-968) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-968 T$) -((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) +(-969 T$) +((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-969) +(-970) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-970 S) +(-971 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4422 . T) (-4423 . T)) +((-4425 . T) (-4426 . T)) NIL -(-971 R |polR|) +(-972 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-455)))) -(-972) +(-973) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-973) +(-974) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-974 S |Coef| |Expon| |Var|) +(-975 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-975 |Coef| |Expon| |Var|) +(-976 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-976) +(-977) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-977 S R E |VarSet| P) +(-978 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-559)))) -(-978 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-560)))) +(-979 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4422 . T)) +((-4425 . T)) NIL -(-979 R E V P) +(-980 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-455)))) -(-980 K) +(-981 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-981 |VarSet| E RC P) +(-982 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-982 R) +(-983 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-983 R1 R2) +(-984 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-984 R) +(-985 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-985 K) +(-986 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-986 R E OV PPR) +(-987 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-987 K R UP -1676) +(-988 K R UP -3496) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-988 |vl| |nv|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) -NIL -NIL (-989 R |Var| |Expon| |Dpoly|) -((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308))))) -(-990 R E V P TS) -((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) +(-990 |vl| |nv|) +((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-991) -((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) +(-991 R E V P TS) +((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-992 A B R S) -((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) +(-992) +((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL (-993 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1154)))) +((|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1154)))) (-994 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +NIL +(-995 A B R S) +((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) +NIL NIL -(-995 |n| K) +(-996 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-996) +(-997) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-997 S) +(-998 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4422 . T) (-4423 . T)) +((-4425 . T) (-4426 . T)) NIL -(-998 S R) +(-999 R) +((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) +((-4418 |has| |#1| (-291)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1063))) (|HasCategory| |#1| (QUOTE (-548)))) +(-1000 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1062))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-291)))) -(-999 R) +((|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1063))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-291)))) +(-1001 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4415 |has| |#1| (-291)) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 |has| |#1| (-291)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1000 QR R QS S) +(-1002 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1001 R) -((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4415 |has| |#1| (-291)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365))) (-2836 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1062))) (|HasCategory| |#1| (QUOTE (-548)))) -(-1002 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-1003 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1004 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1004) +(-1005) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1005 -1676 UP UPUP |radicnd| |n|) +(-1006 -3496 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4415 |has| (-410 |#2|) (-365)) (-4420 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2836 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2836 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2836 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2836 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) -(-1006 |bb|) +((-4418 |has| (-410 |#2|) (-365)) (-4423 |has| (-410 |#2|) (-365)) (-4417 |has| (-410 |#2|) (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-352))) (-3960 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-352)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-3960 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-352)))) (-3960 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-352))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365))))) +(-1007 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-567) (QUOTE (-911))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1024))) (|HasCategory| (-567) (QUOTE (-821))) (-2836 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1154))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1179)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-911)))) (|HasCategory| (-567) (QUOTE (-145))))) -(-1007) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-549) (QUOTE (-913))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-1180)))) (|HasCategory| (-549) (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-147))) (|HasCategory| (-549) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-1023))) (|HasCategory| (-549) (QUOTE (-822))) (-3960 (|HasCategory| (-549) (QUOTE (-822))) (|HasCategory| (-549) (QUOTE (-852)))) (|HasCategory| (-549) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-1154))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-549) (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-549) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-549) (QUOTE (-233))) (|HasCategory| (-549) (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| (-549) (LIST (QUOTE -517) (QUOTE (-1180)) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -310) (QUOTE (-549)))) (|HasCategory| (-549) (LIST (QUOTE -287) (QUOTE (-549)) (QUOTE (-549)))) (|HasCategory| (-549) (QUOTE (-308))) (|HasCategory| (-549) (QUOTE (-548))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-549) (LIST (QUOTE -641) (QUOTE (-549)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-549) (QUOTE (-913)))) (|HasCategory| (-549) (QUOTE (-145))))) +(-1008) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1008) +(-1009) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1009 RP) +(-1010 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1010 S) +(-1011 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1011 A S) +(-1012 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-1102)))) -(-1012 S) +((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-1104)))) +(-1013 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1013 S) +(-1014 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1014) +(-1015) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4415 . T) (-4420 . T) (-4414 . T) (-4417 . T) (-4416 . T) ((-4424 "*") . T) (-4419 . T)) +((-4418 . T) (-4423 . T) (-4417 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4422 . T)) NIL -(-1015 R -1676) +(-1016 R -3496) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1016 R -1676) +(-1017 R -3496) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1017 -1676 UP) +(-1018 -3496 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1018 -1676 UP) +(-1019 -3496 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1019 S) +(-1020 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1020 F1 UP UPUP R F2) +(-1021 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1021) +(-1022) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1022 |Pol|) -((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) +(-1023) +((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1023 |Pol|) -((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) +(-1024 |Pol|) +((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1024) -((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) +(-1025 |Pol|) +((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1025) +(-1026) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1026 |TheField|) +(-1027 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4415 . T) (-4420 . T) (-4414 . T) (-4417 . T) (-4416 . T) ((-4424 "*") . T) (-4419 . T)) -((-2836 (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1040) (QUOTE (-567))))) -(-1027 -1676 L) +((-4418 . T) (-4423 . T) (-4417 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4422 . T)) +((-3960 (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-410 (-549)) (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-410 (-549)) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-410 (-549)) (LIST (QUOTE -1041) (QUOTE (-549))))) +(-1028 -3496 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1028 S) +(-1029 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1102)))) -(-1029 R E V P) +((|HasCategory| |#1| (QUOTE (-1104)))) +(-1030 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1030 R) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1031) +((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) +NIL +NIL +(-1032 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4424 "*")))) -(-1031 R) +((|HasAttribute| |#1| (QUOTE (-4427 "*")))) +(-1033 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308)))) -(-1032 S) +(-1034 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1033) -((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) -NIL -NIL -(-1034 S) +(-1035 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1035 S) +(-1036 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1036 -1676 |Expon| |VarSet| |FPol| |LFPol|) +(-1037 -3496 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1037) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -2265) (QUOTE (-52))))))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-1179) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1102))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863))))) (-1038) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -2254) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -310) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104))) (|HasCategory| (-1180) (QUOTE (-852))) (|HasCategory| (-51) (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865))))) +(-1039) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1039 A S) +(-1040 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1040 S) +(-1041 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1041 Q R) +(-1042 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1042) +(-1043 R) +((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) +NIL +NIL +(-1044) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1043 UP) +(-1045 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1044 R) +(-1046 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1045 R) -((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) -NIL -NIL -(-1046 T$) +(-1047 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1047 T$) +(-1048 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1048 R |ls|) +(-1049 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1102))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -781) (|devaluate| |#1|) (LIST (QUOTE -865) (|devaluate| |#2|)))))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-865 |#2|) (QUOTE (-370))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1049) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| (-782 |#1| (-866 |#2|)) (QUOTE (-1104))) (|HasCategory| (-782 |#1| (-866 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -782) (|devaluate| |#1|) (LIST (QUOTE -866) (|devaluate| |#2|)))))) (|HasCategory| (-782 |#1| (-866 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-782 |#1| (-866 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| (-866 |#2|) (QUOTE (-370))) (|HasCategory| (-782 |#1| (-866 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) +(-1050) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1050 S) +(-1051 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1051) +(-1052) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4419 . T)) +((-4422 . T)) NIL -(-1052 |xx| -1676) +(-1053 |xx| -3496) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1053 R) +(-1054 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1054 S |m| |n| R |Row| |Col|) +(-1055 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-559))) (|HasCategory| |#4| (QUOTE (-172)))) -(-1055 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-560))) (|HasCategory| |#4| (QUOTE (-172)))) +(-1056 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4422 . T) (-4417 . T) (-4416 . T)) +((-4425 . T) (-4420 . T) (-4419 . T)) NIL -(-1056 |m| |n| R) +(-1057 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4422 . T) (-4417 . T) (-4416 . T)) -((|HasCategory| |#3| (QUOTE (-172))) (-2836 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-559))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1057 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4425 . T) (-4420 . T) (-4419 . T)) +((|HasCategory| |#3| (QUOTE (-172))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-560))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1058 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1058 R) +(-1059 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1059 S T$) -((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) -NIL -((|HasCategory| |#1| (QUOTE (-1102)))) (-1060) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1061 S) +(-1061 S T$) +((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) +NIL +((|HasCategory| |#1| (QUOTE (-1104)))) +(-1062 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1062) +(-1063) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1063 |TheField| |ThePolDom|) +(-1064 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1064) +(-1065) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4410 . T) (-4414 . T) (-4409 . T) (-4420 . T) (-4421 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1065) +(-1066) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (QUOTE (-1179))) (LIST (QUOTE |:|) (QUOTE -2265) (QUOTE (-52))))))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-52) (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1102))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (QUOTE (-1102))) (|HasCategory| (-1179) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1102))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1066 S R E V) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -2254) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| (-51) (QUOTE (-1104))) (|HasCategory| (-51) (LIST (QUOTE -310) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (QUOTE (-1104))) (|HasCategory| (-1180) (QUOTE (-852))) (|HasCategory| (-51) (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-51) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (LIST (QUOTE -615) (QUOTE (-865))))) +(-1067 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -994) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-1179))))) -(-1067 R E V) +((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -994) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-1180))))) +(-1068 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) NIL -(-1068) +(-1069) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1069 S |TheField| |ThePols|) +(-1070 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1070 |TheField| |ThePols|) +(-1071 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1071 R E V P TS) +(-1072 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1072 S R E V P) +(-1073 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1073 R E V P) +(-1074 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-1074 R E V P TS) +(-1075 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1075) +(-1076) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1076) +(-1077) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1077 |f|) -((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) +(-1078 |Base| R -3496) +((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1078 |Base| R -1676) -((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) +(-1079 |f|) +((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1079 |Base| R -1676) +(-1080 |Base| R -3496) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1080 R |ls|) +(-1081 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1081 UP SAE UPA) -((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) -NIL -NIL (-1082 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4415 |has| |#1| (-365)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))))) +((-4418 |has| |#1| (-365)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-352))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-352)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-352)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-352))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))))) (-1083 UP SAE UPA) +((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) +NIL +NIL +(-1084 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1084) +(-1085) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1085) +(-1086) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1086 S) +(-1087 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1087) +(-1088) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1088 R) +(-1089 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1089 R) +(-1090 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1090 (-1179)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1090 S) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1091 (-1180)) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1091 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1091 R S) +(-1092 S) +((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) +NIL +((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1104)))) +(-1093 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-849)))) -(-1092) +((|HasCategory| |#1| (QUOTE (-850)))) +(-1094) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1093 R S) -((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) +(-1095 S) +((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL +((|HasCategory| (-1092 |#1|) (QUOTE (-1104)))) +(-1096 R S) +((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL -(-1094 S) -((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1096 |#1|) (QUOTE (-1102)))) -(-1095 S) +(-1097 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1096 S) -((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) -NIL -((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1102)))) -(-1097 S L) +(-1098 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1098) +(-1099) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1099 A S) +(-1100 S) +((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) +((-4425 . T) (-4415 . T) (-4426 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-1101 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1100 S) +(-1102 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4412 . T)) +((-4415 . T)) NIL -(-1101 S) +(-1103 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1102) +(-1104) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1103 |m| |n|) -((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) -NIL -NIL -(-1104 S) -((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4422 . T) (-4412 . T) (-4423 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-1105 |Str| |Sym| |Int| |Flt| |Expr|) -((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +(-1105 |m| |n|) +((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL (-1106) @@ -4357,768 +4357,772 @@ NIL NIL NIL (-1107 |Str| |Sym| |Int| |Flt| |Expr|) +((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) +NIL +NIL +(-1108 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1108 R FS) +(-1109 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1109 R E V P TS) +(-1110 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1110 R E V P TS) +(-1111 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1111 R E V P) +(-1112 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-1112) +(-1113) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1113 S) +(-1114 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1114) +(-1115) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1115 |dimtot| |dim1| S) +(-1116 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4416 |has| |#3| (-1051)) (-4417 |has| |#3| (-1051)) (-4419 |has| |#3| (-6 -4419)) ((-4424 "*") |has| |#3| (-172)) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2836 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#3| (QUOTE (-365))) (-2836 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2836 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2836 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2836 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (-2836 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2836 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2836 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1051)))) (-2836 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (|HasCategory| |#3| (QUOTE (-233))) (-2836 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102))))) (-2836 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1051)))) (-12 (|HasCategory| |#3| (QUOTE (-1051))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-1179))))) (-2836 (|HasCategory| |#3| (QUOTE (-1051))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1102)))) (|HasAttribute| |#3| (QUOTE -4419)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1102))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) -(-1116 R |x|) +((-4419 |has| |#3| (-1052)) (-4420 |has| |#3| (-1052)) (-4422 |has| |#3| (-6 -4422)) ((-4427 "*") |has| |#3| (-172)) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#3| (QUOTE (-365))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-795))) (-3960 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-850)))) (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (QUOTE (-728))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1052)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (-3960 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#3| (QUOTE (-233))) (-3960 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#3| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1052)))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-728))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-850))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549)))))) (|HasCategory| (-549) (QUOTE (-852))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1052)))) (-12 (|HasCategory| |#3| (QUOTE (-1052))) (|HasCategory| |#3| (LIST (QUOTE -903) (QUOTE (-1180))))) (-3960 (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#3| (QUOTE (-1052)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasAttribute| |#3| (QUOTE -4422)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#3| (QUOTE (-1104))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) +(-1117 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-455)))) -(-1117) -((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) +(-1118) +((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1118 R -1676) -((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1119) +((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1119 R) -((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) +(-1120 R -3496) +((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1120) -((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) +(-1121 R) +((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1121) +(-1122) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1122) +(-1123) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4410 . T) (-4414 . T) (-4409 . T) (-4420 . T) (-4421 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1123 S) +(-1124 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4422 . T) (-4423 . T)) +((-4425 . T) (-4426 . T)) NIL -(-1124 S |ndim| R |Row| |Col|) +(-1125 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4424 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) -(-1125 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4427 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) +(-1126 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4422 . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4425 . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1126 R |Row| |Col| M) +(-1127 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1127 R |VarSet|) +(-1128 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1128 |Coef| |Var| SMP) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1129 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1129 R E V P) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1130 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-1130 UP -1676) +(-1131 UP -3496) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1131 R) +(-1132 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1132 R) +(-1133 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1133 R) +(-1134 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1134 S A) +(-1135 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-851)))) -(-1135 R) +((|HasCategory| |#1| (QUOTE (-852)))) +(-1136 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1136 R) +(-1137 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1137) +(-1138) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1138) +(-1139) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1139) +(-1140) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1140) +(-1141) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1141) +(-1142) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1142 V C) +(-1143 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1143 V C) +(-1144 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102))) (-2836 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1142) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1142 |#1| |#2|) (QUOTE (-1102))))) (|HasCategory| (-1142 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1144 |ndim| R) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-1143 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1143 |#1| |#2|) (QUOTE (-1104)))) (|HasCategory| (-1143 |#1| |#2|) (QUOTE (-1104))) (-3960 (-12 (|HasCategory| (-1143 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1143) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1143 |#1| |#2|) (QUOTE (-1104)))) (|HasCategory| (-1143 |#1| |#2|) (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| (-1143 |#1| |#2|) (LIST (QUOTE -615) (QUOTE (-865))))) +(-1145 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4419 . T) (-4411 |has| |#2| (-6 (-4424 "*"))) (-4422 . T) (-4416 . T) (-4417 . T)) -((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-365))) (-2836 (|HasAttribute| |#2| (QUOTE (-4424 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-1145 S) +((-4422 . T) (-4414 |has| |#2| (-6 (-4427 "*"))) (-4425 . T) (-4419 . T) (-4420 . T)) +((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4427 "*"))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (QUOTE (-365))) (-3960 (|HasAttribute| |#2| (QUOTE (-4427 "*"))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-1146 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1146) +(-1147) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-1147 R E V P TS) +(-1148 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1148 R E V P) +(-1149 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1149 S) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1150 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1150 A S) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1151 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1151 S) +(-1152 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1152 |Key| |Ent| |dent|) +(-1153 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|)))))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102)))) -(-1153) -((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) -NIL -NIL +((-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-852))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-1154) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1155 |Coef|) +(-1155) +((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) +NIL +NIL +(-1156 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1156 S) +(-1157 S) +((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) +((-4426 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1158 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1157 A B) +(-1159 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1158 A B C) +(-1160 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1159 S) -((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4423 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1160) +(-1161) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-1161) +(-1162) NIL -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1102))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) -(-1162 |Entry|) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| (-144) (QUOTE (-1104))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) +(-1163 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (QUOTE (-1161))) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#1|)))))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (QUOTE (-1102))) (|HasCategory| (-1161) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1163 A) -((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) -NIL -((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) -(-1164 |Coef|) -((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) -NIL +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (QUOTE (-1162))) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (QUOTE (-1104))) (|HasCategory| (-1162) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (LIST (QUOTE -615) (QUOTE (-865))))) +(-1164 A) +((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL +((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (-1165 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1166 R UP) +(-1166 |Coef|) +((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) +NIL +NIL +(-1167 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-308)))) -(-1167 |n| R) +(-1168 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1168 S1 S2) +(-1169 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1169) +(-1170) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1170 |Coef| |var| |cen|) +(-1171 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4424 "*") -2836 (-1750 (|has| |#1| (-365)) (|has| (-1177 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1750 (|has| |#1| (-365)) (|has| (-1177 |#1| |#2| |#3|) (-911)))) (-4415 -2836 (-1750 (|has| |#1| (-365)) (|has| (-1177 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1750 (|has| |#1| (-365)) (|has| (-1177 |#1| |#2| |#3|) (-911)))) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-1154))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-1154))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1177) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1177 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1171 R -1676) +(((-4427 "*") -3960 (-3256 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-822))) (|has| |#1| (-172)) (-3256 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-913)))) (-4418 -3960 (-3256 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-822))) (|has| |#1| (-560)) (-3256 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-913)))) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1115))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-1023)))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-852))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1178) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-308)))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-852)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1178 |#1| |#2| |#3|) (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1172 R -3496) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1172 R) +(-1173 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1173 R S) +(-1174 R) +((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4421 |has| |#1| (-365)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1085) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-913)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1175 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1174 E OV R P) +(-1176 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1175 R) -((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4418 |has| |#1| (-365)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1154))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1176 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|))))))) (-1177 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) +(-1178 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1114))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|))))))) -(-1178) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-773)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-773)) (|devaluate| |#1|)))) (|HasCategory| (-773) (QUOTE (-1115))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-773))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-773))))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) +(-1179) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1179) +(-1180) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1180 R) +(-1181 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1181 R) +(-1182 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-6 -4420)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| (-973) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasAttribute| |#1| (QUOTE -4420))) -(-1182) -((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-6 -4423)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-3960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| (-974) (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4423))) +(-1183) +((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1183) +(-1184) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1184) +(-1185) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1185 N) +(-1186 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1186 N) +(-1187 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1187) +(-1188) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1188 R) +(-1189 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1189) +(-1190) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1190 S) +(-1191 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1191 S) +(-1192 |Key| |Entry|) +((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) +((-4425 . T) (-4426 . T)) +((-12 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4292) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2254) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -616) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1104))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-1104))) (-3960 (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-865)))) (|HasCategory| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (LIST (QUOTE -615) (QUOTE (-865))))) +(-1193 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1192 |Key| |Entry|) -((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4422 . T) (-4423 . T)) -((-12 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2025) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2265) (|devaluate| |#2|)))))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#2| (QUOTE (-1102)))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1102))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1102))) (-2836 (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (LIST (QUOTE -614) (QUOTE (-863))))) -(-1193 R) +(-1194 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1194 S |Key| |Entry|) +(-1195 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1195 |Key| |Entry|) +(-1196 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4423 . T)) +((-4426 . T)) NIL -(-1196 |Key| |Entry|) +(-1197 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1197) +(-1198) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1198 S) -((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) -NIL -NIL (-1199) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1200) +(-1200 S) +((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) +NIL +NIL +(-1201) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1201 R) +(-1202 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1202) +(-1203) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1203 S) +(-1204 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1204) +(-1205) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1205 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1102))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (-1206 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1104))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1207 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1207) +(-1208) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1208 R -1676) +(-1209 R -3496) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1209 R |Row| |Col| M) +(-1210 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1210 R -1676) +(-1211 R -3496) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -888) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -888) (|devaluate| |#1|))))) -(-1211 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -616) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -889) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -889) (|devaluate| |#1|))))) +(-1212 |Coef|) +((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-365)))) +(-1213 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-370)))) -(-1212 R E V P) +(-1214 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4423 . T) (-4422 . T)) +((-4426 . T) (-4425 . T)) NIL -(-1213 |Coef|) -((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1214 |Curve|) +(-1215 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1215) +(-1216) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1216 S) +(-1217 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1217 -1676) +((|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1218 -3496) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1218) -((|constructor| (NIL "This domain represents a type AST."))) -NIL -NIL (-1219) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1220 S) +(-1220) +((|constructor| (NIL "This domain represents a type AST."))) +NIL +NIL +(-1221 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-851)))) -(-1221) +((|HasCategory| |#1| (QUOTE (-852)))) +(-1222) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1222 S) +(-1223 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1223) +(-1224) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1224) +(-1225) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1225) +(-1226) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1226) +(-1227) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1227) +(-1228) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1228 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1229 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) +(((-4427 "*") -3960 (-3256 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-822))) (|has| |#1| (-172)) (-3256 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-913)))) (-4418 -3960 (-3256 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-822))) (|has| |#1| (-560)) (-3256 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-913)))) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|))))) (|HasCategory| (-549) (QUOTE (-1115))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1023)))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-852))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1180)) (LIST (QUOTE -1259) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-308)))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (LIST (QUOTE -1041) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-852)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-145)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1259 |#1| |#2| |#3|) (QUOTE (-913)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1230 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1229 |Coef|) +(-1231 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1230 S |Coef| UTS) +(-1232 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-365)))) -(-1231 |Coef| UTS) +(-1233 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1232 |Coef| UTS) +(-1234 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2836 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))))) (-2836 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1024)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-1179)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1179)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-911))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) -(-1233 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4424 "*") -2836 (-1750 (|has| |#1| (-365)) (|has| (-1261 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1750 (|has| |#1| (-365)) (|has| (-1261 |#1| |#2| |#3|) (-911)))) (-4415 -2836 (-1750 (|has| |#1| (-365)) (|has| (-1261 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1750 (|has| |#1| (-365)) (|has| (-1261 |#1| |#2| |#3|) (-911)))) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) -((-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-1154))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1114))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-1179)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-365)))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-1154))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1179)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-911))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1234 ZP) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-3960 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))))) (-3960 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-549)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233))))) (|HasCategory| (-549) (QUOTE (-1115))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-822)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-1180))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1180)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-549))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-913))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145)))))) +(-1235 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1235 R S) -((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) -NIL -((|HasCategory| |#1| (QUOTE (-849)))) (-1236 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1102)))) -(-1237 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1104)))) +(-1237 R S) +((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) +NIL +((|HasCategory| |#1| (QUOTE (-850)))) +(-1238 |x| R) +((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) +(((-4427 "*") |has| |#2| (-172)) (-4418 |has| |#2| (-560)) (-4421 |has| |#2| (-365)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-560)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-380)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-380))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -889) (QUOTE (-549)))) (|HasCategory| (-1085) (LIST (QUOTE -889) (QUOTE (-549))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-380)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549))))) (|HasCategory| (-1085) (LIST (QUOTE -616) (LIST (QUOTE -893) (QUOTE (-549)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| (-1085) (LIST (QUOTE -616) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -641) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (QUOTE (-549)))) (-3960 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| |#2| (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (-3960 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-913)))) (-3960 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-913)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154))) (|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (-3960 (-12 (|HasCategory| |#2| (QUOTE (-913))) (|HasCategory| $ (QUOTE (-145)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-1239 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1238 R Q UP) +(-1240 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1239 R UP) +(-1241 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1240 R UP) +(-1242 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1241 R U) +(-1243 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1242 |x| R) -((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4424 "*") |has| |#2| (-172)) (-4415 |has| |#2| (-559)) (-4418 |has| |#2| (-365)) (-4420 |has| |#2| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-911))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-381))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -888) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -888) (QUOTE (-567))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-381)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -894) (QUOTE (-567)))))) (-12 (|HasCategory| (-1084) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (QUOTE (-567)))) (-2836 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (-2836 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1154))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (-2836 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-911)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-1243 R PR S PS) -((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) -NIL -NIL (-1244 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1154)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-560))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1154)))) (-1245 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4418 |has| |#1| (-365)) (-4420 |has| |#1| (-6 -4420)) (-4417 . T) (-4416 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4421 |has| |#1| (-365)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +NIL +(-1246 R PR S PS) +((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) +NIL NIL -(-1246 S |Coef| |Expon|) +(-1247 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1114))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2504) (LIST (|devaluate| |#2|) (QUOTE (-1179)))))) -(-1247 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1115))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4378) (LIST (|devaluate| |#2|) (QUOTE (-1180)))))) +(-1248 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1248 RC P) -((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) +(-1249 RC P) +((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1249 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1250 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) +(-1251 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1250 |Coef|) +(-1252 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1251 S |Coef| ULS) +(-1253 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1252 |Coef| ULS) +(-1254 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1253 |Coef| ULS) +(-1255 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) -(-1254 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4420 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1114))) (|HasCategory| |#1| (QUOTE (-365))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2836 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|))))))) -(-1255 R FE |var| |cen|) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4423 |has| |#1| (-365)) (-4417 |has| |#1| (-365)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#1| (QUOTE (-172))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-549)) (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-3960 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-560)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-549)))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549)))))) +(-1256 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4424 "*") |has| (-1254 |#2| |#3| |#4|) (-172)) (-4415 |has| (-1254 |#2| |#3| |#4|) (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-172))) (-2836 (|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -1040) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1254 |#2| |#3| |#4|) (LIST (QUOTE -1040) (QUOTE (-567)))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-455))) (|HasCategory| (-1254 |#2| |#3| |#4|) (QUOTE (-559)))) -(-1256 A S) +(((-4427 "*") |has| (-1250 |#2| |#3| |#4|) (-172)) (-4418 |has| (-1250 |#2| |#3| |#4|) (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-172))) (-3960 (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549)))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1041) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1041) (QUOTE (-549)))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-455))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-560)))) +(-1257 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4423))) -(-1257 S) +((|HasAttribute| |#1| (QUOTE -4426))) +(-1258 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1258 |Coef1| |Coef2| UTS1 UTS2) +(-1259 |Coef| |var| |cen|) +((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-560))) (-3960 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -903) (QUOTE (-1180)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-773)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-773)) (|devaluate| |#1|)))) (|HasCategory| (-773) (QUOTE (-1115))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-773))))) (|HasSignature| |#1| (LIST (QUOTE -4378) (LIST (|devaluate| |#1|) (QUOTE (-1180)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-773))))) (|HasCategory| |#1| (QUOTE (-365))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-963))) (|HasCategory| |#1| (QUOTE (-1205))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasSignature| |#1| (LIST (QUOTE -4244) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1180))))) (|HasSignature| |#1| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#1|))))))) +(-1260 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1259 S |Coef|) +(-1261 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1204))) (|HasSignature| |#2| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3670) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1179))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) -(-1260 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-963))) (|HasCategory| |#2| (QUOTE (-1205))) (|HasSignature| |#2| (LIST (QUOTE -3485) (LIST (LIST (QUOTE -643) (QUOTE (-1180))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4244) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1180))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasCategory| |#2| (QUOTE (-365)))) +(-1262 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") |has| |#1| (-172)) (-4418 |has| |#1| (-560)) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1261 |Coef| |var| |cen|) -((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4424 "*") |has| |#1| (-172)) (-4415 |has| |#1| (-559)) (-4416 . T) (-4417 . T) (-4419 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2836 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-1179)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1114))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -2504) (LIST (|devaluate| |#1|) (QUOTE (-1179)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2836 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1204))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -3670) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1179))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (LIST (QUOTE -645) (QUOTE (-1179))) (|devaluate| |#1|))))))) -(-1262 |Coef| UTS) +(-1263 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1263 -1676 UP L UTS) +(-1264 -3496 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-559)))) -(-1264) +((|HasCategory| |#1| (QUOTE (-560)))) +(-1265) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1265 |sym|) +(-1266 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1266 S R) +(-1267 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1004))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1267 R) +((|HasCategory| |#2| (QUOTE (-1005))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-728))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1268 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4423 . T) (-4422 . T)) -NIL -(-1268 A B) -((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) -NIL +((-4426 . T) (-4425 . T)) NIL (-1269 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4423 . T) (-4422 . T)) -((-2836 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2836 (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2836 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1051))) (-12 (|HasCategory| |#1| (QUOTE (-1004))) (|HasCategory| |#1| (QUOTE (-1051)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1102))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) -(-1270) -((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) +((-4426 . T) (-4425 . T)) +((-3960 (-12 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-3960 (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865))))) (|HasCategory| |#1| (LIST (QUOTE -616) (QUOTE (-538)))) (-3960 (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104)))) (|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| (-549) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-728))) (|HasCategory| |#1| (QUOTE (-1052))) (-12 (|HasCategory| |#1| (QUOTE (-1005))) (|HasCategory| |#1| (QUOTE (-1052)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-1104))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) +(-1270 A B) +((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL (-1271) -((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) +((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL (-1272) -((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) +((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL (-1273) -((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) +((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL (-1274) +((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) +NIL +NIL +(-1275) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1275 A S) +(-1276 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1276 S) +(-1277 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4417 . T) (-4416 . T)) +((-4420 . T) (-4419 . T)) NIL -(-1277 R) +(-1278 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1278 K R UP -1676) +(-1279 K R UP -3496) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1279) +(-1280) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1280) +(-1281) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1281 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1282 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4417 |has| |#1| (-172)) (-4416 |has| |#1| (-172)) (-4419 . T)) +((-4420 |has| |#1| (-172)) (-4419 |has| |#1| (-172)) (-4422 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) -(-1282 R E V P) +(-1283 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4423 . T) (-4422 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1102))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863))))) -(-1283 R) +((-4426 . T) (-4425 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -616) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1104))) (|HasCategory| |#1| (QUOTE (-560))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-865))))) +(-1284 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4416 . T) (-4417 . T) (-4419 . T)) +((-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1284 |vl| R) +(-1285 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4419 . T) (-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4415))) -(-1285 R |VarSet| XPOLY) +((-4422 . T) (-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4418))) +(-1286 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1286 |vl| R) -((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T)) -NIL -(-1287 S -1676) +(-1287 S -3496) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1288 -1676) +(-1288 -3496) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4414 . T) (-4420 . T) (-4415 . T) ((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL -(-1289 |VarSet| R) -((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -718) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasAttribute| |#2| (QUOTE -4415))) -(-1290 |vl| R) -((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T)) +(-1289 |vl| R) +((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) +((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) NIL +(-1290 |VarSet| R) +((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) +((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -719) (LIST (QUOTE -410) (QUOTE (-549))))) (|HasAttribute| |#2| (QUOTE -4418))) (-1291 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4415 |has| |#1| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4415))) -(-1292 R E) +((-4418 |has| |#1| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4418))) +(-1292 |vl| R) +((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) +((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) +NIL +(-1293 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4419 . T) (-4420 |has| |#1| (-6 -4420)) (-4415 |has| |#1| (-6 -4415)) (-4417 . T) (-4416 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4419)) (|HasAttribute| |#1| (QUOTE -4420)) (|HasAttribute| |#1| (QUOTE -4415))) -(-1293 |VarSet| R) +((-4422 . T) (-4423 |has| |#1| (-6 -4423)) (-4418 |has| |#1| (-6 -4418)) (-4420 . T) (-4419 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasAttribute| |#1| (QUOTE -4423)) (|HasAttribute| |#1| (QUOTE -4418))) +(-1294 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4415 |has| |#2| (-6 -4415)) (-4417 . T) (-4416 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4415))) -(-1294 A) +((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4418))) +(-1295 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1295 R |ls| |ls2|) +(-1296 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1296 R) +(-1297 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1297 |p|) +(-1298 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4424 "*") . T) (-4416 . T) (-4417 . T) (-4419 . T)) +(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) NIL NIL NIL @@ -5136,4 +5140,4 @@ NIL NIL NIL NIL -((-3 NIL 2264843 2264848 2264853 2264858) (-2 NIL 2264823 2264828 2264833 2264838) (-1 NIL 2264803 2264808 2264813 2264818) (0 NIL 2264783 2264788 2264793 2264798) (-1297 "ZMOD.spad" 2264592 2264605 2264721 2264778) (-1296 "ZLINDEP.spad" 2263658 2263669 2264582 2264587) (-1295 "ZDSOLVE.spad" 2253603 2253625 2263648 2263653) (-1294 "YSTREAM.spad" 2253098 2253109 2253593 2253598) (-1293 "XRPOLY.spad" 2252318 2252338 2252954 2253023) (-1292 "XPR.spad" 2250113 2250126 2252036 2252135) (-1291 "XPOLY.spad" 2249668 2249679 2249969 2250038) (-1290 "XPOLYC.spad" 2248987 2249003 2249594 2249663) (-1289 "XPBWPOLY.spad" 2247424 2247444 2248767 2248836) (-1288 "XF.spad" 2245887 2245902 2247326 2247419) (-1287 "XF.spad" 2244330 2244347 2245771 2245776) (-1286 "XFALG.spad" 2241378 2241394 2244256 2244325) (-1285 "XEXPPKG.spad" 2240629 2240655 2241368 2241373) (-1284 "XDPOLY.spad" 2240243 2240259 2240485 2240554) (-1283 "XALG.spad" 2239903 2239914 2240199 2240238) (-1282 "WUTSET.spad" 2235742 2235759 2239549 2239576) (-1281 "WP.spad" 2234941 2234985 2235600 2235667) (-1280 "WHILEAST.spad" 2234739 2234748 2234931 2234936) (-1279 "WHEREAST.spad" 2234410 2234419 2234729 2234734) (-1278 "WFFINTBS.spad" 2232073 2232095 2234400 2234405) (-1277 "WEIER.spad" 2230295 2230306 2232063 2232068) (-1276 "VSPACE.spad" 2229968 2229979 2230263 2230290) (-1275 "VSPACE.spad" 2229661 2229674 2229958 2229963) (-1274 "VOID.spad" 2229338 2229347 2229651 2229656) (-1273 "VIEW.spad" 2227018 2227027 2229328 2229333) (-1272 "VIEWDEF.spad" 2222219 2222228 2227008 2227013) (-1271 "VIEW3D.spad" 2206180 2206189 2222209 2222214) (-1270 "VIEW2D.spad" 2194071 2194080 2206170 2206175) (-1269 "VECTOR.spad" 2192745 2192756 2192996 2193023) (-1268 "VECTOR2.spad" 2191384 2191397 2192735 2192740) (-1267 "VECTCAT.spad" 2189288 2189299 2191352 2191379) (-1266 "VECTCAT.spad" 2186999 2187012 2189065 2189070) (-1265 "VARIABLE.spad" 2186779 2186794 2186989 2186994) (-1264 "UTYPE.spad" 2186423 2186432 2186769 2186774) (-1263 "UTSODETL.spad" 2185718 2185742 2186379 2186384) (-1262 "UTSODE.spad" 2183934 2183954 2185708 2185713) (-1261 "UTS.spad" 2178747 2178775 2182401 2182498) (-1260 "UTSCAT.spad" 2176226 2176242 2178645 2178742) (-1259 "UTSCAT.spad" 2173349 2173367 2175770 2175775) (-1258 "UTS2.spad" 2172944 2172979 2173339 2173344) (-1257 "URAGG.spad" 2167617 2167628 2172934 2172939) (-1256 "URAGG.spad" 2162254 2162267 2167573 2167578) (-1255 "UPXSSING.spad" 2159899 2159925 2161335 2161468) (-1254 "UPXS.spad" 2157053 2157081 2158031 2158180) (-1253 "UPXSCONS.spad" 2154812 2154832 2155185 2155334) (-1252 "UPXSCCA.spad" 2153383 2153403 2154658 2154807) (-1251 "UPXSCCA.spad" 2152096 2152118 2153373 2153378) (-1250 "UPXSCAT.spad" 2150685 2150701 2151942 2152091) (-1249 "UPXS2.spad" 2150228 2150281 2150675 2150680) (-1248 "UPSQFREE.spad" 2148642 2148656 2150218 2150223) (-1247 "UPSCAT.spad" 2146253 2146277 2148540 2148637) (-1246 "UPSCAT.spad" 2143570 2143596 2145859 2145864) (-1245 "UPOLYC.spad" 2138610 2138621 2143412 2143565) (-1244 "UPOLYC.spad" 2133542 2133555 2138346 2138351) (-1243 "UPOLYC2.spad" 2133013 2133032 2133532 2133537) (-1242 "UP.spad" 2130212 2130227 2130599 2130752) (-1241 "UPMP.spad" 2129112 2129125 2130202 2130207) (-1240 "UPDIVP.spad" 2128677 2128691 2129102 2129107) (-1239 "UPDECOMP.spad" 2126922 2126936 2128667 2128672) (-1238 "UPCDEN.spad" 2126131 2126147 2126912 2126917) (-1237 "UP2.spad" 2125495 2125516 2126121 2126126) (-1236 "UNISEG.spad" 2124848 2124859 2125414 2125419) (-1235 "UNISEG2.spad" 2124345 2124358 2124804 2124809) (-1234 "UNIFACT.spad" 2123448 2123460 2124335 2124340) (-1233 "ULS.spad" 2114006 2114034 2115093 2115522) (-1232 "ULSCONS.spad" 2106402 2106422 2106772 2106921) (-1231 "ULSCCAT.spad" 2104139 2104159 2106248 2106397) (-1230 "ULSCCAT.spad" 2101984 2102006 2104095 2104100) (-1229 "ULSCAT.spad" 2100216 2100232 2101830 2101979) (-1228 "ULS2.spad" 2099730 2099783 2100206 2100211) (-1227 "UINT8.spad" 2099607 2099616 2099720 2099725) (-1226 "UINT64.spad" 2099483 2099492 2099597 2099602) (-1225 "UINT32.spad" 2099359 2099368 2099473 2099478) (-1224 "UINT16.spad" 2099235 2099244 2099349 2099354) (-1223 "UFD.spad" 2098300 2098309 2099161 2099230) (-1222 "UFD.spad" 2097427 2097438 2098290 2098295) (-1221 "UDVO.spad" 2096308 2096317 2097417 2097422) (-1220 "UDPO.spad" 2093801 2093812 2096264 2096269) (-1219 "TYPE.spad" 2093733 2093742 2093791 2093796) (-1218 "TYPEAST.spad" 2093652 2093661 2093723 2093728) (-1217 "TWOFACT.spad" 2092304 2092319 2093642 2093647) (-1216 "TUPLE.spad" 2091790 2091801 2092203 2092208) (-1215 "TUBETOOL.spad" 2088657 2088666 2091780 2091785) (-1214 "TUBE.spad" 2087304 2087321 2088647 2088652) (-1213 "TS.spad" 2085903 2085919 2086869 2086966) (-1212 "TSETCAT.spad" 2073030 2073047 2085871 2085898) (-1211 "TSETCAT.spad" 2060143 2060162 2072986 2072991) (-1210 "TRMANIP.spad" 2054509 2054526 2059849 2059854) (-1209 "TRIMAT.spad" 2053472 2053497 2054499 2054504) (-1208 "TRIGMNIP.spad" 2051999 2052016 2053462 2053467) (-1207 "TRIGCAT.spad" 2051511 2051520 2051989 2051994) (-1206 "TRIGCAT.spad" 2051021 2051032 2051501 2051506) (-1205 "TREE.spad" 2049596 2049607 2050628 2050655) (-1204 "TRANFUN.spad" 2049435 2049444 2049586 2049591) (-1203 "TRANFUN.spad" 2049272 2049283 2049425 2049430) (-1202 "TOPSP.spad" 2048946 2048955 2049262 2049267) (-1201 "TOOLSIGN.spad" 2048609 2048620 2048936 2048941) (-1200 "TEXTFILE.spad" 2047170 2047179 2048599 2048604) (-1199 "TEX.spad" 2044316 2044325 2047160 2047165) (-1198 "TEX1.spad" 2043872 2043883 2044306 2044311) (-1197 "TEMUTL.spad" 2043427 2043436 2043862 2043867) (-1196 "TBCMPPK.spad" 2041520 2041543 2043417 2043422) (-1195 "TBAGG.spad" 2040570 2040593 2041500 2041515) (-1194 "TBAGG.spad" 2039628 2039653 2040560 2040565) (-1193 "TANEXP.spad" 2039036 2039047 2039618 2039623) (-1192 "TABLE.spad" 2037447 2037470 2037717 2037744) (-1191 "TABLEAU.spad" 2036928 2036939 2037437 2037442) (-1190 "TABLBUMP.spad" 2033731 2033742 2036918 2036923) (-1189 "SYSTEM.spad" 2032959 2032968 2033721 2033726) (-1188 "SYSSOLP.spad" 2030442 2030453 2032949 2032954) (-1187 "SYSPTR.spad" 2030341 2030350 2030432 2030437) (-1186 "SYSNNI.spad" 2029523 2029534 2030331 2030336) (-1185 "SYSINT.spad" 2028927 2028938 2029513 2029518) (-1184 "SYNTAX.spad" 2025133 2025142 2028917 2028922) (-1183 "SYMTAB.spad" 2023201 2023210 2025123 2025128) (-1182 "SYMS.spad" 2019224 2019233 2023191 2023196) (-1181 "SYMPOLY.spad" 2018231 2018242 2018313 2018440) (-1180 "SYMFUNC.spad" 2017732 2017743 2018221 2018226) (-1179 "SYMBOL.spad" 2015235 2015244 2017722 2017727) (-1178 "SWITCH.spad" 2012006 2012015 2015225 2015230) (-1177 "SUTS.spad" 2008911 2008939 2010473 2010570) (-1176 "SUPXS.spad" 2006052 2006080 2007043 2007192) (-1175 "SUP.spad" 2002865 2002876 2003638 2003791) (-1174 "SUPFRACF.spad" 2001970 2001988 2002855 2002860) (-1173 "SUP2.spad" 2001362 2001375 2001960 2001965) (-1172 "SUMRF.spad" 2000336 2000347 2001352 2001357) (-1171 "SUMFS.spad" 1999973 1999990 2000326 2000331) (-1170 "SULS.spad" 1990518 1990546 1991618 1992047) (-1169 "SUCHTAST.spad" 1990287 1990296 1990508 1990513) (-1168 "SUCH.spad" 1989969 1989984 1990277 1990282) (-1167 "SUBSPACE.spad" 1982084 1982099 1989959 1989964) (-1166 "SUBRESP.spad" 1981254 1981268 1982040 1982045) (-1165 "STTF.spad" 1977353 1977369 1981244 1981249) (-1164 "STTFNC.spad" 1973821 1973837 1977343 1977348) (-1163 "STTAYLOR.spad" 1966475 1966486 1973702 1973707) (-1162 "STRTBL.spad" 1964980 1964997 1965129 1965156) (-1161 "STRING.spad" 1964389 1964398 1964403 1964430) (-1160 "STRICAT.spad" 1964177 1964186 1964357 1964384) (-1159 "STREAM.spad" 1961095 1961106 1963702 1963717) (-1158 "STREAM3.spad" 1960668 1960683 1961085 1961090) (-1157 "STREAM2.spad" 1959796 1959809 1960658 1960663) (-1156 "STREAM1.spad" 1959502 1959513 1959786 1959791) (-1155 "STINPROD.spad" 1958438 1958454 1959492 1959497) (-1154 "STEP.spad" 1957639 1957648 1958428 1958433) (-1153 "STEPAST.spad" 1956873 1956882 1957629 1957634) (-1152 "STBL.spad" 1955399 1955427 1955566 1955581) (-1151 "STAGG.spad" 1954474 1954485 1955389 1955394) (-1150 "STAGG.spad" 1953547 1953560 1954464 1954469) (-1149 "STACK.spad" 1952904 1952915 1953154 1953181) (-1148 "SREGSET.spad" 1950608 1950625 1952550 1952577) (-1147 "SRDCMPK.spad" 1949169 1949189 1950598 1950603) (-1146 "SRAGG.spad" 1944312 1944321 1949137 1949164) (-1145 "SRAGG.spad" 1939475 1939486 1944302 1944307) (-1144 "SQMATRIX.spad" 1937091 1937109 1938007 1938094) (-1143 "SPLTREE.spad" 1931643 1931656 1936527 1936554) (-1142 "SPLNODE.spad" 1928231 1928244 1931633 1931638) (-1141 "SPFCAT.spad" 1927040 1927049 1928221 1928226) (-1140 "SPECOUT.spad" 1925592 1925601 1927030 1927035) (-1139 "SPADXPT.spad" 1917187 1917196 1925582 1925587) (-1138 "spad-parser.spad" 1916652 1916661 1917177 1917182) (-1137 "SPADAST.spad" 1916353 1916362 1916642 1916647) (-1136 "SPACEC.spad" 1900552 1900563 1916343 1916348) (-1135 "SPACE3.spad" 1900328 1900339 1900542 1900547) (-1134 "SORTPAK.spad" 1899877 1899890 1900284 1900289) (-1133 "SOLVETRA.spad" 1897640 1897651 1899867 1899872) (-1132 "SOLVESER.spad" 1896168 1896179 1897630 1897635) (-1131 "SOLVERAD.spad" 1892194 1892205 1896158 1896163) (-1130 "SOLVEFOR.spad" 1890656 1890674 1892184 1892189) (-1129 "SNTSCAT.spad" 1890256 1890273 1890624 1890651) (-1128 "SMTS.spad" 1888528 1888554 1889821 1889918) (-1127 "SMP.spad" 1886003 1886023 1886393 1886520) (-1126 "SMITH.spad" 1884848 1884873 1885993 1885998) (-1125 "SMATCAT.spad" 1882958 1882988 1884792 1884843) (-1124 "SMATCAT.spad" 1881000 1881032 1882836 1882841) (-1123 "SKAGG.spad" 1879963 1879974 1880968 1880995) (-1122 "SINT.spad" 1878795 1878804 1879829 1879958) (-1121 "SIMPAN.spad" 1878523 1878532 1878785 1878790) (-1120 "SIG.spad" 1877853 1877862 1878513 1878518) (-1119 "SIGNRF.spad" 1876971 1876982 1877843 1877848) (-1118 "SIGNEF.spad" 1876250 1876267 1876961 1876966) (-1117 "SIGAST.spad" 1875635 1875644 1876240 1876245) (-1116 "SHP.spad" 1873563 1873578 1875591 1875596) (-1115 "SHDP.spad" 1863274 1863301 1863783 1863914) (-1114 "SGROUP.spad" 1862882 1862891 1863264 1863269) (-1113 "SGROUP.spad" 1862488 1862499 1862872 1862877) (-1112 "SGCF.spad" 1855651 1855660 1862478 1862483) (-1111 "SFRTCAT.spad" 1854581 1854598 1855619 1855646) (-1110 "SFRGCD.spad" 1853644 1853664 1854571 1854576) (-1109 "SFQCMPK.spad" 1848281 1848301 1853634 1853639) (-1108 "SFORT.spad" 1847720 1847734 1848271 1848276) (-1107 "SEXOF.spad" 1847563 1847603 1847710 1847715) (-1106 "SEX.spad" 1847455 1847464 1847553 1847558) (-1105 "SEXCAT.spad" 1845056 1845096 1847445 1847450) (-1104 "SET.spad" 1843380 1843391 1844477 1844516) (-1103 "SETMN.spad" 1841830 1841847 1843370 1843375) (-1102 "SETCAT.spad" 1841152 1841161 1841820 1841825) (-1101 "SETCAT.spad" 1840472 1840483 1841142 1841147) (-1100 "SETAGG.spad" 1837021 1837032 1840452 1840467) (-1099 "SETAGG.spad" 1833578 1833591 1837011 1837016) (-1098 "SEQAST.spad" 1833281 1833290 1833568 1833573) (-1097 "SEGXCAT.spad" 1832437 1832450 1833271 1833276) (-1096 "SEG.spad" 1832250 1832261 1832356 1832361) (-1095 "SEGCAT.spad" 1831175 1831186 1832240 1832245) (-1094 "SEGBIND.spad" 1830933 1830944 1831122 1831127) (-1093 "SEGBIND2.spad" 1830631 1830644 1830923 1830928) (-1092 "SEGAST.spad" 1830345 1830354 1830621 1830626) (-1091 "SEG2.spad" 1829780 1829793 1830301 1830306) (-1090 "SDVAR.spad" 1829056 1829067 1829770 1829775) (-1089 "SDPOL.spad" 1826482 1826493 1826773 1826900) (-1088 "SCPKG.spad" 1824571 1824582 1826472 1826477) (-1087 "SCOPE.spad" 1823724 1823733 1824561 1824566) (-1086 "SCACHE.spad" 1822420 1822431 1823714 1823719) (-1085 "SASTCAT.spad" 1822329 1822338 1822410 1822415) (-1084 "SAOS.spad" 1822201 1822210 1822319 1822324) (-1083 "SAERFFC.spad" 1821914 1821934 1822191 1822196) (-1082 "SAE.spad" 1820089 1820105 1820700 1820835) (-1081 "SAEFACT.spad" 1819790 1819810 1820079 1820084) (-1080 "RURPK.spad" 1817449 1817465 1819780 1819785) (-1079 "RULESET.spad" 1816902 1816926 1817439 1817444) (-1078 "RULE.spad" 1815142 1815166 1816892 1816897) (-1077 "RULECOLD.spad" 1814994 1815007 1815132 1815137) (-1076 "RTVALUE.spad" 1814729 1814738 1814984 1814989) (-1075 "RSTRCAST.spad" 1814446 1814455 1814719 1814724) (-1074 "RSETGCD.spad" 1810824 1810844 1814436 1814441) (-1073 "RSETCAT.spad" 1800760 1800777 1810792 1810819) (-1072 "RSETCAT.spad" 1790716 1790735 1800750 1800755) (-1071 "RSDCMPK.spad" 1789168 1789188 1790706 1790711) (-1070 "RRCC.spad" 1787552 1787582 1789158 1789163) (-1069 "RRCC.spad" 1785934 1785966 1787542 1787547) (-1068 "RPTAST.spad" 1785636 1785645 1785924 1785929) (-1067 "RPOLCAT.spad" 1764996 1765011 1785504 1785631) (-1066 "RPOLCAT.spad" 1744070 1744087 1764580 1764585) (-1065 "ROUTINE.spad" 1739953 1739962 1742717 1742744) (-1064 "ROMAN.spad" 1739281 1739290 1739819 1739948) (-1063 "ROIRC.spad" 1738361 1738393 1739271 1739276) (-1062 "RNS.spad" 1737264 1737273 1738263 1738356) (-1061 "RNS.spad" 1736253 1736264 1737254 1737259) (-1060 "RNG.spad" 1735988 1735997 1736243 1736248) (-1059 "RNGBIND.spad" 1735148 1735162 1735943 1735948) (-1058 "RMODULE.spad" 1734913 1734924 1735138 1735143) (-1057 "RMCAT2.spad" 1734333 1734390 1734903 1734908) (-1056 "RMATRIX.spad" 1733157 1733176 1733500 1733539) (-1055 "RMATCAT.spad" 1728736 1728767 1733113 1733152) (-1054 "RMATCAT.spad" 1724205 1724238 1728584 1728589) (-1053 "RLINSET.spad" 1723599 1723610 1724195 1724200) (-1052 "RINTERP.spad" 1723487 1723507 1723589 1723594) (-1051 "RING.spad" 1722957 1722966 1723467 1723482) (-1050 "RING.spad" 1722435 1722446 1722947 1722952) (-1049 "RIDIST.spad" 1721827 1721836 1722425 1722430) (-1048 "RGCHAIN.spad" 1720410 1720426 1721312 1721339) (-1047 "RGBCSPC.spad" 1720191 1720203 1720400 1720405) (-1046 "RGBCMDL.spad" 1719721 1719733 1720181 1720186) (-1045 "RF.spad" 1717363 1717374 1719711 1719716) (-1044 "RFFACTOR.spad" 1716825 1716836 1717353 1717358) (-1043 "RFFACT.spad" 1716560 1716572 1716815 1716820) (-1042 "RFDIST.spad" 1715556 1715565 1716550 1716555) (-1041 "RETSOL.spad" 1714975 1714988 1715546 1715551) (-1040 "RETRACT.spad" 1714403 1714414 1714965 1714970) (-1039 "RETRACT.spad" 1713829 1713842 1714393 1714398) (-1038 "RETAST.spad" 1713641 1713650 1713819 1713824) (-1037 "RESULT.spad" 1711701 1711710 1712288 1712315) (-1036 "RESRING.spad" 1711048 1711095 1711639 1711696) (-1035 "RESLATC.spad" 1710372 1710383 1711038 1711043) (-1034 "REPSQ.spad" 1710103 1710114 1710362 1710367) (-1033 "REP.spad" 1707657 1707666 1710093 1710098) (-1032 "REPDB.spad" 1707364 1707375 1707647 1707652) (-1031 "REP2.spad" 1697022 1697033 1707206 1707211) (-1030 "REP1.spad" 1691218 1691229 1696972 1696977) (-1029 "REGSET.spad" 1689015 1689032 1690864 1690891) (-1028 "REF.spad" 1688350 1688361 1688970 1688975) (-1027 "REDORDER.spad" 1687556 1687573 1688340 1688345) (-1026 "RECLOS.spad" 1686339 1686359 1687043 1687136) (-1025 "REALSOLV.spad" 1685479 1685488 1686329 1686334) (-1024 "REAL.spad" 1685351 1685360 1685469 1685474) (-1023 "REAL0Q.spad" 1682649 1682664 1685341 1685346) (-1022 "REAL0.spad" 1679493 1679508 1682639 1682644) (-1021 "RDUCEAST.spad" 1679214 1679223 1679483 1679488) (-1020 "RDIV.spad" 1678869 1678894 1679204 1679209) (-1019 "RDIST.spad" 1678436 1678447 1678859 1678864) (-1018 "RDETRS.spad" 1677300 1677318 1678426 1678431) (-1017 "RDETR.spad" 1675439 1675457 1677290 1677295) (-1016 "RDEEFS.spad" 1674538 1674555 1675429 1675434) (-1015 "RDEEF.spad" 1673548 1673565 1674528 1674533) (-1014 "RCFIELD.spad" 1670734 1670743 1673450 1673543) (-1013 "RCFIELD.spad" 1668006 1668017 1670724 1670729) (-1012 "RCAGG.spad" 1665934 1665945 1667996 1668001) (-1011 "RCAGG.spad" 1663789 1663802 1665853 1665858) (-1010 "RATRET.spad" 1663149 1663160 1663779 1663784) (-1009 "RATFACT.spad" 1662841 1662853 1663139 1663144) (-1008 "RANDSRC.spad" 1662160 1662169 1662831 1662836) (-1007 "RADUTIL.spad" 1661916 1661925 1662150 1662155) (-1006 "RADIX.spad" 1658837 1658851 1660383 1660476) (-1005 "RADFF.spad" 1657250 1657287 1657369 1657525) (-1004 "RADCAT.spad" 1656845 1656854 1657240 1657245) (-1003 "RADCAT.spad" 1656438 1656449 1656835 1656840) (-1002 "QUEUE.spad" 1655786 1655797 1656045 1656072) (-1001 "QUAT.spad" 1654367 1654378 1654710 1654775) (-1000 "QUATCT2.spad" 1653987 1654006 1654357 1654362) (-999 "QUATCAT.spad" 1652158 1652168 1653917 1653982) (-998 "QUATCAT.spad" 1650080 1650092 1651841 1651846) (-997 "QUAGG.spad" 1648908 1648918 1650048 1650075) (-996 "QQUTAST.spad" 1648677 1648685 1648898 1648903) (-995 "QFORM.spad" 1648142 1648156 1648667 1648672) (-994 "QFCAT.spad" 1646845 1646855 1648044 1648137) (-993 "QFCAT.spad" 1645139 1645151 1646340 1646345) (-992 "QFCAT2.spad" 1644832 1644848 1645129 1645134) (-991 "QEQUAT.spad" 1644391 1644399 1644822 1644827) (-990 "QCMPACK.spad" 1639138 1639157 1644381 1644386) (-989 "QALGSET.spad" 1635217 1635249 1639052 1639057) (-988 "QALGSET2.spad" 1633213 1633231 1635207 1635212) (-987 "PWFFINTB.spad" 1630629 1630650 1633203 1633208) (-986 "PUSHVAR.spad" 1629968 1629987 1630619 1630624) (-985 "PTRANFN.spad" 1626096 1626106 1629958 1629963) (-984 "PTPACK.spad" 1623184 1623194 1626086 1626091) (-983 "PTFUNC2.spad" 1623007 1623021 1623174 1623179) (-982 "PTCAT.spad" 1622262 1622272 1622975 1623002) (-981 "PSQFR.spad" 1621569 1621593 1622252 1622257) (-980 "PSEUDLIN.spad" 1620455 1620465 1621559 1621564) (-979 "PSETPK.spad" 1605888 1605904 1620333 1620338) (-978 "PSETCAT.spad" 1599808 1599831 1605868 1605883) (-977 "PSETCAT.spad" 1593702 1593727 1599764 1599769) (-976 "PSCURVE.spad" 1592685 1592693 1593692 1593697) (-975 "PSCAT.spad" 1591468 1591497 1592583 1592680) (-974 "PSCAT.spad" 1590341 1590372 1591458 1591463) (-973 "PRTITION.spad" 1589302 1589310 1590331 1590336) (-972 "PRTDAST.spad" 1589021 1589029 1589292 1589297) (-971 "PRS.spad" 1578583 1578600 1588977 1588982) (-970 "PRQAGG.spad" 1578018 1578028 1578551 1578578) (-969 "PROPLOG.spad" 1577317 1577325 1578008 1578013) (-968 "PROPFRML.spad" 1576133 1576144 1577307 1577312) (-967 "PROPERTY.spad" 1575621 1575629 1576123 1576128) (-966 "PRODUCT.spad" 1573303 1573315 1573587 1573642) (-965 "PR.spad" 1571695 1571707 1572394 1572521) (-964 "PRINT.spad" 1571447 1571455 1571685 1571690) (-963 "PRIMES.spad" 1569700 1569710 1571437 1571442) (-962 "PRIMELT.spad" 1567781 1567795 1569690 1569695) (-961 "PRIMCAT.spad" 1567408 1567416 1567771 1567776) (-960 "PRIMARR.spad" 1566413 1566423 1566591 1566618) (-959 "PRIMARR2.spad" 1565180 1565192 1566403 1566408) (-958 "PREASSOC.spad" 1564562 1564574 1565170 1565175) (-957 "PPCURVE.spad" 1563699 1563707 1564552 1564557) (-956 "PORTNUM.spad" 1563474 1563482 1563689 1563694) (-955 "POLYROOT.spad" 1562323 1562345 1563430 1563435) (-954 "POLY.spad" 1559658 1559668 1560173 1560300) (-953 "POLYLIFT.spad" 1558923 1558946 1559648 1559653) (-952 "POLYCATQ.spad" 1557041 1557063 1558913 1558918) (-951 "POLYCAT.spad" 1550511 1550532 1556909 1557036) (-950 "POLYCAT.spad" 1543319 1543342 1549719 1549724) (-949 "POLY2UP.spad" 1542771 1542785 1543309 1543314) (-948 "POLY2.spad" 1542368 1542380 1542761 1542766) (-947 "POLUTIL.spad" 1541309 1541338 1542324 1542329) (-946 "POLTOPOL.spad" 1540057 1540072 1541299 1541304) (-945 "POINT.spad" 1538895 1538905 1538982 1539009) (-944 "PNTHEORY.spad" 1535597 1535605 1538885 1538890) (-943 "PMTOOLS.spad" 1534372 1534386 1535587 1535592) (-942 "PMSYM.spad" 1533921 1533931 1534362 1534367) (-941 "PMQFCAT.spad" 1533512 1533526 1533911 1533916) (-940 "PMPRED.spad" 1532991 1533005 1533502 1533507) (-939 "PMPREDFS.spad" 1532445 1532467 1532981 1532986) (-938 "PMPLCAT.spad" 1531525 1531543 1532377 1532382) (-937 "PMLSAGG.spad" 1531110 1531124 1531515 1531520) (-936 "PMKERNEL.spad" 1530689 1530701 1531100 1531105) (-935 "PMINS.spad" 1530269 1530279 1530679 1530684) (-934 "PMFS.spad" 1529846 1529864 1530259 1530264) (-933 "PMDOWN.spad" 1529136 1529150 1529836 1529841) (-932 "PMASS.spad" 1528146 1528154 1529126 1529131) (-931 "PMASSFS.spad" 1527113 1527129 1528136 1528141) (-930 "PLOTTOOL.spad" 1526893 1526901 1527103 1527108) (-929 "PLOT.spad" 1521816 1521824 1526883 1526888) (-928 "PLOT3D.spad" 1518280 1518288 1521806 1521811) (-927 "PLOT1.spad" 1517437 1517447 1518270 1518275) (-926 "PLEQN.spad" 1504727 1504754 1517427 1517432) (-925 "PINTERP.spad" 1504349 1504368 1504717 1504722) (-924 "PINTERPA.spad" 1504133 1504149 1504339 1504344) (-923 "PI.spad" 1503742 1503750 1504107 1504128) (-922 "PID.spad" 1502712 1502720 1503668 1503737) (-921 "PICOERCE.spad" 1502369 1502379 1502702 1502707) (-920 "PGROEB.spad" 1500970 1500984 1502359 1502364) (-919 "PGE.spad" 1492587 1492595 1500960 1500965) (-918 "PGCD.spad" 1491477 1491494 1492577 1492582) (-917 "PFRPAC.spad" 1490626 1490636 1491467 1491472) (-916 "PFR.spad" 1487289 1487299 1490528 1490621) (-915 "PFOTOOLS.spad" 1486547 1486563 1487279 1487284) (-914 "PFOQ.spad" 1485917 1485935 1486537 1486542) (-913 "PFO.spad" 1485336 1485363 1485907 1485912) (-912 "PF.spad" 1484910 1484922 1485141 1485234) (-911 "PFECAT.spad" 1482592 1482600 1484836 1484905) (-910 "PFECAT.spad" 1480302 1480312 1482548 1482553) (-909 "PFBRU.spad" 1478190 1478202 1480292 1480297) (-908 "PFBR.spad" 1475750 1475773 1478180 1478185) (-907 "PERM.spad" 1471435 1471445 1475580 1475595) (-906 "PERMGRP.spad" 1466197 1466207 1471425 1471430) (-905 "PERMCAT.spad" 1464755 1464765 1466177 1466192) (-904 "PERMAN.spad" 1463287 1463301 1464745 1464750) (-903 "PENDTREE.spad" 1462628 1462638 1462916 1462921) (-902 "PDRING.spad" 1461179 1461189 1462608 1462623) (-901 "PDRING.spad" 1459738 1459750 1461169 1461174) (-900 "PDEPROB.spad" 1458753 1458761 1459728 1459733) (-899 "PDEPACK.spad" 1452793 1452801 1458743 1458748) (-898 "PDECOMP.spad" 1452263 1452280 1452783 1452788) (-897 "PDECAT.spad" 1450619 1450627 1452253 1452258) (-896 "PCOMP.spad" 1450472 1450485 1450609 1450614) (-895 "PBWLB.spad" 1449060 1449077 1450462 1450467) (-894 "PATTERN.spad" 1443599 1443609 1449050 1449055) (-893 "PATTERN2.spad" 1443337 1443349 1443589 1443594) (-892 "PATTERN1.spad" 1441673 1441689 1443327 1443332) (-891 "PATRES.spad" 1439248 1439260 1441663 1441668) (-890 "PATRES2.spad" 1438920 1438934 1439238 1439243) (-889 "PATMATCH.spad" 1437117 1437148 1438628 1438633) (-888 "PATMAB.spad" 1436546 1436556 1437107 1437112) (-887 "PATLRES.spad" 1435632 1435646 1436536 1436541) (-886 "PATAB.spad" 1435396 1435406 1435622 1435627) (-885 "PARTPERM.spad" 1432796 1432804 1435386 1435391) (-884 "PARSURF.spad" 1432230 1432258 1432786 1432791) (-883 "PARSU2.spad" 1432027 1432043 1432220 1432225) (-882 "script-parser.spad" 1431547 1431555 1432017 1432022) (-881 "PARSCURV.spad" 1430981 1431009 1431537 1431542) (-880 "PARSC2.spad" 1430772 1430788 1430971 1430976) (-879 "PARPCURV.spad" 1430234 1430262 1430762 1430767) (-878 "PARPC2.spad" 1430025 1430041 1430224 1430229) (-877 "PARAMAST.spad" 1429153 1429161 1430015 1430020) (-876 "PAN2EXPR.spad" 1428565 1428573 1429143 1429148) (-875 "PALETTE.spad" 1427535 1427543 1428555 1428560) (-874 "PAIR.spad" 1426522 1426535 1427123 1427128) (-873 "PADICRC.spad" 1423856 1423874 1425027 1425120) (-872 "PADICRAT.spad" 1421871 1421883 1422092 1422185) (-871 "PADIC.spad" 1421566 1421578 1421797 1421866) (-870 "PADICCT.spad" 1420115 1420127 1421492 1421561) (-869 "PADEPAC.spad" 1418804 1418823 1420105 1420110) (-868 "PADE.spad" 1417556 1417572 1418794 1418799) (-867 "OWP.spad" 1416796 1416826 1417414 1417481) (-866 "OVERSET.spad" 1416369 1416377 1416786 1416791) (-865 "OVAR.spad" 1416150 1416173 1416359 1416364) (-864 "OUT.spad" 1415236 1415244 1416140 1416145) (-863 "OUTFORM.spad" 1404628 1404636 1415226 1415231) (-862 "OUTBFILE.spad" 1404046 1404054 1404618 1404623) (-861 "OUTBCON.spad" 1403052 1403060 1404036 1404041) (-860 "OUTBCON.spad" 1402056 1402066 1403042 1403047) (-859 "OSI.spad" 1401531 1401539 1402046 1402051) (-858 "OSGROUP.spad" 1401449 1401457 1401521 1401526) (-857 "ORTHPOL.spad" 1399934 1399944 1401366 1401371) (-856 "OREUP.spad" 1399387 1399415 1399614 1399653) (-855 "ORESUP.spad" 1398688 1398712 1399067 1399106) (-854 "OREPCTO.spad" 1396545 1396557 1398608 1398613) (-853 "OREPCAT.spad" 1390692 1390702 1396501 1396540) (-852 "OREPCAT.spad" 1384729 1384741 1390540 1390545) (-851 "ORDSET.spad" 1383901 1383909 1384719 1384724) (-850 "ORDSET.spad" 1383071 1383081 1383891 1383896) (-849 "ORDRING.spad" 1382461 1382469 1383051 1383066) (-848 "ORDRING.spad" 1381859 1381869 1382451 1382456) (-847 "ORDMON.spad" 1381714 1381722 1381849 1381854) (-846 "ORDFUNS.spad" 1380846 1380862 1381704 1381709) (-845 "ORDFIN.spad" 1380666 1380674 1380836 1380841) (-844 "ORDCOMP.spad" 1379131 1379141 1380213 1380242) (-843 "ORDCOMP2.spad" 1378424 1378436 1379121 1379126) (-842 "OPTPROB.spad" 1377062 1377070 1378414 1378419) (-841 "OPTPACK.spad" 1369471 1369479 1377052 1377057) (-840 "OPTCAT.spad" 1367150 1367158 1369461 1369466) (-839 "OPSIG.spad" 1366804 1366812 1367140 1367145) (-838 "OPQUERY.spad" 1366353 1366361 1366794 1366799) (-837 "OP.spad" 1366095 1366105 1366175 1366242) (-836 "OPERCAT.spad" 1365561 1365571 1366085 1366090) (-835 "OPERCAT.spad" 1365025 1365037 1365551 1365556) (-834 "ONECOMP.spad" 1363770 1363780 1364572 1364601) (-833 "ONECOMP2.spad" 1363194 1363206 1363760 1363765) (-832 "OMSERVER.spad" 1362200 1362208 1363184 1363189) (-831 "OMSAGG.spad" 1361988 1361998 1362156 1362195) (-830 "OMPKG.spad" 1360604 1360612 1361978 1361983) (-829 "OM.spad" 1359577 1359585 1360594 1360599) (-828 "OMLO.spad" 1359002 1359014 1359463 1359502) (-827 "OMEXPR.spad" 1358836 1358846 1358992 1358997) (-826 "OMERR.spad" 1358381 1358389 1358826 1358831) (-825 "OMERRK.spad" 1357415 1357423 1358371 1358376) (-824 "OMENC.spad" 1356759 1356767 1357405 1357410) (-823 "OMDEV.spad" 1351068 1351076 1356749 1356754) (-822 "OMCONN.spad" 1350477 1350485 1351058 1351063) (-821 "OINTDOM.spad" 1350240 1350248 1350403 1350472) (-820 "OFMONOID.spad" 1348363 1348373 1350196 1350201) (-819 "ODVAR.spad" 1347624 1347634 1348353 1348358) (-818 "ODR.spad" 1347268 1347294 1347436 1347585) (-817 "ODPOL.spad" 1344650 1344660 1344990 1345117) (-816 "ODP.spad" 1334497 1334517 1334870 1335001) (-815 "ODETOOLS.spad" 1333146 1333165 1334487 1334492) (-814 "ODESYS.spad" 1330840 1330857 1333136 1333141) (-813 "ODERTRIC.spad" 1326849 1326866 1330797 1330802) (-812 "ODERED.spad" 1326248 1326272 1326839 1326844) (-811 "ODERAT.spad" 1323863 1323880 1326238 1326243) (-810 "ODEPRRIC.spad" 1320900 1320922 1323853 1323858) (-809 "ODEPROB.spad" 1320157 1320165 1320890 1320895) (-808 "ODEPRIM.spad" 1317491 1317513 1320147 1320152) (-807 "ODEPAL.spad" 1316877 1316901 1317481 1317486) (-806 "ODEPACK.spad" 1303543 1303551 1316867 1316872) (-805 "ODEINT.spad" 1302978 1302994 1303533 1303538) (-804 "ODEIFTBL.spad" 1300373 1300381 1302968 1302973) (-803 "ODEEF.spad" 1295864 1295880 1300363 1300368) (-802 "ODECONST.spad" 1295401 1295419 1295854 1295859) (-801 "ODECAT.spad" 1293999 1294007 1295391 1295396) (-800 "OCT.spad" 1292135 1292145 1292849 1292888) (-799 "OCTCT2.spad" 1291781 1291802 1292125 1292130) (-798 "OC.spad" 1289577 1289587 1291737 1291776) (-797 "OC.spad" 1287098 1287110 1289260 1289265) (-796 "OCAMON.spad" 1286946 1286954 1287088 1287093) (-795 "OASGP.spad" 1286761 1286769 1286936 1286941) (-794 "OAMONS.spad" 1286283 1286291 1286751 1286756) (-793 "OAMON.spad" 1286144 1286152 1286273 1286278) (-792 "OAGROUP.spad" 1286006 1286014 1286134 1286139) (-791 "NUMTUBE.spad" 1285597 1285613 1285996 1286001) (-790 "NUMQUAD.spad" 1273573 1273581 1285587 1285592) (-789 "NUMODE.spad" 1264927 1264935 1273563 1273568) (-788 "NUMINT.spad" 1262493 1262501 1264917 1264922) (-787 "NUMFMT.spad" 1261333 1261341 1262483 1262488) (-786 "NUMERIC.spad" 1253447 1253457 1261138 1261143) (-785 "NTSCAT.spad" 1251955 1251971 1253415 1253442) (-784 "NTPOLFN.spad" 1251506 1251516 1251872 1251877) (-783 "NSUP.spad" 1244552 1244562 1249092 1249245) (-782 "NSUP2.spad" 1243944 1243956 1244542 1244547) (-781 "NSMP.spad" 1240175 1240194 1240483 1240610) (-780 "NREP.spad" 1238553 1238567 1240165 1240170) (-779 "NPCOEF.spad" 1237799 1237819 1238543 1238548) (-778 "NORMRETR.spad" 1237397 1237436 1237789 1237794) (-777 "NORMPK.spad" 1235299 1235318 1237387 1237392) (-776 "NORMMA.spad" 1234987 1235013 1235289 1235294) (-775 "NONE.spad" 1234728 1234736 1234977 1234982) (-774 "NONE1.spad" 1234404 1234414 1234718 1234723) (-773 "NODE1.spad" 1233891 1233907 1234394 1234399) (-772 "NNI.spad" 1232786 1232794 1233865 1233886) (-771 "NLINSOL.spad" 1231412 1231422 1232776 1232781) (-770 "NIPROB.spad" 1229953 1229961 1231402 1231407) (-769 "NFINTBAS.spad" 1227513 1227530 1229943 1229948) (-768 "NETCLT.spad" 1227487 1227498 1227503 1227508) (-767 "NCODIV.spad" 1225703 1225719 1227477 1227482) (-766 "NCNTFRAC.spad" 1225345 1225359 1225693 1225698) (-765 "NCEP.spad" 1223511 1223525 1225335 1225340) (-764 "NASRING.spad" 1223107 1223115 1223501 1223506) (-763 "NASRING.spad" 1222701 1222711 1223097 1223102) (-762 "NARNG.spad" 1222053 1222061 1222691 1222696) (-761 "NARNG.spad" 1221403 1221413 1222043 1222048) (-760 "NAGSP.spad" 1220480 1220488 1221393 1221398) (-759 "NAGS.spad" 1210141 1210149 1220470 1220475) (-758 "NAGF07.spad" 1208572 1208580 1210131 1210136) (-757 "NAGF04.spad" 1202974 1202982 1208562 1208567) (-756 "NAGF02.spad" 1197043 1197051 1202964 1202969) (-755 "NAGF01.spad" 1192804 1192812 1197033 1197038) (-754 "NAGE04.spad" 1186504 1186512 1192794 1192799) (-753 "NAGE02.spad" 1177164 1177172 1186494 1186499) (-752 "NAGE01.spad" 1173166 1173174 1177154 1177159) (-751 "NAGD03.spad" 1171170 1171178 1173156 1173161) (-750 "NAGD02.spad" 1163917 1163925 1171160 1171165) (-749 "NAGD01.spad" 1158210 1158218 1163907 1163912) (-748 "NAGC06.spad" 1154085 1154093 1158200 1158205) (-747 "NAGC05.spad" 1152586 1152594 1154075 1154080) (-746 "NAGC02.spad" 1151853 1151861 1152576 1152581) (-745 "NAALG.spad" 1151394 1151404 1151821 1151848) (-744 "NAALG.spad" 1150955 1150967 1151384 1151389) (-743 "MULTSQFR.spad" 1147913 1147930 1150945 1150950) (-742 "MULTFACT.spad" 1147296 1147313 1147903 1147908) (-741 "MTSCAT.spad" 1145390 1145411 1147194 1147291) (-740 "MTHING.spad" 1145049 1145059 1145380 1145385) (-739 "MSYSCMD.spad" 1144483 1144491 1145039 1145044) (-738 "MSET.spad" 1142441 1142451 1144189 1144228) (-737 "MSETAGG.spad" 1142286 1142296 1142409 1142436) (-736 "MRING.spad" 1139263 1139275 1141994 1142061) (-735 "MRF2.spad" 1138833 1138847 1139253 1139258) (-734 "MRATFAC.spad" 1138379 1138396 1138823 1138828) (-733 "MPRFF.spad" 1136419 1136438 1138369 1138374) (-732 "MPOLY.spad" 1133890 1133905 1134249 1134376) (-731 "MPCPF.spad" 1133154 1133173 1133880 1133885) (-730 "MPC3.spad" 1132971 1133011 1133144 1133149) (-729 "MPC2.spad" 1132617 1132650 1132961 1132966) (-728 "MONOTOOL.spad" 1130968 1130985 1132607 1132612) (-727 "MONOID.spad" 1130287 1130295 1130958 1130963) (-726 "MONOID.spad" 1129604 1129614 1130277 1130282) (-725 "MONOGEN.spad" 1128352 1128365 1129464 1129599) (-724 "MONOGEN.spad" 1127122 1127137 1128236 1128241) (-723 "MONADWU.spad" 1125152 1125160 1127112 1127117) (-722 "MONADWU.spad" 1123180 1123190 1125142 1125147) (-721 "MONAD.spad" 1122340 1122348 1123170 1123175) (-720 "MONAD.spad" 1121498 1121508 1122330 1122335) (-719 "MOEBIUS.spad" 1120234 1120248 1121478 1121493) (-718 "MODULE.spad" 1120104 1120114 1120202 1120229) (-717 "MODULE.spad" 1119994 1120006 1120094 1120099) (-716 "MODRING.spad" 1119329 1119368 1119974 1119989) (-715 "MODOP.spad" 1117994 1118006 1119151 1119218) (-714 "MODMONOM.spad" 1117725 1117743 1117984 1117989) (-713 "MODMON.spad" 1114520 1114536 1115239 1115392) (-712 "MODFIELD.spad" 1113882 1113921 1114422 1114515) (-711 "MMLFORM.spad" 1112742 1112750 1113872 1113877) (-710 "MMAP.spad" 1112484 1112518 1112732 1112737) (-709 "MLO.spad" 1110943 1110953 1112440 1112479) (-708 "MLIFT.spad" 1109555 1109572 1110933 1110938) (-707 "MKUCFUNC.spad" 1109090 1109108 1109545 1109550) (-706 "MKRECORD.spad" 1108694 1108707 1109080 1109085) (-705 "MKFUNC.spad" 1108101 1108111 1108684 1108689) (-704 "MKFLCFN.spad" 1107069 1107079 1108091 1108096) (-703 "MKBCFUNC.spad" 1106564 1106582 1107059 1107064) (-702 "MINT.spad" 1106003 1106011 1106466 1106559) (-701 "MHROWRED.spad" 1104514 1104524 1105993 1105998) (-700 "MFLOAT.spad" 1103034 1103042 1104404 1104509) (-699 "MFINFACT.spad" 1102434 1102456 1103024 1103029) (-698 "MESH.spad" 1100216 1100224 1102424 1102429) (-697 "MDDFACT.spad" 1098427 1098437 1100206 1100211) (-696 "MDAGG.spad" 1097718 1097728 1098407 1098422) (-695 "MCMPLX.spad" 1093729 1093737 1094343 1094544) (-694 "MCDEN.spad" 1092939 1092951 1093719 1093724) (-693 "MCALCFN.spad" 1090061 1090087 1092929 1092934) (-692 "MAYBE.spad" 1089345 1089356 1090051 1090056) (-691 "MATSTOR.spad" 1086653 1086663 1089335 1089340) (-690 "MATRIX.spad" 1085357 1085367 1085841 1085868) (-689 "MATLIN.spad" 1082701 1082725 1085241 1085246) (-688 "MATCAT.spad" 1074430 1074452 1082669 1082696) (-687 "MATCAT.spad" 1066031 1066055 1074272 1074277) (-686 "MATCAT2.spad" 1065313 1065361 1066021 1066026) (-685 "MAPPKG3.spad" 1064228 1064242 1065303 1065308) (-684 "MAPPKG2.spad" 1063566 1063578 1064218 1064223) (-683 "MAPPKG1.spad" 1062394 1062404 1063556 1063561) (-682 "MAPPAST.spad" 1061709 1061717 1062384 1062389) (-681 "MAPHACK3.spad" 1061521 1061535 1061699 1061704) (-680 "MAPHACK2.spad" 1061290 1061302 1061511 1061516) (-679 "MAPHACK1.spad" 1060934 1060944 1061280 1061285) (-678 "MAGMA.spad" 1058724 1058741 1060924 1060929) (-677 "MACROAST.spad" 1058303 1058311 1058714 1058719) (-676 "M3D.spad" 1056023 1056033 1057681 1057686) (-675 "LZSTAGG.spad" 1053261 1053271 1056013 1056018) (-674 "LZSTAGG.spad" 1050497 1050509 1053251 1053256) (-673 "LWORD.spad" 1047202 1047219 1050487 1050492) (-672 "LSTAST.spad" 1046986 1046994 1047192 1047197) (-671 "LSQM.spad" 1045216 1045230 1045610 1045661) (-670 "LSPP.spad" 1044751 1044768 1045206 1045211) (-669 "LSMP.spad" 1043601 1043629 1044741 1044746) (-668 "LSMP1.spad" 1041419 1041433 1043591 1043596) (-667 "LSAGG.spad" 1041088 1041098 1041387 1041414) (-666 "LSAGG.spad" 1040777 1040789 1041078 1041083) (-665 "LPOLY.spad" 1039731 1039750 1040633 1040702) (-664 "LPEFRAC.spad" 1039002 1039012 1039721 1039726) (-663 "LO.spad" 1038403 1038417 1038936 1038963) (-662 "LOGIC.spad" 1038005 1038013 1038393 1038398) (-661 "LOGIC.spad" 1037605 1037615 1037995 1038000) (-660 "LODOOPS.spad" 1036535 1036547 1037595 1037600) (-659 "LODO.spad" 1035919 1035935 1036215 1036254) (-658 "LODOF.spad" 1034965 1034982 1035876 1035881) (-657 "LODOCAT.spad" 1033631 1033641 1034921 1034960) (-656 "LODOCAT.spad" 1032295 1032307 1033587 1033592) (-655 "LODO2.spad" 1031568 1031580 1031975 1032014) (-654 "LODO1.spad" 1030968 1030978 1031248 1031287) (-653 "LODEEF.spad" 1029770 1029788 1030958 1030963) (-652 "LNAGG.spad" 1025602 1025612 1029760 1029765) (-651 "LNAGG.spad" 1021398 1021410 1025558 1025563) (-650 "LMOPS.spad" 1018166 1018183 1021388 1021393) (-649 "LMODULE.spad" 1017934 1017944 1018156 1018161) (-648 "LMDICT.spad" 1017221 1017231 1017485 1017512) (-647 "LLINSET.spad" 1016618 1016628 1017211 1017216) (-646 "LITERAL.spad" 1016524 1016535 1016608 1016613) (-645 "LIST.spad" 1014259 1014269 1015671 1015698) (-644 "LIST3.spad" 1013570 1013584 1014249 1014254) (-643 "LIST2.spad" 1012272 1012284 1013560 1013565) (-642 "LIST2MAP.spad" 1009175 1009187 1012262 1012267) (-641 "LINSET.spad" 1008797 1008807 1009165 1009170) (-640 "LINEXP.spad" 1008231 1008241 1008777 1008792) (-639 "LINDEP.spad" 1007040 1007052 1008143 1008148) (-638 "LIMITRF.spad" 1004968 1004978 1007030 1007035) (-637 "LIMITPS.spad" 1003871 1003884 1004958 1004963) (-636 "LIE.spad" 1001887 1001899 1003161 1003306) (-635 "LIECAT.spad" 1001363 1001373 1001813 1001882) (-634 "LIECAT.spad" 1000867 1000879 1001319 1001324) (-633 "LIB.spad" 998917 998925 999526 999541) (-632 "LGROBP.spad" 996270 996289 998907 998912) (-631 "LF.spad" 995225 995241 996260 996265) (-630 "LFCAT.spad" 994284 994292 995215 995220) (-629 "LEXTRIPK.spad" 989787 989802 994274 994279) (-628 "LEXP.spad" 987790 987817 989767 989782) (-627 "LETAST.spad" 987489 987497 987780 987785) (-626 "LEADCDET.spad" 985887 985904 987479 987484) (-625 "LAZM3PK.spad" 984591 984613 985877 985882) (-624 "LAUPOL.spad" 983284 983297 984184 984253) (-623 "LAPLACE.spad" 982867 982883 983274 983279) (-622 "LA.spad" 982307 982321 982789 982828) (-621 "LALG.spad" 982083 982093 982287 982302) (-620 "LALG.spad" 981867 981879 982073 982078) (-619 "KVTFROM.spad" 981602 981612 981857 981862) (-618 "KTVLOGIC.spad" 981114 981122 981592 981597) (-617 "KRCFROM.spad" 980852 980862 981104 981109) (-616 "KOVACIC.spad" 979575 979592 980842 980847) (-615 "KONVERT.spad" 979297 979307 979565 979570) (-614 "KOERCE.spad" 979034 979044 979287 979292) (-613 "KERNEL.spad" 977689 977699 978818 978823) (-612 "KERNEL2.spad" 977392 977404 977679 977684) (-611 "KDAGG.spad" 976501 976523 977372 977387) (-610 "KDAGG.spad" 975618 975642 976491 976496) (-609 "KAFILE.spad" 974581 974597 974816 974843) (-608 "JORDAN.spad" 972410 972422 973871 974016) (-607 "JOINAST.spad" 972104 972112 972400 972405) (-606 "JAVACODE.spad" 971970 971978 972094 972099) (-605 "IXAGG.spad" 970103 970127 971960 971965) (-604 "IXAGG.spad" 968091 968117 969950 969955) (-603 "IVECTOR.spad" 966861 966876 967016 967043) (-602 "ITUPLE.spad" 966022 966032 966851 966856) (-601 "ITRIGMNP.spad" 964861 964880 966012 966017) (-600 "ITFUN3.spad" 964367 964381 964851 964856) (-599 "ITFUN2.spad" 964111 964123 964357 964362) (-598 "ITAYLOR.spad" 962105 962120 963975 964072) (-597 "ISUPS.spad" 954542 954557 961079 961176) (-596 "ISUMP.spad" 954043 954059 954532 954537) (-595 "ISTRING.spad" 953131 953144 953212 953239) (-594 "ISAST.spad" 952850 952858 953121 953126) (-593 "IRURPK.spad" 951567 951586 952840 952845) (-592 "IRSN.spad" 949571 949579 951557 951562) (-591 "IRRF2F.spad" 948056 948066 949527 949532) (-590 "IRREDFFX.spad" 947657 947668 948046 948051) (-589 "IROOT.spad" 945996 946006 947647 947652) (-588 "IR.spad" 943797 943811 945851 945878) (-587 "IR2.spad" 942825 942841 943787 943792) (-586 "IR2F.spad" 942031 942047 942815 942820) (-585 "IPRNTPK.spad" 941791 941799 942021 942026) (-584 "IPF.spad" 941356 941368 941596 941689) (-583 "IPADIC.spad" 941117 941143 941282 941351) (-582 "IP4ADDR.spad" 940674 940682 941107 941112) (-581 "IOMODE.spad" 940295 940303 940664 940669) (-580 "IOBFILE.spad" 939656 939664 940285 940290) (-579 "IOBCON.spad" 939521 939529 939646 939651) (-578 "INVLAPLA.spad" 939170 939186 939511 939516) (-577 "INTTR.spad" 932552 932569 939160 939165) (-576 "INTTOOLS.spad" 930307 930323 932126 932131) (-575 "INTSLPE.spad" 929627 929635 930297 930302) (-574 "INTRVL.spad" 929193 929203 929541 929622) (-573 "INTRF.spad" 927617 927631 929183 929188) (-572 "INTRET.spad" 927049 927059 927607 927612) (-571 "INTRAT.spad" 925776 925793 927039 927044) (-570 "INTPM.spad" 924161 924177 925419 925424) (-569 "INTPAF.spad" 922025 922043 924093 924098) (-568 "INTPACK.spad" 912399 912407 922015 922020) (-567 "INT.spad" 911847 911855 912253 912394) (-566 "INTHERTR.spad" 911121 911138 911837 911842) (-565 "INTHERAL.spad" 910791 910815 911111 911116) (-564 "INTHEORY.spad" 907230 907238 910781 910786) (-563 "INTG0.spad" 900963 900981 907162 907167) (-562 "INTFTBL.spad" 894992 895000 900953 900958) (-561 "INTFACT.spad" 894051 894061 894982 894987) (-560 "INTEF.spad" 892436 892452 894041 894046) (-559 "INTDOM.spad" 891059 891067 892362 892431) (-558 "INTDOM.spad" 889744 889754 891049 891054) (-557 "INTCAT.spad" 888003 888013 889658 889739) (-556 "INTBIT.spad" 887510 887518 887993 887998) (-555 "INTALG.spad" 886698 886725 887500 887505) (-554 "INTAF.spad" 886198 886214 886688 886693) (-553 "INTABL.spad" 884716 884747 884879 884906) (-552 "INT8.spad" 884596 884604 884706 884711) (-551 "INT64.spad" 884475 884483 884586 884591) (-550 "INT32.spad" 884354 884362 884465 884470) (-549 "INT16.spad" 884233 884241 884344 884349) (-548 "INS.spad" 881736 881744 884135 884228) (-547 "INS.spad" 879325 879335 881726 881731) (-546 "INPSIGN.spad" 878773 878786 879315 879320) (-545 "INPRODPF.spad" 877869 877888 878763 878768) (-544 "INPRODFF.spad" 876957 876981 877859 877864) (-543 "INNMFACT.spad" 875932 875949 876947 876952) (-542 "INMODGCD.spad" 875420 875450 875922 875927) (-541 "INFSP.spad" 873717 873739 875410 875415) (-540 "INFPROD0.spad" 872797 872816 873707 873712) (-539 "INFORM.spad" 869996 870004 872787 872792) (-538 "INFORM1.spad" 869621 869631 869986 869991) (-537 "INFINITY.spad" 869173 869181 869611 869616) (-536 "INETCLTS.spad" 869150 869158 869163 869168) (-535 "INEP.spad" 867688 867710 869140 869145) (-534 "INDE.spad" 867417 867434 867678 867683) (-533 "INCRMAPS.spad" 866838 866848 867407 867412) (-532 "INBFILE.spad" 865910 865918 866828 866833) (-531 "INBFF.spad" 861704 861715 865900 865905) (-530 "INBCON.spad" 859994 860002 861694 861699) (-529 "INBCON.spad" 858282 858292 859984 859989) (-528 "INAST.spad" 857943 857951 858272 858277) (-527 "IMPTAST.spad" 857651 857659 857933 857938) (-526 "IMATRIX.spad" 856596 856622 857108 857135) (-525 "IMATQF.spad" 855690 855734 856552 856557) (-524 "IMATLIN.spad" 854295 854319 855646 855651) (-523 "ILIST.spad" 852953 852968 853478 853505) (-522 "IIARRAY2.spad" 852341 852379 852560 852587) (-521 "IFF.spad" 851751 851767 852022 852115) (-520 "IFAST.spad" 851365 851373 851741 851746) (-519 "IFARRAY.spad" 848858 848873 850548 850575) (-518 "IFAMON.spad" 848720 848737 848814 848819) (-517 "IEVALAB.spad" 848125 848137 848710 848715) (-516 "IEVALAB.spad" 847528 847542 848115 848120) (-515 "IDPO.spad" 847326 847338 847518 847523) (-514 "IDPOAMS.spad" 847082 847094 847316 847321) (-513 "IDPOAM.spad" 846802 846814 847072 847077) (-512 "IDPC.spad" 845740 845752 846792 846797) (-511 "IDPAM.spad" 845485 845497 845730 845735) (-510 "IDPAG.spad" 845232 845244 845475 845480) (-509 "IDENT.spad" 844882 844890 845222 845227) (-508 "IDECOMP.spad" 842121 842139 844872 844877) (-507 "IDEAL.spad" 837070 837109 842056 842061) (-506 "ICDEN.spad" 836259 836275 837060 837065) (-505 "ICARD.spad" 835450 835458 836249 836254) (-504 "IBPTOOLS.spad" 834057 834074 835440 835445) (-503 "IBITS.spad" 833260 833273 833693 833720) (-502 "IBATOOL.spad" 830237 830256 833250 833255) (-501 "IBACHIN.spad" 828744 828759 830227 830232) (-500 "IARRAY2.spad" 827732 827758 828351 828378) (-499 "IARRAY1.spad" 826777 826792 826915 826942) (-498 "IAN.spad" 825000 825008 826593 826686) (-497 "IALGFACT.spad" 824603 824636 824990 824995) (-496 "HYPCAT.spad" 824027 824035 824593 824598) (-495 "HYPCAT.spad" 823449 823459 824017 824022) (-494 "HOSTNAME.spad" 823257 823265 823439 823444) (-493 "HOMOTOP.spad" 823000 823010 823247 823252) (-492 "HOAGG.spad" 820282 820292 822990 822995) (-491 "HOAGG.spad" 817339 817351 820049 820054) (-490 "HEXADEC.spad" 815441 815449 815806 815899) (-489 "HEUGCD.spad" 814476 814487 815431 815436) (-488 "HELLFDIV.spad" 814066 814090 814466 814471) (-487 "HEAP.spad" 813458 813468 813673 813700) (-486 "HEADAST.spad" 812991 812999 813448 813453) (-485 "HDP.spad" 802834 802850 803211 803342) (-484 "HDMP.spad" 800048 800063 800664 800791) (-483 "HB.spad" 798299 798307 800038 800043) (-482 "HASHTBL.spad" 796769 796800 796980 797007) (-481 "HASAST.spad" 796485 796493 796759 796764) (-480 "HACKPI.spad" 795976 795984 796387 796480) (-479 "GTSET.spad" 794915 794931 795622 795649) (-478 "GSTBL.spad" 793434 793469 793608 793623) (-477 "GSERIES.spad" 790605 790632 791566 791715) (-476 "GROUP.spad" 789878 789886 790585 790600) (-475 "GROUP.spad" 789159 789169 789868 789873) (-474 "GROEBSOL.spad" 787653 787674 789149 789154) (-473 "GRMOD.spad" 786224 786236 787643 787648) (-472 "GRMOD.spad" 784793 784807 786214 786219) (-471 "GRIMAGE.spad" 777682 777690 784783 784788) (-470 "GRDEF.spad" 776061 776069 777672 777677) (-469 "GRAY.spad" 774524 774532 776051 776056) (-468 "GRALG.spad" 773601 773613 774514 774519) (-467 "GRALG.spad" 772676 772690 773591 773596) (-466 "GPOLSET.spad" 772130 772153 772358 772385) (-465 "GOSPER.spad" 771399 771417 772120 772125) (-464 "GMODPOL.spad" 770547 770574 771367 771394) (-463 "GHENSEL.spad" 769630 769644 770537 770542) (-462 "GENUPS.spad" 765923 765936 769620 769625) (-461 "GENUFACT.spad" 765500 765510 765913 765918) (-460 "GENPGCD.spad" 765086 765103 765490 765495) (-459 "GENMFACT.spad" 764538 764557 765076 765081) (-458 "GENEEZ.spad" 762489 762502 764528 764533) (-457 "GDMP.spad" 759545 759562 760319 760446) (-456 "GCNAALG.spad" 753468 753495 759339 759406) (-455 "GCDDOM.spad" 752644 752652 753394 753463) (-454 "GCDDOM.spad" 751882 751892 752634 752639) (-453 "GB.spad" 749408 749446 751838 751843) (-452 "GBINTERN.spad" 745428 745466 749398 749403) (-451 "GBF.spad" 741195 741233 745418 745423) (-450 "GBEUCLID.spad" 739077 739115 741185 741190) (-449 "GAUSSFAC.spad" 738390 738398 739067 739072) (-448 "GALUTIL.spad" 736716 736726 738346 738351) (-447 "GALPOLYU.spad" 735170 735183 736706 736711) (-446 "GALFACTU.spad" 733343 733362 735160 735165) (-445 "GALFACT.spad" 723532 723543 733333 733338) (-444 "FVFUN.spad" 720555 720563 723522 723527) (-443 "FVC.spad" 719607 719615 720545 720550) (-442 "FUNDESC.spad" 719285 719293 719597 719602) (-441 "FUNCTION.spad" 719134 719146 719275 719280) (-440 "FT.spad" 717431 717439 719124 719129) (-439 "FTEM.spad" 716596 716604 717421 717426) (-438 "FSUPFACT.spad" 715496 715515 716532 716537) (-437 "FST.spad" 713582 713590 715486 715491) (-436 "FSRED.spad" 713062 713078 713572 713577) (-435 "FSPRMELT.spad" 711944 711960 713019 713024) (-434 "FSPECF.spad" 710035 710051 711934 711939) (-433 "FS.spad" 704303 704313 709810 710030) (-432 "FS.spad" 698349 698361 703858 703863) (-431 "FSINT.spad" 698009 698025 698339 698344) (-430 "FSERIES.spad" 697200 697212 697829 697928) (-429 "FSCINT.spad" 696517 696533 697190 697195) (-428 "FSAGG.spad" 695634 695644 696473 696512) (-427 "FSAGG.spad" 694713 694725 695554 695559) (-426 "FSAGG2.spad" 693456 693472 694703 694708) (-425 "FS2UPS.spad" 687947 687981 693446 693451) (-424 "FS2.spad" 687594 687610 687937 687942) (-423 "FS2EXPXP.spad" 686719 686742 687584 687589) (-422 "FRUTIL.spad" 685673 685683 686709 686714) (-421 "FR.spad" 679389 679399 684697 684766) (-420 "FRNAALG.spad" 674508 674518 679331 679384) (-419 "FRNAALG.spad" 669639 669651 674464 674469) (-418 "FRNAAF2.spad" 669095 669113 669629 669634) (-417 "FRMOD.spad" 668505 668535 669026 669031) (-416 "FRIDEAL.spad" 667730 667751 668485 668500) (-415 "FRIDEAL2.spad" 667334 667366 667720 667725) (-414 "FRETRCT.spad" 666845 666855 667324 667329) (-413 "FRETRCT.spad" 666222 666234 666703 666708) (-412 "FRAMALG.spad" 664570 664583 666178 666217) (-411 "FRAMALG.spad" 662950 662965 664560 664565) (-410 "FRAC.spad" 660049 660059 660452 660625) (-409 "FRAC2.spad" 659654 659666 660039 660044) (-408 "FR2.spad" 658990 659002 659644 659649) (-407 "FPS.spad" 655805 655813 658880 658985) (-406 "FPS.spad" 652648 652658 655725 655730) (-405 "FPC.spad" 651694 651702 652550 652643) (-404 "FPC.spad" 650826 650836 651684 651689) (-403 "FPATMAB.spad" 650588 650598 650816 650821) (-402 "FPARFRAC.spad" 649075 649092 650578 650583) (-401 "FORTRAN.spad" 647581 647624 649065 649070) (-400 "FORT.spad" 646530 646538 647571 647576) (-399 "FORTFN.spad" 643700 643708 646520 646525) (-398 "FORTCAT.spad" 643384 643392 643690 643695) (-397 "FORMULA.spad" 640858 640866 643374 643379) (-396 "FORMULA1.spad" 640337 640347 640848 640853) (-395 "FORDER.spad" 640028 640052 640327 640332) (-394 "FOP.spad" 639229 639237 640018 640023) (-393 "FNLA.spad" 638653 638675 639197 639224) (-392 "FNCAT.spad" 637248 637256 638643 638648) (-391 "FNAME.spad" 637140 637148 637238 637243) (-390 "FMTC.spad" 636938 636946 637066 637135) (-389 "FMONOID.spad" 636603 636613 636894 636899) (-388 "FMONCAT.spad" 633756 633766 636593 636598) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2263467 2263472 2263477 2263482) (-2 NIL 2263447 2263452 2263457 2263462) (-1 NIL 2263427 2263432 2263437 2263442) (0 NIL 2263407 2263412 2263417 2263422) (-1298 "ZMOD.spad" 2263216 2263229 2263345 2263402) (-1297 "ZLINDEP.spad" 2262282 2262293 2263206 2263211) (-1296 "ZDSOLVE.spad" 2252227 2252249 2262272 2262277) (-1295 "YSTREAM.spad" 2251722 2251733 2252217 2252222) (-1294 "XRPOLY.spad" 2250942 2250962 2251578 2251647) (-1293 "XPR.spad" 2248737 2248750 2250660 2250759) (-1292 "XPOLYC.spad" 2248056 2248072 2248663 2248732) (-1291 "XPOLY.spad" 2247611 2247622 2247912 2247981) (-1290 "XPBWPOLY.spad" 2246048 2246068 2247391 2247460) (-1289 "XFALG.spad" 2243096 2243112 2245974 2246043) (-1288 "XF.spad" 2241559 2241574 2242998 2243091) (-1287 "XF.spad" 2240002 2240019 2241443 2241448) (-1286 "XEXPPKG.spad" 2239253 2239279 2239992 2239997) (-1285 "XDPOLY.spad" 2238867 2238883 2239109 2239178) (-1284 "XALG.spad" 2238527 2238538 2238823 2238862) (-1283 "WUTSET.spad" 2234366 2234383 2238173 2238200) (-1282 "WP.spad" 2233565 2233609 2234224 2234291) (-1281 "WHILEAST.spad" 2233363 2233372 2233555 2233560) (-1280 "WHEREAST.spad" 2233034 2233043 2233353 2233358) (-1279 "WFFINTBS.spad" 2230697 2230719 2233024 2233029) (-1278 "WEIER.spad" 2228919 2228930 2230687 2230692) (-1277 "VSPACE.spad" 2228592 2228603 2228887 2228914) (-1276 "VSPACE.spad" 2228285 2228298 2228582 2228587) (-1275 "VOID.spad" 2227962 2227971 2228275 2228280) (-1274 "VIEWDEF.spad" 2223163 2223172 2227952 2227957) (-1273 "VIEW3D.spad" 2207124 2207133 2223153 2223158) (-1272 "VIEW2D.spad" 2195015 2195024 2207114 2207119) (-1271 "VIEW.spad" 2192695 2192704 2195005 2195010) (-1270 "VECTOR2.spad" 2191334 2191347 2192685 2192690) (-1269 "VECTOR.spad" 2190008 2190019 2190259 2190286) (-1268 "VECTCAT.spad" 2187912 2187923 2189976 2190003) (-1267 "VECTCAT.spad" 2185623 2185636 2187689 2187694) (-1266 "VARIABLE.spad" 2185403 2185418 2185613 2185618) (-1265 "UTYPE.spad" 2185047 2185056 2185393 2185398) (-1264 "UTSODETL.spad" 2184342 2184366 2185003 2185008) (-1263 "UTSODE.spad" 2182558 2182578 2184332 2184337) (-1262 "UTSCAT.spad" 2180037 2180053 2182456 2182553) (-1261 "UTSCAT.spad" 2177160 2177178 2179581 2179586) (-1260 "UTS2.spad" 2176755 2176790 2177150 2177155) (-1259 "UTS.spad" 2171559 2171587 2175222 2175319) (-1258 "URAGG.spad" 2166232 2166243 2171549 2171554) (-1257 "URAGG.spad" 2160869 2160882 2166188 2166193) (-1256 "UPXSSING.spad" 2158514 2158540 2159950 2160083) (-1255 "UPXSCONS.spad" 2156273 2156293 2156646 2156795) (-1254 "UPXSCCA.spad" 2154844 2154864 2156119 2156268) (-1253 "UPXSCCA.spad" 2153557 2153579 2154834 2154839) (-1252 "UPXSCAT.spad" 2152146 2152162 2153403 2153552) (-1251 "UPXS2.spad" 2151689 2151742 2152136 2152141) (-1250 "UPXS.spad" 2148843 2148871 2149821 2149970) (-1249 "UPSQFREE.spad" 2147258 2147272 2148833 2148838) (-1248 "UPSCAT.spad" 2144869 2144893 2147156 2147253) (-1247 "UPSCAT.spad" 2142186 2142212 2144475 2144480) (-1246 "UPOLYC2.spad" 2141657 2141676 2142176 2142181) (-1245 "UPOLYC.spad" 2136697 2136708 2141499 2141652) (-1244 "UPOLYC.spad" 2131629 2131642 2136433 2136438) (-1243 "UPMP.spad" 2130529 2130542 2131619 2131624) (-1242 "UPDIVP.spad" 2130094 2130108 2130519 2130524) (-1241 "UPDECOMP.spad" 2128339 2128353 2130084 2130089) (-1240 "UPCDEN.spad" 2127548 2127564 2128329 2128334) (-1239 "UP2.spad" 2126912 2126933 2127538 2127543) (-1238 "UP.spad" 2124111 2124126 2124498 2124651) (-1237 "UNISEG2.spad" 2123608 2123621 2124067 2124072) (-1236 "UNISEG.spad" 2122961 2122972 2123527 2123532) (-1235 "UNIFACT.spad" 2122064 2122076 2122951 2122956) (-1234 "ULSCONS.spad" 2114460 2114480 2114830 2114979) (-1233 "ULSCCAT.spad" 2112197 2112217 2114306 2114455) (-1232 "ULSCCAT.spad" 2110042 2110064 2112153 2112158) (-1231 "ULSCAT.spad" 2108274 2108290 2109888 2110037) (-1230 "ULS2.spad" 2107788 2107841 2108264 2108269) (-1229 "ULS.spad" 2098346 2098374 2099433 2099862) (-1228 "UINT8.spad" 2098223 2098232 2098336 2098341) (-1227 "UINT64.spad" 2098099 2098108 2098213 2098218) (-1226 "UINT32.spad" 2097975 2097984 2098089 2098094) (-1225 "UINT16.spad" 2097851 2097860 2097965 2097970) (-1224 "UFD.spad" 2096916 2096925 2097777 2097846) (-1223 "UFD.spad" 2096043 2096054 2096906 2096911) (-1222 "UDVO.spad" 2094924 2094933 2096033 2096038) (-1221 "UDPO.spad" 2092417 2092428 2094880 2094885) (-1220 "TYPEAST.spad" 2092336 2092345 2092407 2092412) (-1219 "TYPE.spad" 2092268 2092277 2092326 2092331) (-1218 "TWOFACT.spad" 2090920 2090935 2092258 2092263) (-1217 "TUPLE.spad" 2090406 2090417 2090819 2090824) (-1216 "TUBETOOL.spad" 2087273 2087282 2090396 2090401) (-1215 "TUBE.spad" 2085920 2085937 2087263 2087268) (-1214 "TSETCAT.spad" 2073047 2073064 2085888 2085915) (-1213 "TSETCAT.spad" 2060160 2060179 2073003 2073008) (-1212 "TS.spad" 2058759 2058775 2059725 2059822) (-1211 "TRMANIP.spad" 2053125 2053142 2058465 2058470) (-1210 "TRIMAT.spad" 2052088 2052113 2053115 2053120) (-1209 "TRIGMNIP.spad" 2050615 2050632 2052078 2052083) (-1208 "TRIGCAT.spad" 2050127 2050136 2050605 2050610) (-1207 "TRIGCAT.spad" 2049637 2049648 2050117 2050122) (-1206 "TREE.spad" 2048212 2048223 2049244 2049271) (-1205 "TRANFUN.spad" 2048051 2048060 2048202 2048207) (-1204 "TRANFUN.spad" 2047888 2047899 2048041 2048046) (-1203 "TOPSP.spad" 2047562 2047571 2047878 2047883) (-1202 "TOOLSIGN.spad" 2047225 2047236 2047552 2047557) (-1201 "TEXTFILE.spad" 2045786 2045795 2047215 2047220) (-1200 "TEX1.spad" 2045342 2045353 2045776 2045781) (-1199 "TEX.spad" 2042488 2042497 2045332 2045337) (-1198 "TEMUTL.spad" 2042043 2042052 2042478 2042483) (-1197 "TBCMPPK.spad" 2040136 2040159 2042033 2042038) (-1196 "TBAGG.spad" 2039186 2039209 2040116 2040131) (-1195 "TBAGG.spad" 2038244 2038269 2039176 2039181) (-1194 "TANEXP.spad" 2037652 2037663 2038234 2038239) (-1193 "TABLEAU.spad" 2037133 2037144 2037642 2037647) (-1192 "TABLE.spad" 2035544 2035567 2035814 2035841) (-1191 "TABLBUMP.spad" 2032347 2032358 2035534 2035539) (-1190 "SYSTEM.spad" 2031575 2031584 2032337 2032342) (-1189 "SYSSOLP.spad" 2029058 2029069 2031565 2031570) (-1188 "SYSPTR.spad" 2028957 2028966 2029048 2029053) (-1187 "SYSNNI.spad" 2028139 2028150 2028947 2028952) (-1186 "SYSINT.spad" 2027543 2027554 2028129 2028134) (-1185 "SYNTAX.spad" 2023749 2023758 2027533 2027538) (-1184 "SYMTAB.spad" 2021817 2021826 2023739 2023744) (-1183 "SYMS.spad" 2017846 2017855 2021807 2021812) (-1182 "SYMPOLY.spad" 2016853 2016864 2016935 2017062) (-1181 "SYMFUNC.spad" 2016354 2016365 2016843 2016848) (-1180 "SYMBOL.spad" 2013857 2013866 2016344 2016349) (-1179 "SWITCH.spad" 2010628 2010637 2013847 2013852) (-1178 "SUTS.spad" 2007533 2007561 2009095 2009192) (-1177 "SUPXS.spad" 2004674 2004702 2005665 2005814) (-1176 "SUPFRACF.spad" 2003779 2003797 2004664 2004669) (-1175 "SUP2.spad" 2003171 2003184 2003769 2003774) (-1174 "SUP.spad" 1999984 1999995 2000757 2000910) (-1173 "SUMRF.spad" 1998958 1998969 1999974 1999979) (-1172 "SUMFS.spad" 1998595 1998612 1998948 1998953) (-1171 "SULS.spad" 1989140 1989168 1990240 1990669) (-1170 "SUCHTAST.spad" 1988909 1988918 1989130 1989135) (-1169 "SUCH.spad" 1988591 1988606 1988899 1988904) (-1168 "SUBSPACE.spad" 1980706 1980721 1988581 1988586) (-1167 "SUBRESP.spad" 1979876 1979890 1980662 1980667) (-1166 "STTFNC.spad" 1976344 1976360 1979866 1979871) (-1165 "STTF.spad" 1972443 1972459 1976334 1976339) (-1164 "STTAYLOR.spad" 1965078 1965089 1972324 1972329) (-1163 "STRTBL.spad" 1963583 1963600 1963732 1963759) (-1162 "STRING.spad" 1962992 1963001 1963006 1963033) (-1161 "STRICAT.spad" 1962780 1962789 1962960 1962987) (-1160 "STREAM3.spad" 1962353 1962368 1962770 1962775) (-1159 "STREAM2.spad" 1961481 1961494 1962343 1962348) (-1158 "STREAM1.spad" 1961187 1961198 1961471 1961476) (-1157 "STREAM.spad" 1958105 1958116 1960712 1960727) (-1156 "STINPROD.spad" 1957041 1957057 1958095 1958100) (-1155 "STEPAST.spad" 1956275 1956284 1957031 1957036) (-1154 "STEP.spad" 1955476 1955485 1956265 1956270) (-1153 "STBL.spad" 1954002 1954030 1954169 1954184) (-1152 "STAGG.spad" 1953077 1953088 1953992 1953997) (-1151 "STAGG.spad" 1952150 1952163 1953067 1953072) (-1150 "STACK.spad" 1951507 1951518 1951757 1951784) (-1149 "SREGSET.spad" 1949211 1949228 1951153 1951180) (-1148 "SRDCMPK.spad" 1947772 1947792 1949201 1949206) (-1147 "SRAGG.spad" 1942915 1942924 1947740 1947767) (-1146 "SRAGG.spad" 1938078 1938089 1942905 1942910) (-1145 "SQMATRIX.spad" 1935694 1935712 1936610 1936697) (-1144 "SPLTREE.spad" 1930246 1930259 1935130 1935157) (-1143 "SPLNODE.spad" 1926834 1926847 1930236 1930241) (-1142 "SPFCAT.spad" 1925643 1925652 1926824 1926829) (-1141 "SPECOUT.spad" 1924195 1924204 1925633 1925638) (-1140 "SPADXPT.spad" 1915790 1915799 1924185 1924190) (-1139 "spad-parser.spad" 1915255 1915264 1915780 1915785) (-1138 "SPADAST.spad" 1914956 1914965 1915245 1915250) (-1137 "SPACEC.spad" 1899155 1899166 1914946 1914951) (-1136 "SPACE3.spad" 1898931 1898942 1899145 1899150) (-1135 "SORTPAK.spad" 1898480 1898493 1898887 1898892) (-1134 "SOLVETRA.spad" 1896243 1896254 1898470 1898475) (-1133 "SOLVESER.spad" 1894771 1894782 1896233 1896238) (-1132 "SOLVERAD.spad" 1890797 1890808 1894761 1894766) (-1131 "SOLVEFOR.spad" 1889259 1889277 1890787 1890792) (-1130 "SNTSCAT.spad" 1888859 1888876 1889227 1889254) (-1129 "SMTS.spad" 1887131 1887157 1888424 1888521) (-1128 "SMP.spad" 1884606 1884626 1884996 1885123) (-1127 "SMITH.spad" 1883451 1883476 1884596 1884601) (-1126 "SMATCAT.spad" 1881561 1881591 1883395 1883446) (-1125 "SMATCAT.spad" 1879603 1879635 1881439 1881444) (-1124 "SKAGG.spad" 1878566 1878577 1879571 1879598) (-1123 "SINT.spad" 1877398 1877407 1878432 1878561) (-1122 "SIMPAN.spad" 1877126 1877135 1877388 1877393) (-1121 "SIGNRF.spad" 1876251 1876262 1877116 1877121) (-1120 "SIGNEF.spad" 1875537 1875554 1876241 1876246) (-1119 "SIGAST.spad" 1874922 1874931 1875527 1875532) (-1118 "SIG.spad" 1874252 1874261 1874912 1874917) (-1117 "SHP.spad" 1872180 1872195 1874208 1874213) (-1116 "SHDP.spad" 1861891 1861918 1862400 1862531) (-1115 "SGROUP.spad" 1861499 1861508 1861881 1861886) (-1114 "SGROUP.spad" 1861105 1861116 1861489 1861494) (-1113 "SGCF.spad" 1854268 1854277 1861095 1861100) (-1112 "SFRTCAT.spad" 1853198 1853215 1854236 1854263) (-1111 "SFRGCD.spad" 1852261 1852281 1853188 1853193) (-1110 "SFQCMPK.spad" 1846898 1846918 1852251 1852256) (-1109 "SFORT.spad" 1846337 1846351 1846888 1846893) (-1108 "SEXOF.spad" 1846180 1846220 1846327 1846332) (-1107 "SEXCAT.spad" 1843781 1843821 1846170 1846175) (-1106 "SEX.spad" 1843673 1843682 1843771 1843776) (-1105 "SETMN.spad" 1842125 1842142 1843663 1843668) (-1104 "SETCAT.spad" 1841447 1841456 1842115 1842120) (-1103 "SETCAT.spad" 1840767 1840778 1841437 1841442) (-1102 "SETAGG.spad" 1837316 1837327 1840747 1840762) (-1101 "SETAGG.spad" 1833873 1833886 1837306 1837311) (-1100 "SET.spad" 1832197 1832208 1833294 1833333) (-1099 "SEQAST.spad" 1831900 1831909 1832187 1832192) (-1098 "SEGXCAT.spad" 1831056 1831069 1831890 1831895) (-1097 "SEGCAT.spad" 1829981 1829992 1831046 1831051) (-1096 "SEGBIND2.spad" 1829679 1829692 1829971 1829976) (-1095 "SEGBIND.spad" 1829437 1829448 1829626 1829631) (-1094 "SEGAST.spad" 1829151 1829160 1829427 1829432) (-1093 "SEG2.spad" 1828586 1828599 1829107 1829112) (-1092 "SEG.spad" 1828399 1828410 1828505 1828510) (-1091 "SDVAR.spad" 1827675 1827686 1828389 1828394) (-1090 "SDPOL.spad" 1825101 1825112 1825392 1825519) (-1089 "SCPKG.spad" 1823190 1823201 1825091 1825096) (-1088 "SCOPE.spad" 1822343 1822352 1823180 1823185) (-1087 "SCACHE.spad" 1821039 1821050 1822333 1822338) (-1086 "SASTCAT.spad" 1820948 1820957 1821029 1821034) (-1085 "SAOS.spad" 1820820 1820829 1820938 1820943) (-1084 "SAERFFC.spad" 1820533 1820553 1820810 1820815) (-1083 "SAEFACT.spad" 1820234 1820254 1820523 1820528) (-1082 "SAE.spad" 1818409 1818425 1819020 1819155) (-1081 "RURPK.spad" 1816068 1816084 1818399 1818404) (-1080 "RULESET.spad" 1815521 1815545 1816058 1816063) (-1079 "RULECOLD.spad" 1815373 1815386 1815511 1815516) (-1078 "RULE.spad" 1813613 1813637 1815363 1815368) (-1077 "RTVALUE.spad" 1813348 1813357 1813603 1813608) (-1076 "RSTRCAST.spad" 1813065 1813074 1813338 1813343) (-1075 "RSETGCD.spad" 1809443 1809463 1813055 1813060) (-1074 "RSETCAT.spad" 1799379 1799396 1809411 1809438) (-1073 "RSETCAT.spad" 1789335 1789354 1799369 1799374) (-1072 "RSDCMPK.spad" 1787787 1787807 1789325 1789330) (-1071 "RRCC.spad" 1786171 1786201 1787777 1787782) (-1070 "RRCC.spad" 1784553 1784585 1786161 1786166) (-1069 "RPTAST.spad" 1784255 1784264 1784543 1784548) (-1068 "RPOLCAT.spad" 1763615 1763630 1784123 1784250) (-1067 "RPOLCAT.spad" 1742689 1742706 1763199 1763204) (-1066 "ROUTINE.spad" 1738572 1738581 1741336 1741363) (-1065 "ROMAN.spad" 1737900 1737909 1738438 1738567) (-1064 "ROIRC.spad" 1736980 1737012 1737890 1737895) (-1063 "RNS.spad" 1735883 1735892 1736882 1736975) (-1062 "RNS.spad" 1734872 1734883 1735873 1735878) (-1061 "RNGBIND.spad" 1734032 1734046 1734827 1734832) (-1060 "RNG.spad" 1733767 1733776 1734022 1734027) (-1059 "RMODULE.spad" 1733532 1733543 1733757 1733762) (-1058 "RMCAT2.spad" 1732952 1733009 1733522 1733527) (-1057 "RMATRIX.spad" 1731776 1731795 1732119 1732158) (-1056 "RMATCAT.spad" 1727355 1727386 1731732 1731771) (-1055 "RMATCAT.spad" 1722824 1722857 1727203 1727208) (-1054 "RLINSET.spad" 1722218 1722229 1722814 1722819) (-1053 "RINTERP.spad" 1722106 1722126 1722208 1722213) (-1052 "RING.spad" 1721576 1721585 1722086 1722101) (-1051 "RING.spad" 1721054 1721065 1721566 1721571) (-1050 "RIDIST.spad" 1720446 1720455 1721044 1721049) (-1049 "RGCHAIN.spad" 1719029 1719045 1719931 1719958) (-1048 "RGBCSPC.spad" 1718810 1718822 1719019 1719024) (-1047 "RGBCMDL.spad" 1718340 1718352 1718800 1718805) (-1046 "RFFACTOR.spad" 1717802 1717813 1718330 1718335) (-1045 "RFFACT.spad" 1717537 1717549 1717792 1717797) (-1044 "RFDIST.spad" 1716533 1716542 1717527 1717532) (-1043 "RF.spad" 1714175 1714186 1716523 1716528) (-1042 "RETSOL.spad" 1713594 1713607 1714165 1714170) (-1041 "RETRACT.spad" 1713022 1713033 1713584 1713589) (-1040 "RETRACT.spad" 1712448 1712461 1713012 1713017) (-1039 "RETAST.spad" 1712260 1712269 1712438 1712443) (-1038 "RESULT.spad" 1710320 1710329 1710907 1710934) (-1037 "RESRING.spad" 1709667 1709714 1710258 1710315) (-1036 "RESLATC.spad" 1708991 1709002 1709657 1709662) (-1035 "REPSQ.spad" 1708722 1708733 1708981 1708986) (-1034 "REPDB.spad" 1708429 1708440 1708712 1708717) (-1033 "REP2.spad" 1698087 1698098 1708271 1708276) (-1032 "REP1.spad" 1692283 1692294 1698037 1698042) (-1031 "REP.spad" 1689837 1689846 1692273 1692278) (-1030 "REGSET.spad" 1687634 1687651 1689483 1689510) (-1029 "REF.spad" 1686969 1686980 1687589 1687594) (-1028 "REDORDER.spad" 1686175 1686192 1686959 1686964) (-1027 "RECLOS.spad" 1684958 1684978 1685662 1685755) (-1026 "REALSOLV.spad" 1684098 1684107 1684948 1684953) (-1025 "REAL0Q.spad" 1681396 1681411 1684088 1684093) (-1024 "REAL0.spad" 1678240 1678255 1681386 1681391) (-1023 "REAL.spad" 1678112 1678121 1678230 1678235) (-1022 "RDUCEAST.spad" 1677833 1677842 1678102 1678107) (-1021 "RDIV.spad" 1677488 1677513 1677823 1677828) (-1020 "RDIST.spad" 1677055 1677066 1677478 1677483) (-1019 "RDETRS.spad" 1675919 1675937 1677045 1677050) (-1018 "RDETR.spad" 1674058 1674076 1675909 1675914) (-1017 "RDEEFS.spad" 1673157 1673174 1674048 1674053) (-1016 "RDEEF.spad" 1672167 1672184 1673147 1673152) (-1015 "RCFIELD.spad" 1669353 1669362 1672069 1672162) (-1014 "RCFIELD.spad" 1666625 1666636 1669343 1669348) (-1013 "RCAGG.spad" 1664553 1664564 1666615 1666620) (-1012 "RCAGG.spad" 1662408 1662421 1664472 1664477) (-1011 "RATRET.spad" 1661768 1661779 1662398 1662403) (-1010 "RATFACT.spad" 1661460 1661472 1661758 1661763) (-1009 "RANDSRC.spad" 1660779 1660788 1661450 1661455) (-1008 "RADUTIL.spad" 1660535 1660544 1660769 1660774) (-1007 "RADIX.spad" 1657456 1657470 1659002 1659095) (-1006 "RADFF.spad" 1655869 1655906 1655988 1656144) (-1005 "RADCAT.spad" 1655464 1655473 1655859 1655864) (-1004 "RADCAT.spad" 1655057 1655068 1655454 1655459) (-1003 "QUEUE.spad" 1654405 1654416 1654664 1654691) (-1002 "QUATCT2.spad" 1654025 1654044 1654395 1654400) (-1001 "QUATCAT.spad" 1652195 1652206 1653955 1654020) (-1000 "QUATCAT.spad" 1650116 1650129 1651878 1651883) (-999 "QUAT.spad" 1648698 1648708 1649040 1649105) (-998 "QUAGG.spad" 1647526 1647536 1648666 1648693) (-997 "QQUTAST.spad" 1647295 1647303 1647516 1647521) (-996 "QFORM.spad" 1646760 1646774 1647285 1647290) (-995 "QFCAT2.spad" 1646453 1646469 1646750 1646755) (-994 "QFCAT.spad" 1645156 1645166 1646355 1646448) (-993 "QFCAT.spad" 1643450 1643462 1644651 1644656) (-992 "QEQUAT.spad" 1643009 1643017 1643440 1643445) (-991 "QCMPACK.spad" 1637756 1637775 1642999 1643004) (-990 "QALGSET2.spad" 1635752 1635770 1637746 1637751) (-989 "QALGSET.spad" 1631833 1631865 1635666 1635671) (-988 "PWFFINTB.spad" 1629249 1629270 1631823 1631828) (-987 "PUSHVAR.spad" 1628588 1628607 1629239 1629244) (-986 "PTRANFN.spad" 1624716 1624726 1628578 1628583) (-985 "PTPACK.spad" 1621804 1621814 1624706 1624711) (-984 "PTFUNC2.spad" 1621627 1621641 1621794 1621799) (-983 "PTCAT.spad" 1620882 1620892 1621595 1621622) (-982 "PSQFR.spad" 1620189 1620213 1620872 1620877) (-981 "PSEUDLIN.spad" 1619075 1619085 1620179 1620184) (-980 "PSETPK.spad" 1604508 1604524 1618953 1618958) (-979 "PSETCAT.spad" 1598428 1598451 1604488 1604503) (-978 "PSETCAT.spad" 1592322 1592347 1598384 1598389) (-977 "PSCURVE.spad" 1591305 1591313 1592312 1592317) (-976 "PSCAT.spad" 1590088 1590117 1591203 1591300) (-975 "PSCAT.spad" 1588961 1588992 1590078 1590083) (-974 "PRTITION.spad" 1587922 1587930 1588951 1588956) (-973 "PRTDAST.spad" 1587641 1587649 1587912 1587917) (-972 "PRS.spad" 1577203 1577220 1587597 1587602) (-971 "PRQAGG.spad" 1576638 1576648 1577171 1577198) (-970 "PROPLOG.spad" 1575937 1575945 1576628 1576633) (-969 "PROPFRML.spad" 1574505 1574516 1575927 1575932) (-968 "PROPERTY.spad" 1573993 1574001 1574495 1574500) (-967 "PRODUCT.spad" 1571675 1571687 1571959 1572014) (-966 "PRINT.spad" 1571427 1571435 1571665 1571670) (-965 "PRIMES.spad" 1569680 1569690 1571417 1571422) (-964 "PRIMELT.spad" 1567761 1567775 1569670 1569675) (-963 "PRIMCAT.spad" 1567388 1567396 1567751 1567756) (-962 "PRIMARR2.spad" 1566155 1566167 1567378 1567383) (-961 "PRIMARR.spad" 1565160 1565170 1565338 1565365) (-960 "PREASSOC.spad" 1564542 1564554 1565150 1565155) (-959 "PR.spad" 1562934 1562946 1563633 1563760) (-958 "PPCURVE.spad" 1562071 1562079 1562924 1562929) (-957 "PORTNUM.spad" 1561846 1561854 1562061 1562066) (-956 "POLYROOT.spad" 1560695 1560717 1561802 1561807) (-955 "POLYLIFT.spad" 1559960 1559983 1560685 1560690) (-954 "POLYCATQ.spad" 1558078 1558100 1559950 1559955) (-953 "POLYCAT.spad" 1551548 1551569 1557946 1558073) (-952 "POLYCAT.spad" 1544356 1544379 1550756 1550761) (-951 "POLY2UP.spad" 1543808 1543822 1544346 1544351) (-950 "POLY2.spad" 1543405 1543417 1543798 1543803) (-949 "POLY.spad" 1540740 1540750 1541255 1541382) (-948 "POLUTIL.spad" 1539681 1539710 1540696 1540701) (-947 "POLTOPOL.spad" 1538429 1538444 1539671 1539676) (-946 "POINT.spad" 1537267 1537277 1537354 1537381) (-945 "PNTHEORY.spad" 1533969 1533977 1537257 1537262) (-944 "PMTOOLS.spad" 1532744 1532758 1533959 1533964) (-943 "PMSYM.spad" 1532293 1532303 1532734 1532739) (-942 "PMQFCAT.spad" 1531884 1531898 1532283 1532288) (-941 "PMPREDFS.spad" 1531338 1531360 1531874 1531879) (-940 "PMPRED.spad" 1530817 1530831 1531328 1531333) (-939 "PMPLCAT.spad" 1529897 1529915 1530749 1530754) (-938 "PMLSAGG.spad" 1529482 1529496 1529887 1529892) (-937 "PMKERNEL.spad" 1529061 1529073 1529472 1529477) (-936 "PMINS.spad" 1528641 1528651 1529051 1529056) (-935 "PMFS.spad" 1528218 1528236 1528631 1528636) (-934 "PMDOWN.spad" 1527508 1527522 1528208 1528213) (-933 "PMASSFS.spad" 1526475 1526491 1527498 1527503) (-932 "PMASS.spad" 1525485 1525493 1526465 1526470) (-931 "PLOTTOOL.spad" 1525265 1525273 1525475 1525480) (-930 "PLOT3D.spad" 1521729 1521737 1525255 1525260) (-929 "PLOT1.spad" 1520886 1520896 1521719 1521724) (-928 "PLOT.spad" 1515809 1515817 1520876 1520881) (-927 "PLEQN.spad" 1503099 1503126 1515799 1515804) (-926 "PINTERPA.spad" 1502883 1502899 1503089 1503094) (-925 "PINTERP.spad" 1502505 1502524 1502873 1502878) (-924 "PID.spad" 1501475 1501483 1502431 1502500) (-923 "PICOERCE.spad" 1501132 1501142 1501465 1501470) (-922 "PI.spad" 1500741 1500749 1501106 1501127) (-921 "PGROEB.spad" 1499342 1499356 1500731 1500736) (-920 "PGE.spad" 1490959 1490967 1499332 1499337) (-919 "PGCD.spad" 1489849 1489866 1490949 1490954) (-918 "PFRPAC.spad" 1488998 1489008 1489839 1489844) (-917 "PFR.spad" 1485661 1485671 1488900 1488993) (-916 "PFOTOOLS.spad" 1484919 1484935 1485651 1485656) (-915 "PFOQ.spad" 1484289 1484307 1484909 1484914) (-914 "PFO.spad" 1483708 1483735 1484279 1484284) (-913 "PFECAT.spad" 1481390 1481398 1483634 1483703) (-912 "PFECAT.spad" 1479100 1479110 1481346 1481351) (-911 "PFBRU.spad" 1476988 1477000 1479090 1479095) (-910 "PFBR.spad" 1474548 1474571 1476978 1476983) (-909 "PF.spad" 1474122 1474134 1474353 1474446) (-908 "PERMGRP.spad" 1468884 1468894 1474112 1474117) (-907 "PERMCAT.spad" 1467442 1467452 1468864 1468879) (-906 "PERMAN.spad" 1465974 1465988 1467432 1467437) (-905 "PERM.spad" 1461659 1461669 1465804 1465819) (-904 "PENDTREE.spad" 1461000 1461010 1461288 1461293) (-903 "PDRING.spad" 1459551 1459561 1460980 1460995) (-902 "PDRING.spad" 1458110 1458122 1459541 1459546) (-901 "PDEPROB.spad" 1457125 1457133 1458100 1458105) (-900 "PDEPACK.spad" 1451165 1451173 1457115 1457120) (-899 "PDECOMP.spad" 1450635 1450652 1451155 1451160) (-898 "PDECAT.spad" 1448991 1448999 1450625 1450630) (-897 "PCOMP.spad" 1448844 1448857 1448981 1448986) (-896 "PBWLB.spad" 1447432 1447449 1448834 1448839) (-895 "PATTERN2.spad" 1447170 1447182 1447422 1447427) (-894 "PATTERN1.spad" 1445506 1445522 1447160 1447165) (-893 "PATTERN.spad" 1440045 1440055 1445496 1445501) (-892 "PATRES2.spad" 1439717 1439731 1440035 1440040) (-891 "PATRES.spad" 1437292 1437304 1439707 1439712) (-890 "PATMATCH.spad" 1435489 1435520 1437000 1437005) (-889 "PATMAB.spad" 1434918 1434928 1435479 1435484) (-888 "PATLRES.spad" 1434004 1434018 1434908 1434913) (-887 "PATAB.spad" 1433768 1433778 1433994 1433999) (-886 "PARTPERM.spad" 1431168 1431176 1433758 1433763) (-885 "PARSURF.spad" 1430602 1430630 1431158 1431163) (-884 "PARSU2.spad" 1430399 1430415 1430592 1430597) (-883 "script-parser.spad" 1429919 1429927 1430389 1430394) (-882 "PARSCURV.spad" 1429353 1429381 1429909 1429914) (-881 "PARSC2.spad" 1429144 1429160 1429343 1429348) (-880 "PARPCURV.spad" 1428606 1428634 1429134 1429139) (-879 "PARPC2.spad" 1428397 1428413 1428596 1428601) (-878 "PARAMAST.spad" 1427525 1427533 1428387 1428392) (-877 "PAN2EXPR.spad" 1426937 1426945 1427515 1427520) (-876 "PALETTE.spad" 1425907 1425915 1426927 1426932) (-875 "PAIR.spad" 1424894 1424907 1425495 1425500) (-874 "PADICRC.spad" 1422228 1422246 1423399 1423492) (-873 "PADICRAT.spad" 1420243 1420255 1420464 1420557) (-872 "PADICCT.spad" 1418792 1418804 1420169 1420238) (-871 "PADIC.spad" 1418487 1418499 1418718 1418787) (-870 "PADEPAC.spad" 1417176 1417195 1418477 1418482) (-869 "PADE.spad" 1415928 1415944 1417166 1417171) (-868 "OWP.spad" 1415168 1415198 1415786 1415853) (-867 "OVERSET.spad" 1414741 1414749 1415158 1415163) (-866 "OVAR.spad" 1414522 1414545 1414731 1414736) (-865 "OUTFORM.spad" 1403914 1403922 1414512 1414517) (-864 "OUTBFILE.spad" 1403332 1403340 1403904 1403909) (-863 "OUTBCON.spad" 1402338 1402346 1403322 1403327) (-862 "OUTBCON.spad" 1401342 1401352 1402328 1402333) (-861 "OUT.spad" 1400428 1400436 1401332 1401337) (-860 "OSI.spad" 1399903 1399911 1400418 1400423) (-859 "OSGROUP.spad" 1399821 1399829 1399893 1399898) (-858 "ORTHPOL.spad" 1398306 1398316 1399738 1399743) (-857 "OREUP.spad" 1397759 1397787 1397986 1398025) (-856 "ORESUP.spad" 1397060 1397084 1397439 1397478) (-855 "OREPCTO.spad" 1394917 1394929 1396980 1396985) (-854 "OREPCAT.spad" 1389064 1389074 1394873 1394912) (-853 "OREPCAT.spad" 1383101 1383113 1388912 1388917) (-852 "ORDSET.spad" 1382273 1382281 1383091 1383096) (-851 "ORDSET.spad" 1381443 1381453 1382263 1382268) (-850 "ORDRING.spad" 1380833 1380841 1381423 1381438) (-849 "ORDRING.spad" 1380231 1380241 1380823 1380828) (-848 "ORDMON.spad" 1380086 1380094 1380221 1380226) (-847 "ORDFUNS.spad" 1379218 1379234 1380076 1380081) (-846 "ORDFIN.spad" 1379038 1379046 1379208 1379213) (-845 "ORDCOMP2.spad" 1378331 1378343 1379028 1379033) (-844 "ORDCOMP.spad" 1376796 1376806 1377878 1377907) (-843 "OPTPROB.spad" 1375434 1375442 1376786 1376791) (-842 "OPTPACK.spad" 1367843 1367851 1375424 1375429) (-841 "OPTCAT.spad" 1365522 1365530 1367833 1367838) (-840 "OPSIG.spad" 1365176 1365184 1365512 1365517) (-839 "OPQUERY.spad" 1364725 1364733 1365166 1365171) (-838 "OPERCAT.spad" 1364191 1364201 1364715 1364720) (-837 "OPERCAT.spad" 1363655 1363667 1364181 1364186) (-836 "OP.spad" 1363397 1363407 1363477 1363544) (-835 "ONECOMP2.spad" 1362821 1362833 1363387 1363392) (-834 "ONECOMP.spad" 1361566 1361576 1362368 1362397) (-833 "OMSERVER.spad" 1360572 1360580 1361556 1361561) (-832 "OMSAGG.spad" 1360360 1360370 1360528 1360567) (-831 "OMPKG.spad" 1358976 1358984 1360350 1360355) (-830 "OMLO.spad" 1358401 1358413 1358862 1358901) (-829 "OMEXPR.spad" 1358235 1358245 1358391 1358396) (-828 "OMERRK.spad" 1357269 1357277 1358225 1358230) (-827 "OMERR.spad" 1356814 1356822 1357259 1357264) (-826 "OMENC.spad" 1356158 1356166 1356804 1356809) (-825 "OMDEV.spad" 1350467 1350475 1356148 1356153) (-824 "OMCONN.spad" 1349876 1349884 1350457 1350462) (-823 "OM.spad" 1348849 1348857 1349866 1349871) (-822 "OINTDOM.spad" 1348612 1348620 1348775 1348844) (-821 "OFMONOID.spad" 1346735 1346745 1348568 1348573) (-820 "ODVAR.spad" 1345996 1346006 1346725 1346730) (-819 "ODR.spad" 1345640 1345666 1345808 1345957) (-818 "ODPOL.spad" 1343022 1343032 1343362 1343489) (-817 "ODP.spad" 1332869 1332889 1333242 1333373) (-816 "ODETOOLS.spad" 1331518 1331537 1332859 1332864) (-815 "ODESYS.spad" 1329212 1329229 1331508 1331513) (-814 "ODERTRIC.spad" 1325221 1325238 1329169 1329174) (-813 "ODERED.spad" 1324620 1324644 1325211 1325216) (-812 "ODERAT.spad" 1322237 1322254 1324610 1324615) (-811 "ODEPRRIC.spad" 1319274 1319296 1322227 1322232) (-810 "ODEPROB.spad" 1318531 1318539 1319264 1319269) (-809 "ODEPRIM.spad" 1315865 1315887 1318521 1318526) (-808 "ODEPAL.spad" 1315251 1315275 1315855 1315860) (-807 "ODEPACK.spad" 1301917 1301925 1315241 1315246) (-806 "ODEINT.spad" 1301352 1301368 1301907 1301912) (-805 "ODEIFTBL.spad" 1298747 1298755 1301342 1301347) (-804 "ODEEF.spad" 1294242 1294258 1298737 1298742) (-803 "ODECONST.spad" 1293779 1293797 1294232 1294237) (-802 "ODECAT.spad" 1292377 1292385 1293769 1293774) (-801 "OCTCT2.spad" 1292023 1292044 1292367 1292372) (-800 "OCT.spad" 1290163 1290173 1290877 1290916) (-799 "OCAMON.spad" 1290011 1290019 1290153 1290158) (-798 "OC.spad" 1287807 1287817 1289967 1290006) (-797 "OC.spad" 1285328 1285340 1287490 1287495) (-796 "OASGP.spad" 1285143 1285151 1285318 1285323) (-795 "OAMONS.spad" 1284665 1284673 1285133 1285138) (-794 "OAMON.spad" 1284526 1284534 1284655 1284660) (-793 "OAGROUP.spad" 1284388 1284396 1284516 1284521) (-792 "NUMTUBE.spad" 1283979 1283995 1284378 1284383) (-791 "NUMQUAD.spad" 1271955 1271963 1283969 1283974) (-790 "NUMODE.spad" 1263309 1263317 1271945 1271950) (-789 "NUMINT.spad" 1260875 1260883 1263299 1263304) (-788 "NUMFMT.spad" 1259715 1259723 1260865 1260870) (-787 "NUMERIC.spad" 1251829 1251839 1259520 1259525) (-786 "NTSCAT.spad" 1250337 1250353 1251797 1251824) (-785 "NTPOLFN.spad" 1249888 1249898 1250254 1250259) (-784 "NSUP2.spad" 1249280 1249292 1249878 1249883) (-783 "NSUP.spad" 1242326 1242336 1246866 1247019) (-782 "NSMP.spad" 1238557 1238576 1238865 1238992) (-781 "NREP.spad" 1236935 1236949 1238547 1238552) (-780 "NPCOEF.spad" 1236181 1236201 1236925 1236930) (-779 "NORMRETR.spad" 1235779 1235818 1236171 1236176) (-778 "NORMPK.spad" 1233681 1233700 1235769 1235774) (-777 "NORMMA.spad" 1233369 1233395 1233671 1233676) (-776 "NONE1.spad" 1233045 1233055 1233359 1233364) (-775 "NONE.spad" 1232786 1232794 1233035 1233040) (-774 "NODE1.spad" 1232273 1232289 1232776 1232781) (-773 "NNI.spad" 1231168 1231176 1232247 1232268) (-772 "NLINSOL.spad" 1229794 1229804 1231158 1231163) (-771 "NIPROB.spad" 1228335 1228343 1229784 1229789) (-770 "NFINTBAS.spad" 1225895 1225912 1228325 1228330) (-769 "NETCLT.spad" 1225869 1225880 1225885 1225890) (-768 "NCODIV.spad" 1224085 1224101 1225859 1225864) (-767 "NCNTFRAC.spad" 1223727 1223741 1224075 1224080) (-766 "NCEP.spad" 1221893 1221907 1223717 1223722) (-765 "NASRING.spad" 1221489 1221497 1221883 1221888) (-764 "NASRING.spad" 1221083 1221093 1221479 1221484) (-763 "NARNG.spad" 1220435 1220443 1221073 1221078) (-762 "NARNG.spad" 1219785 1219795 1220425 1220430) (-761 "NAGSP.spad" 1218862 1218870 1219775 1219780) (-760 "NAGS.spad" 1208523 1208531 1218852 1218857) (-759 "NAGF07.spad" 1206954 1206962 1208513 1208518) (-758 "NAGF04.spad" 1201356 1201364 1206944 1206949) (-757 "NAGF02.spad" 1195425 1195433 1201346 1201351) (-756 "NAGF01.spad" 1191186 1191194 1195415 1195420) (-755 "NAGE04.spad" 1184886 1184894 1191176 1191181) (-754 "NAGE02.spad" 1175546 1175554 1184876 1184881) (-753 "NAGE01.spad" 1171548 1171556 1175536 1175541) (-752 "NAGD03.spad" 1169552 1169560 1171538 1171543) (-751 "NAGD02.spad" 1162299 1162307 1169542 1169547) (-750 "NAGD01.spad" 1156592 1156600 1162289 1162294) (-749 "NAGC06.spad" 1152467 1152475 1156582 1156587) (-748 "NAGC05.spad" 1150968 1150976 1152457 1152462) (-747 "NAGC02.spad" 1150235 1150243 1150958 1150963) (-746 "NAALG.spad" 1149776 1149786 1150203 1150230) (-745 "NAALG.spad" 1149337 1149349 1149766 1149771) (-744 "MULTSQFR.spad" 1146295 1146312 1149327 1149332) (-743 "MULTFACT.spad" 1145678 1145695 1146285 1146290) (-742 "MTSCAT.spad" 1143772 1143793 1145576 1145673) (-741 "MTHING.spad" 1143431 1143441 1143762 1143767) (-740 "MSYSCMD.spad" 1142865 1142873 1143421 1143426) (-739 "MSETAGG.spad" 1142710 1142720 1142833 1142860) (-738 "MSET.spad" 1140668 1140678 1142416 1142455) (-737 "MRING.spad" 1137645 1137657 1140376 1140443) (-736 "MRF2.spad" 1137215 1137229 1137635 1137640) (-735 "MRATFAC.spad" 1136761 1136778 1137205 1137210) (-734 "MPRFF.spad" 1134801 1134820 1136751 1136756) (-733 "MPOLY.spad" 1132272 1132287 1132631 1132758) (-732 "MPCPF.spad" 1131536 1131555 1132262 1132267) (-731 "MPC3.spad" 1131353 1131393 1131526 1131531) (-730 "MPC2.spad" 1130999 1131032 1131343 1131348) (-729 "MONOTOOL.spad" 1129350 1129367 1130989 1130994) (-728 "MONOID.spad" 1128669 1128677 1129340 1129345) (-727 "MONOID.spad" 1127986 1127996 1128659 1128664) (-726 "MONOGEN.spad" 1126734 1126747 1127846 1127981) (-725 "MONOGEN.spad" 1125504 1125519 1126618 1126623) (-724 "MONADWU.spad" 1123534 1123542 1125494 1125499) (-723 "MONADWU.spad" 1121562 1121572 1123524 1123529) (-722 "MONAD.spad" 1120722 1120730 1121552 1121557) (-721 "MONAD.spad" 1119880 1119890 1120712 1120717) (-720 "MOEBIUS.spad" 1118616 1118630 1119860 1119875) (-719 "MODULE.spad" 1118486 1118496 1118584 1118611) (-718 "MODULE.spad" 1118376 1118388 1118476 1118481) (-717 "MODRING.spad" 1117711 1117750 1118356 1118371) (-716 "MODOP.spad" 1116376 1116388 1117533 1117600) (-715 "MODMONOM.spad" 1116107 1116125 1116366 1116371) (-714 "MODMON.spad" 1112902 1112918 1113621 1113774) (-713 "MODFIELD.spad" 1112264 1112303 1112804 1112897) (-712 "MMLFORM.spad" 1111124 1111132 1112254 1112259) (-711 "MMAP.spad" 1110866 1110900 1111114 1111119) (-710 "MLO.spad" 1109325 1109335 1110822 1110861) (-709 "MLIFT.spad" 1107937 1107954 1109315 1109320) (-708 "MKUCFUNC.spad" 1107472 1107490 1107927 1107932) (-707 "MKRECORD.spad" 1107076 1107089 1107462 1107467) (-706 "MKFUNC.spad" 1106483 1106493 1107066 1107071) (-705 "MKFLCFN.spad" 1105451 1105461 1106473 1106478) (-704 "MKBCFUNC.spad" 1104946 1104964 1105441 1105446) (-703 "MINT.spad" 1104385 1104393 1104848 1104941) (-702 "MHROWRED.spad" 1102896 1102906 1104375 1104380) (-701 "MFLOAT.spad" 1101416 1101424 1102786 1102891) (-700 "MFINFACT.spad" 1100816 1100838 1101406 1101411) (-699 "MESH.spad" 1098603 1098611 1100806 1100811) (-698 "MDDFACT.spad" 1096814 1096824 1098593 1098598) (-697 "MDAGG.spad" 1096105 1096115 1096794 1096809) (-696 "MCMPLX.spad" 1092116 1092124 1092730 1092931) (-695 "MCDEN.spad" 1091326 1091338 1092106 1092111) (-694 "MCALCFN.spad" 1088448 1088474 1091316 1091321) (-693 "MAYBE.spad" 1087732 1087743 1088438 1088443) (-692 "MATSTOR.spad" 1085040 1085050 1087722 1087727) (-691 "MATRIX.spad" 1083744 1083754 1084228 1084255) (-690 "MATLIN.spad" 1081088 1081112 1083628 1083633) (-689 "MATCAT2.spad" 1080370 1080418 1081078 1081083) (-688 "MATCAT.spad" 1072099 1072121 1080338 1080365) (-687 "MATCAT.spad" 1063700 1063724 1071941 1071946) (-686 "MAPPKG3.spad" 1062615 1062629 1063690 1063695) (-685 "MAPPKG2.spad" 1061953 1061965 1062605 1062610) (-684 "MAPPKG1.spad" 1060781 1060791 1061943 1061948) (-683 "MAPPAST.spad" 1060096 1060104 1060771 1060776) (-682 "MAPHACK3.spad" 1059908 1059922 1060086 1060091) (-681 "MAPHACK2.spad" 1059677 1059689 1059898 1059903) (-680 "MAPHACK1.spad" 1059321 1059331 1059667 1059672) (-679 "MAGMA.spad" 1057111 1057128 1059311 1059316) (-678 "MACROAST.spad" 1056690 1056698 1057101 1057106) (-677 "M3D.spad" 1054410 1054420 1056068 1056073) (-676 "LZSTAGG.spad" 1051648 1051658 1054400 1054405) (-675 "LZSTAGG.spad" 1048884 1048896 1051638 1051643) (-674 "LWORD.spad" 1045589 1045606 1048874 1048879) (-673 "LSTAST.spad" 1045373 1045381 1045579 1045584) (-672 "LSQM.spad" 1043600 1043614 1043994 1044045) (-671 "LSPP.spad" 1043135 1043152 1043590 1043595) (-670 "LSMP1.spad" 1040970 1040984 1043125 1043130) (-669 "LSMP.spad" 1039827 1039855 1040960 1040965) (-668 "LSAGG.spad" 1039496 1039506 1039795 1039822) (-667 "LSAGG.spad" 1039185 1039197 1039486 1039491) (-666 "LPOLY.spad" 1038139 1038158 1039041 1039110) (-665 "LPEFRAC.spad" 1037410 1037420 1038129 1038134) (-664 "LOGIC.spad" 1037012 1037020 1037400 1037405) (-663 "LOGIC.spad" 1036612 1036622 1037002 1037007) (-662 "LODOOPS.spad" 1035542 1035554 1036602 1036607) (-661 "LODOF.spad" 1034588 1034605 1035499 1035504) (-660 "LODOCAT.spad" 1033254 1033264 1034544 1034583) (-659 "LODOCAT.spad" 1031918 1031930 1033210 1033215) (-658 "LODO2.spad" 1031191 1031203 1031598 1031637) (-657 "LODO1.spad" 1030591 1030601 1030871 1030910) (-656 "LODO.spad" 1029975 1029991 1030271 1030310) (-655 "LODEEF.spad" 1028777 1028795 1029965 1029970) (-654 "LO.spad" 1028178 1028192 1028711 1028738) (-653 "LNAGG.spad" 1024010 1024020 1028168 1028173) (-652 "LNAGG.spad" 1019806 1019818 1023966 1023971) (-651 "LMOPS.spad" 1016574 1016591 1019796 1019801) (-650 "LMODULE.spad" 1016342 1016352 1016564 1016569) (-649 "LMDICT.spad" 1015629 1015639 1015893 1015920) (-648 "LLINSET.spad" 1015026 1015036 1015619 1015624) (-647 "LITERAL.spad" 1014932 1014943 1015016 1015021) (-646 "LIST3.spad" 1014243 1014257 1014922 1014927) (-645 "LIST2MAP.spad" 1011146 1011158 1014233 1014238) (-644 "LIST2.spad" 1009848 1009860 1011136 1011141) (-643 "LIST.spad" 1007583 1007593 1008995 1009022) (-642 "LINSET.spad" 1007205 1007215 1007573 1007578) (-641 "LINEXP.spad" 1006639 1006649 1007185 1007200) (-640 "LINDEP.spad" 1005448 1005460 1006551 1006556) (-639 "LIMITRF.spad" 1003395 1003405 1005438 1005443) (-638 "LIMITPS.spad" 1002305 1002318 1003385 1003390) (-637 "LIECAT.spad" 1001781 1001791 1002231 1002300) (-636 "LIECAT.spad" 1001285 1001297 1001737 1001742) (-635 "LIE.spad" 999301 999313 1000575 1000720) (-634 "LIB.spad" 997351 997359 997960 997975) (-633 "LGROBP.spad" 994704 994723 997341 997346) (-632 "LFCAT.spad" 993763 993771 994694 994699) (-631 "LF.spad" 992718 992734 993753 993758) (-630 "LEXTRIPK.spad" 988221 988236 992708 992713) (-629 "LEXP.spad" 986224 986251 988201 988216) (-628 "LETAST.spad" 985923 985931 986214 986219) (-627 "LEADCDET.spad" 984321 984338 985913 985918) (-626 "LAZM3PK.spad" 983025 983047 984311 984316) (-625 "LAUPOL.spad" 981718 981731 982618 982687) (-624 "LAPLACE.spad" 981301 981317 981708 981713) (-623 "LALG.spad" 981077 981087 981281 981296) (-622 "LALG.spad" 980861 980873 981067 981072) (-621 "LA.spad" 980301 980315 980783 980822) (-620 "KVTFROM.spad" 980036 980046 980291 980296) (-619 "KTVLOGIC.spad" 979548 979556 980026 980031) (-618 "KRCFROM.spad" 979286 979296 979538 979543) (-617 "KOVACIC.spad" 978009 978026 979276 979281) (-616 "KONVERT.spad" 977731 977741 977999 978004) (-615 "KOERCE.spad" 977468 977478 977721 977726) (-614 "KERNEL2.spad" 977171 977183 977458 977463) (-613 "KERNEL.spad" 975826 975836 976955 976960) (-612 "KDAGG.spad" 974935 974957 975806 975821) (-611 "KDAGG.spad" 974052 974076 974925 974930) (-610 "KAFILE.spad" 973015 973031 973250 973277) (-609 "JORDAN.spad" 970844 970856 972305 972450) (-608 "JOINAST.spad" 970538 970546 970834 970839) (-607 "JAVACODE.spad" 970404 970412 970528 970533) (-606 "IXAGG.spad" 968537 968561 970394 970399) (-605 "IXAGG.spad" 966525 966551 968384 968389) (-604 "IVECTOR.spad" 965295 965310 965450 965477) (-603 "ITUPLE.spad" 964456 964466 965285 965290) (-602 "ITRIGMNP.spad" 963295 963314 964446 964451) (-601 "ITFUN3.spad" 962801 962815 963285 963290) (-600 "ITFUN2.spad" 962545 962557 962791 962796) (-599 "ITAYLOR.spad" 960539 960554 962409 962506) (-598 "ISUPS.spad" 952976 952991 959513 959610) (-597 "ISUMP.spad" 952477 952493 952966 952971) (-596 "ISTRING.spad" 951565 951578 951646 951673) (-595 "ISAST.spad" 951284 951292 951555 951560) (-594 "IRURPK.spad" 950001 950020 951274 951279) (-593 "IRSN.spad" 948005 948013 949991 949996) (-592 "IRRF2F.spad" 946490 946500 947961 947966) (-591 "IRREDFFX.spad" 946091 946102 946480 946485) (-590 "IROOT.spad" 944430 944440 946081 946086) (-589 "IRFORM.spad" 944407 944415 944420 944425) (-588 "IR2F.spad" 943613 943629 944397 944402) (-587 "IR2.spad" 942641 942657 943603 943608) (-586 "IR.spad" 940442 940456 942496 942523) (-585 "IPRNTPK.spad" 940202 940210 940432 940437) (-584 "IPF.spad" 939767 939779 940007 940100) (-583 "IPADIC.spad" 939528 939554 939693 939762) (-582 "IP4ADDR.spad" 939085 939093 939518 939523) (-581 "IOMODE.spad" 938706 938714 939075 939080) (-580 "IOBFILE.spad" 938067 938075 938696 938701) (-579 "IOBCON.spad" 937932 937940 938057 938062) (-578 "INVLAPLA.spad" 937581 937597 937922 937927) (-577 "INTTR.spad" 930975 930992 937571 937576) (-576 "INTTOOLS.spad" 928730 928746 930549 930554) (-575 "INTSLPE.spad" 928050 928058 928720 928725) (-574 "INTRVL.spad" 927616 927626 927964 928045) (-573 "INTRF.spad" 926040 926054 927606 927611) (-572 "INTRET.spad" 925472 925482 926030 926035) (-571 "INTRAT.spad" 924199 924216 925462 925467) (-570 "INTPM.spad" 922584 922600 923842 923847) (-569 "INTPAF.spad" 920455 920473 922516 922521) (-568 "INTPACK.spad" 910829 910837 920445 920450) (-567 "INTHERTR.spad" 910103 910120 910819 910824) (-566 "INTHERAL.spad" 909773 909797 910093 910098) (-565 "INTHEORY.spad" 906212 906220 909763 909768) (-564 "INTG0.spad" 899963 899981 906144 906149) (-563 "INTFTBL.spad" 895417 895425 899953 899958) (-562 "INTFACT.spad" 894476 894486 895407 895412) (-561 "INTEF.spad" 892863 892879 894466 894471) (-560 "INTDOM.spad" 891486 891494 892789 892858) (-559 "INTDOM.spad" 890171 890181 891476 891481) (-558 "INTCAT.spad" 888430 888440 890085 890166) (-557 "INTBIT.spad" 887937 887945 888420 888425) (-556 "INTALG.spad" 887125 887152 887927 887932) (-555 "INTAF.spad" 886625 886641 887115 887120) (-554 "INTABL.spad" 885143 885174 885306 885333) (-553 "INT8.spad" 885023 885031 885133 885138) (-552 "INT64.spad" 884902 884910 885013 885018) (-551 "INT32.spad" 884781 884789 884892 884897) (-550 "INT16.spad" 884660 884668 884771 884776) (-549 "INT.spad" 884108 884116 884514 884655) (-548 "INS.spad" 881611 881619 884010 884103) (-547 "INS.spad" 879200 879210 881601 881606) (-546 "INPSIGN.spad" 878670 878683 879190 879195) (-545 "INPRODPF.spad" 877766 877785 878660 878665) (-544 "INPRODFF.spad" 876854 876878 877756 877761) (-543 "INNMFACT.spad" 875829 875846 876844 876849) (-542 "INMODGCD.spad" 875317 875347 875819 875824) (-541 "INFSP.spad" 873614 873636 875307 875312) (-540 "INFPROD0.spad" 872694 872713 873604 873609) (-539 "INFORM1.spad" 872319 872329 872684 872689) (-538 "INFORM.spad" 869518 869526 872309 872314) (-537 "INFINITY.spad" 869070 869078 869508 869513) (-536 "INETCLTS.spad" 869047 869055 869060 869065) (-535 "INEP.spad" 867585 867607 869037 869042) (-534 "INDE.spad" 867314 867331 867575 867580) (-533 "INCRMAPS.spad" 866735 866745 867304 867309) (-532 "INBFILE.spad" 865807 865815 866725 866730) (-531 "INBFF.spad" 861601 861612 865797 865802) (-530 "INBCON.spad" 859891 859899 861591 861596) (-529 "INBCON.spad" 858179 858189 859881 859886) (-528 "INAST.spad" 857840 857848 858169 858174) (-527 "IMPTAST.spad" 857548 857556 857830 857835) (-526 "IMATRIX.spad" 856493 856519 857005 857032) (-525 "IMATQF.spad" 855587 855631 856449 856454) (-524 "IMATLIN.spad" 854192 854216 855543 855548) (-523 "ILIST.spad" 852850 852865 853375 853402) (-522 "IIARRAY2.spad" 852238 852276 852457 852484) (-521 "IFF.spad" 851648 851664 851919 852012) (-520 "IFAST.spad" 851262 851270 851638 851643) (-519 "IFARRAY.spad" 848755 848770 850445 850472) (-518 "IFAMON.spad" 848617 848634 848711 848716) (-517 "IEVALAB.spad" 848022 848034 848607 848612) (-516 "IEVALAB.spad" 847425 847439 848012 848017) (-515 "IDPOAMS.spad" 847181 847193 847415 847420) (-514 "IDPOAM.spad" 846901 846913 847171 847176) (-513 "IDPO.spad" 846699 846711 846891 846896) (-512 "IDPC.spad" 845637 845649 846689 846694) (-511 "IDPAM.spad" 845382 845394 845627 845632) (-510 "IDPAG.spad" 845129 845141 845372 845377) (-509 "IDENT.spad" 844779 844787 845119 845124) (-508 "IDECOMP.spad" 842018 842036 844769 844774) (-507 "IDEAL.spad" 836967 837006 841953 841958) (-506 "ICDEN.spad" 836156 836172 836957 836962) (-505 "ICARD.spad" 835347 835355 836146 836151) (-504 "IBPTOOLS.spad" 833954 833971 835337 835342) (-503 "IBITS.spad" 833157 833170 833590 833617) (-502 "IBATOOL.spad" 830134 830153 833147 833152) (-501 "IBACHIN.spad" 828641 828656 830124 830129) (-500 "IARRAY2.spad" 827629 827655 828248 828275) (-499 "IARRAY1.spad" 826674 826689 826812 826839) (-498 "IAN.spad" 824897 824905 826490 826583) (-497 "IALGFACT.spad" 824500 824533 824887 824892) (-496 "HYPCAT.spad" 823924 823932 824490 824495) (-495 "HYPCAT.spad" 823346 823356 823914 823919) (-494 "HOSTNAME.spad" 823154 823162 823336 823341) (-493 "HOMOTOP.spad" 822897 822907 823144 823149) (-492 "HOAGG.spad" 820179 820189 822887 822892) (-491 "HOAGG.spad" 817236 817248 819946 819951) (-490 "HEXADEC.spad" 815338 815346 815703 815796) (-489 "HEUGCD.spad" 814373 814384 815328 815333) (-488 "HELLFDIV.spad" 813963 813987 814363 814368) (-487 "HEAP.spad" 813355 813365 813570 813597) (-486 "HEADAST.spad" 812888 812896 813345 813350) (-485 "HDP.spad" 802731 802747 803108 803239) (-484 "HDMP.spad" 799945 799960 800561 800688) (-483 "HB.spad" 798196 798204 799935 799940) (-482 "HASHTBL.spad" 796666 796697 796877 796904) (-481 "HASAST.spad" 796382 796390 796656 796661) (-480 "HACKPI.spad" 795873 795881 796284 796377) (-479 "GTSET.spad" 794812 794828 795519 795546) (-478 "GSTBL.spad" 793331 793366 793505 793520) (-477 "GSERIES.spad" 790502 790529 791463 791612) (-476 "GROUP.spad" 789775 789783 790482 790497) (-475 "GROUP.spad" 789056 789066 789765 789770) (-474 "GROEBSOL.spad" 787550 787571 789046 789051) (-473 "GRMOD.spad" 786121 786133 787540 787545) (-472 "GRMOD.spad" 784690 784704 786111 786116) (-471 "GRIMAGE.spad" 777579 777587 784680 784685) (-470 "GRDEF.spad" 775958 775966 777569 777574) (-469 "GRAY.spad" 774421 774429 775948 775953) (-468 "GRALG.spad" 773498 773510 774411 774416) (-467 "GRALG.spad" 772573 772587 773488 773493) (-466 "GPOLSET.spad" 772027 772050 772255 772282) (-465 "GOSPER.spad" 771296 771314 772017 772022) (-464 "GMODPOL.spad" 770444 770471 771264 771291) (-463 "GHENSEL.spad" 769527 769541 770434 770439) (-462 "GENUPS.spad" 765820 765833 769517 769522) (-461 "GENUFACT.spad" 765397 765407 765810 765815) (-460 "GENPGCD.spad" 764983 765000 765387 765392) (-459 "GENMFACT.spad" 764435 764454 764973 764978) (-458 "GENEEZ.spad" 762386 762399 764425 764430) (-457 "GDMP.spad" 759442 759459 760216 760343) (-456 "GCNAALG.spad" 753365 753392 759236 759303) (-455 "GCDDOM.spad" 752541 752549 753291 753360) (-454 "GCDDOM.spad" 751779 751789 752531 752536) (-453 "GBINTERN.spad" 747799 747837 751769 751774) (-452 "GBF.spad" 743566 743604 747789 747794) (-451 "GBEUCLID.spad" 741448 741486 743556 743561) (-450 "GB.spad" 738974 739012 741404 741409) (-449 "GAUSSFAC.spad" 738287 738295 738964 738969) (-448 "GALUTIL.spad" 736613 736623 738243 738248) (-447 "GALPOLYU.spad" 735067 735080 736603 736608) (-446 "GALFACTU.spad" 733240 733259 735057 735062) (-445 "GALFACT.spad" 723429 723440 733230 733235) (-444 "FVFUN.spad" 720452 720460 723419 723424) (-443 "FVC.spad" 719504 719512 720442 720447) (-442 "FUNDESC.spad" 719182 719190 719494 719499) (-441 "FUNCTION.spad" 719031 719043 719172 719177) (-440 "FTEM.spad" 718196 718204 719021 719026) (-439 "FT.spad" 716496 716504 718186 718191) (-438 "FSUPFACT.spad" 715396 715415 716432 716437) (-437 "FST.spad" 713482 713490 715386 715391) (-436 "FSRED.spad" 712962 712978 713472 713477) (-435 "FSPRMELT.spad" 711844 711860 712919 712924) (-434 "FSPECF.spad" 709935 709951 711834 711839) (-433 "FSINT.spad" 709595 709611 709925 709930) (-432 "FSERIES.spad" 708786 708798 709415 709514) (-431 "FSCINT.spad" 708103 708119 708776 708781) (-430 "FSAGG2.spad" 706846 706862 708093 708098) (-429 "FSAGG.spad" 705963 705973 706802 706841) (-428 "FSAGG.spad" 705042 705054 705883 705888) (-427 "FS2UPS.spad" 699533 699567 705032 705037) (-426 "FS2EXPXP.spad" 698658 698681 699523 699528) (-425 "FS2.spad" 698305 698321 698648 698653) (-424 "FS.spad" 692573 692583 698080 698300) (-423 "FS.spad" 686619 686631 692128 692133) (-422 "FRUTIL.spad" 685573 685583 686609 686614) (-421 "FRNAALG.spad" 680692 680702 685515 685568) (-420 "FRNAALG.spad" 675823 675835 680648 680653) (-419 "FRNAAF2.spad" 675279 675297 675813 675818) (-418 "FRMOD.spad" 674689 674719 675210 675215) (-417 "FRIDEAL2.spad" 674293 674325 674679 674684) (-416 "FRIDEAL.spad" 673518 673539 674273 674288) (-415 "FRETRCT.spad" 673029 673039 673508 673513) (-414 "FRETRCT.spad" 672406 672418 672887 672892) (-413 "FRAMALG.spad" 670754 670767 672362 672401) (-412 "FRAMALG.spad" 669134 669149 670744 670749) (-411 "FRAC2.spad" 668739 668751 669124 669129) (-410 "FRAC.spad" 665838 665848 666241 666414) (-409 "FR2.spad" 665174 665186 665828 665833) (-408 "FR.spad" 658917 658927 664198 664267) (-407 "FPS.spad" 655732 655740 658807 658912) (-406 "FPS.spad" 652575 652585 655652 655657) (-405 "FPC.spad" 651621 651629 652477 652570) (-404 "FPC.spad" 650753 650763 651611 651616) (-403 "FPATMAB.spad" 650515 650525 650743 650748) (-402 "FPARFRAC.spad" 649002 649019 650505 650510) (-401 "FORTRAN.spad" 647508 647551 648992 648997) (-400 "FORTFN.spad" 644678 644686 647498 647503) (-399 "FORTCAT.spad" 644362 644370 644668 644673) (-398 "FORT.spad" 643311 643319 644352 644357) (-397 "FORMULA1.spad" 642790 642800 643301 643306) (-396 "FORMULA.spad" 640264 640272 642780 642785) (-395 "FORDER.spad" 639955 639979 640254 640259) (-394 "FOP.spad" 639156 639164 639945 639950) (-393 "FNLA.spad" 638580 638602 639124 639151) (-392 "FNCAT.spad" 637175 637183 638570 638575) (-391 "FNAME.spad" 637067 637075 637165 637170) (-390 "FMTC.spad" 636865 636873 636993 637062) (-389 "FMONOID.spad" 636530 636540 636821 636826) (-388 "FMONCAT.spad" 633683 633693 636520 636525) (-387 "FMFUN.spad" 630713 630721 633673 633678) (-386 "FMCAT.spad" 628381 628399 630681 630708) (-385 "FMC.spad" 627433 627441 628371 628376) (-384 "FM1.spad" 626790 626802 627367 627394) (-383 "FM.spad" 626485 626497 626724 626751) (-382 "FLOATRP.spad" 624220 624234 626475 626480) (-381 "FLOATCP.spad" 621651 621665 624210 624215) (-380 "FLOAT.spad" 614965 614973 621517 621646) (-379 "FLINEXP.spad" 614677 614687 614945 614960) (-378 "FLINEXP.spad" 614343 614355 614613 614618) (-377 "FLASORT.spad" 613669 613681 614333 614338) (-376 "FLALG.spad" 611315 611334 613595 613664) (-375 "FLAGG2.spad" 610040 610056 611305 611310) (-374 "FLAGG.spad" 607082 607092 610020 610035) (-373 "FLAGG.spad" 604025 604037 606965 606970) (-372 "FINRALG.spad" 602086 602099 603981 604020) (-371 "FINRALG.spad" 600073 600088 601970 601975) (-370 "FINITE.spad" 599225 599233 600063 600068) (-369 "FINAALG.spad" 588346 588356 599167 599220) (-368 "FINAALG.spad" 577479 577491 588302 588307) (-367 "FILECAT.spad" 576005 576022 577469 577474) (-366 "FILE.spad" 575588 575598 575995 576000) (-365 "FIELD.spad" 574994 575002 575490 575583) (-364 "FIELD.spad" 574486 574496 574984 574989) (-363 "FGROUP.spad" 573133 573143 574466 574481) (-362 "FGLMICPK.spad" 571920 571935 573123 573128) (-361 "FFX.spad" 571295 571310 571636 571729) (-360 "FFSLPE.spad" 570798 570819 571285 571290) (-359 "FFPOLY2.spad" 569858 569875 570788 570793) (-358 "FFPOLY.spad" 561120 561131 569848 569853) (-357 "FFP.spad" 560517 560537 560836 560929) (-356 "FFNBX.spad" 559029 559049 560233 560326) (-355 "FFNBP.spad" 557542 557559 558745 558838) (-354 "FFNB.spad" 556007 556028 557223 557316) (-353 "FFINTBAS.spad" 553521 553540 555997 556002) (-352 "FFIELDC.spad" 551098 551106 553423 553516) (-351 "FFIELDC.spad" 548761 548771 551088 551093) (-350 "FFHOM.spad" 547509 547526 548751 548756) (-349 "FFF.spad" 544944 544955 547499 547504) (-348 "FFCGX.spad" 543791 543811 544660 544753) (-347 "FFCGP.spad" 542680 542700 543507 543600) (-346 "FFCG.spad" 541472 541493 542361 542454) (-345 "FFCAT2.spad" 541219 541259 541462 541467) (-344 "FFCAT.spad" 534392 534414 541058 541214) (-343 "FFCAT.spad" 527644 527668 534312 534317) (-342 "FF.spad" 527092 527108 527325 527418) (-341 "FEXPR.spad" 518809 518855 526848 526887) (-340 "FEVALAB.spad" 518517 518527 518799 518804) (-339 "FEVALAB.spad" 518010 518022 518294 518299) (-338 "FDIVCAT.spad" 516074 516098 518000 518005) (-337 "FDIVCAT.spad" 514136 514162 516064 516069) (-336 "FDIV2.spad" 513792 513832 514126 514131) (-335 "FDIV.spad" 513234 513258 513782 513787) (-334 "FCTRDATA.spad" 512242 512250 513224 513229) (-333 "FCPAK1.spad" 510809 510817 512232 512237) (-332 "FCOMP.spad" 510188 510198 510799 510804) (-331 "FC.spad" 500195 500203 510178 510183) (-330 "FAXF.spad" 493166 493180 500097 500190) (-329 "FAXF.spad" 486189 486205 493122 493127) (-328 "FARRAY.spad" 484339 484349 485372 485399) (-327 "FAMR.spad" 482475 482487 484237 484334) (-326 "FAMR.spad" 480595 480609 482359 482364) (-325 "FAMONOID.spad" 480263 480273 480549 480554) (-324 "FAMONC.spad" 478559 478571 480253 480258) (-323 "FAGROUP.spad" 478183 478193 478455 478482) (-322 "FACUTIL.spad" 476387 476404 478173 478178) (-321 "FACTFUNC.spad" 475581 475591 476377 476382) (-320 "EXPUPXS.spad" 472414 472437 473713 473862) (-319 "EXPRTUBE.spad" 469702 469710 472404 472409) (-318 "EXPRODE.spad" 466862 466878 469692 469697) (-317 "EXPR2UPS.spad" 462984 462997 466852 466857) (-316 "EXPR2.spad" 462689 462701 462974 462979) (-315 "EXPR.spad" 457964 457974 458678 459085) (-314 "EXPEXPAN.spad" 454904 454929 455536 455629) (-313 "EXITAST.spad" 454640 454648 454894 454899) (-312 "EXIT.spad" 454311 454319 454630 454635) (-311 "EVALCYC.spad" 453771 453785 454301 454306) (-310 "EVALAB.spad" 453343 453353 453761 453766) (-309 "EVALAB.spad" 452913 452925 453333 453338) (-308 "EUCDOM.spad" 450487 450495 452839 452908) (-307 "EUCDOM.spad" 448123 448133 450477 450482) (-306 "ESTOOLS2.spad" 447726 447740 448113 448118) (-305 "ESTOOLS1.spad" 447411 447422 447716 447721) (-304 "ESTOOLS.spad" 439257 439265 447401 447406) (-303 "ESCONT1.spad" 439006 439018 439247 439252) (-302 "ESCONT.spad" 435799 435807 438996 439001) (-301 "ES2.spad" 435304 435320 435789 435794) (-300 "ES1.spad" 434874 434890 435294 435299) (-299 "ES.spad" 427689 427697 434864 434869) (-298 "ES.spad" 420410 420420 427587 427592) (-297 "ERROR.spad" 417737 417745 420400 420405) (-296 "EQTBL.spad" 416209 416231 416418 416445) (-295 "EQ2.spad" 415927 415939 416199 416204) (-294 "EQ.spad" 410732 410742 413519 413631) (-293 "EP.spad" 407058 407068 410722 410727) (-292 "ENV.spad" 405720 405728 407048 407053) (-291 "ENTIRER.spad" 405388 405396 405664 405715) (-290 "EMR.spad" 404595 404636 405314 405383) (-289 "ELTAGG.spad" 402849 402868 404585 404590) (-288 "ELTAGG.spad" 401067 401088 402805 402810) (-287 "ELTAB.spad" 400516 400534 401057 401062) (-286 "ELFUTS.spad" 399903 399922 400506 400511) (-285 "ELEMFUN.spad" 399592 399600 399893 399898) (-284 "ELEMFUN.spad" 399279 399289 399582 399587) (-283 "ELAGG.spad" 397250 397260 399259 399274) (-282 "ELAGG.spad" 395158 395170 397169 397174) (-281 "ELABEXPR.spad" 394090 394098 395148 395153) (-280 "EFUPXS.spad" 390866 390896 394046 394051) (-279 "EFULS.spad" 387702 387725 390822 390827) (-278 "EFSTRUC.spad" 385717 385733 387692 387697) (-277 "EF.spad" 380493 380509 385707 385712) (-276 "EAB.spad" 378769 378777 380483 380488) (-275 "E04UCFA.spad" 378305 378313 378759 378764) (-274 "E04NAFA.spad" 377882 377890 378295 378300) (-273 "E04MBFA.spad" 377462 377470 377872 377877) (-272 "E04JAFA.spad" 376998 377006 377452 377457) (-271 "E04GCFA.spad" 376534 376542 376988 376993) (-270 "E04FDFA.spad" 376070 376078 376524 376529) (-269 "E04DGFA.spad" 375606 375614 376060 376065) (-268 "E04AGNT.spad" 371456 371464 375596 375601) (-267 "DVARCAT.spad" 368145 368155 371446 371451) (-266 "DVARCAT.spad" 364832 364844 368135 368140) (-265 "DSMP.spad" 362299 362313 362604 362731) (-264 "DROPT1.spad" 361964 361974 362289 362294) (-263 "DROPT0.spad" 356821 356829 361954 361959) (-262 "DROPT.spad" 350780 350788 356811 356816) (-261 "DRAWPT.spad" 348953 348961 350770 350775) (-260 "DRAWHACK.spad" 348261 348271 348943 348948) (-259 "DRAWCX.spad" 345731 345739 348251 348256) (-258 "DRAWCURV.spad" 345278 345293 345721 345726) (-257 "DRAWCFUN.spad" 334810 334818 345268 345273) (-256 "DRAW.spad" 327686 327699 334800 334805) (-255 "DQAGG.spad" 325864 325874 327654 327681) (-254 "DPOLCAT.spad" 321213 321229 325732 325859) (-253 "DPOLCAT.spad" 316648 316666 321169 321174) (-252 "DPMO.spad" 308874 308890 309012 309313) (-251 "DPMM.spad" 301113 301131 301238 301539) (-250 "DOMTMPLT.spad" 300773 300781 301103 301108) (-249 "DOMCTOR.spad" 300528 300536 300763 300768) (-248 "DOMAIN.spad" 299615 299623 300518 300523) (-247 "DMP.spad" 296875 296890 297445 297572) (-246 "DLP.spad" 296227 296237 296865 296870) (-245 "DLIST.spad" 294806 294816 295410 295437) (-244 "DLAGG.spad" 293223 293233 294796 294801) (-243 "DIVRING.spad" 292765 292773 293167 293218) (-242 "DIVRING.spad" 292351 292361 292755 292760) (-241 "DISPLAY.spad" 290541 290549 292341 292346) (-240 "DIRPROD2.spad" 289359 289377 290531 290536) (-239 "DIRPROD.spad" 278939 278955 279579 279710) (-238 "DIRPCAT.spad" 277883 277899 278803 278934) (-237 "DIRPCAT.spad" 276556 276574 277478 277483) (-236 "DIOSP.spad" 275381 275389 276546 276551) (-235 "DIOPS.spad" 274377 274387 275361 275376) (-234 "DIOPS.spad" 273347 273359 274333 274338) (-233 "DIFRING.spad" 272643 272651 273327 273342) (-232 "DIFRING.spad" 271947 271957 272633 272638) (-231 "DIFEXT.spad" 271118 271128 271927 271942) (-230 "DIFEXT.spad" 270206 270218 271017 271022) (-229 "DIAGG.spad" 269836 269846 270186 270201) (-228 "DIAGG.spad" 269474 269486 269826 269831) (-227 "DHMATRIX.spad" 267786 267796 268931 268958) (-226 "DFSFUN.spad" 261426 261434 267776 267781) (-225 "DFLOAT.spad" 258157 258165 261316 261421) (-224 "DFINTTLS.spad" 256388 256404 258147 258152) (-223 "DERHAM.spad" 254302 254334 256368 256383) (-222 "DEQUEUE.spad" 253626 253636 253909 253936) (-221 "DEGRED.spad" 253243 253257 253616 253621) (-220 "DEFINTRF.spad" 250825 250835 253233 253238) (-219 "DEFINTEF.spad" 249363 249379 250815 250820) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTORKIND.spad" 217064 217072 217451 217456) (-186 "CTORCAT.spad" 216313 216321 217054 217059) (-185 "CTORCAT.spad" 215560 215570 216303 216308) (-184 "CTORCALL.spad" 215149 215159 215550 215555) (-183 "CTOR.spad" 214840 214848 215139 215144) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX2.spad" 194391 194403 194666 194671) (-168 "COMPLEX.spad" 188528 188538 188772 189033) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMMAAST.spad" 183046 183054 183273 183278) (-161 "COMM.spad" 182857 182865 183036 183041) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN2.spad" 152290 152317 152890 152895) (-135 "CARTEN.spad" 147577 147601 152280 152285) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTEBUF.spad" 141359 141367 142669 142696) (-128 "BYTE.spad" 140786 140794 141349 141354) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP1.spad" 125493 125503 128017 128022) (-113 "BOP.spad" 120675 120683 125483 125488) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP80.spad" 96764 96777 97432 97437) (-87 "ASP8.spad" 95807 95820 96754 96759) (-86 "ASP78.spad" 95258 95271 95797 95802) (-85 "ASP77.spad" 94627 94640 95248 95253) (-84 "ASP74.spad" 93719 93732 94617 94622) (-83 "ASP73.spad" 92990 93003 93709 93714) (-82 "ASP7.spad" 92150 92163 92980 92985) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP49.spad" 86342 86355 87333 87338) (-77 "ASP42.spad" 84749 84788 86332 86337) (-76 "ASP41.spad" 83328 83367 84739 84744) (-75 "ASP4.spad" 82623 82636 83318 83323) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP19.spad" 61377 61390 66681 66686) (-63 "ASP12.spad" 60791 60804 61367 61372) (-62 "ASP10.spad" 60062 60075 60781 60786) (-61 "ASP1.spad" 59443 59456 60052 60057) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY12.spad" 57516 57527 58793 58798) (-58 "ARRAY1.spad" 56353 56362 56699 56726) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY1.spad" 45243 45252 46162 46167) (-51 "ANY.spad" 44102 44109 45233 45238) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index c80d41db..ea8c04cc 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,3930 +1,3931 @@ -(188400 . 3474699327) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) #0#) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -((((-567)) . T) (($) -2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T)) -(((|#2| |#2|) . T)) -((((-567)) . T)) -((($ $) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567))))) -((($) . T)) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) . T)) -((($) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -(|has| |#1| (-911)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((($) . T) (((-410 (-567))) . T)) -((($) . T)) -((($) . T)) -(((|#2| |#2|) . T)) -((((-144)) . T)) -((((-539)) . T) (((-1161)) . T) (((-225)) . T) (((-381)) . T) (((-894 (-381))) . T)) -(((|#1|) . T)) -((((-225)) . T) (((-863)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-849))) -((($ $) . T) ((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) -(-2836 (|has| |#1| (-821)) (|has| |#1| (-851))) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) -((((-863)) . T)) -((((-863)) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(|has| |#1| (-849)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-317 |#1|)) . T) (((-567)) . T) (($) . T)) +(188431 . 3477417272) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-410 |#2|) |#3|) . T)) +((((-410 (-549))) |has| #1=(-410 |#2|) (-1041 (-410 (-549)))) (((-549)) |has| #1# (-1041 (-549))) ((#1#) . T)) +((((-410 |#2|)) . T)) +((((-549)) |has| #1=(-410 |#2|) (-641 (-549))) ((#1#) . T)) +((((-410 |#2|)) . T)) +((((-410 |#2|) |#3|) . T)) +(|has| (-410 |#2|) (-147)) +((((-410 |#2|) |#3|) . T)) +(|has| (-410 |#2|) (-145)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +(|has| (-410 |#2|) (-233)) +((((-1180)) |has| (-410 |#2|) (-903 (-1180)))) +((((-410 |#2|)) . T)) +(((|#3|) . T)) +(((#1=(-410 |#2|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) (((|#1| |#2| |#3|) . T)) -((((-567)) . T) (((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((($) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-410 (-567))) . T) (((-700)) . T) (($) . T)) -((((-863)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -(((|#4|) . T)) -((((-410 (-567))) . T) (((-700)) . T) (($) . T)) -((((-863)) . T)) -((((-863)) |has| (-1096 |#1|) (-1102))) -((((-863)) . T) (((-1184)) . T)) -(((|#1|) . T) ((|#2|) . T)) -((((-1184)) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(((|#2| (-485 (-2498 |#1|) (-772))) . T)) -(((|#1| (-534 (-1179))) . T)) -(((#0=(-871 |#1|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -((((-1161)) . T) (((-960 (-129))) . T) (((-863)) . T)) -((((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(|has| |#4| (-370)) -(|has| |#3| (-370)) (((|#1|) . T)) -((((-1179)) . T)) -((((-509)) . T)) -((((-871 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| |#2|) . T)) -((($) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-559)) -((((-567)) . T) (((-410 (-567))) -2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -((((-2 (|:| -2188 |#1|) (|:| -2618 |#2|))) . T)) -((($) . T)) -((((-567)) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1179)) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -((((-1179)) . T)) -((((-567)) . T) (($) . T)) -((((-584 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) . T) (((-567)) . T) (($) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1|) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| |#2|) . T)) -((((-863)) . T)) (((|#1|) . T)) -(|has| |#1| (-1102)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) (((|#1|) . T)) -((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((((-116 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -(((|#2|) . T) (((-567)) . T) ((|#6|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($) . T)) -(((|#2|) . T)) -((($) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) -((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((($ $) . T)) -((($) . T)) -((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) +((((-1145 |#2| |#1|)) . T) ((|#1|) . T)) +((((-865)) . T)) +((((-1145 |#2| |#1|)) . T) ((|#1|) . T) (((-549)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-370)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) (((|#1|) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-567)) . T)) -((((-863)) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-865)) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) (((|#1| |#2|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) . T) (((-567)) . T) (($) . T)) -(|has| |#1| (-559)) -(((|#1| |#1|) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-849))) -((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(|has| |#1| (-1102)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(|has| |#1| (-1102)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(|has| |#1| (-849)) -((($) . T) (((-410 (-567))) . T)) -((((-863)) . T)) -(((|#1|) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-567) (-129)) . T)) -((($) . T) (((-410 (-567))) . T)) -((((-129)) . T)) -(-2836 (|has| |#4| (-794)) (|has| |#4| (-849))) -(-2836 (|has| |#4| (-794)) (|has| |#4| (-849))) -(-2836 (|has| |#3| (-794)) (|has| |#3| (-849))) -(-2836 (|has| |#3| (-794)) (|has| |#3| (-849))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) (((|#1| |#2|) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-1184)) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1179) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1179) |#2|)))) +((((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((|#1| |#2|) . T)) +((((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((|#2|) . T)) +(((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +((((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1102)) -(|has| |#1| (-1102)) -((((-567)) . T) (((-410 (-567))) . T)) -(((|#1| (-1179) (-1090 (-1179)) (-534 (-1090 (-1179)))) . T)) -((((-567) |#1|) . T)) -((((-567)) . T)) -((((-567)) . T)) -((((-912 |#1|)) . T)) -(((|#1| (-534 |#2|)) . T)) -((((-567)) . T)) -((((-567)) . T)) -(((|#1|) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(((|#1| (-772)) . T)) -(|has| |#2| (-794)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(|has| |#2| (-849)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2|) . T)) -((((-1161) |#1|) . T)) -((((-567) (-129)) . T)) +((((-168 (-380))) . T) (((-225)) . T) (((-380)) . T)) +((((-410 (-549))) . T) (((-549)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +(((#1=(-410 (-549)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-613 $) $) . T)) +((((-410 (-549))) . T) (((-549)) . T) (((-613 $)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T) (((-613 $)) . T)) +((((-865)) . T)) +((((-865)) . T)) (((|#1|) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(((|#3| (-772)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -((($) . T) (((-410 (-567))) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T) (((-549)) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-865)) . T)) +(((|#1|) . T)) +(|has| |#1| (-852)) +(((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(((|#1|) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1| (-58 |#1|) (-58 |#1|)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-691 (-341 (-3953) (-3953 (QUOTE X) (QUOTE HESS)) (-701)))) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +(((|#1| |#1|) . T)) +((((-865)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((((-1007 2)) . T) (((-410 (-549))) . T) (((-865)) . T)) +((((-549)) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +(((#1=(-549) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-538)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) +((((-410 (-549))) . T) (((-549)) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T)) +((((-865)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-549) (-112)) . T)) +((((-549) (-112)) . T)) +((((-549) (-112)) . T)) +((((-538)) . T)) +((((-112)) . T)) +((((-865)) . T)) +((((-112)) . T)) +((((-112)) . T)) +((((-538)) . T)) +((((-865)) . T)) +((((-1180)) . T)) +((((-865)) . T)) ((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) ((($) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -((((-410 (-567))) . T) (($) . T)) +((($ $) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1102)) -((((-410 (-567))) . T) (((-567)) . T)) -((((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -((((-567)) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#2|) . T)) -((((-1179) |#2|) |has| |#2| (-517 (-1179) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|))) -((((-410 (-567))) . T) (((-567)) . T)) -((((-567)) . T) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) -(((|#1|) . T) (($) . T)) -((((-567)) . T)) -((((-567)) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((((-567)) . T)) -((((-567)) . T)) -((((-410 (-567))) . T) (($) . T)) -(((#0=(-700) (-1175 #0#)) . T)) -((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) +((($) . T)) +((($) . T)) +((((-549)) . T) (($) . T)) (((|#1|) . T)) -(|has| |#2| (-365)) -((((-567) |#1|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) +((((-865)) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-116 |#1|)) . T) (((-410 (-549))) . T)) +((($) . T) (((-116 |#1|)) . T) (((-410 (-549))) . T)) +((((-116 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-116 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-116 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-116 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +(((#1=(-116 |#1|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-116 |#1|)) . T)) +((((-1180) #1=(-116 |#1|)) |has| #1# (-517 (-1180) #1#)) ((#1# #1#) |has| #1# (-310 #1#))) +(((#1=(-116 |#1|)) |has| #1# (-310 #1#))) +(((#1=(-116 |#1|) $) |has| #1# (-287 #1# #1#))) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) +((((-549)) . T) (((-116 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-116 |#1|)) . T)) +((((-116 |#1|)) . T)) (((|#1|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-1161) |#1|) . T)) -(((|#3| |#3|) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| |#1|) . T)) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-567) |#1|) . T)) -((((-863)) . T)) -((((-169 (-225))) |has| |#1| (-1024)) (((-169 (-381))) |has| |#1| (-1024)) (((-539)) |has| |#1| (-615 (-539))) (((-1175 |#1|)) . T) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381))))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-849))) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-849))) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -(|has| |#1| (-365)) -((((-863)) . T)) -((($) . T)) -((($) . T)) -((((-129)) . T)) -(-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) -(-2836 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -((((-863)) . T) (((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-863)) . T)) -(((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -(((|#2|) . T) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -(|has| |#1| (-559)) -((((-567)) -2836 (|has| |#4| (-172)) (|has| |#4| (-849)) (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (|has| |#4| (-1051))) ((|#4|) -2836 (|has| |#4| (-172)) (|has| |#4| (-1102))) (((-410 (-567))) -12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102)))) -((((-567)) -2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051))) ((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(|has| |#1| (-559)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(((|#1|) . T)) -(|has| |#1| (-559)) -(|has| |#1| (-559)) -(|has| |#1| (-559)) -((((-700)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-410 (-567))) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))) -((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) -(((|#4| |#4|) -2836 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($ $) |has| |#4| (-172))) -(((|#3| |#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($ $) |has| |#3| (-172))) -(((|#2|) . T)) -(((|#1|) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567))))) -((((-863)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2188 |#1|) (|:| -2618 |#2|))) . T) (((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567))))) -(((|#4|) -2836 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($) |has| |#4| (-172))) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172))) -((((-2 (|:| -2188 |#1|) (|:| -2618 |#2|))) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) -((((-645 |#1|)) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((((-410 $) (-410 $)) |has| |#2| (-559)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-911)) -((((-1161) (-52)) . T)) -((((-567)) |has| #0=(-410 |#2|) (-640 (-567))) ((#0#) . T)) -((((-539)) . T) (((-225)) . T) (((-381)) . T) (((-894 (-381))) . T)) -((((-863)) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) -(((|#1|) |has| |#1| (-172))) -(((|#1| $) |has| |#1| (-287 |#1| |#1|))) -((((-863)) . T)) -((((-863)) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -(|has| |#1| (-851)) -(((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-1102)) -((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) . T) (((-1184)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((((-1184)) . T)) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(|has| |#1| (-233)) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1| (-534 (-819 (-1179)))) . T)) -(((|#1| (-973)) . T)) -((((-567)) . T) ((|#2|) . T)) -(((#0=(-871 |#1|) $) |has| #0# (-287 #0# #0#))) -((((-567) |#4|) . T)) -((((-567) |#3|) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T)) -(|has| |#1| (-1154)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -(|has| (-1255 |#1| |#2| |#3| |#4|) (-145)) -(|has| (-1255 |#1| |#2| |#3| |#4|) (-147)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(((|#1|) |has| |#1| (-172))) -((((-1179)) -12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) -(|has| |#1| (-1102)) -((((-1161) |#1|) . T)) -(((|#2|) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) (((|#1|) . T)) -(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) -((((-1127 |#1| (-1179))) . T) (((-567)) . T) (((-819 (-1179))) . T) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-1179)) . T)) -(|has| |#2| (-370)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1051))) -((((-863)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) #0#) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) (((|#1|) . T)) -((((-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((#0=(-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) #0#) |has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))))) -((((-863)) . T)) -((((-567) |#1|) . T)) -((((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381))))) (((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) -((($) . T)) -((((-863)) . T)) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) -((($) . T)) -((($) . T)) -((($) . T)) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) -((((-863)) . T)) -(|has| (-1254 |#2| |#3| |#4|) (-147)) -(|has| (-1254 |#2| |#3| |#4|) (-145)) -(((|#2|) |has| |#2| (-1102)) (((-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((|#1|) . T)) -(|has| |#1| (-1102)) -((((-863)) . T)) (((|#1|) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) (((|#1|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) (((|#1|) . T)) -((((-567) |#1|) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-849))) -((((-863)) |has| |#1| (-1102))) -(-2836 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)) (|has| |#1| (-1114))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-912 |#1|)) . T)) -((((-410 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-567) |#1|))) -((((-410 (-567))) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -(|has| |#1| (-365)) -(-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) -(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) -(|has| |#1| (-365)) -(|has| |#1| (-15 * (|#1| (-772) |#1|))) -((((-567)) . T)) -((((-567)) . T)) -((((-1144 |#2| (-410 (-954 |#1|)))) . T) (((-410 (-954 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) -(((|#1|) . T)) -((((-567) |#1|) . T)) -((((-863)) . T)) -(((|#2|) . T)) -(-2836 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((($) |has| |#1| (-559)) (((-567)) . T)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -((((-1261 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) -((((-1265 |#2|)) . T) (((-1261 |#1| |#2| |#3|)) . T) (((-1233 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T)) -(((|#1|) . T)) -((((-1179)) -12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-821))) -(-2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($ $) |has| |#1| (-559)) ((|#1| |#1|) . T)) -(((#0=(-700) (-1175 #0#)) . T)) -((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-863)) . T) (((-1269 |#4|)) . T)) -((((-863)) . T) (((-1269 |#3|)) . T)) -((((-584 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) . T)) -((((-863)) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((($) . T)) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1261 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -(((|#3|) |has| |#3| (-1051))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -(|has| (-1096 |#1|) (-1102)) -(((|#2| (-820 |#1|)) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -(((|#2|) . T) ((|#6|) . T)) -(|has| |#1| (-365)) -((((-567)) . T) ((|#2|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -(((|#2|) . T) ((|#6|) . T)) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) . T)) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((#0=(-1084) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-863)) . T)) -((((-912 |#1|)) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-144)) . T)) +((((-144)) . T)) +((((-144)) . T) (((-865)) . T)) +((((-128)) . T)) +((((-128)) . T)) +((((-1162)) . T) (((-961 (-128))) . T) (((-865)) . T)) +((((-128)) . T)) +((((-549) (-128)) . T)) +((((-549) (-128)) . T)) +((((-549) (-128)) . T)) +((((-128)) . T)) +((((-128)) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-773)) . T)) +((((-773)) . T)) +((((-865)) . T)) +((((-549) (-773)) . T) ((|#3| (-773)) . T)) +((((-865)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3| (-773)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-509)) . T)) +((((-183)) . T) (((-865)) . T)) +((((-865)) . T)) +((((-144)) . T)) +((((-144)) . T)) ((((-144)) . T)) ((((-144)) . T)) -(((|#3|) |has| |#3| (-1102)) (((-567)) -12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) -((((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) +((((-144)) . T)) +((((-144)) . T)) +((((-144)) . T)) +((((-643 (-144))) . T) (((-1162)) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-549)) . T)) +(((|#2|) . T) (($) . T)) +((((-865)) . T)) +(((|#2|) . T) (($) . T) (((-549)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +(|has| |#1| (-823)) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-352))) +((((-865)) . T)) +(|has| |#1| (-147)) (((|#1|) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -(((|#1|) |has| |#1| (-172))) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) . T)) -(|has| |#1| (-365)) -((((-1184)) . T)) -(((|#1|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-849))) -((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(|has| |#2| (-821)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-849)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -((((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -(((|#1| |#2|) . T)) -((((-1179)) -12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) -((((-1161) |#1|) . T)) -(((|#1| |#2| |#3| (-534 |#3|)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -((((-863)) . T)) -((((-410 (-567))) . T)) +((((-1180)) |has| |#1| (-903 (-1180)))) +(-3960 (|has| |#1| (-233)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(((|#1|) . T)) +((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(((|#1|) |has| |#1| (-310 |#1|))) +(((|#1| $) |has| |#1| (-287 |#1| |#1|))) (((|#1|) . T)) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -((((-410 (-567))) . T)) -(|has| |#1| (-370)) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((((-567)) . T)) -((((-567)) . T)) -(((|#1|) . T) (((-567)) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -((((-863)) . T)) -((((-863)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1051))) -((((-1179) #0=(-871 |#1|)) |has| #0# (-517 (-1179) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) -(((|#1|) . T)) -((((-567) |#4|) . T)) -((((-567) |#3|) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((((-1255 |#1| |#2| |#3| |#4|)) . T)) -((((-410 (-567))) . T) (((-567)) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(((|#1| |#1|) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) +(((|#1|) . T)) +((((-549)) |has| |#1| (-889 (-549))) (((-380)) |has| |#1| (-889 (-380)))) +(((|#1|) . T)) +((((-549)) . T) (($) -3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-1041 (-410 (-549))))) ((|#1|) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1| (-1174 |#1|)) . T)) +(((|#1| (-1174 |#1|)) . T)) +((($) -3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) -3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1| |#1|) . T)) +((($) -3960 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +(((|#1| (-1174 |#1|)) . T)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(-3960 (|has| |#1| (-370)) (|has| |#1| (-352))) +(((|#1|) . T)) +((((-168 (-225))) |has| |#1| . #1=((-1023))) (((-168 (-380))) |has| |#1| . #1#) (((-538)) |has| |#1| (-616 (-538))) (((-1174 |#1|)) . T) (((-893 (-549))) |has| |#1| (-616 (-893 (-549)))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380))))) +(-12 (|has| |#1| (-308)) (|has| |#1| (-913))) +(-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))) +(|has| |#1| (-1205)) +(|has| |#1| (-1205)) +(|has| |#1| (-1205)) +(|has| |#1| (-1205)) +(|has| |#1| (-1205)) +(|has| |#1| (-1205)) +(((|#1|) . T)) +((((-865)) . T)) +((((-410 (-549))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) +((((-410 (-549))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) +((((-865)) . T)) +((($) . T) (((-410 (-549))) . T) (((-410 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-410 (-549))) . T) (((-410 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) . T) ((#2=(-410 |#1|) #2#) . T) ((|#1| |#1|) . T)) +((((-410 (-549))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-549)) . T) (($) . T)) +((((-410 (-549))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-549)) . T)) +((((-410 (-549))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-509)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-643 |#1|)) . T)) +((((-865)) . T)) +((((-1007 10)) . T) (((-410 (-549))) . T) (((-865)) . T)) +((((-549)) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +(((#1=(-549) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-538)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) +((((-410 (-549))) . T) (((-549)) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-315 |#1|)) . T)) +((((-865)) . T)) +((((-315 |#1|)) . T) (((-549)) . T) (($) . T)) +((((-315 |#1|)) . T) (($) . T)) +((((-315 |#1|)) . T) (((-549)) . T)) +((((-315 |#1|)) . T)) +((((-549)) . T) (((-410 (-549))) . T)) +((((-380)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-538)) . T) (((-225)) . T) (((-380)) . T) (((-893 (-380))) . T)) +((((-865)) . T)) +((((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) +(((|#2|) |has| |#2| (-172))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) (((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) +((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-865)) -3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-615 (-865))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) (((-1269 |#2|)) . T)) +(|has| |#2| (-172)) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) +(((|#2| |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($ $) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-1052))) +((((-1180)) -12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1052))) +(|has| |#2| (-370)) +(((|#2|) |has| |#2| (-1052))) +(((|#2|) |has| |#2| (-1052)) (((-549)) -12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) +(((|#2|) |has| |#2| (-1104))) +((((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) +(((|#2|) |has| |#2| (-1104)) (((-549)) -12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) +((((-549) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2|) . T)) +((((-549) |#2|) . T)) +((((-549) |#2|) . T)) +(|has| |#2| (-795)) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(|has| |#2| (-850)) +(|has| |#2| (-850)) +(((|#2|) |has| |#2| (-365))) +(((|#1| |#2|) . T)) +((((-643 |#1|)) . T)) +((((-643 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((((-567)) . T)) -((((-567)) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((((-567)) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) +((((-643 |#1|)) . T) (((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) (((|#1|) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) (((|#1|) . T)) -((((-410 (-567))) . T) (($) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -((($) . T) (((-410 (-567))) . T)) -(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -(((|#1|) |has| |#1| (-559))) -((((-567) |#4|) . T)) -((((-567) |#3|) . T)) -((((-863)) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((((-863)) . T)) -((((-567) |#1|) . T)) +(|has| |#1| (-852)) (((|#1|) . T)) -((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1179) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-172))) -((($) -2836 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -(((|#2| |#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172))) -((((-144)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) -((((-863)) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) (((|#1|) . T)) -((((-863)) . T)) -(|has| |#1| (-1102)) -(|has| $ (-147)) -((((-1184)) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) -((((-567) |#1|) . T)) -((($) -2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) -(|has| |#1| (-365)) -(-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) -(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) -(|has| |#1| (-365)) -(|has| |#1| (-15 * (|#1| (-772) |#1|))) -(((|#1|) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -((((-863)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(((|#2| (-534 (-865 |#1|))) . T)) -((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((((-584 |#1|)) . T)) +(((|#1|) . T)) +((((-538)) |has| |#2| (-616 (-538))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549))))) ((($) . T)) -((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -(((|#1|) . T) (($) . T)) -((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -((((-1177 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) -((((-1265 |#2|)) . T) (((-1177 |#1| |#2| |#3|)) . T) (((-1170 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) +(((|#2| (-239 (-4389 |#1|) (-773))) . T)) +(((|#2|) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +((($) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549)))) ((|#2| |#2|) . T) (($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(((|#2| (-239 (-4389 |#1|) (-773))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-913))) +((($ $) . T) ((#1=(-866 |#1|) $) . T) ((#1# |#2|) . T)) +((((-866 |#1|)) . T)) +(|has| |#2| (-913)) +(|has| |#2| (-913)) +((((-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) (((-549)) |has| |#2| (-1041 (-549))) ((|#2|) . T) (((-866 |#1|)) . T)) +((((-549)) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))) ((|#2|) . T) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-866 |#1|)) . T)) +(((|#2| (-239 (-4389 |#1|) (-773)) (-866 |#1|)) . T)) +((((-865)) . T)) +((((-509)) . T)) +((((-183)) . T) (((-865)) . T)) +((((-865)) . T)) +(((|#4|) |has| |#4| (-172))) +(-3960 (|has| |#4| (-172)) (|has| |#4| (-728)) (|has| |#4| (-850)) (|has| |#4| (-1052))) +(-3960 (|has| |#4| (-172)) (|has| |#4| (-728)) (|has| |#4| (-850)) (|has| |#4| (-1052))) +(-3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (|has| |#4| (-1052))) +(-3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (|has| |#4| (-1052))) +(((|#3|) . T) ((|#2|) . T) (($) -3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (|has| |#4| (-1052))) (((-549)) . T) ((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052)))) +(((|#3|) . T) ((|#2|) . T) (($) -3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (|has| |#4| (-1052))) ((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052)))) +(((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)))) +(((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)))) +((((-865)) . T) (((-1269 |#4|)) . T)) +(|has| |#4| (-172)) +(((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052))) (($) |has| |#4| (-172))) +(((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052))) (($) |has| |#4| (-172))) +(((|#4| |#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1052))) (($ $) |has| |#4| (-172))) +(((|#4|) |has| |#4| (-1052))) +((((-1180)) -12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) +(-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) +(|has| |#4| (-370)) +(((|#4|) |has| |#4| (-1052))) +(((|#4|) |has| |#4| (-1052)) (((-549)) -12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052)))) +(((|#4|) |has| |#4| (-1104))) +((((-549)) -3960 (|has| |#4| (-172)) (|has| |#4| (-850)) (-12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104))) (|has| |#4| (-1052))) ((|#4|) -3960 (|has| |#4| (-172)) (|has| |#4| (-1104))) (((-410 (-549))) -12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104)))) +(((|#4|) |has| |#4| (-1104)) (((-549)) -12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104))) (((-410 (-549))) -12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104)))) +((((-549) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (((|#4|) . T)) +((((-549) |#4|) . T)) +((((-549) |#4|) . T)) +(|has| |#4| (-795)) +(-3960 (|has| |#4| (-795)) (|has| |#4| (-850))) +(-3960 (|has| |#4| (-795)) (|has| |#4| (-850))) +(-3960 (|has| |#4| (-795)) (|has| |#4| (-850))) +(-3960 (|has| |#4| (-795)) (|has| |#4| (-850))) +(|has| |#4| (-850)) +(|has| |#4| (-850)) +(((|#4|) |has| |#4| (-365))) +(((|#1| |#4|) . T)) +(((|#3|) |has| |#3| (-172))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-728)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-728)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(((|#2|) . T) (($) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) (((-549)) . T) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052)))) +(((|#2|) . T) (($) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052)))) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((((-865)) . T) (((-1269 |#3|)) . T)) +(|has| |#3| (-172)) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($) |has| |#3| (-172))) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($) |has| |#3| (-172))) +(((|#3| |#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($ $) |has| |#3| (-172))) +(((|#3|) |has| |#3| (-1052))) +((((-1180)) -12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) +(|has| |#3| (-370)) +(((|#3|) |has| |#3| (-1052))) +(((|#3|) |has| |#3| (-1052)) (((-549)) -12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) +(((|#3|) |has| |#3| (-1104))) +((((-549)) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-1104))) (((-410 (-549))) -12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) +(((|#3|) |has| |#3| (-1104)) (((-549)) -12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (((-410 (-549))) -12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) +((((-549) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (((|#3|) . T)) -((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T)) -((((-1179)) -12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) -(((|#1|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-567)) . T) (((-410 (-567))) -2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T)) -((((-567) |#2|) . T)) -((((-863)) . T)) -((($) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1177 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) -(((|#2|) |has| |#2| (-1051))) -(|has| |#1| (-1102)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) |has| |#1| (-172)) (($) . T)) +((((-549) |#3|) . T)) +((((-549) |#3|) . T)) +(|has| |#3| (-795)) +(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) +(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) +(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) +(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) +(|has| |#3| (-850)) +(|has| |#3| (-850)) +(((|#3|) |has| |#3| (-365))) +(((|#1| |#3|) . T)) +((((-865)) . T)) (((|#1|) . T)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((((-863)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) +((((-865)) . T)) +(|has| |#1| (-233)) ((($) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) +(((|#1| (-534 |#3|) |#3|) . T)) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))) (((-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380))))) +((((-1180)) |has| |#1| (-903 (-1180))) ((|#3|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| . #1=((-233))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) +((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1102)) (((-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) -(((|#2|) |has| |#1| (-365))) -((((-567) |#1|) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) -((((-1184)) . T)) -((((-863)) . T)) -((((-410 |#2|) |#3|) . T)) -(((|#1| (-410 (-567))) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-863)) . T) (((-1184)) . T)) +(((|#1| (-534 |#3|)) . T)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T)) +(((|#1| (-534 |#3|)) . T)) +((((-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549))))) (((-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380))))) (((-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538))))) +((((-1128 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#2|) . T)) +((((-1128 |#1| |#2|)) . T) (((-549)) . T) ((|#3|) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-534 |#3|)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +((((-865)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) +((($) . T)) +((($) . T)) +((($ $) . T)) +((($) . T) (((-549)) . T)) +((($) . T)) +((((-865)) . T)) +(((|#1|) |has| |#1| (-365))) +((((-1180)) |has| |#1| (-903 (-1180)))) +(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)))) +(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)))) +(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052)))) +(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052)))) +(((|#1| |#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052)))) +((((-549)) -3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)))) +(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052))) (($) -3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)))) +(-3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) +(|has| |#1| (-476)) +(-3960 (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)) (|has| |#1| (-1115))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) +(((|#1|) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1052))) (($) -3960 (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) (((-549)) -3960 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)) (|has| |#1| (-1115)) (|has| |#1| (-1104))) +((((-112)) |has| |#1| (-1104)) (((-865)) -3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)) (|has| |#1| (-1115)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-728)) (|has| |#1| (-903 (-1180))) (|has| |#1| (-1052)) (|has| |#1| (-1115)) (|has| |#1| (-1104))) +((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|))) +(((|#1| |#2|) . T)) +((((-865)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +(|has| (-1256 |#1| |#2| |#3| |#4|) (-145)) +(|has| (-1256 |#1| |#2| |#3| |#4|) (-147)) +((((-1256 |#1| |#2| |#3| |#4|)) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-1256 |#1| |#2| |#3| |#4|)) . T) (((-410 (-549))) . T)) +((($) . T) (((-1256 |#1| |#2| |#3| |#4|)) . T) (((-410 (-549))) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T) (((-410 (-549))) . T) (($) . T)) +(((#1=(-1256 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T)) +((((-1180) #1=(-1256 |#1| |#2| |#3| |#4|)) |has| #1# (-517 (-1180) #1#)) ((#1# #1#) |has| #1# (-310 #1#))) +(((#1=(-1256 |#1| |#2| |#3| |#4|)) |has| #1# (-310 #1#))) +(((#1=(-1256 |#1| |#2| |#3| |#4|) $) |has| #1# (-287 #1# #1#))) +((((-1256 |#1| |#2| |#3| |#4|)) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T)) +((((-1250 |#2| |#3| |#4|)) . T) (((-549)) . T) (((-1256 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-1250 |#2| |#3| |#4|)) . T) (((-1256 |#1| |#2| |#3| |#4|)) . T)) +((((-1256 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(((|#1|) |has| |#1| (-560))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) +((((-865)) . T)) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-560)) (|has| |#1| (-1052)) (|has| |#1| (-1115))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-560)) (|has| |#1| (-1052)) (|has| |#1| (-1115))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-1184)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T)) -(((|#2| |#3| (-865 |#1|)) . T)) -((((-1179)) |has| |#2| (-902 (-1179)))) +((((-613 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560)) (((-410 (-549))) |has| |#1| (-560))) +((((-549)) -3960 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) (($) -3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-560))) +((($) -3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1052))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-560))) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560)) (((-410 (-549))) |has| |#1| (-560))) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560)) (((-410 (-549))) |has| |#1| (-560))) +(|has| |#1| (-560)) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-560)) (($) |has| |#1| (-560))) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-560)) (($) |has| |#1| (-560))) +(((|#1| |#1|) |has| |#1| (-172)) ((#1=(-410 (-549)) #1#) |has| |#1| (-560)) (($ $) |has| |#1| (-560))) +(|has| |#1| (-560)) +(((|#1|) |has| |#1| (-1052))) +(((|#1|) |has| |#1| (-1052)) (((-549)) -12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) +(((|#1|) . T)) +((((-549)) |has| |#1| (-889 (-549))) (((-380)) |has| |#1| (-889 (-380)))) (((|#1|) . T)) -(((|#1| (-534 |#2|) |#2|) . T)) -(((|#1| (-772) (-1084)) . T)) -((((-410 (-567))) |has| |#2| (-365)) (($) . T)) -(((|#1| (-534 (-1090 (-1179))) (-1090 (-1179))) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(((|#2|) . T)) +(|has| |#1| (-476)) +((((-1180)) |has| |#1| (-1052))) (((|#1|) . T)) -(((|#2|) . T)) -((((-1001 |#1|)) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2836 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(|has| |#2| (-794)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#2| (-849)) -((((-895 |#1|)) . T) (((-820 |#1|)) . T)) -((((-820 (-1179))) . T)) +((((-538)) |has| |#1| (-616 (-538))) (((-893 (-549))) |has| |#1| (-616 (-893 (-549)))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380))))) +((((-48)) -12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (((-613 $)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) -3960 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-410 (-949 |#1|))) |has| |#1| (-560)) (((-949 |#1|)) |has| |#1| (-1052)) (((-1180)) . T)) +((((-48)) -12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (((-549)) -3960 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))) (|has| |#1| (-1052))) ((|#1|) . T) (((-613 $)) . T) (($) |has| |#1| (-560)) (((-410 (-549))) -3960 (|has| |#1| (-560)) (|has| |#1| (-1041 (-410 (-549))))) (((-410 (-949 |#1|))) |has| |#1| (-560)) (((-949 |#1|)) |has| |#1| (-1052)) (((-1180)) . T)) (((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-645 (-567))) . T)) -((((-645 (-567))) . T) (((-863)) . T)) -((((-410 (-567))) . T) (((-863)) . T)) -((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) -(|has| |#1| (-233)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((($ $) . T)) -(((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-1261 |#1| |#2| |#3|) $) -12 (|has| (-1261 |#1| |#2| |#3|) (-287 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) -((($ $) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-865)) . T)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| (-410 (-549))) . T)) +(((|#1| (-410 (-549))) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1|) . T)) +(((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1| |#1|) . T)) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1| (-410 (-549)) (-1085)) . T)) +((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) ((($ $) . T)) +(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) (((|#1|) . T)) -((((-1142 |#1| |#2|)) |has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) +(|has| |#1| (-852)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -(((|#3|) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -(((|#2|) . T)) -((((-863)) -2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1269 |#2|)) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T) (($) . T)) -(((|#1|) |has| |#1| (-172))) -((((-567)) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -(|has| |#1| (-1102)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-567) (-144)) . T)) -((($) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) -((((-567)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-567)) . T)) -((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) -(((|#1|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) -((($) . T) (((-567)) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) -(((|#2|) |has| |#1| (-365))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| |#1|) . T) (($ $) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-1184)) . T)) -((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1| (-534 #0=(-1179)) #0#) . T)) -(((|#1|) . T) (($) . T)) -((((-567)) . T)) -(|has| |#4| (-172)) -(|has| |#3| (-172)) -(((#0=(-410 (-954 |#1|)) #0#) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(|has| |#1| (-1102)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(|has| |#1| (-1102)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -(((|#1| |#1|) |has| |#1| (-172))) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) -((((-410 (-954 |#1|))) . T)) -(((|#1|) . T) (((-567)) . T) (($) . T)) -(((|#1|) |has| |#1| (-172))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((((-863)) . T)) -((((-863)) . T)) -((((-1255 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1051)) (((-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) -(((|#1| |#2|) . T)) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -(|has| |#3| (-794)) -(-2836 (|has| |#3| (-794)) (|has| |#3| (-849))) -(|has| |#3| (-849)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -(((|#2|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| (-1159 |#1|)) |has| |#1| (-849))) -((((-567) |#2|) . T)) -(|has| |#1| (-1102)) +(((|#1| (-549)) . T)) +(((#1=(-549) #1#) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-865)) . T)) +((((-549)) . T)) +((((-865)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-365)) (|has| |#2| (-1154))) -((((-410 (-567))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-1102)) -(((|#2|) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567))))) -(((|#4|) -2836 (|has| |#4| (-172)) (|has| |#4| (-365)))) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)))) -((((-863)) . T)) -(((|#1|) . T)) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-911))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-911))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#2|) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911))) -(((|#2|) . T)) -((($ $) . T) ((#0=(-1179) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-819 (-1179)) |#1|) . T) ((#1# $) . T)) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-911))) -((((-567) |#2|) . T)) -((((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((($) -2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051)))) -((((-567) |#1|) . T)) -(|has| (-410 |#2|) (-147)) -(|has| (-410 |#2|) (-145)) -(((|#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) -(|has| |#1| (-38 (-410 (-567)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-410 (-567))) . T)) -((((-863)) . T)) -(|has| |#1| (-559)) -(|has| |#1| (-559)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-863)) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -(|has| |#1| (-38 (-410 (-567)))) -((((-391) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#2| (-1154)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -((((-863)) . T) (((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-1218)) . T) (((-863)) . T) (((-1184)) . T)) -((((-116 |#1|)) . T)) -((((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -(((|#1|) . T)) -((((-391) (-1161)) . T)) -(|has| |#1| (-559)) -((((-567) |#1|) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#2|) . T)) -((((-863)) . T)) -((((-820 |#1|)) . T)) -(((|#2|) |has| |#2| (-172))) -((((-1179) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-559)) -(((|#1|) |has| |#1| (-172))) -((((-645 |#1|)) . T)) -((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(((|#2|) |has| |#2| (-310 |#2|))) -(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) +(((|#1| (-773)) . T)) (((|#1|) . T)) -(((|#1| (-1175 |#1|)) . T)) -(|has| $ (-147)) -(((|#2|) . T)) -(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -(|has| |#2| (-370)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -(((|#1| |#2|) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1| |#2|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((($) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-863)) . T)) -((((-1177 |#1| |#2| |#3|) $) -12 (|has| (-1177 |#1| |#2| |#3|) (-287 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T)) -((($ $) . T)) -((($ $) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((#0=(-1261 |#1| |#2| |#3|) #0#) -12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1179) #0#) -12 (|has| (-1261 |#1| |#2| |#3|) (-517 (-1179) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) -(-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))) (((|#1|) . T)) +(|has| |#1| (-852)) (((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) (((|#1|) . T)) -((((-567)) . T) (($) . T)) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) . T) (((-567)) . T) ((|#2|) . T)) -((((-567)) . T) (($) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -((((-410 (-567))) . T) (((-567)) . T)) -((((-567) (-144)) . T)) -((((-144)) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) (((|#1|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) -((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-112)) . T)) (((|#1|) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-225)) . #0=(|has| |#1| (-1024))) (((-381)) . #0#)) -((((-863)) . T)) -((((-1184)) . T)) -(|has| |#1| (-821)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-559))) -(|has| |#1| (-559)) -(|has| |#1| (-851)) -((($) . T) (((-567)) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) -(|has| |#1| (-911)) -(((|#1|) . T)) -(|has| |#1| (-1102)) -((((-863)) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-559))) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) -((((-567) (-144)) . T)) -((($) . T)) -(-2836 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -((((-1184)) . T) (((-863)) . T)) -((((-1184)) . T)) -((((-863)) . T)) -(|has| |#1| (-1102)) -(((|#1| (-973)) . T)) -(((|#1| |#1|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-549)) . T)) +((((-865)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-1180)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3| |#3|) . T)) +(((|#3|) . T) (((-549)) . T) (($) . T)) +(((|#3|) . T) (($) . T)) +(((|#3|) . T)) ((($) . T)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-12 (|has| |#1| (-476)) (|has| |#2| (-476))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((($) . T) (((-567)) . T) (((-871 |#1|)) . T) (((-410 (-567))) . T)) -(((|#1|) . T)) -(|has| |#2| (-794)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(|has| |#2| (-849)) -(-12 (|has| |#1| (-794)) (|has| |#2| (-794))) -(-12 (|has| |#1| (-794)) (|has| |#2| (-794))) -(-2836 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) -(((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-567)) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#1|) |has| |#1| (-172))) -((((-863)) . T)) -(|has| |#1| (-351)) +((($ $) . T) (((-613 $) $) . T)) +(((|#3|) . T) (((-613 $)) . T)) +(((|#3|) . T) (((-549)) . T) (((-613 $)) . T)) +((((-865)) . T)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +(((#1=(-909 |#1|) #1#) . T) (($ $) . T) ((#2=(-410 (-549)) #2#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| $ (-147)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +(((#1=(-909 |#1|) #1#) . T) (($ $) . T) ((#2=(-410 (-549)) #2#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| $ (-147)) +((((-909 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-410 (-567))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-410 (-567))) . T)) -((($) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) -(|has| |#1| (-829)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) -(|has| |#1| (-1102)) -(((|#1| $) |has| |#1| (-287 |#1| |#1|))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((($) |has| |#1| (-559))) -(((|#2|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1102))) -(((|#3|) |has| |#3| (-1102))) -(|has| |#3| (-370)) -((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -((((-863)) . T)) -((((-863)) . T)) -(((|#2|) . T)) -(((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1| |#1|) |has| |#1| (-172))) -(|has| |#2| (-365)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -((((-410 (-567))) . T) (((-567)) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((($) . T) (((-567)) . T)) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -((((-144)) . T)) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) (((|#1|) . T)) -((($) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) -((((-144)) . T)) -((((-144)) . T)) -((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#) ((|#2|) . T) (((-567)) . T)) -(((|#1| |#2| |#3|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) -(((|#1|) |has| |#1| (-172))) -(|has| $ (-147)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T)) +((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-909 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +(((#1=(-909 |#1|) #1#) . T) (($ $) . T) ((#2=(-410 (-549)) #2#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-909 |#1|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) (|has| $ (-147)) -((((-1184)) . T)) -(((|#1|) |has| |#1| (-172))) -(|has| |#1| (-1102)) -((((-863)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1051)) (|has| |#1| (-1114))) -((($ $) |has| |#1| (-287 $ $)) ((|#1| $) |has| |#1| (-287 |#1| |#1|))) -(((|#1| (-410 (-567))) . T)) -(((|#1|) . T)) -((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-1179)) . T)) -(|has| |#1| (-559)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(|has| |#1| (-559)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-863)) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-147)) -(((|#2|) . T) (($) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(|has| |#4| (-849)) -(((|#2| (-240 (-2498 |#1|) (-772)) (-865 |#1|)) . T)) -(|has| |#3| (-849)) -(((|#1| (-534 |#3|) |#3|) . T)) +((((-909 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) (|has| |#1| (-147)) -(|has| |#1| (-145)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-365)) (($ $) . T)) -((((-871 |#1|)) . T)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) (|has| |#1| (-147)) (|has| |#1| (-370)) (|has| |#1| (-370)) (|has| |#1| (-370)) -((((-863)) . T)) -(|has| |#1| (-145)) -((((-410 (-567))) |has| |#2| (-365)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(-2836 (|has| |#1| (-351)) (|has| |#1| (-370))) -((((-1144 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-172)) -(((|#1| |#2|) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1051))) -(((|#2|) . T) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(-2836 (|has| |#3| (-794)) (|has| |#3| (-849))) -(-2836 (|has| |#3| (-794)) (|has| |#3| (-849))) -((((-863)) . T)) +(|has| |#1| (-370)) (((|#1|) . T)) -(((|#2|) . T) (($) . T)) -((((-700)) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(|has| |#1| (-559)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(((|#1|) . T)) +(((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-370))) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) +(|has| |#1| (-370)) (((|#1|) . T)) (((|#1|) . T)) -((((-1179) (-52)) . T)) -(((|#1|) . T) (($) . T)) -((((-1006 10)) . T) (((-410 (-567))) . T) (((-863)) . T)) -((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) -(((|#1|) . T)) -((((-1006 16)) . T) (((-410 (-567))) . T) (((-863)) . T)) -((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) -(((|#1| (-567)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-410 (-567))) . T)) -(((|#3|) . T) (((-613 $)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-391) |#1|) . T)) +((((-225)) . T)) +((((-549)) . T) (((-410 (-549))) . T)) +((((-380)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-538)) . T) (((-1162)) . T) (((-225)) . T) (((-380)) . T) (((-893 (-380))) . T)) +((((-225)) . T) (((-865)) . T)) +((((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) (((|#1| |#2|) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-567)) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((($ $) . T) ((|#2| $) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(((#0=(-1177 |#1| |#2| |#3|) #0#) -12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1179) #0#) -12 (|has| (-1177 |#1| |#2| |#3|) (-517 (-1179) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) -((((-863)) . T)) -((((-863)) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-549)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) |has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))))) -((((-863)) . T)) (((|#1|) . T)) -(((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T)) -((((-1179) (-52)) . T)) -(((|#3|) . T)) -((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-829)) -((($) . T) (((-567)) . T) ((|#1|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(|has| (-1096 |#1|) (-1102)) -(((|#2| |#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172))) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) -((((-567)) . T)) -((((-1184)) . T)) -((((-772)) . T)) -(((|#2|) |has| |#2| (-172))) +((((-865)) . T)) +((((-549)) . T) ((|#1|) . T)) +(((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -(|has| |#1| (-559)) -((((-567)) . T)) -(((|#2|) . T)) -((((-863)) . T)) -(((|#1| (-410 (-567)) (-1084)) . T)) (((|#1|) |has| |#1| (-172))) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#1| |#2|) . T)) +((((-865)) . T)) +(|has| |#1| (-852)) (((|#1|) . T)) -(|has| |#1| (-559)) -((((-567)) . T)) -((((-116 |#1|)) . T)) (((|#1|) . T)) -((((-410 (-567))) . T) (($) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-559))) -((((-1184)) . T)) -((($) . T) (((-410 (-567))) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-559))) +(((|#1|) . T)) +((((-1162)) . T)) +((((-1162)) . T)) +((((-1162)) . T) (((-865)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +((((-865)) . T)) +(((|#3|) . T) (((-549)) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3| |#3|) . T)) +(((|#3|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-410 |#2|)) . T)) +((((-865)) . T)) +(|has| |#1| (-1224)) +((((-538)) |has| |#1| (-616 (-538))) (((-225)) . #1=(|has| |#1| (-1023))) (((-380)) . #1#)) +(|has| |#1| (-1023)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-1224))) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) +(((|#1|) . T)) +((($ $) |has| |#1| (-287 $ $)) ((|#1| $) |has| |#1| (-287 |#1| |#1|))) +((($) |has| |#1| (-310 $)) ((|#1|) |has| |#1| (-310 |#1|))) +((((-1180) $) |has| |#1| (-517 (-1180) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-233)) +((((-1180)) |has| |#1| (-903 (-1180)))) +(((|#1|) . T)) +(((|#1|) . T) (($) . T)) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (((-549)) . T) (($) . T)) +(-12 (|has| |#1| (-548)) (|has| |#1| (-823))) +((((-865)) . T)) (|has| |#1| (-145)) -((((-567)) . T)) (|has| |#1| (-147)) -((((-567)) . T)) -((((-894 (-567))) . T) (((-894 (-381))) . T) (((-539)) . T) (((-1179)) . T)) -((((-863)) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((($) . T)) (((|#1|) . T)) -((((-863)) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +((((-1180)) |has| |#1| (-903 (-1180)))) +(|has| |#1| (-233)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) ((|#1|) . T) (((-410 (-549))) . T)) +((($) . T) ((|#1|) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(((|#1|) |has| |#1| (-310 |#1|))) +(((|#1| $) |has| |#1| (-287 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) +(((|#1|) . T)) +((((-549)) |has| |#1| (-889 (-549))) (((-380)) |has| |#1| (-889 (-380)))) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +(-3960 (|has| |#1| (-822)) (|has| |#1| (-852))) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +(|has| |#1| (-822)) +(((|#1|) . T)) +(|has| |#1| (-913)) +(|has| |#1| (-1023)) +((((-538)) |has| |#1| (-616 (-538))) (((-893 (-549))) |has| |#1| (-616 (-893 (-549)))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380)))) (((-380)) . #1=(|has| |#1| (-1023))) (((-225)) . #1#)) +((((-549)) . T) ((|#1|) . T) (($) . T) (((-410 (-549))) . T) (((-1180)) |has| |#1| (-1041 (-1180)))) +((((-410 (-549))) |has| |#1| . #1=((-1041 (-549)))) (((-549)) |has| |#1| . #1#) (((-1180)) |has| |#1| (-1041 (-1180))) ((|#1|) . T)) +(|has| |#1| (-1154)) +(((|#1|) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-865)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T) (((-549)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) |has| |#2| (-172))) -((($) -2836 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -((((-871 |#1|)) . T)) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) -(|has| |#2| (-1154)) -(((#0=(-52)) . T) (((-2 (|:| -2025 (-1179)) (|:| -2265 #0#))) . T)) +(((|#1|) . T) (((-549)) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-391) (-1162)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-410 (-949 |#1|))) . T)) +((((-410 (-949 |#1|))) . T)) +((((-410 (-949 |#1|))) . T)) +((((-1145 |#2| (-410 (-949 |#1|)))) . T) (((-410 (-949 |#1|))) . T)) +((((-865)) . T)) +((((-1145 |#2| (-410 (-949 |#1|)))) . T) (((-410 (-949 |#1|))) . T) (((-549)) . T)) +((((-410 (-949 |#1|))) . T)) +((((-410 (-949 |#1|))) . T)) +(((#1=(-410 (-949 |#1|)) #1#) . T)) +((((-410 (-949 |#1|))) . T)) +((((-410 (-949 |#1|))) . T)) +((((-538)) |has| |#2| (-616 (-538))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549))))) +((($) . T)) +(((|#2| |#3|) . T)) +(((|#2|) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +((($) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549)))) ((|#2| |#2|) . T) (($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(((|#2| |#3|) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-913))) +((($ $) . T) ((#1=(-866 |#1|) $) . T) ((#1# |#2|) . T)) +((((-866 |#1|)) . T)) +(|has| |#2| (-913)) +(|has| |#2| (-913)) +((((-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) (((-549)) |has| |#2| (-1041 (-549))) ((|#2|) . T) (((-866 |#1|)) . T)) +((((-549)) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))) ((|#2|) . T) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-866 |#1|)) . T)) +(((|#2| |#3| (-866 |#1|)) . T)) +(((|#2| |#2|) . T) ((|#6| |#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +((((-865)) . T)) +(((|#2|) . T) (((-549)) . T) ((|#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +(((|#2|) . T) ((|#6|) . T)) +(((|#4|) . T)) +((((-643 |#4|)) . T) (((-865)) . T)) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4|) . T)) +((((-538)) |has| |#4| (-616 (-538)))) +(((|#1| |#2| |#3| |#4|) . T)) +((((-865)) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +((((-865)) . T)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| (-410 (-549))) . T)) +(((|#1| (-410 (-549))) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1|) . T)) +(((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#1| |#1|) . T)) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(((|#1| (-410 (-549)) (-1085)) . T)) +((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) +((($ $) . T)) +(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +(((|#1|) . T)) (((|#1| |#2|) . T)) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -(((|#1| (-567) (-1084)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| (-410 (-567)) (-1084)) . T)) -((($) -2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-567) |#2|) . T)) +((((-865)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-370)) -(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) -((((-863)) . T)) -((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(((|#1| |#2|) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-538)) |has| |#4| (-616 (-538)))) (((|#4|) . T)) -(|has| |#1| (-351)) -((((-567)) -2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051))) ((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) -(((|#1|) . T)) -(((|#4|) . T) (((-863)) . T)) -(((|#3|) . T) ((|#2|) . T) (($) -2836 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) (((-567)) . T) ((|#4|) -2836 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051)))) -(((|#2|) . T) (($) -2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((-567)) . T) ((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051)))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) #0#) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -(|has| |#1| (-559)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-863)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4|) . T)) +((((-865)) . T) (((-643 |#4|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-538)) . T) (((-410 (-1174 (-549)))) . T) (((-225)) . T) (((-380)) . T)) +((((-410 (-549))) . T) (((-549)) . T)) +((((-380)) . T) (((-225)) . T) (((-865)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) (((|#1| |#2|) . T)) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-911))) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-911))) -((((-410 (-567))) . T) (((-567)) . T)) -((((-567)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($) . T)) -((((-863)) . T)) -(((|#1|) . T)) -((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-863)) . T)) -(((|#3| |#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($ $) |has| |#3| (-172))) -(|has| |#1| (-1024)) -((((-863)) . T)) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172))) -((((-567) (-112)) . T)) -((((-1184)) . T)) -(((|#1|) |has| |#1| (-310 |#1|))) -((((-1184)) . T)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -((((-1179) $) |has| |#1| (-517 (-1179) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|))) -((((-1179)) |has| |#1| (-902 (-1179)))) -(-2836 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351))) -(((|#1| |#4|) . T)) -(((|#1| |#3|) . T)) -((((-391) |#1|) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -(|has| |#1| (-1102)) -(((|#2|) . T) (((-863)) . T)) -((((-863)) . T)) -(((|#2|) . T)) -((((-912 |#1|)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) +((((-865)) . T)) (((|#1| |#2|) . T)) -((($) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(((|#1| |#1|) . T)) -(((#0=(-871 |#1|)) |has| #0# (-310 #0#))) -((((-567)) . T) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1040 (-410 (-567))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(((|#1|) . T)) -(-12 (|has| |#1| (-794)) (|has| |#2| (-794))) -(-12 (|has| |#1| (-794)) (|has| |#2| (-794))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((($) . T) (((-567)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#2|) . T) (($) . T)) -(|has| |#1| (-1204)) -(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -((((-410 (-567))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1051))) -(((|#3|) |has| |#3| (-1051))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(|has| |#1| (-365)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((($ $) . T) ((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-567) |#3|) . T)) -((((-863)) . T)) -((((-539)) |has| |#3| (-615 (-539)))) -((((-690 |#3|)) . T) (((-863)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-849)) -(|has| |#1| (-849)) -((($) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-559))) -((($) . T)) -(((#0=(-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) #0#) |has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))))) -((($) . T)) -((($) . T)) -(((|#2|) |has| |#2| (-1102))) -((((-863)) -2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1269 |#2|)) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-538)) |has| |#2| (-616 (-538))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549))))) ((($) . T)) -((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-1161) (-52)) . T)) +(((|#2| (-485 (-4389 |#1|) (-773))) . T)) +(((|#2|) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +((($) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549)))) ((|#2| |#2|) . T) (($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(((|#2| (-485 (-4389 |#1|) (-773))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-913))) +((($ $) . T) ((#1=(-866 |#1|) $) . T) ((#1# |#2|) . T)) +((((-866 |#1|)) . T)) +(|has| |#2| (-913)) +(|has| |#2| (-913)) +((((-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) (((-549)) |has| |#2| (-1041 (-549))) ((|#2|) . T) (((-866 |#1|)) . T)) +((((-549)) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))) ((|#2|) . T) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-866 |#1|)) . T)) +(((|#2| (-485 (-4389 |#1|) (-773)) (-866 |#1|)) . T)) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) (((|#2|) |has| |#2| (-172))) -((($) -2836 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -((((-863)) . T)) -(((|#2|) . T)) -((($) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -((((-567)) |has| #0=(-410 |#2|) (-640 (-567))) ((#0#) . T)) -((($) . T) (((-567)) . T)) -((((-567) (-144)) . T)) -((((-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T) ((|#1| |#2|) . T)) -((((-410 (-567))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-863)) . T)) -((((-912 |#1|)) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) -(|has| |#1| (-849)) -((($) -2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -(|has| |#1| (-365)) -(((|#1|) . T) (($) . T)) -(|has| |#1| (-849)) -((($) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-1179)) |has| |#1| (-902 (-1179)))) -(|has| |#1| (-849)) -((((-509)) . T)) -(((|#1| (-1179)) . T)) -(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) -((((-863)) . T) (((-1184)) . T)) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) (((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) +((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-865)) -3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-615 (-865))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) (((-1269 |#2|)) . T)) +(|has| |#2| (-172)) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) +(((|#2| |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($ $) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-1052))) +((((-1180)) -12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1052))) +(|has| |#2| (-370)) +(((|#2|) |has| |#2| (-1052))) +(((|#2|) |has| |#2| (-1052)) (((-549)) -12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) +(((|#2|) |has| |#2| (-1104))) +((((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) +(((|#2|) |has| |#2| (-1104)) (((-549)) -12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) +((((-549) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2|) . T)) +((((-549) |#2|) . T)) +((((-549) |#2|) . T)) +(|has| |#2| (-795)) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(|has| |#2| (-850)) +(|has| |#2| (-850)) +(((|#2|) |has| |#2| (-365))) (((|#1| |#2|) . T)) -((($ $) . T)) -((((-1184)) . T)) -(|has| |#1| (-1102)) -(((|#1| (-1179) (-819 (-1179)) (-534 (-819 (-1179)))) . T)) -((((-410 (-954 |#1|))) . T)) -((((-539)) . T)) -((((-863)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +(((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-549)) . T)) +((((-865)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-1007 16)) . T) (((-410 (-549))) . T) (((-865)) . T)) +((((-549)) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +(((#1=(-549) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-538)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) +((((-410 (-549))) . T) (((-549)) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T)) +((((-1162)) . T) (((-865)) . T)) +((((-168 (-380))) . T) (((-225)) . T) (((-380)) . T)) +((((-410 (-549))) . T) (((-549)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +(((#1=(-410 (-549)) #1#) . T) (($ $) . T)) ((($) . T)) -(((|#2|) . T) (($) . T)) -((((-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T) ((|#1| |#2|) . T)) +((($ $) . T) (((-613 $) $) . T)) +((((-410 (-549))) . T) (((-549)) . T) (((-613 $)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T) (((-613 $)) . T)) +((((-865)) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#3|) . T)) -(((|#1|) |has| |#1| (-172))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) +(|has| |#1| (-852)) (((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) (((|#1|) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567))))) -((((-863)) . T)) -((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#2|) . T) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-509)) . T)) -(|has| |#2| (-849)) -((((-509)) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1051))) -(|has| |#1| (-559)) -((((-871 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-1161) |#1|) . T)) -(|has| |#1| (-1154)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((((-960 |#1|)) . T)) -(((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-567))) (((-567)) |has| |#1| (-1040 (-567))) (((-1179)) |has| |#1| (-1040 (-1179))) ((|#1|) . T)) -((((-567) |#2|) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381)))) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-567)) . T)) -((((-645 |#4|)) . T) (((-863)) . T)) -((((-539)) |has| |#4| (-615 (-539)))) -((((-539)) |has| |#4| (-615 (-539)))) -((((-863)) . T) (((-645 |#4|)) . T)) -((($) |has| |#1| (-849))) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) -((((-567)) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) -(((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) -((((-645 |#4|)) . T) (((-863)) . T)) -((((-539)) |has| |#4| (-615 (-539)))) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) -(((|#1|) . T)) -((((-1179)) |has| (-410 |#2|) (-902 (-1179)))) -(((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) #0#) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((($) . T)) -((($) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-863)) -2836 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-614 (-863))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102))) (((-1269 |#3|)) . T)) -((((-567) |#2|) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(((|#2| |#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($ $) |has| |#2| (-172))) -(((|#2|) . T) (((-567)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T) ((|#2|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-1161) (-1179) (-567) (-225) (-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-863)) . T)) -((((-567) (-112)) . T)) -(((|#1|) . T)) -((((-863)) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) . T)) +((((-112)) . T)) ((((-112)) . T)) +((((-549) (-112)) . T)) +((((-549) (-112)) . T)) +((((-549) (-112)) . T)) +((((-538)) . T)) ((((-112)) . T)) -((((-863)) . T)) -((((-863)) . T)) +((((-865)) . T)) ((((-112)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((($) . T) (((-410 (-567))) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) +((((-112)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1180)) . T) (((-865)) . T)) +(((|#1| |#2|) . T)) +((((-865)) . T)) +((((-549)) . T)) +(((|#1| |#2|) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-865)) . T)) +(((|#1| |#2|) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-852)) +(((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(((|#1|) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-584 |#1|)) . T)) +((((-584 |#1|)) . T)) +((((-584 |#1|)) . T)) +((((-584 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-584 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +(((#1=(-584 |#1|) #1#) . T) (($ $) . T) ((#2=(-410 (-549)) #2#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-584 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-584 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +((((-584 |#1|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-584 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-584 |#1|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) (|has| $ (-147)) -((((-410 |#2|)) . T)) -((((-410 (-567))) |has| #0=(-410 |#2|) (-1040 (-410 (-567)))) (((-567)) |has| #0# (-1040 (-567))) ((#0#) . T)) -(((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-172))) -(|has| |#2| (-145)) -(|has| |#2| (-147)) -(((|#3|) |has| |#3| (-172))) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(|has| |#1| (-147)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(|has| |#1| (-147)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(|has| |#1| (-147)) +((((-584 |#1|)) . T)) (((|#1|) . T)) -(|has| |#2| (-233)) -(((|#2|) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-1179) (-52)) . T)) -((((-863)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -(((|#1| |#1|) . T)) -((((-1179)) |has| |#2| (-902 (-1179)))) -((((-129)) . T)) -((((-895 |#1|)) . T) ((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T)) -((((-567) (-112)) . T)) -(|has| |#1| (-559)) -(((|#2|) . T)) -(((|#2|) . T)) -(((|#1|) . T) (((-567)) . T) (((-820 (-1179))) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1| |#4| |#5|) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T)) -(((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(((|#3|) . T)) -(|has| |#1| (-38 (-410 (-567)))) -((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) -(((|#1|) . T)) -((((-1006 2)) . T) (((-410 (-567))) . T) (((-863)) . T)) -((((-539)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-1001 |#1|)) . T) ((|#1|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1175 |#1|)) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#3|) . T) (($) . T)) -(|has| |#1| (-851)) -(((|#1|) . T) (((-567)) . T) (($) . T)) -(((|#2|) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-567) |#2|) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -(((|#2|) . T)) -((((-567) |#3|) . T)) -(((|#2|) . T)) -((((-863)) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) #0#) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -(((|#2| |#2|) . T)) -(|has| |#1| (-1102)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#2| (-365)) -(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) -(|has| |#1| (-38 (-410 (-567)))) -(((|#2|) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-172))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) (((|#1|) . T)) -((((-1161) (-52)) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-852)) (((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) |has| |#2| (-172))) -((($) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) -((((-567) |#3|) . T)) -((((-567) (-144)) . T)) -((((-144)) . T)) -((((-863)) . T)) -((((-1184)) . T)) -((((-112)) . T)) -(|has| |#1| (-147)) (((|#1|) . T)) -(|has| |#1| (-145)) -((($) . T)) -(|has| |#1| (-559)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) -(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) -((((-144)) . T)) -((((-863)) . T)) -((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -((((-1161) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) +(((|#1| (-604 |#1| |#3|) (-604 |#1| |#2|)) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1|) . T)) +(((|#1| (-604 |#1| |#3|) (-604 |#1| |#2|)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +((((-773) |#1|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-582)) . T)) +((((-1106)) . T)) +((((-643 $)) . T) (((-1162)) . T) (((-1180)) . T) (((-549)) . T) (((-225)) . T) (((-865)) . T)) +((((-865)) . T)) +((((-1162) (-1180) (-549) (-225) (-865)) . T)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((((-549)) . T) (($) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-1162)) . T) (((-538)) . T) (((-549)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) +((((-549)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) (((|#1| |#2|) . T)) -((((-567) (-144)) . T)) -(((#0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) #0#) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(|has| |#1| (-851)) -(((|#2| (-772) (-1084)) . T)) +((((-865)) . T)) (((|#1| |#2|) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-559))) -(|has| |#1| (-792)) -(((|#1|) |has| |#1| (-172))) -(((|#4|) . T)) -(((|#4|) . T)) (((|#1| |#2|) . T)) -(-2836 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147)))) -(-2836 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))) -(((|#4|) . T)) -(|has| |#1| (-145)) -((((-1161) |#1|) . T)) -(|has| |#1| (-147)) -(((|#1|) . T)) -((((-567)) . T)) -((((-863)) . T)) (((|#1| |#2|) . T)) -((((-863)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#3|) . T)) -((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365))) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T)) -((((-863)) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102))) (((-960 |#1|)) . T)) -(|has| |#1| (-849)) -(|has| |#1| (-849)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-960 |#1|)) . T)) -(((|#4|) -2836 (|has| |#4| (-172)) (|has| |#4| (-365)))) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)))) -(|has| |#2| (-365)) -(((|#1|) |has| |#1| (-172))) -(((|#4|) -2836 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051))) (($) |has| |#4| (-172))) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172))) -(((|#2|) |has| |#2| (-1051))) -((((-1161) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) -(((|#2| (-895 |#1|)) . T)) -((($) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((((-391) (-1161)) . T)) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) -2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) (((-1269 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2025 (-1161)) (|:| -2265 #0#))) . T)) -(((|#1|) . T)) -((((-863)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -((((-144)) . T)) -(|has| |#2| (-145)) -((((-567)) . T)) -(|has| |#2| (-147)) -(|has| |#1| (-476)) -(-2836 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) -(|has| |#1| (-365)) -((((-863)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((($) |has| |#1| (-559))) -((((-1184)) . T)) -(|has| |#1| (-849)) -(|has| |#1| (-849)) -((((-863)) . T)) -(((|#2|) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1179)) |has| |#1| (-902 (-1179)))) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-863)) . T)) -(|has| |#1| (-1102)) -(((|#2| (-485 (-2498 |#1|) (-772)) (-865 |#1|)) . T)) -((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#)) -(((|#1| (-534 (-1179)) (-1179)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#3|) . T)) -(((|#3|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +((((-865)) . T)) +((((-549)) . T) (($) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((((-549)) . T) (($) . T)) +((((-549)) . T)) (((|#1|) . T)) -(|has| |#2| (-172)) -(((|#2| |#2|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((((-549)) . T) (($) . T)) (((|#1|) . T)) +((((-549)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +(|has| $ (-147)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T)) +((((-410 (-549))) . T)) +((((-865)) . T)) +((((-549)) . T) (((-410 (-549))) . T)) +((((-410 (-549))) . T)) +((((-410 (-549))) . T)) +((((-410 (-549))) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-144)) . T)) +((((-144)) . T)) +((((-549) (-144)) . T)) +((((-549) (-144)) . T)) +((((-549) (-144)) . T)) +((((-144)) . T)) +((((-865)) . T)) +((((-144)) . T)) +((((-144)) . T)) +(|has| |#1| (-15 * (|#1| (-549) |#1|))) +((((-865)) . T)) +((($ $) . T)) +((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) +(((|#1| (-549) (-1085)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(((|#2|) |has| |#2| (-172))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +((((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +(((|#1| (-549)) . T)) +(((|#1| (-549)) . T)) +((($) |has| |#1| (-560))) +((($) |has| |#1| (-560))) +((($) |has| |#1| (-560))) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +((($) |has| |#1| (-560)) ((|#1|) . T)) +((($) |has| |#1| (-560)) ((|#1|) . T)) +((($ $) |has| |#1| (-560)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-560)) (((-549)) . T)) +(((|#1|) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (($) . T) (((-549)) . T)) +((((-865)) . T)) (((|#1|) . T)) -(((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) . T)) -((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-1179) (-52)) . T)) -((($ $) . T)) -(((|#1| (-567)) . T)) -((((-912 |#1|)) . T)) -(((|#1|) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))) (($) -2836 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))) -(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -(|has| |#1| (-851)) -(|has| |#1| (-851)) -((((-567) |#2|) . T)) -((($) . T) (((-567)) . T) ((|#1|) . T)) -((((-863)) . T)) -((((-567)) . T)) -(|has| |#1| (-851)) -((((-690 |#2|)) . T) (((-863)) . T)) -((((-1261 |#1| |#2| |#3|)) -12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) -((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1| |#2|) . T)) -((((-410 (-954 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#1|) |has| |#1| (-172))) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)))) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(-2836 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-911))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -((((-567) |#2|) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)))) -(|has| |#1| (-351)) -(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) -(((|#2|) . T) (((-567)) . T)) -((($) . T) (((-410 (-567))) . T)) -((((-567) (-112)) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(((|#1|) . T)) -(-2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) -(|has| |#1| (-849)) -(|has| |#1| (-849)) -(|has| |#1| (-849)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-567)) . T) (($) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-1179)) |has| |#1| (-902 (-1179))) (((-1084)) . T)) -(((|#1|) . T)) -(|has| |#1| (-849)) -(((#0=(-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) #0#) |has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(|has| |#1| (-1102)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) (((|#1|) . T)) -(((|#2| |#2|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-538)) |has| |#1| (-616 (-538)))) (((|#1|) . T)) -((((-1144 |#2| (-410 (-954 |#1|)))) . T) (((-410 (-954 |#1|))) . T) (((-567)) . T)) -(((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T)) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) (((|#1|) . T)) -(((|#3| |#3|) . T)) -((($) . T) (((-567)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) -(((|#2|) . T)) +(|has| |#1| (-852)) (((|#1|) . T)) -(((|#1| (-534 |#2|) |#2|) . T)) -((((-863)) . T)) -((((-144)) . T) (((-863)) . T)) -(((|#1| (-772) (-1084)) . T)) -(((|#3|) . T)) -((((-144)) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) -2836 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))) ((|#1|) . T)) (((|#1|) . T)) -((((-144)) . T)) -(((|#2|) |has| |#2| (-172))) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) +((((-128)) . T)) +((((-128)) . T)) +((((-128)) . T) (((-865)) . T)) +((((-1185)) . T)) +((((-1220)) . T) (((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +(((|#1|) -3960 (|has| |#2| (-369 |#1|)) (|has| |#2| (-421 |#1|)))) +(((|#1|) |has| |#2| (-421 |#1|))) (((|#1|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#3| (-172)) -(((|#4|) |has| |#4| (-365))) -(((|#3|) |has| |#3| (-365))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-365))) -((((-863)) . T)) -(((|#2|) . T)) -(((|#1| (-1175 |#1|)) . T)) -((((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -((($) . T) ((|#1|) . T) (((-410 (-567))) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((($) |has| |#1| (-559))) -(((|#2|) . T)) -((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) . T)) -((($) |has| |#1| (-849))) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(|has| |#1| (-911)) -((((-1179)) . T)) -((((-863)) . T)) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1261 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (((|#1|) . T)) -(((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((#0=(-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) #0#) |has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))))) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-911))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-911))) -(((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -(((|#1| |#2|) . T)) +(((|#2|) . T) (((-865)) . T)) +(((|#1|) . T) (((-549)) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)))) -(|has| |#1| (-851)) -(|has| |#1| (-559)) -((((-584 |#1|)) . T)) -((($) . T)) +((((-1162) |#1|) . T)) +((((-1162) |#1|) . T)) +((((-1162) |#1|) . T)) +((((-1162) |#1|) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((#1=(-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) #1#) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) +((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +((((-1162) |#1|) . T)) +((((-865)) . T)) +((((-391) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +((((-538)) |has| |#1| (-616 (-538))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#1| (-616 (-893 (-549))))) +(((|#1|) . T)) +((((-865)) . T)) +((((-865)) . T)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-865)) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T) (((-549)) . T) (($) . T)) +(((|#2|) . T) (($) . T)) +(((|#2|) . T) (((-549)) . T)) (((|#2|) . T)) -(-2836 (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) (-12 (|has| |#1| (-365)) (|has| |#2| (-851)))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -((((-912 |#1|)) . T)) -(((|#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) . T)) -(((|#1| |#4| |#5|) . T)) -(((|#1| (-772)) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-673 |#1|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-539)) . T)) -((((-863)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-863)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((((-1184)) . T)) -((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-567)) . T)) -(((|#3|) . T) (((-567)) . T) (((-613 $)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#2|) . T)) -(-2836 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) -(|has| |#1| (-1204)) -(|has| |#1| (-1204)) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) -(|has| |#1| (-1204)) -(|has| |#1| (-1204)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((($ $) . T) ((#0=(-410 (-567)) #0#) . T) ((#1=(-410 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((($) . T) (((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -(((|#3| |#3|) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#3|) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((((-1161) (-52)) . T)) -(|has| |#1| (-1102)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -(-2836 (|has| |#2| (-821)) (|has| |#2| (-851))) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-567)) . T) (($) . T)) -((((-772)) . T)) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-863)) . T)) -((($) . T) (((-567)) . T)) -((($) . T)) -(|has| |#2| (-911)) (|has| |#1| (-365)) -(((|#2|) |has| |#2| (-1102))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((((-539)) . T) (((-410 (-1175 (-567)))) . T) (((-225)) . T) (((-381)) . T)) -((((-381)) . T) (((-225)) . T) (((-863)) . T)) -(|has| |#1| (-911)) -(|has| |#1| (-911)) -(|has| |#1| (-911)) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-911))) -((($) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -((($) . T) ((|#2|) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-1177 |#1| |#2| |#3|)) -12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911))) -(((|#1|) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -((((-863)) . T)) -((((-863)) . T)) -((($ $) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(((|#2|) . T) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) +(((|#1|) . T)) +((((-410 |#2|)) . T)) +((($) . T)) ((($ $) . T)) -((((-567) (-112)) . T)) ((($) . T)) -(((|#1|) . T)) -((((-567)) . T)) -((((-112)) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) -(|has| |#1| (-38 (-410 (-567)))) -(((|#1| (-567)) . T)) ((($) . T)) -(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) -((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) +((($) . T)) +((($) . T)) +(|has| |#2| (-233)) +(((|#2|) . T) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (($) . T) (((-549)) . T)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) +((((-1180)) |has| |#2| (-903 (-1180)))) +(((|#2|) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +((((-1162) (-51)) . T)) +((((-865)) . T)) +((((-1162) (-51)) . T)) +((((-1162) (-51)) . T)) +((((-1162) (-51)) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4292 (-1162)) (|:| -2254 #1#))) . T)) +(((#1=(-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) #1#) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))))) +((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))))) +((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) . T)) +((((-1162) (-51)) . T)) +(((|#1|) -3960 (|has| |#2| (-369 |#1|)) (|has| |#2| (-421 |#1|)))) +(((|#1|) |has| |#2| (-421 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-865)) . T)) +(((|#1|) . T) (((-549)) . T)) (((|#1|) . T)) -((((-567)) . T)) -(((|#1| |#2|) . T)) -((((-1179)) |has| |#1| (-1051))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) (((|#1|) . T)) -((((-863)) . T)) -(((|#1| (-567)) . T)) -(((|#1| (-1261 |#1| |#2| |#3|)) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-410 (-567))) . T)) -(((|#1| (-1233 |#1| |#2| |#3|)) . T)) -(((|#1| (-772)) . T)) +(|has| |#1| (-823)) (((|#1|) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-863)) . T)) -(|has| |#1| (-1102)) -((((-1161) |#1|) . T)) -((($) . T)) -(|has| |#2| (-147)) -(|has| |#2| (-145)) -(((|#1| (-534 (-819 (-1179))) (-819 (-1179))) . T)) -((((-863)) . T)) -((((-1255 |#1| |#2| |#3| |#4|)) . T)) -((((-1255 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1051))) -((((-567) (-112)) . T)) -((((-863)) |has| |#1| (-1102))) -(((|#1|) . T) (((-567)) . T) (($) . T)) -(|has| |#2| (-172)) -((((-567)) . T)) -(|has| |#2| (-849)) (((|#1|) . T)) -((((-567)) . T)) -((((-863)) . T)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-351))) -((((-863)) . T)) -(|has| |#1| (-147)) -(((|#3|) . T)) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -((((-863)) . T)) -((((-1254 |#2| |#3| |#4|)) . T) (((-1255 |#1| |#2| |#3| |#4|)) . T)) -((((-863)) . T)) -((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (((-613 $)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) -2836 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-410 (-954 |#1|))) |has| |#1| (-559)) (((-954 |#1|)) |has| |#1| (-1051)) (((-1179)) . T)) -(((|#1|) . T) (($) . T)) -(((|#1| (-772)) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) (((|#1|) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-310 |#1|))) -((((-1255 |#1| |#2| |#3| |#4|)) . T)) -((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381)))) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-559)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) +(|has| |#1| (-852)) (((|#1|) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1177 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) -(((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -(((|#1|) |has| |#1| (-172))) -((((-863)) . T)) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -(((|#1|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1102))) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)))) -((((-1254 |#2| |#3| |#4|)) . T)) -((((-112)) . T)) -(|has| |#1| (-821)) -(|has| |#1| (-821)) -(((|#1| (-567) (-1084)) . T)) -((($) |has| |#1| (-310 $)) ((|#1|) |has| |#1| (-310 |#1|))) -(|has| |#1| (-849)) -(|has| |#1| (-849)) -(((|#1| (-567) (-1084)) . T)) -(-2836 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#1| (-410 (-567)) (-1084)) . T)) -(((|#1| (-772) (-1084)) . T)) -(|has| |#1| (-851)) -(((#0=(-912 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-147)) -(((|#2|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-1102)) -((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-1102)) -((((-410 (-567))) |has| |#2| (-365)) (($) . T) (((-567)) . T)) -((((-567)) -2836 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))) -(((|#1|) . T)) -(|has| |#1| (-1102)) -((((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((|#2|) |has| |#1| (-365))) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) -((((-690 (-341 (-2516) (-2516 (QUOTE X) (QUOTE HESS)) (-700)))) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#1|) |has| |#1| (-172))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -((((-863)) . T)) -(|has| |#3| (-849)) -((((-863)) . T)) -((((-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) -((((-863)) . T)) -(((|#1| |#1|) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051)))) -(((|#1|) . T)) -((((-567)) . T)) -((((-567)) . T)) -(((|#1|) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051)))) -(((|#2|) |has| |#2| (-365))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) -(|has| |#1| (-851)) -(((|#1|) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#1|) . T) (((-567)) . T)) -(((|#2|) . T)) -((((-567)) . T) ((|#3|) . T)) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) |has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-911))) -(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) -((((-863)) . T)) -((((-863)) . T)) -((($) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) -((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) -((((-863)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-233)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-849)) -(((|#1| (-567)) . T)) -(((|#1| |#1|) . T)) -(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1177 |#1| |#2| |#3|)) . T)) +((((-1185)) . T)) +(((|#1|) . T) (((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) (((|#1|) . T)) -(((|#1| (-410 (-567))) . T)) -(((|#1| (-1170 |#1| |#2| |#3|)) . T)) -(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) -(((|#1| (-772)) . T)) +((((-538)) |has| |#1| (-616 (-538)))) (((|#1|) . T)) -((((-410 (-954 |#1|))) . T)) (((|#1|) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) (((|#1|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-147)) -((((-410 (-954 |#1|))) . T)) -(((|#1|) |has| |#1| (-172))) -(|has| |#1| (-145)) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) |has| |#1| (-172))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-567)) . T) ((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-1179)) |has| |#1| (-1040 (-1179)))) -(((|#1| |#2|) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) -2836 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))) ((|#1|) . T)) -((((-144)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(((|#1|) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-567)) . T)) -((((-863)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| (-410 |#2|) (-233)) -((((-645 |#1|)) . T)) -(|has| |#1| (-911)) -(((|#2|) |has| |#2| (-1051))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -(|has| |#1| (-365)) -(((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-865)) . T)) +(|has| |#1| (-793)) +(|has| |#1| (-793)) +(|has| |#1| (-793)) +(|has| |#1| (-793)) +(|has| |#1| (-793)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-865)) . T)) +((((-549)) . T) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) (((|#1| |#1|) . T)) -((((-871 |#1|)) . T)) -((((-863)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1102))) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) (((|#1|) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((((-645 $)) . T) (((-1161)) . T) (((-1179)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T)) -((($) -2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) (((-567)) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051)))) -((((-410 (-567))) . T) (((-567)) . T) (((-613 $)) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +((((-865)) . T)) (((|#1|) . T)) -((((-863)) . T)) -((($) . T)) -(((|#1| (-534 |#2|) |#2|) . T)) -((((-863)) . T)) -(((|#1| (-567) (-1084)) . T)) -(((|#1| (-410 (-567)) (-1084)) . T)) -((((-912 |#1|)) . T)) -((((-863)) . T)) -(((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-772) (-1084)) . T)) -(((#0=(-410 |#2|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-567)) -2836 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))) (((-410 (-567))) . T)) -(((|#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (((-549)) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) (((|#1|) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(|has| |#2| (-233)) -(((|#2| (-534 (-865 |#1|)) (-865 |#1|)) . T)) -((((-863)) . T)) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) -(((|#1| |#3|) . T)) -((((-863)) . T)) -(((|#1|) |has| |#1| (-172)) (((-954 |#1|)) . T) (((-567)) . T)) (((|#1|) |has| |#1| (-172))) -((((-700)) . T)) -((((-700)) . T)) -(((|#2|) |has| |#2| (-172))) -(|has| |#2| (-849)) -((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) -((((-112)) |has| |#1| (-1102)) (((-863)) -2836 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102)))) -(((|#1|) . T) (($) . T)) -(((|#1| |#2|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-700)) . T) (((-410 (-567))) . T) (((-567)) . T)) -(((|#1| |#1|) |has| |#1| (-172))) -(((|#2|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-567) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -((((-381)) . T)) -((((-700)) . T)) -((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#)) (((|#1|) |has| |#1| (-172))) -((((-410 (-954 |#1|))) . T)) -(((|#2| |#2|) . T)) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) +((((-865)) . T)) (((|#1|) . T)) -(((|#2|) . T)) -(((|#3|) |has| |#3| (-1051))) -(|has| |#2| (-911)) -(|has| |#1| (-911)) -(|has| |#1| (-365)) -((((-1179)) |has| |#2| (-902 (-1179)))) -((((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-476)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-365)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1051)) (|has| |#1| (-1114))) -(|has| |#1| (-38 (-410 (-567)))) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -(|has| |#1| (-351)) -((((-144)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -((($) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(((|#2|) . T) (((-863)) . T)) -(((|#2|) . T) (((-863)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-851)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -(((|#1| |#2|) . T)) -((($) . T) (((-567)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -(((|#2|) . T)) -(((|#3|) . T)) -((((-116 |#1|)) . T)) -(|has| |#1| (-370)) -(|has| |#1| (-851)) -(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) -((((-116 |#1|)) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (((-549)) . T)) (((|#1|) |has| |#1| (-172))) -(((|#2|) |has| |#2| (-172))) (((|#1|) . T)) +(((|#2| |#2|) . T) ((|#1| |#1|) . T)) +(((|#1|) . T)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) (((|#1|) . T)) -((((-567)) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -((((-863)) . T)) -((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381)))) (((-381)) . #0=(|has| |#1| (-1024))) (((-225)) . #0#)) -(((|#1|) |has| |#1| (-365))) -((((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((($ $) . T) (((-613 $) $) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -((($) . T) (((-1255 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T)) -((($) -2836 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559))) -((($) . T) (((-567)) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -((((-381)) . T) (((-567)) . T) (((-410 (-567))) . T)) -((((-645 (-781 |#1| (-865 |#2|)))) . T) (((-863)) . T)) -((((-539)) |has| (-781 |#1| (-865 |#2|)) (-615 (-539)))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-381)) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (((|#1|) |has| |#1| (-172))) -((((-863)) . T)) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-911))) -(((|#1|) . T)) -((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -((((-772)) . T)) -(|has| |#1| (-1102)) -((($) -2836 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1051))) (((-567)) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) ((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051)))) -((((-863)) . T)) -((((-1179)) . T) (((-863)) . T)) -((((-567)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-410 (-567))) . T) (((-567)) . T) (((-613 $)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -((((-567)) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(((#0=(-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (($) . T)) -((((-567)) . T)) -(|has| |#1| (-365)) -(-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) -(-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) -(|has| |#1| (-365)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(|has| |#1| (-233)) -(|has| |#1| (-365)) -(((|#3|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-567)) |has| |#2| (-640 (-567))) ((|#2|) . T)) -(((|#2|) . T) (($) . T) (((-567)) . T)) -(((|#2|) . T)) -((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#)) -((((-410 (-567))) |has| |#2| (-365)) (($) . T)) -(|has| |#1| (-1102)) -((((-1144 |#2| |#1|)) . T) ((|#1|) . T) (((-567)) . T)) -(((|#1| |#2|) . T)) -((((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) -(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -(((|#3|) |has| |#3| (-172))) -(((|#2|) . T) (($) . T) (((-567)) . T)) -(((|#1|) . T) (($) . T) (((-567)) . T)) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) -((((-863)) . T)) -((((-567)) . T)) -(((|#1| $) |has| |#1| (-287 |#1| |#1|))) -((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((((-954 |#1|)) . T) (((-863)) . T)) -(((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-410 (-567)) #0#) |has| |#1| (-365))) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) . T)) -((((-954 |#1|)) . T)) -((($) . T)) -((((-567) |#1|) . T)) -((((-1179)) |has| (-410 |#2|) (-902 (-1179)))) -(((|#1|) . T) (($) -2836 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365))) -((((-539)) |has| |#2| (-615 (-539)))) -((((-690 |#2|)) . T) (((-863)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -((((-871 |#1|)) . T)) (((|#1|) |has| |#1| (-172))) -(-2836 (|has| |#4| (-794)) (|has| |#4| (-849))) -(-2836 (|has| |#3| (-794)) (|has| |#3| (-849))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-863)) . T)) -((((-863)) . T)) -(((|#1|) . T)) -((($) . T) (((-567)) . T) ((|#2|) . T)) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)))) -(((|#2|) |has| |#2| (-1051))) -(((|#3|) . T)) -(((|#1|) . T)) -((((-410 |#2|)) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)))) -(((|#1|) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) -(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) -((((-567) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) . T) (($) . T)) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-1223))) -((($) . T)) -((((-410 (-567))) |has| #0=(-410 |#2|) (-1040 (-410 (-567)))) (((-567)) |has| #0# (-1040 (-567))) ((#0#) . T)) -(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) -(((|#1| (-772)) . T)) -(|has| |#1| (-851)) -(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-567)) . T)) -(|has| |#1| (-38 (-410 (-567)))) -((((-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) |has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))))) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(|has| |#1| (-849)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-351)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-1161)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T)) -((((-863)) . T)) -(((|#2|) . T) (((-567)) . T) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) -(((|#1| |#2|) . T)) -((((-144)) . T)) -((((-781 |#1| (-865 |#2|))) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(|has| |#1| (-1204)) -((((-863)) . T)) -(((|#1|) . T)) -(-2836 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051)) (|has| |#3| (-1102))) -((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|))) -(((|#2|) . T)) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((((-912 |#1|)) . T)) -((($) . T)) -((((-410 (-954 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-539)) |has| |#4| (-615 (-539)))) -((((-863)) . T) (((-645 |#4|)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-849)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) |has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))))) -(|has| |#1| (-1102)) -(|has| |#1| (-365)) +((((-865)) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| |#1|) . T)) +(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((|#1|) . T) (((-549)) . T)) +(((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)))) -((((-673 |#1|)) . T)) -(((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051))) (($) |has| |#3| (-172))) -((($) . T) (((-410 (-567))) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147))) -(-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365))) -(|has| |#1| (-849)) +((((-674 |#1|)) . T)) +((((-674 |#1|)) . T)) +(((|#2| (-674 |#1|)) . T)) +(((|#2|) . T)) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-865)) . T)) +((((-549)) . T) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-1102)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-567)) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-147)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-1102)) -(((|#2|) |has| |#2| (-172))) -((((-567)) . T) ((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-567)) . T)) (((|#2|) . T)) -(((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-365))) -((((-410 |#2|)) . T)) -((((-863)) . T)) -(((|#1|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-567)) . T) (($) . T) (((-410 (-567))) . T)) -((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -(((|#1|) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)))) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((((-317 |#1|)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#2|) |has| |#2| (-365))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -(((|#2|) . T)) -((((-410 (-567))) . T) (((-700)) . T) (($) . T)) -((($) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((#0=(-781 |#1| (-865 |#2|)) #0#) |has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|))))) -((((-567)) . T) (($) . T)) -((((-865 |#1|)) . T)) -(((|#2|) |has| |#2| (-172))) -(((|#1|) |has| |#1| (-172))) (((|#2|) . T)) -((((-1179)) |has| |#1| (-902 (-1179))) (((-1084)) . T)) -((((-1179)) |has| |#1| (-902 (-1179))) (((-1090 (-1179))) . T)) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(|has| |#1| (-38 (-410 (-567)))) -(((|#4|) |has| |#4| (-1051)) (((-567)) -12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051)))) -(((|#3|) |has| |#3| (-1051)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -((($ $) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102))) -(|has| |#1| (-559)) (((|#2|) . T)) -((((-567)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) +(((|#2|) |has| |#2| (-6 (-4427 "*")))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-691 |#2|)) . T) (((-865)) . T)) +((($) . T) (((-549)) . T) ((|#2|) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-1180)) |has| |#2| (-903 (-1180)))) +(|has| |#2| (-233)) +(((|#2|) . T)) +(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) +(((|#2|) . T)) +((((-549)) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) +(((|#2|) . T) (((-549)) |has| |#2| (-1041 (-549))) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) +(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2|) . T)) +(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) (((|#1|) . T)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) -(((|#1| (-59 |#1|) (-59 |#1|)) . T)) -((((-584 |#1|)) . T)) -((($) . T)) (((|#1|) . T)) +((((-865)) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) (((|#1|) . T)) -((($) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) (((|#1|) . T)) -((((-863)) . T)) -(((|#2|) |has| |#2| (-6 (-4424 "*")))) (((|#1|) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-1220)) . T) (((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) (((|#1|) . T)) +(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) +((((-865)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-701)) . T)) +((((-701)) . T)) +((((-701)) . T)) +((((-701)) . T)) +((((-701)) . T)) +((((-380)) . T)) +((((-701)) . T)) +(((#1=(-701) (-1174 #1#)) . T)) +(((#1=(-701) (-1174 #1#)) . T)) +(((#1=(-701) (-1174 #1#)) . T)) +((((-701)) . T)) +((((-168 (-225))) . T) (((-168 (-380))) . T) (((-1174 (-701))) . T) (((-893 (-380))) . T)) +((((-701)) . T)) +((((-410 (-549))) . T) (((-701)) . T) (($) . T)) +((((-410 (-549))) . T) (((-701)) . T) (($) . T)) +((((-410 (-549))) . T) (((-701)) . T) (($) . T)) +((((-865)) . T)) +((((-410 (-549))) . T) (((-701)) . T) (($) . T) (((-549)) . T)) +((((-410 (-549))) . T) (((-701)) . T) (($) . T)) +((((-410 (-549))) . T) (((-701)) . T) (($) . T)) +(((#1=(-410 (-549)) #1#) . T) ((#2=(-701) #2#) . T) (($ $) . T)) +((((-410 (-549))) . T) (((-701)) . T) (($) . T) (((-549)) . T)) +((((-410 (-549))) . T) (((-701)) . T) (($) . T)) +((((-701)) . T) (((-410 (-549))) . T) (((-549)) . T)) +((((-380)) . T) (((-549)) . T) (((-410 (-549))) . T)) +((((-380)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-225)) . T) (((-380)) . T) (((-893 (-380))) . T)) +((((-865)) . T)) +((((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-380)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-538)) . T) (((-549)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) ((($) . T)) -(((|#3|) . T)) ((($) . T)) -(((|#2|) . T) (((-567)) . T) (($) . T)) -(((|#1|) . T)) +((($ $) . T)) +((($) . T) (((-549)) . T)) +((($) . T)) +((((-549)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(|has| |#1| (-370)) (((|#1|) . T)) -(((|#3|) . T) (((-567)) . T)) -((((-1254 |#2| |#3| |#4|)) . T) (((-567)) . T) (((-1255 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (((-567)) -2836 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))) (|has| |#1| (-1051))) ((|#1|) . T) (((-613 $)) . T) (($) |has| |#1| (-559)) (((-410 (-567))) -2836 (|has| |#1| (-559)) (|has| |#1| (-1040 (-410 (-567))))) (((-410 (-954 |#1|))) |has| |#1| (-559)) (((-954 |#1|)) |has| |#1| (-1051)) (((-1179)) . T)) -((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) -((($) . T) (((-116 |#1|)) . T) (((-410 (-567))) . T)) -((((-1127 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -((((-1175 |#1|)) . T) (((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -((((-1127 |#1| (-1179))) . T) (((-1090 (-1179))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-1179)) . T)) -(|has| |#1| (-1102)) -((($) . T)) -(|has| |#1| (-1102)) -((((-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))) (((-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) -(((|#1| |#2|) . T)) -((((-1179) |#1|) . T)) -(((|#4|) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-1179) (-52)) . T)) -((((-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T)) -((((-863)) . T)) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051)) (|has| |#2| (-1102))) -(((#0=(-1255 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-410 (-567)) #0#) |has| |#1| (-559)) (($ $) |has| |#1| (-559))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1| $) |has| |#1| (-287 |#1| |#1|))) -((((-1255 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)) (($) |has| |#1| (-559))) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) +((((-865)) . T)) +((((-410 $) (-410 $)) |has| |#1| (-560)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-365)) -((($) |has| |#1| (-849)) (((-567)) -2836 (|has| |#1| (-21)) (|has| |#1| (-849)))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(|has| |#1| (-365)) +(((|#1| (-773) (-1085)) . T)) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-1180)) |has| |#1| (-903 (-1180))) (((-1085)) . T)) +((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-773)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-410 (-567))) . T) (($) . T)) -(((|#3|) |has| |#3| (-365))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -((((-1179)) . T)) -((($) . T) (((-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| (-1254 |#2| |#3| |#4|) (-38 (-410 (-567)))) (((-567)) . T)) +(((|#2|) . T) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) (((-1085)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T)) +((((-1085)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1| (-773)) . T)) +(((#1=(-1085) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1154)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -(((|#2| |#3|) . T)) -(-2836 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(((|#1| (-534 |#2|)) . T)) -(((|#1| (-772)) . T)) -(((|#1| (-534 (-1090 (-1179)))) . T)) +((((-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) . T)) +((((-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) . T)) +((((-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) . T) (((-865)) . T)) (((|#1|) |has| |#1| (-172))) -(((|#1|) . T)) -(|has| |#2| (-911)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -((((-863)) . T)) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)))) -(((|#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1051))) (($) |has| |#2| (-172))) -((($ $) . T) ((#0=(-1254 |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) |has| #0# (-38 (-410 (-567))))) -((((-912 |#1|)) . T)) -(-12 (|has| |#1| (-365)) (|has| |#2| (-821))) -((($) . T) (((-410 (-567))) . T)) -((((-863)) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(((|#2| |#2|) . T)) +((((-113)) . T) ((|#1|) . T)) +((((-113)) . T) ((|#1|) . T) (((-549)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((((-865)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) +((((-549)) . T)) ((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) +((((-865)) . T)) +((((-538)) |has| |#2| (-616 (-538))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549))))) ((($) . T)) -(-2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -(((|#1| |#2|) . T)) -((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) -((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365))) -(-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365)) (|has| |#1| (-351))) -(-2836 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) -((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-112)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#2|) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T)) +(((|#2| (-534 (-866 |#1|))) . T)) (((|#2|) . T)) -(|has| |#2| (-365)) -(|has| |#1| (-851)) +((((-865)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +((($) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) . T) (($) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549)))) ((|#2| |#2|) . T) (($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +((((-410 (-549))) |has| |#2| (-38 (-410 (-549)))) ((|#2|) |has| |#2| (-172)) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913)))) +(((|#2| (-534 (-866 |#1|))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) +(-3960 (|has| |#2| (-455)) (|has| |#2| (-913))) +((($ $) . T) ((#1=(-866 |#1|) $) . T) ((#1# |#2|) . T)) +((((-866 |#1|)) . T)) +(|has| |#2| (-913)) +(|has| |#2| (-913)) +((((-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) (((-549)) |has| |#2| (-1041 (-549))) ((|#2|) . T) (((-866 |#1|)) . T)) +((((-549)) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))) ((|#2|) . T) (($) -3960 (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-866 |#1|)) . T)) +(((|#2| (-534 (-866 |#1|)) (-866 |#1|)) . T)) +(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(((|#1|) . T) ((|#2|) . T)) +(((|#1|) . T) ((|#2|) . T) (((-549)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((((-865)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) (((|#1|) . T)) (((|#1|) . T)) +((((-865)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (((|#1|) . T)) (((|#1|) . T)) -((((-567)) . T)) +((((-538)) |has| |#1| (-616 (-538)))) (((|#1|) . T)) -((((-863)) . T)) -(((|#2|) |has| |#2| (-172))) -(|has| |#1| (-1102)) -(((|#1|) |has| |#1| (-172))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#1| (-534 |#2|) |#2|) . T)) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#2| (-889 (-549)))) (((-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#2| (-889 (-380))))) (((|#2|) . T)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) +((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) (((|#1|) . T)) -(((|#4|) . T)) -(((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-567)) . T) (($) . T)) -(((|#3|) . T) (((-567)) . T) (($) . T)) -((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-821)) -(((|#4|) . T)) -((($) . T)) -((($ $) . T)) +(((|#1| (-534 |#2|)) . T)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-1128 |#1| |#2|)) . T) (((-949 |#1|)) |has| |#2| (-616 (-1180))) (((-865)) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) +((((-1128 |#1| |#2|)) . T) ((|#2|) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-549)) . T)) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T)) +((((-1128 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1| (-534 |#2|)) . T)) +(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-863)) . T)) -(((|#1| (-534 (-1179))) . T)) -(((|#1|) |has| |#1| (-172))) -((((-863)) . T)) -(((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#2|) . T)) -(((|#2|) -2836 (|has| |#2| (-6 (-4424 "*"))) (|has| |#2| (-172)))) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(|has| |#2| (-911)) -(|has| |#1| (-911)) -(((|#2|) |has| |#2| (-172))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-863)) . T)) -((((-863)) . T)) -((((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) -(((|#1| |#2|) . T)) -((($) . T) (((-567)) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) . T)) +((((-949 |#1|)) |has| |#2| (-616 (-1180))) (((-1162)) -12 (|has| |#1| (-1041 (-549))) (|has| |#2| (-616 (-1180)))) (((-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549))))) (((-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380))))) (((-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#2| (-616 (-538))))) +(((|#1| (-534 |#2|) |#2|) . T)) (((|#1|) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-863)) . T)) -(((|#1| |#2|) . T)) -((($) . T) (((-567)) . T)) -(((|#1| (-410 (-567))) . T)) +((((-1174 |#1|)) . T) (((-865)) . T)) +((((-410 $) (-410 $)) |has| |#1| (-560)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(|has| |#1| (-365)) +(((|#1| (-773) (-1085)) . T)) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-1180)) |has| |#1| (-903 (-1180))) (((-1085)) . T)) +((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) (((|#1|) . T)) -(-2836 (|has| |#1| (-291)) (|has| |#1| (-365))) -((((-144)) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-849)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) +(((|#1| (-773)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((((-1174 |#1|)) . T) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) (((-1085)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T)) +((((-1174 |#1|)) . T) (((-1085)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1| (-773)) . T)) +(((#1=(-1085) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1154)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-187)) . T) (((-863)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539))) (((-894 (-567))) |has| |#1| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#1| (-615 (-894 (-381))))) -((((-1179) (-52)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-645 (-144))) . T) (((-1161)) . T)) -((((-863)) . T)) -((((-1161)) . T)) -((((-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) -((((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -(|has| |#1| (-851)) -((((-863)) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) . T)) -(((|#2|) |has| |#2| (-365))) -((((-863)) . T)) -((((-539)) |has| |#4| (-615 (-539)))) -((((-863)) . T) (((-645 |#4|)) . T)) -(((|#2|) . T)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T) (((-613 $)) . T)) -(-2836 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1051))) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -((((-1179) (-52)) . T)) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(|has| |#1| (-911)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(|has| |#1| (-911)) -(((|#1|) . T) (((-567)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-863)) . T)) -((((-567)) . T)) -(((#0=(-410 (-567)) #0#) . T) (($ $) . T)) -((((-410 (-567))) . T) (($) . T)) -(((|#1| (-410 (-567)) (-1084)) . T)) -(|has| |#1| (-1102)) -(|has| |#1| (-559)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(|has| |#1| (-821)) -(((#0=(-912 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) -((((-410 |#2|)) . T)) -(|has| |#1| (-849)) -((((-1205 |#1|)) . T) (((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) . T) ((#1=(-567) #1#) . T) (($ $) . T)) -((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(((|#2|) . T)) -((((-863)) . T)) -((((-410 (-567))) . T) (((-700)) . T) (($) . T) (((-567)) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#2|) |has| |#2| (-172))) (((|#1|) . T)) -(((|#2|) . T)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2025 (-1179)) (|:| -2265 #0#))) . T)) -(|has| |#1| (-351)) -((((-567)) . T)) -((((-863)) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) ((|#1|) . T)) +((($) . T) ((|#1|) . T)) (((|#1|) . T)) -(((#0=(-1255 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#))) -(|has| |#1| (-365)) -(((|#1|) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051))) (($) -2836 (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051))) (((-567)) -2836 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)))) -(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -(((#0=(-410 (-567)) #0#) . T) ((#1=(-700) #1#) . T) (($ $) . T)) -((((-317 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) -((((-863)) . T)) -(|has| |#1| (-1102)) -(((|#1|) . T)) -(((|#1|) -2836 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|)))) -(((|#1|) -2836 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|)))) -(((|#2|) . T)) -((((-410 (-567))) . T) (((-700)) . T) (($) . T)) -((((-582)) . T)) -(((|#3| |#3|) . T)) -(|has| |#2| (-233)) -((((-865 |#1|)) . T)) -((((-1179)) |has| |#1| (-902 (-1179))) ((|#3|) . T)) -((((-645 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-365)) (|has| |#2| (-1024))) -((((-410 (-567))) . T) (($) . T)) -((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365))) -((($) . T) (((-410 (-567))) . T)) -((((-863)) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((((-567)) . T) (((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-567)) . T)) -(((|#3|) . T)) -(|has| |#1| (-1102)) -(((|#2|) . T)) (((|#1|) . T)) -((((-567)) . T)) -(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (($) . T) (((-567)) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +((((-538)) |has| |#1| (-616 (-538)))) +(|has| |#1| (-370)) +(((|#1|) . T)) +((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(((|#1|) |has| |#1| (-310 |#1|))) +(((|#1| $) |has| |#1| (-287 |#1| |#1|))) +((((-999 |#1|)) . T) ((|#1|) . T)) +((((-999 |#1|)) . T) (((-549)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| (-999 |#1|) (-1041 (-410 (-549)))))) +((((-999 |#1|)) . T) ((|#1|) . T) (((-549)) -3960 (|has| |#1| (-1041 (-549))) (|has| (-999 |#1|) (-1041 (-549)))) (((-410 (-549))) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| (-999 |#1|) (-1041 (-410 (-549)))))) +(|has| |#1| (-852)) +(((|#1|) . T)) +((((-865)) . T)) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) +(-3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) +(((|#2|) |has| |#2| (-172))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-728)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +(-3960 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052))) +((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) (((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) +((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052)))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)))) +((((-865)) -3960 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-615 (-865))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-728)) (|has| |#2| (-795)) (|has| |#2| (-850)) (|has| |#2| (-1052)) (|has| |#2| (-1104))) (((-1269 |#2|)) . T)) +(|has| |#2| (-172)) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) +(((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($) |has| |#2| (-172))) +(((|#2| |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1052))) (($ $) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-1052))) +((((-1180)) -12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1052))) +(|has| |#2| (-370)) +(((|#2|) |has| |#2| (-1052))) +(((|#2|) |has| |#2| (-1052)) (((-549)) -12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) +(((|#2|) |has| |#2| (-1104))) +((((-549)) -3960 (|has| |#2| (-172)) (|has| |#2| (-850)) (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052))) ((|#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) +(((|#2|) |has| |#2| (-1104)) (((-549)) -12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (((-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) +((((-549) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2|) . T)) +((((-549) |#2|) . T)) +((((-549) |#2|) . T)) +(|has| |#2| (-795)) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(-3960 (|has| |#2| (-795)) (|has| |#2| (-850))) +(|has| |#2| (-850)) +(|has| |#2| (-850)) +(((|#2|) |has| |#2| (-365))) (((|#1| |#2|) . T)) +(((|#1|) . T)) +((((-865)) . T)) +(|has| |#1| (-233)) ((($) . T)) -((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((($) . T) (((-410 (-567))) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-567)) . T)) -(((|#1|) . T) (((-567)) . T)) -(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#2|) . T)) -((((-863)) . T)) -((((-863)) . T)) +(((|#1| (-534 (-820 (-1180))) (-820 (-1180))) . T)) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-1180)) |has| |#1| (-903 (-1180))) (((-820 (-1180))) . T)) +((($ $) . T) ((#1=(-1180) $) |has| |#1| . #2=((-233))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-820 (-1180)) |#1|) . T) ((#3# $) . T)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) +((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-534 (-820 (-1180)))) . T)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T)) +(((|#1| (-534 (-820 (-1180)))) . T)) +((((-1128 |#1| (-1180))) . T) (((-820 (-1180))) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-1180)) . T)) +((((-1128 |#1| (-1180))) . T) (((-549)) . T) (((-820 (-1180))) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-1180)) . T)) +(((|#1| (-1180) (-820 (-1180)) (-534 (-820 (-1180)))) . T)) +(|has| |#2| (-365)) +(|has| |#2| (-365)) +(|has| |#2| (-365)) +(|has| |#2| (-365)) +((((-410 (-549))) . #1=(|has| |#2| (-365))) (($) . #1#)) +((((-410 (-549))) . #1=(|has| |#2| (-365))) (($) . #1#)) +((((-410 (-549))) . #1=(|has| |#2| (-365))) (($) . #1#)) +(|has| |#2| (-365)) +(|has| |#2| (-365)) +(|has| |#2| (-365)) +(|has| |#2| (-365)) +(|has| |#2| (-365)) (((|#2|) . T)) -(((|#3|) . T)) -(((#0=(-116 |#1|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) -((((-1127 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#2|) . T)) +((((-410 (-549))) . #1=(|has| |#2| (-365))) (($) . #1#) ((|#2|) . T) (((-549)) . T)) +((((-410 (-549))) |has| |#2| (-365)) (($) . T)) +(((|#2|) . T) (((-865)) . T)) +((((-410 (-549))) |has| |#2| (-365)) (($) . T) (((-549)) . T)) +((((-410 (-549))) |has| |#2| (-365)) (($) . T)) +((((-410 (-549))) |has| |#2| (-365)) (($) . T)) +(((#1=(-410 (-549)) #1#) |has| |#2| (-365)) (($ $) . T)) +((((-865)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) . T)) -((($ $) . T)) -((((-673 |#1|)) . T)) -((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((((-116 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) (((-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381))))) -(((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T)) -((((-144)) . T)) -((($) . T)) -((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-381)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +((((-865)) . T)) (((|#1|) . T)) -(|has| |#2| (-911)) -(|has| |#1| (-911)) -(|has| |#1| (-911)) -(((|#4|) . T)) -(|has| |#2| (-1024)) -((($) . T)) -(|has| |#1| (-911)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((($) . T)) -(((|#2|) . T)) (((|#1|) . T)) -(((|#1|) . T) (($) . T)) -((($) . T)) -(|has| |#1| (-365)) -((((-912 |#1|)) . T)) -((($) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) |has| |#1| (-849)) (((-567)) -2836 (|has| |#1| (-21)) (|has| |#1| (-849)))) -((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(-2836 (|has| |#1| (-370)) (|has| |#1| (-851))) -(((|#1|) . T)) -((((-772)) . T)) -((((-863)) . T)) -((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) -((((-410 |#2|) |#3|) . T)) -((($) . T) (((-410 (-567))) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T) (((-613 $)) . T)) -((((-567)) . T) (($) . T)) -((((-567)) . T) (($) . T)) -((((-772) |#1|) . T)) -(((|#2| (-240 (-2498 |#1|) (-772))) . T)) -(((|#1| (-534 |#3|)) . T)) -((((-410 (-567))) . T)) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((((-1161)) . T) (((-863)) . T)) -(((#0=(-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) #0#) |has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))))) -((((-1161)) . T)) -(|has| |#1| (-911)) -(|has| |#2| (-365)) -(((|#1|) . T) (($) . T) (((-567)) . T)) -(-2836 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T)) -((((-863)) . T)) (((|#1|) . T)) -((((-381)) . T) (((-567)) . T)) -(((#0=(-410 (-567)) #0#) . T) (($ $) . T)) -((($ $) . T)) -((($ $) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +(|has| |#1| (-233)) +(((|#2|) |has| |#2| (-172))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) ((|#2|) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-172))) +((((-549)) . T) ((|#2|) |has| |#2| (-172))) +(((|#2|) . T)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +((($) |has| |#1| (-850))) +(|has| |#1| (-850)) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) +((($) |has| |#1| (-850)) (((-549)) -3960 (|has| |#1| (-21)) (|has| |#1| (-850)))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) -3960 (|has| |#1| (-850)) (|has| |#1| (-1041 (-549)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-865)) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(((|#1| |#1|) . T)) +((((-113)) . T) ((|#1|) . T)) +((((-113)) . T) ((|#1|) . T) (((-549)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((((-865)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) +((((-865)) . T)) +((((-509)) . T)) +((((-865)) . T)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +(|has| |#1| (-850)) +((($) |has| |#1| (-850))) +(|has| |#1| (-850)) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) +((($) |has| |#1| (-850)) (((-549)) -3960 (|has| |#1| (-21)) (|has| |#1| (-850)))) +(-3960 (|has| |#1| (-21)) (|has| |#1| (-850))) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) -3960 (|has| |#1| (-850)) (|has| |#1| (-1041 (-549)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-865)) . T)) +(((|#1|) |has| |#1| (-172))) (((|#1| |#1|) . T)) -((((-863)) . T)) -(|has| |#1| (-559)) -((((-410 (-567))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -(-2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) -(|has| |#1| (-38 (-410 (-567)))) -(-12 (|has| |#1| (-548)) (|has| |#1| (-829))) -((((-863)) . T)) -((((-1179)) -2836 (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-902 (-1179)))))) -(|has| |#1| (-365)) -((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) -(|has| |#1| (-365)) -((((-410 (-567))) . T) (($) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((((-567) |#1|) . T)) (((|#1|) . T)) -(((|#2|) |has| |#1| (-365))) -(((|#2|) |has| |#1| (-365))) -((((-567)) . T) (($) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) (((|#1|) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) ((|#1|) . T)) +((($) . T) ((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(((|#2|) . T) (((-1179)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1179)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) (((-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567))))) -(((|#2|) . T)) -((((-1179) #0=(-1255 |#1| |#2| |#3| |#4|)) |has| #0# (-517 (-1179) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) -((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -((((-613 $) $) . T) (($ $) . T)) -((((-169 (-225))) . T) (((-169 (-381))) . T) (((-1175 (-700))) . T) (((-894 (-381))) . T)) -(((|#3|) . T)) -(|has| |#1| (-559)) -(|has| (-410 |#2|) (-233)) -(((|#1| (-410 (-567))) . T)) -((($) . T) (((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T)) -(((|#3|) . T)) -(|has| |#1| (-559)) -((((-863)) . T)) -((($ $) . T)) -((($) . T)) -((((-863)) . T)) -((((-1179)) |has| |#2| (-902 (-1179)))) -((((-410 (-567))) . T) (($) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#2|) |has| |#1| (-365))) -((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-381)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-567))))) -(|has| |#1| (-365)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(|has| |#1| (-365)) -(((|#1|) . T)) -((($) . T) (((-567)) . T) ((|#2|) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(|has| |#1| (-365)) -(((|#3|) . T)) -((((-1161)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T)) +((((-549)) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) (((|#1|) . T)) -(|has| |#1| (-559)) -(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(-2836 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) +(((|#2|) |has| |#2| (-172))) +(((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(((|#1| |#2|) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) +((((-865)) . T)) +((($) . T) (((-549)) . T) ((|#2|) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-172))) +(((|#2|) . T)) +((((-1266 |#1|)) . T) (((-549)) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) +(((|#2|) . T) (((-549)) |has| |#2| (-1041 (-549))) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) +(((|#2|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-893 (-549))) . T) (((-893 (-380))) . T) (((-538)) . T) (((-1180)) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +((((-949 |#1|)) . T)) +(((|#1|) |has| |#1| (-172)) (((-949 |#1|)) . T) (((-549)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +((((-949 |#1|)) . T) (((-865)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) ((($) . T)) -((((-1161) |#1|) . T)) -(|has| |#1| (-147)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) -(|has| |#1| (-147)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-370))) +((((-865)) . T)) +((($) . T) (((-549)) . T)) ((($) . T)) -(|has| |#1| (-147)) -((((-584 |#1|)) . T)) +((($ $) . T)) ((($) . T)) -(|has| |#1| (-559)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) ((($) . T)) ((($) . T)) -((((-410 |#2|)) . T)) -((((-410 (-567))) |has| |#2| (-1040 (-567))) (((-567)) |has| |#2| (-1040 (-567))) (((-1179)) |has| |#2| (-1040 (-1179))) ((|#2|) . T)) -(((#0=(-410 |#2|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-351))) -(|has| |#1| (-147)) -((((-863)) . T)) ((($) . T)) -((((-1142 |#1| |#2|)) . T)) -(((|#1| (-567)) . T)) -(((|#1| (-410 (-567))) . T)) -((((-567)) |has| |#2| (-888 (-567))) (((-381)) |has| |#2| (-888 (-381)))) +((((-549)) . T) (($) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((((-871 |#1|)) . T)) +((((-871 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-871 |#1|)) . T) (((-410 (-549))) . T)) +((($) . T) (((-871 |#1|)) . T) (((-410 (-549))) . T)) +((((-871 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-871 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-871 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-871 |#1|)) . T) (((-410 (-549))) . T) (($) . T)) +(((#1=(-871 |#1|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-871 |#1|)) . T)) +((((-1180) #1=(-871 |#1|)) |has| #1# (-517 (-1180) #1#)) ((#1# #1#) |has| #1# (-310 #1#))) +(((#1=(-871 |#1|)) |has| #1# (-310 #1#))) +(((#1=(-871 |#1|) $) |has| #1# (-287 #1# #1#))) +((((-871 |#1|)) . T)) +((((-871 |#1|)) . T)) +((((-871 |#1|)) . T)) +((((-871 |#1|)) . T)) +((((-549)) . T) (((-871 |#1|)) . T) (($) . T) (((-410 (-549))) . T)) +((((-871 |#1|)) . T)) +((((-871 |#1|)) . T)) +((((-865)) . T)) +(|has| |#2| (-145)) +(|has| |#2| (-147)) (((|#2|) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-112)) . T)) -(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) +((((-1180)) |has| |#2| (-903 (-1180)))) +(|has| |#2| (-233)) +(((|#2|) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) ((|#2|) . T) (((-410 (-549))) . T)) +((($) . T) ((|#2|) . T) (((-410 (-549))) . T)) +(((|#2|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#2|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#2|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#2|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#2| |#2|) . T) ((#1=(-410 (-549)) #1#) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1180) |#2|) |has| |#2| (-517 (-1180) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|))) +(((|#2|) |has| |#2| (-310 |#2|))) +(((|#2| $) |has| |#2| (-287 |#2| |#2|))) (((|#2|) . T)) -((((-863)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-1179) (-52)) . T)) -((((-410 |#2|)) . T)) -((((-863)) . T)) +(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) +(((|#2|) . T)) +((((-549)) |has| |#2| (-889 (-549))) (((-380)) |has| |#2| (-889 (-380)))) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +(-3960 (|has| |#2| (-822)) (|has| |#2| (-852))) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +(|has| |#2| (-822)) +(((|#2|) . T)) +(|has| |#2| (-913)) +(|has| |#2| (-1023)) +((((-538)) |has| |#2| (-616 (-538))) (((-893 (-549))) |has| |#2| (-616 (-893 (-549)))) (((-893 (-380))) |has| |#2| (-616 (-893 (-380)))) (((-380)) . #1=(|has| |#2| (-1023))) (((-225)) . #1#)) +((((-549)) . T) ((|#2|) . T) (($) . T) (((-410 (-549))) . T) (((-1180)) |has| |#2| (-1041 (-1180)))) +((((-410 (-549))) |has| |#2| . #1=((-1041 (-549)))) (((-549)) |has| |#2| . #1#) (((-1180)) |has| |#2| (-1041 (-1180))) ((|#2|) . T)) +(|has| |#2| (-1154)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))) +(-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))) +((((-865)) -3960 (-12 (|has| |#1| (-615 (-865))) (|has| |#2| (-615 (-865)))) (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1180)) . T) ((|#1|) . T)) +((((-1180)) . T) ((|#1|) . T)) +((((-865)) . T)) +((((-674 |#1|)) . T)) +((((-674 |#1|)) . T)) +((((-865)) . T)) +((((-865)) . T)) (((|#1|) . T)) -(|has| |#1| (-1102)) -(|has| |#1| (-792)) -(|has| |#1| (-792)) -((((-863)) . T)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-114)) . T) ((|#1|) . T)) +((((-1206 |#1|)) . T) (((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) (((|#1|) . T)) (((|#1|) . T)) -((((-225)) . T) (((-381)) . T) (((-894 (-381))) . T)) -((((-863)) . T)) -((((-1255 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559))) -((((-863)) . T)) -((((-863)) . T)) -(((|#2|) . T)) -((((-863)) . T)) -(((#0=(-912 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) +((((-865)) . T)) +(-3960 (|has| |#1| (-370)) (|has| |#1| (-852))) (((|#1|) . T)) -(((|#1|) . T)) -((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-365)) -((((-863)) . T)) -(((|#2|) . T)) -((((-567)) . T)) -((((-863)) . T)) -((((-567)) . T)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-1161)) . T) (((-539)) . T) (((-567)) . T) (((-894 (-567))) . T) (((-381)) . T) (((-225)) . T)) -((((-863)) . T)) +((((-865)) . T)) +((((-549)) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +(|has| $ (-147)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($) . T) (((-410 (-549))) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-410 (-549))) . T) (($) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-410 (-549)) #1#) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-643 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-852)) +(((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(((|#1|) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-538)) |has| |#1| (-616 (-538))) (((-893 (-380))) |has| |#1| (-616 (-893 (-380)))) (((-893 (-549))) |has| |#1| (-616 (-893 (-549))))) +((($) . T)) +(((|#1| (-534 (-1180))) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +(((|#1| (-534 (-1180))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) +((($ $) . T) ((#1=(-1180) $) . T) ((#1# |#1|) . T)) +((((-1180)) . T)) +((((-380)) |has| |#1| (-889 (-380))) (((-549)) |has| |#1| (-889 (-549)))) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T) (((-1180)) . T)) +((((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) ((|#1|) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) (((-1180)) . T)) +(((|#1| (-534 (-1180)) (-1180)) . T)) +((((-1123)) . T) (((-865)) . T)) +(((|#1| |#2|) . T)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-365)) -(|has| |#1| (-365)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-902 (-1179))) (|has| |#1| (-1051)) (|has| |#1| (-1114)) (|has| |#1| (-1102))) -(|has| |#1| (-1154)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-567) |#1|) . T)) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-865)) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) +((($) |has| |#1| (-560)) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-549)) . T)) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-116 |#1|) $) |has| #0# (-287 #0# #0#))) -(((|#1|) |has| |#1| (-172))) -((((-317 |#1|)) . T) (((-567)) . T)) +(|has| |#1| (-852)) (((|#1|) . T)) -((((-863)) . T)) -((((-114)) . T) ((|#1|) . T)) -((((-863)) . T)) -(((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-310 |#1|))) -((((-567) |#1|) . T)) -((((-1179) |#1|) . T)) -(((|#1|) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) (((|#1|) . T)) -(((|#1|) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1051)))) -((((-567)) . T) (((-410 (-567))) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-559)) -((($) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -((((-381)) . T)) (((|#1|) . T)) +(-12 (|has| |#1| (-795)) (|has| |#2| (-795))) +(-12 (|has| |#1| (-795)) (|has| |#2| (-795))) +(-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))) +(-12 (|has| |#1| (-795)) (|has| |#2| (-795))) +(-12 (|has| |#1| (-795)) (|has| |#2| (-795))) +((((-549)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) +(-12 (|has| |#1| (-476)) (|has| |#2| (-476))) +(-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) +(-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) +(-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) +(-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))) +(-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))) +(-12 (|has| |#1| (-370)) (|has| |#2| (-370))) +((((-865)) . T)) +((((-865)) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-643 (-549))) . T)) +((((-643 (-549))) . T) (((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-549)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +((((-538)) |has| |#1| (-616 (-538)))) (((|#1|) . T)) +((((-1180)) |has| |#1| (-903 (-1180)))) +(|has| |#1| (-233)) (|has| |#1| (-365)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(|has| |#1| (-365)) -(|has| |#1| (-559)) -(|has| |#1| (-1102)) -((((-781 |#1| (-865 |#2|))) |has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|))))) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) +(-3960 (|has| |#1| (-291)) (|has| |#1| (-365))) +((((-549)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549)))))) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) +((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) +((($) . T) (((-549)) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) +(((|#1|) . T) (($) -3960 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-549))) |has| |#1| (-365))) +(((|#1|) . T) (($) -3960 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-549))) |has| |#1| (-365))) +(((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#1=(-410 (-549)) #1#) |has| |#1| (-365))) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-365))) +(((|#1|) . T)) +((((-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|))) +(((|#1|) |has| |#1| (-310 |#1|))) +(((|#1| $) |has| |#1| (-287 |#1| |#1|))) (((|#1|) . T)) -(((|#2| |#3|) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) (((|#1|) . T)) -(|has| |#2| (-911)) -(((|#1| (-534 |#2|)) . T)) -(((|#1| (-772)) . T)) -(|has| |#1| (-233)) -(((|#1| (-534 (-1090 (-1179)))) . T)) -(|has| |#2| (-365)) -((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-567)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-863)) . T)) -((((-863)) . T)) -(-2836 (|has| |#3| (-794)) (|has| |#3| (-849))) -((((-863)) . T)) -((((-1122)) . T) (((-863)) . T)) -((((-539)) . T) (((-863)) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(|has| |#1| (-852)) (((|#1|) . T)) -((($ $) . T) (((-613 $) $) . T)) +(((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) (((|#1|) . T)) (((|#1|) . T)) -((((-567)) . T)) +((((-410 |#2|) |#3|) . T)) +((((-410 (-549))) |has| #1=(-410 |#2|) (-1041 (-410 (-549)))) (((-549)) |has| #1# (-1041 (-549))) ((#1#) . T)) +((((-410 |#2|)) . T)) +((((-549)) |has| #1=(-410 |#2|) (-641 (-549))) ((#1#) . T)) +((((-410 |#2|)) . T)) +((((-410 |#2|) |#3|) . T)) +(|has| (-410 |#2|) (-147)) +((((-410 |#2|) |#3|) . T)) +(|has| (-410 |#2|) (-145)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +(|has| (-410 |#2|) (-233)) +((((-1180)) |has| (-410 |#2|) (-903 (-1180)))) +((((-410 |#2|)) . T)) (((|#3|) . T)) -((((-863)) . T)) -(-2836 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-567)) . T) (((-410 (-567))) -2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T)) -((((-1127 |#1| |#2|)) . T) ((|#2|) . T) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-567)) . T)) -((((-1175 |#1|)) . T) (((-567)) . T) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) (((-1084)) . T) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) -(-2836 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) -((((-1127 |#1| (-1179))) . T) (((-567)) . T) (((-1090 (-1179))) . T) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) (((-1179)) . T)) -(((#0=(-584 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T)) -((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#1| (-1269 |#1|) (-1269 |#1|)) . T)) -((((-584 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((($) . T) (((-410 (-567))) . T)) +(((#1=(-410 |#2|) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-865)) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T)) +((((-410 |#2|)) . T) (((-410 (-549))) . T) (($) . T) (((-549)) . T)) +(((|#1| |#2| |#3|) . T)) +((((-410 (-549))) . T) (((-865)) . T)) +((((-549)) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +((((-549)) . T) (((-410 (-549))) . T) (($) . T)) +(((#1=(-549) #1#) . T) ((#2=(-410 (-549)) #2#) . T) (($ $) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-538)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) +((((-410 (-549))) . T) (((-549)) . T)) +((((-549)) . T) (($) . T) (((-410 (-549))) . T)) +((((-549)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +(((|#1|) . T) (($) . T) (((-549)) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (($) . T) (((-410 (-549))) . T) (((-549)) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) . T) ((#2=(-549) #2#) . T) (($ $) . T)) +(((|#1|) . T) (((-549)) . T) (((-410 (-549))) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) . T)) +(((|#1|) . T) (((-549)) -3960 (|has| |#1| (-1041 (-549))) (|has| (-410 (-549)) (-1041 (-549)))) (((-410 (-549))) . T)) +(|has| |#1| (-1104)) +((((-865)) |has| |#1| (-1104))) +(|has| |#1| (-1104)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#4|) . T)) +((((-643 |#4|)) . T) (((-865)) . T)) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4|) . T)) +((((-538)) |has| |#4| (-616 (-538)))) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| |#1|) . T) (($ $) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-549)) . T) (($) . T)) +(((|#1|) . T) (($) . T)) +(((|#1|) . T) (((-549)) . T)) +((((-1180) (-51)) . T)) +((((-865)) . T)) +((((-1180) (-51)) . T)) +((((-1180) (-51)) . T)) +((((-1180) (-51)) . T)) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4292 (-1180)) (|:| -2254 #1#))) . T)) +(((#1=(-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) #1#) |has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) |has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) +((((-1180) (-51)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +(((|#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) . T)) +((((-782 |#1| (-866 |#2|))) . T)) +((((-643 (-782 |#1| (-866 |#2|)))) . T) (((-865)) . T)) +((((-782 |#1| (-866 |#2|))) |has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|))))) +(((#1=(-782 |#1| (-866 |#2|)) #1#) |has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|))))) +((((-782 |#1| (-866 |#2|))) . T)) +((((-538)) |has| (-782 |#1| (-866 |#2|)) (-616 (-538)))) +(((|#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) . T)) +(((|#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) . T)) +((((-538)) |has| |#3| (-616 (-538)))) +(((|#3|) |has| |#3| (-365))) +(((|#3| |#3|) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +((((-691 |#3|)) . T) (((-865)) . T)) +((((-549)) . T) ((|#3|) . T)) +(((|#3|) . T)) +(((|#3|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) . T)) +(|has| |#1| (-1104)) +((((-865)) |has| |#1| (-1104))) +(|has| |#1| (-1104)) +((((-865)) . T)) +(((|#1| |#2|) . T)) +((((-1180)) . T)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((((-549)) . T) (($) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-538)) . T) (((-549)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) +((((-549)) . T)) +((((-1180) (-51)) . T)) +((((-865)) . T)) +((((-1180) (-51)) . T)) +((((-1180) (-51)) . T)) +((((-1180) (-51)) . T)) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4292 (-1180)) (|:| -2254 #1#))) . T)) +(((#1=(-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) #1#) |has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) |has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) +((((-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) . T)) +((((-1180) (-51)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-294 |#3|)) . T)) +((((-294 |#3|)) . T)) +(((|#3| |#3|) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#3| |#3|) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-365))) +((((-1180)) -12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) +(-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-352))) +(-3960 (|has| |#1| (-370)) (|has| |#1| (-352))) +(|has| |#1| (-352)) +(|has| |#1| (-352)) +(-3960 (|has| |#1| (-145)) (|has| |#1| (-352))) +(|has| |#1| (-352)) +(((|#1| |#2|) . T)) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($ $) . T) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1| |#1|) . T)) +((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) ((|#1|) . T)) +((((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-352))) (((-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-352)) (|has| |#1| (-1041 (-410 (-549))))) ((|#1|) . T)) +(|has| |#1| (-147)) +(((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-410 (-567))) . T)) -(((|#2|) |has| |#2| (-6 (-4424 "*")))) +(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) (((|#1|) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((|#1|) . T) (((-567)) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1| |#2|) . T)) +((((-1180)) . T)) +((((-865)) . T)) +((((-865)) . T)) (((|#1|) . T)) -((((-863)) . T)) -((((-295 |#3|)) . T)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -(((|#2| |#2|) . T) ((|#6| |#6|) . T)) +((((-865)) . T)) +(|has| |#1| (-233)) +((($) . T)) +(((|#1| (-534 (-1091 (-1180))) (-1091 (-1180))) . T)) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-1180)) |has| |#1| (-903 (-1180))) (((-1091 (-1180))) . T)) +((($ $) . T) ((#1=(-1180) $) |has| |#1| . #2=((-233))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1091 (-1180)) |#1|) . T) ((#3# $) . T)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) +((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-534 (-1091 (-1180)))) . T)) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) (((|#1|) . T)) -((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -(((|#2|) . T) ((|#6|) . T)) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(|has| |#2| (-911)) -(|has| |#1| (-911)) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) +(((|#1| (-534 (-1091 (-1180)))) . T)) +((((-1128 |#1| (-1180))) . T) (((-1091 (-1180))) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-1180)) . T)) +((((-1128 |#1| (-1180))) . T) (((-549)) . T) (((-1091 (-1180))) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-1180)) . T)) +(((|#1| (-1180) (-1091 (-1180)) (-534 (-1091 (-1180)))) . T)) +((((-865)) . T)) (((|#1|) . T)) -((((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1| (-643 |#1|)) |has| |#1| (-850))) +(|has| |#1| (-1104)) +((((-865)) |has| |#1| (-1104))) +(|has| |#1| (-1104)) (((|#1|) . T)) -(((|#1| |#1|) . T)) (((|#1|) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +(|has| (-1092 |#1|) (-1104)) +((((-865)) |has| (-1092 |#1|) (-1104))) +(|has| (-1092 |#1|) (-1104)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) (((|#1|) . T)) -(|has| |#1| (-1102)) (((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -((((-1179)) . T) ((|#1|) . T)) -((((-863)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) -(((#0=(-410 (-567)) #0#) . T)) -((((-410 (-567))) . T)) -(((|#1|) |has| |#1| (-172))) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(((|#1|) . T)) -(((|#1|) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(((|#1|) . T)) -((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-539)) . T)) -((((-863)) . T)) -((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((((-1179)) |has| |#2| (-902 (-1179))) (((-1084)) . T)) -((((-863)) . T)) -((((-1254 |#2| |#3| |#4|)) . T)) -((((-912 |#1|)) . T)) -((($) . T) (((-410 (-567))) . T)) -(-12 (|has| |#1| (-365)) (|has| |#2| (-821))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-821))) -((((-863)) . T)) -(|has| |#1| (-1223)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -((((-1179)) |has| |#1| (-902 (-1179)))) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((($) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T)) -(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -((($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-559)))) -(|has| |#1| (-559)) -(((|#1|) |has| |#1| (-365))) -((((-567)) . T)) -(|has| |#1| (-792)) -(|has| |#1| (-792)) -((((-1179) #0=(-116 |#1|)) |has| #0# (-517 (-1179) #0#)) ((#0# #0#) |has| #0# (-310 #0#))) -(((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) -((((-1084)) . T) ((|#2|) . T) (((-567)) |has| |#2| (-1040 (-567))) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) +((((-865)) . T)) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (((|#1|) . T)) (((|#1|) . T)) +((((-538)) |has| |#1| (-616 (-538)))) (((|#1|) . T)) -(((|#1|) . T) (((-567)) . T) (($) . T)) -((((-567) (-772)) . T) ((|#3| (-772)) . T)) +(|has| |#1| (-370)) (((|#1|) . T)) -(((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-863)) . T)) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -((((-567)) |has| |#1| (-888 (-567))) (((-381)) |has| |#1| (-888 (-381)))) (((|#1|) . T)) -((((-871 |#1|)) . T)) -((((-871 |#1|)) . T)) -(-12 (|has| |#1| (-365)) (|has| |#2| (-911))) -((((-410 (-567))) . T) (((-700)) . T) (($) . T)) -(((|#1|) |has| |#1| (-172))) -(|has| |#1| (-365)) -(|has| |#1| (-365)) +((((-865)) . T)) +((((-643 $)) . T) (((-1162)) . T) (((-1180)) . T) (((-549)) . T) (((-225)) . T) (((-865)) . T)) +((((-865)) . T)) +((((-1162) (-1180) (-549) (-225) (-865)) . T)) +((((-643 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-865)) . T)) +(((|#1| |#2| |#3| |#4| |#5|) . T)) +((((-865)) . T)) +(-3960 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-728)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052)) (|has| |#3| (-1104))) +(-3960 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-728)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052)) (|has| |#3| (-1104))) +(((|#3|) |has| |#3| (-172))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-728)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-728)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +(-3960 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052))) +((($) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) (((-549)) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-850)) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052)))) +((($) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052)))) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)))) +((((-865)) -3960 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-615 (-865))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-728)) (|has| |#3| (-795)) (|has| |#3| (-850)) (|has| |#3| (-1052)) (|has| |#3| (-1104))) (((-1269 |#3|)) . T)) +(|has| |#3| (-172)) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($) |has| |#3| (-172))) +(((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($) |has| |#3| (-172))) +(((|#3| |#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1052))) (($ $) |has| |#3| (-172))) +(((|#3|) |has| |#3| (-1052))) +((((-1180)) -12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) +(|has| |#3| (-370)) +(((|#3|) |has| |#3| (-1052))) +(((|#3|) |has| |#3| (-1052)) (((-549)) -12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) +(((|#3|) |has| |#3| (-1104))) +((((-549)) -3960 (|has| |#3| (-172)) (|has| |#3| (-850)) (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (|has| |#3| (-1052))) ((|#3|) -3960 (|has| |#3| (-172)) (|has| |#3| (-1104))) (((-410 (-549))) -12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) +(((|#3|) |has| |#3| (-1104)) (((-549)) -12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (((-410 (-549))) -12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) +((((-549) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) +(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) +(((|#3|) . T)) +((((-549) |#3|) . T)) +((((-549) |#3|) . T)) +(|has| |#3| (-795)) +(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) +(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) +(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) +(-3960 (|has| |#3| (-795)) (|has| |#3| (-850))) +(|has| |#3| (-850)) +(|has| |#3| (-850)) +(((|#3|) |has| |#3| (-365))) +(((|#1| |#3|) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((($) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T)) +((($) . T)) +((($ $) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((($) . T)) +((((-549)) . T) (($) . T)) +((((-549)) . T)) +((((-549)) . T)) +((((-538)) . T) (((-549)) . T) (((-893 (-549))) . T) (((-380)) . T) (((-225)) . T)) +((((-549)) . T)) +((((-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#2| (-616 (-538)))) (((-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380))))) (((-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) +((($) . T)) +(((|#1| (-534 |#2|)) . T)) (((|#1|) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913)))) +(((|#1| (-534 |#2|)) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-172))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#2|) -2836 (|has| |#2| (-6 (-4424 "*"))) (|has| |#2| (-172)))) +(((|#1|) . T) (((-549)) |has| |#1| (-641 (-549)))) +(-3960 (|has| |#1| (-455)) (|has| |#1| (-913))) +((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) -(|has| |#1| (-365)) +((((-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#2| (-889 (-380)))) (((-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#2| (-889 (-549))))) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) (((-549)) |has| |#1| (-1041 (-549))) ((|#1|) . T) ((|#2|) . T)) +((((-549)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) ((|#1|) . T) (($) -3960 (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#2|) . T)) +(((|#1| (-534 |#2|) |#2|) . T)) +((($) . T)) +((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) +((((-865)) . T)) +(((|#1| (-534 |#2|) |#2|) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +((((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +(((|#1| (-534 |#2|)) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| |#2|) . T)) +((((-865)) . T)) +(((|#1|) . T)) +((((-1185)) . T)) +((((-1185)) . T)) +((((-1185)) . T) (((-865)) . T)) +((((-865)) . T)) +((((-1143 |#1| |#2|)) . T)) +(((#1=(-1143 |#1| |#2|) #1#) |has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|)))) +((((-1143 |#1| |#2|)) |has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|)))) +((((-865)) . T)) +((((-1143 |#1| |#2|)) . T)) +((((-538)) |has| |#2| (-616 (-538)))) +(((|#2|) |has| |#2| (-6 (-4427 "*")))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-691 |#2|)) . T) (((-865)) . T)) +((($) . T) (((-549)) . T) ((|#2|) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) -3960 (|has| |#2| (-6 (-4427 "*"))) (|has| |#2| (-172)))) +(((|#2|) -3960 (|has| |#2| (-6 (-4427 "*"))) (|has| |#2| (-172)))) +(((|#2|) . T)) +((((-1180)) |has| |#2| (-903 (-1180)))) +(|has| |#2| (-233)) +(((|#2|) . T)) +(((|#2|) . T) (((-549)) |has| |#2| (-641 (-549)))) +(((|#2|) . T)) +((((-549)) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) +(((|#2|) . T) (((-549)) |has| |#2| (-1041 (-549))) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) +(((|#1| |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) +(((|#2|) . T)) +(((|#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-538)) |has| |#4| (-616 (-538)))) +(((|#4|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4|) . T)) +((((-865)) . T) (((-643 |#4|)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +(((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) . T)) -((((-865 |#1|)) . T)) +(((|#1| |#2|) . T)) +((((-865)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#1| |#2|) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-643 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-772)) . T)) -((((-1179)) . T)) -((((-871 |#1|)) . T)) -(-2836 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -((((-863)) . T)) (((|#1|) . T)) -(-2836 (|has| |#2| (-794)) (|has| |#2| (-849))) -(-2836 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))) -((((-871 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -((($ $) . T) (((-613 $) $) . T)) -((($) . T)) -((((-863)) . T)) -((((-567)) . T)) -(((|#2|) . T)) -((((-863)) . T)) -((($) . T) (((-567)) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) -((((-863)) . T)) -(((|#1|) . T)) -((((-863)) . T)) -((($) . T) ((|#2|) . T) (((-410 (-567))) . T)) -(|has| |#1| (-1102)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-863)) . T)) -(|has| |#2| (-911)) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567))))) -((((-863)) . T)) -((((-863)) . T)) -(((|#3|) |has| |#3| (-1051)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) -((((-1127 |#1| |#2|)) . T) (((-954 |#1|)) |has| |#2| (-615 (-1179))) (((-863)) . T)) -((((-954 |#1|)) |has| |#2| (-615 (-1179))) (((-1161)) -12 (|has| |#1| (-1040 (-567))) (|has| |#2| (-615 (-1179)))) (((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567))))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) -((((-1175 |#1|)) . T) (((-863)) . T)) -((((-863)) . T)) -((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T) (((-1179)) . T)) -((((-863)) . T)) -((((-567)) . T)) -(((|#1|) . T)) -((($) . T)) -((((-381)) |has| |#1| (-888 (-381))) (((-567)) |has| |#1| (-888 (-567)))) -((((-567)) . T)) -(((|#1|) . T)) -((((-863)) . T)) -(((|#1|) . T)) -((((-863)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-645 |#1|)) . T)) -((($) . T) (((-567)) . T) (((-1255 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T)) -((((-567)) -2836 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) (($) -2836 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1051))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559))) -((((-1184)) . T)) -((((-1184)) . T)) -((((-567)) . T) (((-410 (-567))) . T)) -((((-1184)) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -((((-1184)) . T)) -(((|#1|) |has| |#1| (-310 |#1|))) -((((-381)) . T)) -((((-863)) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) (((|#1|) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) (((|#1|) . T)) -((((-863)) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-410 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1102)) -(((|#2| (-485 (-2498 |#1|) (-772))) . T)) -((((-567) |#1|) . T)) -((((-1161)) . T) (((-863)) . T)) -(((|#2| |#2|) . T)) -(((|#1| (-534 (-1179))) . T)) -(-2836 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((((-567)) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-1179)) |has| |#1| (-902 (-1179))) (((-1084)) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567)))) -(|has| |#1| (-559)) -(((#0=(-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (((-567)) . T) (($) . T)) -((($) . T) (((-410 (-567))) . T)) -((($) . T)) -((($) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -(((|#1|) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-863)) . T)) +((((-865)) . T)) ((((-144)) . T)) -(((|#1|) . T) (((-410 (-567))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-863)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1154)) -(((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T)) -(((|#1|) . T)) -((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -((((-863)) . T)) -((((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-567)) |has| |#1| (-1040 (-567))) ((|#1|) . T) ((|#2|) . T)) -((((-1084)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567))))) -((((-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381)))) (((-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567))))) -((((-1255 |#1| |#2| |#3| |#4|)) . T)) -((((-567) |#1|) . T)) -(((|#1| |#1|) . T)) -((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-172)) (($) . T)) -((($) . T)) -((((-700)) . T)) -((((-781 |#1| (-865 |#2|))) . T)) -((((-567)) . T) (($) . T)) -((($) . T)) -(((|#1|) . T) (((-410 (-567))) |has| |#1| (-365))) -((((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-1102)) -(|has| |#1| (-1102)) -(|has| |#2| (-365)) -(((|#1|) . T) (($) -2836 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365))) +((((-144)) . T)) +((((-144)) . T)) +((((-549) (-144)) . T)) +((((-549) (-144)) . T)) +((((-549) (-144)) . T)) +((((-144)) . T)) +((((-144)) . T)) +((((-1162) |#1|) . T)) +((((-865)) . T)) +((((-1162) |#1|) . T)) +((((-1162) |#1|) . T)) +((((-1162) |#1|) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((#1=(-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) #1#) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) |has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) +((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +((((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) . T)) +((((-1162) |#1|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1178 |#1| |#2| |#3|)) . T)) +((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-365)) +((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1178 |#1| |#2| |#3|)) -12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))))) +(((#1=(-1178 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|)))) (((-1180) #1#) -12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-517 (-1180) (-1178 |#1| |#2| |#3|))))) +((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-365)) -(|has| |#1| (-38 (-410 (-567)))) -((((-567)) . T)) -((((-1179)) -12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) -((((-1179)) -12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) -(((|#1|) . T)) -(|has| |#1| (-233)) -(((|#2| (-240 (-2498 |#1|) (-772))) . T)) -(((|#1| (-534 |#3|)) . T)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(|has| |#1| (-370)) -(((|#1|) . T) (($) . T)) -(((|#1| (-534 |#2|)) . T)) -(-2836 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(((|#1| (-772)) . T)) -(|has| |#1| (-559)) -(-2836 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-863)) . T)) -((((-567)) . T) (((-410 (-567))) . T) (($) . T)) -(-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) -(-2836 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(((|#1|) |has| |#1| (-172))) -(((|#4|) |has| |#4| (-1051))) -(((|#3|) |has| |#3| (-1051))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-821))) -(-12 (|has| |#1| (-365)) (|has| |#2| (-821))) -((((-567)) . T) (((-410 (-567))) -2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))) ((|#2|) . T) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-865 |#1|)) . T)) -((((-1127 |#1| |#2|)) . T) (((-567)) . T) ((|#3|) . T) (($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))) ((|#2|) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((((-1184)) . T)) -((((-673 |#1|)) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T)) -((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -((((-863)) . T)) -((((-645 $)) . T) (((-1161)) . T) (((-1179)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T)) -((($) . T) (((-410 (-567))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1102)) (((-567)) -12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (((-410 (-567))) -12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102)))) -(((|#3|) |has| |#3| (-1102)) (((-567)) -12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (((-410 (-567))) -12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) -(|has| |#2| (-365)) -(((|#2|) |has| |#2| (-1051)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-3960 (-12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) +((((-1180)) -3960 (-12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180)))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) +((((-1178 |#1| |#2| |#3|)) |has| |#1| (-365))) +(-3960 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-147)))) +(-3960 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-145)))) +((((-865)) . T)) +(((|#1|) . T)) +((((-1178 |#1| |#2| |#3|) $) -12 (|has| |#1| (-365)) (|has| (-1178 |#1| |#2| |#3|) (-287 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-549) (-1085)) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((#2=(-1178 |#1| |#2| |#3|) #2#) |has| |#1| (-365)) ((|#1| |#1|) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-549)) . T) (($) . T) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1178 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((((-1178 |#1| |#2| |#3|)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) ((|#1|) |has| |#1| (-172))) +(((|#1| (-549)) . T)) +(((|#1| (-549)) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| (-1178 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((((-410 $) (-410 $)) |has| |#1| (-560)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) +(|has| |#1| (-365)) +(((|#1| (-773) (-1085)) . T)) +(|has| |#1| (-913)) +(|has| |#1| (-913)) +((((-1180)) |has| |#1| (-903 (-1180))) (((-1085)) . T)) +((((-549)) |has| |#1| (-641 (-549))) ((|#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-365)) -(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -(((|#2| |#2|) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) . T) (($) . T) (((-410 (-567))) . T)) -(((|#2|) . T)) -((((-863)) |has| |#1| (-1102))) +(((|#1| (-773)) . T)) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) (((-1085)) . T) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-549)) . T) (($) . T) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-560)) (|has| |#1| (-913))) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T)) +((((-1085)) . T) ((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1| (-773)) . T)) +(((#1=(-1085) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -((((-1255 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-1154)) (((|#1|) . T)) +((((-1178 |#1| |#2| |#3|)) . T) (((-1171 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(|has| |#2| (-821)) -(|has| |#2| (-821)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) +(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +((($ $) . T)) +((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) +(((|#1| (-410 (-549)) (-1085)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(((|#1| (-410 (-549))) . T)) +(((|#1| (-410 (-549))) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +((((-865)) . T)) +(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) . T)) (|has| |#1| (-365)) -(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-365)) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#1|) |has| |#2| (-420 |#1|))) -(((|#1|) |has| |#2| (-420 |#1|))) -((((-1161)) . T)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-645 |#1|)) . T) (((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-645 |#1|)) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-863)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1218)) . T) (((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) |has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))))) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -((((-567) |#1|) . T)) -((((-567) |#1|) . T)) -((((-567) |#1|) . T)) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((((-567) |#1|) . T)) -(((|#1|) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172))) -((((-1179)) |has| |#1| (-902 (-1179))) (((-819 (-1179))) . T)) -(-2836 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -((((-820 |#1|)) . T)) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +((((-1266 |#2|)) . T) (((-1178 |#1| |#2| |#3|)) . T) (((-1171 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(((|#1| (-1171 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| (-773)) . T)) +(((|#1| (-773)) . T)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1| (-773) (-1085)) . T)) +((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) +((($ $) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T)) +(|has| |#1| (-15 * (|#1| (-773) |#1|))) +(((|#1|) . T)) +((((-865)) . T)) +((((-380)) . T) (((-549)) . T)) +((((-1162)) . T)) +((((-893 (-380))) . T) (((-893 (-549))) . T) (((-1180)) . T) (((-538)) . T)) +((((-865)) . T)) +(((|#1| (-974)) . T)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((((-865)) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) +((($) |has| |#1| (-560)) ((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))) (((-549)) . T)) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1|) . T)) +(((|#1|) . T) (((-549)) |has| |#1| (-1041 (-549))) (((-410 (-549))) |has| |#1| (-1041 (-410 (-549))))) +(((|#1| (-974)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1162)) . T) (((-509)) . T) (((-225)) . T) (((-549)) . T)) +((((-1162)) . T) (((-509)) . T) (((-225)) . T) (((-549)) . T)) +((((-538)) . T) (((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +(((|#1| |#2|) . T)) +((((-865)) . T)) +(((|#1| |#2|) . T)) +(((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-863)) . T)) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((#1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #1#) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) +((((-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -(|has| |#1| (-38 (-410 (-567)))) -((((-863)) . T)) -((((-1255 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559))) -(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567)))) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-391) (-1162)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104)))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1180) $) . T)) +((((-1180)) . T)) +((((-865)) . T)) +(((|#1| (-534 #1=(-1180)) #1#) . T)) +((($) . T) (((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +((($) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +(((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549)))) ((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560)))) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +((((-549)) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +((((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-560))) +(((|#1| (-534 (-1180))) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| (-1180)) . T)) +(|has| |#1| (-1104)) +(|has| |#1| (-1104)) +((((-961 |#1|)) . T)) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-1104))) (((-961 |#1|)) . T)) +((((-961 |#1|)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1259 |#1| |#2| |#3|)) . T)) +((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-365)) -(-2836 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233)))) -(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) +((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +((((-1259 |#1| |#2| |#3|)) -12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))))) +(((#1=(-1259 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|)))) (((-1180) #1#) -12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-517 (-1180) (-1259 |#1| |#2| |#3|))))) +((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) (|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-3960 (-12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) +((((-1180)) -3960 (-12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180)))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) +((((-1259 |#1| |#2| |#3|)) |has| |#1| (-365))) +(-3960 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-147)))) +(-3960 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-145)))) +((((-865)) . T)) +(((|#1|) . T)) +((((-1259 |#1| |#2| |#3|) $) -12 (|has| |#1| (-365)) (|has| (-1259 |#1| |#2| |#3|) (-287 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-549) (-1085)) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((#2=(-1259 |#1| |#2| |#3|) #2#) |has| |#1| (-365)) ((|#1| |#1|) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-549)) . T) (($) . T) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-1259 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((((-1259 |#1| |#2| |#3|)) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) ((|#1|) |has| |#1| (-172))) +(((|#1| (-549)) . T)) +(((|#1| (-549)) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| (-1259 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-365))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-1154))) +(((|#2|) . T) (((-1180)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))) (((-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549)))) (((-410 (-549))) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-1023))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-913))) +(((|#2|) |has| |#1| (-365))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) +(-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-822))) (-12 (|has| |#1| (-365)) (|has| |#2| (-852)))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) +(-12 (|has| |#1| (-365)) (|has| |#2| (-822))) +((((-380)) -12 (|has| |#1| (-365)) (|has| |#2| (-889 (-380)))) (((-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-889 (-549))))) +(|has| |#1| (-365)) +(((|#2|) |has| |#1| (-365))) +((((-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-641 (-549)))) ((|#2|) |has| |#1| (-365))) +(((|#2|) |has| |#1| (-365))) +(((|#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1180) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1180) |#2|)))) +(((|#2|) |has| |#1| (-365))) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) +((((-1180)) -3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) +(((|#2|) |has| |#1| (-365))) +((((-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) (((-380)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) (((-893 (-380))) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-380))))) (((-893 (-549))) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-549))))) (((-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-538))))) +(-3960 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147)))) +(-3960 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))) +((((-865)) . T)) (((|#1|) . T)) -(((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T)) -((((-567) |#1|) . T)) -((((-317 |#1|)) . T)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((#0=(-700) (-1175 #0#)) . T)) -((((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-567)) . T) (((-410 (-567))) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-849)) -(((|#2|) . T) (((-1179)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1179)))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172))) -(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2836 (|has| |#1| (-365)) (|has| |#1| (-559)))) -((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1127 |#1| (-1179))) . T) (((-819 (-1179))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1040 (-567))) (((-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) (((-1179)) . T)) -((($) . T)) -(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1084) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1179) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1090 (-1179)) |#1|) . T) ((#1# $) . T)) -((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567))))) -(|has| |#2| (-911)) -((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) -(((|#1|) |has| |#1| (-172))) -((((-567) |#1|) . T)) -(((|#1|) . T)) -((((-1184)) . T)) -(((#0=(-1255 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -(|has| |#2| (-233)) -(|has| $ (-147)) -((((-863)) . T)) -((($) . T) (((-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T)) -((((-863)) . T)) -(|has| |#1| (-849)) -((((-129)) . T)) -((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) -((((-410 (-567))) . T) (((-700)) . T) (($) . T) (((-567)) . T)) -(((|#1|) . T)) -((((-129)) . T)) -((((-410 |#2|) |#3|) . T)) -((((-863)) . T)) -(-12 (|has| |#1| (-308)) (|has| |#1| (-911))) -(((|#2| (-673 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-863)) |has| |#1| (-1102))) -(((|#4|) . T)) -(|has| |#1| (-559)) -((($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) -((((-1179)) -2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) -(((|#1|) . T) (($) -2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365)))) -((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) -((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) -((((-567) |#1|) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) -(((|#1|) . T)) -(((|#1| (-534 (-819 (-1179)))) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((((-567)) . T) ((|#2|) . T) (($) . T) (((-410 (-567))) . T) (((-1179)) |has| |#2| (-1040 (-1179)))) -(((|#1|) . T)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -(((|#1|) . T)) -(-2836 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) -((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365))) -((($) . T) (((-871 |#1|)) . T) (((-410 (-567))) . T)) -((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365))) -(|has| |#1| (-559)) -(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) (($ $) . T)) +(((|#1| (-549) (-1085)) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-549)) . T) (($) . T) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T)) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +((((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172))) +(((|#2|) . T) (((-1180)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560))) (((-549)) . T) ((|#1|) |has| |#1| (-172))) +(((|#1| (-549)) . T)) +(((|#1| (-549)) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| |#2|) . T)) +(((|#1| (-1157 |#1|)) |has| |#1| (-850))) +(|has| |#1| (-1104)) +((((-865)) |has| |#1| (-1104))) +(|has| |#1| (-1104)) (((|#1|) . T)) (((|#1|) . T)) -((((-410 |#2|)) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) . T) (($ $) . T)) -((((-567)) . T)) -(((|#2|) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((($) . T)) -((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -((((-863)) . T)) -((((-410 (-567))) . T) (($) . T)) -((((-567) |#1|) . T)) -((($) . T)) -((((-863)) . T)) -((($ $) . T) (((-1179) $) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567))))) -((((-863)) . T)) -((((-863)) . T)) -((((-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) (((-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539))))) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1|) . T) (((-863)) . T) (((-1184)) . T)) -((((-863)) . T)) -((((-1184)) . T)) -((((-114)) . T) ((|#1|) . T) (((-567)) . T)) -(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T)) -((((-129)) . T)) -((($) . T) (((-567)) . T) (((-116 |#1|)) . T) (((-410 (-567))) . T)) -(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) -((((-863)) . T)) -((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911)))) -(((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T)) -((($) . T) (((-567)) . T)) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-1106)) . T)) -((((-863)) . T)) -((($) -2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) +(((|#2|) . T)) +((((-865)) . T)) +((((-410 $) (-410 $)) |has| |#2| (-560)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-365)) +(-3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-913))) +(-3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +(-3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +(-3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) +(|has| |#2| (-365)) +(((|#2| (-773) (-1085)) . T)) +(|has| |#2| (-913)) +(|has| |#2| (-913)) +((((-1180)) |has| |#2| (-903 (-1180))) (((-1085)) . T)) +((((-549)) |has| |#2| (-641 (-549))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-773)) . T)) +(|has| |#2| (-147)) +(|has| |#2| (-145)) +((((-1266 |#1|)) . T) (((-549)) . T) (($) -3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) (((-1085)) . T) ((|#2|) . T) (((-410 (-549))) -3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) +((($) -3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) |has| |#2| (-172)) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) +((($) -3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) |has| |#2| (-172)) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) +((($) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) +((((-549)) . T) (($) . T) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) +((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) +((($) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) . T) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2| |#2|) . T) ((#1=(-410 (-549)) #1#) |has| |#2| (-38 (-410 (-549))))) +((($) -3960 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-560)) (|has| |#2| (-913))) ((|#2|) |has| |#2| (-172)) (((-410 (-549))) |has| |#2| (-38 (-410 (-549))))) +(((|#2|) . T)) +((((-1085)) . T) ((|#2|) . T) (((-549)) |has| |#2| (-1041 (-549))) (((-410 (-549))) |has| |#2| (-1041 (-410 (-549))))) +(((|#2| (-773)) . T)) +(((#1=(-1085) |#2|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -((($) -2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -((((-1261 |#1| |#2| |#3|)) . T)) -((((-1261 |#1| |#2| |#3|)) |has| |#1| (-365))) -(|has| |#1| (-365)) -((((-1261 |#1| |#2| |#3|)) . T) (((-1233 |#1| |#2| |#3|)) . T)) -((((-1179)) . T) (((-863)) . T)) -(|has| |#2| (-911)) -(((|#1|) . T)) -(|has| |#1| (-911)) -(((|#1|) . T)) +(|has| |#2| (-1154)) +(((|#2|) . T)) +((((-1259 |#1| |#2| |#3|)) . T) (((-1229 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-172))) -((((-700)) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-1184)) . T)) -(((|#1|) |has| |#1| (-172))) -((((-1184)) . T)) -((((-1255 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559))) -((((-1184)) . T)) -((((-1255 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)) (($) |has| |#1| (-559))) -((((-410 (-567))) . T) (($) . T)) -(((|#1| (-567)) . T)) -(((|#1|) |has| |#1| (-172))) -((((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-1184)) . T)) -((((-1184)) . T)) +(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +((($ $) . T)) +((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) +(((|#1| (-410 (-549)) (-1085)) . T)) +(|has| |#1| (-145)) +(|has| |#1| (-147)) +(((|#1| (-410 (-549))) . T)) +(((|#1| (-410 (-549))) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +((((-865)) . T)) +(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) . T)) (|has| |#1| (-365)) -(-2836 (|has| |#1| (-172)) (|has| |#1| (-559))) -(((|#1| (-567)) . T)) -(((|#1| (-410 (-567))) . T)) -(((|#1| (-772)) . T)) -((((-410 (-567))) . T)) -(((|#1| (-534 |#2|) |#2|) . T)) -((((-567) |#1|) . T)) -((((-567) |#1|) . T)) -(|has| |#1| (-1102)) -((((-567) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-894 (-381))) . T) (((-894 (-567))) . T) (((-1179)) . T) (((-539)) . T)) -(((|#1|) . T)) -((((-863)) . T)) -(-2836 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -(-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) -((((-567)) . T)) -((((-567)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(((|#1| |#2|) . T)) +(|has| |#1| (-365)) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +((((-1266 |#2|)) . T) (((-1259 |#1| |#2| |#3|)) . T) (((-1229 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(((|#1| (-1229 |#1| |#2| |#3|)) . T)) +(((|#2|) . T)) (((|#1|) . T)) -(-2836 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1051))) -((((-1179)) -12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) -(-2836 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) +(|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) +((($ $) . T)) +((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) +(((|#1| (-410 (-549)) (-1085)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) +(((|#1| (-410 (-549))) . T)) +(((|#1| (-410 (-549))) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-365)) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +((((-865)) . T)) +(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1|) . T) (($) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1| |#1|) . T) (($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) ((#1=(-410 (-549)) #1#) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365)))) +(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) . T)) +(|has| |#1| (-365)) +(|has| |#1| (-365)) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) -3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-365))) (((-549)) . T) (($) -3960 (|has| |#1| (-365)) (|has| |#1| (-560)))) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-560))) +(-3960 (|has| |#1| (-365)) (|has| |#1| (-560))) +(|has| |#1| (-365)) +(|has| |#1| (-365)) (|has| |#1| (-365)) (((|#1| |#2|) . T)) -(((|#1| |#2|) . T)) -((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) -(|has| |#1| (-233)) -((($) . T) (((-567)) . T) (((-410 (-567))) . T)) -((($) . T) (((-567)) . T)) -((($) . T) (((-567)) . T)) -((($) . T) ((#0=(-1254 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567))))) -((((-863)) . T)) -(((|#1| (-772) (-1084)) . T)) -((((-567) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-567) |#1|) . T)) -((((-567) |#1|) . T)) -((((-116 |#1|)) . T)) -((((-410 (-567))) . T) (((-567)) . T)) -(((|#2|) |has| |#2| (-1051))) -((((-410 (-567))) . T) (($) . T)) -(((|#2|) . T)) -((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559))) -((((-567)) . T)) -((((-567)) . T)) -((((-1161) (-1179) (-567) (-225) (-863)) . T)) +((((-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) +(|has| (-1250 |#2| |#3| |#4|) (-147)) +(|has| (-1250 |#2| |#3| |#4|) (-145)) +((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) |has| #1# (-172)) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) +((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) |has| #1# (-172)) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) +((((-865)) . T)) +((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) +((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) +((($ $) . T) ((#1=(-1250 |#2| |#3| |#4|) #1#) . T) ((#2=(-410 (-549)) #2#) |has| #1# (-38 (-410 (-549))))) +(((#1=(-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| #1# (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) +(((#1=(-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| #1# (-38 (-410 (-549)))) (($) . T)) +((($) . T) (((-1250 |#2| |#3| |#4|)) . T) (((-410 (-549))) |has| (-1250 |#2| |#3| |#4|) (-38 (-410 (-549)))) (((-549)) . T)) +((($) . T) ((#1=(-1250 |#2| |#3| |#4|)) |has| #1# (-172)) (((-410 (-549))) |has| #1# (-38 (-410 (-549))))) +((((-1250 |#2| |#3| |#4|)) . T)) +((((-1250 |#2| |#3| |#4|)) . T)) +((((-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(|has| |#1| (-38 (-410 (-549)))) +(((|#1| (-773)) . T)) +(((|#1| (-773)) . T)) +(|has| |#1| (-560)) +(|has| |#1| (-560)) +(-3960 (|has| |#1| (-172)) (|has| |#1| (-560))) +(|has| |#1| (-147)) +(|has| |#1| (-145)) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +((($ $) -3960 (|has| |#1| (-172)) (|has| |#1| (-560))) ((|#1| |#1|) . T) ((#1=(-410 (-549)) #1#) |has| |#1| (-38 (-410 (-549))))) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549))))) +(((|#1| (-773) (-1085)) . T)) +((((-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) +((($ $) . T)) +((((-865)) . T)) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T) (($) . T)) +(((|#1|) . T) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (($) . T)) +((($) |has| |#1| (-560)) ((|#1|) |has| |#1| (-172)) (((-410 (-549))) |has| |#1| (-38 (-410 (-549)))) (((-549)) . T)) +(|has| |#1| (-15 * (|#1| (-773) |#1|))) +(((|#1|) . T)) +((((-1180)) . T) (((-865)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-549) |#1|) . T)) +((((-538)) |has| |#1| (-616 (-538)))) +(((|#1|) . T)) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(-3960 (|has| |#1| (-852)) (|has| |#1| (-1104))) +(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) +((((-865)) -3960 (|has| |#1| (-615 (-865))) (|has| |#1| (-852)) (|has| |#1| (-1104)))) +(((|#1|) . T)) +(|has| |#1| (-852)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-865)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +((((-1185)) . T)) +((((-865)) . T) (((-1185)) . T)) +((((-1185)) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) +(((|#4|) . T)) +(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-549)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T)) +(((|#4|) . T) (((-865)) . T)) +(((|#1|) |has| |#1| (-172)) (($) . T) (((-549)) . T)) +(((|#1| |#2| |#3| |#4|) . T)) +((((-538)) |has| |#4| (-616 (-538)))) +(((|#4|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) +(((|#4|) . T)) +((((-865)) . T) (((-643 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-567)) . T) ((|#2|) |has| |#2| (-172))) -((((-114)) . T) ((|#1|) . T) (((-567)) . T)) -(-2836 (|has| |#1| (-351)) (|has| |#1| (-370))) +(((|#2|) |has| |#2| (-172))) +(((|#2|) . T)) (((|#1| |#2|) . T)) -((((-225)) . T)) -((((-410 (-567))) . T) (($) . T) (((-567)) . T)) -((((-863)) . T)) -((($) . T) ((|#1|) . T)) -((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567))))) -(((|#2|) |has| |#2| (-1102)) (((-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (((-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-539)) |has| |#1| (-615 (-539)))) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1102)))) -((($) . T) (((-410 (-567))) . T)) -(|has| |#1| (-911)) -(|has| |#1| (-911)) -((((-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) (((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) (((-894 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-381))))) (((-894 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-567))))) (((-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539))))) -((((-863)) . T)) -((((-863)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-172))) -(((|#1|) . T) (((-567)) . T)) -((((-1184)) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-559))) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-849))) (((|#2|) . T)) -(-2836 (|has| |#1| (-21)) (|has| |#1| (-849))) +(((|#2|) . T)) +((((-865)) . T)) +((($) . T) (((-549)) . T) ((|#2|) . T)) +((($) . T) ((|#2|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-172))) +((((-821 |#1|)) . T)) +(((|#2|) . T) (((-549)) . T) (((-821 |#1|)) . T)) +(((|#2| (-821 |#1|)) . T)) +(((|#2| (-896 |#1|)) . T)) +(((|#1| |#2|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-172))) +(((|#2|) . T)) +(((|#2|) . T) (($) . T)) +((((-865)) . T)) +(((|#2|) . T) (($) . T) (((-549)) . T)) +((((-896 |#1|)) . T) ((|#2|) . T) (((-549)) . T) (((-821 |#1|)) . T)) +((((-896 |#1|)) . T) (((-821 |#1|)) . T)) +(((|#1| |#2|) . T)) +((((-1180) |#1|) . T)) (((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-863)) -2836 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) -((((-410 |#2|) |#3|) . T)) -((((-410 (-567))) . T) (($) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-365)) -((($ $) . T) ((#0=(-410 (-567)) #0#) . T)) -((($) . T) (((-567)) . T)) -(|has| (-410 |#2|) (-147)) -(|has| (-410 |#2|) (-145)) -((($) . T)) -((((-700)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((#0=(-567) #0#) . T)) -((($) . T) (((-410 (-567))) . T)) -(-2836 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1051))) -(-2836 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1051))) -((((-863)) . T) (((-1184)) . T)) -(|has| |#4| (-794)) -(-2836 (|has| |#4| (-794)) (|has| |#4| (-849))) -(|has| |#4| (-849)) -(|has| |#3| (-794)) -((((-1184)) . T)) -(-2836 (|has| |#3| (-794)) (|has| |#3| (-849))) -(|has| |#3| (-849)) -((((-567)) . T)) -(((|#2|) . T)) -((((-1179)) -2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) -((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) -((((-1179)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) -(((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T)) -((((-865 |#1|)) . T)) -((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365))) -((((-1142 |#1| |#2|)) . T)) -((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365))) -(((|#2|) . T) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-1024)) -(((|#2|) . T) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -((((-863)) . T)) -((((-539)) |has| |#2| (-615 (-539))) (((-894 (-567))) |has| |#2| (-615 (-894 (-567)))) (((-894 (-381))) |has| |#2| (-615 (-894 (-381)))) (((-381)) . #0=(|has| |#2| (-1024))) (((-225)) . #0#)) -((((-295 |#3|)) . T)) -((((-1179) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-410 (-567)))) -(|has| |#1| (-38 (-410 (-567)))) -((((-863)) . T)) -(((|#2|) . T)) -((((-863)) . T)) -((($ $) . T)) -((((-410 |#2|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-410 (-567))) . T) (((-700)) . T) (($) . T)) -((((-1177 |#1| |#2| |#3|)) . T)) -((((-1177 |#1| |#2| |#3|)) . T) (((-1170 |#1| |#2| |#3|)) . T)) -((((-863)) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-567) |#1|) . T)) -((((-1177 |#1| |#2| |#3|)) |has| |#1| (-365))) -(((|#1| |#2| |#3| |#4|) . T)) -(((|#1|) . T)) +((((-865)) . T)) +(((|#1|) . T) (($) . T) (((-549)) . T)) +(((|#1|) . T) (((-549)) . T) (((-821 (-1180))) . T)) +((((-821 (-1180))) . T)) +((((-1180) |#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-365)) -(((|#3|) . T) ((|#2|) . T) (($) -2836 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1051))) ((|#4|) -2836 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1051)))) -(((|#2|) . T) (($) -2836 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1051))) ((|#3|) -2836 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1051)))) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-365)) -((((-116 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) (((-567)) |has| |#2| (-1040 (-567))) ((|#2|) . T) (((-865 |#1|)) . T)) -((((-1179)) . T) ((|#1|) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -((((-187)) . T) (((-863)) . T)) -((((-863)) . T)) -(((|#1|) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -((((-129)) . T) (((-863)) . T)) -((((-567) |#1|) . T)) -((((-129)) . T)) +(((|#1| |#2|) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) (($ $) . T)) -((($ $) . T)) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-911))) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -((((-863)) . T)) -((((-863)) . T)) -((((-863)) . T)) -(((|#1| (-534 |#2|)) . T)) -((((-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) . T)) -((((-567) (-129)) . T)) -(((|#1| (-567)) . T)) -(((|#1| (-410 (-567))) . T)) -(((|#1| (-772)) . T)) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -((((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -(-2836 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) -(-2836 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-911))) -((($) . T)) -(((|#2| (-534 (-865 |#1|))) . T)) -((((-1184)) . T)) -((((-1184)) . T)) -((((-567) |#1|) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -(((|#2|) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-863)) . T) (((-1184)) . T)) -((((-1184)) . T)) -((((-863)) -2836 (|has| |#1| (-614 (-863))) (|has| |#1| (-1102)))) -(((|#1|) . T)) -(((|#2| (-772)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-549)) . T)) +(((|#1|) . T) (($) . T)) +((((-865)) . T)) +(((|#1|) . T) (($) . T) (((-549)) . T)) (((|#1| |#2|) . T)) -((((-1161) |#1|) . T)) -((((-410 |#2|)) . T)) -((((-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T)) -(|has| |#1| (-559)) -(|has| |#1| (-559)) -((($) . T) ((|#2|) . T)) -((($) . T) (((-410 (-567))) . T)) -((((-410 (-567))) . T) (($) . T)) -(((|#1|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#2| |#2|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +(((|#2|) |has| |#2| (-172))) +(((|#2|) |has| |#2| (-172))) +(((|#2|) . T)) +(((|#2|) . T) (($) . T)) +((((-865)) . T)) +(((|#2|) . T) (($) . T) (((-549)) . T)) +(((|#2|) . T) (((-549)) . T) (((-821 |#1|)) . T)) +((((-821 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-567)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-287 |#2| |#2|))) -(((|#1| (-645 |#1|)) |has| |#1| (-849))) -(-2836 (|has| |#1| (-233)) (|has| |#1| (-351))) -(-2836 (|has| |#1| (-365)) (|has| |#1| (-351))) -((((-1265 |#1|)) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1040 (-410 (-567))))) -(|has| |#1| (-1102)) -(((|#1|) . T)) -((((-1265 |#1|)) . T) (((-567)) . T) (($) -2836 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-911))) (((-1084)) . T) ((|#2|) . T) (((-410 (-567))) -2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) -((((-410 (-567))) . T) (($) . T)) -((((-1001 |#1|)) . T) ((|#1|) . T) (((-567)) -2836 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567)))) (((-410 (-567))) -2836 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) -((((-912 |#1|)) . T) (((-410 (-567))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-1179)) |has| |#1| (-902 (-1179)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -((((-912 |#1|)) . T) (($) . T) (((-410 (-567))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) -(((|#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T)) -(((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1142 |#1| |#2|) #0#) |has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|)))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((#0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) #0#) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) -(((#0=(-116 |#1|)) |has| #0# (-310 #0#))) +((((-549)) . T)) ((($ $) . T)) -(-2836 (|has| |#1| (-851)) (|has| |#1| (-1102))) -((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-481 . -1102) T) ((-265 . -517) 188291) ((-247 . -517) 188234) ((-245 . -1102) 188184) ((-574 . -111) 188169) ((-534 . -23) T) ((-137 . -1102) T) ((-133 . -1102) T) ((-117 . -310) 188126) ((-138 . -1102) T) ((-482 . -517) 187918) ((-678 . -617) 187902) ((-695 . -102) T) ((-1143 . -517) 187821) ((-393 . -131) T) ((-1282 . -978) 187790) ((-1026 . -1053) 187727) ((-31 . -93) T) ((-603 . -492) 187711) ((-1026 . -641) 187648) ((-622 . -131) T) ((-820 . -847) T) ((-526 . -57) 187598) ((-522 . -517) 187531) ((-356 . -1053) 187476) ((-59 . -517) 187409) ((-519 . -517) 187342) ((-421 . -902) 187301) ((-169 . -1051) T) ((-500 . -517) 187234) ((-499 . -517) 187167) ((-356 . -641) 187112) ((-800 . -1040) 186892) ((-700 . -38) 186857) ((-1242 . -617) 186605) ((-345 . -351) T) ((-1096 . -1095) 186589) ((-1096 . -1102) 186567) ((-856 . -617) 186464) ((-169 . -243) 186415) ((-169 . -233) 186366) ((-1096 . -1097) 186324) ((-873 . -287) 186282) ((-225 . -796) T) ((-225 . -793) T) ((-695 . -285) NIL) ((-574 . -617) 186254) ((-1152 . -1195) 186233) ((-410 . -994) 186217) ((-48 . -1053) 186182) ((-702 . -21) T) ((-702 . -25) T) ((-48 . -641) 186147) ((-1284 . -649) 186121) ((-317 . -160) 186100) ((-317 . -143) 186079) ((-1152 . -107) 186029) ((-116 . -21) T) ((-40 . -231) 186006) ((-134 . -25) T) ((-116 . -25) T) ((-609 . -289) 185982) ((-478 . -289) 185961) ((-1242 . -327) 185938) ((-1242 . -1051) T) ((-856 . -1051) T) ((-800 . -340) 185922) ((-139 . -185) T) ((-117 . -1154) NIL) ((-91 . -614) 185854) ((-480 . -131) T) ((-1242 . -233) T) ((-1098 . -493) 185835) ((-1098 . -614) 185801) ((-1092 . -493) 185782) ((-1092 . -614) 185748) ((-595 . -1219) T) ((-1075 . -493) 185729) ((-574 . -1051) T) ((-1075 . -614) 185695) ((-663 . -718) 185679) ((-1068 . -493) 185660) ((-1068 . -614) 185626) ((-960 . -289) 185603) ((-60 . -34) T) ((-1064 . -796) T) ((-1064 . -793) T) ((-1038 . -493) 185584) ((-1021 . -493) 185565) ((-817 . -727) T) ((-732 . -47) 185530) ((-624 . -38) 185517) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185448) ((-247 . -291) 185379) ((-1038 . -614) 185345) ((-1026 . -102) T) ((-1021 . -614) 185311) ((-627 . -493) 185292) ((-416 . -727) T) ((-117 . -38) 185237) ((-486 . -493) 185218) ((-627 . -614) 185184) ((-416 . -476) T) ((-218 . -493) 185165) ((-486 . -614) 185131) ((-356 . -102) T) ((-218 . -614) 185097) ((-1213 . -1060) T) ((-345 . -647) 185027) ((-712 . -1060) T) ((-1177 . -47) 185004) ((-1176 . -47) 184974) ((-1170 . -47) 184951) ((-128 . -289) 184926) ((-1037 . -151) 184872) ((-912 . -291) T) ((-1128 . -47) 184844) ((-695 . -310) NIL) ((-518 . -614) 184826) ((-513 . -614) 184808) ((-511 . -614) 184790) ((-328 . -1102) 184740) ((-713 . -455) 184671) ((-48 . -102) T) ((-1253 . -287) 184656) ((-1232 . -287) 184576) ((-645 . -667) 184560) ((-645 . -652) 184544) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-645 . -375) 184528) ((-606 . -493) 184510) ((-603 . -287) 184487) ((-606 . -614) 184454) ((-391 . -102) T) ((-1122 . -143) T) ((-126 . -614) 184386) ((-875 . -1102) T) ((-659 . -414) 184370) ((-715 . -614) 184352) ((-249 . -614) 184319) ((-187 . -614) 184301) ((-162 . -614) 184283) ((-157 . -614) 184265) ((-1284 . -727) T) ((-1104 . -34) T) ((-872 . -796) NIL) ((-872 . -793) NIL) ((-859 . -851) T) ((-732 . -888) NIL) ((-1293 . -131) T) ((-383 . -131) T) ((-894 . -617) 184233) ((-906 . -102) T) ((-732 . -1040) 184109) ((-534 . -131) T) ((-1089 . -414) 184093) ((-1002 . -492) 184077) ((-117 . -403) 184054) ((-1170 . -1219) 184033) ((-783 . -414) 184017) ((-781 . -414) 184001) ((-945 . -34) T) ((-695 . -1154) NIL) ((-252 . -649) 183836) ((-251 . -649) 183658) ((-818 . -922) 183637) ((-457 . -414) 183621) ((-603 . -19) 183605) ((-1148 . -1212) 183574) ((-1170 . -888) NIL) ((-1170 . -886) 183526) ((-603 . -605) 183503) ((-1205 . -614) 183435) ((-1178 . -614) 183417) ((-62 . -398) T) ((-1176 . -1040) 183352) ((-1170 . -1040) 183318) ((-695 . -38) 183268) ((-40 . -647) 183198) ((-477 . -287) 183183) ((-1225 . -614) 183165) ((-732 . -379) 183149) ((-839 . -614) 183131) ((-659 . -1060) T) ((-1253 . -1004) 183097) ((-1232 . -1004) 183063) ((-1090 . -617) 183047) ((-1065 . -1195) 183022) ((-1078 . -617) 182999) ((-873 . -615) 182806) ((-873 . -614) 182788) ((-1192 . -492) 182725) ((-421 . -1024) 182703) ((-48 . -310) 182690) ((-1065 . -107) 182636) ((-482 . -492) 182573) ((-523 . -1219) T) ((-1170 . -340) 182525) ((-1143 . -492) 182496) ((-1170 . -379) 182448) ((-1089 . -1060) T) ((-440 . -102) T) ((-183 . -1102) T) ((-252 . -34) T) ((-251 . -34) T) ((-783 . -1060) T) ((-781 . -1060) T) ((-732 . -902) 182425) ((-457 . -1060) T) ((-59 . -492) 182409) ((-1036 . -1058) 182383) ((-522 . -492) 182367) ((-519 . -492) 182351) ((-500 . -492) 182335) ((-499 . -492) 182319) ((-245 . -517) 182252) ((-1036 . -111) 182219) ((-1177 . -902) 182132) ((-1176 . -902) 182038) ((-1170 . -902) 181871) ((-1128 . -902) 181855) ((-671 . -1114) T) ((-356 . -1154) T) ((-646 . -93) T) ((-323 . -1058) 181837) ((-252 . -792) 181816) ((-252 . -795) 181767) ((-31 . -493) 181748) ((-252 . -794) 181727) ((-251 . -792) 181706) ((-251 . -795) 181657) ((-251 . -794) 181636) ((-31 . -614) 181602) ((-50 . -1060) T) ((-252 . -727) 181512) ((-251 . -727) 181422) ((-1213 . -1102) T) ((-671 . -23) T) ((-584 . -1060) T) ((-521 . -1060) T) ((-381 . -1058) 181387) ((-323 . -111) 181362) ((-73 . -385) T) ((-73 . -398) T) ((-1026 . -38) 181299) ((-695 . -403) 181281) ((-99 . -102) T) ((-712 . -1102) T) ((-1297 . -1053) 181268) ((-1005 . -145) 181240) ((-1005 . -147) 181212) ((-871 . -647) 181184) ((-381 . -111) 181140) ((-320 . -1223) 181119) ((-477 . -1004) 181085) ((-356 . -38) 181050) ((-40 . -372) 181022) ((-874 . -614) 180894) ((-127 . -125) 180878) ((-121 . -125) 180862) ((-837 . -1058) 180832) ((-834 . -21) 180784) ((-828 . -1058) 180768) ((-834 . -25) 180720) ((-320 . -559) 180671) ((-520 . -617) 180652) ((-567 . -829) T) ((-240 . -1219) T) ((-1036 . -617) 180621) ((-837 . -111) 180586) ((-828 . -111) 180565) ((-1253 . -614) 180547) ((-1232 . -614) 180529) ((-1232 . -615) 180200) ((-1175 . -911) 180179) ((-1127 . -911) 180158) ((-48 . -38) 180123) ((-1291 . -1114) T) ((-603 . -614) 180035) ((-603 . -615) 179996) ((-1289 . -1114) T) ((-363 . -617) 179980) ((-323 . -617) 179964) ((-240 . -1040) 179791) ((-1175 . -649) 179716) ((-1127 . -649) 179641) ((-855 . -649) 179615) ((-719 . -614) 179597) ((-549 . -370) T) ((-1291 . -23) T) ((-1289 . -23) T) ((-494 . -1102) T) ((-381 . -617) 179547) ((-381 . -619) 179529) ((-1036 . -1051) T) ((-866 . -102) T) ((-1192 . -287) 179508) ((-169 . -370) 179459) ((-1006 . -1219) T) ((-837 . -617) 179413) ((-828 . -617) 179368) ((-44 . -23) T) ((-482 . -287) 179347) ((-588 . -1102) T) ((-1148 . -1111) 179316) ((-1106 . -1105) 179268) ((-393 . -21) T) ((-393 . -25) T) ((-152 . -1114) T) ((-1297 . -102) T) ((-1006 . -886) 179250) ((-1006 . -888) 179232) ((-1213 . -718) 179129) ((-624 . -231) 179113) ((-622 . -21) T) ((-290 . -559) T) ((-622 . -25) T) ((-1199 . -1102) T) ((-712 . -718) 179078) ((-240 . -379) 179047) ((-1006 . -1040) 179007) ((-381 . -1051) T) ((-223 . -1060) T) ((-117 . -231) 178984) ((-59 . -287) 178961) ((-152 . -23) T) ((-519 . -287) 178938) ((-328 . -517) 178871) ((-499 . -287) 178848) ((-381 . -243) T) ((-381 . -233) T) ((-837 . -1051) T) ((-828 . -1051) T) ((-713 . -951) 178817) ((-702 . -851) T) ((-477 . -614) 178799) ((-1255 . -1053) 178704) ((-583 . -647) 178676) ((-567 . -647) 178648) ((-498 . -647) 178598) ((-828 . -233) 178577) ((-134 . -851) T) ((-1255 . -641) 178469) ((-659 . -1102) T) ((-1192 . -605) 178448) ((-553 . -1195) 178427) ((-338 . -1102) T) ((-320 . -365) 178406) ((-410 . -147) 178385) ((-410 . -145) 178364) ((-966 . -1114) 178263) ((-240 . -902) 178195) ((-816 . -1114) 178105) ((-655 . -853) 178089) ((-482 . -605) 178068) ((-553 . -107) 178018) ((-1006 . -379) 178000) ((-1006 . -340) 177982) ((-97 . -1102) T) ((-966 . -23) 177793) ((-480 . -21) T) ((-480 . -25) T) ((-816 . -23) 177663) ((-1179 . -614) 177645) ((-59 . -19) 177629) ((-1179 . -615) 177551) ((-1175 . -727) T) ((-1127 . -727) T) ((-519 . -19) 177535) ((-499 . -19) 177519) ((-59 . -605) 177496) ((-1089 . -1102) T) ((-903 . -102) 177474) ((-855 . -727) T) ((-783 . -1102) T) ((-519 . -605) 177451) ((-499 . -605) 177428) ((-781 . -1102) T) ((-781 . -1067) 177395) ((-464 . -1102) T) ((-457 . -1102) T) ((-588 . -718) 177370) ((-650 . -1102) T) ((-1261 . -47) 177347) ((-1255 . -102) T) ((-1254 . -47) 177317) ((-1233 . -47) 177294) ((-1213 . -172) 177245) ((-1176 . -308) 177224) ((-1170 . -308) 177203) ((-1098 . -617) 177184) ((-1092 . -617) 177165) ((-1082 . -559) 177116) ((-1006 . -902) NIL) ((-1082 . -1223) 177067) ((-671 . -131) T) ((-628 . -1114) T) ((-1075 . -617) 177048) ((-1068 . -617) 177029) ((-1038 . -617) 177010) ((-1021 . -617) 176991) ((-700 . -647) 176941) ((-276 . -1102) T) ((-85 . -444) T) ((-85 . -398) T) ((-715 . -1058) 176911) ((-712 . -172) T) ((-50 . -1102) T) ((-597 . -47) 176888) ((-225 . -649) 176853) ((-584 . -1102) T) ((-521 . -1102) T) ((-490 . -821) T) ((-490 . -922) T) ((-361 . -1223) T) ((-355 . -1223) T) ((-347 . -1223) T) ((-320 . -1114) T) ((-317 . -1053) 176763) ((-314 . -1053) 176692) ((-108 . -1223) T) ((-627 . -617) 176673) ((-361 . -559) T) ((-217 . -922) T) ((-217 . -821) T) ((-317 . -641) 176583) ((-314 . -641) 176512) ((-355 . -559) T) ((-347 . -559) T) ((-486 . -617) 176493) ((-108 . -559) T) ((-659 . -718) 176463) ((-1170 . -1024) NIL) ((-218 . -617) 176444) ((-320 . -23) T) ((-67 . -1219) T) ((-1002 . -614) 176376) ((-695 . -231) 176358) ((-715 . -111) 176323) ((-645 . -34) T) ((-245 . -492) 176307) ((-1104 . -1100) 176291) ((-171 . -1102) T) ((-954 . -911) 176270) ((-1297 . -1154) T) ((-1293 . -21) T) ((-1293 . -25) T) ((-518 . -617) 176254) ((-1291 . -131) T) ((-1289 . -131) T) ((-1282 . -102) T) ((-484 . -911) 176233) ((-1265 . -614) 176199) ((-1254 . -1040) 176134) ((-1233 . -1219) 176113) ((-1233 . -888) NIL) ((-1233 . -886) 176065) ((-1233 . -1040) 176031) ((-1089 . -718) 175880) ((-1064 . -649) 175867) ((-954 . -649) 175792) ((-783 . -718) 175621) ((-539 . -614) 175603) ((-539 . -615) 175584) ((-781 . -718) 175433) ((-1079 . -102) T) ((-383 . -25) T) ((-624 . -647) 175405) ((-383 . -21) T) ((-484 . -649) 175330) ((-464 . -718) 175301) ((-457 . -718) 175150) ((-989 . -102) T) ((-1192 . -615) NIL) ((-1192 . -614) 175132) ((-1144 . -1125) 175077) ((-738 . -102) T) ((-117 . -647) 175007) ((-606 . -617) 174989) ((-1048 . -1212) 174918) ((-903 . -310) 174856) ((-534 . -25) T) ((-877 . -93) T) ((-715 . -617) 174810) ((-682 . -93) T) ((-646 . -493) 174791) ((-141 . -102) T) ((-44 . -131) T) ((-677 . -93) T) ((-665 . -614) 174773) ((-345 . -1060) T) ((-290 . -1114) T) ((-646 . -614) 174726) ((-481 . -93) T) ((-357 . -614) 174708) ((-354 . -614) 174690) ((-346 . -614) 174672) ((-265 . -615) 174420) ((-265 . -614) 174402) ((-247 . -614) 174384) ((-247 . -615) 174245) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1213 . -517) 174212) ((-1143 . -614) 174194) ((-1122 . -641) 174181) ((-820 . -727) T) ((-820 . -858) T) ((-603 . -289) 174158) ((-584 . -718) 174123) ((-482 . -615) NIL) ((-482 . -614) 174105) ((-521 . -718) 174050) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1122 . -1053) 174037) ((-912 . -614) 174019) ((-389 . -727) T) ((-873 . -1058) 173971) ((-912 . -615) 173953) ((-873 . -111) 173891) ((-715 . -1051) T) ((-713 . -1245) 173875) ((-695 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-522 . -614) 173807) ((-381 . -796) T) ((-223 . -1102) T) ((-381 . -793) T) ((-225 . -795) T) ((-225 . -792) T) ((-59 . -615) 173768) ((-59 . -614) 173680) ((-225 . -727) T) ((-519 . -615) 173641) ((-519 . -614) 173553) ((-500 . -614) 173485) ((-499 . -615) 173446) ((-499 . -614) 173358) ((-1082 . -365) 173309) ((-40 . -414) 173286) ((-77 . -1219) T) ((-872 . -911) NIL) ((-361 . -330) 173270) ((-361 . -365) T) ((-355 . -330) 173254) ((-355 . -365) T) ((-347 . -330) 173238) ((-347 . -365) T) ((-317 . -285) 173217) ((-108 . -365) T) ((-70 . -1219) T) ((-1233 . -340) 173169) ((-872 . -649) 173114) ((-1233 . -379) 173066) ((-966 . -131) 172921) ((-816 . -131) 172791) ((-960 . -652) 172775) ((-1089 . -172) 172686) ((-960 . -375) 172670) ((-1064 . -795) T) ((-1064 . -792) T) ((-873 . -617) 172568) ((-783 . -172) 172459) ((-781 . -172) 172370) ((-817 . -47) 172332) ((-1064 . -727) T) ((-328 . -492) 172316) ((-954 . -727) T) ((-1282 . -310) 172254) ((-457 . -172) 172165) ((-245 . -287) 172142) ((-1261 . -902) 172055) ((-1254 . -902) 171961) ((-1253 . -1058) 171796) ((-484 . -727) T) ((-1233 . -902) 171629) ((-1232 . -1058) 171437) ((-1213 . -291) 171416) ((-1189 . -1219) T) ((-1186 . -370) T) ((-1185 . -370) T) ((-1148 . -151) 171400) ((-1122 . -102) T) ((-1120 . -1102) T) ((-1082 . -23) T) ((-1082 . -1114) T) ((-1077 . -102) T) ((-1059 . -614) 171367) ((-929 . -957) T) ((-738 . -310) 171305) ((-75 . -1219) T) ((-665 . -384) 171277) ((-169 . -911) 171230) ((-30 . -957) T) ((-112 . -845) T) ((-1 . -614) 171212) ((-1005 . -412) 171184) ((-128 . -652) 171166) ((-50 . -621) 171150) ((-695 . -647) 171085) ((-597 . -902) 170998) ((-441 . -102) T) ((-128 . -375) 170980) ((-141 . -310) NIL) ((-873 . -1051) T) ((-834 . -851) 170959) ((-81 . -1219) T) ((-712 . -291) T) ((-40 . -1060) T) ((-584 . -172) T) ((-521 . -172) T) ((-514 . -614) 170941) ((-169 . -649) 170851) ((-510 . -614) 170833) ((-353 . -147) 170815) ((-353 . -145) T) ((-361 . -1114) T) ((-355 . -1114) T) ((-347 . -1114) T) ((-1006 . -308) T) ((-916 . -308) T) ((-873 . -243) T) ((-108 . -1114) T) ((-873 . -233) 170794) ((-1253 . -111) 170615) ((-1232 . -111) 170404) ((-245 . -1257) 170388) ((-567 . -849) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170375) ((-314 . -310) 170316) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1006 . -1024) T) ((-31 . -617) 170297) ((-108 . -23) T) ((-655 . -1053) 170281) ((-245 . -605) 170258) ((-334 . -1102) T) ((-655 . -641) 170228) ((-1255 . -38) 170120) ((-1242 . -911) 170099) ((-112 . -1102) T) ((-1037 . -102) T) ((-1242 . -649) 170024) ((-872 . -795) NIL) ((-856 . -649) 169998) ((-872 . -792) NIL) ((-817 . -888) NIL) ((-872 . -727) T) ((-1089 . -517) 169871) ((-783 . -517) 169818) ((-781 . -517) 169770) ((-574 . -649) 169757) ((-817 . -1040) 169585) ((-457 . -517) 169528) ((-391 . -392) T) ((-1253 . -617) 169341) ((-1232 . -617) 169089) ((-60 . -1219) T) ((-622 . -851) 169068) ((-503 . -662) T) ((-1148 . -978) 169037) ((-1026 . -647) 168974) ((-1005 . -455) T) ((-700 . -849) T) ((-513 . -793) T) ((-477 . -1058) 168809) ((-345 . -1102) T) ((-314 . -1154) NIL) ((-290 . -131) T) ((-397 . -1102) T) ((-871 . -1060) T) ((-695 . -372) 168776) ((-356 . -647) 168706) ((-223 . -621) 168683) ((-328 . -287) 168660) ((-477 . -111) 168481) ((-1253 . -1051) T) ((-1232 . -1051) T) ((-817 . -379) 168465) ((-169 . -727) T) ((-655 . -102) T) ((-1253 . -243) 168444) ((-1253 . -233) 168396) ((-1232 . -233) 168301) ((-1232 . -243) 168280) ((-1005 . -405) NIL) ((-671 . -640) 168228) ((-317 . -38) 168138) ((-314 . -38) 168067) ((-69 . -614) 168049) ((-320 . -496) 168015) ((-48 . -647) 167965) ((-1192 . -289) 167944) ((-1227 . -851) T) ((-1115 . -1114) 167854) ((-83 . -1219) T) ((-61 . -614) 167836) ((-482 . -289) 167815) ((-1284 . -1040) 167792) ((-1167 . -1102) T) ((-1115 . -23) 167662) ((-817 . -902) 167598) ((-1242 . -727) T) ((-1104 . -1219) T) ((-477 . -617) 167424) ((-1089 . -291) 167355) ((-968 . -1102) T) ((-895 . -102) T) ((-783 . -291) 167266) ((-328 . -19) 167250) ((-59 . -289) 167227) ((-781 . -291) 167158) ((-856 . -727) T) ((-117 . -849) NIL) ((-519 . -289) 167135) ((-328 . -605) 167112) ((-499 . -289) 167089) ((-457 . -291) 167020) ((-1037 . -310) 166871) ((-877 . -493) 166852) ((-877 . -614) 166818) ((-682 . -493) 166799) ((-574 . -727) T) ((-677 . -493) 166780) ((-682 . -614) 166730) ((-677 . -614) 166696) ((-663 . -614) 166678) ((-481 . -493) 166659) ((-481 . -614) 166625) ((-245 . -615) 166586) ((-245 . -493) 166563) ((-138 . -493) 166544) ((-137 . -493) 166525) ((-133 . -493) 166506) ((-245 . -614) 166398) ((-213 . -102) T) ((-138 . -614) 166364) ((-137 . -614) 166330) ((-133 . -614) 166296) ((-1149 . -34) T) ((-945 . -1219) T) ((-345 . -718) 166241) ((-671 . -25) T) ((-671 . -21) T) ((-1179 . -617) 166222) ((-477 . -1051) T) ((-636 . -420) 166187) ((-608 . -420) 166152) ((-1122 . -1154) T) ((-713 . -1053) 165975) ((-584 . -291) T) ((-521 . -291) T) ((-1254 . -308) 165954) ((-477 . -233) 165906) ((-477 . -243) 165885) ((-1233 . -308) 165864) ((-713 . -641) 165693) ((-1233 . -1024) NIL) ((-1082 . -131) T) ((-873 . -796) 165672) ((-144 . -102) T) ((-40 . -1102) T) ((-873 . -793) 165651) ((-645 . -1012) 165635) ((-583 . -1060) T) ((-567 . -1060) T) ((-498 . -1060) T) ((-410 . -455) T) ((-361 . -131) T) ((-317 . -403) 165619) ((-314 . -403) 165580) ((-355 . -131) T) ((-347 . -131) T) ((-1184 . -1102) T) ((-1122 . -38) 165567) ((-1096 . -614) 165534) ((-108 . -131) T) ((-956 . -1102) T) ((-923 . -1102) T) ((-772 . -1102) T) ((-673 . -1102) T) ((-702 . -147) T) ((-116 . -147) T) ((-1291 . -21) T) ((-1291 . -25) T) ((-1289 . -21) T) ((-1289 . -25) T) ((-665 . -1058) 165518) ((-534 . -851) T) ((-503 . -851) T) ((-357 . -1058) 165470) ((-354 . -1058) 165422) ((-346 . -1058) 165374) ((-252 . -1219) T) ((-251 . -1219) T) ((-265 . -1058) 165217) ((-247 . -1058) 165060) ((-665 . -111) 165039) ((-550 . -845) T) ((-357 . -111) 164977) ((-354 . -111) 164915) ((-346 . -111) 164853) ((-265 . -111) 164682) ((-247 . -111) 164511) ((-818 . -1223) 164490) ((-624 . -414) 164474) ((-44 . -21) T) ((-44 . -25) T) ((-816 . -640) 164380) ((-818 . -559) 164359) ((-252 . -1040) 164186) ((-251 . -1040) 164013) ((-126 . -119) 163997) ((-912 . -1058) 163962) ((-713 . -102) T) ((-700 . -1060) T) ((-539 . -619) 163865) ((-345 . -172) T) ((-88 . -614) 163847) ((-152 . -21) T) ((-152 . -25) T) ((-912 . -111) 163803) ((-40 . -718) 163748) ((-871 . -1102) T) ((-665 . -617) 163725) ((-646 . -617) 163706) ((-357 . -617) 163643) ((-354 . -617) 163580) ((-550 . -1102) T) ((-346 . -617) 163517) ((-328 . -615) 163478) ((-328 . -614) 163390) ((-265 . -617) 163143) ((-247 . -617) 162928) ((-1232 . -793) 162881) ((-1232 . -796) 162834) ((-252 . -379) 162803) ((-251 . -379) 162772) ((-655 . -38) 162742) ((-609 . -34) T) ((-485 . -1114) 162652) ((-478 . -34) T) ((-1115 . -131) 162522) ((-966 . -25) 162333) ((-912 . -617) 162283) ((-875 . -614) 162265) ((-966 . -21) 162220) ((-816 . -21) 162130) ((-816 . -25) 161981) ((-1225 . -370) T) ((-624 . -1060) T) ((-1181 . -559) 161960) ((-1175 . -47) 161937) ((-357 . -1051) T) ((-354 . -1051) T) ((-485 . -23) 161807) ((-346 . -1051) T) ((-265 . -1051) T) ((-247 . -1051) T) ((-1127 . -47) 161779) ((-117 . -1060) T) ((-1036 . -649) 161753) ((-960 . -34) T) ((-357 . -233) 161732) ((-357 . -243) T) ((-354 . -233) 161711) ((-354 . -243) T) ((-346 . -233) 161690) ((-346 . -243) T) ((-265 . -327) 161662) ((-247 . -327) 161619) ((-265 . -233) 161598) ((-1159 . -151) 161582) ((-252 . -902) 161514) ((-251 . -902) 161446) ((-1084 . -851) T) ((-417 . -1114) T) ((-1056 . -23) T) ((-912 . -1051) T) ((-323 . -649) 161428) ((-1026 . -849) T) ((-1213 . -1004) 161394) ((-1176 . -922) 161373) ((-1170 . -922) 161352) ((-1170 . -821) NIL) ((-1001 . -1053) 161248) ((-912 . -243) T) ((-818 . -365) 161227) ((-387 . -23) T) ((-127 . -1102) 161205) ((-121 . -1102) 161183) ((-912 . -233) T) ((-128 . -34) T) ((-381 . -649) 161148) ((-1001 . -641) 161096) ((-871 . -718) 161083) ((-1297 . -647) 161055) ((-1048 . -151) 161020) ((-40 . -172) T) ((-695 . -414) 161002) ((-713 . -310) 160989) ((-837 . -649) 160949) ((-828 . -649) 160923) ((-320 . -25) T) ((-320 . -21) T) ((-659 . -287) 160902) ((-583 . -1102) T) ((-567 . -1102) T) ((-498 . -1102) T) ((-245 . -289) 160879) ((-314 . -231) 160840) ((-1175 . -888) NIL) ((-55 . -1102) T) ((-1127 . -888) 160699) ((-129 . -851) T) ((-1175 . -1040) 160579) ((-1127 . -1040) 160462) ((-183 . -614) 160444) ((-855 . -1040) 160340) ((-783 . -287) 160267) ((-818 . -1114) T) ((-1036 . -727) T) ((-603 . -652) 160251) ((-1048 . -978) 160180) ((-1001 . -102) T) ((-818 . -23) T) ((-713 . -1154) 160158) ((-695 . -1060) T) ((-603 . -375) 160142) ((-353 . -455) T) ((-345 . -291) T) ((-1270 . -1102) T) ((-248 . -1102) T) ((-402 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -727) T) ((-711 . -1102) T) ((-700 . -1102) T) ((-363 . -476) T) ((-1213 . -614) 160124) ((-1175 . -379) 160108) ((-1127 . -379) 160092) ((-1026 . -414) 160054) ((-141 . -229) 160036) ((-381 . -795) T) ((-381 . -792) T) ((-871 . -172) T) ((-381 . -727) T) ((-712 . -614) 160018) ((-713 . -38) 159847) ((-1269 . -1267) 159831) ((-353 . -405) T) ((-1269 . -1102) 159781) ((-583 . -718) 159768) ((-567 . -718) 159755) ((-498 . -718) 159720) ((-1255 . -647) 159610) ((-317 . -630) 159589) ((-837 . -727) T) ((-828 . -727) T) ((-645 . -1219) T) ((-1082 . -640) 159537) ((-1175 . -902) 159480) ((-1127 . -902) 159464) ((-663 . -1058) 159448) ((-108 . -640) 159430) ((-485 . -131) 159300) ((-1181 . -1114) T) ((-954 . -47) 159269) ((-624 . -1102) T) ((-663 . -111) 159248) ((-494 . -614) 159214) ((-328 . -289) 159191) ((-484 . -47) 159148) ((-1181 . -23) T) ((-117 . -1102) T) ((-103 . -102) 159126) ((-1281 . -1114) T) ((-551 . -851) T) ((-1056 . -131) T) ((-1026 . -1060) T) ((-820 . -1040) 159110) ((-1005 . -725) 159082) ((-1281 . -23) T) ((-700 . -718) 159047) ((-588 . -614) 159029) ((-389 . -1040) 159013) ((-356 . -1060) T) ((-387 . -131) T) ((-325 . -1040) 158997) ((-1199 . -614) 158979) ((-1122 . -829) T) ((-1107 . -1102) T) ((-225 . -888) 158961) ((-1006 . -922) T) ((-91 . -34) T) ((-1006 . -821) T) ((-916 . -922) T) ((-1082 . -21) T) ((-1082 . -25) T) ((-490 . -1223) T) ((-1001 . -310) 158926) ((-877 . -617) 158907) ((-715 . -649) 158867) ((-217 . -1223) T) ((-682 . -617) 158848) ((-225 . -1040) 158808) ((-40 . -291) T) ((-677 . -617) 158789) ((-490 . -559) T) ((-481 . -617) 158770) ((-317 . -647) 158454) ((-314 . -647) 158368) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -559) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -617) 158345) ((-138 . -617) 158326) ((-137 . -617) 158307) ((-133 . -617) 158288) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1060) T) ((-583 . -172) T) ((-567 . -172) T) ((-498 . -172) T) ((-659 . -614) 158270) ((-738 . -737) 158254) ((-338 . -614) 158236) ((-68 . -385) T) ((-68 . -398) T) ((-1104 . -107) 158220) ((-1064 . -888) 158202) ((-954 . -888) 158127) ((-654 . -1114) T) ((-624 . -718) 158114) ((-484 . -888) NIL) ((-1148 . -102) T) ((-1096 . -619) 158098) ((-1064 . -1040) 158080) ((-97 . -614) 158062) ((-480 . -147) T) ((-954 . -1040) 157942) ((-117 . -718) 157887) ((-654 . -23) T) ((-484 . -1040) 157763) ((-1089 . -615) NIL) ((-1089 . -614) 157745) ((-783 . -615) NIL) ((-783 . -614) 157706) ((-781 . -615) 157340) ((-781 . -614) 157254) ((-1115 . -640) 157160) ((-464 . -614) 157142) ((-457 . -614) 157124) ((-457 . -615) 156985) ((-1037 . -229) 156931) ((-873 . -911) 156910) ((-126 . -34) T) ((-818 . -131) T) ((-650 . -614) 156892) ((-581 . -102) T) ((-357 . -1288) 156876) ((-354 . -1288) 156860) ((-346 . -1288) 156844) ((-127 . -517) 156777) ((-121 . -517) 156710) ((-514 . -793) T) ((-514 . -796) T) ((-513 . -795) T) ((-103 . -310) 156648) ((-222 . -102) 156626) ((-700 . -172) T) ((-695 . -1102) T) ((-873 . -649) 156578) ((-65 . -386) T) ((-276 . -614) 156560) ((-65 . -398) T) ((-954 . -379) 156544) ((-871 . -291) T) ((-50 . -614) 156526) ((-1001 . -38) 156474) ((-1122 . -647) 156446) ((-584 . -614) 156428) ((-484 . -379) 156412) ((-584 . -615) 156394) ((-521 . -614) 156376) ((-912 . -1288) 156363) ((-872 . -1219) T) ((-702 . -455) T) ((-498 . -517) 156329) ((-490 . -365) T) ((-357 . -370) 156308) ((-354 . -370) 156287) ((-346 . -370) 156266) ((-715 . -727) T) ((-217 . -365) T) ((-116 . -455) T) ((-1292 . -1283) 156250) ((-872 . -886) 156227) ((-872 . -888) NIL) ((-966 . -851) 156126) ((-816 . -851) 156077) ((-1226 . -102) T) ((-655 . -657) 156061) ((-1205 . -34) T) ((-171 . -614) 156043) ((-1115 . -21) 155953) ((-1115 . -25) 155804) ((-872 . -1040) 155781) ((-954 . -902) 155762) ((-1242 . -47) 155739) ((-912 . -370) T) ((-59 . -652) 155723) ((-519 . -652) 155707) ((-484 . -902) 155684) ((-71 . -444) T) ((-71 . -398) T) ((-499 . -652) 155668) ((-59 . -375) 155652) ((-624 . -172) T) ((-519 . -375) 155636) ((-499 . -375) 155620) ((-828 . -709) 155604) ((-1175 . -308) 155583) ((-1181 . -131) T) ((-1144 . -1053) 155567) ((-117 . -172) T) ((-1144 . -641) 155499) ((-1148 . -310) 155437) ((-169 . -1219) T) ((-1281 . -131) T) ((-867 . -1053) 155407) ((-636 . -745) 155391) ((-608 . -745) 155375) ((-1254 . -922) 155354) ((-1233 . -922) 155333) ((-1233 . -821) NIL) ((-867 . -641) 155303) ((-695 . -718) 155253) ((-1232 . -911) 155206) ((-1026 . -1102) T) ((-872 . -379) 155183) ((-872 . -340) 155160) ((-907 . -1114) T) ((-169 . -886) 155144) ((-169 . -888) 155069) ((-490 . -1114) T) ((-356 . -1102) T) ((-217 . -1114) T) ((-76 . -444) T) ((-76 . -398) T) ((-169 . -1040) 154965) ((-320 . -851) T) ((-1269 . -517) 154898) ((-1253 . -649) 154795) ((-1232 . -649) 154665) ((-873 . -795) 154644) ((-873 . -792) 154623) ((-873 . -727) T) ((-490 . -23) T) ((-223 . -614) 154605) ((-174 . -455) T) ((-222 . -310) 154543) ((-86 . -444) T) ((-86 . -398) T) ((-217 . -23) T) ((-1293 . -1286) 154522) ((-678 . -1040) 154506) ((-583 . -291) T) ((-567 . -291) T) ((-498 . -291) T) ((-136 . -473) 154461) ((-655 . -647) 154420) ((-48 . -1102) T) ((-713 . -231) 154404) ((-872 . -902) NIL) ((-1242 . -888) NIL) ((-891 . -102) T) ((-887 . -102) T) ((-391 . -1102) T) ((-169 . -379) 154388) ((-169 . -340) 154372) ((-1242 . -1040) 154252) ((-856 . -1040) 154148) ((-1144 . -102) T) ((-654 . -131) T) ((-117 . -517) 154056) ((-663 . -793) 154035) ((-663 . -796) 154014) ((-574 . -1040) 153996) ((-295 . -1276) 153966) ((-867 . -102) T) ((-965 . -559) 153945) ((-1213 . -1058) 153828) ((-1005 . -1053) 153773) ((-485 . -640) 153679) ((-906 . -1102) T) ((-1026 . -718) 153616) ((-712 . -1058) 153581) ((-1005 . -641) 153526) ((-618 . -102) T) ((-603 . -34) T) ((-1149 . -1219) T) ((-1213 . -111) 153395) ((-477 . -649) 153292) ((-356 . -718) 153237) ((-169 . -902) 153196) ((-700 . -291) T) ((-695 . -172) T) ((-712 . -111) 153152) ((-1297 . -1060) T) ((-1242 . -379) 153136) ((-421 . -1223) 153114) ((-1120 . -614) 153096) ((-314 . -849) NIL) ((-421 . -559) T) ((-225 . -308) T) ((-1232 . -792) 153049) ((-1232 . -795) 153002) ((-1253 . -727) T) ((-1232 . -727) T) ((-48 . -718) 152967) ((-225 . -1024) T) ((-353 . -1276) 152944) ((-1255 . -414) 152910) ((-719 . -727) T) ((-334 . -614) 152892) ((-1242 . -902) 152835) ((-1213 . -617) 152717) ((-112 . -614) 152699) ((-112 . -615) 152681) ((-719 . -476) T) ((-712 . -617) 152631) ((-1292 . -1053) 152615) ((-485 . -21) 152525) ((-127 . -492) 152509) ((-121 . -492) 152493) ((-485 . -25) 152344) ((-1292 . -641) 152314) ((-624 . -291) T) ((-588 . -1058) 152289) ((-440 . -1102) T) ((-1064 . -308) T) ((-117 . -291) T) ((-1106 . -102) T) ((-1005 . -102) T) ((-588 . -111) 152257) ((-1144 . -310) 152195) ((-1213 . -1051) T) ((-1064 . -1024) T) ((-66 . -1219) T) ((-1056 . -25) T) ((-1056 . -21) T) ((-712 . -1051) T) ((-387 . -21) T) ((-387 . -25) T) ((-695 . -517) NIL) ((-1026 . -172) T) ((-712 . -243) T) ((-1064 . -548) T) ((-713 . -647) 152105) ((-509 . -102) T) ((-505 . -102) T) ((-356 . -172) T) ((-345 . -614) 152087) ((-410 . -1053) 152039) ((-397 . -614) 152021) ((-1122 . -849) T) ((-477 . -727) T) ((-894 . -1040) 151989) ((-410 . -641) 151941) ((-108 . -851) T) ((-659 . -1058) 151925) ((-490 . -131) T) ((-1255 . -1060) T) ((-217 . -131) T) ((-1159 . -102) 151903) ((-99 . -1102) T) ((-245 . -667) 151887) ((-245 . -652) 151871) ((-659 . -111) 151850) ((-588 . -617) 151834) ((-317 . -414) 151818) ((-245 . -375) 151802) ((-1162 . -235) 151749) ((-1001 . -231) 151733) ((-74 . -1219) T) ((-48 . -172) T) ((-702 . -390) T) ((-702 . -143) T) ((-1292 . -102) T) ((-1199 . -617) 151715) ((-1089 . -1058) 151558) ((-265 . -911) 151537) ((-247 . -911) 151516) ((-783 . -1058) 151339) ((-781 . -1058) 151182) ((-609 . -1219) T) ((-1167 . -614) 151164) ((-1089 . -111) 150993) ((-1048 . -102) T) ((-478 . -1219) T) ((-464 . -1058) 150964) ((-457 . -1058) 150807) ((-665 . -649) 150791) ((-872 . -308) T) ((-783 . -111) 150600) ((-781 . -111) 150429) ((-357 . -649) 150381) ((-354 . -649) 150333) ((-346 . -649) 150285) ((-265 . -649) 150210) ((-247 . -649) 150135) ((-1161 . -851) T) ((-1090 . -1040) 150119) ((-464 . -111) 150080) ((-457 . -111) 149909) ((-1078 . -1040) 149886) ((-1002 . -34) T) ((-968 . -614) 149868) ((-960 . -1219) T) ((-126 . -1012) 149852) ((-965 . -1114) T) ((-872 . -1024) NIL) ((-736 . -1114) T) ((-716 . -1114) T) ((-659 . -617) 149770) ((-1269 . -492) 149754) ((-1144 . -38) 149714) ((-965 . -23) T) ((-912 . -649) 149679) ((-866 . -1102) T) ((-844 . -102) T) ((-818 . -21) T) ((-636 . -1053) 149663) ((-608 . -1053) 149647) ((-818 . -25) T) ((-736 . -23) T) ((-716 . -23) T) ((-636 . -641) 149631) ((-110 . -662) T) ((-608 . -641) 149615) ((-584 . -1058) 149580) ((-521 . -1058) 149525) ((-227 . -57) 149483) ((-456 . -23) T) ((-410 . -102) T) ((-264 . -102) T) ((-695 . -291) T) ((-867 . -38) 149453) ((-584 . -111) 149409) ((-521 . -111) 149338) ((-1089 . -617) 149074) ((-421 . -1114) T) ((-317 . -1060) 148964) ((-314 . -1060) T) ((-128 . -1219) T) ((-783 . -617) 148712) ((-781 . -617) 148478) ((-659 . -1051) T) ((-1297 . -1102) T) ((-457 . -617) 148263) ((-169 . -308) 148194) ((-421 . -23) T) ((-40 . -614) 148176) ((-40 . -615) 148160) ((-108 . -994) 148142) ((-116 . -870) 148126) ((-650 . -617) 148110) ((-48 . -517) 148076) ((-1205 . -1012) 148060) ((-1184 . -614) 148027) ((-1192 . -34) T) ((-956 . -614) 147993) ((-923 . -614) 147975) ((-1115 . -851) 147926) ((-772 . -614) 147908) ((-673 . -614) 147890) ((-1159 . -310) 147828) ((-482 . -34) T) ((-1094 . -1219) T) ((-480 . -455) T) ((-1143 . -34) T) ((-1089 . -1051) T) ((-50 . -617) 147797) ((-783 . -1051) T) ((-781 . -1051) T) ((-648 . -235) 147781) ((-633 . -235) 147727) ((-584 . -617) 147677) ((-521 . -617) 147607) ((-1242 . -308) 147586) ((-1089 . -327) 147547) ((-457 . -1051) T) ((-1181 . -21) T) ((-1089 . -233) 147526) ((-783 . -327) 147503) ((-783 . -233) T) ((-781 . -327) 147475) ((-732 . -1223) 147454) ((-328 . -652) 147438) ((-1181 . -25) T) ((-59 . -34) T) ((-522 . -34) T) ((-519 . -34) T) ((-457 . -327) 147417) ((-328 . -375) 147401) ((-500 . -34) T) ((-499 . -34) T) ((-1005 . -1154) NIL) ((-732 . -559) 147332) ((-636 . -102) T) ((-608 . -102) T) ((-357 . -727) T) ((-354 . -727) T) ((-346 . -727) T) ((-265 . -727) T) ((-247 . -727) T) ((-1048 . -310) 147240) ((-903 . -1102) 147218) ((-50 . -1051) T) ((-1281 . -21) T) ((-1281 . -25) T) ((-1177 . -559) 147197) ((-1176 . -1223) 147176) ((-1176 . -559) 147127) ((-584 . -1051) T) ((-521 . -1051) T) ((-1170 . -1223) 147106) ((-363 . -1040) 147090) ((-323 . -1040) 147074) ((-1026 . -291) T) ((-381 . -888) 147056) ((-1170 . -559) 147007) ((-1005 . -38) 146952) ((-1001 . -647) 146875) ((-800 . -1114) T) ((-912 . -727) T) ((-584 . -243) T) ((-584 . -233) T) ((-521 . -233) T) ((-521 . -243) T) ((-1128 . -559) 146854) ((-356 . -291) T) ((-648 . -696) 146838) ((-381 . -1040) 146798) ((-295 . -1053) 146719) ((-1122 . -1060) T) ((-103 . -125) 146703) ((-295 . -641) 146645) ((-800 . -23) T) ((-1291 . -1286) 146621) ((-1269 . -287) 146598) ((-410 . -310) 146563) ((-1289 . -1286) 146542) ((-1255 . -1102) T) ((-871 . -614) 146524) ((-837 . -1040) 146493) ((-203 . -788) T) ((-202 . -788) T) ((-201 . -788) T) ((-200 . -788) T) ((-199 . -788) T) ((-198 . -788) T) ((-197 . -788) T) ((-196 . -788) T) ((-195 . -788) T) ((-194 . -788) T) ((-550 . -614) 146475) ((-498 . -1004) T) ((-275 . -840) T) ((-274 . -840) T) ((-273 . -840) T) ((-272 . -840) T) ((-48 . -291) T) ((-271 . -840) T) ((-270 . -840) T) ((-269 . -840) T) ((-193 . -788) T) ((-613 . -851) T) ((-655 . -414) 146459) ((-223 . -617) 146421) ((-110 . -851) T) ((-654 . -21) T) ((-654 . -25) T) ((-1292 . -38) 146391) ((-117 . -287) 146342) ((-1269 . -19) 146326) ((-1269 . -605) 146303) ((-1282 . -1102) T) ((-353 . -1053) 146248) ((-1079 . -1102) T) ((-989 . -1102) T) ((-965 . -131) T) ((-738 . -1102) T) ((-353 . -641) 146193) ((-736 . -131) T) ((-716 . -131) T) ((-514 . -794) T) ((-514 . -795) T) ((-456 . -131) T) ((-410 . -1154) 146171) ((-223 . -1051) T) ((-295 . -102) 145953) ((-141 . -1102) T) ((-700 . -1004) T) ((-91 . -1219) T) ((-127 . -614) 145885) ((-121 . -614) 145817) ((-1297 . -172) T) ((-1176 . -365) 145796) ((-1170 . -365) 145775) ((-317 . -1102) T) ((-421 . -131) T) ((-314 . -1102) T) ((-410 . -38) 145727) ((-1135 . -102) T) ((-1255 . -718) 145619) ((-655 . -1060) T) ((-1137 . -1264) T) ((-320 . -145) 145598) ((-320 . -147) 145577) ((-136 . -1102) T) ((-139 . -1102) T) ((-114 . -1102) T) ((-859 . -102) T) ((-583 . -614) 145559) ((-567 . -615) 145458) ((-567 . -614) 145440) ((-498 . -614) 145422) ((-498 . -615) 145367) ((-488 . -23) T) ((-485 . -851) 145318) ((-490 . -640) 145300) ((-967 . -614) 145282) ((-217 . -640) 145264) ((-225 . -407) T) ((-663 . -649) 145248) ((-55 . -614) 145230) ((-1175 . -922) 145209) ((-732 . -1114) T) ((-353 . -102) T) ((-1218 . -1085) T) ((-1122 . -845) T) ((-819 . -851) T) ((-732 . -23) T) ((-345 . -1058) 145154) ((-1161 . -1160) T) ((-1149 . -107) 145138) ((-1177 . -1114) T) ((-1176 . -1114) T) ((-518 . -1040) 145122) ((-1170 . -1114) T) ((-1128 . -1114) T) ((-345 . -111) 145051) ((-1006 . -1223) T) ((-126 . -1219) T) ((-916 . -1223) T) ((-695 . -287) NIL) ((-1270 . -614) 145033) ((-1177 . -23) T) ((-1176 . -23) T) ((-1170 . -23) T) ((-1006 . -559) T) ((-1144 . -231) 145017) ((-916 . -559) T) ((-1128 . -23) T) ((-248 . -614) 144999) ((-1077 . -1102) T) ((-800 . -131) T) ((-711 . -614) 144981) ((-317 . -718) 144891) ((-314 . -718) 144820) ((-700 . -614) 144802) ((-700 . -615) 144747) ((-410 . -403) 144731) ((-441 . -1102) T) ((-490 . -25) T) ((-490 . -21) T) ((-1122 . -1102) T) ((-217 . -25) T) ((-217 . -21) T) ((-713 . -414) 144715) ((-715 . -1040) 144684) ((-1269 . -614) 144596) ((-1269 . -615) 144557) ((-1255 . -172) T) ((-245 . -34) T) ((-345 . -617) 144487) ((-397 . -617) 144469) ((-928 . -976) T) ((-1205 . -1219) T) ((-663 . -792) 144448) ((-663 . -795) 144427) ((-401 . -398) T) ((-526 . -102) 144405) ((-1037 . -1102) T) ((-222 . -997) 144389) ((-507 . -102) T) ((-624 . -614) 144371) ((-45 . -851) NIL) ((-624 . -615) 144348) ((-1037 . -611) 144323) ((-903 . -517) 144256) ((-345 . -1051) T) ((-117 . -615) NIL) ((-117 . -614) 144238) ((-873 . -1219) T) ((-671 . -420) 144222) ((-671 . -1125) 144167) ((-503 . -151) 144149) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1058) 144094) ((-873 . -886) 144078) ((-873 . -888) 144003) ((-713 . -1060) T) ((-695 . -1004) NIL) ((-1253 . -47) 143973) ((-1232 . -47) 143950) ((-1143 . -1012) 143921) ((-3 . |UnionCategory|) T) ((-1122 . -718) 143908) ((-1107 . -614) 143890) ((-1082 . -147) 143869) ((-1082 . -145) 143820) ((-968 . -617) 143804) ((-225 . -922) T) ((-40 . -111) 143733) ((-873 . -1040) 143597) ((-1006 . -365) T) ((-1005 . -231) 143574) ((-702 . -1053) 143561) ((-916 . -365) T) ((-702 . -641) 143548) ((-320 . -1207) 143514) ((-381 . -308) T) ((-320 . -1204) 143480) ((-317 . -172) 143459) ((-314 . -172) T) ((-584 . -1288) 143446) ((-521 . -1288) 143423) ((-361 . -147) 143402) ((-116 . -1053) 143389) ((-361 . -145) 143340) ((-355 . -147) 143319) ((-355 . -145) 143270) ((-347 . -147) 143249) ((-609 . -1195) 143225) ((-116 . -641) 143212) ((-347 . -145) 143163) ((-320 . -35) 143129) ((-478 . -1195) 143108) ((0 . |EnumerationCategory|) T) ((-320 . -95) 143074) ((-381 . -1024) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 143024) ((-655 . -1102) T) ((-609 . -107) 142971) ((-488 . -131) T) ((-478 . -107) 142921) ((-240 . -1114) 142831) ((-873 . -379) 142815) ((-873 . -340) 142799) ((-240 . -23) 142669) ((-40 . -617) 142599) ((-1064 . -922) T) ((-1064 . -821) T) ((-584 . -370) T) ((-521 . -370) T) ((-1282 . -517) 142532) ((-1261 . -559) 142511) ((-353 . -1154) T) ((-328 . -34) T) ((-44 . -420) 142495) ((-1184 . -617) 142431) ((-874 . -1219) T) ((-393 . -745) 142415) ((-1254 . -1223) 142394) ((-1254 . -559) 142345) ((-1144 . -647) 142304) ((-732 . -131) T) ((-673 . -617) 142288) ((-1233 . -1223) 142267) ((-1233 . -559) 142218) ((-1232 . -1219) 142197) ((-1232 . -888) 142070) ((-1232 . -886) 142040) ((-1177 . -131) T) ((-312 . -1085) T) ((-1176 . -131) T) ((-738 . -517) 141973) ((-1170 . -131) T) ((-1128 . -131) T) ((-895 . -1102) T) ((-144 . -845) T) ((-1026 . -1004) T) ((-692 . -614) 141955) ((-1006 . -23) T) ((-526 . -310) 141893) ((-1006 . -1114) T) ((-141 . -517) NIL) ((-867 . -647) 141838) ((-1005 . -351) NIL) ((-973 . -23) T) ((-916 . -1114) T) ((-353 . -38) 141803) ((-916 . -23) T) ((-873 . -902) 141762) ((-82 . -614) 141744) ((-40 . -1051) T) ((-871 . -1058) 141731) ((-871 . -111) 141716) ((-702 . -102) T) ((-695 . -614) 141698) ((-603 . -1219) T) ((-598 . -559) 141677) ((-430 . -1114) T) ((-341 . -1053) 141661) ((-213 . -1102) T) ((-174 . -1053) 141593) ((-477 . -47) 141563) ((-134 . -102) T) ((-40 . -233) 141535) ((-40 . -243) T) ((-116 . -102) T) ((-597 . -559) 141514) ((-341 . -641) 141498) ((-695 . -615) 141406) ((-317 . -517) 141372) ((-174 . -641) 141304) ((-314 . -517) 141196) ((-1253 . -1040) 141180) ((-1232 . -1040) 140966) ((-1001 . -414) 140950) ((-430 . -23) T) ((-1122 . -172) T) ((-1255 . -291) T) ((-655 . -718) 140920) ((-144 . -1102) T) ((-48 . -1004) T) ((-410 . -231) 140904) ((-296 . -235) 140854) ((-872 . -922) T) ((-872 . -821) NIL) ((-871 . -617) 140826) ((-865 . -851) T) ((-1232 . -340) 140796) ((-1232 . -379) 140766) ((-222 . -1123) 140750) ((-1269 . -289) 140727) ((-1213 . -649) 140652) ((-1005 . -647) 140582) ((-965 . -21) T) ((-965 . -25) T) ((-736 . -21) T) ((-736 . -25) T) ((-716 . -21) T) ((-716 . -25) T) ((-712 . -649) 140547) ((-456 . -21) T) ((-456 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-1001 . -1060) T) ((-871 . -1051) T) ((-775 . -102) T) ((-1254 . -365) 140526) ((-1253 . -902) 140432) ((-1233 . -365) 140411) ((-1232 . -902) 140262) ((-1026 . -614) 140244) ((-410 . -829) 140197) ((-1177 . -496) 140163) ((-169 . -922) 140094) ((-1176 . -496) 140060) ((-1170 . -496) 140026) ((-713 . -1102) T) ((-1128 . -496) 139992) ((-583 . -1058) 139979) ((-567 . -1058) 139966) ((-498 . -1058) 139931) ((-317 . -291) 139910) ((-314 . -291) T) ((-356 . -614) 139892) ((-421 . -25) T) ((-421 . -21) T) ((-99 . -287) 139871) ((-583 . -111) 139856) ((-567 . -111) 139841) ((-498 . -111) 139797) ((-1179 . -888) 139764) ((-903 . -492) 139748) ((-48 . -614) 139730) ((-48 . -615) 139675) ((-240 . -131) 139545) ((-1292 . -647) 139504) ((-1242 . -922) 139483) ((-817 . -1223) 139462) ((-391 . -493) 139443) ((-1037 . -517) 139287) ((-391 . -614) 139253) ((-817 . -559) 139184) ((-588 . -649) 139159) ((-265 . -47) 139131) ((-247 . -47) 139088) ((-534 . -512) 139065) ((-583 . -617) 139037) ((-567 . -617) 139009) ((-498 . -617) 138942) ((-1076 . -1219) T) ((-1002 . -1219) T) ((-1261 . -23) T) ((-700 . -1058) 138907) ((-1261 . -1114) T) ((-1254 . -1114) T) ((-1254 . -23) T) ((-1233 . -1114) T) ((-1233 . -23) T) ((-1005 . -372) 138879) ((-112 . -370) T) ((-477 . -902) 138785) ((-1213 . -727) T) ((-906 . -614) 138767) ((-55 . -617) 138749) ((-91 . -107) 138733) ((-1122 . -291) T) ((-907 . -851) 138684) ((-702 . -1154) T) ((-700 . -111) 138640) ((-844 . -647) 138557) ((-598 . -1114) T) ((-597 . -1114) T) ((-713 . -718) 138386) ((-712 . -727) T) ((-1006 . -131) T) ((-973 . -131) T) ((-490 . -851) T) ((-916 . -131) T) ((-800 . -25) T) ((-800 . -21) T) ((-217 . -851) T) ((-410 . -647) 138323) ((-583 . -1051) T) ((-567 . -1051) T) ((-498 . -1051) T) ((-598 . -23) T) ((-345 . -1288) 138300) ((-320 . -455) 138279) ((-341 . -310) 138266) ((-597 . -23) T) ((-430 . -131) T) ((-659 . -649) 138240) ((-245 . -1012) 138224) ((-873 . -308) T) ((-1293 . -1283) 138208) ((-772 . -793) T) ((-772 . -796) T) ((-702 . -38) 138195) ((-567 . -233) T) ((-498 . -243) T) ((-498 . -233) T) ((-1152 . -235) 138145) ((-1089 . -911) 138124) ((-116 . -38) 138111) ((-209 . -801) T) ((-208 . -801) T) ((-207 . -801) T) ((-206 . -801) T) ((-873 . -1024) 138089) ((-1282 . -492) 138073) ((-783 . -911) 138052) ((-781 . -911) 138031) ((-1192 . -1219) T) ((-457 . -911) 138010) ((-738 . -492) 137994) ((-1089 . -649) 137919) ((-700 . -617) 137854) ((-783 . -649) 137779) ((-624 . -1058) 137766) ((-482 . -1219) T) ((-345 . -370) T) ((-141 . -492) 137748) ((-781 . -649) 137673) ((-1143 . -1219) T) ((-552 . -851) T) ((-464 . -649) 137644) ((-265 . -888) 137503) ((-247 . -888) NIL) ((-117 . -1058) 137448) ((-457 . -649) 137373) ((-665 . -1040) 137350) ((-624 . -111) 137335) ((-393 . -1053) 137319) ((-357 . -1040) 137303) ((-354 . -1040) 137287) ((-346 . -1040) 137271) ((-265 . -1040) 137115) ((-247 . -1040) 136991) ((-117 . -111) 136920) ((-59 . -1219) T) ((-393 . -641) 136904) ((-622 . -1053) 136888) ((-522 . -1219) T) ((-519 . -1219) T) ((-500 . -1219) T) ((-499 . -1219) T) ((-440 . -614) 136870) ((-437 . -614) 136852) ((-622 . -641) 136836) ((-3 . -102) T) ((-1029 . -1212) 136805) ((-834 . -102) T) ((-690 . -57) 136763) ((-700 . -1051) T) ((-636 . -647) 136732) ((-608 . -647) 136701) ((-50 . -649) 136675) ((-290 . -455) T) ((-479 . -1212) 136644) ((0 . -102) T) ((-584 . -649) 136609) ((-521 . -649) 136554) ((-49 . -102) T) ((-912 . -1040) 136541) ((-700 . -243) T) ((-1082 . -412) 136520) ((-732 . -640) 136468) ((-1001 . -1102) T) ((-713 . -172) 136359) ((-624 . -617) 136254) ((-490 . -994) 136236) ((-265 . -379) 136220) ((-247 . -379) 136204) ((-402 . -1102) T) ((-1028 . -102) 136182) ((-341 . -38) 136166) ((-217 . -994) 136148) ((-117 . -617) 136078) ((-174 . -38) 136010) ((-1253 . -308) 135989) ((-1232 . -308) 135968) ((-659 . -727) T) ((-99 . -614) 135950) ((-480 . -1053) 135915) ((-1170 . -640) 135867) ((-480 . -641) 135832) ((-488 . -25) T) ((-488 . -21) T) ((-1232 . -1024) 135784) ((-1059 . -1219) T) ((-624 . -1051) T) ((-381 . -407) T) ((-393 . -102) T) ((-1107 . -619) 135699) ((-265 . -902) 135645) ((-247 . -902) 135622) ((-117 . -1051) T) ((-817 . -1114) T) ((-1089 . -727) T) ((-624 . -233) 135601) ((-622 . -102) T) ((-783 . -727) T) ((-781 . -727) T) ((-416 . -1114) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1224 . -851) T) ((-457 . -727) T) ((-817 . -23) T) ((-732 . -25) T) ((-732 . -21) T) ((-1079 . -287) 135580) ((-78 . -399) T) ((-78 . -398) T) ((-536 . -768) 135562) ((-695 . -1058) 135512) ((-1261 . -131) T) ((-1254 . -131) T) ((-1233 . -131) T) ((-1177 . -25) T) ((-1144 . -414) 135496) ((-636 . -369) 135428) ((-608 . -369) 135360) ((-1159 . -1151) 135344) ((-103 . -1102) 135322) ((-1177 . -21) T) ((-1176 . -21) T) ((-866 . -614) 135304) ((-1001 . -718) 135252) ((-223 . -649) 135219) ((-695 . -111) 135153) ((-50 . -727) T) ((-1176 . -25) T) ((-353 . -351) T) ((-1170 . -21) T) ((-1082 . -455) 135104) ((-1170 . -25) T) ((-713 . -517) 135051) ((-584 . -727) T) ((-521 . -727) T) ((-1128 . -21) T) ((-1128 . -25) T) ((-598 . -131) T) ((-295 . -647) 134786) ((-597 . -131) T) ((-361 . -455) T) ((-355 . -455) T) ((-347 . -455) T) ((-477 . -308) 134765) ((-1227 . -102) T) ((-314 . -287) 134700) ((-108 . -455) T) ((-79 . -444) T) ((-79 . -398) T) ((-480 . -102) T) ((-692 . -617) 134684) ((-1297 . -614) 134666) ((-1297 . -615) 134648) ((-1082 . -405) 134627) ((-1037 . -492) 134558) ((-567 . -796) T) ((-567 . -793) T) ((-1065 . -235) 134504) ((-361 . -405) 134455) ((-355 . -405) 134406) ((-347 . -405) 134357) ((-1284 . -1114) T) ((-1293 . -1053) 134341) ((-383 . -1053) 134325) ((-1293 . -641) 134295) ((-383 . -641) 134265) ((-695 . -617) 134200) ((-1284 . -23) T) ((-1271 . -102) T) ((-175 . -614) 134182) ((-1144 . -1060) T) ((-550 . -370) T) ((-671 . -745) 134166) ((-1181 . -145) 134145) ((-1181 . -147) 134124) ((-1148 . -1102) T) ((-1148 . -1073) 134093) ((-69 . -1219) T) ((-1026 . -1058) 134030) ((-353 . -647) 133960) ((-867 . -1060) T) ((-240 . -640) 133866) ((-695 . -1051) T) ((-356 . -1058) 133811) ((-61 . -1219) T) ((-1026 . -111) 133727) ((-903 . -614) 133638) ((-695 . -243) T) ((-695 . -233) NIL) ((-844 . -849) 133617) ((-700 . -796) T) ((-700 . -793) T) ((-1005 . -414) 133594) ((-356 . -111) 133523) ((-381 . -922) T) ((-410 . -849) 133502) ((-713 . -291) 133413) ((-223 . -727) T) ((-1261 . -496) 133379) ((-1254 . -496) 133345) ((-1233 . -496) 133311) ((-581 . -1102) T) ((-317 . -1004) 133290) ((-222 . -1102) 133268) ((-1226 . -845) T) ((-320 . -975) 133230) ((-105 . -102) T) ((-48 . -1058) 133195) ((-1293 . -102) T) ((-383 . -102) T) ((-48 . -111) 133151) ((-1006 . -640) 133133) ((-1255 . -614) 133115) ((-534 . -102) T) ((-503 . -102) T) ((-1135 . -1136) 133099) ((-152 . -1276) 133083) ((-245 . -1219) T) ((-1218 . -102) T) ((-1026 . -617) 133020) ((-1175 . -1223) 132999) ((-356 . -617) 132929) ((-1127 . -1223) 132908) ((-240 . -21) 132818) ((-240 . -25) 132669) ((-127 . -119) 132653) ((-121 . -119) 132637) ((-44 . -745) 132621) ((-1175 . -559) 132532) ((-1127 . -559) 132463) ((-1226 . -1102) T) ((-1037 . -287) 132438) ((-1169 . -1085) T) ((-996 . -1085) T) ((-817 . -131) T) ((-117 . -796) NIL) ((-117 . -793) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1114) 132348) ((-251 . -1114) 132258) ((-1026 . -1051) T) ((-1005 . -1060) T) ((-48 . -617) 132191) ((-345 . -649) 132136) ((-622 . -38) 132120) ((-1282 . -614) 132082) ((-1282 . -615) 132043) ((-1079 . -614) 132025) ((-1026 . -243) T) ((-356 . -1051) T) ((-816 . -1276) 131995) ((-252 . -23) T) ((-251 . -23) T) ((-989 . -614) 131977) ((-738 . -615) 131938) ((-738 . -614) 131920) ((-800 . -851) 131899) ((-1162 . -151) 131846) ((-1001 . -517) 131758) ((-356 . -233) T) ((-356 . -243) T) ((-391 . -617) 131739) ((-1006 . -25) T) ((-141 . -614) 131721) ((-141 . -615) 131680) ((-912 . -308) T) ((-1006 . -21) T) ((-973 . -25) T) ((-916 . -21) T) ((-916 . -25) T) ((-430 . -21) T) ((-430 . -25) T) ((-844 . -414) 131664) ((-48 . -1051) T) ((-1291 . -1283) 131648) ((-1289 . -1283) 131632) ((-1037 . -605) 131607) ((-317 . -615) 131468) ((-317 . -614) 131450) ((-314 . -615) NIL) ((-314 . -614) 131432) ((-48 . -243) T) ((-48 . -233) T) ((-655 . -287) 131393) ((-553 . -235) 131343) ((-139 . -614) 131310) ((-136 . -614) 131292) ((-114 . -614) 131274) ((-480 . -38) 131239) ((-1293 . -1290) 131218) ((-1284 . -131) T) ((-1292 . -1060) T) ((-1084 . -102) T) ((-88 . -1219) T) ((-503 . -310) NIL) ((-1002 . -107) 131202) ((-891 . -1102) T) ((-887 . -1102) T) ((-1269 . -652) 131186) ((-1269 . -375) 131170) ((-328 . -1219) T) ((-595 . -851) T) ((-1144 . -1102) T) ((-1144 . -1055) 131110) ((-103 . -517) 131043) ((-929 . -614) 131025) ((-345 . -727) T) ((-30 . -614) 131007) ((-867 . -1102) T) ((-844 . -1060) 130986) ((-40 . -649) 130931) ((-225 . -1223) T) ((-410 . -1060) T) ((-1161 . -151) 130913) ((-1001 . -291) 130864) ((-618 . -1102) T) ((-225 . -559) T) ((-320 . -1250) 130848) ((-320 . -1247) 130818) ((-702 . -647) 130790) ((-1192 . -1195) 130769) ((-1077 . -614) 130751) ((-1192 . -107) 130701) ((-648 . -151) 130685) ((-633 . -151) 130631) ((-116 . -647) 130603) ((-482 . -1195) 130582) ((-490 . -147) T) ((-490 . -145) NIL) ((-1122 . -615) 130497) ((-441 . -614) 130479) ((-217 . -147) T) ((-217 . -145) NIL) ((-1122 . -614) 130461) ((-129 . -102) T) ((-52 . -102) T) ((-1233 . -640) 130413) ((-482 . -107) 130363) ((-995 . -23) T) ((-1293 . -38) 130333) ((-1175 . -1114) T) ((-1127 . -1114) T) ((-1064 . -1223) T) ((-312 . -102) T) ((-855 . -1114) T) ((-954 . -1223) 130312) ((-484 . -1223) 130291) ((-1064 . -559) T) ((-954 . -559) 130222) ((-1175 . -23) T) ((-1153 . -1085) T) ((-1127 . -23) T) ((-855 . -23) T) ((-484 . -559) 130153) ((-1144 . -718) 130085) ((-671 . -1053) 130069) ((-1148 . -517) 130002) ((-671 . -641) 129986) ((-1037 . -615) NIL) ((-1037 . -614) 129968) ((-96 . -1085) T) ((-867 . -718) 129938) ((-1213 . -47) 129907) ((-252 . -131) T) ((-251 . -131) T) ((-1106 . -1102) T) ((-1005 . -1102) T) ((-62 . -614) 129889) ((-1170 . -851) NIL) ((-1026 . -793) T) ((-1026 . -796) T) ((-1297 . -1058) 129876) ((-1297 . -111) 129861) ((-1261 . -25) T) ((-1261 . -21) T) ((-871 . -649) 129848) ((-1254 . -21) T) ((-1254 . -25) T) ((-1233 . -21) T) ((-1233 . -25) T) ((-1029 . -151) 129832) ((-873 . -821) 129811) ((-873 . -922) T) ((-713 . -287) 129738) ((-598 . -21) T) ((-341 . -647) 129697) ((-598 . -25) T) ((-597 . -21) T) ((-174 . -647) 129614) ((-40 . -727) T) ((-222 . -517) 129547) ((-597 . -25) T) ((-479 . -151) 129531) ((-466 . -151) 129515) ((-923 . -795) T) ((-923 . -727) T) ((-772 . -794) T) ((-772 . -795) T) ((-509 . -1102) T) ((-505 . -1102) T) ((-772 . -727) T) ((-225 . -365) T) ((-1291 . -1053) 129499) ((-1289 . -1053) 129483) ((-1291 . -641) 129453) ((-1159 . -1102) 129431) ((-872 . -1223) T) ((-1289 . -641) 129401) ((-655 . -614) 129383) ((-872 . -559) T) ((-695 . -370) NIL) ((-44 . -1053) 129367) ((-1297 . -617) 129349) ((-1292 . -1102) T) ((-671 . -102) T) ((-361 . -1276) 129333) ((-355 . -1276) 129317) ((-44 . -641) 129301) ((-347 . -1276) 129285) ((-551 . -102) T) ((-523 . -851) 129264) ((-1048 . -1102) T) ((-818 . -455) 129243) ((-152 . -1053) 129227) ((-1048 . -1073) 129156) ((-1029 . -978) 129125) ((-820 . -1114) T) ((-1005 . -718) 129070) ((-152 . -641) 129054) ((-389 . -1114) T) ((-479 . -978) 129023) ((-466 . -978) 128992) ((-110 . -151) 128974) ((-73 . -614) 128956) ((-895 . -614) 128938) ((-1082 . -725) 128917) ((-1297 . -1051) T) ((-817 . -640) 128865) ((-295 . -1060) 128807) ((-169 . -1223) 128712) ((-225 . -1114) T) ((-325 . -23) T) ((-1170 . -994) 128664) ((-844 . -1102) T) ((-1255 . -1058) 128569) ((-1128 . -741) 128548) ((-1253 . -922) 128527) ((-1232 . -922) 128506) ((-871 . -727) T) ((-169 . -559) 128417) ((-583 . -649) 128404) ((-567 . -649) 128391) ((-410 . -1102) T) ((-264 . -1102) T) ((-213 . -614) 128373) ((-498 . -649) 128338) ((-225 . -23) T) ((-1232 . -821) 128291) ((-1291 . -102) T) ((-356 . -1288) 128268) ((-1289 . -102) T) ((-1255 . -111) 128160) ((-816 . -1053) 128057) ((-816 . -641) 127999) ((-144 . -614) 127981) ((-995 . -131) T) ((-44 . -102) T) ((-240 . -851) 127932) ((-1242 . -1223) 127911) ((-103 . -492) 127895) ((-1292 . -718) 127865) ((-1089 . -47) 127826) ((-1064 . -1114) T) ((-954 . -1114) T) ((-127 . -34) T) ((-121 . -34) T) ((-783 . -47) 127803) ((-781 . -47) 127775) ((-1242 . -559) 127686) ((-356 . -370) T) ((-484 . -1114) T) ((-1175 . -131) T) ((-1127 . -131) T) ((-457 . -47) 127665) ((-872 . -365) T) ((-855 . -131) T) ((-152 . -102) T) ((-1064 . -23) T) ((-954 . -23) T) ((-574 . -559) T) ((-817 . -25) T) ((-817 . -21) T) ((-1144 . -517) 127598) ((-594 . -1085) T) ((-588 . -1040) 127582) ((-1255 . -617) 127456) ((-484 . -23) T) ((-353 . -1060) T) ((-1213 . -902) 127437) ((-671 . -310) 127375) ((-1115 . -1276) 127345) ((-700 . -649) 127310) ((-1005 . -172) T) ((-965 . -145) 127289) ((-636 . -1102) T) ((-608 . -1102) T) ((-965 . -147) 127268) ((-1006 . -851) T) ((-736 . -147) 127247) ((-736 . -145) 127226) ((-973 . -851) T) ((-834 . -647) 127143) ((-477 . -922) 127122) ((-320 . -1053) 126957) ((-317 . -1058) 126867) ((-314 . -1058) 126796) ((-1001 . -287) 126754) ((-410 . -718) 126706) ((-320 . -641) 126547) ((-702 . -849) T) ((-1255 . -1051) T) ((-317 . -111) 126443) ((-314 . -111) 126356) ((-966 . -102) T) ((-816 . -102) 126146) ((-713 . -615) NIL) ((-713 . -614) 126128) ((-659 . -1040) 126024) ((-1255 . -327) 125968) ((-1037 . -289) 125943) ((-583 . -727) T) ((-567 . -795) T) ((-169 . -365) 125894) ((-567 . -792) T) ((-567 . -727) T) ((-498 . -727) T) ((-1148 . -492) 125878) ((-1089 . -888) NIL) ((-872 . -1114) T) ((-117 . -911) NIL) ((-1291 . -1290) 125854) ((-1289 . -1290) 125833) ((-783 . -888) NIL) ((-781 . -888) 125692) ((-1284 . -25) T) ((-1284 . -21) T) ((-1216 . -102) 125670) ((-1108 . -398) T) ((-624 . -649) 125657) ((-457 . -888) NIL) ((-676 . -102) 125635) ((-1089 . -1040) 125462) ((-872 . -23) T) ((-783 . -1040) 125321) ((-781 . -1040) 125178) ((-117 . -649) 125123) ((-457 . -1040) 124999) ((-317 . -617) 124563) ((-314 . -617) 124446) ((-393 . -647) 124415) ((-650 . -1040) 124399) ((-628 . -102) T) ((-222 . -492) 124383) ((-1269 . -34) T) ((-622 . -647) 124342) ((-290 . -1053) 124329) ((-136 . -617) 124313) ((-290 . -641) 124300) ((-636 . -718) 124284) ((-608 . -718) 124268) ((-671 . -38) 124228) ((-320 . -102) T) ((-85 . -614) 124210) ((-50 . -1040) 124194) ((-1122 . -1058) 124181) ((-1089 . -379) 124165) ((-783 . -379) 124149) ((-700 . -727) T) ((-700 . -795) T) ((-700 . -792) T) ((-584 . -1040) 124136) ((-521 . -1040) 124113) ((-60 . -57) 124075) ((-325 . -131) T) ((-317 . -1051) 123965) ((-314 . -1051) T) ((-169 . -1114) T) ((-781 . -379) 123949) ((-45 . -151) 123899) ((-1006 . -994) 123881) ((-457 . -379) 123865) ((-410 . -172) T) ((-317 . -243) 123844) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1102) 123626) ((-225 . -131) T) ((-1122 . -111) 123611) ((-169 . -23) T) ((-800 . -147) 123590) ((-800 . -145) 123569) ((-252 . -640) 123475) ((-251 . -640) 123381) ((-320 . -285) 123347) ((-1159 . -517) 123280) ((-480 . -647) 123230) ((-1135 . -1102) T) ((-225 . -1062) T) ((-816 . -310) 123168) ((-1089 . -902) 123103) ((-783 . -902) 123046) ((-781 . -902) 123030) ((-1291 . -38) 123000) ((-1289 . -38) 122970) ((-1242 . -1114) T) ((-856 . -1114) T) ((-457 . -902) 122947) ((-859 . -1102) T) ((-1242 . -23) T) ((-1122 . -617) 122919) ((-574 . -1114) T) ((-856 . -23) T) ((-624 . -727) T) ((-357 . -922) T) ((-354 . -922) T) ((-290 . -102) T) ((-346 . -922) T) ((-1064 . -131) T) ((-972 . -1085) T) ((-954 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-117 . -727) T) ((-695 . -911) NIL) ((-1048 . -517) 122820) ((-484 . -131) T) ((-574 . -23) T) ((-676 . -310) 122758) ((-636 . -762) T) ((-608 . -762) T) ((-1233 . -851) NIL) ((-1082 . -1053) 122668) ((-1005 . -291) T) ((-695 . -649) 122618) ((-252 . -21) T) ((-353 . -1102) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122602) ((-2 . -102) T) ((-912 . -922) T) ((-1082 . -641) 122470) ((-485 . -1276) 122440) ((-1122 . -1051) T) ((-712 . -308) T) ((-361 . -1053) 122392) ((-355 . -1053) 122344) ((-347 . -1053) 122296) ((-361 . -641) 122248) ((-223 . -1040) 122225) ((-355 . -641) 122177) ((-108 . -1053) 122127) ((-347 . -641) 122079) ((-295 . -718) 122021) ((-702 . -1060) T) ((-490 . -455) T) ((-410 . -517) 121933) ((-108 . -641) 121883) ((-217 . -455) T) ((-1122 . -233) T) ((-296 . -151) 121833) ((-1001 . -615) 121794) ((-1001 . -614) 121776) ((-991 . -614) 121758) ((-116 . -1060) T) ((-655 . -1058) 121742) ((-225 . -496) T) ((-402 . -614) 121724) ((-402 . -615) 121701) ((-1056 . -1276) 121671) ((-655 . -111) 121650) ((-1144 . -492) 121634) ((-1293 . -647) 121593) ((-383 . -647) 121562) ((-816 . -38) 121532) ((-63 . -444) T) ((-63 . -398) T) ((-1162 . -102) T) ((-872 . -131) T) ((-487 . -102) 121510) ((-1297 . -370) T) ((-1082 . -102) T) ((-1063 . -102) T) ((-353 . -718) 121455) ((-732 . -147) 121434) ((-732 . -145) 121413) ((-655 . -617) 121331) ((-1026 . -649) 121268) ((-526 . -1102) 121246) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-507 . -1102) T) ((-356 . -649) 121191) ((-1175 . -640) 121139) ((-1127 . -640) 121087) ((-387 . -512) 121066) ((-834 . -849) 121045) ((-381 . -1223) T) ((-695 . -727) T) ((-341 . -1060) T) ((-1233 . -994) 120997) ((-174 . -1060) T) ((-103 . -614) 120929) ((-1177 . -145) 120908) ((-1177 . -147) 120887) ((-381 . -559) T) ((-1176 . -147) 120866) ((-1176 . -145) 120845) ((-1170 . -145) 120752) ((-410 . -291) T) ((-1170 . -147) 120659) ((-1128 . -147) 120638) ((-1128 . -145) 120617) ((-320 . -38) 120458) ((-169 . -131) T) ((-314 . -796) NIL) ((-314 . -793) NIL) ((-655 . -1051) T) ((-48 . -649) 120423) ((-1115 . -1053) 120320) ((-895 . -617) 120297) ((-1115 . -641) 120239) ((-1169 . -102) T) ((-996 . -102) T) ((-995 . -21) T) ((-127 . -1012) 120223) ((-121 . -1012) 120207) ((-995 . -25) T) ((-903 . -119) 120191) ((-1161 . -102) T) ((-1242 . -131) T) ((-1175 . -25) T) ((-1175 . -21) T) ((-856 . -131) T) ((-1127 . -25) T) ((-1127 . -21) T) ((-855 . -25) T) ((-855 . -21) T) ((-783 . -308) 120170) ((-648 . -102) 120148) ((-633 . -102) T) ((-1162 . -310) 119943) ((-574 . -131) T) ((-622 . -849) 119922) ((-1159 . -492) 119906) ((-1152 . -151) 119856) ((-1148 . -614) 119818) ((-1148 . -615) 119779) ((-1026 . -792) T) ((-1026 . -795) T) ((-1026 . -727) T) ((-713 . -1058) 119602) ((-487 . -310) 119540) ((-456 . -420) 119510) ((-353 . -172) T) ((-290 . -38) 119497) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1040) 119474) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -727) T) ((-713 . -111) 119283) ((-671 . -231) 119267) ((-584 . -308) T) ((-521 . -308) T) ((-295 . -517) 119216) ((-108 . -310) NIL) ((-72 . -398) T) ((-1115 . -102) 119006) ((-834 . -414) 118990) ((-1122 . -796) T) ((-1122 . -793) T) ((-702 . -1102) T) ((-581 . -614) 118972) ((-381 . -365) T) ((-169 . -496) 118950) ((-222 . -614) 118882) ((-134 . -1102) T) ((-116 . -1102) T) ((-48 . -727) T) ((-1048 . -492) 118847) ((-141 . -428) 118829) ((-141 . -370) T) ((-1029 . -102) T) ((-515 . -512) 118808) ((-713 . -617) 118564) ((-479 . -102) T) ((-466 . -102) T) ((-1036 . -1114) T) ((-1226 . -614) 118546) ((-1184 . -1040) 118482) ((-1177 . -35) 118448) ((-1177 . -95) 118414) ((-1177 . -1207) 118380) ((-1177 . -1204) 118346) ((-1161 . -310) NIL) ((-89 . -399) T) ((-89 . -398) T) ((-1082 . -1154) 118325) ((-1176 . -1204) 118291) ((-1176 . -1207) 118257) ((-1036 . -23) T) ((-1176 . -95) 118223) ((-574 . -496) T) ((-1176 . -35) 118189) ((-1170 . -1204) 118155) ((-1170 . -1207) 118121) ((-1170 . -95) 118087) ((-363 . -1114) T) ((-361 . -1154) 118066) ((-355 . -1154) 118045) ((-347 . -1154) 118024) ((-1170 . -35) 117990) ((-1128 . -35) 117956) ((-1128 . -95) 117922) ((-108 . -1154) T) ((-1128 . -1207) 117888) ((-834 . -1060) 117867) ((-648 . -310) 117805) ((-633 . -310) 117656) ((-1128 . -1204) 117622) ((-713 . -1051) T) ((-1064 . -640) 117604) ((-1082 . -38) 117472) ((-954 . -640) 117420) ((-1006 . -147) T) ((-1006 . -145) NIL) ((-381 . -1114) T) ((-325 . -25) T) ((-323 . -23) T) ((-945 . -851) 117399) ((-713 . -327) 117376) ((-484 . -640) 117324) ((-40 . -1040) 117212) ((-713 . -233) T) ((-702 . -718) 117199) ((-341 . -1102) T) ((-174 . -1102) T) ((-332 . -851) T) ((-421 . -455) 117149) ((-381 . -23) T) ((-361 . -38) 117114) ((-355 . -38) 117079) ((-347 . -38) 117044) ((-80 . -444) T) ((-80 . -398) T) ((-225 . -25) T) ((-225 . -21) T) ((-837 . -1114) T) ((-108 . -38) 116994) ((-828 . -1114) T) ((-775 . -1102) T) ((-116 . -718) 116981) ((-673 . -1040) 116965) ((-613 . -102) T) ((-837 . -23) T) ((-828 . -23) T) ((-1159 . -287) 116942) ((-1115 . -310) 116880) ((-485 . -1053) 116777) ((-1104 . -235) 116761) ((-64 . -399) T) ((-64 . -398) T) ((-1153 . -102) T) ((-110 . -102) T) ((-485 . -641) 116703) ((-40 . -379) 116680) ((-96 . -102) T) ((-654 . -853) 116664) ((-1137 . -1085) T) ((-1064 . -21) T) ((-1064 . -25) T) ((-1056 . -1053) 116648) ((-816 . -231) 116617) ((-954 . -25) T) ((-954 . -21) T) ((-1056 . -641) 116559) ((-622 . -1060) T) ((-1122 . -370) T) ((-1029 . -310) 116497) ((-671 . -647) 116456) ((-484 . -25) T) ((-484 . -21) T) ((-387 . -1053) 116440) ((-891 . -614) 116422) ((-887 . -614) 116404) ((-526 . -517) 116337) ((-252 . -851) 116288) ((-251 . -851) 116239) ((-387 . -641) 116209) ((-872 . -640) 116186) ((-479 . -310) 116124) ((-466 . -310) 116062) ((-353 . -291) T) ((-1159 . -1257) 116046) ((-1144 . -614) 116008) ((-1144 . -615) 115969) ((-1142 . -102) T) ((-1001 . -1058) 115865) ((-40 . -902) 115817) ((-1159 . -605) 115794) ((-1297 . -649) 115781) ((-867 . -493) 115758) ((-1065 . -151) 115704) ((-873 . -1223) T) ((-1001 . -111) 115586) ((-341 . -718) 115570) ((-867 . -614) 115532) ((-174 . -718) 115464) ((-410 . -287) 115422) ((-873 . -559) T) ((-108 . -403) 115404) ((-84 . -386) T) ((-84 . -398) T) ((-702 . -172) T) ((-618 . -614) 115386) ((-99 . -727) T) ((-485 . -102) 115176) ((-99 . -476) T) ((-116 . -172) T) ((-1291 . -647) 115135) ((-1289 . -647) 115094) ((-1115 . -38) 115064) ((-169 . -640) 115012) ((-1056 . -102) T) ((-1001 . -617) 114902) ((-872 . -25) T) ((-816 . -238) 114881) ((-872 . -21) T) ((-819 . -102) T) ((-44 . -647) 114824) ((-417 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114802) ((-127 . -1219) T) ((-121 . -1219) T) ((-818 . -1053) 114753) ((-818 . -641) 114695) ((-1036 . -131) T) ((-671 . -369) 114679) ((-152 . -647) 114638) ((-1001 . -1051) T) ((-1242 . -640) 114586) ((-1106 . -614) 114568) ((-1005 . -614) 114550) ((-518 . -23) T) ((-513 . -23) T) ((-345 . -308) T) ((-511 . -23) T) ((-323 . -131) T) ((-3 . -1102) T) ((-1005 . -615) 114534) ((-1001 . -243) 114513) ((-1001 . -233) 114492) ((-1297 . -727) T) ((-1261 . -145) 114471) ((-834 . -1102) T) ((-1261 . -147) 114450) ((-1254 . -147) 114429) ((-1254 . -145) 114408) ((-1253 . -1223) 114387) ((-1233 . -145) 114294) ((-1233 . -147) 114201) ((-1232 . -1223) 114180) ((-381 . -131) T) ((-567 . -888) 114162) ((0 . -1102) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1102) T) ((-1255 . -649) 114067) ((-1253 . -559) 114018) ((-715 . -1114) T) ((-1232 . -559) 113969) ((-567 . -1040) 113951) ((-597 . -147) 113930) ((-597 . -145) 113909) ((-498 . -1040) 113852) ((-1137 . -1139) T) ((-87 . -386) T) ((-87 . -398) T) ((-873 . -365) T) ((-837 . -131) T) ((-828 . -131) T) ((-966 . -647) 113796) ((-715 . -23) T) ((-509 . -614) 113762) ((-505 . -614) 113744) ((-816 . -647) 113494) ((-1293 . -1060) T) ((-381 . -1062) T) ((-1028 . -1102) 113472) ((-55 . -1040) 113454) ((-903 . -34) T) ((-485 . -310) 113392) ((-594 . -102) T) ((-1159 . -615) 113353) ((-1159 . -614) 113285) ((-1181 . -1053) 113168) ((-45 . -102) T) ((-818 . -102) T) ((-1181 . -641) 113065) ((-1242 . -25) T) ((-1242 . -21) T) ((-856 . -25) T) ((-44 . -369) 113049) ((-856 . -21) T) ((-732 . -455) 113000) ((-1292 . -614) 112982) ((-1281 . -1053) 112952) ((-1056 . -310) 112890) ((-672 . -1085) T) ((-607 . -1085) T) ((-393 . -1102) T) ((-574 . -25) T) ((-574 . -21) T) ((-180 . -1085) T) ((-161 . -1085) T) ((-156 . -1085) T) ((-154 . -1085) T) ((-1281 . -641) 112860) ((-622 . -1102) T) ((-700 . -888) 112842) ((-1269 . -1219) T) ((-227 . -310) 112780) ((-144 . -370) T) ((-1048 . -615) 112722) ((-1048 . -614) 112665) ((-314 . -911) NIL) ((-1227 . -845) T) ((-700 . -1040) 112610) ((-712 . -922) T) ((-477 . -1223) 112589) ((-1176 . -455) 112568) ((-1170 . -455) 112547) ((-331 . -102) T) ((-873 . -1114) T) ((-320 . -647) 112429) ((-317 . -649) 112250) ((-314 . -649) 112179) ((-477 . -559) 112130) ((-341 . -517) 112096) ((-553 . -151) 112046) ((-40 . -308) T) ((-844 . -614) 112028) ((-702 . -291) T) ((-873 . -23) T) ((-381 . -496) T) ((-1082 . -231) 111998) ((-515 . -102) T) ((-410 . -615) 111805) ((-410 . -614) 111787) ((-264 . -614) 111769) ((-116 . -291) T) ((-1255 . -727) T) ((-1253 . -365) 111748) ((-1232 . -365) 111727) ((-1282 . -34) T) ((-1227 . -1102) T) ((-117 . -1219) T) ((-108 . -231) 111709) ((-1181 . -102) T) ((-480 . -1102) T) ((-526 . -492) 111693) ((-738 . -34) T) ((-654 . -1053) 111677) ((-485 . -38) 111647) ((-654 . -641) 111617) ((-141 . -34) T) ((-117 . -886) 111594) ((-117 . -888) NIL) ((-624 . -1040) 111477) ((-645 . -851) 111456) ((-1281 . -102) T) ((-296 . -102) T) ((-713 . -370) 111435) ((-117 . -1040) 111412) ((-393 . -718) 111396) ((-622 . -718) 111380) ((-45 . -310) 111184) ((-817 . -145) 111163) ((-817 . -147) 111142) ((-290 . -647) 111114) ((-1292 . -384) 111093) ((-820 . -851) T) ((-1271 . -1102) T) ((-1162 . -229) 111040) ((-389 . -851) 111019) ((-1261 . -1207) 110985) ((-1261 . -1204) 110951) ((-1254 . -1204) 110917) ((-518 . -131) T) ((-1254 . -1207) 110883) ((-1233 . -1204) 110849) ((-1233 . -1207) 110815) ((-1261 . -35) 110781) ((-1261 . -95) 110747) ((-636 . -614) 110716) ((-608 . -614) 110685) ((-225 . -851) T) ((-1254 . -95) 110651) ((-1254 . -35) 110617) ((-1253 . -1114) T) ((-1122 . -649) 110604) ((-1233 . -95) 110570) ((-1232 . -1114) T) ((-595 . -151) 110552) ((-1082 . -351) 110531) ((-174 . -291) T) ((-117 . -379) 110508) ((-117 . -340) 110485) ((-1233 . -35) 110451) ((-871 . -308) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-317 . -727) 110300) ((-314 . -727) T) ((-477 . -365) 110279) ((-361 . -351) 110258) ((-355 . -351) 110237) ((-347 . -351) 110216) ((-317 . -476) 110195) ((-1253 . -23) T) ((-1232 . -23) T) ((-719 . -1114) T) ((-715 . -131) T) ((-654 . -102) T) ((-480 . -718) 110160) ((-45 . -283) 110110) ((-105 . -1102) T) ((-68 . -614) 110092) ((-972 . -102) T) ((-865 . -102) T) ((-624 . -902) 110051) ((-1293 . -1102) T) ((-383 . -1102) T) ((-82 . -1219) T) ((-1218 . -1102) T) ((-1064 . -851) T) ((-117 . -902) NIL) ((-783 . -922) 110030) ((-714 . -851) T) ((-534 . -1102) T) ((-503 . -1102) T) ((-357 . -1223) T) ((-354 . -1223) T) ((-346 . -1223) T) ((-265 . -1223) 110009) ((-247 . -1223) 109988) ((-536 . -861) T) ((-1115 . -231) 109957) ((-1161 . -829) T) ((-1144 . -1058) 109941) ((-393 . -762) T) ((-695 . -1219) T) ((-692 . -1040) 109925) ((-357 . -559) T) ((-354 . -559) T) ((-346 . -559) T) ((-265 . -559) 109856) ((-247 . -559) 109787) ((-528 . -1085) T) ((-1144 . -111) 109766) ((-456 . -745) 109736) ((-867 . -1058) 109706) ((-818 . -38) 109648) ((-695 . -886) 109630) ((-695 . -888) 109612) ((-296 . -310) 109416) ((-912 . -1223) T) ((-1159 . -289) 109393) ((-1082 . -647) 109288) ((-671 . -414) 109272) ((-867 . -111) 109237) ((-1006 . -455) T) ((-695 . -1040) 109182) ((-912 . -559) T) ((-536 . -614) 109164) ((-584 . -922) T) ((-490 . -1053) 109114) ((-477 . -1114) T) ((-521 . -922) T) ((-916 . -455) T) ((-65 . -614) 109096) ((-217 . -1053) 109046) ((-490 . -641) 108996) ((-361 . -647) 108933) ((-355 . -647) 108870) ((-347 . -647) 108807) ((-633 . -229) 108753) ((-217 . -641) 108703) ((-108 . -647) 108653) ((-477 . -23) T) ((-1122 . -795) T) ((-873 . -131) T) ((-1122 . -792) T) ((-1284 . -1286) 108632) ((-1122 . -727) T) ((-655 . -649) 108606) ((-295 . -614) 108347) ((-1144 . -617) 108265) ((-1037 . -34) T) ((-816 . -849) 108244) ((-583 . -308) T) ((-567 . -308) T) ((-498 . -308) T) ((-1293 . -718) 108214) ((-695 . -379) 108196) ((-695 . -340) 108178) ((-480 . -172) T) ((-383 . -718) 108148) ((-867 . -617) 108083) ((-872 . -851) NIL) ((-567 . -1024) T) ((-498 . -1024) T) ((-1135 . -614) 108065) ((-1115 . -238) 108044) ((-214 . -102) T) ((-1152 . -102) T) ((-71 . -614) 108026) ((-1144 . -1051) T) ((-1181 . -38) 107923) ((-859 . -614) 107905) ((-567 . -548) T) ((-671 . -1060) T) ((-732 . -951) 107858) ((-1144 . -233) 107837) ((-1084 . -1102) T) ((-1036 . -25) T) ((-1036 . -21) T) ((-1005 . -1058) 107782) ((-907 . -102) T) ((-867 . -1051) T) ((-695 . -902) NIL) ((-357 . -330) 107766) ((-357 . -365) T) ((-354 . -330) 107750) ((-354 . -365) T) ((-346 . -330) 107734) ((-346 . -365) T) ((-490 . -102) T) ((-1281 . -38) 107704) ((-549 . -851) T) ((-526 . -688) 107654) ((-217 . -102) T) ((-1026 . -1040) 107534) ((-1005 . -111) 107463) ((-1177 . -975) 107432) ((-523 . -151) 107416) ((-1082 . -372) 107395) ((-353 . -614) 107377) ((-323 . -21) T) ((-356 . -1040) 107354) ((-323 . -25) T) ((-1176 . -975) 107316) ((-1170 . -975) 107285) ((-76 . -614) 107267) ((-1128 . -975) 107234) ((-700 . -308) T) ((-129 . -845) T) ((-912 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-912 . -330) 107221) ((-86 . -614) 107203) ((-700 . -1024) T) ((-678 . -851) T) ((-1253 . -131) T) ((-1232 . -131) T) ((-903 . -1012) 107187) ((-837 . -21) T) ((-48 . -1040) 107130) ((-837 . -25) T) ((-828 . -25) T) ((-828 . -21) T) ((-1115 . -647) 106880) ((-1291 . -1060) T) ((-552 . -102) T) ((-1289 . -1060) T) ((-655 . -727) T) ((-1106 . -619) 106783) ((-1005 . -617) 106713) ((-1292 . -1058) 106697) ((-816 . -414) 106666) ((-103 . -119) 106650) ((-129 . -1102) T) ((-52 . -1102) T) ((-928 . -614) 106632) ((-872 . -994) 106609) ((-824 . -102) T) ((-1292 . -111) 106588) ((-654 . -38) 106558) ((-574 . -851) T) ((-357 . -1114) T) ((-354 . -1114) T) ((-346 . -1114) T) ((-265 . -1114) T) ((-247 . -1114) T) ((-624 . -308) 106537) ((-1152 . -310) 106341) ((-665 . -23) T) ((-527 . -1085) T) ((-312 . -1102) T) ((-485 . -231) 106310) ((-152 . -1060) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1005 . -1051) T) ((-713 . -911) 106289) ((-1159 . -617) 106266) ((-1005 . -233) 106238) ((-1005 . -243) T) ((-117 . -1024) NIL) ((-912 . -1114) T) ((-1254 . -455) 106217) ((-1233 . -455) 106196) ((-526 . -614) 106128) ((-713 . -649) 106053) ((-410 . -1058) 106005) ((-507 . -614) 105987) ((-912 . -23) T) ((-490 . -310) NIL) ((-1292 . -617) 105943) ((-477 . -131) T) ((-217 . -310) NIL) ((-410 . -111) 105881) ((-816 . -1060) 105811) ((-738 . -1100) 105795) ((-1253 . -496) 105761) ((-1232 . -496) 105727) ((-551 . -845) T) ((-141 . -1100) 105709) ((-480 . -291) T) ((-1292 . -1051) T) ((-1224 . -102) T) ((-1065 . -102) T) ((-844 . -617) 105577) ((-503 . -517) NIL) ((-485 . -238) 105556) ((-410 . -617) 105454) ((-965 . -1053) 105337) ((-736 . -1053) 105307) ((-965 . -641) 105204) ((-1175 . -145) 105183) ((-736 . -641) 105153) ((-456 . -1053) 105123) ((-1175 . -147) 105102) ((-1127 . -147) 105081) ((-1127 . -145) 105060) ((-636 . -1058) 105044) ((-608 . -1058) 105028) ((-456 . -641) 104998) ((-1177 . -1260) 104982) ((-1177 . -1247) 104959) ((-671 . -1102) T) ((-671 . -1055) 104899) ((-1176 . -1252) 104860) ((-551 . -1102) T) ((-490 . -1154) T) ((-1176 . -1247) 104830) ((-1176 . -1250) 104814) ((-1170 . -1231) 104775) ((-217 . -1154) T) ((-345 . -922) T) ((-819 . -267) 104759) ((-636 . -111) 104738) ((-608 . -111) 104717) ((-1170 . -1247) 104694) ((-844 . -1051) 104673) ((-1170 . -1229) 104657) ((-518 . -25) T) ((-498 . -303) T) ((-514 . -23) T) ((-513 . -25) T) ((-511 . -25) T) ((-510 . -23) T) ((-421 . -1053) 104631) ((-410 . -1051) T) ((-320 . -1060) T) ((-695 . -308) T) ((-421 . -641) 104605) ((-108 . -849) T) ((-713 . -727) T) ((-410 . -243) T) ((-410 . -233) 104584) ((-490 . -38) 104534) ((-217 . -38) 104484) ((-477 . -496) 104450) ((-1226 . -370) T) ((-1161 . -1146) T) ((-1103 . -102) T) ((-702 . -614) 104432) ((-702 . -615) 104347) ((-715 . -21) T) ((-715 . -25) T) ((-1137 . -102) T) ((-485 . -647) 104097) ((-134 . -614) 104079) ((-116 . -614) 104061) ((-157 . -25) T) ((-1291 . -1102) T) ((-873 . -640) 104009) ((-1289 . -1102) T) ((-965 . -102) T) ((-736 . -102) T) ((-716 . -102) T) ((-456 . -102) T) ((-817 . -455) 103960) ((-44 . -1102) T) ((-1090 . -851) T) ((-1065 . -310) 103811) ((-665 . -131) T) ((-1056 . -647) 103780) ((-671 . -718) 103764) ((-290 . -1060) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -647) 103733) ((-421 . -102) T) ((-152 . -1102) T) ((-45 . -229) 103683) ((-800 . -1053) 103667) ((-960 . -851) 103646) ((-1001 . -649) 103584) ((-800 . -641) 103568) ((-240 . -1276) 103538) ((-1026 . -308) T) ((-295 . -1058) 103459) ((-912 . -131) T) ((-40 . -922) T) ((-490 . -403) 103441) ((-356 . -308) T) ((-217 . -403) 103423) ((-1082 . -414) 103407) ((-295 . -111) 103323) ((-1186 . -851) T) ((-1185 . -851) T) ((-873 . -25) T) ((-873 . -21) T) ((-341 . -614) 103305) ((-1255 . -47) 103249) ((-225 . -147) T) ((-174 . -614) 103231) ((-1115 . -849) 103210) ((-775 . -614) 103192) ((-128 . -851) T) ((-609 . -235) 103139) ((-478 . -235) 103089) ((-1291 . -718) 103059) ((-48 . -308) T) ((-1289 . -718) 103029) ((-65 . -617) 102958) ((-966 . -1102) T) ((-816 . -1102) 102748) ((-313 . -102) T) ((-903 . -1219) T) ((-48 . -1024) T) ((-1232 . -640) 102656) ((-690 . -102) 102634) ((-44 . -718) 102618) ((-553 . -102) T) ((-295 . -617) 102549) ((-67 . -385) T) ((-67 . -398) T) ((-663 . -23) T) ((-818 . -647) 102485) ((-671 . -762) T) ((-1216 . -1102) 102463) ((-353 . -1058) 102408) ((-676 . -1102) 102386) ((-1064 . -147) T) ((-954 . -147) 102365) ((-954 . -145) 102344) ((-800 . -102) T) ((-152 . -718) 102328) ((-484 . -147) 102307) ((-484 . -145) 102286) ((-353 . -111) 102215) ((-1082 . -1060) T) ((-323 . -851) 102194) ((-1261 . -975) 102163) ((-628 . -1102) T) ((-1254 . -975) 102125) ((-514 . -131) T) ((-510 . -131) T) ((-296 . -229) 102075) ((-361 . -1060) T) ((-355 . -1060) T) ((-347 . -1060) T) ((-295 . -1051) 102017) ((-1233 . -975) 101986) ((-381 . -851) T) ((-108 . -1060) T) ((-1001 . -727) T) ((-871 . -922) T) ((-844 . -796) 101965) ((-844 . -793) 101944) ((-421 . -310) 101883) ((-471 . -102) T) ((-597 . -975) 101852) ((-320 . -1102) T) ((-410 . -796) 101831) ((-410 . -793) 101810) ((-503 . -492) 101792) ((-1255 . -1040) 101758) ((-1253 . -21) T) ((-1253 . -25) T) ((-1232 . -21) T) ((-1232 . -25) T) ((-816 . -718) 101700) ((-353 . -617) 101630) ((-700 . -407) T) ((-1282 . -1219) T) ((-607 . -102) T) ((-1115 . -414) 101599) ((-1005 . -370) NIL) ((-672 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1181 . -647) 101509) ((-738 . -1219) T) ((-732 . -1053) 101352) ((-44 . -762) T) ((-732 . -641) 101201) ((-595 . -102) T) ((-77 . -399) T) ((-77 . -398) T) ((-654 . -657) 101185) ((-141 . -1219) T) ((-872 . -147) T) ((-872 . -145) NIL) ((-1218 . -93) T) ((-353 . -1051) T) ((-70 . -385) T) ((-70 . -398) T) ((-1168 . -102) T) ((-671 . -517) 101118) ((-1281 . -647) 101063) ((-690 . -310) 101001) ((-965 . -38) 100898) ((-1183 . -614) 100880) ((-736 . -38) 100850) ((-553 . -310) 100654) ((-1177 . -1053) 100537) ((-317 . -1219) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1219) T) ((-290 . -1102) T) ((-1176 . -1053) 100372) ((-1170 . -1053) 100162) ((-1128 . -1053) 100045) ((-1177 . -641) 99942) ((-1176 . -641) 99783) ((-712 . -1223) T) ((-1170 . -641) 99579) ((-1159 . -652) 99563) ((-1128 . -641) 99460) ((-1213 . -559) 99439) ((-820 . -388) 99423) ((-712 . -559) T) ((-317 . -886) 99407) ((-317 . -888) 99332) ((-314 . -886) 99293) ((-314 . -888) NIL) ((-800 . -310) 99258) ((-320 . -718) 99099) ((-389 . -388) 99083) ((-325 . -324) 99060) ((-488 . -102) T) ((-477 . -25) T) ((-477 . -21) T) ((-421 . -38) 99034) ((-317 . -1040) 98697) ((-225 . -1204) T) ((-225 . -1207) T) ((-3 . -614) 98679) ((-314 . -1040) 98609) ((-2 . -1102) T) ((-2 . |RecordCategory|) T) ((-834 . -614) 98591) ((-1115 . -1060) 98521) ((-583 . -922) T) ((-567 . -821) T) ((-567 . -922) T) ((-498 . -922) T) ((-136 . -1040) 98505) ((-225 . -95) T) ((-169 . -147) 98484) ((-75 . -444) T) ((0 . -614) 98466) ((-75 . -398) T) ((-169 . -145) 98417) ((-225 . -35) T) ((-49 . -614) 98399) ((-480 . -1060) T) ((-490 . -231) 98381) ((-487 . -970) 98365) ((-485 . -849) 98344) ((-217 . -231) 98326) ((-81 . -444) T) ((-81 . -398) T) ((-1148 . -34) T) ((-816 . -172) 98305) ((-732 . -102) T) ((-654 . -647) 98264) ((-1028 . -614) 98231) ((-503 . -287) 98206) ((-317 . -379) 98175) ((-314 . -379) 98136) ((-314 . -340) 98097) ((-1087 . -614) 98079) ((-817 . -951) 98026) ((-663 . -131) T) ((-1242 . -145) 98005) ((-1242 . -147) 97984) ((-1177 . -102) T) ((-1176 . -102) T) ((-1170 . -102) T) ((-1162 . -1102) T) ((-1128 . -102) T) ((-222 . -34) T) ((-290 . -718) 97971) ((-1162 . -611) 97947) ((-595 . -310) NIL) ((-487 . -1102) 97925) ((-393 . -614) 97907) ((-513 . -851) T) ((-1152 . -229) 97857) ((-1261 . -1260) 97841) ((-1261 . -1247) 97818) ((-1254 . -1252) 97779) ((-1254 . -1247) 97749) ((-1254 . -1250) 97733) ((-1233 . -1231) 97694) ((-1233 . -1247) 97671) ((-622 . -614) 97653) ((-1233 . -1229) 97637) ((-700 . -922) T) ((-1177 . -285) 97603) ((-1176 . -285) 97569) ((-1170 . -285) 97535) ((-1082 . -1102) T) ((-1063 . -1102) T) ((-48 . -303) T) ((-317 . -902) 97501) ((-314 . -902) NIL) ((-1063 . -1070) 97480) ((-1122 . -888) 97462) ((-800 . -38) 97446) ((-265 . -640) 97394) ((-247 . -640) 97342) ((-702 . -1058) 97329) ((-597 . -1247) 97306) ((-1128 . -285) 97272) ((-320 . -172) 97203) ((-361 . -1102) T) ((-355 . -1102) T) ((-347 . -1102) T) ((-503 . -19) 97185) ((-1122 . -1040) 97167) ((-1104 . -151) 97151) ((-108 . -1102) T) ((-116 . -1058) 97138) ((-712 . -365) T) ((-503 . -605) 97113) ((-702 . -111) 97098) ((-439 . -102) T) ((-877 . -1264) T) ((-250 . -102) T) ((-45 . -1151) 97048) ((-116 . -111) 97033) ((-636 . -721) T) ((-608 . -721) T) ((-1271 . -614) 97015) ((-1227 . -614) 96997) ((-1225 . -851) T) ((-816 . -517) 96930) ((-1037 . -1219) T) ((-240 . -1053) 96827) ((-1213 . -1114) T) ((-1213 . -23) T) ((-945 . -151) 96811) ((-1175 . -455) 96742) ((-1170 . -310) 96627) ((-240 . -641) 96569) ((-1169 . -1102) T) ((-1161 . -1102) T) ((-1144 . -649) 96543) ((-528 . -102) T) ((-523 . -102) 96493) ((-1128 . -310) 96480) ((-1127 . -455) 96431) ((-1089 . -1223) 96410) ((-783 . -1223) 96389) ((-781 . -1223) 96368) ((-62 . -1219) T) ((-480 . -614) 96320) ((-480 . -615) 96242) ((-1089 . -559) 96173) ((-996 . -1102) T) ((-783 . -559) 96084) ((-781 . -559) 96015) ((-485 . -414) 95984) ((-624 . -922) 95963) ((-457 . -1223) 95942) ((-732 . -310) 95929) ((-702 . -617) 95901) ((-401 . -614) 95883) ((-676 . -517) 95816) ((-665 . -25) T) ((-665 . -21) T) ((-457 . -559) 95747) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -922) T) ((-117 . -821) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -398) T) ((-134 . -617) 95729) ((-116 . -617) 95701) ((-1082 . -718) 95569) ((-1006 . -1053) 95519) ((-1006 . -641) 95469) ((-945 . -982) 95453) ((-916 . -641) 95405) ((-916 . -1053) 95357) ((-912 . -21) T) ((-912 . -25) T) ((-873 . -851) 95308) ((-867 . -649) 95268) ((-712 . -1114) T) ((-712 . -23) T) ((-290 . -172) T) ((-702 . -1051) T) ((-312 . -93) T) ((-702 . -233) T) ((-648 . -1102) 95246) ((-633 . -611) 95221) ((-633 . -1102) T) ((-584 . -1223) T) ((-584 . -559) T) ((-521 . -1223) T) ((-521 . -559) T) ((-490 . -647) 95171) ((-430 . -1053) 95155) ((-430 . -641) 95139) ((-361 . -718) 95091) ((-355 . -718) 95043) ((-341 . -1058) 95027) ((-347 . -718) 94979) ((-341 . -111) 94958) ((-174 . -1058) 94890) ((-217 . -647) 94840) ((-174 . -111) 94751) ((-108 . -718) 94701) ((-275 . -1102) T) ((-274 . -1102) T) ((-273 . -1102) T) ((-272 . -1102) T) ((-271 . -1102) T) ((-270 . -1102) T) ((-269 . -1102) T) ((-212 . -1102) T) ((-211 . -1102) T) ((-169 . -1207) 94679) ((-169 . -1204) 94657) ((-209 . -1102) T) ((-208 . -1102) T) ((-116 . -1051) T) ((-207 . -1102) T) ((-206 . -1102) T) ((-203 . -1102) T) ((-202 . -1102) T) ((-201 . -1102) T) ((-200 . -1102) T) ((-199 . -1102) T) ((-198 . -1102) T) ((-197 . -1102) T) ((-196 . -1102) T) ((-195 . -1102) T) ((-194 . -1102) T) ((-193 . -1102) T) ((-240 . -102) 94447) ((-169 . -35) 94425) ((-169 . -95) 94403) ((-655 . -1040) 94299) ((-485 . -1060) 94229) ((-1115 . -1102) 94019) ((-1144 . -34) T) ((-671 . -492) 94003) ((-73 . -1219) T) ((-105 . -614) 93985) ((-1293 . -614) 93967) ((-383 . -614) 93949) ((-341 . -617) 93901) ((-174 . -617) 93818) ((-1218 . -493) 93799) ((-732 . -38) 93648) ((-574 . -1207) T) ((-574 . -1204) T) ((-534 . -614) 93630) ((-523 . -310) 93568) ((-503 . -614) 93550) ((-503 . -615) 93532) ((-1218 . -614) 93498) ((-1170 . -1154) NIL) ((-1029 . -1073) 93467) ((-1029 . -1102) T) ((-1006 . -102) T) ((-973 . -102) T) ((-916 . -102) T) ((-895 . -1040) 93444) ((-1144 . -727) T) ((-1005 . -649) 93389) ((-479 . -1102) T) ((-466 . -1102) T) ((-588 . -23) T) ((-574 . -35) T) ((-574 . -95) T) ((-430 . -102) T) ((-1065 . -229) 93335) ((-1177 . -38) 93232) ((-867 . -727) T) ((-695 . -922) T) ((-514 . -25) T) ((-510 . -21) T) ((-510 . -25) T) ((-1176 . -38) 93073) ((-341 . -1051) T) ((-1170 . -38) 92869) ((-1082 . -172) T) ((-174 . -1051) T) ((-1128 . -38) 92766) ((-713 . -47) 92743) ((-361 . -172) T) ((-355 . -172) T) ((-522 . -57) 92717) ((-500 . -57) 92667) ((-353 . -1288) 92644) ((-225 . -455) T) ((-320 . -291) 92595) ((-347 . -172) T) ((-174 . -243) T) ((-1232 . -851) 92494) ((-108 . -172) T) ((-873 . -994) 92478) ((-659 . -1114) T) ((-584 . -365) T) ((-584 . -330) 92465) ((-521 . -330) 92442) ((-521 . -365) T) ((-317 . -308) 92421) ((-314 . -308) T) ((-603 . -851) 92400) ((-1115 . -718) 92342) ((-523 . -283) 92326) ((-659 . -23) T) ((-421 . -231) 92310) ((-314 . -1024) NIL) ((-338 . -23) T) ((-103 . -1012) 92294) ((-45 . -36) 92273) ((-613 . -1102) T) ((-353 . -370) T) ((-527 . -102) T) ((-498 . -27) T) ((-240 . -310) 92211) ((-1089 . -1114) T) ((-1292 . -649) 92185) ((-783 . -1114) T) ((-781 . -1114) T) ((-457 . -1114) T) ((-1064 . -455) T) ((-1153 . -1102) T) ((-954 . -455) 92136) ((-1117 . -1085) T) ((-110 . -1102) T) ((-1089 . -23) T) ((-818 . -1060) T) ((-783 . -23) T) ((-781 . -23) T) ((-484 . -455) 92087) ((-1162 . -517) 91870) ((-383 . -384) 91849) ((-1181 . -414) 91833) ((-464 . -23) T) ((-457 . -23) T) ((-96 . -1102) T) ((-487 . -517) 91766) ((-1261 . -1053) 91649) ((-1261 . -641) 91546) ((-1254 . -641) 91387) ((-1254 . -1053) 91222) ((-290 . -291) T) ((-1233 . -1053) 91012) ((-1084 . -614) 90994) ((-1084 . -615) 90975) ((-410 . -911) 90954) ((-1233 . -641) 90750) ((-50 . -1114) T) ((-1213 . -131) T) ((-1026 . -922) T) ((-1005 . -727) T) ((-844 . -649) 90723) ((-713 . -888) NIL) ((-598 . -1053) 90683) ((-584 . -1114) T) ((-521 . -1114) T) ((-597 . -1053) 90566) ((-1170 . -403) 90518) ((-1006 . -310) NIL) ((-816 . -492) 90502) ((-598 . -641) 90475) ((-356 . -922) T) ((-597 . -641) 90372) ((-1159 . -34) T) ((-410 . -649) 90324) ((-50 . -23) T) ((-712 . -131) T) ((-713 . -1040) 90204) ((-584 . -23) T) ((-108 . -517) NIL) ((-521 . -23) T) ((-169 . -412) 90175) ((-1142 . -1102) T) ((-1284 . -1283) 90159) ((-702 . -796) T) ((-702 . -793) T) ((-1122 . -308) T) ((-381 . -147) T) ((-281 . -614) 90141) ((-1232 . -994) 90111) ((-48 . -922) T) ((-676 . -492) 90095) ((-252 . -1276) 90065) ((-251 . -1276) 90035) ((-1179 . -851) T) ((-1115 . -172) 90014) ((-1122 . -1024) T) ((-1048 . -34) T) ((-837 . -147) 89993) ((-837 . -145) 89972) ((-738 . -107) 89956) ((-613 . -132) T) ((-485 . -1102) 89746) ((-1181 . -1060) T) ((-872 . -455) T) ((-85 . -1219) T) ((-240 . -38) 89716) ((-141 . -107) 89698) ((-713 . -379) 89682) ((-834 . -617) 89550) ((-1292 . -727) T) ((-1281 . -1060) T) ((-1122 . -548) T) ((-582 . -102) T) ((-129 . -493) 89532) ((-1261 . -102) T) ((-393 . -1058) 89516) ((-1254 . -102) T) ((-1175 . -951) 89485) ((-129 . -614) 89452) ((-52 . -614) 89434) ((-1127 . -951) 89401) ((-654 . -414) 89385) ((-1233 . -102) T) ((-1161 . -517) NIL) ((-622 . -1058) 89369) ((-663 . -25) T) ((-663 . -21) T) ((-965 . -647) 89279) ((-736 . -647) 89224) ((-716 . -647) 89196) ((-393 . -111) 89175) ((-222 . -255) 89159) ((-1056 . -1055) 89099) ((-1056 . -1102) T) ((-1006 . -1154) T) ((-819 . -1102) T) ((-456 . -647) 89014) ((-345 . -1223) T) ((-636 . -649) 88998) ((-622 . -111) 88977) ((-608 . -649) 88961) ((-598 . -102) T) ((-312 . -493) 88942) ((-588 . -131) T) ((-597 . -102) T) ((-417 . -1102) T) ((-387 . -1102) T) ((-312 . -614) 88908) ((-227 . -1102) 88886) ((-648 . -517) 88819) ((-633 . -517) 88663) ((-834 . -1051) 88642) ((-645 . -151) 88626) ((-345 . -559) T) ((-713 . -902) 88569) ((-553 . -229) 88519) ((-1261 . -285) 88485) ((-1254 . -285) 88451) ((-1082 . -291) 88402) ((-490 . -849) T) ((-223 . -1114) T) ((-1233 . -285) 88368) ((-1213 . -496) 88334) ((-1006 . -38) 88284) ((-217 . -849) T) ((-421 . -647) 88243) ((-916 . -38) 88195) ((-844 . -795) 88174) ((-844 . -792) 88153) ((-844 . -727) 88132) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -455) 88063) ((-430 . -38) 88047) ((-108 . -291) T) ((-223 . -23) T) ((-410 . -795) 88026) ((-410 . -792) 88005) ((-410 . -727) T) ((-503 . -289) 87980) ((-480 . -1058) 87945) ((-659 . -131) T) ((-622 . -617) 87914) ((-1115 . -517) 87847) ((-338 . -131) T) ((-169 . -405) 87826) ((-485 . -718) 87768) ((-816 . -287) 87745) ((-480 . -111) 87701) ((-654 . -1060) T) ((-817 . -1053) 87544) ((-1280 . -1085) T) ((-1242 . -455) 87475) ((-817 . -641) 87324) ((-1279 . -1085) T) ((-1089 . -131) T) ((-1056 . -718) 87266) ((-783 . -131) T) ((-781 . -131) T) ((-574 . -455) T) ((-1029 . -517) 87199) ((-622 . -1051) T) ((-594 . -1102) T) ((-536 . -173) T) ((-464 . -131) T) ((-457 . -131) T) ((-45 . -1102) T) ((-387 . -718) 87169) ((-818 . -1102) T) ((-479 . -517) 87102) ((-466 . -517) 87035) ((-456 . -369) 87005) ((-45 . -611) 86984) ((-317 . -303) T) ((-480 . -617) 86934) ((-1233 . -310) 86819) ((-671 . -614) 86781) ((-59 . -851) 86760) ((-1006 . -403) 86742) ((-551 . -614) 86724) ((-800 . -647) 86683) ((-816 . -605) 86660) ((-519 . -851) 86639) ((-499 . -851) 86618) ((-40 . -1223) T) ((-1001 . -1040) 86514) ((-50 . -131) T) ((-584 . -131) T) ((-521 . -131) T) ((-295 . -649) 86374) ((-345 . -330) 86351) ((-345 . -365) T) ((-323 . -324) 86328) ((-320 . -287) 86313) ((-40 . -559) T) ((-381 . -1204) T) ((-381 . -1207) T) ((-1037 . -1195) 86288) ((-1192 . -235) 86238) ((-1170 . -231) 86190) ((-331 . -1102) T) ((-381 . -95) T) ((-381 . -35) T) ((-1037 . -107) 86136) ((-480 . -1051) T) ((-1293 . -1058) 86120) ((-482 . -235) 86070) ((-1162 . -492) 86004) ((-1284 . -1053) 85988) ((-383 . -1058) 85972) ((-1284 . -641) 85942) ((-480 . -243) T) ((-817 . -102) T) ((-715 . -147) 85921) ((-715 . -145) 85900) ((-487 . -492) 85884) ((-488 . -337) 85853) ((-1293 . -111) 85832) ((-515 . -1102) T) ((-485 . -172) 85811) ((-1001 . -379) 85795) ((-416 . -102) T) ((-383 . -111) 85774) ((-1001 . -340) 85758) ((-280 . -985) 85742) ((-279 . -985) 85726) ((-1291 . -614) 85708) ((-1289 . -614) 85690) ((-110 . -517) NIL) ((-1175 . -1245) 85674) ((-855 . -853) 85658) ((-1181 . -1102) T) ((-103 . -1219) T) ((-954 . -951) 85619) ((-818 . -718) 85561) ((-1233 . -1154) NIL) ((-484 . -951) 85506) ((-1064 . -143) T) ((-60 . -102) 85484) ((-44 . -614) 85466) ((-78 . -614) 85448) ((-353 . -649) 85393) ((-1281 . -1102) T) ((-514 . -851) T) ((-345 . -1114) T) ((-296 . -1102) T) ((-1001 . -902) 85352) ((-296 . -611) 85331) ((-1293 . -617) 85280) ((-1261 . -38) 85177) ((-1254 . -38) 85018) ((-1233 . -38) 84814) ((-490 . -1060) T) ((-383 . -617) 84798) ((-217 . -1060) T) ((-345 . -23) T) ((-152 . -614) 84780) ((-834 . -796) 84759) ((-834 . -793) 84738) ((-1218 . -617) 84719) ((-598 . -38) 84692) ((-597 . -38) 84589) ((-871 . -559) T) ((-223 . -131) T) ((-320 . -1004) 84555) ((-79 . -614) 84537) ((-713 . -308) 84516) ((-295 . -727) 84418) ((-825 . -102) T) ((-865 . -845) T) ((-295 . -476) 84397) ((-1284 . -102) T) ((-40 . -365) T) ((-873 . -147) 84376) ((-488 . -647) 84358) ((-873 . -145) 84337) ((-1161 . -492) 84319) ((-1293 . -1051) T) ((-485 . -517) 84252) ((-1148 . -1219) T) ((-966 . -614) 84234) ((-648 . -492) 84218) ((-633 . -492) 84149) ((-816 . -614) 83880) ((-48 . -27) T) ((-1181 . -718) 83777) ((-654 . -1102) T) ((-862 . -861) T) ((-439 . -366) 83751) ((-732 . -647) 83661) ((-1104 . -102) T) ((-972 . -1102) T) ((-865 . -1102) T) ((-817 . -310) 83648) ((-536 . -530) T) ((-536 . -579) T) ((-1289 . -384) 83620) ((-1056 . -517) 83553) ((-1162 . -287) 83529) ((-240 . -231) 83498) ((-252 . -1053) 83395) ((-251 . -1053) 83292) ((-1281 . -718) 83262) ((-1169 . -93) T) ((-996 . -93) T) ((-818 . -172) 83241) ((-252 . -641) 83183) ((-251 . -641) 83125) ((-1216 . -493) 83102) ((-227 . -517) 83035) ((-622 . -796) 83014) ((-622 . -793) 82993) ((-1216 . -614) 82905) ((-222 . -1219) T) ((-676 . -614) 82837) ((-1177 . -647) 82747) ((-1159 . -1012) 82731) ((-945 . -102) 82681) ((-353 . -727) T) ((-862 . -614) 82663) ((-1176 . -647) 82545) ((-1170 . -647) 82382) ((-1128 . -647) 82292) ((-1233 . -403) 82244) ((-1115 . -492) 82228) ((-60 . -310) 82166) ((-332 . -102) T) ((-1213 . -21) T) ((-1213 . -25) T) ((-40 . -1114) T) ((-712 . -21) T) ((-628 . -614) 82148) ((-518 . -324) 82127) ((-712 . -25) T) ((-442 . -102) T) ((-108 . -287) NIL) ((-923 . -1114) T) ((-40 . -23) T) ((-772 . -1114) T) ((-567 . -1223) T) ((-498 . -1223) T) ((-320 . -614) 82109) ((-1006 . -231) 82091) ((-169 . -166) 82075) ((-583 . -559) T) ((-567 . -559) T) ((-498 . -559) T) ((-772 . -23) T) ((-1253 . -147) 82054) ((-1162 . -605) 82030) ((-1253 . -145) 82009) ((-1029 . -492) 81993) ((-1232 . -145) 81918) ((-1232 . -147) 81843) ((-1284 . -1290) 81822) ((-479 . -492) 81806) ((-466 . -492) 81790) ((-526 . -34) T) ((-654 . -718) 81760) ((-112 . -969) T) ((-663 . -851) 81739) ((-1181 . -172) 81690) ((-367 . -102) T) ((-240 . -238) 81669) ((-252 . -102) T) ((-251 . -102) T) ((-1242 . -951) 81638) ((-245 . -851) 81617) ((-817 . -38) 81466) ((-45 . -517) 81258) ((-1161 . -287) 81233) ((-214 . -1102) T) ((-1152 . -1102) T) ((-1152 . -611) 81212) ((-588 . -25) T) ((-588 . -21) T) ((-1104 . -310) 81150) ((-965 . -414) 81134) ((-700 . -1223) T) ((-633 . -287) 81109) ((-1089 . -640) 81057) ((-783 . -640) 81005) ((-781 . -640) 80953) ((-345 . -131) T) ((-290 . -614) 80935) ((-907 . -1102) T) ((-700 . -559) T) ((-129 . -617) 80917) ((-871 . -1114) T) ((-457 . -640) 80865) ((-907 . -905) 80849) ((-381 . -455) T) ((-490 . -1102) T) ((-945 . -310) 80787) ((-702 . -649) 80774) ((-552 . -845) T) ((-217 . -1102) T) ((-317 . -922) 80753) ((-314 . -922) T) ((-314 . -821) NIL) ((-393 . -721) T) ((-871 . -23) T) ((-116 . -649) 80740) ((-477 . -145) 80719) ((-421 . -414) 80703) ((-477 . -147) 80682) ((-110 . -492) 80664) ((-312 . -617) 80645) ((-2 . -614) 80627) ((-186 . -102) T) ((-1161 . -19) 80609) ((-1161 . -605) 80584) ((-659 . -21) T) ((-659 . -25) T) ((-595 . -1146) T) ((-1115 . -287) 80561) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -647) 80311) ((-498 . -365) T) ((-1284 . -38) 80281) ((-1175 . -1053) 80104) ((-1144 . -1219) T) ((-1127 . -1053) 79947) ((-855 . -1053) 79931) ((-633 . -605) 79906) ((-1291 . -1058) 79890) ((-1175 . -641) 79719) ((-1127 . -641) 79568) ((-855 . -641) 79538) ((-1289 . -1058) 79522) ((-1253 . -1204) 79488) ((-552 . -1102) T) ((-1089 . -25) T) ((-1089 . -21) T) ((-534 . -793) T) ((-534 . -796) T) ((-117 . -1223) T) ((-965 . -1060) T) ((-624 . -559) T) ((-783 . -25) T) ((-783 . -21) T) ((-781 . -21) T) ((-781 . -25) T) ((-736 . -1060) T) ((-716 . -1060) T) ((-671 . -1058) 79472) ((-520 . -1085) T) ((-464 . -25) T) ((-117 . -559) T) ((-464 . -21) T) ((-457 . -25) T) ((-457 . -21) T) ((-1253 . -1207) 79438) ((-1153 . -93) T) ((-1144 . -1040) 79334) ((-818 . -291) 79313) ((-1253 . -95) 79279) ((-824 . -1102) T) ((-1236 . -102) 79257) ((-968 . -969) T) ((-671 . -111) 79236) ((-296 . -517) 79028) ((-1233 . -231) 78980) ((-1232 . -1204) 78946) ((-1232 . -1207) 78912) ((-252 . -310) 78850) ((-251 . -310) 78788) ((-1227 . -370) T) ((-1162 . -615) NIL) ((-1162 . -614) 78770) ((-1224 . -845) T) ((-1144 . -379) 78754) ((-1122 . -821) T) ((-96 . -93) T) ((-1122 . -922) T) ((-1115 . -605) 78731) ((-1082 . -615) 78715) ((-1006 . -647) 78665) ((-916 . -647) 78602) ((-816 . -289) 78579) ((-487 . -614) 78511) ((-609 . -151) 78458) ((-490 . -718) 78408) ((-421 . -1060) T) ((-485 . -492) 78392) ((-430 . -647) 78351) ((-328 . -851) 78330) ((-341 . -649) 78304) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -718) 78254) ((-169 . -725) 78225) ((-174 . -649) 78157) ((-584 . -21) T) ((-584 . -25) T) ((-521 . -25) T) ((-521 . -21) T) ((-478 . -151) 78107) ((-1082 . -614) 78089) ((-1063 . -614) 78071) ((-995 . -102) T) ((-863 . -102) T) ((-800 . -414) 78034) ((-40 . -131) T) ((-700 . -365) T) ((-702 . -727) T) ((-702 . -795) T) ((-702 . -792) T) ((-212 . -897) T) ((-583 . -1114) T) ((-567 . -1114) T) ((-498 . -1114) T) ((-361 . -614) 78016) ((-355 . -614) 77998) ((-347 . -614) 77980) ((-66 . -399) T) ((-66 . -398) T) ((-108 . -615) 77910) ((-108 . -614) 77852) ((-211 . -897) T) ((-960 . -151) 77836) ((-772 . -131) T) ((-671 . -617) 77754) ((-134 . -727) T) ((-116 . -727) T) ((-1253 . -35) 77720) ((-1056 . -492) 77704) ((-583 . -23) T) ((-567 . -23) T) ((-498 . -23) T) ((-1232 . -95) 77670) ((-1232 . -35) 77636) ((-1175 . -102) T) ((-1127 . -102) T) ((-855 . -102) T) ((-227 . -492) 77620) ((-1291 . -111) 77599) ((-1289 . -111) 77578) ((-44 . -1058) 77562) ((-1291 . -617) 77508) ((-1242 . -1245) 77492) ((-856 . -853) 77476) ((-1291 . -1051) T) ((-1181 . -291) 77455) ((-110 . -287) 77430) ((-1289 . -617) 77359) ((-128 . -151) 77341) ((-1144 . -902) 77300) ((-44 . -111) 77279) ((-1224 . -1102) T) ((-1184 . -1264) T) ((-1169 . -493) 77260) ((-1169 . -614) 77226) ((-671 . -1051) T) ((-1161 . -615) NIL) ((-1161 . -614) 77208) ((-1065 . -611) 77183) ((-1065 . -1102) T) ((-996 . -493) 77164) ((-74 . -444) T) ((-74 . -398) T) ((-996 . -614) 77130) ((-152 . -1058) 77114) ((-671 . -233) 77093) ((-574 . -557) 77077) ((-357 . -147) 77056) ((-357 . -145) 77007) ((-354 . -147) 76986) ((-354 . -145) 76937) ((-346 . -147) 76916) ((-346 . -145) 76867) ((-265 . -145) 76846) ((-265 . -147) 76825) ((-252 . -38) 76795) ((-247 . -147) 76774) ((-117 . -365) T) ((-247 . -145) 76753) ((-251 . -38) 76723) ((-152 . -111) 76702) ((-1005 . -1040) 76590) ((-1170 . -849) NIL) ((-695 . -1223) T) ((-800 . -1060) T) ((-700 . -1114) T) ((-1289 . -1051) T) ((-1159 . -1219) T) ((-1005 . -379) 76567) ((-912 . -145) T) ((-912 . -147) 76549) ((-871 . -131) T) ((-816 . -1058) 76446) ((-700 . -23) T) ((-695 . -559) T) ((-225 . -1053) 76411) ((-648 . -614) 76343) ((-648 . -615) 76304) ((-633 . -615) NIL) ((-633 . -614) 76286) ((-490 . -172) T) ((-225 . -641) 76251) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-477 . -1207) 76217) ((-477 . -1204) 76183) ((-275 . -614) 76165) ((-274 . -614) 76147) ((-273 . -614) 76129) ((-272 . -614) 76111) ((-271 . -614) 76093) ((-503 . -652) 76075) ((-270 . -614) 76057) ((-341 . -727) T) ((-269 . -614) 76039) ((-110 . -19) 76021) ((-174 . -727) T) ((-503 . -375) 76003) ((-212 . -614) 75985) ((-523 . -1151) 75969) ((-503 . -123) T) ((-110 . -605) 75944) ((-211 . -614) 75926) ((-477 . -35) 75892) ((-477 . -95) 75858) ((-209 . -614) 75840) ((-208 . -614) 75822) ((-207 . -614) 75804) ((-206 . -614) 75786) ((-203 . -614) 75768) ((-202 . -614) 75750) ((-201 . -614) 75732) ((-200 . -614) 75714) ((-199 . -614) 75696) ((-198 . -614) 75678) ((-197 . -614) 75660) ((-539 . -1105) 75612) ((-196 . -614) 75594) ((-195 . -614) 75576) ((-45 . -492) 75513) ((-194 . -614) 75495) ((-193 . -614) 75477) ((-152 . -617) 75446) ((-1117 . -102) T) ((-816 . -111) 75336) ((-645 . -102) 75286) ((-485 . -287) 75263) ((-1115 . -614) 74994) ((-1103 . -1102) T) ((-1048 . -1219) T) ((-1292 . -1040) 74978) ((-1064 . -1053) 74965) ((-1175 . -310) 74952) ((-954 . -1053) 74795) ((-1137 . -1102) T) ((-1127 . -310) 74782) ((-624 . -1114) T) ((-1064 . -641) 74769) ((-1098 . -1085) T) ((-954 . -641) 74618) ((-1092 . -1085) T) ((-484 . -1053) 74461) ((-1075 . -1085) T) ((-1068 . -1085) T) ((-1038 . -1085) T) ((-1021 . -1085) T) ((-117 . -1114) T) ((-484 . -641) 74310) ((-820 . -102) T) ((-627 . -1085) T) ((-624 . -23) T) ((-1152 . -517) 74102) ((-486 . -1085) T) ((-389 . -102) T) ((-325 . -102) T) ((-218 . -1085) T) ((-965 . -1102) T) ((-152 . -1051) T) ((-732 . -414) 74086) ((-117 . -23) T) ((-1005 . -902) 74038) ((-736 . -1102) T) ((-716 . -1102) T) ((-456 . -1102) T) ((-410 . -1219) T) ((-317 . -433) 74022) ((-594 . -93) T) ((-1261 . -647) 73932) ((-1029 . -615) 73893) ((-1026 . -1223) T) ((-225 . -102) T) ((-1029 . -614) 73855) ((-1254 . -647) 73737) ((-817 . -231) 73721) ((-816 . -617) 73451) ((-1233 . -647) 73288) ((-1026 . -559) T) ((-834 . -649) 73261) ((-356 . -1223) T) ((-479 . -614) 73223) ((-479 . -615) 73184) ((-466 . -615) 73145) ((-466 . -614) 73107) ((-598 . -647) 73066) ((-410 . -886) 73050) ((-320 . -1058) 72885) ((-410 . -888) 72810) ((-597 . -647) 72720) ((-844 . -1040) 72616) ((-490 . -517) NIL) ((-485 . -605) 72593) ((-356 . -559) T) ((-217 . -517) NIL) ((-873 . -455) T) ((-421 . -1102) T) ((-410 . -1040) 72457) ((-320 . -111) 72278) ((-695 . -365) T) ((-225 . -285) T) ((-1216 . -617) 72255) ((-48 . -1223) T) ((-816 . -1051) 72185) ((-1175 . -1154) 72163) ((-583 . -131) T) ((-567 . -131) T) ((-498 . -131) T) ((-1162 . -289) 72139) ((-48 . -559) T) ((-1064 . -102) T) ((-954 . -102) T) ((-872 . -1053) 72084) ((-317 . -27) 72063) ((-816 . -233) 72015) ((-249 . -836) 71997) ((-240 . -849) 71976) ((-187 . -836) 71958) ((-714 . -102) T) ((-296 . -492) 71895) ((-872 . -641) 71840) ((-484 . -102) T) ((-732 . -1060) T) ((-613 . -614) 71822) ((-613 . -615) 71683) ((-410 . -379) 71667) ((-410 . -340) 71651) ((-320 . -617) 71477) ((-1175 . -38) 71306) ((-1127 . -38) 71155) ((-855 . -38) 71125) ((-393 . -649) 71109) ((-645 . -310) 71047) ((-1153 . -493) 71028) ((-1153 . -614) 70994) ((-965 . -718) 70891) ((-736 . -718) 70861) ((-222 . -107) 70845) ((-45 . -287) 70770) ((-622 . -649) 70744) ((-313 . -1102) T) ((-290 . -1058) 70731) ((-110 . -614) 70713) ((-110 . -615) 70695) ((-456 . -718) 70665) ((-817 . -254) 70604) ((-690 . -1102) 70582) ((-553 . -1102) T) ((-1177 . -1060) T) ((-1176 . -1060) T) ((-96 . -493) 70563) ((-1170 . -1060) T) ((-290 . -111) 70548) ((-1128 . -1060) T) ((-553 . -611) 70527) ((-96 . -614) 70493) ((-1006 . -849) T) ((-227 . -688) 70451) ((-695 . -1114) T) ((-1213 . -741) 70427) ((-1026 . -365) T) ((-839 . -836) 70409) ((-834 . -795) 70388) ((-410 . -902) 70347) ((-320 . -1051) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1053) 70257) ((-68 . -1219) T) ((-834 . -792) 70236) ((-421 . -718) 70210) ((-800 . -1102) T) ((-713 . -922) 70189) ((-700 . -131) T) ((-169 . -641) 70017) ((-695 . -23) T) ((-490 . -291) T) ((-834 . -727) 69996) ((-320 . -233) 69948) ((-320 . -243) 69927) ((-217 . -291) T) ((-129 . -370) T) ((-1253 . -455) 69906) ((-1232 . -455) 69885) ((-356 . -330) 69862) ((-356 . -365) T) ((-1142 . -614) 69844) ((-45 . -1257) 69794) ((-872 . -102) T) ((-645 . -283) 69778) ((-700 . -1062) T) ((-1280 . -102) T) ((-1279 . -102) T) ((-480 . -649) 69743) ((-471 . -1102) T) ((-45 . -605) 69668) ((-1161 . -289) 69643) ((-290 . -617) 69615) ((-40 . -640) 69554) ((-1242 . -1053) 69377) ((-856 . -1053) 69361) ((-48 . -365) T) ((-1108 . -614) 69343) ((-1242 . -641) 69172) ((-856 . -641) 69142) ((-633 . -289) 69117) ((-817 . -647) 69027) ((-574 . -1053) 69014) ((-485 . -614) 68745) ((-240 . -414) 68714) ((-954 . -310) 68701) ((-574 . -641) 68688) ((-65 . -1219) T) ((-1065 . -517) 68532) ((-672 . -1102) T) ((-624 . -131) T) ((-484 . -310) 68519) ((-607 . -1102) T) ((-549 . -102) T) ((-117 . -131) T) ((-290 . -1051) T) ((-180 . -1102) T) ((-161 . -1102) T) ((-156 . -1102) T) ((-154 . -1102) T) ((-456 . -762) T) ((-31 . -1085) T) ((-965 . -172) 68470) ((-972 . -93) T) ((-1082 . -1058) 68380) ((-622 . -795) 68359) ((-595 . -1102) T) ((-622 . -792) 68338) ((-622 . -727) T) ((-296 . -287) 68317) ((-295 . -1219) T) ((-1056 . -614) 68279) ((-1056 . -615) 68240) ((-1026 . -1114) T) ((-169 . -102) T) ((-276 . -851) T) ((-1168 . -1102) T) ((-819 . -614) 68222) ((-1115 . -289) 68199) ((-1104 . -229) 68183) ((-1005 . -308) T) ((-800 . -718) 68167) ((-361 . -1058) 68119) ((-356 . -1114) T) ((-355 . -1058) 68071) ((-417 . -614) 68053) ((-387 . -614) 68035) ((-347 . -1058) 67987) ((-227 . -614) 67919) ((-1082 . -111) 67815) ((-1026 . -23) T) ((-108 . -1058) 67765) ((-900 . -102) T) ((-842 . -102) T) ((-809 . -102) T) ((-770 . -102) T) ((-678 . -102) T) ((-477 . -455) 67744) ((-421 . -172) T) ((-361 . -111) 67682) ((-355 . -111) 67620) ((-347 . -111) 67558) ((-252 . -231) 67527) ((-251 . -231) 67496) ((-356 . -23) T) ((-71 . -1219) T) ((-225 . -38) 67461) ((-108 . -111) 67395) ((-40 . -25) T) ((-40 . -21) T) ((-671 . -721) T) ((-169 . -285) 67373) ((-48 . -1114) T) ((-923 . -25) T) ((-772 . -25) T) ((-1293 . -649) 67347) ((-1152 . -492) 67284) ((-488 . -1102) T) ((-1284 . -647) 67243) ((-1242 . -102) T) ((-1064 . -1154) T) ((-856 . -102) T) ((-240 . -1060) 67173) ((-966 . -793) 67126) ((-966 . -796) 67079) ((-383 . -649) 67063) ((-48 . -23) T) ((-816 . -796) 67014) ((-816 . -793) 66965) ((-551 . -370) T) ((-296 . -605) 66944) ((-480 . -727) T) ((-574 . -102) T) ((-1082 . -617) 66762) ((-249 . -185) T) ((-187 . -185) T) ((-872 . -310) 66719) ((-654 . -287) 66698) ((-112 . -662) T) ((-361 . -617) 66635) ((-355 . -617) 66572) ((-347 . -617) 66509) ((-76 . -1219) T) ((-108 . -617) 66459) ((-1064 . -38) 66446) ((-665 . -376) 66425) ((-954 . -38) 66274) ((-732 . -1102) T) ((-484 . -38) 66123) ((-86 . -1219) T) ((-594 . -493) 66104) ((-574 . -285) T) ((-1233 . -849) NIL) ((-594 . -614) 66070) ((-1177 . -1102) T) ((-1176 . -1102) T) ((-1082 . -1051) T) ((-353 . -1040) 66047) ((-818 . -493) 66031) ((-1006 . -1060) T) ((-45 . -614) 66013) ((-45 . -615) NIL) ((-916 . -1060) T) ((-818 . -614) 65982) ((-1170 . -1102) T) ((-1149 . -102) 65960) ((-1082 . -243) 65911) ((-430 . -1060) T) ((-361 . -1051) T) ((-367 . -366) 65888) ((-355 . -1051) T) ((-347 . -1051) T) ((-252 . -238) 65867) ((-251 . -238) 65846) ((-1082 . -233) 65771) ((-1128 . -1102) T) ((-295 . -902) 65730) ((-108 . -1051) T) ((-695 . -131) T) ((-421 . -517) 65572) ((-361 . -233) 65551) ((-361 . -243) T) ((-44 . -721) T) ((-355 . -233) 65530) ((-355 . -243) T) ((-347 . -233) 65509) ((-347 . -243) T) ((-1169 . -617) 65490) ((-169 . -310) 65455) ((-108 . -243) T) ((-108 . -233) T) ((-996 . -617) 65436) ((-320 . -793) T) ((-871 . -21) T) ((-871 . -25) T) ((-410 . -308) T) ((-503 . -34) T) ((-110 . -289) 65411) ((-1115 . -1058) 65308) ((-872 . -1154) NIL) ((-331 . -614) 65290) ((-410 . -1024) 65268) ((-1115 . -111) 65158) ((-692 . -1264) T) ((-439 . -1102) T) ((-250 . -1102) T) ((-1293 . -727) T) ((-63 . -614) 65140) ((-872 . -38) 65085) ((-526 . -1219) T) ((-603 . -151) 65069) ((-515 . -614) 65051) ((-1242 . -310) 65038) ((-732 . -718) 64887) ((-534 . -794) T) ((-534 . -795) T) ((-567 . -640) 64869) ((-498 . -640) 64829) ((-357 . -455) T) ((-354 . -455) T) ((-346 . -455) T) ((-265 . -455) 64780) ((-528 . -1102) T) ((-523 . -1102) 64730) ((-247 . -455) 64681) ((-1152 . -287) 64660) ((-1181 . -614) 64642) ((-690 . -517) 64575) ((-965 . -291) 64554) ((-553 . -517) 64346) ((-252 . -647) 64166) ((-251 . -647) 63973) ((-1281 . -614) 63942) ((-1175 . -231) 63926) ((-1115 . -617) 63656) ((-169 . -1154) 63635) ((-1281 . -493) 63619) ((-1177 . -718) 63516) ((-1176 . -718) 63357) ((-894 . -102) T) ((-1170 . -718) 63153) ((-1128 . -718) 63050) ((-1159 . -675) 63034) ((-357 . -405) 62985) ((-354 . -405) 62936) ((-346 . -405) 62887) ((-1026 . -131) T) ((-800 . -517) 62799) ((-296 . -615) NIL) ((-296 . -614) 62781) ((-912 . -455) T) ((-966 . -370) 62734) ((-816 . -370) 62713) ((-513 . -512) 62692) ((-511 . -512) 62671) ((-490 . -287) NIL) ((-485 . -289) 62648) ((-421 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-695 . -496) NIL) ((-99 . -1114) T) ((-169 . -38) 62476) ((-1253 . -975) 62438) ((-1149 . -310) 62376) ((-1232 . -975) 62345) ((-912 . -405) T) ((-1115 . -1051) 62275) ((-1255 . -559) T) ((-1152 . -605) 62254) ((-112 . -851) T) ((-1065 . -492) 62185) ((-583 . -21) T) ((-583 . -25) T) ((-567 . -21) T) ((-567 . -25) T) ((-498 . -25) T) ((-498 . -21) T) ((-1242 . -1154) 62163) ((-1115 . -233) 62115) ((-48 . -131) T) ((-1200 . -102) T) ((-240 . -1102) 61905) ((-872 . -403) 61882) ((-1090 . -102) T) ((-1078 . -102) T) ((-609 . -102) T) ((-478 . -102) T) ((-1242 . -38) 61711) ((-856 . -38) 61681) ((-1036 . -1053) 61655) ((-732 . -172) 61566) ((-654 . -614) 61548) ((-646 . -1085) T) ((-1036 . -641) 61532) ((-574 . -38) 61519) ((-972 . -493) 61500) ((-972 . -614) 61466) ((-960 . -102) 61416) ((-865 . -614) 61398) ((-865 . -615) 61320) ((-595 . -517) NIL) ((-1261 . -1060) T) ((-1254 . -1060) T) ((-323 . -1053) 61302) ((-1233 . -1060) T) ((-1297 . -1114) T) ((-1213 . -147) 61281) ((-323 . -641) 61263) ((-1213 . -145) 61242) ((-1187 . -102) T) ((-1186 . -102) T) ((-1185 . -102) T) ((-1177 . -172) 61193) ((-598 . -1060) T) ((-597 . -1060) T) ((-1176 . -172) 61124) ((-1170 . -172) 61055) ((-381 . -1053) 61020) ((-1153 . -617) 61001) ((-1128 . -172) 60952) ((-1006 . -1102) T) ((-973 . -1102) T) ((-916 . -1102) T) ((-381 . -641) 60917) ((-800 . -798) 60901) ((-700 . -25) T) ((-700 . -21) T) ((-117 . -640) 60878) ((-702 . -888) 60860) ((-430 . -1102) T) ((-317 . -1223) 60839) ((-314 . -1223) T) ((-169 . -403) 60823) ((-837 . -1053) 60793) ((-477 . -975) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -614) 60737) ((-828 . -1053) 60721) ((-108 . -796) T) ((-108 . -793) T) ((-702 . -1040) 60703) ((-317 . -559) 60682) ((-314 . -559) T) ((-837 . -641) 60652) ((-828 . -641) 60622) ((-1297 . -23) T) ((-134 . -1040) 60604) ((-96 . -617) 60585) ((-995 . -647) 60567) ((-485 . -1058) 60464) ((-45 . -289) 60389) ((-240 . -718) 60331) ((-520 . -102) T) ((-485 . -111) 60221) ((-1094 . -102) 60191) ((-1036 . -102) T) ((-1175 . -647) 60101) ((-1127 . -647) 60011) ((-855 . -647) 59970) ((-645 . -829) 59949) ((-732 . -517) 59892) ((-1056 . -1058) 59876) ((-1137 . -93) T) ((-1065 . -287) 59851) ((-624 . -21) T) ((-624 . -25) T) ((-527 . -1102) T) ((-671 . -649) 59825) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1058) 59809) ((-1056 . -111) 59788) ((-817 . -414) 59772) ((-117 . -25) T) ((-89 . -614) 59754) ((-117 . -21) T) ((-609 . -310) 59549) ((-478 . -310) 59353) ((-1152 . -615) NIL) ((-387 . -111) 59332) ((-381 . -102) T) ((-214 . -614) 59314) ((-1152 . -614) 59296) ((-1170 . -517) 59065) ((-1006 . -718) 59015) ((-1128 . -517) 58985) ((-916 . -718) 58937) ((-485 . -617) 58667) ((-353 . -308) T) ((-1192 . -151) 58617) ((-960 . -310) 58555) ((-837 . -102) T) ((-430 . -718) 58539) ((-225 . -829) T) ((-828 . -102) T) ((-826 . -102) T) ((-482 . -151) 58489) ((-1253 . -1252) 58468) ((-1122 . -1223) T) ((-341 . -1040) 58435) ((-1253 . -1247) 58405) ((-1253 . -1250) 58389) ((-1232 . -1231) 58368) ((-80 . -614) 58350) ((-907 . -614) 58332) ((-1232 . -1247) 58309) ((-1122 . -559) T) ((-923 . -851) T) ((-772 . -851) T) ((-673 . -851) T) ((-490 . -615) 58239) ((-490 . -614) 58180) ((-381 . -285) T) ((-1232 . -1229) 58164) ((-1255 . -1114) T) ((-217 . -615) 58094) ((-217 . -614) 58035) ((-1291 . -649) 58009) ((-1065 . -605) 57984) ((-819 . -617) 57968) ((-59 . -151) 57952) ((-519 . -151) 57936) ((-499 . -151) 57920) ((-361 . -1288) 57904) ((-355 . -1288) 57888) ((-347 . -1288) 57872) ((-317 . -365) 57851) ((-314 . -365) T) ((-485 . -1051) 57781) ((-695 . -640) 57763) ((-1289 . -649) 57737) ((-128 . -310) NIL) ((-1255 . -23) T) ((-690 . -492) 57721) ((-64 . -614) 57703) ((-1115 . -796) 57654) ((-1115 . -793) 57605) ((-553 . -492) 57542) ((-671 . -34) T) ((-485 . -233) 57494) ((-296 . -289) 57473) ((-240 . -172) 57452) ((-817 . -1060) T) ((-44 . -649) 57410) ((-1082 . -370) 57361) ((-732 . -291) 57292) ((-523 . -517) 57225) ((-818 . -1058) 57176) ((-1089 . -145) 57155) ((-552 . -614) 57137) ((-361 . -370) 57116) ((-355 . -370) 57095) ((-347 . -370) 57074) ((-1089 . -147) 57053) ((-872 . -231) 57030) ((-818 . -111) 56972) ((-783 . -145) 56951) ((-783 . -147) 56930) ((-265 . -951) 56897) ((-252 . -849) 56876) ((-247 . -951) 56821) ((-251 . -849) 56800) ((-781 . -145) 56779) ((-781 . -147) 56758) ((-152 . -649) 56732) ((-582 . -1102) T) ((-457 . -147) 56711) ((-457 . -145) 56690) ((-671 . -727) T) ((-824 . -614) 56672) ((-1261 . -1102) T) ((-1254 . -1102) T) ((-1233 . -1102) T) ((-1213 . -1207) 56638) ((-1213 . -1204) 56604) ((-1177 . -291) 56583) ((-1176 . -291) 56534) ((-1170 . -291) 56485) ((-1128 . -291) 56464) ((-341 . -902) 56445) ((-1006 . -172) T) ((-916 . -172) T) ((-695 . -21) T) ((-695 . -25) T) ((-225 . -647) 56395) ((-598 . -1102) T) ((-597 . -1102) T) ((-477 . -1250) 56379) ((-477 . -1247) 56349) ((-421 . -287) 56277) ((-550 . -851) T) ((-317 . -1114) 56126) ((-314 . -1114) T) ((-1213 . -35) 56092) ((-1213 . -95) 56058) ((-84 . -614) 56040) ((-91 . -102) 56018) ((-1297 . -131) T) ((-715 . -1053) 55988) ((-594 . -617) 55969) ((-584 . -145) T) ((-584 . -147) 55951) ((-521 . -147) 55933) ((-521 . -145) T) ((-715 . -641) 55903) ((-317 . -23) 55755) ((-40 . -344) 55729) ((-314 . -23) T) ((-818 . -617) 55643) ((-1161 . -652) 55625) ((-1284 . -1060) T) ((-1161 . -375) 55607) ((-816 . -649) 55455) ((-1098 . -102) T) ((-1092 . -102) T) ((-1075 . -102) T) ((-169 . -231) 55439) ((-1068 . -102) T) ((-1038 . -102) T) ((-1021 . -102) T) ((-595 . -492) 55421) ((-627 . -102) T) ((-240 . -517) 55354) ((-486 . -102) T) ((-1291 . -727) T) ((-1289 . -727) T) ((-218 . -102) T) ((-1181 . -1058) 55237) ((-1064 . -647) 55209) ((-954 . -647) 55119) ((-1181 . -111) 54988) ((-877 . -1085) T) ((-484 . -647) 54898) ((-862 . -173) T) ((-818 . -1051) T) ((-682 . -1085) T) ((-677 . -1085) T) ((-518 . -102) T) ((-513 . -102) T) ((-48 . -640) 54858) ((-511 . -102) T) ((-481 . -1085) T) ((-1281 . -1058) 54828) ((-138 . -1085) T) ((-137 . -1085) T) ((-133 . -1085) T) ((-1036 . -38) 54812) ((-818 . -233) T) ((-818 . -243) 54791) ((-1281 . -111) 54756) ((-1261 . -718) 54653) ((-1254 . -718) 54494) ((-553 . -287) 54473) ((-1242 . -231) 54457) ((-1224 . -614) 54439) ((-607 . -93) T) ((-1065 . -615) NIL) ((-1065 . -614) 54421) ((-672 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1233 . -718) 54217) ((-1005 . -922) T) ((-152 . -727) T) ((-1181 . -617) 54070) ((-1115 . -370) 54049) ((-1026 . -25) T) ((-1006 . -517) NIL) ((-252 . -414) 54018) ((-251 . -414) 53987) ((-1026 . -21) T) ((-873 . -1053) 53939) ((-598 . -718) 53912) ((-597 . -718) 53809) ((-800 . -287) 53767) ((-126 . -102) 53745) ((-834 . -1040) 53641) ((-169 . -829) 53620) ((-320 . -649) 53517) ((-816 . -34) T) ((-715 . -102) T) ((-1122 . -1114) T) ((-1028 . -1219) T) ((-873 . -641) 53469) ((-381 . -38) 53434) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1276) 53418) ((-354 . -1276) 53402) ((-346 . -1276) 53386) ((-169 . -351) 53365) ((-567 . -851) T) ((-1122 . -23) T) ((-87 . -614) 53347) ((-702 . -308) T) ((-837 . -38) 53317) ((-828 . -38) 53287) ((-1281 . -617) 53229) ((-1255 . -131) T) ((-1152 . -289) 53208) ((-966 . -727) 53107) ((-966 . -794) 53060) ((-966 . -795) 53013) ((-816 . -792) 52992) ((-116 . -308) T) ((-91 . -310) 52930) ((-676 . -34) T) ((-553 . -605) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-816 . -795) 52860) ((-816 . -794) 52839) ((-702 . -1024) T) ((-654 . -1058) 52823) ((-872 . -647) 52753) ((-816 . -727) 52663) ((-966 . -476) 52616) ((-485 . -796) 52567) ((-485 . -793) 52518) ((-912 . -1276) 52505) ((-1181 . -1051) T) ((-654 . -111) 52484) ((-1181 . -327) 52461) ((-1205 . -102) 52439) ((-1103 . -614) 52421) ((-702 . -548) T) ((-817 . -1102) T) ((-1281 . -1051) T) ((-1137 . -493) 52402) ((-1225 . -102) T) ((-416 . -1102) T) ((-1137 . -614) 52368) ((-252 . -1060) 52298) ((-251 . -1060) 52228) ((-839 . -102) T) ((-290 . -649) 52215) ((-595 . -287) 52190) ((-690 . -688) 52148) ((-965 . -614) 52130) ((-873 . -102) T) ((-736 . -614) 52112) ((-716 . -614) 52094) ((-1261 . -172) 52045) ((-1254 . -172) 51976) ((-1233 . -172) 51907) ((-700 . -851) T) ((-1006 . -291) T) ((-456 . -614) 51889) ((-628 . -727) T) ((-60 . -1102) 51867) ((-245 . -151) 51851) ((-916 . -291) T) ((-1026 . -1014) T) ((-628 . -476) T) ((-713 . -1223) 51830) ((-654 . -617) 51748) ((-169 . -647) 51643) ((-1269 . -851) 51622) ((-598 . -172) 51601) ((-597 . -172) 51552) ((-1253 . -641) 51393) ((-1253 . -1053) 51228) ((-1232 . -641) 51042) ((-1232 . -1053) 50850) ((-713 . -559) 50761) ((-410 . -922) T) ((-410 . -821) 50740) ((-320 . -795) T) ((-972 . -617) 50721) ((-320 . -727) T) ((-421 . -614) 50703) ((-421 . -615) 50610) ((-645 . -1151) 50594) ((-110 . -652) 50576) ((-174 . -308) T) ((-126 . -310) 50514) ((-110 . -375) 50496) ((-401 . -1219) T) ((-317 . -131) 50367) ((-314 . -131) T) ((-69 . -398) T) ((-110 . -123) T) ((-523 . -492) 50351) ((-655 . -1114) T) ((-595 . -19) 50333) ((-61 . -444) T) ((-61 . -398) T) ((-825 . -1102) T) ((-595 . -605) 50308) ((-480 . -1040) 50268) ((-654 . -1051) T) ((-655 . -23) T) ((-1284 . -1102) T) ((-31 . -102) T) ((-1242 . -647) 50178) ((-856 . -647) 50137) ((-817 . -718) 49986) ((-580 . -861) T) ((-574 . -647) 49958) ((-117 . -851) NIL) ((-1175 . -414) 49942) ((-1127 . -414) 49926) ((-855 . -414) 49910) ((-874 . -102) 49861) ((-1253 . -102) T) ((-1233 . -517) 49630) ((-1232 . -102) T) ((-1205 . -310) 49568) ((-1177 . -287) 49553) ((-1176 . -287) 49538) ((-528 . -93) T) ((-1170 . -287) 49386) ((-313 . -614) 49368) ((-1104 . -1102) T) ((-1082 . -649) 49278) ((-712 . -455) T) ((-690 . -614) 49210) ((-290 . -727) T) ((-108 . -911) NIL) ((-690 . -615) 49171) ((-602 . -614) 49153) ((-580 . -614) 49135) ((-553 . -615) NIL) ((-553 . -614) 49117) ((-532 . -614) 49099) ((-514 . -512) 49078) ((-490 . -1058) 49028) ((-477 . -1053) 48863) ((-510 . -512) 48842) ((-477 . -641) 48683) ((-217 . -1058) 48633) ((-361 . -649) 48585) ((-355 . -649) 48537) ((-225 . -849) T) ((-347 . -649) 48489) ((-603 . -102) 48439) ((-485 . -370) 48418) ((-108 . -649) 48368) ((-490 . -111) 48302) ((-240 . -492) 48286) ((-345 . -147) 48268) ((-345 . -145) T) ((-169 . -372) 48239) ((-945 . -1267) 48223) ((-217 . -111) 48157) ((-873 . -310) 48122) ((-945 . -1102) 48072) ((-800 . -615) 48033) ((-800 . -614) 48015) ((-719 . -102) T) ((-332 . -1102) T) ((-214 . -617) 47992) ((-1122 . -131) T) ((-715 . -38) 47962) ((-317 . -496) 47941) ((-503 . -1219) T) ((-1253 . -285) 47907) ((-1232 . -285) 47873) ((-328 . -151) 47857) ((-442 . -1102) T) ((-1065 . -289) 47832) ((-1284 . -718) 47802) ((-1162 . -34) T) ((-1293 . -1040) 47779) ((-471 . -614) 47761) ((-487 . -34) T) ((-383 . -1040) 47745) ((-1175 . -1060) T) ((-1127 . -1060) T) ((-855 . -1060) T) ((-1064 . -849) T) ((-490 . -617) 47695) ((-217 . -617) 47645) ((-817 . -172) 47556) ((-523 . -287) 47533) ((-1261 . -291) 47512) ((-1200 . -366) 47486) ((-1090 . -267) 47470) ((-672 . -493) 47451) ((-672 . -614) 47417) ((-607 . -493) 47398) ((-117 . -994) 47375) ((-607 . -614) 47325) ((-477 . -102) T) ((-180 . -493) 47306) ((-180 . -614) 47272) ((-161 . -493) 47253) ((-156 . -493) 47234) ((-154 . -493) 47215) ((-161 . -614) 47181) ((-156 . -614) 47147) ((-367 . -1102) T) ((-252 . -1102) T) ((-251 . -1102) T) ((-154 . -614) 47113) ((-1254 . -291) 47064) ((-1233 . -291) 47015) ((-873 . -1154) 46993) ((-1177 . -1004) 46959) ((-609 . -366) 46899) ((-1176 . -1004) 46865) ((-609 . -229) 46812) ((-695 . -851) T) ((-595 . -614) 46794) ((-595 . -615) NIL) ((-478 . -229) 46744) ((-490 . -1051) T) ((-1170 . -1004) 46710) ((-88 . -443) T) ((-88 . -398) T) ((-217 . -1051) T) ((-1128 . -1004) 46676) ((-1082 . -727) T) ((-713 . -1114) T) ((-598 . -291) 46655) ((-597 . -291) 46634) ((-490 . -243) T) ((-490 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1168 . -614) 46616) ((-873 . -38) 46568) ((-361 . -727) T) ((-355 . -727) T) ((-347 . -727) T) ((-108 . -795) T) ((-108 . -792) T) ((-713 . -23) T) ((-108 . -727) T) ((-523 . -1257) 46552) ((-1297 . -25) T) ((-477 . -285) 46518) ((-1297 . -21) T) ((-1232 . -310) 46457) ((-1179 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-523 . -605) 46378) ((-1115 . -649) 46226) ((-603 . -310) 46164) ((-45 . -652) 46114) ((-45 . -667) 46064) ((-45 . -375) 46014) ((-1161 . -34) T) ((-872 . -849) NIL) ((-655 . -131) T) ((-488 . -614) 45996) ((-240 . -287) 45973) ((-186 . -1102) T) ((-1089 . -455) 45924) ((-817 . -517) 45798) ((-665 . -1053) 45782) ((-648 . -34) T) ((-633 . -34) T) ((-783 . -455) 45713) ((-665 . -641) 45697) ((-357 . -1053) 45649) ((-354 . -1053) 45601) ((-346 . -1053) 45553) ((-265 . -1053) 45396) ((-247 . -1053) 45239) ((-781 . -455) 45190) ((-357 . -641) 45142) ((-354 . -641) 45094) ((-346 . -641) 45046) ((-265 . -641) 44895) ((-247 . -641) 44744) ((-457 . -455) 44695) ((-954 . -414) 44679) ((-732 . -614) 44661) ((-252 . -718) 44603) ((-251 . -718) 44545) ((-732 . -615) 44406) ((-484 . -414) 44390) ((-341 . -303) T) ((-527 . -93) T) ((-353 . -922) T) ((-1002 . -102) 44368) ((-912 . -1053) 44333) ((-1026 . -851) T) ((-60 . -517) 44266) ((-912 . -641) 44231) ((-1232 . -1154) 44183) ((-1006 . -287) NIL) ((-225 . -1060) T) ((-381 . -829) T) ((-1115 . -34) T) ((-584 . -455) T) ((-521 . -455) T) ((-1236 . -1095) 44167) ((-1236 . -1102) 44145) ((-240 . -605) 44122) ((-1236 . -1097) 44079) ((-1177 . -614) 44061) ((-1176 . -614) 44043) ((-1170 . -614) 44025) ((-1170 . -615) NIL) ((-1128 . -614) 44007) ((-873 . -403) 43991) ((-539 . -102) T) ((-1253 . -38) 43832) ((-1232 . -38) 43646) ((-871 . -147) T) ((-584 . -405) T) ((-521 . -405) T) ((-1265 . -102) T) ((-1255 . -21) T) ((-1255 . -25) T) ((-1115 . -792) 43625) ((-1115 . -795) 43576) ((-1115 . -794) 43555) ((-995 . -1102) T) ((-1029 . -34) T) ((-863 . -1102) T) ((-1115 . -727) 43465) ((-665 . -102) T) ((-646 . -102) T) ((-553 . -289) 43444) ((-1192 . -102) T) ((-479 . -34) T) ((-466 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-480 . -308) T) ((-1064 . -1060) T) ((-954 . -1060) T) ((-317 . -640) 43350) ((-314 . -640) 43311) ((-1175 . -1102) T) ((-484 . -1060) T) ((-482 . -102) T) ((-439 . -614) 43293) ((-1127 . -1102) T) ((-250 . -614) 43275) ((-855 . -1102) T) ((-1143 . -102) T) ((-817 . -291) 43206) ((-965 . -1058) 43089) ((-480 . -1024) T) ((-736 . -1058) 43059) ((-1036 . -647) 43018) ((-456 . -1058) 42988) ((-1149 . -1123) 42972) ((-1104 . -517) 42905) ((-965 . -111) 42774) ((-912 . -102) T) ((-736 . -111) 42739) ((-528 . -493) 42720) ((-528 . -614) 42686) ((-59 . -102) 42636) ((-523 . -615) 42597) ((-523 . -614) 42509) ((-522 . -102) 42487) ((-519 . -102) 42437) ((-500 . -102) 42415) ((-499 . -102) 42365) ((-456 . -111) 42328) ((-252 . -172) 42307) ((-251 . -172) 42286) ((-323 . -647) 42268) ((-421 . -1058) 42242) ((-1213 . -975) 42204) ((-1001 . -1114) T) ((-381 . -647) 42154) ((-1137 . -617) 42135) ((-945 . -517) 42068) ((-490 . -796) T) ((-477 . -38) 41909) ((-421 . -111) 41876) ((-490 . -793) T) ((-1002 . -310) 41814) ((-217 . -796) T) ((-217 . -793) T) ((-1001 . -23) T) ((-713 . -131) T) ((-1232 . -403) 41784) ((-837 . -647) 41729) ((-828 . -647) 41688) ((-317 . -25) 41540) ((-169 . -414) 41524) ((-317 . -21) 41395) ((-314 . -25) T) ((-314 . -21) T) ((-865 . -370) T) ((-965 . -617) 41248) ((-110 . -34) T) ((-736 . -617) 41204) ((-716 . -617) 41186) ((-485 . -649) 41034) ((-872 . -1060) T) ((-595 . -289) 41009) ((-583 . -147) T) ((-567 . -147) T) ((-498 . -147) T) ((-1175 . -718) 40838) ((-1059 . -102) 40816) ((-1127 . -718) 40665) ((-1122 . -640) 40647) ((-855 . -718) 40617) ((-671 . -1219) T) ((-1 . -102) T) ((-421 . -617) 40525) ((-240 . -614) 40256) ((-1117 . -1102) T) ((-1242 . -414) 40240) ((-1192 . -310) 40044) ((-965 . -1051) T) ((-736 . -1051) T) ((-716 . -1051) T) ((-645 . -1102) 39994) ((-1056 . -649) 39978) ((-856 . -414) 39962) ((-514 . -102) T) ((-510 . -102) T) ((-265 . -310) 39949) ((-247 . -310) 39936) ((-965 . -327) 39915) ((-387 . -649) 39899) ((-671 . -1040) 39795) ((-482 . -310) 39599) ((-252 . -517) 39532) ((-251 . -517) 39465) ((-1143 . -310) 39391) ((-820 . -1102) T) ((-800 . -1058) 39375) ((-1261 . -287) 39360) ((-1254 . -287) 39345) ((-1233 . -287) 39193) ((-389 . -1102) T) ((-325 . -1102) T) ((-421 . -1051) T) ((-169 . -1060) T) ((-59 . -310) 39131) ((-800 . -111) 39110) ((-597 . -287) 39095) ((-522 . -310) 39033) ((-519 . -310) 38971) ((-500 . -310) 38909) ((-499 . -310) 38847) ((-421 . -233) 38826) ((-485 . -34) T) ((-1006 . -615) 38756) ((-225 . -1102) T) ((-1006 . -614) 38716) ((-973 . -614) 38676) ((-973 . -615) 38651) ((-916 . -614) 38633) ((-700 . -147) T) ((-702 . -922) T) ((-702 . -821) T) ((-430 . -614) 38615) ((-1122 . -21) T) ((-1122 . -25) T) ((-671 . -379) 38599) ((-116 . -922) T) ((-873 . -231) 38583) ((-78 . -1219) T) ((-126 . -125) 38567) ((-1056 . -34) T) ((-1291 . -1040) 38541) ((-1289 . -1040) 38498) ((-1242 . -1060) T) ((-856 . -1060) T) ((-485 . -792) 38477) ((-357 . -1154) 38456) ((-354 . -1154) 38435) ((-346 . -1154) 38414) ((-485 . -795) 38365) ((-485 . -794) 38344) ((-227 . -34) T) ((-485 . -727) 38254) ((-800 . -617) 38100) ((-663 . -1053) 38084) ((-60 . -492) 38068) ((-574 . -1060) T) ((-663 . -641) 38052) ((-1175 . -172) 37943) ((-1127 . -172) 37854) ((-1064 . -1102) T) ((-1089 . -951) 37799) ((-954 . -1102) T) ((-818 . -649) 37750) ((-783 . -951) 37719) ((-714 . -1102) T) ((-781 . -951) 37686) ((-519 . -283) 37670) ((-671 . -902) 37629) ((-484 . -1102) T) ((-457 . -951) 37596) ((-79 . -1219) T) ((-357 . -38) 37561) ((-354 . -38) 37526) ((-346 . -38) 37491) ((-265 . -38) 37340) ((-247 . -38) 37189) ((-912 . -1154) T) ((-527 . -493) 37170) ((-624 . -147) 37149) ((-624 . -145) 37128) ((-527 . -614) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-417 . -727) T) ((-800 . -1051) T) ((-345 . -455) T) ((-1261 . -1004) 37060) ((-1254 . -1004) 37026) ((-1233 . -1004) 36992) ((-912 . -38) 36957) ((-225 . -718) 36922) ((-320 . -47) 36892) ((-40 . -412) 36864) ((-140 . -614) 36846) ((-1001 . -131) T) ((-816 . -1219) T) ((-174 . -922) T) ((-552 . -370) T) ((-607 . -617) 36827) ((-345 . -405) T) ((-715 . -647) 36772) ((-672 . -617) 36753) ((-180 . -617) 36734) ((-161 . -617) 36715) ((-156 . -617) 36696) ((-154 . -617) 36677) ((-523 . -289) 36654) ((-1232 . -231) 36624) ((-877 . -102) T) ((-816 . -1040) 36451) ((-45 . -34) T) ((-682 . -102) T) ((-677 . -102) T) ((-663 . -102) T) ((-655 . -21) T) ((-655 . -25) T) ((-1104 . -492) 36435) ((-676 . -1219) T) ((-481 . -102) T) ((-245 . -102) 36385) ((-549 . -845) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-872 . -1102) T) ((-1181 . -649) 36310) ((-1064 . -718) 36297) ((-732 . -1058) 36140) ((-1175 . -517) 36087) ((-954 . -718) 35936) ((-1127 . -517) 35888) ((-1280 . -1102) T) ((-1279 . -1102) T) ((-484 . -718) 35737) ((-67 . -614) 35719) ((-732 . -111) 35548) ((-945 . -492) 35532) ((-1281 . -649) 35492) ((-818 . -727) T) ((-1177 . -1058) 35375) ((-1176 . -1058) 35210) ((-1170 . -1058) 35000) ((-1128 . -1058) 34883) ((-1005 . -1223) T) ((-1096 . -102) 34861) ((-816 . -379) 34830) ((-582 . -614) 34812) ((-549 . -1102) T) ((-1005 . -559) T) ((-1177 . -111) 34681) ((-1176 . -111) 34502) ((-1170 . -111) 34271) ((-1128 . -111) 34140) ((-1107 . -1105) 34104) ((-381 . -849) T) ((-1261 . -614) 34086) ((-1254 . -614) 34068) ((-873 . -647) 34005) ((-1233 . -614) 33987) ((-1233 . -615) NIL) ((-240 . -289) 33964) ((-40 . -455) T) ((-225 . -172) T) ((-169 . -1102) T) ((-732 . -617) 33749) ((-695 . -147) T) ((-695 . -145) NIL) ((-598 . -614) 33731) ((-597 . -614) 33713) ((-900 . -1102) T) ((-842 . -1102) T) ((-809 . -1102) T) ((-770 . -1102) T) ((-659 . -853) 33697) ((-678 . -1102) T) ((-816 . -902) 33629) ((-1224 . -370) T) ((-40 . -405) NIL) ((-1177 . -617) 33511) ((-1122 . -662) T) ((-872 . -718) 33456) ((-252 . -492) 33440) ((-251 . -492) 33424) ((-1176 . -617) 33167) ((-1170 . -617) 32962) ((-713 . -640) 32910) ((-654 . -649) 32884) ((-1128 . -617) 32766) ((-296 . -34) T) ((-732 . -1051) T) ((-584 . -1276) 32753) ((-521 . -1276) 32730) ((-1242 . -1102) T) ((-1175 . -291) 32641) ((-1127 . -291) 32572) ((-1064 . -172) T) ((-856 . -1102) T) ((-954 . -172) 32483) ((-783 . -1245) 32467) ((-645 . -517) 32400) ((-77 . -614) 32382) ((-732 . -327) 32347) ((-1181 . -727) T) ((-574 . -1102) T) ((-484 . -172) 32258) ((-245 . -310) 32196) ((-1144 . -1114) T) ((-70 . -614) 32178) ((-1281 . -727) T) ((-1177 . -1051) T) ((-1176 . -1051) T) ((-328 . -102) 32128) ((-1170 . -1051) T) ((-1144 . -23) T) ((-1128 . -1051) T) ((-91 . -1123) 32112) ((-867 . -1114) T) ((-1177 . -233) 32071) ((-1176 . -243) 32050) ((-1176 . -233) 32002) ((-1170 . -233) 31889) ((-1170 . -243) 31868) ((-320 . -902) 31774) ((-867 . -23) T) ((-169 . -718) 31602) ((-410 . -1223) T) ((-1103 . -370) T) ((-1005 . -365) T) ((-871 . -455) T) ((-1026 . -147) T) ((-945 . -287) 31579) ((-314 . -851) NIL) ((-1253 . -647) 31461) ((-875 . -102) T) ((-1232 . -647) 31316) ((-713 . -25) T) ((-410 . -559) T) ((-713 . -21) T) ((-528 . -617) 31297) ((-356 . -147) 31279) ((-356 . -145) T) ((-1149 . -1102) 31257) ((-456 . -721) T) ((-75 . -614) 31239) ((-114 . -851) T) ((-245 . -283) 31223) ((-240 . -1058) 31120) ((-81 . -614) 31102) ((-736 . -370) 31055) ((-1179 . -829) T) ((-738 . -235) 31039) ((-1162 . -1219) T) ((-141 . -235) 31021) ((-240 . -111) 30911) ((-1242 . -718) 30740) ((-48 . -147) T) ((-872 . -172) T) ((-856 . -718) 30710) ((-487 . -1219) T) ((-954 . -517) 30657) ((-654 . -727) T) ((-574 . -718) 30644) ((-1036 . -1060) T) ((-484 . -517) 30587) ((-945 . -19) 30571) ((-945 . -605) 30548) ((-817 . -615) NIL) ((-817 . -614) 30530) ((-1213 . -1053) 30413) ((-1006 . -1058) 30363) ((-416 . -614) 30345) ((-252 . -287) 30322) ((-251 . -287) 30299) ((-490 . -911) NIL) ((-317 . -29) 30269) ((-108 . -1219) T) ((-1005 . -1114) T) ((-217 . -911) NIL) ((-1213 . -641) 30166) ((-916 . -1058) 30118) ((-1082 . -1040) 30014) ((-1006 . -111) 29948) ((-712 . -1053) 29913) ((-1005 . -23) T) ((-916 . -111) 29851) ((-738 . -696) 29835) ((-712 . -641) 29800) ((-265 . -231) 29784) ((-430 . -1058) 29768) ((-381 . -1060) T) ((-240 . -617) 29498) ((-695 . -1207) NIL) ((-490 . -649) 29448) ((-477 . -647) 29330) ((-108 . -886) 29312) ((-108 . -888) 29294) ((-695 . -1204) NIL) ((-217 . -649) 29244) ((-361 . -1040) 29228) ((-355 . -1040) 29212) ((-328 . -310) 29150) ((-347 . -1040) 29134) ((-225 . -291) T) ((-430 . -111) 29113) ((-60 . -614) 29045) ((-169 . -172) T) ((-1122 . -851) T) ((-108 . -1040) 29005) ((-894 . -1102) T) ((-837 . -1060) T) ((-828 . -1060) T) ((-695 . -35) NIL) ((-695 . -95) NIL) ((-314 . -994) 28966) ((-183 . -102) T) ((-583 . -455) T) ((-567 . -455) T) ((-498 . -455) T) ((-410 . -365) T) ((-240 . -1051) 28896) ((-1152 . -34) T) ((-480 . -922) T) ((-1001 . -640) 28844) ((-252 . -605) 28821) ((-251 . -605) 28798) ((-1082 . -379) 28782) ((-872 . -517) 28690) ((-240 . -233) 28642) ((-1161 . -1219) T) ((-1006 . -617) 28592) ((-916 . -617) 28529) ((-825 . -614) 28511) ((-1292 . -1114) T) ((-1284 . -614) 28493) ((-1242 . -172) 28384) ((-430 . -617) 28353) ((-108 . -379) 28335) ((-108 . -340) 28317) ((-1064 . -291) T) ((-954 . -291) 28248) ((-800 . -370) 28227) ((-648 . -1219) T) ((-633 . -1219) T) ((-588 . -1053) 28202) ((-484 . -291) 28133) ((-574 . -172) T) ((-328 . -283) 28117) ((-1292 . -23) T) ((-1213 . -102) T) ((-1200 . -1102) T) ((-1090 . -1102) T) ((-1078 . -1102) T) ((-588 . -641) 28092) ((-83 . -614) 28074) ((-1186 . -845) T) ((-1185 . -845) T) ((-712 . -102) T) ((-357 . -351) 28053) ((-609 . -1102) T) ((-354 . -351) 28032) ((-346 . -351) 28011) ((-478 . -1102) T) ((-1192 . -229) 27961) ((-265 . -254) 27923) ((-1144 . -131) T) ((-609 . -611) 27899) ((-1082 . -902) 27832) ((-1006 . -1051) T) ((-916 . -1051) T) ((-478 . -611) 27811) ((-1170 . -793) NIL) ((-1170 . -796) NIL) ((-1104 . -615) 27772) ((-482 . -229) 27722) ((-1104 . -614) 27704) ((-1006 . -243) T) ((-1006 . -233) T) ((-430 . -1051) T) ((-960 . -1102) 27654) ((-916 . -243) T) ((-867 . -131) T) ((-700 . -455) T) ((-844 . -1114) 27633) ((-108 . -902) NIL) ((-1213 . -285) 27599) ((-873 . -849) 27578) ((-1115 . -1219) T) ((-907 . -727) T) ((-169 . -517) 27490) ((-1001 . -25) T) ((-907 . -476) T) ((-410 . -1114) T) ((-490 . -795) T) ((-490 . -792) T) ((-912 . -351) T) ((-490 . -727) T) ((-217 . -795) T) ((-217 . -792) T) ((-1001 . -21) T) ((-217 . -727) T) ((-844 . -23) 27442) ((-1187 . -1102) T) ((-659 . -1053) 27426) ((-1186 . -1102) T) ((-527 . -617) 27407) ((-1185 . -1102) T) ((-320 . -308) 27386) ((-1037 . -235) 27332) ((-659 . -641) 27302) ((-410 . -23) T) ((-945 . -615) 27263) ((-945 . -614) 27175) ((-645 . -492) 27159) ((-45 . -1012) 27109) ((-618 . -969) T) ((-494 . -102) T) ((-332 . -614) 27091) ((-1115 . -1040) 26918) ((-595 . -652) 26900) ((-130 . -1102) T) ((-128 . -1102) T) ((-595 . -375) 26882) ((-345 . -1276) 26859) ((-442 . -614) 26841) ((-1242 . -517) 26788) ((-1089 . -1053) 26631) ((-1029 . -1219) T) ((-872 . -291) T) ((-1175 . -287) 26558) ((-1089 . -641) 26407) ((-1002 . -997) 26391) ((-783 . -1053) 26214) ((-781 . -1053) 26057) ((-783 . -641) 25886) ((-781 . -641) 25735) ((-479 . -1219) T) ((-466 . -1219) T) ((-588 . -102) T) ((-464 . -1053) 25706) ((-457 . -1053) 25549) ((-665 . -647) 25518) ((-624 . -455) 25497) ((-464 . -641) 25468) ((-457 . -641) 25317) ((-357 . -647) 25254) ((-354 . -647) 25191) ((-346 . -647) 25128) ((-265 . -647) 25038) ((-247 . -647) 24948) ((-1284 . -384) 24920) ((-520 . -1102) T) ((-117 . -455) T) ((-1199 . -102) T) ((-1094 . -1102) 24890) ((-1036 . -1102) T) ((-1117 . -93) T) ((-895 . -851) T) ((-1261 . -111) 24759) ((-353 . -1223) T) ((-1261 . -1058) 24642) ((-1115 . -379) 24611) ((-1254 . -1058) 24446) ((-1233 . -1058) 24236) ((-1254 . -111) 24057) ((-1233 . -111) 23826) ((-1213 . -310) 23813) ((-1005 . -131) T) ((-912 . -647) 23763) ((-367 . -614) 23745) ((-353 . -559) T) ((-290 . -308) T) ((-598 . -1058) 23705) ((-597 . -1058) 23588) ((-584 . -1053) 23553) ((-521 . -1053) 23498) ((-363 . -1102) T) ((-323 . -1102) T) ((-252 . -614) 23459) ((-251 . -614) 23420) ((-584 . -641) 23385) ((-521 . -641) 23330) ((-695 . -412) 23297) ((-636 . -23) T) ((-608 . -23) T) ((-659 . -102) T) ((-598 . -111) 23250) ((-597 . -111) 23119) ((-381 . -1102) T) ((-338 . -102) T) ((-169 . -291) 23030) ((-1232 . -849) 22983) ((-715 . -1060) T) ((-1149 . -517) 22916) ((-1115 . -902) 22848) ((-837 . -1102) T) ((-828 . -1102) T) ((-826 . -1102) T) ((-97 . -102) T) ((-144 . -851) T) ((-613 . -886) 22832) ((-110 . -1219) T) ((-1089 . -102) T) ((-1065 . -34) T) ((-783 . -102) T) ((-781 . -102) T) ((-1261 . -617) 22714) ((-1254 . -617) 22457) ((-464 . -102) T) ((-457 . -102) T) ((-1233 . -617) 22252) ((-240 . -796) 22203) ((-240 . -793) 22154) ((-650 . -102) T) ((-598 . -617) 22112) ((-597 . -617) 21994) ((-1242 . -291) 21905) ((-665 . -635) 21889) ((-186 . -614) 21871) ((-645 . -287) 21848) ((-1036 . -718) 21832) ((-574 . -291) T) ((-965 . -649) 21757) ((-1292 . -131) T) ((-736 . -649) 21717) ((-716 . -649) 21704) ((-276 . -102) T) ((-456 . -649) 21634) ((-50 . -102) T) ((-584 . -102) T) ((-521 . -102) T) ((-1261 . -1051) T) ((-1254 . -1051) T) ((-1233 . -1051) T) ((-510 . -647) 21616) ((-323 . -718) 21598) ((-1261 . -233) 21557) ((-1254 . -243) 21536) ((-1254 . -233) 21488) ((-1233 . -233) 21375) ((-1233 . -243) 21354) ((-1213 . -38) 21251) ((-598 . -1051) T) ((-597 . -1051) T) ((-1006 . -796) T) ((-1006 . -793) T) ((-973 . -796) T) ((-973 . -793) T) ((-873 . -1060) T) ((-109 . -614) 21233) ((-695 . -455) T) ((-381 . -718) 21198) ((-421 . -649) 21172) ((-871 . -870) 21156) ((-712 . -38) 21121) ((-597 . -233) 21080) ((-40 . -725) 21052) ((-353 . -330) 21029) ((-353 . -365) T) ((-1082 . -308) 20980) ((-295 . -1114) 20861) ((-1108 . -1219) T) ((-171 . -102) T) ((-1236 . -614) 20828) ((-844 . -131) 20780) ((-645 . -1257) 20764) ((-837 . -718) 20734) ((-828 . -718) 20704) ((-485 . -1219) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-645 . -605) 20681) ((-410 . -131) T) ((-523 . -667) 20665) ((-108 . -308) T) ((-295 . -23) 20548) ((-523 . -652) 20532) ((-695 . -405) NIL) ((-523 . -375) 20516) ((-292 . -614) 20498) ((-91 . -1102) 20476) ((-108 . -1024) T) ((-567 . -143) T) ((-1269 . -151) 20460) ((-485 . -1040) 20287) ((-1255 . -145) 20248) ((-1255 . -147) 20209) ((-1056 . -1219) T) ((-995 . -614) 20191) ((-863 . -614) 20173) ((-817 . -1058) 20016) ((-1280 . -93) T) ((-1279 . -93) T) ((-1175 . -615) NIL) ((-1098 . -1102) T) ((-1092 . -1102) T) ((-1089 . -310) 20003) ((-1075 . -1102) T) ((-227 . -1219) T) ((-1068 . -1102) T) ((-1038 . -1102) T) ((-1021 . -1102) T) ((-783 . -310) 19990) ((-781 . -310) 19977) ((-1175 . -614) 19959) ((-817 . -111) 19788) ((-1127 . -614) 19770) ((-627 . -1102) T) ((-580 . -173) T) ((-532 . -173) T) ((-457 . -310) 19757) ((-486 . -1102) T) ((-1127 . -615) 19505) ((-1036 . -172) T) ((-945 . -289) 19482) ((-218 . -1102) T) ((-855 . -614) 19464) ((-609 . -517) 19247) ((-81 . -617) 19188) ((-819 . -1040) 19172) ((-478 . -517) 18964) ((-965 . -727) T) ((-736 . -727) T) ((-716 . -727) T) ((-353 . -1114) T) ((-1182 . -614) 18946) ((-223 . -102) T) ((-485 . -379) 18915) ((-518 . -1102) T) ((-513 . -1102) T) ((-511 . -1102) T) ((-800 . -649) 18889) ((-1026 . -455) T) ((-960 . -517) 18822) ((-353 . -23) T) ((-636 . -131) T) ((-608 . -131) T) ((-356 . -455) T) ((-240 . -370) 18801) ((-381 . -172) T) ((-1253 . -1060) T) ((-1232 . -1060) T) ((-225 . -1004) T) ((-817 . -617) 18538) ((-700 . -390) T) ((-421 . -727) T) ((-702 . -1223) T) ((-1144 . -640) 18486) ((-583 . -870) 18470) ((-1284 . -1058) 18454) ((-1162 . -1195) 18430) ((-702 . -559) T) ((-126 . -1102) 18408) ((-715 . -1102) T) ((-485 . -902) 18340) ((-249 . -1102) T) ((-187 . -1102) T) ((-659 . -38) 18310) ((-356 . -405) T) ((-317 . -147) 18289) ((-317 . -145) 18268) ((-128 . -517) NIL) ((-116 . -559) T) ((-314 . -147) 18224) ((-314 . -145) 18180) ((-48 . -455) T) ((-162 . -1102) T) ((-157 . -1102) T) ((-1162 . -107) 18127) ((-783 . -1154) 18105) ((-690 . -34) T) ((-1284 . -111) 18084) ((-553 . -34) T) ((-487 . -107) 18068) ((-252 . -289) 18045) ((-251 . -289) 18022) ((-872 . -287) 17973) ((-45 . -1219) T) ((-1225 . -845) T) ((-817 . -1051) T) ((-663 . -647) 17942) ((-1181 . -47) 17919) ((-817 . -327) 17881) ((-1089 . -38) 17730) ((-817 . -233) 17709) ((-783 . -38) 17538) ((-781 . -38) 17387) ((-1117 . -493) 17368) ((-457 . -38) 17217) ((-1117 . -614) 17183) ((-1120 . -102) T) ((-645 . -615) 17144) ((-645 . -614) 17056) ((-584 . -1154) T) ((-521 . -1154) T) ((-1149 . -492) 17040) ((-345 . -1053) 16985) ((-1205 . -1102) 16963) ((-1144 . -25) T) ((-1144 . -21) T) ((-345 . -641) 16908) ((-1284 . -617) 16857) ((-477 . -1060) T) ((-1225 . -1102) T) ((-1233 . -793) NIL) ((-1233 . -796) NIL) ((-1001 . -851) 16836) ((-839 . -1102) T) ((-820 . -614) 16818) ((-867 . -21) T) ((-867 . -25) T) ((-800 . -727) T) ((-174 . -1223) T) ((-584 . -38) 16783) ((-521 . -38) 16748) ((-389 . -614) 16730) ((-334 . -102) T) ((-325 . -614) 16712) ((-169 . -287) 16670) ((-63 . -1219) T) ((-112 . -102) T) ((-873 . -1102) T) ((-174 . -559) T) ((-715 . -718) 16640) ((-295 . -131) 16523) ((-225 . -614) 16505) ((-225 . -615) 16435) ((-1005 . -640) 16374) ((-1284 . -1051) T) ((-1122 . -147) T) ((-633 . -1195) 16349) ((-732 . -911) 16328) ((-595 . -34) T) ((-648 . -107) 16312) ((-633 . -107) 16258) ((-1242 . -287) 16185) ((-732 . -649) 16110) ((-296 . -1219) T) ((-1181 . -1040) 16006) ((-945 . -619) 15983) ((-580 . -579) T) ((-580 . -530) T) ((-532 . -530) T) ((-1170 . -911) NIL) ((-1064 . -615) 15898) ((-1064 . -614) 15880) ((-954 . -614) 15862) ((-714 . -493) 15812) ((-345 . -102) T) ((-252 . -1058) 15709) ((-251 . -1058) 15606) ((-397 . -102) T) ((-31 . -1102) T) ((-954 . -615) 15467) ((-714 . -614) 15402) ((-1282 . -1212) 15371) ((-484 . -614) 15353) ((-484 . -615) 15214) ((-265 . -414) 15198) ((-247 . -414) 15182) ((-252 . -111) 15072) ((-251 . -111) 14962) ((-1177 . -649) 14887) ((-1176 . -649) 14784) ((-1170 . -649) 14636) ((-1128 . -649) 14561) ((-353 . -131) T) ((-82 . -444) T) ((-82 . -398) T) ((-1005 . -25) T) ((-1005 . -21) T) ((-874 . -1102) 14512) ((-40 . -1053) 14457) ((-873 . -718) 14409) ((-40 . -641) 14354) ((-381 . -291) T) ((-169 . -1004) 14305) ((-695 . -390) T) ((-1001 . -999) 14289) ((-702 . -1114) T) ((-695 . -166) 14271) ((-1253 . -1102) T) ((-1232 . -1102) T) ((-317 . -1204) 14250) ((-317 . -1207) 14229) ((-1167 . -102) T) ((-317 . -961) 14208) ((-134 . -1114) T) ((-116 . -1114) T) ((-603 . -1267) 14192) ((-702 . -23) T) ((-603 . -1102) 14142) ((-317 . -95) 14121) ((-91 . -517) 14054) ((-174 . -365) T) ((-252 . -617) 13784) ((-251 . -617) 13514) ((-317 . -35) 13493) ((-609 . -492) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-968 . -102) T) ((-719 . -1102) T) ((-478 . -492) 13364) ((-410 . -640) 13312) ((-654 . -1040) 13208) ((-960 . -492) 13192) ((-357 . -1060) T) ((-354 . -1060) T) ((-346 . -1060) T) ((-265 . -1060) T) ((-247 . -1060) T) ((-872 . -615) NIL) ((-872 . -614) 13174) ((-1280 . -493) 13155) ((-1279 . -493) 13136) ((-1292 . -21) T) ((-1280 . -614) 13102) ((-1279 . -614) 13068) ((-574 . -1004) T) ((-732 . -727) T) ((-1292 . -25) T) ((-252 . -1051) 12998) ((-251 . -1051) 12928) ((-72 . -1219) T) ((-252 . -233) 12880) ((-251 . -233) 12832) ((-40 . -102) T) ((-912 . -1060) T) ((-1184 . -102) T) ((-128 . -492) 12814) ((-1177 . -727) T) ((-1176 . -727) T) ((-1170 . -727) T) ((-1170 . -792) NIL) ((-1170 . -795) NIL) ((-956 . -102) T) ((-923 . -102) T) ((-871 . -1053) 12801) ((-1128 . -727) T) ((-772 . -102) T) ((-673 . -102) T) ((-871 . -641) 12788) ((-549 . -614) 12770) ((-477 . -1102) T) ((-341 . -1114) T) ((-174 . -1114) T) ((-320 . -922) 12749) ((-1253 . -718) 12590) ((-873 . -172) T) ((-1232 . -718) 12404) ((-844 . -21) 12356) ((-844 . -25) 12308) ((-245 . -1151) 12292) ((-126 . -517) 12225) ((-410 . -25) T) ((-410 . -21) T) ((-341 . -23) T) ((-169 . -615) 11991) ((-169 . -614) 11973) ((-174 . -23) T) ((-645 . -289) 11950) ((-523 . -34) T) ((-900 . -614) 11932) ((-89 . -1219) T) ((-842 . -614) 11914) ((-809 . -614) 11896) ((-770 . -614) 11878) ((-678 . -614) 11860) ((-240 . -649) 11708) ((-1179 . -1102) T) ((-1175 . -1058) 11531) ((-1152 . -1219) T) ((-1127 . -1058) 11374) ((-855 . -1058) 11358) ((-1236 . -619) 11342) ((-1175 . -111) 11151) ((-1127 . -111) 10980) ((-855 . -111) 10959) ((-1226 . -851) T) ((-1242 . -615) NIL) ((-1242 . -614) 10941) ((-345 . -1154) T) ((-856 . -614) 10923) ((-1078 . -287) 10902) ((-80 . -1219) T) ((-1006 . -911) NIL) ((-609 . -287) 10878) ((-1205 . -517) 10811) ((-490 . -1219) T) ((-574 . -614) 10793) ((-478 . -287) 10772) ((-1213 . -647) 10682) ((-520 . -93) T) ((-1089 . -231) 10666) ((-217 . -1219) T) ((-1006 . -649) 10616) ((-960 . -287) 10593) ((-290 . -922) T) ((-818 . -308) 10572) ((-871 . -102) T) ((-783 . -231) 10556) ((-916 . -649) 10508) ((-712 . -647) 10458) ((-695 . -725) 10425) ((-636 . -21) T) ((-636 . -25) T) ((-608 . -21) T) ((-550 . -102) T) ((-345 . -38) 10390) ((-490 . -886) 10372) ((-490 . -888) 10354) ((-477 . -718) 10195) ((-217 . -886) 10177) ((-64 . -1219) T) ((-217 . -888) 10159) ((-608 . -25) T) ((-430 . -649) 10133) ((-1175 . -617) 9902) ((-490 . -1040) 9862) ((-873 . -517) 9774) ((-1127 . -617) 9566) ((-855 . -617) 9484) ((-217 . -1040) 9444) ((-240 . -34) T) ((-1002 . -1102) 9422) ((-583 . -1053) 9409) ((-567 . -1053) 9396) ((-498 . -1053) 9361) ((-1253 . -172) 9292) ((-1232 . -172) 9223) ((-583 . -641) 9210) ((-567 . -641) 9197) ((-498 . -641) 9162) ((-713 . -145) 9141) ((-713 . -147) 9120) ((-702 . -131) T) ((-136 . -468) 9097) ((-1149 . -614) 9029) ((-659 . -657) 9013) ((-128 . -287) 8988) ((-116 . -131) T) ((-480 . -1223) T) ((-609 . -605) 8964) ((-478 . -605) 8943) ((-338 . -337) 8912) ((-539 . -1102) T) ((-480 . -559) T) ((-1175 . -1051) T) ((-1127 . -1051) T) ((-855 . -1051) T) ((-240 . -792) 8891) ((-240 . -795) 8842) ((-240 . -794) 8821) ((-1175 . -327) 8798) ((-240 . -727) 8708) ((-960 . -19) 8692) ((-490 . -379) 8674) ((-490 . -340) 8656) ((-1127 . -327) 8628) ((-356 . -1276) 8605) ((-217 . -379) 8587) ((-217 . -340) 8569) ((-960 . -605) 8546) ((-1175 . -233) T) ((-1265 . -1102) T) ((-665 . -1102) T) ((-646 . -1102) T) ((-1192 . -1102) T) ((-1089 . -254) 8483) ((-588 . -647) 8443) ((-357 . -1102) T) ((-354 . -1102) T) ((-346 . -1102) T) ((-265 . -1102) T) ((-247 . -1102) T) ((-84 . -1219) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1192 . -611) 8378) ((-1232 . -517) 8238) ((-1143 . -1102) T) ((-1117 . -617) 8219) ((-482 . -1102) T) ((-1082 . -922) 8170) ((-1006 . -795) T) ((-482 . -611) 8149) ((-252 . -796) 8100) ((-252 . -793) 8051) ((-251 . -796) 8002) ((-40 . -1154) NIL) ((-251 . -793) 7953) ((-1006 . -792) T) ((-128 . -19) 7935) ((-1006 . -727) T) ((-700 . -1053) 7900) ((-973 . -795) T) ((-916 . -727) T) ((-912 . -1102) T) ((-128 . -605) 7875) ((-700 . -641) 7840) ((-91 . -492) 7824) ((-490 . -902) NIL) ((-894 . -614) 7806) ((-225 . -1058) 7771) ((-873 . -291) T) ((-217 . -902) NIL) ((-834 . -1114) 7750) ((-59 . -1102) 7700) ((-522 . -1102) 7678) ((-519 . -1102) 7628) ((-500 . -1102) 7606) ((-499 . -1102) 7556) ((-583 . -102) T) ((-567 . -102) T) ((-498 . -102) T) ((-477 . -172) 7487) ((-361 . -922) T) ((-355 . -922) T) ((-347 . -922) T) ((-225 . -111) 7443) ((-834 . -23) 7395) ((-430 . -727) T) ((-108 . -922) T) ((-40 . -38) 7340) ((-108 . -821) T) ((-584 . -351) T) ((-521 . -351) T) ((-837 . -287) 7319) ((-317 . -455) 7298) ((-314 . -455) T) ((-659 . -647) 7257) ((-603 . -517) 7190) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 7054) ((-295 . -21) 6937) ((-45 . -1195) 6916) ((-66 . -614) 6898) ((-55 . -102) T) ((-338 . -647) 6880) ((-45 . -107) 6830) ((-820 . -617) 6814) ((-1270 . -102) T) ((-1269 . -102) 6764) ((-1261 . -649) 6689) ((-1254 . -649) 6586) ((-1233 . -649) 6438) ((-1104 . -428) 6422) ((-1104 . -370) 6401) ((-389 . -617) 6385) ((-325 . -617) 6369) ((-1233 . -911) NIL) ((-1200 . -614) 6351) ((-1065 . -1219) T) ((-1089 . -647) 6261) ((-1064 . -1058) 6248) ((-1064 . -111) 6233) ((-954 . -1058) 6076) ((-954 . -111) 5905) ((-783 . -647) 5815) ((-781 . -647) 5725) ((-624 . -1053) 5712) ((-665 . -718) 5696) ((-624 . -641) 5683) ((-484 . -1058) 5526) ((-480 . -365) T) ((-464 . -647) 5482) ((-457 . -647) 5392) ((-225 . -617) 5342) ((-357 . -718) 5294) ((-354 . -718) 5246) ((-117 . -1053) 5191) ((-346 . -718) 5143) ((-265 . -718) 4992) ((-247 . -718) 4841) ((-1098 . -93) T) ((-1092 . -93) T) ((-117 . -641) 4786) ((-1075 . -93) T) ((-945 . -652) 4770) ((-1068 . -93) T) ((-484 . -111) 4599) ((-1059 . -1102) 4577) ((-1038 . -93) T) ((-945 . -375) 4561) ((-248 . -102) T) ((-1021 . -93) T) ((-74 . -614) 4543) ((-965 . -47) 4522) ((-711 . -102) T) ((-700 . -102) T) ((-1 . -1102) T) ((-622 . -1114) T) ((-1090 . -614) 4504) ((-627 . -93) T) ((-1078 . -614) 4486) ((-912 . -718) 4451) ((-126 . -492) 4435) ((-486 . -93) T) ((-622 . -23) T) ((-393 . -23) T) ((-87 . -1219) T) ((-218 . -93) T) ((-609 . -614) 4417) ((-609 . -615) NIL) ((-478 . -615) NIL) ((-478 . -614) 4399) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -647) 4358) ((-514 . -1102) T) ((-510 . -1102) T) ((-127 . -310) 4296) ((-121 . -310) 4234) ((-598 . -649) 4208) ((-597 . -649) 4133) ((-584 . -647) 4083) ((-225 . -1051) T) ((-521 . -647) 4013) ((-381 . -1004) T) ((-225 . -243) T) ((-225 . -233) T) ((-1064 . -617) 3985) ((-1064 . -619) 3966) ((-960 . -615) 3927) ((-960 . -614) 3839) ((-954 . -617) 3628) ((-871 . -38) 3615) ((-714 . -617) 3565) ((-1253 . -291) 3516) ((-1232 . -291) 3467) ((-484 . -617) 3252) ((-1122 . -455) T) ((-505 . -851) T) ((-317 . -1141) 3231) ((-1001 . -147) 3210) ((-1001 . -145) 3189) ((-498 . -310) 3176) ((-296 . -1195) 3155) ((-1187 . -614) 3137) ((-1186 . -614) 3119) ((-1185 . -614) 3101) ((-872 . -1058) 3046) ((-480 . -1114) T) ((-139 . -836) 3028) ((-114 . -836) 3009) ((-624 . -102) T) ((-1205 . -492) 2993) ((-252 . -370) 2972) ((-251 . -370) 2951) ((-1064 . -1051) T) ((-296 . -107) 2901) ((-130 . -614) 2883) ((-128 . -615) NIL) ((-128 . -614) 2827) ((-117 . -102) T) ((-954 . -1051) T) ((-872 . -111) 2756) ((-480 . -23) T) ((-484 . -1051) T) ((-1064 . -233) T) ((-954 . -327) 2725) ((-484 . -327) 2682) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2593) ((-247 . -172) 2504) ((-965 . -1040) 2400) ((-520 . -493) 2381) ((-736 . -1040) 2352) ((-520 . -614) 2318) ((-1107 . -102) T) ((-1094 . -614) 2277) ((-1036 . -614) 2259) ((-695 . -1053) 2209) ((-1282 . -151) 2193) ((-1280 . -617) 2174) ((-1279 . -617) 2155) ((-1274 . -614) 2137) ((-1261 . -727) T) ((-695 . -641) 2087) ((-1254 . -727) T) ((-1233 . -792) NIL) ((-1233 . -795) NIL) ((-169 . -1058) 1997) ((-912 . -172) T) ((-872 . -617) 1927) ((-1233 . -727) T) ((-1005 . -344) 1901) ((-223 . -647) 1853) ((-1002 . -517) 1786) ((-844 . -851) 1765) ((-567 . -1154) T) ((-477 . -291) 1716) ((-598 . -727) T) ((-363 . -614) 1698) ((-323 . -614) 1680) ((-421 . -1040) 1576) ((-597 . -727) T) ((-410 . -851) 1527) ((-169 . -111) 1423) ((-834 . -131) 1375) ((-738 . -151) 1359) ((-1269 . -310) 1297) ((-490 . -308) T) ((-381 . -614) 1264) ((-523 . -1012) 1248) ((-381 . -615) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-715 . -287) 1123) ((-490 . -1024) T) ((-583 . -38) 1110) ((-567 . -38) 1097) ((-498 . -38) 1062) ((-217 . -1024) T) ((-872 . -1051) T) ((-837 . -614) 1044) ((-828 . -614) 1026) ((-826 . -614) 1008) ((-817 . -911) 987) ((-1293 . -1114) T) ((-1242 . -1058) 810) ((-856 . -1058) 794) ((-872 . -243) T) ((-872 . -233) NIL) ((-690 . -1219) T) ((-1293 . -23) T) ((-817 . -649) 719) ((-553 . -1219) T) ((-421 . -340) 703) ((-574 . -1058) 690) ((-1242 . -111) 499) ((-702 . -640) 481) ((-856 . -111) 460) ((-383 . -23) T) ((-169 . -617) 238) ((-1192 . -517) 30) ((-877 . -1102) T) ((-682 . -1102) T) ((-677 . -1102) T) ((-663 . -1102) T))
\ No newline at end of file +((($) . T)) +((($) . T)) +((((-865)) . T)) +((((-549)) . T) (($) . T)) +((($) . T)) +((((-549)) . T)) +(((-1298 . -172) T) ((-1298 . -618) 188413) ((-1298 . -728) T) ((-1298 . -1115) T) ((-1298 . -1060) T) ((-1298 . -1052) T) ((-1298 . -650) 188400) ((-1298 . -648) 188372) ((-1298 . -131) T) ((-1298 . -25) T) ((-1298 . -102) T) ((-1298 . -615) 188354) ((-1298 . -1104) T) ((-1298 . -23) T) ((-1298 . -21) T) ((-1298 . -1059) 188341) ((-1298 . -1054) 188328) ((-1298 . -111) 188313) ((-1298 . -370) T) ((-1298 . -616) 188295) ((-1298 . -1154) T) ((-1294 . -1292) 188274) ((-1294 . -1041) 188251) ((-1294 . -618) 188200) ((-1294 . -1052) T) ((-1294 . -1060) T) ((-1294 . -1115) T) ((-1294 . -728) T) ((-1294 . -21) T) ((-1294 . -648) 188159) ((-1294 . -23) T) ((-1294 . -1104) T) ((-1294 . -615) 188141) ((-1294 . -102) T) ((-1294 . -25) T) ((-1294 . -131) T) ((-1294 . -650) 188115) ((-1294 . -1284) 188099) ((-1294 . -719) 188069) ((-1294 . -642) 188039) ((-1294 . -1059) 188023) ((-1294 . -1054) 188007) ((-1294 . -111) 187986) ((-1294 . -38) 187956) ((-1294 . -1289) 187935) ((-1293 . -1052) T) ((-1293 . -1060) T) ((-1293 . -1115) T) ((-1293 . -728) T) ((-1293 . -21) T) ((-1293 . -648) 187894) ((-1293 . -23) T) ((-1293 . -1104) T) ((-1293 . -615) 187876) ((-1293 . -102) T) ((-1293 . -25) T) ((-1293 . -131) T) ((-1293 . -650) 187850) ((-1293 . -618) 187806) ((-1293 . -1284) 187790) ((-1293 . -719) 187760) ((-1293 . -642) 187730) ((-1293 . -1059) 187714) ((-1293 . -1054) 187698) ((-1293 . -111) 187677) ((-1293 . -38) 187647) ((-1293 . -386) 187626) ((-1293 . -1041) 187610) ((-1291 . -1292) 187586) ((-1291 . -1041) 187560) ((-1291 . -618) 187506) ((-1291 . -1052) T) ((-1291 . -1060) T) ((-1291 . -1115) T) ((-1291 . -728) T) ((-1291 . -21) T) ((-1291 . -648) 187465) ((-1291 . -23) T) ((-1291 . -1104) T) ((-1291 . -615) 187447) ((-1291 . -102) T) ((-1291 . -25) T) ((-1291 . -131) T) ((-1291 . -650) 187421) ((-1291 . -1284) 187405) ((-1291 . -719) 187375) ((-1291 . -642) 187345) ((-1291 . -1059) 187329) ((-1291 . -1054) 187313) ((-1291 . -111) 187292) ((-1291 . -38) 187262) ((-1291 . -1289) 187238) ((-1290 . -1292) 187217) ((-1290 . -1041) 187174) ((-1290 . -618) 187103) ((-1290 . -1052) T) ((-1290 . -1060) T) ((-1290 . -1115) T) ((-1290 . -728) T) ((-1290 . -21) T) ((-1290 . -648) 187062) ((-1290 . -23) T) ((-1290 . -1104) T) ((-1290 . -615) 187044) ((-1290 . -102) T) ((-1290 . -25) T) ((-1290 . -131) T) ((-1290 . -650) 187018) ((-1290 . -1284) 187002) ((-1290 . -719) 186972) ((-1290 . -642) 186942) ((-1290 . -1059) 186926) ((-1290 . -1054) 186910) ((-1290 . -111) 186889) ((-1290 . -38) 186859) ((-1290 . -1289) 186838) ((-1290 . -386) 186810) ((-1285 . -386) 186782) ((-1285 . -618) 186731) ((-1285 . -1041) 186708) ((-1285 . -642) 186678) ((-1285 . -719) 186648) ((-1285 . -650) 186622) ((-1285 . -648) 186581) ((-1285 . -131) T) ((-1285 . -25) T) ((-1285 . -102) T) ((-1285 . -615) 186563) ((-1285 . -1104) T) ((-1285 . -23) T) ((-1285 . -21) T) ((-1285 . -1059) 186547) ((-1285 . -1054) 186531) ((-1285 . -111) 186510) ((-1285 . -1292) 186489) ((-1285 . -1052) T) ((-1285 . -1060) T) ((-1285 . -1115) T) ((-1285 . -728) T) ((-1285 . -1284) 186473) ((-1285 . -38) 186443) ((-1285 . -1289) 186422) ((-1283 . -1214) 186391) ((-1283 . -615) 186353) ((-1283 . -151) 186337) ((-1283 . -34) T) ((-1283 . -1219) T) ((-1283 . -310) 186275) ((-1283 . -517) 186208) ((-1283 . -1104) T) ((-1283 . -102) T) ((-1283 . -492) 186192) ((-1283 . -616) 186153) ((-1283 . -979) 186122) ((-1282 . -1052) T) ((-1282 . -1060) T) ((-1282 . -1115) T) ((-1282 . -728) T) ((-1282 . -21) T) ((-1282 . -648) 186067) ((-1282 . -23) T) ((-1282 . -1104) T) ((-1282 . -615) 186036) ((-1282 . -102) T) ((-1282 . -25) T) ((-1282 . -131) T) ((-1282 . -650) 185996) ((-1282 . -618) 185938) ((-1282 . -493) 185922) ((-1282 . -38) 185892) ((-1282 . -111) 185857) ((-1282 . -1054) 185827) ((-1282 . -1059) 185797) ((-1282 . -642) 185767) ((-1282 . -719) 185737) ((-1281 . -1086) T) ((-1281 . -493) 185718) ((-1281 . -615) 185684) ((-1281 . -618) 185665) ((-1281 . -1104) T) ((-1281 . -102) T) ((-1281 . -93) T) ((-1280 . -1086) T) ((-1280 . -493) 185646) ((-1280 . -615) 185612) ((-1280 . -618) 185593) ((-1280 . -1104) T) ((-1280 . -102) T) ((-1280 . -93) T) ((-1275 . -615) 185575) ((-1273 . -1104) T) ((-1273 . -615) 185557) ((-1273 . -102) T) ((-1272 . -1104) T) ((-1272 . -615) 185539) ((-1272 . -102) T) ((-1269 . -1268) 185523) ((-1269 . -374) 185507) ((-1269 . -852) 185486) ((-1269 . -151) 185470) ((-1269 . -34) T) ((-1269 . -1219) T) ((-1269 . -615) 185382) ((-1269 . -310) 185320) ((-1269 . -517) 185253) ((-1269 . -1104) 185203) ((-1269 . -102) 185153) ((-1269 . -492) 185137) ((-1269 . -616) 185098) ((-1269 . -606) 185075) ((-1269 . -287) 185052) ((-1269 . -289) 185029) ((-1269 . -653) 185013) ((-1269 . -19) 184997) ((-1266 . -1104) T) ((-1266 . -615) 184963) ((-1266 . -102) T) ((-1259 . -1262) 184947) ((-1259 . -233) 184906) ((-1259 . -618) 184788) ((-1259 . -650) 184713) ((-1259 . -648) 184623) ((-1259 . -131) T) ((-1259 . -25) T) ((-1259 . -102) T) ((-1259 . -615) 184605) ((-1259 . -1104) T) ((-1259 . -23) T) ((-1259 . -21) T) ((-1259 . -728) T) ((-1259 . -1115) T) ((-1259 . -1060) T) ((-1259 . -1052) T) ((-1259 . -287) 184590) ((-1259 . -903) 184503) ((-1259 . -976) 184472) ((-1259 . -38) 184369) ((-1259 . -111) 184238) ((-1259 . -1054) 184121) ((-1259 . -1059) 184004) ((-1259 . -642) 183901) ((-1259 . -719) 183798) ((-1259 . -145) 183777) ((-1259 . -147) 183756) ((-1259 . -172) 183707) ((-1259 . -560) 183686) ((-1259 . -291) 183665) ((-1259 . -47) 183642) ((-1259 . -1248) 183619) ((-1259 . -35) 183585) ((-1259 . -95) 183551) ((-1259 . -285) 183517) ((-1259 . -496) 183483) ((-1259 . -1208) 183449) ((-1259 . -1205) 183415) ((-1259 . -1005) 183381) ((-1256 . -327) 183325) ((-1256 . -1041) 183291) ((-1256 . -415) 183257) ((-1256 . -38) 183149) ((-1256 . -618) 183023) ((-1256 . -650) 182928) ((-1256 . -648) 182818) ((-1256 . -728) T) ((-1256 . -1115) T) ((-1256 . -1060) T) ((-1256 . -1052) T) ((-1256 . -111) 182710) ((-1256 . -1054) 182615) ((-1256 . -1059) 182520) ((-1256 . -21) T) ((-1256 . -23) T) ((-1256 . -1104) T) ((-1256 . -615) 182502) ((-1256 . -102) T) ((-1256 . -25) T) ((-1256 . -131) T) ((-1256 . -642) 182394) ((-1256 . -719) 182286) ((-1256 . -145) 182247) ((-1256 . -147) 182208) ((-1256 . -172) T) ((-1256 . -560) T) ((-1256 . -291) T) ((-1256 . -47) 182152) ((-1255 . -1254) 182131) ((-1255 . -365) 182110) ((-1255 . -1224) 182089) ((-1255 . -924) 182068) ((-1255 . -560) 182019) ((-1255 . -172) 181950) ((-1255 . -618) 181763) ((-1255 . -719) 181604) ((-1255 . -642) 181445) ((-1255 . -38) 181286) ((-1255 . -455) 181265) ((-1255 . -308) 181244) ((-1255 . -650) 181141) ((-1255 . -648) 181023) ((-1255 . -728) T) ((-1255 . -1115) T) ((-1255 . -1060) T) ((-1255 . -1052) T) ((-1255 . -111) 180844) ((-1255 . -1054) 180679) ((-1255 . -1059) 180514) ((-1255 . -21) T) ((-1255 . -23) T) ((-1255 . -1104) T) ((-1255 . -615) 180496) ((-1255 . -102) T) ((-1255 . -25) T) ((-1255 . -131) T) ((-1255 . -291) 180447) ((-1255 . -243) 180426) ((-1255 . -1005) 180392) ((-1255 . -1205) 180358) ((-1255 . -1208) 180324) ((-1255 . -496) 180290) ((-1255 . -285) 180256) ((-1255 . -95) 180222) ((-1255 . -35) 180188) ((-1255 . -1248) 180158) ((-1255 . -47) 180128) ((-1255 . -147) 180107) ((-1255 . -145) 180086) ((-1255 . -976) 180048) ((-1255 . -903) 179954) ((-1255 . -287) 179939) ((-1255 . -233) 179891) ((-1255 . -1252) 179875) ((-1255 . -1041) 179859) ((-1250 . -1254) 179820) ((-1250 . -365) 179799) ((-1250 . -1224) 179778) ((-1250 . -924) 179757) ((-1250 . -560) 179708) ((-1250 . -172) 179639) ((-1250 . -618) 179382) ((-1250 . -719) 179223) ((-1250 . -642) 179064) ((-1250 . -38) 178905) ((-1250 . -455) 178884) ((-1250 . -308) 178863) ((-1250 . -650) 178760) ((-1250 . -648) 178642) ((-1250 . -728) T) ((-1250 . -1115) T) ((-1250 . -1060) T) ((-1250 . -1052) T) ((-1250 . -111) 178463) ((-1250 . -1054) 178298) ((-1250 . -1059) 178133) ((-1250 . -21) T) ((-1250 . -23) T) ((-1250 . -1104) T) ((-1250 . -615) 178115) ((-1250 . -102) T) ((-1250 . -25) T) ((-1250 . -131) T) ((-1250 . -291) 178066) ((-1250 . -243) 178045) ((-1250 . -1005) 178011) ((-1250 . -1205) 177977) ((-1250 . -1208) 177943) ((-1250 . -496) 177909) ((-1250 . -285) 177875) ((-1250 . -95) 177841) ((-1250 . -35) 177807) ((-1250 . -1248) 177777) ((-1250 . -47) 177747) ((-1250 . -147) 177726) ((-1250 . -145) 177705) ((-1250 . -976) 177667) ((-1250 . -903) 177573) ((-1250 . -287) 177558) ((-1250 . -233) 177510) ((-1250 . -1252) 177494) ((-1250 . -1041) 177429) ((-1238 . -1245) 177413) ((-1238 . -1154) 177391) ((-1238 . -616) NIL) ((-1238 . -310) 177378) ((-1238 . -517) 177325) ((-1238 . -327) 177302) ((-1238 . -1041) 177182) ((-1238 . -415) 177166) ((-1238 . -38) 176995) ((-1238 . -111) 176804) ((-1238 . -1054) 176627) ((-1238 . -1059) 176450) ((-1238 . -648) 176360) ((-1238 . -650) 176285) ((-1238 . -642) 176114) ((-1238 . -719) 175943) ((-1238 . -618) 175691) ((-1238 . -145) 175670) ((-1238 . -147) 175649) ((-1238 . -47) 175626) ((-1238 . -379) 175610) ((-1238 . -641) 175558) ((-1238 . -903) 175501) ((-1238 . -889) NIL) ((-1238 . -913) 175480) ((-1238 . -1224) 175459) ((-1238 . -953) 175428) ((-1238 . -924) 175407) ((-1238 . -560) 175318) ((-1238 . -291) 175229) ((-1238 . -172) 175120) ((-1238 . -455) 175051) ((-1238 . -308) 175030) ((-1238 . -287) 174957) ((-1238 . -233) T) ((-1238 . -131) T) ((-1238 . -25) T) ((-1238 . -102) T) ((-1238 . -615) 174939) ((-1238 . -1104) T) ((-1238 . -23) T) ((-1238 . -21) T) ((-1238 . -728) T) ((-1238 . -1115) T) ((-1238 . -1060) T) ((-1238 . -1052) T) ((-1238 . -231) 174923) ((-1236 . -1097) 174907) ((-1236 . -620) 174891) ((-1236 . -1104) 174869) ((-1236 . -615) 174836) ((-1236 . -102) 174814) ((-1236 . -1098) 174771) ((-1234 . -1233) 174750) ((-1234 . -1005) 174716) ((-1234 . -1205) 174682) ((-1234 . -1208) 174648) ((-1234 . -496) 174614) ((-1234 . -285) 174580) ((-1234 . -95) 174546) ((-1234 . -35) 174512) ((-1234 . -1248) 174489) ((-1234 . -47) 174466) ((-1234 . -618) 174214) ((-1234 . -719) 174028) ((-1234 . -642) 173842) ((-1234 . -650) 173712) ((-1234 . -648) 173567) ((-1234 . -1059) 173375) ((-1234 . -1054) 173183) ((-1234 . -111) 172972) ((-1234 . -38) 172786) ((-1234 . -976) 172755) ((-1234 . -287) 172675) ((-1234 . -1231) 172659) ((-1234 . -728) T) ((-1234 . -1115) T) ((-1234 . -1060) T) ((-1234 . -1052) T) ((-1234 . -21) T) ((-1234 . -23) T) ((-1234 . -1104) T) ((-1234 . -615) 172641) ((-1234 . -102) T) ((-1234 . -25) T) ((-1234 . -131) T) ((-1234 . -145) 172566) ((-1234 . -147) 172491) ((-1234 . -616) 172162) ((-1234 . -231) 172132) ((-1234 . -903) 171983) ((-1234 . -233) 171888) ((-1234 . -365) 171867) ((-1234 . -1224) 171846) ((-1234 . -924) 171825) ((-1234 . -560) 171776) ((-1234 . -172) 171707) ((-1234 . -455) 171686) ((-1234 . -308) 171665) ((-1234 . -291) 171616) ((-1234 . -243) 171595) ((-1234 . -340) 171565) ((-1234 . -517) 171425) ((-1234 . -310) 171364) ((-1234 . -379) 171334) ((-1234 . -641) 171242) ((-1234 . -403) 171212) ((-1234 . -1219) 171191) ((-1234 . -889) 171064) ((-1234 . -822) 171017) ((-1234 . -793) 170970) ((-1234 . -794) 170923) ((-1234 . -852) 170822) ((-1234 . -796) 170775) ((-1234 . -799) 170728) ((-1234 . -850) 170681) ((-1234 . -887) 170651) ((-1234 . -913) 170604) ((-1234 . -1023) 170556) ((-1234 . -1041) 170342) ((-1234 . -1154) 170294) ((-1234 . -994) 170264) ((-1229 . -1233) 170225) ((-1229 . -1005) 170191) ((-1229 . -1205) 170157) ((-1229 . -1208) 170123) ((-1229 . -496) 170089) ((-1229 . -285) 170055) ((-1229 . -95) 170021) ((-1229 . -35) 169987) ((-1229 . -1248) 169964) ((-1229 . -47) 169941) ((-1229 . -618) 169736) ((-1229 . -719) 169532) ((-1229 . -642) 169328) ((-1229 . -650) 169180) ((-1229 . -648) 169017) ((-1229 . -1059) 168807) ((-1229 . -1054) 168597) ((-1229 . -111) 168366) ((-1229 . -38) 168162) ((-1229 . -976) 168131) ((-1229 . -287) 167979) ((-1229 . -1231) 167963) ((-1229 . -728) T) ((-1229 . -1115) T) ((-1229 . -1060) T) ((-1229 . -1052) T) ((-1229 . -21) T) ((-1229 . -23) T) ((-1229 . -1104) T) ((-1229 . -615) 167945) ((-1229 . -102) T) ((-1229 . -25) T) ((-1229 . -131) T) ((-1229 . -145) 167852) ((-1229 . -147) 167759) ((-1229 . -616) NIL) ((-1229 . -231) 167711) ((-1229 . -903) 167544) ((-1229 . -233) 167431) ((-1229 . -365) 167410) ((-1229 . -1224) 167389) ((-1229 . -924) 167368) ((-1229 . -560) 167319) ((-1229 . -172) 167250) ((-1229 . -455) 167229) ((-1229 . -308) 167208) ((-1229 . -291) 167159) ((-1229 . -243) 167138) ((-1229 . -340) 167090) ((-1229 . -517) 166859) ((-1229 . -310) 166744) ((-1229 . -379) 166696) ((-1229 . -641) 166648) ((-1229 . -403) 166600) ((-1229 . -1219) 166579) ((-1229 . -889) NIL) ((-1229 . -822) NIL) ((-1229 . -793) NIL) ((-1229 . -794) NIL) ((-1229 . -852) NIL) ((-1229 . -796) NIL) ((-1229 . -799) NIL) ((-1229 . -850) NIL) ((-1229 . -887) 166531) ((-1229 . -913) NIL) ((-1229 . -1023) NIL) ((-1229 . -1041) 166497) ((-1229 . -1154) NIL) ((-1229 . -994) 166449) ((-1228 . -846) T) ((-1228 . -852) T) ((-1228 . -1104) T) ((-1228 . -615) 166431) ((-1228 . -102) T) ((-1228 . -370) T) ((-1227 . -846) T) ((-1227 . -852) T) ((-1227 . -1104) T) ((-1227 . -615) 166413) ((-1227 . -102) T) ((-1227 . -370) T) ((-1226 . -846) T) ((-1226 . -852) T) ((-1226 . -1104) T) ((-1226 . -615) 166395) ((-1226 . -102) T) ((-1226 . -370) T) ((-1225 . -846) T) ((-1225 . -852) T) ((-1225 . -1104) T) ((-1225 . -615) 166377) ((-1225 . -102) T) ((-1225 . -370) T) ((-1220 . -1086) T) ((-1220 . -493) 166358) ((-1220 . -615) 166324) ((-1220 . -618) 166305) ((-1220 . -1104) T) ((-1220 . -102) T) ((-1220 . -93) T) ((-1217 . -493) 166282) ((-1217 . -615) 166194) ((-1217 . -618) 166171) ((-1217 . -1104) 166149) ((-1217 . -102) 166127) ((-1212 . -742) 166103) ((-1212 . -35) 166069) ((-1212 . -95) 166035) ((-1212 . -285) 166001) ((-1212 . -496) 165967) ((-1212 . -1208) 165933) ((-1212 . -1205) 165899) ((-1212 . -1005) 165865) ((-1212 . -47) 165834) ((-1212 . -38) 165731) ((-1212 . -642) 165628) ((-1212 . -719) 165525) ((-1212 . -618) 165407) ((-1212 . -291) 165386) ((-1212 . -560) 165365) ((-1212 . -111) 165234) ((-1212 . -1054) 165117) ((-1212 . -1059) 165000) ((-1212 . -172) 164951) ((-1212 . -147) 164930) ((-1212 . -145) 164909) ((-1212 . -650) 164834) ((-1212 . -648) 164744) ((-1212 . -976) 164706) ((-1212 . -1052) T) ((-1212 . -1060) T) ((-1212 . -1115) T) ((-1212 . -728) T) ((-1212 . -21) T) ((-1212 . -23) T) ((-1212 . -1104) T) ((-1212 . -615) 164688) ((-1212 . -102) T) ((-1212 . -25) T) ((-1212 . -131) T) ((-1212 . -903) 164669) ((-1212 . -517) 164636) ((-1212 . -310) 164623) ((-1206 . -1013) 164607) ((-1206 . -34) T) ((-1206 . -1219) T) ((-1206 . -615) 164539) ((-1206 . -310) 164477) ((-1206 . -517) 164410) ((-1206 . -1104) 164388) ((-1206 . -102) 164366) ((-1206 . -492) 164350) ((-1201 . -367) 164324) ((-1201 . -102) T) ((-1201 . -615) 164306) ((-1201 . -1104) T) ((-1199 . -1104) T) ((-1199 . -615) 164288) ((-1199 . -102) T) ((-1199 . -618) 164270) ((-1192 . -1196) 164249) ((-1192 . -229) 164199) ((-1192 . -107) 164149) ((-1192 . -310) 163953) ((-1192 . -517) 163745) ((-1192 . -492) 163682) ((-1192 . -151) 163632) ((-1192 . -616) NIL) ((-1192 . -235) 163582) ((-1192 . -612) 163561) ((-1192 . -289) 163540) ((-1192 . -287) 163519) ((-1192 . -102) T) ((-1192 . -1104) T) ((-1192 . -615) 163501) ((-1192 . -1219) T) ((-1192 . -34) T) ((-1192 . -606) 163480) ((-1190 . -1219) T) ((-1188 . -1104) T) ((-1188 . -615) 163462) ((-1188 . -102) T) ((-1187 . -846) T) ((-1187 . -852) T) ((-1187 . -1104) T) ((-1187 . -615) 163444) ((-1187 . -102) T) ((-1187 . -370) T) ((-1186 . -846) T) ((-1186 . -852) T) ((-1186 . -1104) T) ((-1186 . -615) 163426) ((-1186 . -102) T) ((-1186 . -370) T) ((-1185 . -1265) T) ((-1185 . -1104) T) ((-1185 . -615) 163393) ((-1185 . -102) T) ((-1185 . -1041) 163329) ((-1185 . -618) 163265) ((-1184 . -615) 163247) ((-1183 . -615) 163229) ((-1182 . -327) 163206) ((-1182 . -1041) 163102) ((-1182 . -415) 163086) ((-1182 . -38) 162983) ((-1182 . -618) 162836) ((-1182 . -650) 162761) ((-1182 . -648) 162671) ((-1182 . -728) T) ((-1182 . -1115) T) ((-1182 . -1060) T) ((-1182 . -1052) T) ((-1182 . -111) 162540) ((-1182 . -1054) 162423) ((-1182 . -1059) 162306) ((-1182 . -21) T) ((-1182 . -23) T) ((-1182 . -1104) T) ((-1182 . -615) 162288) ((-1182 . -102) T) ((-1182 . -25) T) ((-1182 . -131) T) ((-1182 . -642) 162185) ((-1182 . -719) 162082) ((-1182 . -145) 162061) ((-1182 . -147) 162040) ((-1182 . -172) 161991) ((-1182 . -560) 161970) ((-1182 . -291) 161949) ((-1182 . -47) 161926) ((-1180 . -852) T) ((-1180 . -102) T) ((-1180 . -615) 161908) ((-1180 . -1104) T) ((-1180 . -616) 161830) ((-1180 . -823) T) ((-1180 . -618) 161811) ((-1180 . -889) 161778) ((-1179 . -615) 161760) ((-1178 . -1262) 161744) ((-1178 . -233) 161703) ((-1178 . -618) 161585) ((-1178 . -650) 161510) ((-1178 . -648) 161420) ((-1178 . -131) T) ((-1178 . -25) T) ((-1178 . -102) T) ((-1178 . -615) 161402) ((-1178 . -1104) T) ((-1178 . -23) T) ((-1178 . -21) T) ((-1178 . -728) T) ((-1178 . -1115) T) ((-1178 . -1060) T) ((-1178 . -1052) T) ((-1178 . -287) 161387) ((-1178 . -903) 161300) ((-1178 . -976) 161269) ((-1178 . -38) 161166) ((-1178 . -111) 161035) ((-1178 . -1054) 160918) ((-1178 . -1059) 160801) ((-1178 . -642) 160698) ((-1178 . -719) 160595) ((-1178 . -145) 160574) ((-1178 . -147) 160553) ((-1178 . -172) 160504) ((-1178 . -560) 160483) ((-1178 . -291) 160462) ((-1178 . -47) 160439) ((-1178 . -1248) 160416) ((-1178 . -35) 160382) ((-1178 . -95) 160348) ((-1178 . -285) 160314) ((-1178 . -496) 160280) ((-1178 . -1208) 160246) ((-1178 . -1205) 160212) ((-1178 . -1005) 160178) ((-1177 . -1254) 160139) ((-1177 . -365) 160118) ((-1177 . -1224) 160097) ((-1177 . -924) 160076) ((-1177 . -560) 160027) ((-1177 . -172) 159958) ((-1177 . -618) 159701) ((-1177 . -719) 159542) ((-1177 . -642) 159383) ((-1177 . -38) 159224) ((-1177 . -455) 159203) ((-1177 . -308) 159182) ((-1177 . -650) 159079) ((-1177 . -648) 158961) ((-1177 . -728) T) ((-1177 . -1115) T) ((-1177 . -1060) T) ((-1177 . -1052) T) ((-1177 . -111) 158782) ((-1177 . -1054) 158617) ((-1177 . -1059) 158452) ((-1177 . -21) T) ((-1177 . -23) T) ((-1177 . -1104) T) ((-1177 . -615) 158434) ((-1177 . -102) T) ((-1177 . -25) T) ((-1177 . -131) T) ((-1177 . -291) 158385) ((-1177 . -243) 158364) ((-1177 . -1005) 158330) ((-1177 . -1205) 158296) ((-1177 . -1208) 158262) ((-1177 . -496) 158228) ((-1177 . -285) 158194) ((-1177 . -95) 158160) ((-1177 . -35) 158126) ((-1177 . -1248) 158096) ((-1177 . -47) 158066) ((-1177 . -147) 158045) ((-1177 . -145) 158024) ((-1177 . -976) 157986) ((-1177 . -903) 157892) ((-1177 . -287) 157877) ((-1177 . -233) 157829) ((-1177 . -1252) 157813) ((-1177 . -1041) 157748) ((-1174 . -1245) 157732) ((-1174 . -1154) 157710) ((-1174 . -616) NIL) ((-1174 . -310) 157697) ((-1174 . -517) 157644) ((-1174 . -327) 157621) ((-1174 . -1041) 157501) ((-1174 . -415) 157485) ((-1174 . -38) 157314) ((-1174 . -111) 157123) ((-1174 . -1054) 156946) ((-1174 . -1059) 156769) ((-1174 . -648) 156679) ((-1174 . -650) 156604) ((-1174 . -642) 156433) ((-1174 . -719) 156262) ((-1174 . -618) 156031) ((-1174 . -145) 156010) ((-1174 . -147) 155989) ((-1174 . -47) 155966) ((-1174 . -379) 155950) ((-1174 . -641) 155898) ((-1174 . -903) 155841) ((-1174 . -889) NIL) ((-1174 . -913) 155820) ((-1174 . -1224) 155799) ((-1174 . -953) 155768) ((-1174 . -924) 155747) ((-1174 . -560) 155658) ((-1174 . -291) 155569) ((-1174 . -172) 155460) ((-1174 . -455) 155391) ((-1174 . -308) 155370) ((-1174 . -287) 155297) ((-1174 . -233) T) ((-1174 . -131) T) ((-1174 . -25) T) ((-1174 . -102) T) ((-1174 . -615) 155279) ((-1174 . -1104) T) ((-1174 . -23) T) ((-1174 . -21) T) ((-1174 . -728) T) ((-1174 . -1115) T) ((-1174 . -1060) T) ((-1174 . -1052) T) ((-1174 . -231) 155263) ((-1171 . -1233) 155224) ((-1171 . -1005) 155190) ((-1171 . -1205) 155156) ((-1171 . -1208) 155122) ((-1171 . -496) 155088) ((-1171 . -285) 155054) ((-1171 . -95) 155020) ((-1171 . -35) 154986) ((-1171 . -1248) 154963) ((-1171 . -47) 154940) ((-1171 . -618) 154735) ((-1171 . -719) 154531) ((-1171 . -642) 154327) ((-1171 . -650) 154179) ((-1171 . -648) 154016) ((-1171 . -1059) 153806) ((-1171 . -1054) 153596) ((-1171 . -111) 153365) ((-1171 . -38) 153161) ((-1171 . -976) 153130) ((-1171 . -287) 152978) ((-1171 . -1231) 152962) ((-1171 . -728) T) ((-1171 . -1115) T) ((-1171 . -1060) T) ((-1171 . -1052) T) ((-1171 . -21) T) ((-1171 . -23) T) ((-1171 . -1104) T) ((-1171 . -615) 152944) ((-1171 . -102) T) ((-1171 . -25) T) ((-1171 . -131) T) ((-1171 . -145) 152851) ((-1171 . -147) 152758) ((-1171 . -616) NIL) ((-1171 . -231) 152710) ((-1171 . -903) 152543) ((-1171 . -233) 152430) ((-1171 . -365) 152409) ((-1171 . -1224) 152388) ((-1171 . -924) 152367) ((-1171 . -560) 152318) ((-1171 . -172) 152249) ((-1171 . -455) 152228) ((-1171 . -308) 152207) ((-1171 . -291) 152158) ((-1171 . -243) 152137) ((-1171 . -340) 152089) ((-1171 . -517) 151858) ((-1171 . -310) 151743) ((-1171 . -379) 151695) ((-1171 . -641) 151647) ((-1171 . -403) 151599) ((-1171 . -1219) 151578) ((-1171 . -889) NIL) ((-1171 . -822) NIL) ((-1171 . -793) NIL) ((-1171 . -794) NIL) ((-1171 . -852) NIL) ((-1171 . -796) NIL) ((-1171 . -799) NIL) ((-1171 . -850) NIL) ((-1171 . -887) 151530) ((-1171 . -913) NIL) ((-1171 . -1023) NIL) ((-1171 . -1041) 151496) ((-1171 . -1154) NIL) ((-1171 . -994) 151448) ((-1170 . -1086) T) ((-1170 . -493) 151429) ((-1170 . -615) 151395) ((-1170 . -618) 151376) ((-1170 . -1104) T) ((-1170 . -102) T) ((-1170 . -93) T) ((-1169 . -1104) T) ((-1169 . -615) 151358) ((-1169 . -102) T) ((-1168 . -1104) T) ((-1168 . -615) 151340) ((-1168 . -102) T) ((-1163 . -1196) 151316) ((-1163 . -229) 151263) ((-1163 . -107) 151210) ((-1163 . -310) 151005) ((-1163 . -517) 150788) ((-1163 . -492) 150722) ((-1163 . -151) 150669) ((-1163 . -616) NIL) ((-1163 . -235) 150616) ((-1163 . -612) 150592) ((-1163 . -289) 150568) ((-1163 . -287) 150544) ((-1163 . -102) T) ((-1163 . -1104) T) ((-1163 . -615) 150526) ((-1163 . -1219) T) ((-1163 . -34) T) ((-1163 . -606) 150502) ((-1162 . -1161) T) ((-1162 . -19) 150484) ((-1162 . -653) 150466) ((-1162 . -289) 150441) ((-1162 . -287) 150416) ((-1162 . -606) 150391) ((-1162 . -616) NIL) ((-1162 . -492) 150373) ((-1162 . -517) NIL) ((-1162 . -310) NIL) ((-1162 . -1219) T) ((-1162 . -34) T) ((-1162 . -151) 150355) ((-1162 . -852) T) ((-1162 . -374) 150337) ((-1162 . -1147) T) ((-1162 . -102) T) ((-1162 . -615) 150319) ((-1162 . -1104) T) ((-1162 . -823) T) ((-1157 . -676) 150303) ((-1157 . -653) 150287) ((-1157 . -289) 150264) ((-1157 . -287) 150241) ((-1157 . -606) 150218) ((-1157 . -616) 150179) ((-1157 . -492) 150163) ((-1157 . -102) 150141) ((-1157 . -1104) 150119) ((-1157 . -517) 150052) ((-1157 . -310) 149990) ((-1157 . -615) 149922) ((-1157 . -1219) T) ((-1157 . -34) T) ((-1157 . -151) 149906) ((-1157 . -1258) 149890) ((-1157 . -1013) 149874) ((-1157 . -1152) 149858) ((-1157 . -618) 149835) ((-1155 . -1086) T) ((-1155 . -493) 149816) ((-1155 . -615) 149782) ((-1155 . -618) 149763) ((-1155 . -1104) T) ((-1155 . -102) T) ((-1155 . -93) T) ((-1153 . -1196) 149742) ((-1153 . -229) 149692) ((-1153 . -107) 149642) ((-1153 . -310) 149446) ((-1153 . -517) 149238) ((-1153 . -492) 149175) ((-1153 . -151) 149125) ((-1153 . -616) NIL) ((-1153 . -235) 149075) ((-1153 . -612) 149054) ((-1153 . -289) 149033) ((-1153 . -287) 149012) ((-1153 . -102) T) ((-1153 . -1104) T) ((-1153 . -615) 148994) ((-1153 . -1219) T) ((-1153 . -34) T) ((-1153 . -606) 148973) ((-1150 . -1124) 148957) ((-1150 . -492) 148941) ((-1150 . -102) 148919) ((-1150 . -1104) 148897) ((-1150 . -517) 148830) ((-1150 . -310) 148768) ((-1150 . -615) 148700) ((-1150 . -1219) T) ((-1150 . -34) T) ((-1150 . -107) 148684) ((-1149 . -1112) 148653) ((-1149 . -1214) 148622) ((-1149 . -615) 148584) ((-1149 . -151) 148568) ((-1149 . -34) T) ((-1149 . -1219) T) ((-1149 . -310) 148506) ((-1149 . -517) 148439) ((-1149 . -1104) T) ((-1149 . -102) T) ((-1149 . -492) 148423) ((-1149 . -616) 148384) ((-1149 . -979) 148353) ((-1149 . -1074) 148322) ((-1145 . -1126) 148267) ((-1145 . -492) 148251) ((-1145 . -517) 148184) ((-1145 . -310) 148122) ((-1145 . -1219) T) ((-1145 . -34) T) ((-1145 . -1056) 148062) ((-1145 . -1041) 147958) ((-1145 . -618) 147876) ((-1145 . -415) 147860) ((-1145 . -641) 147808) ((-1145 . -379) 147792) ((-1145 . -233) 147771) ((-1145 . -903) 147730) ((-1145 . -231) 147714) ((-1145 . -719) 147646) ((-1145 . -642) 147578) ((-1145 . -650) 147552) ((-1145 . -648) 147511) ((-1145 . -131) T) ((-1145 . -25) T) ((-1145 . -102) T) ((-1145 . -615) 147473) ((-1145 . -1104) T) ((-1145 . -23) T) ((-1145 . -21) T) ((-1145 . -1059) 147457) ((-1145 . -1054) 147441) ((-1145 . -111) 147420) ((-1145 . -1052) T) ((-1145 . -1060) T) ((-1145 . -1115) T) ((-1145 . -728) T) ((-1145 . -38) 147380) ((-1145 . -616) 147341) ((-1144 . -1013) 147312) ((-1144 . -34) T) ((-1144 . -1219) T) ((-1144 . -615) 147294) ((-1144 . -310) 147220) ((-1144 . -517) 147139) ((-1144 . -1104) T) ((-1144 . -102) T) ((-1144 . -492) 147110) ((-1143 . -1104) T) ((-1143 . -615) 147092) ((-1143 . -102) T) ((-1138 . -1140) T) ((-1138 . -1265) T) ((-1138 . -93) T) ((-1138 . -102) T) ((-1138 . -615) 147058) ((-1138 . -1104) T) ((-1138 . -618) 147039) ((-1138 . -493) 147020) ((-1138 . -1086) T) ((-1136 . -1137) 147004) ((-1136 . -102) T) ((-1136 . -615) 146986) ((-1136 . -1104) T) ((-1129 . -742) 146965) ((-1129 . -35) 146931) ((-1129 . -95) 146897) ((-1129 . -285) 146863) ((-1129 . -496) 146829) ((-1129 . -1208) 146795) ((-1129 . -1205) 146761) ((-1129 . -1005) 146727) ((-1129 . -47) 146699) ((-1129 . -38) 146596) ((-1129 . -642) 146493) ((-1129 . -719) 146390) ((-1129 . -618) 146272) ((-1129 . -291) 146251) ((-1129 . -560) 146230) ((-1129 . -111) 146099) ((-1129 . -1054) 145982) ((-1129 . -1059) 145865) ((-1129 . -172) 145816) ((-1129 . -147) 145795) ((-1129 . -145) 145774) ((-1129 . -650) 145699) ((-1129 . -648) 145609) ((-1129 . -976) 145576) ((-1129 . -1052) T) ((-1129 . -1060) T) ((-1129 . -1115) T) ((-1129 . -728) T) ((-1129 . -21) T) ((-1129 . -23) T) ((-1129 . -1104) T) ((-1129 . -615) 145558) ((-1129 . -102) T) ((-1129 . -25) T) ((-1129 . -131) T) ((-1129 . -903) 145542) ((-1129 . -517) 145512) ((-1129 . -310) 145499) ((-1128 . -953) 145466) ((-1128 . -618) 145258) ((-1128 . -1041) 145141) ((-1128 . -1224) 145120) ((-1128 . -913) 145099) ((-1128 . -889) 144958) ((-1128 . -903) 144942) ((-1128 . -517) 144894) ((-1128 . -455) 144845) ((-1128 . -641) 144793) ((-1128 . -379) 144777) ((-1128 . -47) 144749) ((-1128 . -38) 144598) ((-1128 . -642) 144447) ((-1128 . -719) 144296) ((-1128 . -291) 144227) ((-1128 . -560) 144158) ((-1128 . -111) 143987) ((-1128 . -1054) 143830) ((-1128 . -1059) 143673) ((-1128 . -172) 143584) ((-1128 . -147) 143563) ((-1128 . -145) 143542) ((-1128 . -650) 143467) ((-1128 . -648) 143377) ((-1128 . -131) T) ((-1128 . -25) T) ((-1128 . -102) T) ((-1128 . -615) 143359) ((-1128 . -1104) T) ((-1128 . -23) T) ((-1128 . -21) T) ((-1128 . -1052) T) ((-1128 . -1060) T) ((-1128 . -1115) T) ((-1128 . -728) T) ((-1128 . -415) 143343) ((-1128 . -327) 143315) ((-1128 . -310) 143302) ((-1128 . -616) 143050) ((-1123 . -548) T) ((-1123 . -1224) T) ((-1123 . -1154) T) ((-1123 . -1041) 143032) ((-1123 . -616) 142947) ((-1123 . -1023) T) ((-1123 . -889) 142929) ((-1123 . -850) T) ((-1123 . -799) T) ((-1123 . -796) T) ((-1123 . -852) T) ((-1123 . -794) T) ((-1123 . -793) T) ((-1123 . -822) T) ((-1123 . -641) 142911) ((-1123 . -924) T) ((-1123 . -560) T) ((-1123 . -291) T) ((-1123 . -172) T) ((-1123 . -618) 142883) ((-1123 . -719) 142870) ((-1123 . -642) 142857) ((-1123 . -1059) 142844) ((-1123 . -1054) 142831) ((-1123 . -111) 142816) ((-1123 . -38) 142803) ((-1123 . -455) T) ((-1123 . -308) T) ((-1123 . -233) T) ((-1123 . -143) T) ((-1123 . -1052) T) ((-1123 . -1060) T) ((-1123 . -1115) T) ((-1123 . -728) T) ((-1123 . -21) T) ((-1123 . -648) 142775) ((-1123 . -23) T) ((-1123 . -1104) T) ((-1123 . -615) 142757) ((-1123 . -102) T) ((-1123 . -25) T) ((-1123 . -131) T) ((-1123 . -650) 142744) ((-1123 . -147) T) ((-1123 . -846) T) ((-1123 . -370) T) ((-1123 . -664) T) ((-1123 . -823) T) ((-1119 . -1086) T) ((-1119 . -493) 142725) ((-1119 . -615) 142691) ((-1119 . -618) 142672) ((-1119 . -1104) T) ((-1119 . -102) T) ((-1119 . -93) T) ((-1118 . -1104) T) ((-1118 . -615) 142654) ((-1118 . -102) T) ((-1116 . -238) 142633) ((-1116 . -1277) 142603) ((-1116 . -793) 142582) ((-1116 . -850) 142561) ((-1116 . -799) 142512) ((-1116 . -796) 142463) ((-1116 . -852) 142414) ((-1116 . -794) 142365) ((-1116 . -795) 142344) ((-1116 . -289) 142321) ((-1116 . -287) 142298) ((-1116 . -492) 142282) ((-1116 . -517) 142215) ((-1116 . -310) 142153) ((-1116 . -1219) T) ((-1116 . -34) T) ((-1116 . -606) 142130) ((-1116 . -1041) 141957) ((-1116 . -618) 141687) ((-1116 . -415) 141656) ((-1116 . -641) 141562) ((-1116 . -379) 141531) ((-1116 . -370) 141510) ((-1116 . -233) 141462) ((-1116 . -903) 141394) ((-1116 . -231) 141363) ((-1116 . -111) 141253) ((-1116 . -1054) 141150) ((-1116 . -1059) 141047) ((-1116 . -172) 141026) ((-1116 . -615) 140757) ((-1116 . -719) 140699) ((-1116 . -642) 140641) ((-1116 . -650) 140489) ((-1116 . -648) 140239) ((-1116 . -131) 140109) ((-1116 . -23) 139979) ((-1116 . -21) 139889) ((-1116 . -1052) 139819) ((-1116 . -1060) 139749) ((-1116 . -1115) 139659) ((-1116 . -728) 139569) ((-1116 . -38) 139539) ((-1116 . -1104) 139329) ((-1116 . -102) 139119) ((-1116 . -25) 138970) ((-1109 . -399) T) ((-1109 . -1219) T) ((-1109 . -615) 138952) ((-1108 . -1107) 138916) ((-1108 . -102) T) ((-1108 . -615) 138898) ((-1108 . -1104) T) ((-1108 . -620) 138813) ((-1106 . -1107) 138765) ((-1106 . -102) T) ((-1106 . -615) 138747) ((-1106 . -1104) T) ((-1106 . -620) 138650) ((-1105 . -370) T) ((-1105 . -102) T) ((-1105 . -615) 138632) ((-1105 . -1104) T) ((-1100 . -429) 138616) ((-1100 . -1102) 138600) ((-1100 . -370) 138579) ((-1100 . -235) 138563) ((-1100 . -616) 138524) ((-1100 . -151) 138508) ((-1100 . -492) 138492) ((-1100 . -102) T) ((-1100 . -1104) T) ((-1100 . -517) 138425) ((-1100 . -310) 138363) ((-1100 . -615) 138345) ((-1100 . -1219) T) ((-1100 . -34) T) ((-1100 . -107) 138329) ((-1100 . -229) 138313) ((-1099 . -1086) T) ((-1099 . -493) 138294) ((-1099 . -615) 138260) ((-1099 . -618) 138241) ((-1099 . -1104) T) ((-1099 . -102) T) ((-1099 . -93) T) ((-1095 . -1219) T) ((-1095 . -1104) 138211) ((-1095 . -615) 138170) ((-1095 . -102) 138140) ((-1094 . -1086) T) ((-1094 . -493) 138121) ((-1094 . -615) 138087) ((-1094 . -618) 138068) ((-1094 . -1104) T) ((-1094 . -102) T) ((-1094 . -93) T) ((-1092 . -1097) 138052) ((-1092 . -620) 138036) ((-1092 . -1104) 138014) ((-1092 . -615) 137981) ((-1092 . -102) 137959) ((-1092 . -1098) 137917) ((-1091 . -267) 137901) ((-1091 . -618) 137885) ((-1091 . -1041) 137869) ((-1091 . -1104) T) ((-1091 . -615) 137851) ((-1091 . -102) T) ((-1091 . -852) T) ((-1090 . -254) 137788) ((-1090 . -618) 137524) ((-1090 . -1041) 137351) ((-1090 . -616) NIL) ((-1090 . -327) 137312) ((-1090 . -415) 137296) ((-1090 . -38) 137145) ((-1090 . -111) 136974) ((-1090 . -1054) 136817) ((-1090 . -1059) 136660) ((-1090 . -648) 136570) ((-1090 . -650) 136495) ((-1090 . -642) 136344) ((-1090 . -719) 136193) ((-1090 . -145) 136172) ((-1090 . -147) 136151) ((-1090 . -172) 136062) ((-1090 . -560) 135993) ((-1090 . -291) 135924) ((-1090 . -47) 135885) ((-1090 . -379) 135869) ((-1090 . -641) 135817) ((-1090 . -455) 135768) ((-1090 . -517) 135635) ((-1090 . -903) 135570) ((-1090 . -889) NIL) ((-1090 . -913) 135549) ((-1090 . -1224) 135528) ((-1090 . -953) 135473) ((-1090 . -310) 135460) ((-1090 . -233) 135439) ((-1090 . -131) T) ((-1090 . -25) T) ((-1090 . -102) T) ((-1090 . -615) 135421) ((-1090 . -1104) T) ((-1090 . -23) T) ((-1090 . -21) T) ((-1090 . -728) T) ((-1090 . -1115) T) ((-1090 . -1060) T) ((-1090 . -1052) T) ((-1090 . -231) 135405) ((-1088 . -615) 135387) ((-1085 . -852) T) ((-1085 . -102) T) ((-1085 . -615) 135369) ((-1085 . -1104) T) ((-1085 . -616) 135350) ((-1082 . -726) 135329) ((-1082 . -1041) 135225) ((-1082 . -415) 135209) ((-1082 . -641) 135157) ((-1082 . -379) 135141) ((-1082 . -372) 135120) ((-1082 . -147) 135099) ((-1082 . -618) 134917) ((-1082 . -719) 134785) ((-1082 . -642) 134653) ((-1082 . -650) 134563) ((-1082 . -648) 134458) ((-1082 . -1059) 134368) ((-1082 . -1054) 134278) ((-1082 . -111) 134174) ((-1082 . -38) 134042) ((-1082 . -413) 134021) ((-1082 . -405) 134000) ((-1082 . -145) 133951) ((-1082 . -1154) 133930) ((-1082 . -352) 133909) ((-1082 . -370) 133860) ((-1082 . -243) 133811) ((-1082 . -291) 133762) ((-1082 . -308) 133713) ((-1082 . -455) 133664) ((-1082 . -560) 133615) ((-1082 . -924) 133566) ((-1082 . -1224) 133517) ((-1082 . -365) 133468) ((-1082 . -233) 133393) ((-1082 . -903) 133326) ((-1082 . -231) 133296) ((-1082 . -616) 133280) ((-1082 . -21) T) ((-1082 . -23) T) ((-1082 . -1104) T) ((-1082 . -615) 133262) ((-1082 . -102) T) ((-1082 . -25) T) ((-1082 . -131) T) ((-1082 . -1052) T) ((-1082 . -1060) T) ((-1082 . -1115) T) ((-1082 . -728) T) ((-1082 . -172) T) ((-1080 . -1104) T) ((-1080 . -615) 133244) ((-1080 . -102) T) ((-1080 . -287) 133223) ((-1079 . -1104) T) ((-1079 . -615) 133205) ((-1079 . -102) T) ((-1078 . -1104) T) ((-1078 . -615) 133187) ((-1078 . -102) T) ((-1078 . -287) 133166) ((-1078 . -1041) 133143) ((-1078 . -618) 133120) ((-1077 . -1219) T) ((-1076 . -1086) T) ((-1076 . -493) 133101) ((-1076 . -615) 133067) ((-1076 . -618) 133048) ((-1076 . -1104) T) ((-1076 . -102) T) ((-1076 . -93) T) ((-1069 . -1086) T) ((-1069 . -493) 133029) ((-1069 . -615) 132995) ((-1069 . -618) 132976) ((-1069 . -1104) T) ((-1069 . -102) T) ((-1069 . -93) T) ((-1066 . -1196) 132951) ((-1066 . -229) 132897) ((-1066 . -107) 132843) ((-1066 . -310) 132694) ((-1066 . -517) 132538) ((-1066 . -492) 132469) ((-1066 . -151) 132415) ((-1066 . -616) NIL) ((-1066 . -235) 132361) ((-1066 . -612) 132336) ((-1066 . -289) 132311) ((-1066 . -287) 132286) ((-1066 . -102) T) ((-1066 . -1104) T) ((-1066 . -615) 132268) ((-1066 . -1219) T) ((-1066 . -34) T) ((-1066 . -606) 132243) ((-1065 . -548) T) ((-1065 . -1224) T) ((-1065 . -1154) T) ((-1065 . -1041) 132225) ((-1065 . -616) 132140) ((-1065 . -1023) T) ((-1065 . -889) 132122) ((-1065 . -850) T) ((-1065 . -799) T) ((-1065 . -796) T) ((-1065 . -852) T) ((-1065 . -794) T) ((-1065 . -793) T) ((-1065 . -822) T) ((-1065 . -641) 132104) ((-1065 . -924) T) ((-1065 . -560) T) ((-1065 . -291) T) ((-1065 . -172) T) ((-1065 . -618) 132076) ((-1065 . -719) 132063) ((-1065 . -642) 132050) ((-1065 . -1059) 132037) ((-1065 . -1054) 132024) ((-1065 . -111) 132009) ((-1065 . -38) 131996) ((-1065 . -455) T) ((-1065 . -308) T) ((-1065 . -233) T) ((-1065 . -143) T) ((-1065 . -1052) T) ((-1065 . -1060) T) ((-1065 . -1115) T) ((-1065 . -728) T) ((-1065 . -21) T) ((-1065 . -648) 131968) ((-1065 . -23) T) ((-1065 . -1104) T) ((-1065 . -615) 131950) ((-1065 . -102) T) ((-1065 . -25) T) ((-1065 . -131) T) ((-1065 . -650) 131937) ((-1065 . -147) T) ((-1065 . -620) 131918) ((-1064 . -1071) 131897) ((-1064 . -102) T) ((-1064 . -615) 131879) ((-1064 . -1104) T) ((-1061 . -1219) T) ((-1061 . -1104) 131857) ((-1061 . -615) 131824) ((-1061 . -102) 131802) ((-1057 . -1056) 131742) ((-1057 . -642) 131684) ((-1057 . -719) 131626) ((-1057 . -34) T) ((-1057 . -1219) T) ((-1057 . -310) 131564) ((-1057 . -517) 131497) ((-1057 . -492) 131481) ((-1057 . -650) 131465) ((-1057 . -648) 131434) ((-1057 . -131) T) ((-1057 . -25) T) ((-1057 . -102) T) ((-1057 . -615) 131396) ((-1057 . -1104) T) ((-1057 . -23) T) ((-1057 . -21) T) ((-1057 . -1059) 131380) ((-1057 . -1054) 131364) ((-1057 . -111) 131343) ((-1057 . -1277) 131313) ((-1057 . -616) 131274) ((-1049 . -1074) 131203) ((-1049 . -979) 131132) ((-1049 . -616) 131074) ((-1049 . -492) 131039) ((-1049 . -102) T) ((-1049 . -1104) T) ((-1049 . -517) 130940) ((-1049 . -310) 130848) ((-1049 . -615) 130791) ((-1049 . -1219) T) ((-1049 . -34) T) ((-1049 . -151) 130756) ((-1049 . -1214) 130685) ((-1039 . -1086) T) ((-1039 . -493) 130666) ((-1039 . -615) 130632) ((-1039 . -618) 130613) ((-1039 . -1104) T) ((-1039 . -102) T) ((-1039 . -93) T) ((-1038 . -1196) 130588) ((-1038 . -229) 130534) ((-1038 . -107) 130480) ((-1038 . -310) 130331) ((-1038 . -517) 130175) ((-1038 . -492) 130106) ((-1038 . -151) 130052) ((-1038 . -616) NIL) ((-1038 . -235) 129998) ((-1038 . -612) 129973) ((-1038 . -289) 129948) ((-1038 . -287) 129923) ((-1038 . -102) T) ((-1038 . -1104) T) ((-1038 . -615) 129905) ((-1038 . -1219) T) ((-1038 . -34) T) ((-1038 . -606) 129880) ((-1037 . -172) T) ((-1037 . -618) 129849) ((-1037 . -728) T) ((-1037 . -1115) T) ((-1037 . -1060) T) ((-1037 . -1052) T) ((-1037 . -650) 129823) ((-1037 . -648) 129782) ((-1037 . -131) T) ((-1037 . -25) T) ((-1037 . -102) T) ((-1037 . -615) 129764) ((-1037 . -1104) T) ((-1037 . -23) T) ((-1037 . -21) T) ((-1037 . -1059) 129738) ((-1037 . -1054) 129712) ((-1037 . -111) 129679) ((-1037 . -38) 129663) ((-1037 . -642) 129647) ((-1037 . -719) 129631) ((-1030 . -1074) 129600) ((-1030 . -979) 129569) ((-1030 . -616) 129530) ((-1030 . -492) 129514) ((-1030 . -102) T) ((-1030 . -1104) T) ((-1030 . -517) 129447) ((-1030 . -310) 129385) ((-1030 . -615) 129347) ((-1030 . -1219) T) ((-1030 . -34) T) ((-1030 . -151) 129331) ((-1030 . -1214) 129300) ((-1029 . -1219) T) ((-1029 . -1104) 129278) ((-1029 . -615) 129245) ((-1029 . -102) 129223) ((-1027 . -1015) T) ((-1027 . -1005) T) ((-1027 . -793) T) ((-1027 . -794) T) ((-1027 . -852) T) ((-1027 . -796) T) ((-1027 . -799) T) ((-1027 . -850) T) ((-1027 . -1041) 129103) ((-1027 . -415) 129065) ((-1027 . -243) T) ((-1027 . -291) T) ((-1027 . -308) T) ((-1027 . -455) T) ((-1027 . -38) 129002) ((-1027 . -642) 128939) ((-1027 . -719) 128876) ((-1027 . -618) 128813) ((-1027 . -560) T) ((-1027 . -924) T) ((-1027 . -1224) T) ((-1027 . -365) T) ((-1027 . -111) 128729) ((-1027 . -1054) 128666) ((-1027 . -1059) 128603) ((-1027 . -172) T) ((-1027 . -147) T) ((-1027 . -650) 128540) ((-1027 . -648) 128477) ((-1027 . -131) T) ((-1027 . -25) T) ((-1027 . -102) T) ((-1027 . -615) 128459) ((-1027 . -1104) T) ((-1027 . -23) T) ((-1027 . -21) T) ((-1027 . -1052) T) ((-1027 . -1060) T) ((-1027 . -1115) T) ((-1027 . -728) T) ((-1022 . -1086) T) ((-1022 . -493) 128440) ((-1022 . -615) 128406) ((-1022 . -618) 128387) ((-1022 . -1104) T) ((-1022 . -102) T) ((-1022 . -93) T) ((-1007 . -994) 128369) ((-1007 . -1154) T) ((-1007 . -618) 128319) ((-1007 . -1041) 128279) ((-1007 . -616) 128209) ((-1007 . -1023) T) ((-1007 . -913) NIL) ((-1007 . -887) 128191) ((-1007 . -850) T) ((-1007 . -799) T) ((-1007 . -796) T) ((-1007 . -852) T) ((-1007 . -794) T) ((-1007 . -793) T) ((-1007 . -822) T) ((-1007 . -889) 128173) ((-1007 . -1219) T) ((-1007 . -403) 128155) ((-1007 . -641) 128137) ((-1007 . -379) 128119) ((-1007 . -287) NIL) ((-1007 . -310) NIL) ((-1007 . -517) NIL) ((-1007 . -340) 128101) ((-1007 . -243) T) ((-1007 . -111) 128035) ((-1007 . -1054) 127985) ((-1007 . -1059) 127935) ((-1007 . -291) T) ((-1007 . -719) 127885) ((-1007 . -642) 127835) ((-1007 . -650) 127785) ((-1007 . -648) 127735) ((-1007 . -38) 127685) ((-1007 . -308) T) ((-1007 . -455) T) ((-1007 . -172) T) ((-1007 . -560) T) ((-1007 . -924) T) ((-1007 . -1224) T) ((-1007 . -365) T) ((-1007 . -233) T) ((-1007 . -903) NIL) ((-1007 . -231) 127667) ((-1007 . -147) T) ((-1007 . -145) NIL) ((-1007 . -131) T) ((-1007 . -25) T) ((-1007 . -102) T) ((-1007 . -615) 127627) ((-1007 . -1104) T) ((-1007 . -23) T) ((-1007 . -21) T) ((-1007 . -1052) T) ((-1007 . -1060) T) ((-1007 . -1115) T) ((-1007 . -728) T) ((-1006 . -344) 127601) ((-1006 . -172) T) ((-1006 . -618) 127531) ((-1006 . -728) T) ((-1006 . -1115) T) ((-1006 . -1060) T) ((-1006 . -1052) T) ((-1006 . -650) 127476) ((-1006 . -648) 127406) ((-1006 . -131) T) ((-1006 . -25) T) ((-1006 . -102) T) ((-1006 . -615) 127388) ((-1006 . -1104) T) ((-1006 . -23) T) ((-1006 . -21) T) ((-1006 . -1059) 127333) ((-1006 . -1054) 127278) ((-1006 . -111) 127207) ((-1006 . -616) 127191) ((-1006 . -231) 127168) ((-1006 . -903) 127120) ((-1006 . -233) 127092) ((-1006 . -365) T) ((-1006 . -1224) T) ((-1006 . -924) T) ((-1006 . -560) T) ((-1006 . -719) 127037) ((-1006 . -642) 126982) ((-1006 . -38) 126927) ((-1006 . -455) T) ((-1006 . -308) T) ((-1006 . -291) T) ((-1006 . -243) T) ((-1006 . -370) NIL) ((-1006 . -352) NIL) ((-1006 . -1154) NIL) ((-1006 . -145) 126899) ((-1006 . -405) NIL) ((-1006 . -413) 126871) ((-1006 . -147) 126843) ((-1006 . -372) 126815) ((-1006 . -379) 126792) ((-1006 . -641) 126731) ((-1006 . -415) 126708) ((-1006 . -1041) 126596) ((-1006 . -726) 126568) ((-1003 . -998) 126552) ((-1003 . -492) 126536) ((-1003 . -102) 126514) ((-1003 . -1104) 126492) ((-1003 . -517) 126425) ((-1003 . -310) 126363) ((-1003 . -615) 126295) ((-1003 . -1219) T) ((-1003 . -34) T) ((-1003 . -107) 126279) ((-999 . -1001) 126263) ((-999 . -852) 126242) ((-999 . -1041) 126138) ((-999 . -415) 126122) ((-999 . -641) 126070) ((-999 . -379) 126054) ((-999 . -287) 126012) ((-999 . -310) 125977) ((-999 . -517) 125889) ((-999 . -340) 125873) ((-999 . -38) 125821) ((-999 . -111) 125703) ((-999 . -1054) 125599) ((-999 . -1059) 125495) ((-999 . -648) 125418) ((-999 . -650) 125356) ((-999 . -642) 125304) ((-999 . -719) 125252) ((-999 . -618) 125142) ((-999 . -291) 125093) ((-999 . -243) 125072) ((-999 . -233) 125051) ((-999 . -903) 125010) ((-999 . -231) 124994) ((-999 . -616) 124955) ((-999 . -147) 124934) ((-999 . -145) 124913) ((-999 . -131) T) ((-999 . -25) T) ((-999 . -102) T) ((-999 . -615) 124895) ((-999 . -1104) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -1052) T) ((-999 . -1060) T) ((-999 . -1115) T) ((-999 . -728) T) ((-997 . -1086) T) ((-997 . -493) 124876) ((-997 . -615) 124842) ((-997 . -618) 124823) ((-997 . -1104) T) ((-997 . -102) T) ((-997 . -93) T) ((-996 . -21) T) ((-996 . -648) 124805) ((-996 . -23) T) ((-996 . -1104) T) ((-996 . -615) 124787) ((-996 . -102) T) ((-996 . -25) T) ((-996 . -131) T) ((-992 . -615) 124769) ((-989 . -1104) T) ((-989 . -615) 124751) ((-989 . -102) T) ((-974 . -799) T) ((-974 . -796) T) ((-974 . -852) T) ((-974 . -794) T) ((-974 . -23) T) ((-974 . -1104) T) ((-974 . -615) 124711) ((-974 . -102) T) ((-974 . -25) T) ((-974 . -131) T) ((-974 . -616) 124686) ((-973 . -1086) T) ((-973 . -493) 124667) ((-973 . -615) 124633) ((-973 . -618) 124614) ((-973 . -1104) T) ((-973 . -102) T) ((-973 . -93) T) ((-969 . -970) T) ((-969 . -102) T) ((-969 . -615) 124596) ((-969 . -1104) T) ((-969 . -618) 124580) ((-968 . -615) 124562) ((-967 . -1104) T) ((-967 . -615) 124544) ((-967 . -102) T) ((-967 . -370) 124497) ((-967 . -728) 124396) ((-967 . -1115) 124295) ((-967 . -23) 124106) ((-967 . -25) 123917) ((-967 . -131) 123772) ((-967 . -476) 123725) ((-967 . -21) 123680) ((-967 . -648) 123624) ((-967 . -795) 123577) ((-967 . -794) 123530) ((-967 . -852) 123429) ((-967 . -796) 123382) ((-967 . -799) 123335) ((-961 . -19) 123319) ((-961 . -653) 123303) ((-961 . -289) 123280) ((-961 . -287) 123257) ((-961 . -606) 123234) ((-961 . -616) 123195) ((-961 . -492) 123179) ((-961 . -102) 123129) ((-961 . -1104) 123079) ((-961 . -517) 123012) ((-961 . -310) 122950) ((-961 . -615) 122862) ((-961 . -1219) T) ((-961 . -34) T) ((-961 . -151) 122846) ((-961 . -852) 122825) ((-961 . -374) 122809) ((-959 . -327) 122788) ((-959 . -1041) 122684) ((-959 . -415) 122668) ((-959 . -38) 122565) ((-959 . -618) 122418) ((-959 . -650) 122343) ((-959 . -648) 122253) ((-959 . -728) T) ((-959 . -1115) T) ((-959 . -1060) T) ((-959 . -1052) T) ((-959 . -111) 122122) ((-959 . -1054) 122005) ((-959 . -1059) 121888) ((-959 . -21) T) ((-959 . -23) T) ((-959 . -1104) T) ((-959 . -615) 121870) ((-959 . -102) T) ((-959 . -25) T) ((-959 . -131) T) ((-959 . -642) 121767) ((-959 . -719) 121664) ((-959 . -145) 121643) ((-959 . -147) 121622) ((-959 . -172) 121573) ((-959 . -560) 121552) ((-959 . -291) 121531) ((-959 . -47) 121510) ((-957 . -1104) T) ((-957 . -615) 121476) ((-957 . -102) T) ((-949 . -953) 121437) ((-949 . -618) 121226) ((-949 . -1041) 121106) ((-949 . -1224) 121085) ((-949 . -913) 121064) ((-949 . -889) 120989) ((-949 . -903) 120970) ((-949 . -517) 120917) ((-949 . -455) 120868) ((-949 . -641) 120816) ((-949 . -379) 120800) ((-949 . -47) 120769) ((-949 . -38) 120618) ((-949 . -642) 120467) ((-949 . -719) 120316) ((-949 . -291) 120247) ((-949 . -560) 120178) ((-949 . -111) 120007) ((-949 . -1054) 119850) ((-949 . -1059) 119693) ((-949 . -172) 119604) ((-949 . -147) 119583) ((-949 . -145) 119562) ((-949 . -650) 119487) ((-949 . -648) 119397) ((-949 . -131) T) ((-949 . -25) T) ((-949 . -102) T) ((-949 . -615) 119379) ((-949 . -1104) T) ((-949 . -23) T) ((-949 . -21) T) ((-949 . -1052) T) ((-949 . -1060) T) ((-949 . -1115) T) ((-949 . -728) T) ((-949 . -415) 119363) ((-949 . -327) 119332) ((-949 . -310) 119319) ((-949 . -616) 119180) ((-946 . -983) 119164) ((-946 . -19) 119148) ((-946 . -653) 119132) ((-946 . -289) 119109) ((-946 . -287) 119086) ((-946 . -606) 119063) ((-946 . -616) 119024) ((-946 . -492) 119008) ((-946 . -102) 118958) ((-946 . -1104) 118908) ((-946 . -517) 118841) ((-946 . -310) 118779) ((-946 . -615) 118691) ((-946 . -1219) T) ((-946 . -34) T) ((-946 . -151) 118675) ((-946 . -852) 118654) ((-946 . -374) 118638) ((-946 . -1268) 118622) ((-946 . -620) 118599) ((-930 . -977) T) ((-930 . -615) 118581) ((-928 . -958) T) ((-928 . -615) 118563) ((-922 . -796) T) ((-922 . -852) T) ((-922 . -1104) T) ((-922 . -615) 118545) ((-922 . -102) T) ((-922 . -25) T) ((-922 . -728) T) ((-922 . -1115) T) ((-917 . -365) T) ((-917 . -1224) T) ((-917 . -924) T) ((-917 . -560) T) ((-917 . -172) T) ((-917 . -618) 118482) ((-917 . -719) 118434) ((-917 . -642) 118386) ((-917 . -38) 118338) ((-917 . -455) T) ((-917 . -308) T) ((-917 . -650) 118290) ((-917 . -648) 118227) ((-917 . -728) T) ((-917 . -1115) T) ((-917 . -1060) T) ((-917 . -1052) T) ((-917 . -111) 118165) ((-917 . -1054) 118117) ((-917 . -1059) 118069) ((-917 . -21) T) ((-917 . -23) T) ((-917 . -1104) T) ((-917 . -615) 118051) ((-917 . -102) T) ((-917 . -25) T) ((-917 . -131) T) ((-917 . -291) T) ((-917 . -243) T) ((-909 . -352) T) ((-909 . -1154) T) ((-909 . -370) T) ((-909 . -145) T) ((-909 . -365) T) ((-909 . -1224) T) ((-909 . -924) T) ((-909 . -560) T) ((-909 . -172) T) ((-909 . -618) 118001) ((-909 . -719) 117966) ((-909 . -642) 117931) ((-909 . -38) 117896) ((-909 . -455) T) ((-909 . -308) T) ((-909 . -111) 117852) ((-909 . -1054) 117817) ((-909 . -1059) 117782) ((-909 . -648) 117732) ((-909 . -650) 117697) ((-909 . -291) T) ((-909 . -243) T) ((-909 . -405) T) ((-909 . -1052) T) ((-909 . -1060) T) ((-909 . -1115) T) ((-909 . -728) T) ((-909 . -21) T) ((-909 . -23) T) ((-909 . -1104) T) ((-909 . -615) 117679) ((-909 . -102) T) ((-909 . -25) T) ((-909 . -131) T) ((-909 . -233) T) ((-909 . -330) 117666) ((-909 . -147) 117648) ((-909 . -1041) 117635) ((-909 . -1277) 117622) ((-909 . -1288) 117609) ((-909 . -616) 117591) ((-908 . -1104) T) ((-908 . -615) 117573) ((-908 . -102) T) ((-905 . -907) 117557) ((-905 . -852) 117508) ((-905 . -728) T) ((-905 . -1104) T) ((-905 . -615) 117490) ((-905 . -102) T) ((-905 . -1115) T) ((-905 . -476) T) ((-904 . -119) 117474) ((-904 . -492) 117458) ((-904 . -102) 117436) ((-904 . -1104) 117414) ((-904 . -517) 117347) ((-904 . -310) 117285) ((-904 . -615) 117196) ((-904 . -1219) T) ((-904 . -34) T) ((-904 . -1013) 117180) ((-901 . -1104) T) ((-901 . -615) 117162) ((-901 . -102) T) ((-896 . -852) T) ((-896 . -102) T) ((-896 . -615) 117144) ((-896 . -1104) T) ((-896 . -1041) 117121) ((-896 . -618) 117098) ((-893 . -1104) T) ((-893 . -615) 117080) ((-893 . -102) T) ((-893 . -1041) 117048) ((-893 . -618) 117016) ((-891 . -1104) T) ((-891 . -615) 116998) ((-891 . -102) T) ((-888 . -1104) T) ((-888 . -615) 116980) ((-888 . -102) T) ((-878 . -1086) T) ((-878 . -493) 116961) ((-878 . -615) 116927) ((-878 . -618) 116908) ((-878 . -1104) T) ((-878 . -102) T) ((-878 . -93) T) ((-878 . -1265) T) ((-876 . -1104) T) ((-876 . -615) 116890) ((-876 . -102) T) ((-875 . -1219) T) ((-875 . -615) 116762) ((-875 . -1104) 116713) ((-875 . -102) 116664) ((-874 . -994) 116648) ((-874 . -1154) 116626) ((-874 . -1041) 116492) ((-874 . -618) 116390) ((-874 . -616) 116197) ((-874 . -1023) 116175) ((-874 . -913) 116154) ((-874 . -887) 116138) ((-874 . -850) 116117) ((-874 . -799) 116096) ((-874 . -796) 116075) ((-874 . -852) 116026) ((-874 . -794) 116005) ((-874 . -793) 115984) ((-874 . -822) 115963) ((-874 . -889) 115888) ((-874 . -1219) T) ((-874 . -403) 115872) ((-874 . -641) 115820) ((-874 . -379) 115804) ((-874 . -287) 115762) ((-874 . -310) 115727) ((-874 . -517) 115639) ((-874 . -340) 115623) ((-874 . -243) T) ((-874 . -111) 115561) ((-874 . -1054) 115513) ((-874 . -1059) 115465) ((-874 . -291) T) ((-874 . -719) 115417) ((-874 . -642) 115369) ((-874 . -650) 115321) ((-874 . -648) 115258) ((-874 . -38) 115210) ((-874 . -308) T) ((-874 . -455) T) ((-874 . -172) T) ((-874 . -560) T) ((-874 . -924) T) ((-874 . -1224) T) ((-874 . -365) T) ((-874 . -233) 115189) ((-874 . -903) 115148) ((-874 . -231) 115132) ((-874 . -147) 115111) ((-874 . -145) 115090) ((-874 . -131) T) ((-874 . -25) T) ((-874 . -102) T) ((-874 . -615) 115072) ((-874 . -1104) T) ((-874 . -23) T) ((-874 . -21) T) ((-874 . -1052) T) ((-874 . -1060) T) ((-874 . -1115) T) ((-874 . -728) T) ((-873 . -994) 115049) ((-873 . -1154) NIL) ((-873 . -1041) 115026) ((-873 . -618) 114956) ((-873 . -616) NIL) ((-873 . -1023) NIL) ((-873 . -913) NIL) ((-873 . -887) 114933) ((-873 . -850) NIL) ((-873 . -799) NIL) ((-873 . -796) NIL) ((-873 . -852) NIL) ((-873 . -794) NIL) ((-873 . -793) NIL) ((-873 . -822) NIL) ((-873 . -889) NIL) ((-873 . -1219) T) ((-873 . -403) 114910) ((-873 . -641) 114887) ((-873 . -379) 114864) ((-873 . -287) 114815) ((-873 . -310) 114772) ((-873 . -517) 114680) ((-873 . -340) 114657) ((-873 . -243) T) ((-873 . -111) 114586) ((-873 . -1054) 114531) ((-873 . -1059) 114476) ((-873 . -291) T) ((-873 . -719) 114421) ((-873 . -642) 114366) ((-873 . -650) 114311) ((-873 . -648) 114241) ((-873 . -38) 114186) ((-873 . -308) T) ((-873 . -455) T) ((-873 . -172) T) ((-873 . -560) T) ((-873 . -924) T) ((-873 . -1224) T) ((-873 . -365) T) ((-873 . -233) NIL) ((-873 . -903) NIL) ((-873 . -231) 114163) ((-873 . -147) T) ((-873 . -145) NIL) ((-873 . -131) T) ((-873 . -25) T) ((-873 . -102) T) ((-873 . -615) 114145) ((-873 . -1104) T) ((-873 . -23) T) ((-873 . -21) T) ((-873 . -1052) T) ((-873 . -1060) T) ((-873 . -1115) T) ((-873 . -728) T) ((-871 . -872) 114129) ((-871 . -924) T) ((-871 . -560) T) ((-871 . -291) T) ((-871 . -172) T) ((-871 . -618) 114101) ((-871 . -719) 114088) ((-871 . -642) 114075) ((-871 . -1059) 114062) ((-871 . -1054) 114049) ((-871 . -111) 114034) ((-871 . -38) 114021) ((-871 . -455) T) ((-871 . -308) T) ((-871 . -1052) T) ((-871 . -1060) T) ((-871 . -1115) T) ((-871 . -728) T) ((-871 . -21) T) ((-871 . -648) 113993) ((-871 . -23) T) ((-871 . -1104) T) ((-871 . -615) 113975) ((-871 . -102) T) ((-871 . -25) T) ((-871 . -131) T) ((-871 . -650) 113962) ((-871 . -147) T) ((-868 . -1052) T) ((-868 . -1060) T) ((-868 . -1115) T) ((-868 . -728) T) ((-868 . -21) T) ((-868 . -648) 113907) ((-868 . -23) T) ((-868 . -1104) T) ((-868 . -615) 113869) ((-868 . -102) T) ((-868 . -25) T) ((-868 . -131) T) ((-868 . -650) 113829) ((-868 . -618) 113764) ((-868 . -493) 113741) ((-868 . -38) 113711) ((-868 . -111) 113676) ((-868 . -1054) 113646) ((-868 . -1059) 113616) ((-868 . -642) 113586) ((-868 . -719) 113556) ((-867 . -1104) T) ((-867 . -615) 113538) ((-867 . -102) T) ((-866 . -846) T) ((-866 . -852) T) ((-866 . -1104) T) ((-866 . -615) 113520) ((-866 . -102) T) ((-866 . -370) T) ((-866 . -616) 113442) ((-865 . -1104) T) ((-865 . -615) 113424) ((-865 . -102) T) ((-864 . -863) T) ((-864 . -173) T) ((-864 . -615) 113406) ((-860 . -852) T) ((-860 . -102) T) ((-860 . -615) 113388) ((-860 . -1104) T) ((-857 . -854) 113372) ((-857 . -1041) 113268) ((-857 . -618) 113165) ((-857 . -415) 113149) ((-857 . -719) 113119) ((-857 . -642) 113089) ((-857 . -650) 113063) ((-857 . -648) 113022) ((-857 . -131) T) ((-857 . -25) T) ((-857 . -102) T) ((-857 . -615) 113004) ((-857 . -1104) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -1059) 112988) ((-857 . -1054) 112972) ((-857 . -111) 112951) ((-857 . -1052) T) ((-857 . -1060) T) ((-857 . -1115) T) ((-857 . -728) T) ((-857 . -38) 112921) ((-856 . -854) 112905) ((-856 . -1041) 112801) ((-856 . -618) 112719) ((-856 . -415) 112703) ((-856 . -719) 112673) ((-856 . -642) 112643) ((-856 . -650) 112617) ((-856 . -648) 112576) ((-856 . -131) T) ((-856 . -25) T) ((-856 . -102) T) ((-856 . -615) 112558) ((-856 . -1104) T) ((-856 . -23) T) ((-856 . -21) T) ((-856 . -1059) 112542) ((-856 . -1054) 112526) ((-856 . -111) 112505) ((-856 . -1052) T) ((-856 . -1060) T) ((-856 . -1115) T) ((-856 . -728) T) ((-856 . -38) 112475) ((-844 . -1104) T) ((-844 . -615) 112457) ((-844 . -102) T) ((-844 . -415) 112441) ((-844 . -618) 112309) ((-844 . -1041) 112205) ((-844 . -21) 112157) ((-844 . -648) 112074) ((-844 . -23) 112026) ((-844 . -25) 111978) ((-844 . -131) 111930) ((-844 . -850) 111909) ((-844 . -650) 111882) ((-844 . -1060) 111861) ((-844 . -1052) 111840) ((-844 . -799) 111819) ((-844 . -796) 111798) ((-844 . -852) 111777) ((-844 . -794) 111756) ((-844 . -793) 111735) ((-844 . -1115) 111714) ((-844 . -728) 111693) ((-843 . -1104) T) ((-843 . -615) 111675) ((-843 . -102) T) ((-840 . -838) 111657) ((-840 . -102) T) ((-840 . -615) 111639) ((-840 . -1104) T) ((-836 . -1052) T) ((-836 . -1060) T) ((-836 . -1115) T) ((-836 . -728) T) ((-836 . -21) T) ((-836 . -648) 111584) ((-836 . -23) T) ((-836 . -1104) T) ((-836 . -615) 111566) ((-836 . -102) T) ((-836 . -25) T) ((-836 . -131) T) ((-836 . -650) 111526) ((-836 . -618) 111480) ((-836 . -1041) 111449) ((-836 . -287) 111428) ((-836 . -147) 111407) ((-836 . -145) 111386) ((-836 . -38) 111356) ((-836 . -111) 111321) ((-836 . -1054) 111291) ((-836 . -1059) 111261) ((-836 . -642) 111231) ((-836 . -719) 111201) ((-834 . -1104) T) ((-834 . -615) 111183) ((-834 . -102) T) ((-834 . -415) 111167) ((-834 . -618) 111035) ((-834 . -1041) 110931) ((-834 . -21) 110883) ((-834 . -648) 110800) ((-834 . -23) 110752) ((-834 . -25) 110704) ((-834 . -131) 110656) ((-834 . -850) 110635) ((-834 . -650) 110608) ((-834 . -1060) 110587) ((-834 . -1052) 110566) ((-834 . -799) 110545) ((-834 . -796) 110524) ((-834 . -852) 110503) ((-834 . -794) 110482) ((-834 . -793) 110461) ((-834 . -1115) 110440) ((-834 . -728) 110419) ((-830 . -710) 110403) ((-830 . -618) 110358) ((-830 . -719) 110328) ((-830 . -642) 110298) ((-830 . -650) 110272) ((-830 . -648) 110231) ((-830 . -131) T) ((-830 . -25) T) ((-830 . -102) T) ((-830 . -615) 110213) ((-830 . -1104) T) ((-830 . -23) T) ((-830 . -21) T) ((-830 . -1059) 110197) ((-830 . -1054) 110181) ((-830 . -111) 110160) ((-830 . -1052) T) ((-830 . -1060) T) ((-830 . -1115) T) ((-830 . -728) T) ((-830 . -38) 110130) ((-830 . -233) 110109) ((-828 . -1104) T) ((-828 . -615) 110091) ((-828 . -102) T) ((-827 . -1104) T) ((-827 . -615) 110073) ((-827 . -102) T) ((-826 . -1104) T) ((-826 . -615) 110055) ((-826 . -102) T) ((-821 . -388) 110039) ((-821 . -618) 110023) ((-821 . -1041) 110007) ((-821 . -852) T) ((-821 . -1115) T) ((-821 . -102) T) ((-821 . -615) 109989) ((-821 . -1104) T) ((-821 . -728) T) ((-821 . -848) T) ((-821 . -859) T) ((-820 . -267) 109973) ((-820 . -618) 109957) ((-820 . -1041) 109941) ((-820 . -1104) T) ((-820 . -615) 109923) ((-820 . -102) T) ((-820 . -852) T) ((-819 . -111) 109865) ((-819 . -1054) 109816) ((-819 . -1059) 109767) ((-819 . -21) T) ((-819 . -648) 109703) ((-819 . -23) T) ((-819 . -1104) T) ((-819 . -615) 109672) ((-819 . -102) T) ((-819 . -25) T) ((-819 . -131) T) ((-819 . -650) 109623) ((-819 . -233) T) ((-819 . -618) 109537) ((-819 . -728) T) ((-819 . -1115) T) ((-819 . -1060) T) ((-819 . -1052) T) ((-819 . -493) 109521) ((-819 . -365) 109500) ((-819 . -1224) 109479) ((-819 . -924) 109458) ((-819 . -560) 109437) ((-819 . -172) 109416) ((-819 . -719) 109358) ((-819 . -642) 109300) ((-819 . -38) 109242) ((-819 . -455) 109221) ((-819 . -308) 109200) ((-819 . -291) 109179) ((-819 . -243) 109158) ((-818 . -254) 109097) ((-818 . -618) 108834) ((-818 . -1041) 108662) ((-818 . -616) NIL) ((-818 . -327) 108624) ((-818 . -415) 108608) ((-818 . -38) 108457) ((-818 . -111) 108286) ((-818 . -1054) 108129) ((-818 . -1059) 107972) ((-818 . -648) 107882) ((-818 . -650) 107807) ((-818 . -642) 107656) ((-818 . -719) 107505) ((-818 . -145) 107484) ((-818 . -147) 107463) ((-818 . -172) 107374) ((-818 . -560) 107305) ((-818 . -291) 107236) ((-818 . -47) 107198) ((-818 . -379) 107182) ((-818 . -641) 107130) ((-818 . -455) 107081) ((-818 . -517) 106949) ((-818 . -903) 106885) ((-818 . -889) NIL) ((-818 . -913) 106864) ((-818 . -1224) 106843) ((-818 . -953) 106790) ((-818 . -310) 106777) ((-818 . -233) 106756) ((-818 . -131) T) ((-818 . -25) T) ((-818 . -102) T) ((-818 . -615) 106738) ((-818 . -1104) T) ((-818 . -23) T) ((-818 . -21) T) ((-818 . -728) T) ((-818 . -1115) T) ((-818 . -1060) T) ((-818 . -1052) T) ((-818 . -231) 106722) ((-817 . -238) 106701) ((-817 . -1277) 106671) ((-817 . -793) 106650) ((-817 . -850) 106629) ((-817 . -799) 106580) ((-817 . -796) 106531) ((-817 . -852) 106482) ((-817 . -794) 106433) ((-817 . -795) 106412) ((-817 . -289) 106389) ((-817 . -287) 106366) ((-817 . -492) 106350) ((-817 . -517) 106283) ((-817 . -310) 106221) ((-817 . -1219) T) ((-817 . -34) T) ((-817 . -606) 106198) ((-817 . -1041) 106025) ((-817 . -618) 105755) ((-817 . -415) 105724) ((-817 . -641) 105630) ((-817 . -379) 105599) ((-817 . -370) 105578) ((-817 . -233) 105530) ((-817 . -903) 105462) ((-817 . -231) 105431) ((-817 . -111) 105321) ((-817 . -1054) 105218) ((-817 . -1059) 105115) ((-817 . -172) 105094) ((-817 . -615) 104825) ((-817 . -719) 104767) ((-817 . -642) 104709) ((-817 . -650) 104557) ((-817 . -648) 104307) ((-817 . -131) 104177) ((-817 . -23) 104047) ((-817 . -21) 103957) ((-817 . -1052) 103887) ((-817 . -1060) 103817) ((-817 . -1115) 103727) ((-817 . -728) 103637) ((-817 . -38) 103607) ((-817 . -1104) 103397) ((-817 . -102) 103187) ((-817 . -25) 103038) ((-810 . -1104) T) ((-810 . -615) 103020) ((-810 . -102) T) ((-800 . -798) 103004) ((-800 . -852) 102983) ((-800 . -1041) 102766) ((-800 . -618) 102614) ((-800 . -415) 102578) ((-800 . -287) 102536) ((-800 . -310) 102501) ((-800 . -517) 102413) ((-800 . -340) 102397) ((-800 . -370) 102376) ((-800 . -616) 102337) ((-800 . -147) 102316) ((-800 . -145) 102295) ((-800 . -719) 102279) ((-800 . -642) 102263) ((-800 . -650) 102237) ((-800 . -648) 102196) ((-800 . -131) T) ((-800 . -25) T) ((-800 . -102) T) ((-800 . -615) 102178) ((-800 . -1104) T) ((-800 . -23) T) ((-800 . -21) T) ((-800 . -1059) 102162) ((-800 . -1054) 102146) ((-800 . -111) 102125) ((-800 . -1052) T) ((-800 . -1060) T) ((-800 . -1115) T) ((-800 . -728) T) ((-800 . -38) 102109) ((-783 . -1245) 102093) ((-783 . -1154) 102071) ((-783 . -616) NIL) ((-783 . -310) 102058) ((-783 . -517) 102005) ((-783 . -327) 101982) ((-783 . -1041) 101841) ((-783 . -415) 101825) ((-783 . -38) 101654) ((-783 . -111) 101463) ((-783 . -1054) 101286) ((-783 . -1059) 101109) ((-783 . -648) 101019) ((-783 . -650) 100944) ((-783 . -642) 100773) ((-783 . -719) 100602) ((-783 . -618) 100350) ((-783 . -145) 100329) ((-783 . -147) 100308) ((-783 . -47) 100285) ((-783 . -379) 100269) ((-783 . -641) 100217) ((-783 . -903) 100160) ((-783 . -889) NIL) ((-783 . -913) 100139) ((-783 . -1224) 100118) ((-783 . -953) 100087) ((-783 . -924) 100066) ((-783 . -560) 99977) ((-783 . -291) 99888) ((-783 . -172) 99779) ((-783 . -455) 99710) ((-783 . -308) 99689) ((-783 . -287) 99616) ((-783 . -233) T) ((-783 . -131) T) ((-783 . -25) T) ((-783 . -102) T) ((-783 . -615) 99577) ((-783 . -1104) T) ((-783 . -23) T) ((-783 . -21) T) ((-783 . -728) T) ((-783 . -1115) T) ((-783 . -1060) T) ((-783 . -1052) T) ((-783 . -231) 99561) ((-782 . -1068) 99528) ((-782 . -616) 99162) ((-782 . -310) 99149) ((-782 . -517) 99101) ((-782 . -327) 99073) ((-782 . -1041) 98930) ((-782 . -415) 98914) ((-782 . -38) 98763) ((-782 . -618) 98529) ((-782 . -650) 98454) ((-782 . -648) 98364) ((-782 . -728) T) ((-782 . -1115) T) ((-782 . -1060) T) ((-782 . -1052) T) ((-782 . -111) 98193) ((-782 . -1054) 98036) ((-782 . -1059) 97879) ((-782 . -21) T) ((-782 . -23) T) ((-782 . -1104) T) ((-782 . -615) 97793) ((-782 . -102) T) ((-782 . -25) T) ((-782 . -131) T) ((-782 . -642) 97642) ((-782 . -719) 97491) ((-782 . -145) 97470) ((-782 . -147) 97449) ((-782 . -172) 97360) ((-782 . -560) 97291) ((-782 . -291) 97222) ((-782 . -47) 97194) ((-782 . -379) 97178) ((-782 . -641) 97126) ((-782 . -455) 97077) ((-782 . -903) 97061) ((-782 . -889) 96920) ((-782 . -913) 96899) ((-782 . -1224) 96878) ((-782 . -953) 96845) ((-775 . -1104) T) ((-775 . -615) 96827) ((-775 . -102) T) ((-773 . -795) T) ((-773 . -131) T) ((-773 . -25) T) ((-773 . -102) T) ((-773 . -615) 96809) ((-773 . -1104) T) ((-773 . -23) T) ((-773 . -794) T) ((-773 . -852) T) ((-773 . -796) T) ((-773 . -799) T) ((-773 . -728) T) ((-773 . -1115) T) ((-771 . -1104) T) ((-771 . -615) 96791) ((-771 . -102) T) ((-738 . -739) 96775) ((-738 . -1102) 96759) ((-738 . -235) 96743) ((-738 . -616) 96704) ((-738 . -151) 96688) ((-738 . -492) 96672) ((-738 . -102) T) ((-738 . -1104) T) ((-738 . -517) 96605) ((-738 . -310) 96543) ((-738 . -615) 96525) ((-738 . -1219) T) ((-738 . -34) T) ((-738 . -107) 96509) ((-738 . -697) 96493) ((-737 . -1052) T) ((-737 . -1060) T) ((-737 . -1115) T) ((-737 . -728) T) ((-737 . -21) T) ((-737 . -648) 96438) ((-737 . -23) T) ((-737 . -1104) T) ((-737 . -615) 96420) ((-737 . -102) T) ((-737 . -25) T) ((-737 . -131) T) ((-737 . -650) 96380) ((-737 . -618) 96336) ((-737 . -1041) 96307) ((-737 . -147) 96286) ((-737 . -145) 96265) ((-737 . -38) 96235) ((-737 . -111) 96200) ((-737 . -1054) 96170) ((-737 . -1059) 96140) ((-737 . -642) 96110) ((-737 . -719) 96080) ((-737 . -370) 96033) ((-733 . -953) 95986) ((-733 . -618) 95771) ((-733 . -1041) 95647) ((-733 . -1224) 95626) ((-733 . -913) 95605) ((-733 . -889) NIL) ((-733 . -903) 95582) ((-733 . -517) 95525) ((-733 . -455) 95476) ((-733 . -641) 95424) ((-733 . -379) 95408) ((-733 . -47) 95373) ((-733 . -38) 95222) ((-733 . -642) 95071) ((-733 . -719) 94920) ((-733 . -291) 94851) ((-733 . -560) 94782) ((-733 . -111) 94611) ((-733 . -1054) 94454) ((-733 . -1059) 94297) ((-733 . -172) 94208) ((-733 . -147) 94187) ((-733 . -145) 94166) ((-733 . -650) 94091) ((-733 . -648) 94001) ((-733 . -131) T) ((-733 . -25) T) ((-733 . -102) T) ((-733 . -615) 93983) ((-733 . -1104) T) ((-733 . -23) T) ((-733 . -21) T) ((-733 . -1052) T) ((-733 . -1060) T) ((-733 . -1115) T) ((-733 . -728) T) ((-733 . -415) 93967) ((-733 . -327) 93932) ((-733 . -310) 93919) ((-733 . -616) 93780) ((-720 . -476) T) ((-720 . -1115) T) ((-720 . -102) T) ((-720 . -615) 93762) ((-720 . -1104) T) ((-720 . -728) T) ((-717 . -1052) T) ((-717 . -1060) T) ((-717 . -1115) T) ((-717 . -728) T) ((-717 . -21) T) ((-717 . -648) 93734) ((-717 . -23) T) ((-717 . -1104) T) ((-717 . -615) 93716) ((-717 . -102) T) ((-717 . -25) T) ((-717 . -131) T) ((-717 . -650) 93703) ((-717 . -618) 93685) ((-716 . -1052) T) ((-716 . -1060) T) ((-716 . -1115) T) ((-716 . -728) T) ((-716 . -21) T) ((-716 . -648) 93630) ((-716 . -23) T) ((-716 . -1104) T) ((-716 . -615) 93612) ((-716 . -102) T) ((-716 . -25) T) ((-716 . -131) T) ((-716 . -650) 93572) ((-716 . -618) 93526) ((-716 . -1041) 93495) ((-716 . -287) 93474) ((-716 . -147) 93453) ((-716 . -145) 93432) ((-716 . -38) 93402) ((-716 . -111) 93367) ((-716 . -1054) 93337) ((-716 . -1059) 93307) ((-716 . -642) 93277) ((-716 . -719) 93247) ((-715 . -852) T) ((-715 . -102) T) ((-715 . -615) 93182) ((-715 . -1104) T) ((-715 . -493) 93132) ((-715 . -618) 93082) ((-714 . -1245) 93066) ((-714 . -1154) 93044) ((-714 . -616) NIL) ((-714 . -310) 93031) ((-714 . -517) 92978) ((-714 . -327) 92955) ((-714 . -1041) 92835) ((-714 . -415) 92819) ((-714 . -38) 92648) ((-714 . -111) 92457) ((-714 . -1054) 92280) ((-714 . -1059) 92103) ((-714 . -648) 92013) ((-714 . -650) 91938) ((-714 . -642) 91767) ((-714 . -719) 91596) ((-714 . -618) 91352) ((-714 . -145) 91331) ((-714 . -147) 91310) ((-714 . -47) 91287) ((-714 . -379) 91271) ((-714 . -641) 91219) ((-714 . -903) 91162) ((-714 . -889) NIL) ((-714 . -913) 91141) ((-714 . -1224) 91120) ((-714 . -953) 91089) ((-714 . -924) 91068) ((-714 . -560) 90979) ((-714 . -291) 90890) ((-714 . -172) 90781) ((-714 . -455) 90712) ((-714 . -308) 90691) ((-714 . -287) 90618) ((-714 . -233) T) ((-714 . -131) T) ((-714 . -25) T) ((-714 . -102) T) ((-714 . -615) 90600) ((-714 . -1104) T) ((-714 . -23) T) ((-714 . -21) T) ((-714 . -728) T) ((-714 . -1115) T) ((-714 . -1060) T) ((-714 . -1052) T) ((-714 . -231) 90584) ((-714 . -370) 90563) ((-713 . -365) T) ((-713 . -1224) T) ((-713 . -924) T) ((-713 . -560) T) ((-713 . -172) T) ((-713 . -618) 90513) ((-713 . -719) 90478) ((-713 . -642) 90443) ((-713 . -38) 90408) ((-713 . -455) T) ((-713 . -308) T) ((-713 . -650) 90373) ((-713 . -648) 90323) ((-713 . -728) T) ((-713 . -1115) T) ((-713 . -1060) T) ((-713 . -1052) T) ((-713 . -111) 90279) ((-713 . -1054) 90244) ((-713 . -1059) 90209) ((-713 . -21) T) ((-713 . -23) T) ((-713 . -1104) T) ((-713 . -615) 90191) ((-713 . -102) T) ((-713 . -25) T) ((-713 . -131) T) ((-713 . -291) T) ((-713 . -243) T) ((-712 . -1104) T) ((-712 . -615) 90173) ((-712 . -102) T) ((-703 . -390) T) ((-703 . -1041) 90155) ((-703 . -852) T) ((-703 . -38) 90142) ((-703 . -618) 90114) ((-703 . -728) T) ((-703 . -1115) T) ((-703 . -1060) T) ((-703 . -1052) T) ((-703 . -111) 90099) ((-703 . -1054) 90086) ((-703 . -1059) 90073) ((-703 . -21) T) ((-703 . -648) 90045) ((-703 . -23) T) ((-703 . -1104) T) ((-703 . -615) 90027) ((-703 . -102) T) ((-703 . -25) T) ((-703 . -131) T) ((-703 . -650) 90014) ((-703 . -642) 90001) ((-703 . -719) 89988) ((-703 . -172) T) ((-703 . -291) T) ((-703 . -560) T) ((-703 . -548) T) ((-703 . -1224) T) ((-703 . -1154) T) ((-703 . -616) 89903) ((-703 . -1023) T) ((-703 . -889) 89885) ((-703 . -850) T) ((-703 . -799) T) ((-703 . -796) T) ((-703 . -794) T) ((-703 . -793) T) ((-703 . -822) T) ((-703 . -641) 89867) ((-703 . -924) T) ((-703 . -455) T) ((-703 . -308) T) ((-703 . -233) T) ((-703 . -143) T) ((-703 . -147) T) ((-701 . -407) T) ((-701 . -147) T) ((-701 . -618) 89802) ((-701 . -650) 89767) ((-701 . -648) 89717) ((-701 . -131) T) ((-701 . -25) T) ((-701 . -102) T) ((-701 . -615) 89699) ((-701 . -1104) T) ((-701 . -23) T) ((-701 . -21) T) ((-701 . -728) T) ((-701 . -1115) T) ((-701 . -1060) T) ((-701 . -1052) T) ((-701 . -616) 89644) ((-701 . -365) T) ((-701 . -1224) T) ((-701 . -924) T) ((-701 . -560) T) ((-701 . -172) T) ((-701 . -719) 89609) ((-701 . -642) 89574) ((-701 . -38) 89539) ((-701 . -455) T) ((-701 . -308) T) ((-701 . -111) 89495) ((-701 . -1054) 89460) ((-701 . -1059) 89425) ((-701 . -291) T) ((-701 . -243) T) ((-701 . -850) T) ((-701 . -799) T) ((-701 . -796) T) ((-701 . -852) T) ((-701 . -794) T) ((-701 . -793) T) ((-701 . -889) 89407) ((-701 . -1005) T) ((-701 . -1023) T) ((-701 . -1041) 89352) ((-701 . -1063) T) ((-701 . -390) T) ((-696 . -390) T) ((-696 . -1041) 89297) ((-696 . -852) T) ((-696 . -38) 89247) ((-696 . -618) 89182) ((-696 . -728) T) ((-696 . -1115) T) ((-696 . -1060) T) ((-696 . -1052) T) ((-696 . -111) 89116) ((-696 . -1054) 89066) ((-696 . -1059) 89016) ((-696 . -21) T) ((-696 . -648) 88951) ((-696 . -23) T) ((-696 . -1104) T) ((-696 . -615) 88933) ((-696 . -102) T) ((-696 . -25) T) ((-696 . -131) T) ((-696 . -650) 88883) ((-696 . -642) 88833) ((-696 . -719) 88783) ((-696 . -172) T) ((-696 . -291) T) ((-696 . -560) T) ((-696 . -166) 88765) ((-696 . -35) NIL) ((-696 . -95) NIL) ((-696 . -285) NIL) ((-696 . -496) NIL) ((-696 . -1208) NIL) ((-696 . -1205) NIL) ((-696 . -1005) NIL) ((-696 . -913) NIL) ((-696 . -616) 88673) ((-696 . -887) 88655) ((-696 . -370) NIL) ((-696 . -352) NIL) ((-696 . -1154) NIL) ((-696 . -405) NIL) ((-696 . -413) 88622) ((-696 . -372) 88589) ((-696 . -726) 88556) ((-696 . -415) 88538) ((-696 . -889) 88520) ((-696 . -1219) T) ((-696 . -403) 88502) ((-696 . -641) 88484) ((-696 . -379) 88466) ((-696 . -287) NIL) ((-696 . -310) NIL) ((-696 . -517) NIL) ((-696 . -340) 88448) ((-696 . -243) T) ((-696 . -1224) T) ((-696 . -365) T) ((-696 . -924) T) ((-696 . -455) T) ((-696 . -308) T) ((-696 . -233) NIL) ((-696 . -903) NIL) ((-696 . -231) 88430) ((-696 . -147) T) ((-696 . -145) NIL) ((-693 . -1265) T) ((-693 . -1041) 88414) ((-693 . -618) 88398) ((-693 . -615) 88380) ((-691 . -688) 88338) ((-691 . -492) 88322) ((-691 . -102) 88300) ((-691 . -1104) 88278) ((-691 . -517) 88211) ((-691 . -310) 88149) ((-691 . -615) 88081) ((-691 . -1219) T) ((-691 . -34) T) ((-691 . -57) 88039) ((-691 . -616) 88000) ((-683 . -1086) T) ((-683 . -493) 87981) ((-683 . -615) 87931) ((-683 . -618) 87912) ((-683 . -1104) T) ((-683 . -102) T) ((-683 . -93) T) ((-679 . -852) T) ((-679 . -102) T) ((-679 . -615) 87894) ((-679 . -1104) T) ((-679 . -1041) 87878) ((-679 . -618) 87862) ((-678 . -1086) T) ((-678 . -493) 87843) ((-678 . -615) 87809) ((-678 . -618) 87790) ((-678 . -1104) T) ((-678 . -102) T) ((-678 . -93) T) ((-677 . -492) 87774) ((-677 . -102) 87752) ((-677 . -1104) 87730) ((-677 . -517) 87663) ((-677 . -310) 87601) ((-677 . -615) 87533) ((-677 . -1219) T) ((-677 . -34) T) ((-674 . -852) T) ((-674 . -102) T) ((-674 . -615) 87515) ((-674 . -1104) T) ((-674 . -1041) 87499) ((-674 . -618) 87483) ((-673 . -1086) T) ((-673 . -493) 87464) ((-673 . -615) 87430) ((-673 . -618) 87411) ((-673 . -1104) T) ((-673 . -102) T) ((-673 . -93) T) ((-672 . -1126) 87356) ((-672 . -492) 87340) ((-672 . -517) 87273) ((-672 . -310) 87211) ((-672 . -1219) T) ((-672 . -34) T) ((-672 . -1056) 87151) ((-672 . -1041) 87047) ((-672 . -618) 86965) ((-672 . -415) 86949) ((-672 . -641) 86897) ((-672 . -379) 86881) ((-672 . -233) 86860) ((-672 . -903) 86819) ((-672 . -231) 86803) ((-672 . -719) 86787) ((-672 . -642) 86771) ((-672 . -650) 86745) ((-672 . -648) 86704) ((-672 . -131) T) ((-672 . -25) T) ((-672 . -102) T) ((-672 . -615) 86666) ((-672 . -1104) T) ((-672 . -23) T) ((-672 . -21) T) ((-672 . -1059) 86650) ((-672 . -1054) 86634) ((-672 . -111) 86613) ((-672 . -1052) T) ((-672 . -1060) T) ((-672 . -1115) T) ((-672 . -728) T) ((-672 . -38) 86573) ((-672 . -421) 86557) ((-672 . -746) 86541) ((-672 . -722) T) ((-672 . -763) T) ((-672 . -369) 86525) ((-666 . -376) 86504) ((-666 . -719) 86488) ((-666 . -642) 86472) ((-666 . -650) 86456) ((-666 . -648) 86425) ((-666 . -131) T) ((-666 . -25) T) ((-666 . -102) T) ((-666 . -615) 86407) ((-666 . -1104) T) ((-666 . -23) T) ((-666 . -21) T) ((-666 . -1059) 86391) ((-666 . -1054) 86375) ((-666 . -111) 86354) ((-666 . -637) 86338) ((-666 . -386) 86310) ((-666 . -618) 86287) ((-666 . -1041) 86264) ((-658 . -660) 86248) ((-658 . -38) 86218) ((-658 . -618) 86136) ((-658 . -650) 86110) ((-658 . -648) 86069) ((-658 . -728) T) ((-658 . -1115) T) ((-658 . -1060) T) ((-658 . -1052) T) ((-658 . -111) 86048) ((-658 . -1054) 86032) ((-658 . -1059) 86016) ((-658 . -21) T) ((-658 . -23) T) ((-658 . -1104) T) ((-658 . -615) 85998) ((-658 . -102) T) ((-658 . -25) T) ((-658 . -131) T) ((-658 . -642) 85968) ((-658 . -719) 85938) ((-658 . -415) 85922) ((-658 . -1041) 85818) ((-658 . -854) 85802) ((-658 . -287) 85763) ((-657 . -660) 85747) ((-657 . -38) 85717) ((-657 . -618) 85635) ((-657 . -650) 85609) ((-657 . -648) 85568) ((-657 . -728) T) ((-657 . -1115) T) ((-657 . -1060) T) ((-657 . -1052) T) ((-657 . -111) 85547) ((-657 . -1054) 85531) ((-657 . -1059) 85515) ((-657 . -21) T) ((-657 . -23) T) ((-657 . -1104) T) ((-657 . -615) 85497) ((-657 . -102) T) ((-657 . -25) T) ((-657 . -131) T) ((-657 . -642) 85467) ((-657 . -719) 85437) ((-657 . -415) 85421) ((-657 . -1041) 85317) ((-657 . -854) 85301) ((-657 . -287) 85280) ((-656 . -660) 85264) ((-656 . -38) 85234) ((-656 . -618) 85152) ((-656 . -650) 85126) ((-656 . -648) 85085) ((-656 . -728) T) ((-656 . -1115) T) ((-656 . -1060) T) ((-656 . -1052) T) ((-656 . -111) 85064) ((-656 . -1054) 85048) ((-656 . -1059) 85032) ((-656 . -21) T) ((-656 . -23) T) ((-656 . -1104) T) ((-656 . -615) 85014) ((-656 . -102) T) ((-656 . -25) T) ((-656 . -131) T) ((-656 . -642) 84984) ((-656 . -719) 84954) ((-656 . -415) 84938) ((-656 . -1041) 84834) ((-656 . -854) 84818) ((-656 . -287) 84797) ((-654 . -719) 84781) ((-654 . -642) 84765) ((-654 . -650) 84749) ((-654 . -648) 84718) ((-654 . -131) T) ((-654 . -25) T) ((-654 . -102) T) ((-654 . -615) 84700) ((-654 . -1104) T) ((-654 . -23) T) ((-654 . -21) T) ((-654 . -1059) 84684) ((-654 . -1054) 84668) ((-654 . -111) 84647) ((-654 . -793) 84626) ((-654 . -794) 84605) ((-654 . -852) 84584) ((-654 . -796) 84563) ((-654 . -799) 84542) ((-651 . -1104) T) ((-651 . -615) 84524) ((-651 . -102) T) ((-651 . -1041) 84508) ((-651 . -618) 84492) ((-649 . -697) 84476) ((-649 . -107) 84460) ((-649 . -34) T) ((-649 . -1219) T) ((-649 . -615) 84392) ((-649 . -310) 84330) ((-649 . -517) 84263) ((-649 . -1104) 84241) ((-649 . -102) 84219) ((-649 . -492) 84203) ((-649 . -151) 84187) ((-649 . -616) 84148) ((-649 . -235) 84132) ((-647 . -1086) T) ((-647 . -493) 84113) ((-647 . -615) 84066) ((-647 . -618) 84047) ((-647 . -1104) T) ((-647 . -102) T) ((-647 . -93) T) ((-643 . -668) 84031) ((-643 . -1258) 84015) ((-643 . -1013) 83999) ((-643 . -1152) 83983) ((-643 . -852) 83962) ((-643 . -374) 83946) ((-643 . -653) 83930) ((-643 . -289) 83907) ((-643 . -287) 83884) ((-643 . -606) 83861) ((-643 . -616) 83822) ((-643 . -492) 83806) ((-643 . -102) 83756) ((-643 . -1104) 83706) ((-643 . -517) 83639) ((-643 . -310) 83577) ((-643 . -615) 83489) ((-643 . -1219) T) ((-643 . -34) T) ((-643 . -151) 83473) ((-643 . -283) 83457) ((-643 . -823) 83436) ((-635 . -746) 83420) ((-635 . -722) T) ((-635 . -763) T) ((-635 . -111) 83399) ((-635 . -1054) 83383) ((-635 . -1059) 83367) ((-635 . -21) T) ((-635 . -648) 83336) ((-635 . -23) T) ((-635 . -1104) T) ((-635 . -615) 83305) ((-635 . -102) T) ((-635 . -25) T) ((-635 . -131) T) ((-635 . -650) 83289) ((-635 . -642) 83273) ((-635 . -719) 83257) ((-635 . -421) 83222) ((-635 . -369) 83154) ((-634 . -1196) 83129) ((-634 . -229) 83075) ((-634 . -107) 83021) ((-634 . -310) 82872) ((-634 . -517) 82716) ((-634 . -492) 82647) ((-634 . -151) 82593) ((-634 . -616) NIL) ((-634 . -235) 82539) ((-634 . -612) 82514) ((-634 . -289) 82489) ((-634 . -287) 82464) ((-634 . -102) T) ((-634 . -1104) T) ((-634 . -615) 82446) ((-634 . -1219) T) ((-634 . -34) T) ((-634 . -606) 82421) ((-629 . -476) T) ((-629 . -1115) T) ((-629 . -102) T) ((-629 . -615) 82403) ((-629 . -1104) T) ((-629 . -728) T) ((-628 . -1086) T) ((-628 . -493) 82384) ((-628 . -615) 82350) ((-628 . -618) 82331) ((-628 . -1104) T) ((-628 . -102) T) ((-628 . -93) T) ((-625 . -231) 82315) ((-625 . -903) 82274) ((-625 . -1052) T) ((-625 . -1060) T) ((-625 . -1115) T) ((-625 . -728) T) ((-625 . -21) T) ((-625 . -648) 82246) ((-625 . -23) T) ((-625 . -1104) T) ((-625 . -615) 82228) ((-625 . -102) T) ((-625 . -25) T) ((-625 . -131) T) ((-625 . -650) 82215) ((-625 . -618) 82110) ((-625 . -233) 82089) ((-625 . -560) T) ((-625 . -291) T) ((-625 . -172) T) ((-625 . -719) 82076) ((-625 . -642) 82063) ((-625 . -1059) 82050) ((-625 . -1054) 82037) ((-625 . -111) 82022) ((-625 . -38) 82009) ((-625 . -616) 81986) ((-625 . -415) 81970) ((-625 . -1041) 81853) ((-625 . -147) 81832) ((-625 . -145) 81811) ((-625 . -308) 81790) ((-625 . -455) 81769) ((-625 . -924) 81748) ((-621 . -38) 81732) ((-621 . -618) 81701) ((-621 . -650) 81675) ((-621 . -648) 81634) ((-621 . -728) T) ((-621 . -1115) T) ((-621 . -1060) T) ((-621 . -1052) T) ((-621 . -111) 81613) ((-621 . -1054) 81597) ((-621 . -1059) 81581) ((-621 . -21) T) ((-621 . -23) T) ((-621 . -1104) T) ((-621 . -615) 81563) ((-621 . -102) T) ((-621 . -25) T) ((-621 . -131) T) ((-621 . -642) 81547) ((-621 . -719) 81531) ((-621 . -850) 81510) ((-621 . -799) 81489) ((-621 . -796) 81468) ((-621 . -852) 81447) ((-621 . -794) 81426) ((-621 . -793) 81405) ((-619 . -970) T) ((-619 . -102) T) ((-619 . -615) 81387) ((-619 . -1104) T) ((-613 . -132) T) ((-613 . -102) T) ((-613 . -615) 81369) ((-613 . -1104) T) ((-613 . -852) T) ((-613 . -887) 81353) ((-613 . -616) 81214) ((-610 . -367) 81154) ((-610 . -102) T) ((-610 . -615) 81136) ((-610 . -1104) T) ((-610 . -1196) 81112) ((-610 . -229) 81059) ((-610 . -107) 81006) ((-610 . -310) 80801) ((-610 . -517) 80584) ((-610 . -492) 80518) ((-610 . -151) 80465) ((-610 . -616) NIL) ((-610 . -235) 80412) ((-610 . -612) 80388) ((-610 . -289) 80364) ((-610 . -287) 80340) ((-610 . -1219) T) ((-610 . -34) T) ((-610 . -606) 80316) ((-609 . -746) 80300) ((-609 . -722) T) ((-609 . -763) T) ((-609 . -111) 80279) ((-609 . -1054) 80263) ((-609 . -1059) 80247) ((-609 . -21) T) ((-609 . -648) 80216) ((-609 . -23) T) ((-609 . -1104) T) ((-609 . -615) 80185) ((-609 . -102) T) ((-609 . -25) T) ((-609 . -131) T) ((-609 . -650) 80169) ((-609 . -642) 80153) ((-609 . -719) 80137) ((-609 . -421) 80102) ((-609 . -369) 80034) ((-608 . -1086) T) ((-608 . -493) 80015) ((-608 . -615) 79965) ((-608 . -618) 79946) ((-608 . -1104) T) ((-608 . -102) T) ((-608 . -93) T) ((-607 . -615) 79913) ((-607 . -493) 79895) ((-607 . -618) 79877) ((-604 . -1268) 79861) ((-604 . -374) 79845) ((-604 . -852) 79824) ((-604 . -151) 79808) ((-604 . -34) T) ((-604 . -1219) T) ((-604 . -615) 79720) ((-604 . -310) 79658) ((-604 . -517) 79591) ((-604 . -1104) 79541) ((-604 . -102) 79491) ((-604 . -492) 79475) ((-604 . -616) 79436) ((-604 . -606) 79413) ((-604 . -287) 79390) ((-604 . -289) 79367) ((-604 . -653) 79351) ((-604 . -19) 79335) ((-603 . -615) 79317) ((-599 . -1052) T) ((-599 . -1060) T) ((-599 . -1115) T) ((-599 . -728) T) ((-599 . -21) T) ((-599 . -648) 79276) ((-599 . -23) T) ((-599 . -1104) T) ((-599 . -615) 79258) ((-599 . -102) T) ((-599 . -25) T) ((-599 . -131) T) ((-599 . -650) 79232) ((-599 . -618) 79190) ((-599 . -111) 79143) ((-599 . -1054) 79103) ((-599 . -1059) 79063) ((-599 . -560) 79042) ((-599 . -291) 79021) ((-599 . -172) 79000) ((-599 . -719) 78973) ((-599 . -642) 78946) ((-599 . -38) 78919) ((-598 . -1248) 78896) ((-598 . -47) 78873) ((-598 . -38) 78770) ((-598 . -642) 78667) ((-598 . -719) 78564) ((-598 . -618) 78446) ((-598 . -291) 78425) ((-598 . -560) 78404) ((-598 . -111) 78273) ((-598 . -1054) 78156) ((-598 . -1059) 78039) ((-598 . -172) 77990) ((-598 . -147) 77969) ((-598 . -145) 77948) ((-598 . -650) 77873) ((-598 . -648) 77783) ((-598 . -976) 77752) ((-598 . -903) 77665) ((-598 . -287) 77650) ((-598 . -1052) T) ((-598 . -1060) T) ((-598 . -1115) T) ((-598 . -728) T) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1104) T) ((-598 . -615) 77632) ((-598 . -102) T) ((-598 . -25) T) ((-598 . -131) T) ((-598 . -233) 77591) ((-596 . -1147) T) ((-596 . -374) 77573) ((-596 . -852) T) ((-596 . -151) 77555) ((-596 . -34) T) ((-596 . -1219) T) ((-596 . -615) 77537) ((-596 . -310) NIL) ((-596 . -517) NIL) ((-596 . -1104) T) ((-596 . -102) T) ((-596 . -492) 77519) ((-596 . -616) NIL) ((-596 . -606) 77494) ((-596 . -287) 77469) ((-596 . -289) 77444) ((-596 . -653) 77426) ((-596 . -19) 77408) ((-595 . -1086) T) ((-595 . -493) 77389) ((-595 . -615) 77355) ((-595 . -618) 77336) ((-595 . -1104) T) ((-595 . -102) T) ((-595 . -93) T) ((-589 . -615) 77318) ((-586 . -719) 77293) ((-586 . -642) 77268) ((-586 . -650) 77243) ((-586 . -648) 77203) ((-586 . -131) T) ((-586 . -25) T) ((-586 . -102) T) ((-586 . -615) 77185) ((-586 . -1104) T) ((-586 . -23) T) ((-586 . -21) T) ((-586 . -1059) 77160) ((-586 . -1054) 77135) ((-586 . -111) 77103) ((-586 . -1041) 77087) ((-586 . -618) 77071) ((-584 . -352) T) ((-584 . -1154) T) ((-584 . -370) T) ((-584 . -145) T) ((-584 . -365) T) ((-584 . -1224) T) ((-584 . -924) T) ((-584 . -560) T) ((-584 . -172) T) ((-584 . -618) 77021) ((-584 . -719) 76986) ((-584 . -642) 76951) ((-584 . -38) 76916) ((-584 . -455) T) ((-584 . -308) T) ((-584 . -111) 76872) ((-584 . -1054) 76837) ((-584 . -1059) 76802) ((-584 . -648) 76752) ((-584 . -650) 76717) ((-584 . -291) T) ((-584 . -243) T) ((-584 . -405) T) ((-584 . -1052) T) ((-584 . -1060) T) ((-584 . -1115) T) ((-584 . -728) T) ((-584 . -21) T) ((-584 . -23) T) ((-584 . -1104) T) ((-584 . -615) 76699) ((-584 . -102) T) ((-584 . -25) T) ((-584 . -131) T) ((-584 . -233) T) ((-584 . -330) 76686) ((-584 . -147) 76668) ((-584 . -1041) 76655) ((-584 . -1277) 76642) ((-584 . -1288) 76629) ((-584 . -616) 76611) ((-583 . -872) 76595) ((-583 . -924) T) ((-583 . -560) T) ((-583 . -291) T) ((-583 . -172) T) ((-583 . -618) 76567) ((-583 . -719) 76554) ((-583 . -642) 76541) ((-583 . -1059) 76528) ((-583 . -1054) 76515) ((-583 . -111) 76500) ((-583 . -38) 76487) ((-583 . -455) T) ((-583 . -308) T) ((-583 . -1052) T) ((-583 . -1060) T) ((-583 . -1115) T) ((-583 . -728) T) ((-583 . -21) T) ((-583 . -648) 76459) ((-583 . -23) T) ((-583 . -1104) T) ((-583 . -615) 76441) ((-583 . -102) T) ((-583 . -25) T) ((-583 . -131) T) ((-583 . -650) 76428) ((-583 . -147) T) ((-582 . -1104) T) ((-582 . -615) 76410) ((-582 . -102) T) ((-581 . -1104) T) ((-581 . -615) 76392) ((-581 . -102) T) ((-580 . -579) T) ((-580 . -863) T) ((-580 . -173) T) ((-580 . -530) T) ((-580 . -615) 76374) ((-574 . -558) 76358) ((-574 . -35) T) ((-574 . -95) T) ((-574 . -285) T) ((-574 . -496) T) ((-574 . -1208) T) ((-574 . -1205) T) ((-574 . -1041) 76340) ((-574 . -1005) T) ((-574 . -852) T) ((-574 . -560) T) ((-574 . -291) T) ((-574 . -172) T) ((-574 . -618) 76312) ((-574 . -719) 76299) ((-574 . -642) 76286) ((-574 . -650) 76273) ((-574 . -648) 76245) ((-574 . -131) T) ((-574 . -25) T) ((-574 . -102) T) ((-574 . -615) 76227) ((-574 . -1104) T) ((-574 . -23) T) ((-574 . -21) T) ((-574 . -1059) 76214) ((-574 . -1054) 76201) ((-574 . -111) 76186) ((-574 . -1052) T) ((-574 . -1060) T) ((-574 . -1115) T) ((-574 . -728) T) ((-574 . -38) 76173) ((-574 . -455) T) ((-554 . -1196) 76152) ((-554 . -229) 76102) ((-554 . -107) 76052) ((-554 . -310) 75856) ((-554 . -517) 75648) ((-554 . -492) 75585) ((-554 . -151) 75535) ((-554 . -616) NIL) ((-554 . -235) 75485) ((-554 . -612) 75464) ((-554 . -289) 75443) ((-554 . -287) 75422) ((-554 . -102) T) ((-554 . -1104) T) ((-554 . -615) 75404) ((-554 . -1219) T) ((-554 . -34) T) ((-554 . -606) 75383) ((-553 . -846) T) ((-553 . -852) T) ((-553 . -1104) T) ((-553 . -615) 75365) ((-553 . -102) T) ((-553 . -370) T) ((-552 . -846) T) ((-552 . -852) T) ((-552 . -1104) T) ((-552 . -615) 75347) ((-552 . -102) T) ((-552 . -370) T) ((-551 . -846) T) ((-551 . -852) T) ((-551 . -1104) T) ((-551 . -615) 75329) ((-551 . -102) T) ((-551 . -370) T) ((-550 . -846) T) ((-550 . -852) T) ((-550 . -1104) T) ((-550 . -615) 75311) ((-550 . -102) T) ((-550 . -370) T) ((-549 . -548) T) ((-549 . -1224) T) ((-549 . -1154) T) ((-549 . -1041) 75293) ((-549 . -616) 75192) ((-549 . -1023) T) ((-549 . -889) 75174) ((-549 . -850) T) ((-549 . -799) T) ((-549 . -796) T) ((-549 . -852) T) ((-549 . -794) T) ((-549 . -793) T) ((-549 . -822) T) ((-549 . -641) 75156) ((-549 . -924) T) ((-549 . -560) T) ((-549 . -291) T) ((-549 . -172) T) ((-549 . -618) 75128) ((-549 . -719) 75115) ((-549 . -642) 75102) ((-549 . -1059) 75089) ((-549 . -1054) 75076) ((-549 . -111) 75061) ((-549 . -38) 75048) ((-549 . -455) T) ((-549 . -308) T) ((-549 . -233) T) ((-549 . -143) T) ((-549 . -1052) T) ((-549 . -1060) T) ((-549 . -1115) T) ((-549 . -728) T) ((-549 . -21) T) ((-549 . -648) 75020) ((-549 . -23) T) ((-549 . -1104) T) ((-549 . -615) 75002) ((-549 . -102) T) ((-549 . -25) T) ((-549 . -131) T) ((-549 . -650) 74989) ((-549 . -147) T) ((-549 . -823) T) ((-538 . -1107) 74941) ((-538 . -102) T) ((-538 . -615) 74923) ((-538 . -1104) T) ((-538 . -620) 74826) ((-538 . -616) 74807) ((-536 . -769) 74789) ((-536 . -530) T) ((-536 . -173) T) ((-536 . -863) T) ((-536 . -579) T) ((-536 . -615) 74771) ((-534 . -795) T) ((-534 . -131) T) ((-534 . -25) T) ((-534 . -102) T) ((-534 . -615) 74753) ((-534 . -1104) T) ((-534 . -23) T) ((-534 . -794) T) ((-534 . -852) T) ((-534 . -796) T) ((-534 . -799) T) ((-534 . -512) 74730) ((-532 . -530) T) ((-532 . -173) T) ((-532 . -615) 74712) ((-528 . -1086) T) ((-528 . -493) 74693) ((-528 . -615) 74659) ((-528 . -618) 74640) ((-528 . -1104) T) ((-528 . -102) T) ((-528 . -93) T) ((-527 . -1086) T) ((-527 . -493) 74621) ((-527 . -615) 74587) ((-527 . -618) 74568) ((-527 . -1104) T) ((-527 . -102) T) ((-527 . -93) T) ((-526 . -688) 74518) ((-526 . -492) 74502) ((-526 . -102) 74480) ((-526 . -1104) 74458) ((-526 . -517) 74391) ((-526 . -310) 74329) ((-526 . -615) 74261) ((-526 . -1219) T) ((-526 . -34) T) ((-526 . -57) 74211) ((-523 . -668) 74195) ((-523 . -1258) 74179) ((-523 . -1013) 74163) ((-523 . -1152) 74147) ((-523 . -852) 74126) ((-523 . -374) 74110) ((-523 . -653) 74094) ((-523 . -289) 74071) ((-523 . -287) 74048) ((-523 . -606) 74025) ((-523 . -616) 73986) ((-523 . -492) 73970) ((-523 . -102) 73920) ((-523 . -1104) 73870) ((-523 . -517) 73803) ((-523 . -310) 73741) ((-523 . -615) 73653) ((-523 . -1219) T) ((-523 . -34) T) ((-523 . -151) 73637) ((-523 . -283) 73621) ((-522 . -57) 73595) ((-522 . -34) T) ((-522 . -1219) T) ((-522 . -615) 73527) ((-522 . -310) 73465) ((-522 . -517) 73398) ((-522 . -1104) 73376) ((-522 . -102) 73354) ((-522 . -492) 73338) ((-521 . -330) 73315) ((-521 . -233) T) ((-521 . -370) T) ((-521 . -1154) T) ((-521 . -352) T) ((-521 . -147) 73297) ((-521 . -618) 73227) ((-521 . -650) 73172) ((-521 . -648) 73102) ((-521 . -131) T) ((-521 . -25) T) ((-521 . -102) T) ((-521 . -615) 73084) ((-521 . -1104) T) ((-521 . -23) T) ((-521 . -21) T) ((-521 . -728) T) ((-521 . -1115) T) ((-521 . -1060) T) ((-521 . -1052) T) ((-521 . -365) T) ((-521 . -1224) T) ((-521 . -924) T) ((-521 . -560) T) ((-521 . -172) T) ((-521 . -719) 73029) ((-521 . -642) 72974) ((-521 . -38) 72939) ((-521 . -455) T) ((-521 . -308) T) ((-521 . -111) 72868) ((-521 . -1054) 72813) ((-521 . -1059) 72758) ((-521 . -291) T) ((-521 . -243) T) ((-521 . -405) T) ((-521 . -145) T) ((-521 . -1041) 72735) ((-521 . -1277) 72712) ((-521 . -1288) 72689) ((-520 . -1086) T) ((-520 . -493) 72670) ((-520 . -615) 72636) ((-520 . -618) 72617) ((-520 . -1104) T) ((-520 . -102) T) ((-520 . -93) T) ((-519 . -19) 72601) ((-519 . -653) 72585) ((-519 . -289) 72562) ((-519 . -287) 72539) ((-519 . -606) 72516) ((-519 . -616) 72477) ((-519 . -492) 72461) ((-519 . -102) 72411) ((-519 . -1104) 72361) ((-519 . -517) 72294) ((-519 . -310) 72232) ((-519 . -615) 72144) ((-519 . -1219) T) ((-519 . -34) T) ((-519 . -151) 72128) ((-519 . -852) 72107) ((-519 . -374) 72091) ((-519 . -283) 72075) ((-518 . -324) 72054) ((-518 . -618) 72038) ((-518 . -1041) 72022) ((-518 . -23) T) ((-518 . -1104) T) ((-518 . -615) 72004) ((-518 . -102) T) ((-518 . -25) T) ((-518 . -131) T) ((-515 . -795) T) ((-515 . -131) T) ((-515 . -25) T) ((-515 . -102) T) ((-515 . -615) 71986) ((-515 . -1104) T) ((-515 . -23) T) ((-515 . -794) T) ((-515 . -852) T) ((-515 . -796) T) ((-515 . -799) T) ((-515 . -512) 71965) ((-514 . -794) T) ((-514 . -852) T) ((-514 . -796) T) ((-514 . -25) T) ((-514 . -102) T) ((-514 . -615) 71947) ((-514 . -1104) T) ((-514 . -23) T) ((-514 . -512) 71926) ((-513 . -512) 71905) ((-513 . -102) T) ((-513 . -615) 71887) ((-513 . -1104) T) ((-511 . -23) T) ((-511 . -1104) T) ((-511 . -615) 71869) ((-511 . -102) T) ((-511 . -25) T) ((-511 . -512) 71848) ((-510 . -21) T) ((-510 . -648) 71830) ((-510 . -23) T) ((-510 . -1104) T) ((-510 . -615) 71812) ((-510 . -102) T) ((-510 . -25) T) ((-510 . -131) T) ((-510 . -512) 71791) ((-509 . -1104) T) ((-509 . -615) 71757) ((-509 . -102) T) ((-507 . -1104) T) ((-507 . -615) 71739) ((-507 . -102) T) ((-505 . -852) T) ((-505 . -102) T) ((-505 . -615) 71721) ((-505 . -1104) T) ((-503 . -123) T) ((-503 . -374) 71703) ((-503 . -852) T) ((-503 . -151) 71685) ((-503 . -34) T) ((-503 . -1219) T) ((-503 . -615) 71667) ((-503 . -310) NIL) ((-503 . -517) NIL) ((-503 . -1104) T) ((-503 . -492) 71649) ((-503 . -616) 71631) ((-503 . -606) 71606) ((-503 . -287) 71581) ((-503 . -289) 71556) ((-503 . -653) 71538) ((-503 . -19) 71520) ((-503 . -102) T) ((-503 . -664) T) ((-500 . -57) 71470) ((-500 . -34) T) ((-500 . -1219) T) ((-500 . -615) 71402) ((-500 . -310) 71340) ((-500 . -517) 71273) ((-500 . -1104) 71251) ((-500 . -102) 71229) ((-500 . -492) 71213) ((-499 . -19) 71197) ((-499 . -653) 71181) ((-499 . -289) 71158) ((-499 . -287) 71135) ((-499 . -606) 71112) ((-499 . -616) 71073) ((-499 . -492) 71057) ((-499 . -102) 71007) ((-499 . -1104) 70957) ((-499 . -517) 70890) ((-499 . -310) 70828) ((-499 . -615) 70740) ((-499 . -1219) T) ((-499 . -34) T) ((-499 . -151) 70724) ((-499 . -852) 70703) ((-499 . -374) 70687) ((-498 . -299) T) ((-498 . -102) T) ((-498 . -615) 70669) ((-498 . -1104) T) ((-498 . -618) 70602) ((-498 . -1041) 70545) ((-498 . -517) 70511) ((-498 . -310) 70498) ((-498 . -27) T) ((-498 . -1005) T) ((-498 . -243) T) ((-498 . -111) 70454) ((-498 . -1054) 70419) ((-498 . -1059) 70384) ((-498 . -291) T) ((-498 . -719) 70349) ((-498 . -642) 70314) ((-498 . -650) 70279) ((-498 . -648) 70229) ((-498 . -131) T) ((-498 . -25) T) ((-498 . -23) T) ((-498 . -21) T) ((-498 . -1052) T) ((-498 . -1060) T) ((-498 . -1115) T) ((-498 . -728) T) ((-498 . -38) 70194) ((-498 . -308) T) ((-498 . -455) T) ((-498 . -172) T) ((-498 . -560) T) ((-498 . -924) T) ((-498 . -1224) T) ((-498 . -365) T) ((-498 . -641) 70154) ((-498 . -1023) T) ((-498 . -616) 70099) ((-498 . -147) T) ((-498 . -233) T) ((-494 . -1104) T) ((-494 . -615) 70065) ((-494 . -102) T) ((-490 . -994) 70047) ((-490 . -1154) T) ((-490 . -618) 69997) ((-490 . -1041) 69957) ((-490 . -616) 69887) ((-490 . -1023) T) ((-490 . -913) NIL) ((-490 . -887) 69869) ((-490 . -850) T) ((-490 . -799) T) ((-490 . -796) T) ((-490 . -852) T) ((-490 . -794) T) ((-490 . -793) T) ((-490 . -822) T) ((-490 . -889) 69851) ((-490 . -1219) T) ((-490 . -403) 69833) ((-490 . -641) 69815) ((-490 . -379) 69797) ((-490 . -287) NIL) ((-490 . -310) NIL) ((-490 . -517) NIL) ((-490 . -340) 69779) ((-490 . -243) T) ((-490 . -111) 69713) ((-490 . -1054) 69663) ((-490 . -1059) 69613) ((-490 . -291) T) ((-490 . -719) 69563) ((-490 . -642) 69513) ((-490 . -650) 69463) ((-490 . -648) 69413) ((-490 . -38) 69363) ((-490 . -308) T) ((-490 . -455) T) ((-490 . -172) T) ((-490 . -560) T) ((-490 . -924) T) ((-490 . -1224) T) ((-490 . -365) T) ((-490 . -233) T) ((-490 . -903) NIL) ((-490 . -231) 69345) ((-490 . -147) T) ((-490 . -145) NIL) ((-490 . -131) T) ((-490 . -25) T) ((-490 . -102) T) ((-490 . -615) 69286) ((-490 . -1104) T) ((-490 . -23) T) ((-490 . -21) T) ((-490 . -1052) T) ((-490 . -1060) T) ((-490 . -1115) T) ((-490 . -728) T) ((-488 . -338) 69255) ((-488 . -131) T) ((-488 . -25) T) ((-488 . -102) T) ((-488 . -615) 69237) ((-488 . -1104) T) ((-488 . -23) T) ((-488 . -648) 69219) ((-488 . -21) T) ((-487 . -971) 69203) ((-487 . -492) 69187) ((-487 . -102) 69165) ((-487 . -1104) 69143) ((-487 . -517) 69076) ((-487 . -310) 69014) ((-487 . -615) 68946) ((-487 . -1219) T) ((-487 . -34) T) ((-487 . -107) 68930) ((-486 . -1086) T) ((-486 . -493) 68911) ((-486 . -615) 68877) ((-486 . -618) 68858) ((-486 . -1104) T) ((-486 . -102) T) ((-486 . -93) T) ((-485 . -238) 68837) ((-485 . -1277) 68807) ((-485 . -793) 68786) ((-485 . -850) 68765) ((-485 . -799) 68716) ((-485 . -796) 68667) ((-485 . -852) 68618) ((-485 . -794) 68569) ((-485 . -795) 68548) ((-485 . -289) 68525) ((-485 . -287) 68502) ((-485 . -492) 68486) ((-485 . -517) 68419) ((-485 . -310) 68357) ((-485 . -1219) T) ((-485 . -34) T) ((-485 . -606) 68334) ((-485 . -1041) 68161) ((-485 . -618) 67891) ((-485 . -415) 67860) ((-485 . -641) 67766) ((-485 . -379) 67735) ((-485 . -370) 67714) ((-485 . -233) 67666) ((-485 . -903) 67598) ((-485 . -231) 67567) ((-485 . -111) 67457) ((-485 . -1054) 67354) ((-485 . -1059) 67251) ((-485 . -172) 67230) ((-485 . -615) 66961) ((-485 . -719) 66903) ((-485 . -642) 66845) ((-485 . -650) 66693) ((-485 . -648) 66443) ((-485 . -131) 66313) ((-485 . -23) 66183) ((-485 . -21) 66093) ((-485 . -1052) 66023) ((-485 . -1060) 65953) ((-485 . -1115) 65863) ((-485 . -728) 65773) ((-485 . -38) 65743) ((-485 . -1104) 65533) ((-485 . -102) 65323) ((-485 . -25) 65174) ((-484 . -953) 65119) ((-484 . -618) 64904) ((-484 . -1041) 64780) ((-484 . -1224) 64759) ((-484 . -913) 64738) ((-484 . -889) NIL) ((-484 . -903) 64715) ((-484 . -517) 64658) ((-484 . -455) 64609) ((-484 . -641) 64557) ((-484 . -379) 64541) ((-484 . -47) 64498) ((-484 . -38) 64347) ((-484 . -642) 64196) ((-484 . -719) 64045) ((-484 . -291) 63976) ((-484 . -560) 63907) ((-484 . -111) 63736) ((-484 . -1054) 63579) ((-484 . -1059) 63422) ((-484 . -172) 63333) ((-484 . -147) 63312) ((-484 . -145) 63291) ((-484 . -650) 63216) ((-484 . -648) 63126) ((-484 . -131) T) ((-484 . -25) T) ((-484 . -102) T) ((-484 . -615) 63108) ((-484 . -1104) T) ((-484 . -23) T) ((-484 . -21) T) ((-484 . -1052) T) ((-484 . -1060) T) ((-484 . -1115) T) ((-484 . -728) T) ((-484 . -415) 63092) ((-484 . -327) 63049) ((-484 . -310) 63036) ((-484 . -616) 62897) ((-482 . -1196) 62876) ((-482 . -229) 62826) ((-482 . -107) 62776) ((-482 . -310) 62580) ((-482 . -517) 62372) ((-482 . -492) 62309) ((-482 . -151) 62259) ((-482 . -616) NIL) ((-482 . -235) 62209) ((-482 . -612) 62188) ((-482 . -289) 62167) ((-482 . -287) 62146) ((-482 . -102) T) ((-482 . -1104) T) ((-482 . -615) 62128) ((-482 . -1219) T) ((-482 . -34) T) ((-482 . -606) 62107) ((-481 . -1086) T) ((-481 . -493) 62088) ((-481 . -615) 62054) ((-481 . -618) 62035) ((-481 . -1104) T) ((-481 . -102) T) ((-481 . -93) T) ((-480 . -365) T) ((-480 . -1224) T) ((-480 . -924) T) ((-480 . -560) T) ((-480 . -172) T) ((-480 . -618) 61985) ((-480 . -719) 61950) ((-480 . -642) 61915) ((-480 . -38) 61880) ((-480 . -455) T) ((-480 . -308) T) ((-480 . -650) 61845) ((-480 . -648) 61795) ((-480 . -728) T) ((-480 . -1115) T) ((-480 . -1060) T) ((-480 . -1052) T) ((-480 . -111) 61751) ((-480 . -1054) 61716) ((-480 . -1059) 61681) ((-480 . -21) T) ((-480 . -23) T) ((-480 . -1104) T) ((-480 . -615) 61633) ((-480 . -102) T) ((-480 . -25) T) ((-480 . -131) T) ((-480 . -291) T) ((-480 . -243) T) ((-480 . -147) T) ((-480 . -1041) 61593) ((-480 . -1023) T) ((-480 . -616) 61515) ((-479 . -1214) 61484) ((-479 . -615) 61446) ((-479 . -151) 61430) ((-479 . -34) T) ((-479 . -1219) T) ((-479 . -310) 61368) ((-479 . -517) 61301) ((-479 . -1104) T) ((-479 . -102) T) ((-479 . -492) 61285) ((-479 . -616) 61246) ((-479 . -979) 61215) ((-478 . -1196) 61194) ((-478 . -229) 61144) ((-478 . -107) 61094) ((-478 . -310) 60898) ((-478 . -517) 60690) ((-478 . -492) 60627) ((-478 . -151) 60577) ((-478 . -616) NIL) ((-478 . -235) 60527) ((-478 . -612) 60506) ((-478 . -289) 60485) ((-478 . -287) 60464) ((-478 . -102) T) ((-478 . -1104) T) ((-478 . -615) 60446) ((-478 . -1219) T) ((-478 . -34) T) ((-478 . -606) 60425) ((-477 . -1252) 60409) ((-477 . -233) 60361) ((-477 . -287) 60346) ((-477 . -903) 60252) ((-477 . -976) 60214) ((-477 . -38) 60055) ((-477 . -111) 59876) ((-477 . -1054) 59711) ((-477 . -1059) 59546) ((-477 . -648) 59428) ((-477 . -650) 59325) ((-477 . -642) 59166) ((-477 . -719) 59007) ((-477 . -618) 58833) ((-477 . -145) 58812) ((-477 . -147) 58791) ((-477 . -47) 58761) ((-477 . -1248) 58731) ((-477 . -35) 58697) ((-477 . -95) 58663) ((-477 . -285) 58629) ((-477 . -496) 58595) ((-477 . -1208) 58561) ((-477 . -1205) 58527) ((-477 . -1005) 58493) ((-477 . -243) 58472) ((-477 . -291) 58423) ((-477 . -131) T) ((-477 . -25) T) ((-477 . -102) T) ((-477 . -615) 58405) ((-477 . -1104) T) ((-477 . -23) T) ((-477 . -21) T) ((-477 . -1052) T) ((-477 . -1060) T) ((-477 . -1115) T) ((-477 . -728) T) ((-477 . -308) 58384) ((-477 . -455) 58363) ((-477 . -172) 58294) ((-477 . -560) 58245) ((-477 . -924) 58224) ((-477 . -1224) 58203) ((-477 . -365) 58182) ((-471 . -1104) T) ((-471 . -615) 58164) ((-471 . -102) T) ((-466 . -979) 58133) ((-466 . -616) 58094) ((-466 . -492) 58078) ((-466 . -102) T) ((-466 . -1104) T) ((-466 . -517) 58011) ((-466 . -310) 57949) ((-466 . -615) 57911) ((-466 . -1219) T) ((-466 . -34) T) ((-466 . -151) 57895) ((-464 . -719) 57866) ((-464 . -642) 57837) ((-464 . -650) 57808) ((-464 . -648) 57764) ((-464 . -131) T) ((-464 . -25) T) ((-464 . -102) T) ((-464 . -615) 57746) ((-464 . -1104) T) ((-464 . -23) T) ((-464 . -21) T) ((-464 . -1059) 57717) ((-464 . -1054) 57688) ((-464 . -111) 57649) ((-457 . -953) 57616) ((-457 . -618) 57401) ((-457 . -1041) 57277) ((-457 . -1224) 57256) ((-457 . -913) 57235) ((-457 . -889) NIL) ((-457 . -903) 57212) ((-457 . -517) 57155) ((-457 . -455) 57106) ((-457 . -641) 57054) ((-457 . -379) 57038) ((-457 . -47) 57017) ((-457 . -38) 56866) ((-457 . -642) 56715) ((-457 . -719) 56564) ((-457 . -291) 56495) ((-457 . -560) 56426) ((-457 . -111) 56255) ((-457 . -1054) 56098) ((-457 . -1059) 55941) ((-457 . -172) 55852) ((-457 . -147) 55831) ((-457 . -145) 55810) ((-457 . -650) 55735) ((-457 . -648) 55645) ((-457 . -131) T) ((-457 . -25) T) ((-457 . -102) T) ((-457 . -615) 55627) ((-457 . -1104) T) ((-457 . -23) T) ((-457 . -21) T) ((-457 . -1052) T) ((-457 . -1060) T) ((-457 . -1115) T) ((-457 . -728) T) ((-457 . -415) 55611) ((-457 . -327) 55590) ((-457 . -310) 55577) ((-457 . -616) 55438) ((-456 . -421) 55408) ((-456 . -746) 55378) ((-456 . -722) T) ((-456 . -763) T) ((-456 . -111) 55341) ((-456 . -1054) 55311) ((-456 . -1059) 55281) ((-456 . -21) T) ((-456 . -648) 55196) ((-456 . -23) T) ((-456 . -1104) T) ((-456 . -615) 55178) ((-456 . -102) T) ((-456 . -25) T) ((-456 . -131) T) ((-456 . -650) 55108) ((-456 . -642) 55078) ((-456 . -719) 55048) ((-456 . -369) 55018) ((-442 . -1104) T) ((-442 . -615) 55000) ((-442 . -102) T) ((-441 . -1104) T) ((-441 . -615) 54982) ((-441 . -102) T) ((-440 . -367) 54956) ((-440 . -102) T) ((-440 . -615) 54938) ((-440 . -1104) T) ((-439 . -1104) T) ((-439 . -615) 54920) ((-439 . -102) T) ((-437 . -615) 54902) ((-432 . -38) 54886) ((-432 . -618) 54855) ((-432 . -650) 54829) ((-432 . -648) 54788) ((-432 . -728) T) ((-432 . -1115) T) ((-432 . -1060) T) ((-432 . -1052) T) ((-432 . -111) 54767) ((-432 . -1054) 54751) ((-432 . -1059) 54735) ((-432 . -21) T) ((-432 . -23) T) ((-432 . -1104) T) ((-432 . -615) 54717) ((-432 . -102) T) ((-432 . -25) T) ((-432 . -131) T) ((-432 . -642) 54701) ((-432 . -719) 54685) ((-418 . -728) T) ((-418 . -1104) T) ((-418 . -615) 54667) ((-418 . -102) T) ((-418 . -1115) T) ((-416 . -476) T) ((-416 . -1115) T) ((-416 . -102) T) ((-416 . -615) 54649) ((-416 . -1104) T) ((-416 . -728) T) ((-410 . -994) 54633) ((-410 . -1154) 54611) ((-410 . -1041) 54477) ((-410 . -618) 54375) ((-410 . -616) 54182) ((-410 . -1023) 54160) ((-410 . -913) 54139) ((-410 . -887) 54123) ((-410 . -850) 54102) ((-410 . -799) 54081) ((-410 . -796) 54060) ((-410 . -852) 54011) ((-410 . -794) 53990) ((-410 . -793) 53969) ((-410 . -822) 53948) ((-410 . -889) 53873) ((-410 . -1219) T) ((-410 . -403) 53857) ((-410 . -641) 53805) ((-410 . -379) 53789) ((-410 . -287) 53747) ((-410 . -310) 53712) ((-410 . -517) 53624) ((-410 . -340) 53608) ((-410 . -243) T) ((-410 . -111) 53546) ((-410 . -1054) 53498) ((-410 . -1059) 53450) ((-410 . -291) T) ((-410 . -719) 53402) ((-410 . -642) 53354) ((-410 . -650) 53306) ((-410 . -648) 53243) ((-410 . -38) 53195) ((-410 . -308) T) ((-410 . -455) T) ((-410 . -172) T) ((-410 . -560) T) ((-410 . -924) T) ((-410 . -1224) T) ((-410 . -365) T) ((-410 . -233) 53174) ((-410 . -903) 53133) ((-410 . -231) 53117) ((-410 . -147) 53096) ((-410 . -145) 53075) ((-410 . -131) T) ((-410 . -25) T) ((-410 . -102) T) ((-410 . -615) 53057) ((-410 . -1104) T) ((-410 . -23) T) ((-410 . -21) T) ((-410 . -1052) T) ((-410 . -1060) T) ((-410 . -1115) T) ((-410 . -728) T) ((-410 . -823) 53010) ((-408 . -560) T) ((-408 . -291) T) ((-408 . -172) T) ((-408 . -618) 52918) ((-408 . -719) 52892) ((-408 . -642) 52866) ((-408 . -650) 52840) ((-408 . -648) 52799) ((-408 . -131) T) ((-408 . -25) T) ((-408 . -102) T) ((-408 . -615) 52781) ((-408 . -1104) T) ((-408 . -23) T) ((-408 . -21) T) ((-408 . -1059) 52755) ((-408 . -1054) 52729) ((-408 . -111) 52696) ((-408 . -1052) T) ((-408 . -1060) T) ((-408 . -1115) T) ((-408 . -728) T) ((-408 . -38) 52670) ((-408 . -231) 52654) ((-408 . -903) 52613) ((-408 . -233) 52592) ((-408 . -340) 52576) ((-408 . -517) 52418) ((-408 . -310) 52357) ((-408 . -287) 52285) ((-408 . -415) 52269) ((-408 . -1041) 52165) ((-408 . -455) 52115) ((-408 . -1023) 52093) ((-408 . -616) 52000) ((-408 . -1224) 51978) ((-402 . -1104) T) ((-402 . -615) 51960) ((-402 . -102) T) ((-402 . -616) 51937) ((-401 . -399) T) ((-401 . -1219) T) ((-401 . -615) 51919) ((-396 . -1104) T) ((-396 . -615) 51901) ((-396 . -102) T) ((-396 . -618) 51883) ((-393 . -746) 51867) ((-393 . -722) T) ((-393 . -763) T) ((-393 . -111) 51846) ((-393 . -1054) 51830) ((-393 . -1059) 51814) ((-393 . -21) T) ((-393 . -648) 51783) ((-393 . -23) T) ((-393 . -1104) T) ((-393 . -615) 51765) ((-393 . -102) T) ((-393 . -25) T) ((-393 . -131) T) ((-393 . -650) 51749) ((-393 . -642) 51733) ((-393 . -719) 51717) ((-391 . -392) T) ((-391 . -102) T) ((-391 . -615) 51683) ((-391 . -1104) T) ((-391 . -618) 51664) ((-391 . -493) 51645) ((-389 . -388) 51629) ((-389 . -618) 51613) ((-389 . -1041) 51597) ((-389 . -852) 51576) ((-389 . -1115) T) ((-389 . -102) T) ((-389 . -615) 51558) ((-389 . -1104) T) ((-389 . -728) T) ((-384 . -386) 51537) ((-384 . -618) 51521) ((-384 . -1041) 51505) ((-384 . -642) 51475) ((-384 . -719) 51445) ((-384 . -650) 51429) ((-384 . -648) 51398) ((-384 . -131) T) ((-384 . -25) T) ((-384 . -102) T) ((-384 . -615) 51380) ((-384 . -1104) T) ((-384 . -23) T) ((-384 . -21) T) ((-384 . -1059) 51364) ((-384 . -1054) 51348) ((-384 . -111) 51327) ((-383 . -111) 51306) ((-383 . -1054) 51290) ((-383 . -1059) 51274) ((-383 . -21) T) ((-383 . -648) 51243) ((-383 . -23) T) ((-383 . -1104) T) ((-383 . -615) 51225) ((-383 . -102) T) ((-383 . -25) T) ((-383 . -131) T) ((-383 . -650) 51209) ((-383 . -512) 51188) ((-383 . -719) 51158) ((-383 . -642) 51128) ((-380 . -407) T) ((-380 . -147) T) ((-380 . -618) 51078) ((-380 . -650) 51043) ((-380 . -648) 50993) ((-380 . -131) T) ((-380 . -25) T) ((-380 . -102) T) ((-380 . -615) 50960) ((-380 . -1104) T) ((-380 . -23) T) ((-380 . -21) T) ((-380 . -728) T) ((-380 . -1115) T) ((-380 . -1060) T) ((-380 . -1052) T) ((-380 . -616) 50874) ((-380 . -365) T) ((-380 . -1224) T) ((-380 . -924) T) ((-380 . -560) T) ((-380 . -172) T) ((-380 . -719) 50839) ((-380 . -642) 50804) ((-380 . -38) 50769) ((-380 . -455) T) ((-380 . -308) T) ((-380 . -111) 50725) ((-380 . -1054) 50690) ((-380 . -1059) 50655) ((-380 . -291) T) ((-380 . -243) T) ((-380 . -850) T) ((-380 . -799) T) ((-380 . -796) T) ((-380 . -852) T) ((-380 . -794) T) ((-380 . -793) T) ((-380 . -889) 50637) ((-380 . -1005) T) ((-380 . -1023) T) ((-380 . -1041) 50597) ((-380 . -1063) T) ((-380 . -233) T) ((-380 . -823) T) ((-380 . -1205) T) ((-380 . -1208) T) ((-380 . -496) T) ((-380 . -285) T) ((-380 . -95) T) ((-380 . -35) T) ((-380 . -620) 50579) ((-366 . -367) 50556) ((-366 . -102) T) ((-366 . -615) 50538) ((-366 . -1104) T) ((-363 . -476) T) ((-363 . -1115) T) ((-363 . -102) T) ((-363 . -615) 50520) ((-363 . -1104) T) ((-363 . -728) T) ((-363 . -1041) 50504) ((-363 . -618) 50488) ((-361 . -330) 50472) ((-361 . -233) 50451) ((-361 . -370) 50430) ((-361 . -1154) 50409) ((-361 . -352) 50388) ((-361 . -147) 50367) ((-361 . -618) 50304) ((-361 . -650) 50256) ((-361 . -648) 50193) ((-361 . -131) T) ((-361 . -25) T) ((-361 . -102) T) ((-361 . -615) 50175) ((-361 . -1104) T) ((-361 . -23) T) ((-361 . -21) T) ((-361 . -728) T) ((-361 . -1115) T) ((-361 . -1060) T) ((-361 . -1052) T) ((-361 . -365) T) ((-361 . -1224) T) ((-361 . -924) T) ((-361 . -560) T) ((-361 . -172) T) ((-361 . -719) 50127) ((-361 . -642) 50079) ((-361 . -38) 50044) ((-361 . -455) T) ((-361 . -308) T) ((-361 . -111) 49982) ((-361 . -1054) 49934) ((-361 . -1059) 49886) ((-361 . -291) T) ((-361 . -243) T) ((-361 . -405) 49837) ((-361 . -145) 49788) ((-361 . -1041) 49772) ((-361 . -1277) 49756) ((-361 . -1288) 49740) ((-357 . -330) 49724) ((-357 . -233) 49703) ((-357 . -370) 49682) ((-357 . -1154) 49661) ((-357 . -352) 49640) ((-357 . -147) 49619) ((-357 . -618) 49556) ((-357 . -650) 49508) ((-357 . -648) 49445) ((-357 . -131) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -615) 49427) ((-357 . -1104) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -728) T) ((-357 . -1115) T) ((-357 . -1060) T) ((-357 . -1052) T) ((-357 . -365) T) ((-357 . -1224) T) ((-357 . -924) T) ((-357 . -560) T) ((-357 . -172) T) ((-357 . -719) 49379) ((-357 . -642) 49331) ((-357 . -38) 49296) ((-357 . -455) T) ((-357 . -308) T) ((-357 . -111) 49234) ((-357 . -1054) 49186) ((-357 . -1059) 49138) ((-357 . -291) T) ((-357 . -243) T) ((-357 . -405) 49089) ((-357 . -145) 49040) ((-357 . -1041) 49024) ((-357 . -1277) 49008) ((-357 . -1288) 48992) ((-356 . -330) 48976) ((-356 . -233) 48955) ((-356 . -370) 48934) ((-356 . -1154) 48913) ((-356 . -352) 48892) ((-356 . -147) 48871) ((-356 . -618) 48808) ((-356 . -650) 48760) ((-356 . -648) 48697) ((-356 . -131) T) ((-356 . -25) T) ((-356 . -102) T) ((-356 . -615) 48679) ((-356 . -1104) T) ((-356 . -23) T) ((-356 . -21) T) ((-356 . -728) T) ((-356 . -1115) T) ((-356 . -1060) T) ((-356 . -1052) T) ((-356 . -365) T) ((-356 . -1224) T) ((-356 . -924) T) ((-356 . -560) T) ((-356 . -172) T) ((-356 . -719) 48631) ((-356 . -642) 48583) ((-356 . -38) 48548) ((-356 . -455) T) ((-356 . -308) T) ((-356 . -111) 48486) ((-356 . -1054) 48438) ((-356 . -1059) 48390) ((-356 . -291) T) ((-356 . -243) T) ((-356 . -405) 48341) ((-356 . -145) 48292) ((-356 . -1041) 48276) ((-356 . -1277) 48260) ((-356 . -1288) 48244) ((-355 . -330) 48228) ((-355 . -233) 48207) ((-355 . -370) 48186) ((-355 . -1154) 48165) ((-355 . -352) 48144) ((-355 . -147) 48123) ((-355 . -618) 48060) ((-355 . -650) 48012) ((-355 . -648) 47949) ((-355 . -131) T) ((-355 . -25) T) ((-355 . -102) T) ((-355 . -615) 47931) ((-355 . -1104) T) ((-355 . -23) T) ((-355 . -21) T) ((-355 . -728) T) ((-355 . -1115) T) ((-355 . -1060) T) ((-355 . -1052) T) ((-355 . -365) T) ((-355 . -1224) T) ((-355 . -924) T) ((-355 . -560) T) ((-355 . -172) T) ((-355 . -719) 47883) ((-355 . -642) 47835) ((-355 . -38) 47800) ((-355 . -455) T) ((-355 . -308) T) ((-355 . -111) 47738) ((-355 . -1054) 47690) ((-355 . -1059) 47642) ((-355 . -291) T) ((-355 . -243) T) ((-355 . -405) 47593) ((-355 . -145) 47544) ((-355 . -1041) 47528) ((-355 . -1277) 47512) ((-355 . -1288) 47496) ((-354 . -330) 47473) ((-354 . -233) T) ((-354 . -370) T) ((-354 . -1154) T) ((-354 . -352) T) ((-354 . -147) 47455) ((-354 . -618) 47385) ((-354 . -650) 47330) ((-354 . -648) 47260) ((-354 . -131) T) ((-354 . -25) T) ((-354 . -102) T) ((-354 . -615) 47242) ((-354 . -1104) T) ((-354 . -23) T) ((-354 . -21) T) ((-354 . -728) T) ((-354 . -1115) T) ((-354 . -1060) T) ((-354 . -1052) T) ((-354 . -365) T) ((-354 . -1224) T) ((-354 . -924) T) ((-354 . -560) T) ((-354 . -172) T) ((-354 . -719) 47187) ((-354 . -642) 47132) ((-354 . -38) 47097) ((-354 . -455) T) ((-354 . -308) T) ((-354 . -111) 47026) ((-354 . -1054) 46971) ((-354 . -1059) 46916) ((-354 . -291) T) ((-354 . -243) T) ((-354 . -405) T) ((-354 . -145) T) ((-354 . -1041) 46893) ((-354 . -1277) 46870) ((-354 . -1288) 46847) ((-348 . -330) 46831) ((-348 . -233) 46810) ((-348 . -370) 46789) ((-348 . -1154) 46768) ((-348 . -352) 46747) ((-348 . -147) 46726) ((-348 . -618) 46663) ((-348 . -650) 46615) ((-348 . -648) 46552) ((-348 . -131) T) ((-348 . -25) T) ((-348 . -102) T) ((-348 . -615) 46534) ((-348 . -1104) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -728) T) ((-348 . -1115) T) ((-348 . -1060) T) ((-348 . -1052) T) ((-348 . -365) T) ((-348 . -1224) T) ((-348 . -924) T) ((-348 . -560) T) ((-348 . -172) T) ((-348 . -719) 46486) ((-348 . -642) 46438) ((-348 . -38) 46403) ((-348 . -455) T) ((-348 . -308) T) ((-348 . -111) 46341) ((-348 . -1054) 46293) ((-348 . -1059) 46245) ((-348 . -291) T) ((-348 . -243) T) ((-348 . -405) 46196) ((-348 . -145) 46147) ((-348 . -1041) 46131) ((-348 . -1277) 46115) ((-348 . -1288) 46099) ((-347 . -330) 46083) ((-347 . -233) 46062) ((-347 . -370) 46041) ((-347 . -1154) 46020) ((-347 . -352) 45999) ((-347 . -147) 45978) ((-347 . -618) 45915) ((-347 . -650) 45867) ((-347 . -648) 45804) ((-347 . -131) T) ((-347 . -25) T) ((-347 . -102) T) ((-347 . -615) 45786) ((-347 . -1104) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -728) T) ((-347 . -1115) T) ((-347 . -1060) T) ((-347 . -1052) T) ((-347 . -365) T) ((-347 . -1224) T) ((-347 . -924) T) ((-347 . -560) T) ((-347 . -172) T) ((-347 . -719) 45738) ((-347 . -642) 45690) ((-347 . -38) 45655) ((-347 . -455) T) ((-347 . -308) T) ((-347 . -111) 45593) ((-347 . -1054) 45545) ((-347 . -1059) 45497) ((-347 . -291) T) ((-347 . -243) T) ((-347 . -405) 45448) ((-347 . -145) 45399) ((-347 . -1041) 45383) ((-347 . -1277) 45367) ((-347 . -1288) 45351) ((-346 . -330) 45328) ((-346 . -233) T) ((-346 . -370) T) ((-346 . -1154) T) ((-346 . -352) T) ((-346 . -147) 45310) ((-346 . -618) 45240) ((-346 . -650) 45185) ((-346 . -648) 45115) ((-346 . -131) T) ((-346 . -25) T) ((-346 . -102) T) ((-346 . -615) 45097) ((-346 . -1104) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -728) T) ((-346 . -1115) T) ((-346 . -1060) T) ((-346 . -1052) T) ((-346 . -365) T) ((-346 . -1224) T) ((-346 . -924) T) ((-346 . -560) T) ((-346 . -172) T) ((-346 . -719) 45042) ((-346 . -642) 44987) ((-346 . -38) 44952) ((-346 . -455) T) ((-346 . -308) T) ((-346 . -111) 44881) ((-346 . -1054) 44826) ((-346 . -1059) 44771) ((-346 . -291) T) ((-346 . -243) T) ((-346 . -405) T) ((-346 . -145) T) ((-346 . -1041) 44748) ((-346 . -1277) 44725) ((-346 . -1288) 44702) ((-342 . -330) 44679) ((-342 . -233) T) ((-342 . -370) T) ((-342 . -1154) T) ((-342 . -352) T) ((-342 . -147) 44661) ((-342 . -618) 44591) ((-342 . -650) 44536) ((-342 . -648) 44466) ((-342 . -131) T) ((-342 . -25) T) ((-342 . -102) T) ((-342 . -615) 44448) ((-342 . -1104) T) ((-342 . -23) T) ((-342 . -21) T) ((-342 . -728) T) ((-342 . -1115) T) ((-342 . -1060) T) ((-342 . -1052) T) ((-342 . -365) T) ((-342 . -1224) T) ((-342 . -924) T) ((-342 . -560) T) ((-342 . -172) T) ((-342 . -719) 44393) ((-342 . -642) 44338) ((-342 . -38) 44303) ((-342 . -455) T) ((-342 . -308) T) ((-342 . -111) 44232) ((-342 . -1054) 44177) ((-342 . -1059) 44122) ((-342 . -291) T) ((-342 . -243) T) ((-342 . -405) T) ((-342 . -145) T) ((-342 . -1041) 44099) ((-342 . -1277) 44076) ((-342 . -1288) 44053) ((-341 . -299) T) ((-341 . -102) T) ((-341 . -615) 44035) ((-341 . -1104) T) ((-341 . -618) 43987) ((-341 . -1041) 43954) ((-341 . -517) 43920) ((-341 . -310) 43907) ((-341 . -38) 43891) ((-341 . -650) 43865) ((-341 . -648) 43824) ((-341 . -728) T) ((-341 . -1115) T) ((-341 . -1060) T) ((-341 . -1052) T) ((-341 . -111) 43803) ((-341 . -1054) 43787) ((-341 . -1059) 43771) ((-341 . -21) T) ((-341 . -23) T) ((-341 . -25) T) ((-341 . -131) T) ((-341 . -642) 43755) ((-341 . -719) 43739) ((-341 . -903) 43720) ((-335 . -338) 43689) ((-335 . -131) T) ((-335 . -25) T) ((-335 . -102) T) ((-335 . -615) 43671) ((-335 . -1104) T) ((-335 . -23) T) ((-335 . -648) 43653) ((-335 . -21) T) ((-334 . -1104) T) ((-334 . -615) 43635) ((-334 . -102) T) ((-332 . -852) T) ((-332 . -102) T) ((-332 . -615) 43617) ((-332 . -1104) T) ((-331 . -1104) T) ((-331 . -615) 43599) ((-331 . -102) T) ((-328 . -19) 43583) ((-328 . -653) 43567) ((-328 . -289) 43544) ((-328 . -287) 43521) ((-328 . -606) 43498) ((-328 . -616) 43459) ((-328 . -492) 43443) ((-328 . -102) 43393) ((-328 . -1104) 43343) ((-328 . -517) 43276) ((-328 . -310) 43214) ((-328 . -615) 43126) ((-328 . -1219) T) ((-328 . -34) T) ((-328 . -151) 43110) ((-328 . -852) 43089) ((-328 . -374) 43073) ((-328 . -283) 43057) ((-325 . -324) 43034) ((-325 . -618) 43018) ((-325 . -1041) 43002) ((-325 . -23) T) ((-325 . -1104) T) ((-325 . -615) 42984) ((-325 . -102) T) ((-325 . -25) T) ((-325 . -131) T) ((-323 . -21) T) ((-323 . -648) 42966) ((-323 . -23) T) ((-323 . -1104) T) ((-323 . -615) 42948) ((-323 . -102) T) ((-323 . -25) T) ((-323 . -131) T) ((-323 . -719) 42930) ((-323 . -642) 42912) ((-323 . -650) 42894) ((-323 . -1059) 42876) ((-323 . -1054) 42858) ((-323 . -111) 42833) ((-323 . -324) 42810) ((-323 . -618) 42794) ((-323 . -1041) 42778) ((-323 . -852) 42757) ((-320 . -1252) 42741) ((-320 . -233) 42693) ((-320 . -287) 42678) ((-320 . -903) 42584) ((-320 . -976) 42546) ((-320 . -38) 42387) ((-320 . -111) 42208) ((-320 . -1054) 42043) ((-320 . -1059) 41878) ((-320 . -648) 41760) ((-320 . -650) 41657) ((-320 . -642) 41498) ((-320 . -719) 41339) ((-320 . -618) 41165) ((-320 . -145) 41144) ((-320 . -147) 41123) ((-320 . -47) 41093) ((-320 . -1248) 41063) ((-320 . -35) 41029) ((-320 . -95) 40995) ((-320 . -285) 40961) ((-320 . -496) 40927) ((-320 . -1208) 40893) ((-320 . -1205) 40859) ((-320 . -1005) 40825) ((-320 . -243) 40804) ((-320 . -291) 40755) ((-320 . -131) T) ((-320 . -25) T) ((-320 . -102) T) ((-320 . -615) 40737) ((-320 . -1104) T) ((-320 . -23) T) ((-320 . -21) T) ((-320 . -1052) T) ((-320 . -1060) T) ((-320 . -1115) T) ((-320 . -728) T) ((-320 . -308) 40716) ((-320 . -455) 40695) ((-320 . -172) 40626) ((-320 . -560) 40577) ((-320 . -924) 40556) ((-320 . -1224) 40535) ((-320 . -365) 40514) ((-320 . -794) T) ((-320 . -852) T) ((-320 . -796) T) ((-315 . -424) 40498) ((-315 . -618) 40062) ((-315 . -1041) 39725) ((-315 . -616) 39586) ((-315 . -887) 39570) ((-315 . -903) 39536) ((-315 . -476) 39515) ((-315 . -415) 39499) ((-315 . -889) 39424) ((-315 . -1219) T) ((-315 . -403) 39408) ((-315 . -641) 39314) ((-315 . -379) 39283) ((-315 . -243) 39262) ((-315 . -111) 39158) ((-315 . -1054) 39068) ((-315 . -1059) 38978) ((-315 . -291) 38957) ((-315 . -719) 38867) ((-315 . -642) 38777) ((-315 . -650) 38598) ((-315 . -648) 38282) ((-315 . -38) 38192) ((-315 . -308) 38171) ((-315 . -455) 38150) ((-315 . -172) 38129) ((-315 . -560) 38108) ((-315 . -924) 38087) ((-315 . -1224) 38066) ((-315 . -365) 38045) ((-315 . -310) 38032) ((-315 . -517) 37998) ((-315 . -299) T) ((-315 . -147) 37977) ((-315 . -145) 37956) ((-315 . -1052) 37846) ((-315 . -1060) 37736) ((-315 . -1115) 37585) ((-315 . -728) 37434) ((-315 . -131) 37305) ((-315 . -25) 37157) ((-315 . -102) T) ((-315 . -615) 37139) ((-315 . -1104) T) ((-315 . -23) 36991) ((-315 . -21) 36862) ((-315 . -29) 36832) ((-315 . -1005) 36811) ((-315 . -27) 36790) ((-315 . -1205) 36769) ((-315 . -1208) 36748) ((-315 . -496) 36727) ((-315 . -285) 36706) ((-315 . -95) 36685) ((-315 . -35) 36664) ((-315 . -160) 36643) ((-315 . -143) 36622) ((-315 . -632) 36601) ((-315 . -963) 36580) ((-315 . -1142) 36559) ((-314 . -994) 36520) ((-314 . -1154) NIL) ((-314 . -1041) 36450) ((-314 . -618) 36333) ((-314 . -616) NIL) ((-314 . -1023) NIL) ((-314 . -913) NIL) ((-314 . -887) 36294) ((-314 . -850) NIL) ((-314 . -799) NIL) ((-314 . -796) NIL) ((-314 . -852) NIL) ((-314 . -794) NIL) ((-314 . -793) NIL) ((-314 . -822) NIL) ((-314 . -889) NIL) ((-314 . -1219) T) ((-314 . -403) 36255) ((-314 . -641) 36216) ((-314 . -379) 36177) ((-314 . -287) 36112) ((-314 . -310) 36053) ((-314 . -517) 35945) ((-314 . -340) 35906) ((-314 . -243) T) ((-314 . -111) 35819) ((-314 . -1054) 35748) ((-314 . -1059) 35677) ((-314 . -291) T) ((-314 . -719) 35606) ((-314 . -642) 35535) ((-314 . -650) 35464) ((-314 . -648) 35378) ((-314 . -38) 35307) ((-314 . -308) T) ((-314 . -455) T) ((-314 . -172) T) ((-314 . -560) T) ((-314 . -924) T) ((-314 . -1224) T) ((-314 . -365) T) ((-314 . -233) NIL) ((-314 . -903) NIL) ((-314 . -231) 35268) ((-314 . -147) 35224) ((-314 . -145) 35180) ((-314 . -131) T) ((-314 . -25) T) ((-314 . -102) T) ((-314 . -615) 35162) ((-314 . -1104) T) ((-314 . -23) T) ((-314 . -21) T) ((-314 . -1052) T) ((-314 . -1060) T) ((-314 . -1115) T) ((-314 . -728) T) ((-313 . -1086) T) ((-313 . -493) 35143) ((-313 . -615) 35109) ((-313 . -618) 35090) ((-313 . -1104) T) ((-313 . -102) T) ((-313 . -93) T) ((-312 . -1104) T) ((-312 . -615) 35072) ((-312 . -102) T) ((-296 . -1196) 35051) ((-296 . -229) 35001) ((-296 . -107) 34951) ((-296 . -310) 34755) ((-296 . -517) 34547) ((-296 . -492) 34484) ((-296 . -151) 34434) ((-296 . -616) NIL) ((-296 . -235) 34384) ((-296 . -612) 34363) ((-296 . -289) 34342) ((-296 . -287) 34321) ((-296 . -102) T) ((-296 . -1104) T) ((-296 . -615) 34303) ((-296 . -1219) T) ((-296 . -34) T) ((-296 . -606) 34282) ((-294 . -1219) T) ((-294 . -517) 34231) ((-294 . -1104) 34013) ((-294 . -615) 33754) ((-294 . -102) 33536) ((-294 . -25) 33400) ((-294 . -21) 33283) ((-294 . -648) 33018) ((-294 . -23) 32901) ((-294 . -131) 32784) ((-294 . -1115) 32665) ((-294 . -728) 32567) ((-294 . -476) 32546) ((-294 . -1052) 32488) ((-294 . -1060) 32430) ((-294 . -650) 32290) ((-294 . -618) 32221) ((-294 . -111) 32137) ((-294 . -1054) 32058) ((-294 . -1059) 31979) ((-294 . -719) 31921) ((-294 . -642) 31863) ((-294 . -903) 31822) ((-294 . -1277) 31792) ((-292 . -615) 31774) ((-290 . -308) T) ((-290 . -455) T) ((-290 . -38) 31761) ((-290 . -618) 31733) ((-290 . -728) T) ((-290 . -1115) T) ((-290 . -1060) T) ((-290 . -1052) T) ((-290 . -111) 31718) ((-290 . -1054) 31705) ((-290 . -1059) 31692) ((-290 . -21) T) ((-290 . -648) 31664) ((-290 . -23) T) ((-290 . -1104) T) ((-290 . -615) 31646) ((-290 . -102) T) ((-290 . -25) T) ((-290 . -131) T) ((-290 . -650) 31633) ((-290 . -642) 31620) ((-290 . -719) 31607) ((-290 . -172) T) ((-290 . -291) T) ((-290 . -560) T) ((-290 . -924) T) ((-281 . -615) 31589) ((-280 . -986) 31573) ((-279 . -986) 31557) ((-276 . -852) T) ((-276 . -102) T) ((-276 . -615) 31539) ((-276 . -1104) T) ((-275 . -841) T) ((-275 . -102) T) ((-275 . -615) 31521) ((-275 . -1104) T) ((-274 . -841) T) ((-274 . -102) T) ((-274 . -615) 31503) ((-274 . -1104) T) ((-273 . -841) T) ((-273 . -102) T) ((-273 . -615) 31485) ((-273 . -1104) T) ((-272 . -841) T) ((-272 . -102) T) ((-272 . -615) 31467) ((-272 . -1104) T) ((-271 . -841) T) ((-271 . -102) T) ((-271 . -615) 31449) ((-271 . -1104) T) ((-270 . -841) T) ((-270 . -102) T) ((-270 . -615) 31431) ((-270 . -1104) T) ((-269 . -841) T) ((-269 . -102) T) ((-269 . -615) 31413) ((-269 . -1104) T) ((-265 . -254) 31375) ((-265 . -618) 31128) ((-265 . -1041) 30972) ((-265 . -616) 30720) ((-265 . -327) 30692) ((-265 . -415) 30676) ((-265 . -38) 30525) ((-265 . -111) 30354) ((-265 . -1054) 30197) ((-265 . -1059) 30040) ((-265 . -648) 29950) ((-265 . -650) 29875) ((-265 . -642) 29724) ((-265 . -719) 29573) ((-265 . -145) 29552) ((-265 . -147) 29531) ((-265 . -172) 29442) ((-265 . -560) 29373) ((-265 . -291) 29304) ((-265 . -47) 29276) ((-265 . -379) 29260) ((-265 . -641) 29208) ((-265 . -455) 29159) ((-265 . -517) 29044) ((-265 . -903) 28990) ((-265 . -889) 28849) ((-265 . -913) 28828) ((-265 . -1224) 28807) ((-265 . -953) 28774) ((-265 . -310) 28761) ((-265 . -233) 28740) ((-265 . -131) T) ((-265 . -25) T) ((-265 . -102) T) ((-265 . -615) 28722) ((-265 . -1104) T) ((-265 . -23) T) ((-265 . -21) T) ((-265 . -728) T) ((-265 . -1115) T) ((-265 . -1060) T) ((-265 . -1052) T) ((-265 . -231) 28706) ((-262 . -1104) T) ((-262 . -615) 28688) ((-262 . -102) T) ((-252 . -238) 28667) ((-252 . -1277) 28637) ((-252 . -793) 28616) ((-252 . -850) 28595) ((-252 . -799) 28546) ((-252 . -796) 28497) ((-252 . -852) 28448) ((-252 . -794) 28399) ((-252 . -795) 28378) ((-252 . -289) 28355) ((-252 . -287) 28332) ((-252 . -492) 28316) ((-252 . -517) 28249) ((-252 . -310) 28187) ((-252 . -1219) T) ((-252 . -34) T) ((-252 . -606) 28164) ((-252 . -1041) 27991) ((-252 . -618) 27721) ((-252 . -415) 27690) ((-252 . -641) 27596) ((-252 . -379) 27565) ((-252 . -370) 27544) ((-252 . -233) 27496) ((-252 . -903) 27428) ((-252 . -231) 27397) ((-252 . -111) 27287) ((-252 . -1054) 27184) ((-252 . -1059) 27081) ((-252 . -172) 27060) ((-252 . -615) 27021) ((-252 . -719) 26963) ((-252 . -642) 26905) ((-252 . -650) 26740) ((-252 . -648) 26560) ((-252 . -131) T) ((-252 . -23) T) ((-252 . -21) T) ((-252 . -1052) 26490) ((-252 . -1060) 26420) ((-252 . -1115) 26330) ((-252 . -728) 26240) ((-252 . -38) 26210) ((-252 . -1104) T) ((-252 . -102) T) ((-252 . -25) T) ((-251 . -238) 26189) ((-251 . -1277) 26159) ((-251 . -793) 26138) ((-251 . -850) 26117) ((-251 . -799) 26068) ((-251 . -796) 26019) ((-251 . -852) 25970) ((-251 . -794) 25921) ((-251 . -795) 25900) ((-251 . -289) 25877) ((-251 . -287) 25854) ((-251 . -492) 25838) ((-251 . -517) 25771) ((-251 . -310) 25709) ((-251 . -1219) T) ((-251 . -34) T) ((-251 . -606) 25686) ((-251 . -1041) 25513) ((-251 . -618) 25243) ((-251 . -415) 25212) ((-251 . -641) 25118) ((-251 . -379) 25087) ((-251 . -370) 25066) ((-251 . -233) 25018) ((-251 . -903) 24950) ((-251 . -231) 24919) ((-251 . -111) 24809) ((-251 . -1054) 24706) ((-251 . -1059) 24603) ((-251 . -172) 24582) ((-251 . -615) 24543) ((-251 . -719) 24485) ((-251 . -642) 24427) ((-251 . -650) 24249) ((-251 . -648) 24056) ((-251 . -131) T) ((-251 . -23) T) ((-251 . -21) T) ((-251 . -1052) 23986) ((-251 . -1060) 23916) ((-251 . -1115) 23826) ((-251 . -728) 23736) ((-251 . -38) 23706) ((-251 . -1104) T) ((-251 . -102) T) ((-251 . -25) T) ((-250 . -1104) T) ((-250 . -615) 23688) ((-250 . -102) T) ((-249 . -186) T) ((-249 . -1104) T) ((-249 . -615) 23655) ((-249 . -102) T) ((-249 . -838) 23637) ((-248 . -1104) T) ((-248 . -615) 23619) ((-248 . -102) T) ((-247 . -953) 23564) ((-247 . -618) 23349) ((-247 . -1041) 23225) ((-247 . -1224) 23204) ((-247 . -913) 23183) ((-247 . -889) NIL) ((-247 . -903) 23160) ((-247 . -517) 23103) ((-247 . -455) 23054) ((-247 . -641) 23002) ((-247 . -379) 22986) ((-247 . -47) 22943) ((-247 . -38) 22792) ((-247 . -642) 22641) ((-247 . -719) 22490) ((-247 . -291) 22421) ((-247 . -560) 22352) ((-247 . -111) 22181) ((-247 . -1054) 22024) ((-247 . -1059) 21867) ((-247 . -172) 21778) ((-247 . -147) 21757) ((-247 . -145) 21736) ((-247 . -650) 21661) ((-247 . -648) 21571) ((-247 . -131) T) ((-247 . -25) T) ((-247 . -102) T) ((-247 . -615) 21553) ((-247 . -1104) T) ((-247 . -23) T) ((-247 . -21) T) ((-247 . -1052) T) ((-247 . -1060) T) ((-247 . -1115) T) ((-247 . -728) T) ((-247 . -415) 21537) ((-247 . -327) 21494) ((-247 . -310) 21481) ((-247 . -616) 21342) ((-245 . -668) 21326) ((-245 . -1258) 21310) ((-245 . -1013) 21294) ((-245 . -1152) 21278) ((-245 . -852) 21257) ((-245 . -374) 21241) ((-245 . -653) 21225) ((-245 . -289) 21202) ((-245 . -287) 21179) ((-245 . -606) 21156) ((-245 . -616) 21117) ((-245 . -492) 21101) ((-245 . -102) 21051) ((-245 . -1104) 21001) ((-245 . -517) 20934) ((-245 . -310) 20872) ((-245 . -615) 20764) ((-245 . -1219) T) ((-245 . -34) T) ((-245 . -151) 20748) ((-245 . -283) 20732) ((-245 . -493) 20709) ((-245 . -618) 20686) ((-239 . -238) 20665) ((-239 . -1277) 20635) ((-239 . -793) 20614) ((-239 . -850) 20593) ((-239 . -799) 20544) ((-239 . -796) 20495) ((-239 . -852) 20446) ((-239 . -794) 20397) ((-239 . -795) 20376) ((-239 . -289) 20353) ((-239 . -287) 20330) ((-239 . -492) 20314) ((-239 . -517) 20247) ((-239 . -310) 20185) ((-239 . -1219) T) ((-239 . -34) T) ((-239 . -606) 20162) ((-239 . -1041) 19989) ((-239 . -618) 19719) ((-239 . -415) 19688) ((-239 . -641) 19594) ((-239 . -379) 19563) ((-239 . -370) 19542) ((-239 . -233) 19494) ((-239 . -903) 19426) ((-239 . -231) 19395) ((-239 . -111) 19285) ((-239 . -1054) 19182) ((-239 . -1059) 19079) ((-239 . -172) 19058) ((-239 . -615) 18789) ((-239 . -719) 18731) ((-239 . -642) 18673) ((-239 . -650) 18521) ((-239 . -648) 18271) ((-239 . -131) 18141) ((-239 . -23) 18011) ((-239 . -21) 17921) ((-239 . -1052) 17851) ((-239 . -1060) 17781) ((-239 . -1115) 17691) ((-239 . -728) 17601) ((-239 . -38) 17571) ((-239 . -1104) 17361) ((-239 . -102) 17151) ((-239 . -25) 17002) ((-227 . -688) 16960) ((-227 . -492) 16944) ((-227 . -102) 16922) ((-227 . -1104) 16900) ((-227 . -517) 16833) ((-227 . -310) 16771) ((-227 . -615) 16703) ((-227 . -1219) T) ((-227 . -34) T) ((-227 . -57) 16661) ((-225 . -407) T) ((-225 . -147) T) ((-225 . -618) 16611) ((-225 . -650) 16576) ((-225 . -648) 16526) ((-225 . -131) T) ((-225 . -25) T) ((-225 . -102) T) ((-225 . -615) 16508) ((-225 . -1104) T) ((-225 . -23) T) ((-225 . -21) T) ((-225 . -728) T) ((-225 . -1115) T) ((-225 . -1060) T) ((-225 . -1052) T) ((-225 . -616) 16438) ((-225 . -365) T) ((-225 . -1224) T) ((-225 . -924) T) ((-225 . -560) T) ((-225 . -172) T) ((-225 . -719) 16403) ((-225 . -642) 16368) ((-225 . -38) 16333) ((-225 . -455) T) ((-225 . -308) T) ((-225 . -111) 16289) ((-225 . -1054) 16254) ((-225 . -1059) 16219) ((-225 . -291) T) ((-225 . -243) T) ((-225 . -850) T) ((-225 . -799) T) ((-225 . -796) T) ((-225 . -852) T) ((-225 . -794) T) ((-225 . -793) T) ((-225 . -889) 16201) ((-225 . -1005) T) ((-225 . -1023) T) ((-225 . -1041) 16161) ((-225 . -1063) T) ((-225 . -233) T) ((-225 . -823) T) ((-225 . -1205) T) ((-225 . -1208) T) ((-225 . -496) T) ((-225 . -285) T) ((-225 . -95) T) ((-225 . -35) T) ((-223 . -623) 16138) ((-223 . -618) 16100) ((-223 . -650) 16067) ((-223 . -648) 16019) ((-223 . -728) T) ((-223 . -1115) T) ((-223 . -1060) T) ((-223 . -1052) T) ((-223 . -21) T) ((-223 . -23) T) ((-223 . -1104) T) ((-223 . -615) 16001) ((-223 . -102) T) ((-223 . -25) T) ((-223 . -131) T) ((-223 . -1041) 15978) ((-222 . -255) 15962) ((-222 . -1124) 15946) ((-222 . -107) 15930) ((-222 . -34) T) ((-222 . -1219) T) ((-222 . -615) 15862) ((-222 . -310) 15800) ((-222 . -517) 15733) ((-222 . -1104) 15711) ((-222 . -102) 15689) ((-222 . -492) 15673) ((-222 . -998) 15657) ((-218 . -1086) T) ((-218 . -493) 15638) ((-218 . -615) 15604) ((-218 . -618) 15585) ((-218 . -1104) T) ((-218 . -102) T) ((-218 . -93) T) ((-217 . -994) 15567) ((-217 . -1154) T) ((-217 . -618) 15517) ((-217 . -1041) 15477) ((-217 . -616) 15407) ((-217 . -1023) T) ((-217 . -913) NIL) ((-217 . -887) 15389) ((-217 . -850) T) ((-217 . -799) T) ((-217 . -796) T) ((-217 . -852) T) ((-217 . -794) T) ((-217 . -793) T) ((-217 . -822) T) ((-217 . -889) 15371) ((-217 . -1219) T) ((-217 . -403) 15353) ((-217 . -641) 15335) ((-217 . -379) 15317) ((-217 . -287) NIL) ((-217 . -310) NIL) ((-217 . -517) NIL) ((-217 . -340) 15299) ((-217 . -243) T) ((-217 . -111) 15233) ((-217 . -1054) 15183) ((-217 . -1059) 15133) ((-217 . -291) T) ((-217 . -719) 15083) ((-217 . -642) 15033) ((-217 . -650) 14983) ((-217 . -648) 14933) ((-217 . -38) 14883) ((-217 . -308) T) ((-217 . -455) T) ((-217 . -172) T) ((-217 . -560) T) ((-217 . -924) T) ((-217 . -1224) T) ((-217 . -365) T) ((-217 . -233) T) ((-217 . -903) NIL) ((-217 . -231) 14865) ((-217 . -147) T) ((-217 . -145) NIL) ((-217 . -131) T) ((-217 . -25) T) ((-217 . -102) T) ((-217 . -615) 14806) ((-217 . -1104) T) ((-217 . -23) T) ((-217 . -21) T) ((-217 . -1052) T) ((-217 . -1060) T) ((-217 . -1115) T) ((-217 . -728) T) ((-214 . -1104) T) ((-214 . -615) 14788) ((-214 . -102) T) ((-214 . -618) 14765) ((-213 . -1104) T) ((-213 . -615) 14747) ((-213 . -102) T) ((-212 . -898) T) ((-212 . -102) T) ((-212 . -615) 14729) ((-212 . -1104) T) ((-211 . -898) T) ((-211 . -102) T) ((-211 . -615) 14711) ((-211 . -1104) T) ((-209 . -802) T) ((-209 . -102) T) ((-209 . -615) 14693) ((-209 . -1104) T) ((-208 . -802) T) ((-208 . -102) T) ((-208 . -615) 14675) ((-208 . -1104) T) ((-207 . -802) T) ((-207 . -102) T) ((-207 . -615) 14657) ((-207 . -1104) T) ((-206 . -802) T) ((-206 . -102) T) ((-206 . -615) 14639) ((-206 . -1104) T) ((-203 . -789) T) ((-203 . -102) T) ((-203 . -615) 14621) ((-203 . -1104) T) ((-202 . -789) T) ((-202 . -102) T) ((-202 . -615) 14603) ((-202 . -1104) T) ((-201 . -789) T) ((-201 . -102) T) ((-201 . -615) 14585) ((-201 . -1104) T) ((-200 . -789) T) ((-200 . -102) T) ((-200 . -615) 14567) ((-200 . -1104) T) ((-199 . -789) T) ((-199 . -102) T) ((-199 . -615) 14549) ((-199 . -1104) T) ((-198 . -789) T) ((-198 . -102) T) ((-198 . -615) 14531) ((-198 . -1104) T) ((-197 . -789) T) ((-197 . -102) T) ((-197 . -615) 14513) ((-197 . -1104) T) ((-196 . -789) T) ((-196 . -102) T) ((-196 . -615) 14495) ((-196 . -1104) T) ((-195 . -789) T) ((-195 . -102) T) ((-195 . -615) 14477) ((-195 . -1104) T) ((-194 . -789) T) ((-194 . -102) T) ((-194 . -615) 14459) ((-194 . -1104) T) ((-193 . -789) T) ((-193 . -102) T) ((-193 . -615) 14441) ((-193 . -1104) T) ((-187 . -1104) T) ((-187 . -615) 14423) ((-187 . -102) T) ((-184 . -1104) T) ((-184 . -615) 14405) ((-184 . -102) T) ((-183 . -186) T) ((-183 . -1104) T) ((-183 . -615) 14387) ((-183 . -102) T) ((-183 . -838) 14369) ((-180 . -1086) T) ((-180 . -493) 14350) ((-180 . -615) 14316) ((-180 . -618) 14297) ((-180 . -1104) T) ((-180 . -102) T) ((-180 . -93) T) ((-175 . -615) 14279) ((-174 . -38) 14211) ((-174 . -618) 14128) ((-174 . -650) 14060) ((-174 . -648) 13977) ((-174 . -728) T) ((-174 . -1115) T) ((-174 . -1060) T) ((-174 . -1052) T) ((-174 . -111) 13888) ((-174 . -1054) 13820) ((-174 . -1059) 13752) ((-174 . -21) T) ((-174 . -23) T) ((-174 . -1104) T) ((-174 . -615) 13734) ((-174 . -102) T) ((-174 . -25) T) ((-174 . -131) T) ((-174 . -642) 13666) ((-174 . -719) 13598) ((-174 . -365) T) ((-174 . -1224) T) ((-174 . -924) T) ((-174 . -560) T) ((-174 . -172) T) ((-174 . -455) T) ((-174 . -308) T) ((-174 . -291) T) ((-174 . -243) T) ((-171 . -1104) T) ((-171 . -615) 13580) ((-171 . -102) T) ((-168 . -166) 13564) ((-168 . -35) 13542) ((-168 . -95) 13520) ((-168 . -285) 13498) ((-168 . -496) 13476) ((-168 . -1208) 13454) ((-168 . -1205) 13432) ((-168 . -1005) 13383) ((-168 . -913) 13336) ((-168 . -616) 13097) ((-168 . -887) 13081) ((-168 . -370) 13032) ((-168 . -352) 13011) ((-168 . -1154) 12990) ((-168 . -405) 12969) ((-168 . -413) 12940) ((-168 . -38) 12768) ((-168 . -111) 12664) ((-168 . -1054) 12574) ((-168 . -1059) 12484) ((-168 . -648) 12379) ((-168 . -650) 12289) ((-168 . -642) 12117) ((-168 . -719) 11945) ((-168 . -372) 11916) ((-168 . -726) 11887) ((-168 . -1041) 11783) ((-168 . -618) 11561) ((-168 . -415) 11545) ((-168 . -889) 11470) ((-168 . -1219) T) ((-168 . -403) 11454) ((-168 . -641) 11402) ((-168 . -379) 11386) ((-168 . -287) 11344) ((-168 . -310) 11309) ((-168 . -517) 11221) ((-168 . -340) 11205) ((-168 . -243) 11156) ((-168 . -1224) 11061) ((-168 . -365) 11012) ((-168 . -924) 10943) ((-168 . -560) 10854) ((-168 . -291) 10765) ((-168 . -455) 10696) ((-168 . -308) 10627) ((-168 . -233) 10578) ((-168 . -903) 10537) ((-168 . -231) 10521) ((-168 . -172) T) ((-168 . -147) 10500) ((-168 . -1052) T) ((-168 . -1060) T) ((-168 . -1115) T) ((-168 . -728) T) ((-168 . -21) T) ((-168 . -23) T) ((-168 . -1104) T) ((-168 . -615) 10482) ((-168 . -102) T) ((-168 . -25) T) ((-168 . -131) T) ((-168 . -145) 10433) ((-168 . -823) 10412) ((-162 . -1086) T) ((-162 . -493) 10393) ((-162 . -615) 10359) ((-162 . -618) 10340) ((-162 . -1104) T) ((-162 . -102) T) ((-162 . -93) T) ((-161 . -1104) T) ((-161 . -615) 10322) ((-161 . -102) T) ((-157 . -25) T) ((-157 . -102) T) ((-157 . -615) 10304) ((-157 . -1104) T) ((-156 . -1086) T) ((-156 . -493) 10285) ((-156 . -615) 10251) ((-156 . -618) 10232) ((-156 . -1104) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1086) T) ((-154 . -493) 10213) ((-154 . -615) 10179) ((-154 . -618) 10160) ((-154 . -1104) T) ((-154 . -102) T) ((-154 . -93) T) ((-152 . -1052) T) ((-152 . -1060) T) ((-152 . -1115) T) ((-152 . -728) T) ((-152 . -21) T) ((-152 . -648) 10119) ((-152 . -23) T) ((-152 . -1104) T) ((-152 . -615) 10101) ((-152 . -102) T) ((-152 . -25) T) ((-152 . -131) T) ((-152 . -650) 10075) ((-152 . -618) 10044) ((-152 . -38) 10028) ((-152 . -111) 10007) ((-152 . -1054) 9991) ((-152 . -1059) 9975) ((-152 . -642) 9959) ((-152 . -719) 9943) ((-152 . -1277) 9927) ((-144 . -846) T) ((-144 . -852) T) ((-144 . -1104) T) ((-144 . -615) 9909) ((-144 . -102) T) ((-144 . -370) T) ((-141 . -1104) T) ((-141 . -615) 9891) ((-141 . -102) T) ((-141 . -616) 9850) ((-141 . -429) 9832) ((-141 . -1102) 9814) ((-141 . -370) T) ((-141 . -235) 9796) ((-141 . -151) 9778) ((-141 . -492) 9760) ((-141 . -517) NIL) ((-141 . -310) NIL) ((-141 . -1219) T) ((-141 . -34) T) ((-141 . -107) 9742) ((-141 . -229) 9724) ((-140 . -615) 9706) ((-139 . -186) T) ((-139 . -1104) T) ((-139 . -615) 9673) ((-139 . -102) T) ((-139 . -838) 9655) ((-138 . -1086) T) ((-138 . -493) 9636) ((-138 . -615) 9602) ((-138 . -618) 9583) ((-138 . -1104) T) ((-138 . -102) T) ((-138 . -93) T) ((-137 . -1086) T) ((-137 . -493) 9564) ((-137 . -615) 9530) ((-137 . -618) 9511) ((-137 . -1104) T) ((-137 . -102) T) ((-137 . -93) T) ((-135 . -468) 9488) ((-135 . -618) 9472) ((-135 . -1041) 9456) ((-135 . -1104) T) ((-135 . -615) 9438) ((-135 . -102) T) ((-135 . -473) 9393) ((-134 . -852) T) ((-134 . -102) T) ((-134 . -615) 9375) ((-134 . -1104) T) ((-134 . -23) T) ((-134 . -25) T) ((-134 . -728) T) ((-134 . -1115) T) ((-134 . -1041) 9357) ((-134 . -618) 9339) ((-133 . -1086) T) ((-133 . -493) 9320) ((-133 . -615) 9286) ((-133 . -618) 9267) ((-133 . -1104) T) ((-133 . -102) T) ((-133 . -93) T) ((-130 . -1104) T) ((-130 . -615) 9249) ((-130 . -102) T) ((-129 . -19) 9231) ((-129 . -653) 9213) ((-129 . -289) 9188) ((-129 . -287) 9163) ((-129 . -606) 9138) ((-129 . -616) NIL) ((-129 . -492) 9120) ((-129 . -102) T) ((-129 . -1104) T) ((-129 . -517) NIL) ((-129 . -310) NIL) ((-129 . -615) 9064) ((-129 . -1219) T) ((-129 . -34) T) ((-129 . -151) 9046) ((-129 . -852) T) ((-129 . -374) 9028) ((-128 . -846) T) ((-128 . -852) T) ((-128 . -1104) T) ((-128 . -615) 8995) ((-128 . -102) T) ((-128 . -370) T) ((-128 . -493) 8977) ((-128 . -618) 8959) ((-127 . -125) 8943) ((-127 . -1013) 8927) ((-127 . -34) T) ((-127 . -1219) T) ((-127 . -615) 8859) ((-127 . -310) 8797) ((-127 . -517) 8730) ((-127 . -1104) 8708) ((-127 . -102) 8686) ((-127 . -492) 8670) ((-127 . -119) 8654) ((-126 . -125) 8638) ((-126 . -1013) 8622) ((-126 . -34) T) ((-126 . -1219) T) ((-126 . -615) 8554) ((-126 . -310) 8492) ((-126 . -517) 8425) ((-126 . -1104) 8403) ((-126 . -102) 8381) ((-126 . -492) 8365) ((-126 . -119) 8349) ((-121 . -125) 8333) ((-121 . -1013) 8317) ((-121 . -34) T) ((-121 . -1219) T) ((-121 . -615) 8249) ((-121 . -310) 8187) ((-121 . -517) 8120) ((-121 . -1104) 8098) ((-121 . -102) 8076) ((-121 . -492) 8060) ((-121 . -119) 8044) ((-117 . -994) 8021) ((-117 . -1154) NIL) ((-117 . -1041) 7998) ((-117 . -618) 7928) ((-117 . -616) NIL) ((-117 . -1023) NIL) ((-117 . -913) NIL) ((-117 . -887) 7905) ((-117 . -850) NIL) ((-117 . -799) NIL) ((-117 . -796) NIL) ((-117 . -852) NIL) ((-117 . -794) NIL) ((-117 . -793) NIL) ((-117 . -822) NIL) ((-117 . -889) NIL) ((-117 . -1219) T) ((-117 . -403) 7882) ((-117 . -641) 7859) ((-117 . -379) 7836) ((-117 . -287) 7787) ((-117 . -310) 7744) ((-117 . -517) 7652) ((-117 . -340) 7629) ((-117 . -243) T) ((-117 . -111) 7558) ((-117 . -1054) 7503) ((-117 . -1059) 7448) ((-117 . -291) T) ((-117 . -719) 7393) ((-117 . -642) 7338) ((-117 . -650) 7283) ((-117 . -648) 7213) ((-117 . -38) 7158) ((-117 . -308) T) ((-117 . -455) T) ((-117 . -172) T) ((-117 . -560) T) ((-117 . -924) T) ((-117 . -1224) T) ((-117 . -365) T) ((-117 . -233) NIL) ((-117 . -903) NIL) ((-117 . -231) 7135) ((-117 . -147) T) ((-117 . -145) NIL) ((-117 . -131) T) ((-117 . -25) T) ((-117 . -102) T) ((-117 . -615) 7117) ((-117 . -1104) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1052) T) ((-117 . -1060) T) ((-117 . -1115) T) ((-117 . -728) T) ((-116 . -872) 7101) ((-116 . -924) T) ((-116 . -560) T) ((-116 . -291) T) ((-116 . -172) T) ((-116 . -618) 7073) ((-116 . -719) 7060) ((-116 . -642) 7047) ((-116 . -1059) 7034) ((-116 . -1054) 7021) ((-116 . -111) 7006) ((-116 . -38) 6993) ((-116 . -455) T) ((-116 . -308) T) ((-116 . -1052) T) ((-116 . -1060) T) ((-116 . -1115) T) ((-116 . -728) T) ((-116 . -21) T) ((-116 . -648) 6965) ((-116 . -23) T) ((-116 . -1104) T) ((-116 . -615) 6947) ((-116 . -102) T) ((-116 . -25) T) ((-116 . -131) T) ((-116 . -650) 6934) ((-116 . -147) T) ((-113 . -852) T) ((-113 . -102) T) ((-113 . -615) 6916) ((-113 . -1104) T) ((-113 . -838) 6897) ((-112 . -846) T) ((-112 . -852) T) ((-112 . -1104) T) ((-112 . -615) 6879) ((-112 . -102) T) ((-112 . -370) T) ((-112 . -664) T) ((-112 . -970) T) ((-112 . -616) 6861) ((-110 . -123) T) ((-110 . -374) 6843) ((-110 . -852) T) ((-110 . -151) 6825) ((-110 . -34) T) ((-110 . -1219) T) ((-110 . -615) 6807) ((-110 . -310) NIL) ((-110 . -517) NIL) ((-110 . -1104) T) ((-110 . -492) 6789) ((-110 . -616) 6771) ((-110 . -606) 6746) ((-110 . -287) 6721) ((-110 . -289) 6696) ((-110 . -653) 6678) ((-110 . -19) 6660) ((-110 . -102) T) ((-110 . -664) T) ((-109 . -615) 6642) ((-108 . -994) 6624) ((-108 . -1154) T) ((-108 . -618) 6574) ((-108 . -1041) 6534) ((-108 . -616) 6464) ((-108 . -1023) T) ((-108 . -913) NIL) ((-108 . -887) 6446) ((-108 . -850) T) ((-108 . -799) T) ((-108 . -796) T) ((-108 . -852) T) ((-108 . -794) T) ((-108 . -793) T) ((-108 . -822) T) ((-108 . -889) 6428) ((-108 . -1219) T) ((-108 . -403) 6410) ((-108 . -641) 6392) ((-108 . -379) 6374) ((-108 . -287) NIL) ((-108 . -310) NIL) ((-108 . -517) NIL) ((-108 . -340) 6356) ((-108 . -243) T) ((-108 . -111) 6290) ((-108 . -1054) 6240) ((-108 . -1059) 6190) ((-108 . -291) T) ((-108 . -719) 6140) ((-108 . -642) 6090) ((-108 . -650) 6040) ((-108 . -648) 5990) ((-108 . -38) 5940) ((-108 . -308) T) ((-108 . -455) T) ((-108 . -172) T) ((-108 . -560) T) ((-108 . -924) T) ((-108 . -1224) T) ((-108 . -365) T) ((-108 . -233) T) ((-108 . -903) NIL) ((-108 . -231) 5922) ((-108 . -147) T) ((-108 . -145) NIL) ((-108 . -131) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -615) 5864) ((-108 . -1104) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1052) T) ((-108 . -1060) T) ((-108 . -1115) T) ((-108 . -728) T) ((-105 . -1104) T) ((-105 . -615) 5846) ((-105 . -102) T) ((-103 . -125) 5830) ((-103 . -1013) 5814) ((-103 . -34) T) ((-103 . -1219) T) ((-103 . -615) 5746) ((-103 . -310) 5684) ((-103 . -517) 5617) ((-103 . -1104) 5595) ((-103 . -102) 5573) ((-103 . -492) 5557) ((-103 . -119) 5541) ((-99 . -476) T) ((-99 . -1115) T) ((-99 . -102) T) ((-99 . -615) 5523) ((-99 . -1104) T) ((-99 . -728) T) ((-99 . -287) 5502) ((-97 . -1104) T) ((-97 . -615) 5484) ((-97 . -102) T) ((-96 . -1086) T) ((-96 . -493) 5465) ((-96 . -615) 5431) ((-96 . -618) 5412) ((-96 . -1104) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1124) 5396) ((-91 . -492) 5380) ((-91 . -102) 5358) ((-91 . -1104) 5336) ((-91 . -517) 5269) ((-91 . -310) 5207) ((-91 . -615) 5139) ((-91 . -1219) T) ((-91 . -34) T) ((-91 . -107) 5123) ((-89 . -400) T) ((-89 . -615) 5105) ((-89 . -1219) T) ((-89 . -399) T) ((-88 . -387) T) ((-88 . -615) 5087) ((-88 . -1219) T) ((-88 . -399) T) ((-87 . -443) T) ((-87 . -615) 5069) ((-87 . -1219) T) ((-87 . -399) T) ((-86 . -444) T) ((-86 . -615) 5051) ((-86 . -1219) T) ((-86 . -399) T) ((-85 . -387) T) ((-85 . -615) 5033) ((-85 . -1219) T) ((-85 . -399) T) ((-84 . -387) T) ((-84 . -615) 5015) ((-84 . -1219) T) ((-84 . -399) T) ((-83 . -444) T) ((-83 . -615) 4997) ((-83 . -1219) T) ((-83 . -399) T) ((-82 . -444) T) ((-82 . -615) 4979) ((-82 . -1219) T) ((-82 . -399) T) ((-81 . -444) T) ((-81 . -615) 4961) ((-81 . -1219) T) ((-81 . -399) T) ((-81 . -618) 4902) ((-80 . -444) T) ((-80 . -615) 4884) ((-80 . -1219) T) ((-80 . -399) T) ((-79 . -444) T) ((-79 . -615) 4866) ((-79 . -1219) T) ((-79 . -399) T) ((-78 . -400) T) ((-78 . -615) 4848) ((-78 . -1219) T) ((-78 . -399) T) ((-77 . -444) T) ((-77 . -615) 4830) ((-77 . -1219) T) ((-77 . -399) T) ((-76 . -444) T) ((-76 . -615) 4812) ((-76 . -1219) T) ((-76 . -399) T) ((-75 . -400) T) ((-75 . -615) 4794) ((-75 . -1219) T) ((-75 . -399) T) ((-74 . -444) T) ((-74 . -615) 4776) ((-74 . -1219) T) ((-74 . -399) T) ((-73 . -385) T) ((-73 . -615) 4758) ((-73 . -1219) T) ((-73 . -399) T) ((-72 . -399) T) ((-72 . -1219) T) ((-72 . -615) 4740) ((-71 . -444) T) ((-71 . -615) 4722) ((-71 . -1219) T) ((-71 . -399) T) ((-70 . -385) T) ((-70 . -615) 4704) ((-70 . -1219) T) ((-70 . -399) T) ((-69 . -399) T) ((-69 . -1219) T) ((-69 . -615) 4686) ((-68 . -385) T) ((-68 . -615) 4668) ((-68 . -1219) T) ((-68 . -399) T) ((-67 . -385) T) ((-67 . -615) 4650) ((-67 . -1219) T) ((-67 . -399) T) ((-66 . -400) T) ((-66 . -615) 4632) ((-66 . -1219) T) ((-66 . -399) T) ((-65 . -387) T) ((-65 . -615) 4614) ((-65 . -1219) T) ((-65 . -399) T) ((-65 . -618) 4543) ((-64 . -444) T) ((-64 . -615) 4525) ((-64 . -1219) T) ((-64 . -399) T) ((-63 . -399) T) ((-63 . -1219) T) ((-63 . -615) 4507) ((-62 . -444) T) ((-62 . -615) 4489) ((-62 . -1219) T) ((-62 . -399) T) ((-61 . -400) T) ((-61 . -615) 4471) ((-61 . -1219) T) ((-61 . -399) T) ((-60 . -57) 4433) ((-60 . -34) T) ((-60 . -1219) T) ((-60 . -615) 4365) ((-60 . -310) 4303) ((-60 . -517) 4236) ((-60 . -1104) 4214) ((-60 . -102) 4192) ((-60 . -492) 4176) ((-58 . -19) 4160) ((-58 . -653) 4144) ((-58 . -289) 4121) ((-58 . -287) 4098) ((-58 . -606) 4075) ((-58 . -616) 4036) ((-58 . -492) 4020) ((-58 . -102) 3970) ((-58 . -1104) 3920) ((-58 . -517) 3853) ((-58 . -310) 3791) ((-58 . -615) 3703) ((-58 . -1219) T) ((-58 . -34) T) ((-58 . -151) 3687) ((-58 . -852) 3666) ((-58 . -374) 3650) ((-55 . -1104) T) ((-55 . -615) 3632) ((-55 . -102) T) ((-55 . -1041) 3614) ((-55 . -618) 3596) ((-51 . -1104) T) ((-51 . -615) 3578) ((-51 . -102) T) ((-50 . -623) 3562) ((-50 . -618) 3531) ((-50 . -650) 3505) ((-50 . -648) 3464) ((-50 . -728) T) ((-50 . -1115) T) ((-50 . -1060) T) ((-50 . -1052) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1104) T) ((-50 . -615) 3446) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -131) T) ((-50 . -1041) 3430) ((-49 . -1104) T) ((-49 . -615) 3412) ((-49 . -102) T) ((-48 . -299) T) ((-48 . -102) T) ((-48 . -615) 3394) ((-48 . -1104) T) ((-48 . -618) 3327) ((-48 . -1041) 3270) ((-48 . -517) 3236) ((-48 . -310) 3223) ((-48 . -27) T) ((-48 . -1005) T) ((-48 . -243) T) ((-48 . -111) 3179) ((-48 . -1054) 3144) ((-48 . -1059) 3109) ((-48 . -291) T) ((-48 . -719) 3074) ((-48 . -642) 3039) ((-48 . -650) 3004) ((-48 . -648) 2954) ((-48 . -131) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1052) T) ((-48 . -1060) T) ((-48 . -1115) T) ((-48 . -728) T) ((-48 . -38) 2919) ((-48 . -308) T) ((-48 . -455) T) ((-48 . -172) T) ((-48 . -560) T) ((-48 . -924) T) ((-48 . -1224) T) ((-48 . -365) T) ((-48 . -641) 2879) ((-48 . -1023) T) ((-48 . -616) 2824) ((-48 . -147) T) ((-48 . -233) T) ((-45 . -36) 2803) ((-45 . -606) 2728) ((-45 . -310) 2532) ((-45 . -517) 2324) ((-45 . -492) 2261) ((-45 . -287) 2186) ((-45 . -289) 2111) ((-45 . -612) 2090) ((-45 . -235) 2040) ((-45 . -107) 1990) ((-45 . -229) 1940) ((-45 . -1196) 1919) ((-45 . -283) 1869) ((-45 . -151) 1819) ((-45 . -34) T) ((-45 . -1219) T) ((-45 . -615) 1801) ((-45 . -1104) T) ((-45 . -102) T) ((-45 . -616) NIL) ((-45 . -653) 1751) ((-45 . -374) 1701) ((-45 . -852) NIL) ((-45 . -1152) 1651) ((-45 . -1013) 1601) ((-45 . -1258) 1551) ((-45 . -668) 1501) ((-44 . -421) 1485) ((-44 . -746) 1469) ((-44 . -722) T) ((-44 . -763) T) ((-44 . -111) 1448) ((-44 . -1054) 1432) ((-44 . -1059) 1416) ((-44 . -21) T) ((-44 . -648) 1359) ((-44 . -23) T) ((-44 . -1104) T) ((-44 . -615) 1341) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -131) T) ((-44 . -650) 1299) ((-44 . -642) 1283) ((-44 . -719) 1267) ((-44 . -369) 1251) ((-40 . -344) 1225) ((-40 . -172) T) ((-40 . -618) 1155) ((-40 . -728) T) ((-40 . -1115) T) ((-40 . -1060) T) ((-40 . -1052) T) ((-40 . -650) 1100) ((-40 . -648) 1030) ((-40 . -131) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -615) 1012) ((-40 . -1104) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1059) 957) ((-40 . -1054) 902) ((-40 . -111) 831) ((-40 . -616) 815) ((-40 . -231) 792) ((-40 . -903) 744) ((-40 . -233) 716) ((-40 . -365) T) ((-40 . -1224) T) ((-40 . -924) T) ((-40 . -560) T) ((-40 . -719) 661) ((-40 . -642) 606) ((-40 . -38) 551) ((-40 . -455) T) ((-40 . -308) T) ((-40 . -291) T) ((-40 . -243) T) ((-40 . -370) NIL) ((-40 . -352) NIL) ((-40 . -1154) NIL) ((-40 . -145) 523) ((-40 . -405) NIL) ((-40 . -413) 495) ((-40 . -147) 467) ((-40 . -372) 439) ((-40 . -379) 416) ((-40 . -641) 355) ((-40 . -415) 332) ((-40 . -1041) 220) ((-40 . -726) 192) ((-31 . -1086) T) ((-31 . -493) 173) ((-31 . -615) 139) ((-31 . -618) 120) ((-31 . -1104) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -958) T) ((-30 . -615) 102) ((0 . |EnumerationCategory|) T) ((0 . -615) 84) ((0 . -1104) T) ((0 . -102) T) ((-2 . |RecordCategory|) T) ((-2 . -615) 66) ((-2 . -1104) T) ((-2 . -102) T) ((-3 . |UnionCategory|) T) ((-3 . -615) 48) ((-3 . -1104) T) ((-3 . -102) T) ((-1 . -1104) T) ((-1 . -615) 30) ((-1 . -102) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 51bb1852..2bdfcc41 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,1145 +1,1014 @@ -(30 . 3474699320) -(4425 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3477417264) +(4428 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| - |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| - |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| - |AbelianSemiGroup| |AlgebraicallyClosedField&| - |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| - |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AddAst| - |AlgebraicFunction| |Aggregate&| |Aggregate| - |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| - |Algebra| |AlgFactor| |AlgebraicFunctionField| + |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| + |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| + |AlgebraicallyClosedField&| |AlgebraicallyClosedField| + |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| + |PlaneAlgebraicCurvePlot| |AddAst| |AlgebraicFunction| |Aggregate&| + |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| + |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| - |AlgebraGivenByStructuralConstants| |AssociationList| - |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| - |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| - |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity| + |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| + |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| + |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |Arity| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| - |OneDimensionalArrayFunctions2| |OneDimensionalArray| - |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| - |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| - |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| - |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| - |ArrayStack| |AbstractSyntaxCategory&| |AbstractSyntaxCategory| - |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| - |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| - |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| - |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| - |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean| - |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| - |BalancedPAdicInteger| |BalancedPAdicRational| - |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| - |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| - |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |ByteBuffer| |Byte| |ByteOrder| - |CancellationAbelianMonoid| |CachableSet| |CapsuleAst| - |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| - |CaseAst| |CategoryAst| |CategoryConstructor| |Category| - |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| - |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| - |CharacteristicZero| |ChangeOfVariable| - |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| - |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| - |CollectAst| |ComplexRootPackage| |ColonAst| |Color| - |CombinatorialFunction| |IntegerCombinatoricFunctions| - |CombinatorialOpsCategory| |CommaAst| |Commutator| |CommonOperators| - |CommuteUnivariatePolynomialCategory| |ComplexCategory&| - |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| - |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| - |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| + |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray| + |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| + |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| + |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| + |AssociatedEquations| |ArrayStack| |AbstractSyntaxCategory&| + |AbstractSyntaxCategory| |ArcTrigonometricFunctionCategory&| + |ArcTrigonometricFunctionCategory| |AttributeAst| |AttributeButtons| + |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| + |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| + |BagAggregate&| |BagAggregate| |BinaryExpansion| |Binding| |Bits| |BiModule| + |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots| + |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| + |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| + |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| + |BinaryTree| |Byte| |ByteBuffer| |ByteOrder| |CancellationAbelianMonoid| + |CachableSet| |CapsuleAst| |CardinalNumber| |CartesianTensor| + |CartesianTensorFunctions2| |CaseAst| |CategoryAst| |CategoryConstructor| + |Category| |CharacterClass| |CommonDenominator| + |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| + |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| + |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| + |CliffordAlgebra| |TwoDimensionalPlotClipping| |CollectAst| + |ComplexRootPackage| |ColonAst| |Color| |CombinatorialFunction| + |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| + |CommaAst| |CommonOperators| |CommuteUnivariatePolynomialCategory| + |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex| + |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| + |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| - |CRApackage| |CoerceAst| |ComplexRootFindingPackage| - |CyclicStreamTools| |ConstructorCall| |ConstructorCategory&| - |ConstructorCategory| |ConstructorKind| |Constructor| - |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| - |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| - |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| - |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| - |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| - |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| - |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| - |d03eefAnnaType| |d03fafAnnaType| |DataArray| |Database| - |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| - |DefinitionAst| |ElementaryFunctionDefiniteIntegration| - |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| - |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| - |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| - |Dictionary| |DifferentialExtension&| |DifferentialExtension| + |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools| + |Constructor| |ConstructorCall| |ConstructorCategory&| |ConstructorCategory| + |ConstructorKind| |ComplexTrigonometricManipulations| + |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| + |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| + |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| + |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| + |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| + |d03fafAnnaType| |DataArray| |Database| |DoubleResultantPackage| + |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst| + |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| + |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| + |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| + |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| - |DictionaryOperations| |DiophantineSolutionPackage| - |DirectProductCategory&| |DirectProductCategory| - |DirectProductFunctions2| |DirectProduct| |DisplayPackage| - |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| - |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| - |Domain| |DomainConstructor| |DomainTemplate| - |DirectProductMatrixModule| |DirectProductModule| - |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| - |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| - |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| - |DrawNumericHack| |TopLevelDrawFunctions| - |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| - |DrawOptionFunctions1| |DrawOption| - |DifferentialSparseMultivariatePolynomial| + |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| + |DirectProductCategory| |DirectProduct| |DirectProductFunctions2| + |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| + |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| + |Domain| |DomainConstructor| |DomainTemplate| |DirectProductMatrixModule| + |DirectProductModule| |DifferentialPolynomialCategory&| + |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctions| + |TopLevelDrawFunctionsForCompiledFunctions| + |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| + |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| + |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| - |ExtAlgBasis| |ElementaryFunction| - |ElementaryFunctionStructurePackage| + |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ElaboratedExpression| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| - |EllipticFunctionsUnivariateTaylorSeries| |Eltable| - |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| - |EntireRing| |Environment| |EigenPackage| |EquationFunctions2| - |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| - |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| - |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| - |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| - |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| - |Evalable&| |Evalable| |EvaluateCycleIndicators| |ExitAst| |Exit| - |ExponentialExpansion| |ExpressionFunctions2| - |ExpressionToUnivariatePowerSeries| |Expression| - |ExpressionSpaceODESolver| |ExpressionTubePlot| - |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| - |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| - |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| - |FiniteAbelianMonoidRing| |FlexibleArray| - |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| - |FortranCode| |FourierComponent| |FortranCodePackage1| |FunctorData| - |FiniteDivisorFunctions2| |FiniteDivisorCategory&| - |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| - |FullyEvalableOver| |FortranExpression| - |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| - |FunctionFieldCategory| |FiniteFieldCyclicGroup| - |FiniteFieldCyclicGroupExtensionByPolynomial| + |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| + |EltableAggregate| |EuclideanModularRing| |EntireRing| |Environment| + |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| + |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| + |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| + |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| + |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| + |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| + |ExitAst| |ExponentialExpansion| |Expression| |ExpressionFunctions2| + |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| + |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| + |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| + |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| + |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| + |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| + |FortranCodePackage1| |FunctorData| |FiniteDivisor| |FiniteDivisorFunctions2| + |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| + |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| + |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| + |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| - |FiniteFieldHomomorphisms| |FiniteFieldCategory&| - |FiniteFieldCategory| |FunctionFieldIntegralBasis| - |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| - |FiniteFieldNormalBasisExtension| |FiniteField| - |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| - |FiniteFieldPolynomialPackage| + |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| + |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| + |FiniteFieldNormalBasisExtensionByPolynomial| + |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial| + |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| - |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| - |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| - |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| - |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| - |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| - |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| - |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| - |FreeModuleCat| |FortranMatrixCategory| - |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoidCategory| - |FreeMonoid| |FortranMachineTypeCategory| |FileName| - |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| - |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat| - |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage| - |FortranProgram| |FullPartialFractionExpansion| - |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| - |FieldOfPrimeCharacteristic| |FloatingPointSystem&| - |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2| - |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| - |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal| - |FramedModule| |FramedNonAssociativeAlgebraFunctions2| - |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| - |Factored| |FactoredFunctionUtilities| - |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| - |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| - |FiniteSetAggregate&| |FiniteSetAggregate| - |FunctionSpaceComplexIntegration| |FourierSeries| - |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| + |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| + |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| + |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| + |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| + |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| + |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| + |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| + |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoidCategory| + |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| + |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| + |ScriptFormulaFormat| |ScriptFormulaFormat1| |FortranPackage| + |FortranProgramCategory| |FortranFunctionCategory| |FortranProgram| + |FullPartialFractionExpansion| |FullyPatternMatchable| + |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| + |FloatingPointSystem&| |FloatingPointSystem| |Factored| |FactoredFunctions2| + |Fraction| |FractionFunctions2| |FramedAlgebra&| |FramedAlgebra| + |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdeal| + |FractionalIdealFunctions2| |FramedModule| + |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| + |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| + |FunctionSpace| |FunctionSpaceFunctions2| + |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| + |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2| + |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| - |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| - |FortranType| |FunctionCalled| |FunctionDescriptor| - |FortranVectorCategory| |FortranVectorFunctionCategory| - |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| - |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| - |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| - |GroebnerFactorizationPackage| |GroebnerInternalPackage| - |GroebnerPackage| |GcdDomain&| |GcdDomain| - |GenericNonAssociativeAlgebra| - |GeneralDistributedMultivariatePolynomial| |GenExEuclid| - |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| + |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| + |FunctionCalled| |FunctionDescriptor| |FortranVectorCategory| + |FortranVectorFunctionCategory| |GaloisGroupFactorizer| + |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| + |GaloisGroupUtilities| |GaussianFactorizationPackage| |GroebnerPackage| + |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| + |GroebnerInternalPackage| |GcdDomain&| |GcdDomain| + |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| + |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| - |GeneralModulePolynomial| |GosperSummationMethod| - |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| - |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| - |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| - |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HasAst| |HashTable| - |HallBasis| |HomogeneousDistributedMultivariatePolynomial| - |HomogeneousDirectProduct| |HeadAst| |Heap| - |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| - |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| - |Hostname| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| - |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| + |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| + |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| + |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| + |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| + |Pi| |HasAst| |HashTable| |HallBasis| + |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| + |HeadAst| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| + |HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| |Hostname| + |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| + |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| - |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| - |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| - |IdealDecompositionPackage| |Identifier| - |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| - |IndexedDirectProductCategory| - |IndexedDirectProductOrderedAbelianMonoid| - |IndexedDirectProductOrderedAbelianMonoidSup| - |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| - |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| - |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| - |InnerMatrixLinearAlgebraFunctions| - |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| - |InAst| |InputByteConduit&| |InputByteConduit| + |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| + |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| + |Identifier| |IndexedDirectProductAbelianGroup| + |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| + |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| + |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| + |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |IfAst| |InnerFiniteField| + |InnerIndexedTwoDimensionalArray| |IndexedList| + |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| + |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit| |InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |InetClientStreamSocket| - |Infinity| |InputFormFunctions1| |InputForm| + |Infinity| |InputForm| |InputFormFunctions1| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| - |IntegerNumberSystem| |Int16| |Int32| |Int64| |Int8| |InnerTable| - |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| - |IntervalCategory| |IntegralDomain&| |IntegralDomain| - |ElementaryIntegration| |IntegerFactorizationPackage| - |IntegrationFunctionsTable| |GenusZeroIntegration| - |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| - |TranscendentalHermiteIntegration| |Integer| + |IntegerNumberSystem| |Integer| |Int16| |Int32| |Int64| |Int8| |InnerTable| + |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| + |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| + |IntegerFactorizationPackage| |IntegrationFunctionsTable| + |GenusZeroIntegration| |IntegerNumberTheoryFunctions| + |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| - |TranscendentalIntegration| |InverseLaplaceTransform| - |InputOutputByteConduit| |InputOutputBinaryFile| |IOMode| |IP4Address| - |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| - |IntegrationResultToFunction| |IntegrationResultFunctions2| - |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| + |TranscendentalIntegration| |InverseLaplaceTransform| |InputOutputByteConduit| + |InputOutputBinaryFile| |IOMode| |IP4Address| |InnerPAdicInteger| + |InnerPrimeField| |InternalPrintPackage| |IntegrationResult| + |IntegrationResultFunctions2| |IntegrationResultToFunction| + |InternalRepresentationForm| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| - |InternalRationalUnivariateRepresentationPackage| |IsAst| - |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| - |InnerTaylorSeries| |InfiniteTupleFunctions2| - |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| - |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| - |JavaBytecode| |JoinAst| |AssociatedJordanAlgebra| |KeyedAccessFile| - |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| - |CoercibleTo| |ConvertibleTo| |Kovacic| |CoercibleFrom| - |KleeneTrivalentLogic| |ConvertibleFrom| |LeftAlgebra&| |LeftAlgebra| - |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| - |LazardSetSolvingPackage| |LeadingCoefDetermination| |LetAst| - |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| - |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| - |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| - |RationalFunctionLimitPackage| |LinearDependence| - |LinearlyExplicitRingOver| |LinearSet| |ListToMap| |ListFunctions2| - |ListFunctions3| |List| |Literal| |LeftLinearSet| - |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| - |LinearAggregate| |ElementaryFunctionLODESolver| - |LinearOrdinaryDifferentialOperator1| + |InternalRationalUnivariateRepresentationPackage| |IsAst| |IndexedString| + |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| + |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| + |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| + |IndexedAggregate&| |IndexedAggregate| |JavaBytecode| |JoinAst| + |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| + |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo| + |Kovacic| |CoercibleFrom| |KleeneTrivalentLogic| |ConvertibleFrom| + |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform| + |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| + |LetAst| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction| + |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library| + |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage| + |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| + |LinearSet| |List| |ListFunctions2| |ListToMap| |ListFunctions3| |Literal| + |LeftLinearSet| |ListMultiDictionary| |LeftModule| |ListMonoidOps| + |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver| + |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| - |LinearOrdinaryDifferentialOperator| - |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| + |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| - |ListAggregate| |LinearSystemMatrixPackage1| - |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| - |LieSquareMatrix| |ConstructAst| |LyndonWord| |LazyStreamAggregate&| - |LazyStreamAggregate| |ThreeDimensionalMatrix| |MacroAst| |Magma| - |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| - |MappingPackageInternalHacks3| |MappingAst| |MappingPackage1| - |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| - |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| + |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| + |LinearSystemPolynomialPackage| |LieSquareMatrix| |ConstructAst| |LyndonWord| + |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| + |MacroAst| |Magma| |MappingPackageInternalHacks1| + |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingAst| + |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&| + |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |Maybe| - |MultiVariableCalculusFunctions| |MatrixCommonDenominator| - |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| - |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| - |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| - |MakeBinaryCompiledFunction| |MakeFloatCompiledFunction| - |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| - |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| - |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| - |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| - |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| + |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| + |MultiDictionary| |ModularDistinctDegreeFactorizer| + |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| + |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| + |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| + |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| + |MultipleMap| |MathMLFormat| |ModularField| |ModMonic| |ModuleMonomial| + |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| + |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| - |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| - |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| + |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| + |MultisetAggregate| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| - |MultivariateSquareFree| |NonAssociativeAlgebra&| - |NonAssociativeAlgebra| |NagPolynomialRootsPackage| - |NagRootFindingPackage| |NagSeriesSummationPackage| - |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| + |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| + |NagPolynomialRootsPackage| |NagRootFindingPackage| + |NagSeriesSummationPackage| |NagIntegrationPackage| + |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| - |NagFittingPackage| |NagOptimisationPackage| - |NagMatrixOperationsPackage| |NagEigenPackage| - |NagLinearEquationSolvingPackage| |NagLapack| - |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| - |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| - |NonAssociativeRing| |NumericComplexEigenPackage| - |NumericContinuedFraction| |NonCommutativeOperatorDivision| - |NetworkClientSocket| |NumberFieldIntegralBasis| - |NumericalIntegrationProblem| |NonLinearSolvePackage| - |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| - |None| |NormInMonogenicAlgebra| |NormalizationPackage| + |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| + |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| + |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| + |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| + |NumericComplexEigenPackage| |NumericContinuedFraction| + |NonCommutativeOperatorDivision| |NetworkClientSocket| + |NumberFieldIntegralBasis| |NumericalIntegrationProblem| + |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| + |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| - |NewSparseMultivariatePolynomial| - |NewSparseUnivariatePolynomialFunctions2| - |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| + |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| + |NewSparseUnivariatePolynomialFunctions2| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| - |NumericalIntegrationCategory| - |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| - |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| - |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| - |OrderedCancellationAbelianMonoid| |OctonionCategory&| - |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| + |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| + |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| + |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| + |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid| + |Octonion| |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| - |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| - |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| - |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| - |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| - |SystemODESolver| |ODETools| |OrderedDirectProduct| + |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| + |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| + |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| + |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| - |OrderlyDifferentialVariable| |OrderedFreeMonoid| - |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| - |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| - |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| - |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| - |OnePointCompletionFunctions2| |OnePointCompletion| - |OperatorCategory&| |OperatorCategory| |Operator| |OperationsQuery| + |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| + |OpenMath| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| + |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath| + |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate| + |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2| + |Operator| |OperatorCategory&| |OperatorCategory| |OperationsQuery| |OperatorSignature| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| - |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| - |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| - |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| - |UnivariateSkewPolynomialCategory| - |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| - |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| - |OrderedSemiGroup| |OrdSetInts| |OutputByteConduit&| - |OutputByteConduit| |OutputBinaryFile| |OutputForm| |OutputPackage| - |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials| - |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| - |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Pair| + |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| + |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| + |OrderedSet| |UnivariateSkewPolynomialCategory&| + |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| + |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| + |OrthogonalPolynomialFunctions| |OrderedSemiGroup| |OrdSetInts| + |OutputPackage| |OutputByteConduit&| |OutputByteConduit| |OutputBinaryFile| + |OutputForm| |OrderedVariableList| |OverloadSet| |OrdinaryWeightedPolynomials| + |PadeApproximants| |PadeApproximantPackage| |PAdicInteger| + |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Pair| |Palette| |PolynomialAN2Expression| |ParameterAst| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |Parser| - |ParametricSurfaceFunctions2| |ParametricSurface| - |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| - |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| - |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| - |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| - |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| - |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| - |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| - |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| - |PolynomialFactorizationByRecursion| + |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| + |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| + |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern| + |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| + |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| + |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| + |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| + |PendantTree| |Permutation| |Permanent| |PermutationCategory| + |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| - |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| - |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| - |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| - |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| - |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| - |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| - |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| - |PatternMatchPushDown| |PatternMatchFunctionSpace| + |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| + |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| + |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions| + |PrincipalIdealDomain| |PolynomialInterpolation| + |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot| + |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions| + |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| - |FunctionSpaceAttachPredicates| |AttachPredicates| - |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| - |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| - |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| - |PolynomialToUnivariatePolynomial| |PolynomialCategory&| - |PolynomialCategory| |PolynomialCategoryQuotientFunctions| - |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| - |PortNumber| |PlottablePlaneCurveCategory| - |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| - |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| - |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| - |Property| |PropositionalFormula| |PropositionalLogic| - |PriorityQueueAggregate| |PseudoRemainderSequence| |PretendAst| - |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| - |PlottableSpaceCurveCategory| |PolynomialSetCategory&| - |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| - |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| - |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| - |PushVariables| |PAdicWildFunctionFieldIntegralBasis| - |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| - |QueryEquation| |QuotientFieldCategoryFunctions2| - |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| - |QuasiquoteAst| |QueueAggregate| |QuaternionCategory&| - |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| - |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| - |RadixExpansion| |RadixUtilities| |RandomNumberSource| - |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| - |RecursiveAggregate| |RealClosedField&| |RealClosedField| - |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| - |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| - |ReduceAst| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| - |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| - |RegularTriangularSet| |RepresentationPackage1| - |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| + |AttachPredicates| |FunctionSpaceAttachPredicates| + |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| + |PolynomialNumberTheoryFunctions| |Point| |PolToPol| + |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2| + |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| + |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| + |PolynomialRoots| |PortNumber| |PlottablePlaneCurveCategory| |PolynomialRing| + |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2| + |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| + |PrintPackage| |Product| |Property| |PropositionalFormula| + |PropositionalLogic| |PriorityQueueAggregate| |PseudoRemainderSequence| + |PretendAst| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| + |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| + |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| + |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| + |PartialTranscendentalFunctions| |PushVariables| + |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| + |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&| + |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm| + |QuasiquoteAst| |QueueAggregate| |Quaternion| |QuaternionCategory&| + |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| + |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| + |RandomNumberSource| |RationalFactorize| |RationalRetractions| + |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| + |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| + |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| + |ReducedDivisor| |ReduceAst| |RealConstant| |RealZeroPackage| + |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder| + |Reference| |RegularTriangularSet| |RadicalEigenPackage| + |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |ReturnAst| |RetractableTo&| |RetractableTo| |RetractSolvePackage| - |RandomFloatDistributions| |RationalFunctionFactor| - |RationalFunctionFactorizer| |RationalFunction| |RGBColorModel| - |RGBColorSpace| |RegularChain| |RandomIntegerDistributions| |Ring&| - |Ring| |RationalInterpolation| |RightLinearSet| - |RectangularMatrixCategory&| |RectangularMatrixCategory| - |RectangularMatrix| |RectangularMatrixCategoryFunctions2| - |RightModule| |RangeBinding| |Rng| |RealNumberSystem&| - |RealNumberSystem| |RightOpenIntervalRootCharacterization| - |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| - |RecursivePolynomialCategory| |RepeatAst| + |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| + |RationalFunctionFactorizer| |RGBColorModel| |RGBColorSpace| |RegularChain| + |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| + |RightLinearSet| |RectangularMatrixCategory&| |RectangularMatrixCategory| + |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| + |RangeBinding| |RealNumberSystem&| |RealNumberSystem| + |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| + |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| - |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| - |RestrictAst| |RuntimeValue| |RuleCalled| |RewriteRule| |Ruleset| - |RationalUnivariateRepresentationPackage| - |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| - |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| - |SpadSyntaxCategory| |SortedCache| |Scope| + |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RestrictAst| + |RuntimeValue| |RewriteRule| |RuleCalled| |Ruleset| + |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| + |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| + |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| - |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentAst| - |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| - |Segment| |SegmentExpansionCategory| |SequenceAst| |SetAggregate&| - |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| - |Set| |SExpressionCategory| |SExpression| |SExpressionOf| - |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| - |SquareFreeRegularTriangularSetGcdPackage| - |SquareFreeRegularTriangularSetCategory| - |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| - |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |SignatureAst| - |ElementaryFunctionSign| |RationalFunctionSign| |Signature| - |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| - |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| - |SmithNormalForm| |SparseMultivariatePolynomial| - |SparseMultivariateTaylorSeries| - |SquareFreeNormalizedTriangularSetCategory| - |PolynomialSolveByFormulas| |RadicalSolvePackage| - |TransSolvePackageService| |TransSolvePackage| |SortPackage| - |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser| + |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst| + |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory| + |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate| + |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression| + |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| + |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| + |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| + |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| + |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign| + |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| + |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| + |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| + |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| + |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| + |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpadAst| |SpadParser| |SpadAstExports| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| - |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| - |StreamAggregate| |SparseTable| |StepAst| |StepThrough| - |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| - |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| - |StreamTaylorSeriesOperations| - |StreamTranscendentalFunctionsNonCommutative| - |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| - |SuchThat| |SuchThatAst| |SparseUnivariateLaurentSeries| - |FunctionSpaceSum| |RationalFunctionSum| - |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| - |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| + |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| + |SparseTable| |StepThrough| |StepAst| |StreamInfiniteProduct| |Stream| + |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory| + |String| |StringTable| |StreamTaylorSeriesOperations| + |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| + |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst| + |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| + |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2| + |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| - |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| - |SystemInteger| |SystemNonNegativeInteger| |SystemPointer| - |SystemSolvePackage| |System| |TableauxBumpers| |Tableau| |Table| - |TangentExpansions| |TableAggregate&| |TableAggregate| - |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| - |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| - |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| - |Tree| |TrigonometricFunctionCategory&| - |TrigonometricFunctionCategory| |TrigonometricManipulations| - |TriangularMatrixOperations| |TranscendentalManipulations| - |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| - |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type| - |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| - |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| - |UInt32| |UInt64| |UInt8| |UnivariateLaurentSeriesFunctions2| + |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemInteger| + |SystemNonNegativeInteger| |SystemPointer| |SystemSolvePackage| |System| + |TableauxBumpers| |Table| |Tableau| |TangentExpansions| |TableAggregate&| + |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| + |TexFormat1| |TextFile| |ToolsForSign| |TopLevelThreeSpace| + |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| + |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| + |TrigonometricManipulations| |TriangularMatrixOperations| + |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| + |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| + |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| + |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| |UInt32| + |UInt64| |UInt8| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| - |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| - |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| - |UnivariatePolynomialFunctions2| - |UnivariatePolynomialCommonDenominator| + |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment| + |UniversalSegmentFunctions2| |UnivariatePolynomial| + |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| - |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| - |UnivariatePolynomialCategoryFunctions2| - |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| + |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&| + |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| - |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| - |UnivariatePuiseuxSeriesCategory| + |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| + |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| - |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| - |UnivariatePuiseuxSeriesWithExponentialSingularity| - |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| + |UnivariatePuiseuxSeriesConstructor| + |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| + |UnaryRecursiveAggregate| |UnivariateTaylorSeries| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| - |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| - |UnivariateTaylorSeriesODESolver| |UTSodetools| |UnionType| |Variable| - |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| - |TwoDimensionalViewport| |ThreeDimensionalViewport| - |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| - |VectorSpace| |WeierstrassPreparation| - |WildFunctionFieldIntegralBasis| |WhereAst| |WhileAst| - |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| - |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| - |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| - |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| + |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver| + |UTSodetools| |UnionType| |Variable| |VectorCategory&| |VectorCategory| + |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport| + |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&| + |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| + |WhereAst| |WhileAst| |WeightedPolynomials| |WuWenTsunTriangularSet| + |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&| + |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial| + |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| - |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |currentEnv| |leadingIndex| |dAndcExp| - |extractSplittingLeaf| |triangulate| |filterUntil| |homogeneous?| - |separant| |baseRDEsys| |trim| |setProperties!| |f02adf| - |extendedSubResultantGcd| |merge| |select| |digit?| |OMbindTCP| - |nthCoef| |OMgetError| |symmetricDifference| |convert| |mainContent| - |toseLastSubResultant| |yellow| |tanintegrate| |distdfact| |sh| - |log10| |makeObject| |currentSubProgram| |removeRedundantFactors| - |pToDmp| |LazardQuotient2| |cLog| |dot| |height| |systemCommand| - |decreasePrecision| |setMinPoints3D| |nary?| |particularSolution| - |bitand| |coef| |expandPower| |makeCrit| |hexDigit?| - |linearlyDependentOverZ?| |outputFixed| |idealSimplify| |qfactor| - |useSingleFactorBound| |lepol| |fractRadix| |bitior| |complexLimit| - |addMatch| |split!| |even?| |linearDependenceOverZ| |d01gaf| - |complexElementary| UTS2UP |f07fdf| |symbol| |critMTonD1| |acsc| |abs| - |npcoef| |Gamma| |hessian| |ode1| |inverseIntegralMatrixAtInfinity| - |normal| |rightMinimalPolynomial| |trailingCoefficient| |recip| - |expression| |factorials| |sinh| |kroneckerDelta| |shrinkable| - |setErrorBound| |initializeGroupForWordProblem| |createRandomElement| - |bat| |basisOfNucleus| |divideIfCan!| |makeRecord| |content| - |stopTable!| |integer| |insertionSort!| |cosh| |squareTop| - |semiSubResultantGcdEuclidean2| |separateFactors| |pile| |normal01| - |setValue!| |setleaves!| |systemSizeIF| |coerceListOfPairs| - |viewThetaDefault| |makeFloatFunction| |tanh| |doublyTransitive?| - |solveRetract| |decimal| |predicates| |unitNormalize| |normDeriv2| - |initial| |nextNormalPoly| |isPower| |space| |checkRur| |coth| - |quoByVar| |solid| |curveColorPalette| |inverseIntegralMatrix| - |f02bbf| |iiabs| |high| |rightTraceMatrix| |splitNodeOf!| |OMgetBind| - |rectangularMatrix| |every?| |sech| |bivariatePolynomials| |reflect| - |lastSubResultantElseSplit| |maxint| |normFactors| |comparison| - |OMreceive| |unvectorise| |changeName| |algebraicDecompose| |rspace| - |csch| |factors| |isImplies| |max| |bumptab| |low| |signatureAst| - |triangularSystems| |cycles| |hasHi| |isConnected?| |printInfo!| - |roughBasicSet| |asinh| |btwFact| |karatsubaOnce| |ref| ** - |alphabetic| |ScanRoman| |rootRadius| |matrixConcat3D| |writeBytes!| - |squareFree| |OMputInteger| |acosh| |OMputSymbol| |label| |rank| - |bindings| |permanent| |e04dgf| |selectAndPolynomials| - |deleteProperty!| |numberOfComposites| |leftUnits| |optpair| |iFTable| - |atanh| |uniform| |genericRightTraceForm| |evaluate| - |parabolicCylindrical| |Nul| |f2df| |normalize| - |createIrreduciblePoly| |addPointLast| |makeYoungTableau| |acoth| - |tail| |bitLength| |iiacoth| |symmetricTensors| |laguerreL| - |pushNewContour| |rules| |iiatanh| |octon| |listBranches| |real?| - |genericLeftNorm| |asech| |setprevious!| |c06gbf| |OMputApp| - |removeSinSq| |moduleSum| |rightRecip| |keys| |sumSquares| |errorKind| - |userOrdered?| |coefficients| |hostByteOrder| |eof?| |tRange| - |constantIfCan| |fortranLinkerArgs| |indicialEquation| |totalGroebner| - |edf2ef| |factorset| |eigenvectors| |rational?| |multiple| - |exactQuotient!| |chebyshevT| |OMputVariable| |blankSeparate| - |mathieu22| |indiceSubResultant| Y |cn| |iiexp| |s17acf| |subCase?| - |quasiRegular?| |applyQuote| |cyclicEntries| |minus!| |optAttributes| - |component| |setProperty| |subscript| |constructor| |eigenvector| - |numerator| |goodPoint| |irreducibleFactors| |laguerre| |unknown| - |size?| |lists| |normalDeriv| |OMputObject| |virtualDegree| |key?| - |balancedFactorisation| |minimumDegree| |isOp| |definingInequation| - |countRealRoots| |option| |allRootsOf| |s01eaf| |sincos| |iisqrt2| - |ptFunc| |showSummary| |yCoord| |stripCommentsAndBlanks| - |lazyGintegrate| |RemainderList| |fi2df| |ruleset| |normalizedDivide| - |pleskenSplit| |pushdown| |collectUpper| |closedCurve| |say| - |sylvesterMatrix| |powerAssociative?| |f04axf| |setfirst!| - |internalSubPolSet?| |rk4qc| |powmod| |s17agf| |goto| |s13acf| - |showAttributes| |linearMatrix| |hyperelliptic| - |univariatePolynomials| UP2UTS |vconcat| |badValues| |cup| - |characteristicSet| |OMgetString| |subSet| |pointColorPalette| - |rightNorm| |backOldPos| |processTemplate| |rightTrim| |solveid| - |suchThat| |mindeg| |lintgcd| |removeSuperfluousQuasiComponents| |po| - |rootOf| |createMultiplicationMatrix| |irreducibleRepresentation| - |Frobenius| |solveLinearPolynomialEquation| |leftTrim| |harmonic| - |rotatez| |result| |iteratedInitials| |SturmHabichtMultiple| - |updateStatus!| |points| |ocf2ocdf| |showIntensityFunctions| - |removeConstantTerm| |modifyPointData| |getOrder| |d03eef| - |monomialIntPoly| |mesh?| |nthExponent| |compose| |reset| - |complementaryBasis| |sumOfKthPowerDivisors| |orbit| |getMeasure| - |oblateSpheroidal| |name| |divisor| |substring?| |stoseInvertible?| - |stronglyReduced?| |nonSingularModel| - |removeRoughlyRedundantFactorsInPols| |gcdcofact| |meshFun2Var| - |setMaxPoints3D| |inverse| |intPatternMatch| |setelt!| |updatD| - |acoshIfCan| |insertTop!| |gcdprim| |write| |delete!| |ksec| - |putColorInfo| |null?| |gbasis| |fortranLogical| |suffix?| |f02xef| - |diophantineSystem| |iiasec| |printHeader| |save| F |printTypes| - |extend| |has?| |unary?| |f01rcf| |brillhartIrreducible?| - |relationsIdeal| |c06ebf| |simplifyLog| |mainExpression| - |musserTrials| |OMopenString| |OMserve| |patternMatchTimes| - |binaryFunction| |open| |readInt8!| |prefix?| |remove| |branchIfCan| - |smith| |uncouplingMatrices| |iicot| |halfExtendedResultant2| |e01bhf| - |badNum| |alphabetic?| |drawStyle| |rightGcd| |getIdentifier| - |sdf2lst| |shiftRoots| |laurent| |factorFraction| |leftFactorIfCan| - |makeViewport2D| |extract!| |ran| |back| |f02aff| |s20acf| |dihedral| - |recoverAfterFail| |null| |solveLinearPolynomialEquationByFractions| - |pattern| RF2UTS |f04jgf| |last| |puiseux| |setchildren!| - |mergeFactors| |logpart| |createPrimitiveNormalPoly| |controlPanel| - |extendedint| |assoc| |testDim| |consnewpol| |not| |initiallyReduced?| - |universe| |evaluateInverse| |getlo| |leftDiscriminant| |c05nbf| - |sturmVariationsOf| |lo| |basisOfRightNucleus| |operations| |cAcosh| - |d03edf| |symbolTableOf| |and| |shiftLeft| |inv| |readLine!| |clip| - |OMconnInDevice| |tanhIfCan| |innerSolve| |incr| |s19acf| |top!| - |clipBoolean| |ground?| |or| |SturmHabichtSequence| |gramschmidt| - |SturmHabicht| |computeCycleLength| |stiffnessAndStabilityOfODEIF| - |OMsetEncoding| |semicolonSeparate| |unitVector| |stop| |lyndon?| - |ground| |squareFreePrim| |infix?| |message| |create| |xor| |ranges| - |lfextendedint| |flatten| |splitConstant| |nextPartition| - |bipolarCylindrical| |ratDsolve| |expenseOfEvaluation| - |halfExtendedSubResultantGcd2| |mask| |groebgen| |curryRight| |f02abf| - |antiCommutator| |case| |normInvertible?| |leadingMonomial| - |constantCoefficientRicDE| |viewPosDefault| |addmod| |getBadValues| - |e01sbf| |numerators| |getProperties| |entries| |randomR| |f04asf| - |Zero| |setPredicates| |leadingCoefficient| - |generalizedContinuumHypothesisAssumed| |llprop| |latex| |polygon?| - |startPolynomial| |powern| |primitive?| |safeCeiling| - |primitiveMonomials| |sequences| |One| |se2rfi| |output| |OMsend| - |sncndn| |Vectorise| |minGbasis| |denomRicDE| |compactFraction| - |conical| |leftAlternative?| |lcm| |B1solve| |reductum| |OMgetFloat| - |startTableGcd!| |Hausdorff| |nand| |redPo| |e02zaf| |simplifyExp| - |weierstrass| |unknownEndian| |topFortranOutputStack| |OMgetEndBVar| - |computeCycleEntry| |algSplitSimple| |f01ref| |ListOfTerms| |cons| - |SFunction| |pdf2df| |selectPDERoutines| |viewDeltaXDefault| - |groebnerIdeal| |makeEq| |append| |monomRDE| |RittWuCompare| - |printingInfo?| |fortranCompilerName| |reduceByQuasiMonic| - |completeHensel| |shiftRight| |csubst| |multiEuclidean| |mkcomm| - |readInt32!| |antisymmetricTensors| |meatAxe| |gcd| - |unrankImproperPartitions1| |bigEndian| |primitivePart| |leftGcd| - |curve| |createPrimitiveElement| |var2Steps| |tanIfCan| |printCode| - |c06gqf| |removeZeroes| |elt| |false| |extensionDegree| |An| |pr2dmp| - |d01gbf| |OMReadError?| |newLine| |numberOfOperations| |BasicMethod| - |rombergo| |categories| |topPredicate| |weight| |outerProduct| |style| - |increment| |asimpson| |OMgetEndApp| |outputGeneral| |innerSolve1| - |csc2sin| |primPartElseUnitCanonical| |replaceKthElement| - |leastAffineMultiple| |gethi| |cycleEntry| |readLineIfCan!| - |create3Space| |outputMeasure| |expintegrate| |deref| |perfectSquare?| - |roman| |pol| |exportedOperators| |graphImage| |rootSimp| |slex| - |numberOfMonomials| |s15adf| |tableau| |approxSqrt| |iitan| - |palgextint| |headReduced?| |basisOfRightNucloid| |distribute| - |diagonal| |someBasis| |mathieu11| |dequeue!| |pquo| |minPoly| - |ramified?| |fortranLiteralLine| |lyndonIfCan| |finiteBound| |hcrf| - |isAbsolutelyIrreducible?| |hermiteH| - |removeIrreducibleRedundantFactors| |ode2| |fibonacci| |symbolIfCan| - |resetVariableOrder| |f01bsf| |leftRank| |selectOptimizationRoutines| - |linearAssociatedExp| |floor| |cosSinInfo| |integral| |rootBound| - |connectTo| |e04mbf| |opeval| |antiCommutative?| |cAcsch| - |showClipRegion| |df2fi| |associatedEquations| |triangSolve| - |extractBottom!| |biRank| |problemPoints| |Is| - |halfExtendedResultant1| |qelt| |ScanArabic| |leaf?| |scripted?| - |minimumExponent| |resultantReduitEuclidean| |elliptic?| |lighting| - |pomopo!| |palgRDE0| |qsetelt| |getGraph| |patternVariable| |check| - |integralRepresents| |elliptic| |satisfy?| |unitCanonical| - |components| |rightLcm| |wholeRadix| |xRange| |sup| |stFunc2| - |OMgetBVar| |vectorise| |bumptab1| |appendPoint| |structuralConstants| - |cCsch| |resultantnaif| |asecIfCan| |yRange| |trunc| |iilog| - |idealiserMatrix| |legendreP| |plusInfinity| |tan2trig| |setleft!| - |showFortranOutputStack| |readUInt16!| |collectQuasiMonic| |norm| - |zRange| |c02agf| |d01ajf| |swapRows!| |crushedSet| |minusInfinity| - |createLowComplexityTable| |map!| |diag| |mainCharacterization| - |nextColeman| |key| |numberOfComputedEntries| |d02gbf| |OMlistSymbols| - |phiCoord| |drawComplexVectorField| |range| |imaginary| - |generalInfiniteProduct| |reify| |alternative?| |qsetelt!| - |coerceImages| |alternatingGroup| |datalist| |eigenMatrix| - |wordsForStrongGenerators| |froot| |outputSpacing| |filename| - |setPrologue!| |commutativeEquality| |mainVariable| |bracket| |child?| - |cosIfCan| |sorted?| |KrullNumber| |quotedOperators| |unitNormal| - |rCoord| |getOperands| |just| |addiag| |showAllElements| |write!| - |bivariateSLPEBR| |upperCase?| |integerIfCan| |pointPlot| |d02raf| - |parse| |approximants| |groebSolve| |complexNormalize| |prime| - |inverseColeman| |type| |nextPrime| |next| |normalElement| - |lineColorDefault| |explimitedint| |diff| |OMread| |sort| - |raisePolynomial| |iiperm| |besselY| |sizePascalTriangle| - |stopMusserTrials| |viewSizeDefault| |Si| |FormatRoman| - |completeEchelonBasis| |acsch| |cardinality| |f02fjf| |resize| - |previous| |OMgetObject| |cSech| |lazyEvaluate| |repeating?| |e02ddf| - |overlabel| |indicialEquationAtInfinity| |sizeMultiplication| - |modularFactor| |rename!| |select!| |iisin| |subspace| |OMgetVariable| - |lllp| |retractable?| |useSingleFactorBound?| |outputForm| |in?| - |highCommonTerms| |integralBasisAtInfinity| - |createNormalPrimitivePoly| |part?| |mindegTerm| |random| |acschIfCan| - |parent| |multMonom| |linearlyDependent?| |coshIfCan| |rule| - |mainKernel| |totalfract| |lhs| |unexpand| |box| |operators| |s18acf| - |chvar| |lazy?| |leftZero| |mapUnivariateIfCan| |symFunc| |tubePlot| - |compiledFunction| |const| |rhs| |lowerCase?| - |ScanFloatIgnoreSpacesIfCan| |pmComplexintegrate| |e01bgf| |s18def| EQ - |prinshINFO| |readIfCan!| |integralMatrix| |showScalarValues| - |leftNorm| |superscript| |getMatch| |asinIfCan| |presuper| |f04arf| - |solveInField| |resultantEuclidean| |rewriteIdealWithRemainder| - |rootsOf| |setTex!| |decrease| |setLength!| |numberOfFractionalTerms| - |OMwrite| |nilFactor| |removeRoughlyRedundantFactorsInContents| - |f04atf| |separate| |integralBasis| |interval| |arg1| |e01sff| - |listLoops| |transcendentalDecompose| |monicDivide| |padicFraction| - |symbolTable| |mainDefiningPolynomial| |whitePoint| |iisqrt3| |twist| - |readUInt8!| |janko2| |convergents| |expintfldpoly| |index| |vspace| - |isTerm| |polyPart| |s17def| |writeLine!| |infinite?| |exponential| - |OMputError| |laurentRep| |pushFortranOutputStack| |dec| |e01daf| - |ricDsolve| |e02akf| |member?| |assign| |coercePreimagesImages| - |pack!| |figureUnits| |is?| |polarCoordinates| |ramifiedAtInfinity?| - |popFortranOutputStack| |trapezoidalo| |noKaratsuba| |characteristic| - |tab1| |logIfCan| |subQuasiComponent?| |makeFR| |mkAnswer| |maxrank| - |init| |eq?| |rootSplit| |outputFloating| |relerror| |pair| |delay| - |palginfieldint| |outputAsFortran| |fortranCharacter| |parseString| - |infieldIntegrate| |value| |ord| |ratPoly| |position!| - |fortranComplex| |genericLeftTraceForm| |updatF| |multiplyExponents| - |minordet| |aspFilename| |wordInStrongGenerators| |qualifier| - |maximumExponent| |hermite| |mirror| |sinhcosh| |parametersOf| - |scanOneDimSubspaces| |directory| |extractTop!| |fixedPoint| - |discriminant| |compdegd| |factorial| |graphState| |plenaryPower| - |SturmHabichtCoefficients| |rightDiscriminant| - |squareFreeLexTriangular| |quickSort| |s18dcf| |wordInGenerators| - |entry| |stoseInternalLastSubResultant| |numberOfFactors| - |schwerpunkt| |curve?| |xn| |LiePolyIfCan| |OMputAtp| - |factorSquareFreePolynomial| |diagonalProduct| |cSin| - |semiResultantEuclideannaif| |e01bef| |rroot| - |cyclotomicDecomposition| |f02bjf| |thenBranch| |critM| |drawToScale| - |firstDenom| |lifting1| |tree| |leastMonomial| |moreAlgebraic?| - |decompose| |initials| |prem| |charpol| |monicCompleteDecompose| - |superHeight| |bright| |chiSquare1| |generalizedEigenvectors| - |OMgetApp| |nonLinearPart| |compBound| |predicate| |swapColumns!| - |redPol| |resultant| |hasTopPredicate?| |call| |s21bcf| |redmat| - |indiceSubResultantEuclidean| |leftPower| |imagk| |OMconnectTCP| - |s21bbf| |adaptive?| |stoseInvertible?reg| |defineProperty| |logical?| - |charthRoot| |empty?| |limitPlus| |cycle| |getZechTable| |build| - |clearTheFTable| |cycleElt| |multiEuclideanTree| |atanhIfCan| - |factorGroebnerBasis| |polygon| |primitivePart!| |dualSignature| - |intChoose| |bezoutMatrix| |singular?| |generator| |binary| |enqueue!| - |eulerPhi| |coefChoose| |tanQ| |c06gsf| |fortran| |rationalFunction| - |att2Result| |setMinPoints| |maxIndex| |quatern| |tanNa| |loopPoints| - |getDatabase| |doubleComplex?| |middle| |factorSquareFreeByRecursion| - |currentScope| |exprToXXP| |localAbs| |outputBinaryFile| LODO2FUN - |palgLODE| |exprHasLogarithmicWeights| |setScreenResolution| - |fixedDivisor| |graphCurves| |choosemon| |makeprod| |e04fdf| - |rowEchelon| |derivative| |spherical| |moebiusMu| |int| |f01qcf| - |node?| |setImagSteps| |cothIfCan| |reverseLex| |boundOfCauchy| - |generate| |radicalSolve| |complexRoots| |viewpoint| |lambert| - |aCubic| |sin?| |cCosh| |constantOpIfCan| |rangeIsFinite| |condition| - |parameters| |zag| |setRow!| |iipow| |iicsch| |primlimitedint| - |mapUnivariate| |mergeDifference| |exteriorDifferential| - |degreePartition| |incrementBy| |prevPrime| |divide| |ridHack1| - |tubeRadiusDefault| |head| |hconcat| |implies| |minIndex| - |discriminantEuclidean| |groebnerFactorize| |physicalLength!| |level| - |search| |connect| |decomposeFunc| |mainVariable?| |genericRightTrace| - |nthRootIfCan| |getMultiplicationMatrix| |calcRanges| |fprindINFO| - |hex| |divergence| |ffactor| |dim| |outlineRender| |e02baf| - |whatInfinity| |endOfFile?| |htrigs| |mapExpon| |c06fqf| |rem| - |numFunEvals3D| |mat| |selectIntegrationRoutines| |f02akf| - |changeMeasure| |denomLODE| |var1StepsDefault| |escape| |commutative?| - |lazyPremWithDefault| |quo| |rightFactorCandidate| - |modularGcdPrimitive| |matrix| |prepareDecompose| |clearDenominator| - |primaryDecomp| |rotate!| |showArrayValues| |status| |OMreadFile| - |block| |constantLeft| |buildSyntax| |moebius| |d01fcf| |ldf2lst| - |cAsec| |imports| |divideExponents| |branchPoint?| |variable?| - |euclideanSize| |selectMultiDimensionalRoutines| |div| |script| - |maxPoints| |shallowExpand| |tablePow| |s17dlf| |infinityNorm| - |e02bcf| |zeroMatrix| |times!| |nodeOf?| |exquo| |leviCivitaSymbol| - |erf| |iiacosh| |pToHdmp| |crest| |acosIfCan| |rational| |generic| ~= - |oddInfiniteProduct| |selectFiniteRoutines| |lagrange| |knownInfBasis| - |subresultantSequence| |exactQuotient| |enterInCache| - |quasiAlgebraicSet| |c05adf| |pseudoRemainder| |#| |tex| |cAcoth| - |lfunc| |rischDEsys| |newSubProgram| |coerce| |iiasinh| |rdHack1| - |symbol?| |mkIntegral| ~ |solve| |dilog| |shuffle| |normalise| - |polynomialZeros| |f07aef| |construct| |nextPrimitiveNormalPoly| - |point?| |iiacsc| |PDESolve| |hi| |viewport3D| |cAsinh| |sin| - |irreducible?| |clearCache| |primes| |typeList| |axesColorDefault| - |firstUncouplingMatrix| |semiResultantEuclidean1| |generators| |cos| - |critpOrder| |leftExactQuotient| |createGenericMatrix| |modTree| - |stoseIntegralLastSubResultant| |compile| |lazyPseudoQuotient| - |jacobiIdentity?| |/\\| |showTheIFTable| |numberOfCycles| |tan| - |leftFactor| |binding| |refine| |fortranLiteral| |seriesToOutputForm| - |besselK| |\\/| |lexico| |OMencodingXML| |cot| |diagonals| |composite| - |setLabelValue| |primeFrobenius| |char| |complexSolve| |kmax| - |closed?| |cotIfCan| |sec| |f07fef| |s17dgf| |colorDef| - |GospersMethod| |routines| |skewSFunction| |curry| - |LagrangeInterpolation| |second| |mainCoefficients| |csc| - |radicalEigenvalues| |d01akf| |factorPolynomial| |leadingBasisTerm| - |OMunhandledSymbol| |delta| |mkPrim| |mathieu12| |negative?| - |stirling1| |third| |asin| |dimension| |OMgetEndObject| |bivariate?| - |socf2socdf| |determinant| |linearPart| |failed| |tubePoints| - |setFieldInfo| |leftScalarTimes!| |acos| |purelyAlgebraic?| |rotatex| - |hasPredicate?| |void| |printInfo| |credPol| |lift| |OMgetSymbol| - |upDateBranches| |atanIfCan| |atan| |polygamma| |getExplanations| - |typeLists| |exp1| |monomials| |tan2cot| |reduce| |exponent| |arity| - |acscIfCan| |acot| |constant?| |trigs2explogs| |d01aqf| |ldf2vmf| - |leftRankPolynomial| |float| |yCoordinates| |children| |direction| - |minColIndex| |asec| |contains?| |bipolar| |pushucoef| |option?| - |leadingExponent| |omError| |zeroDimPrime?| |linearDependence| - |listRepresentation| |remainder| |trivialIdeal?| |lazyPseudoRemainder| - |mapdiv| |changeNameToObjf| |adaptive| |f01brf| |gensym| |copies| - |sinhIfCan| |toseSquareFreePart| |completeHermite| |invmultisect| - |lambda| |s17aff| |point| |lfintegrate| |cTanh| |algDsolve| - |OMputAttr| |s17aef| |equiv| |rischDE| |setOrder| |neglist| |lookup| - |selectsecond| |leftLcm| |rightUnits| - |semiIndiceSubResultantEuclidean| |bat1| |printStatement| - |completeSmith| |fortranDouble| |hue| |seed| |e04jaf| |realRoots| - |optional?| |midpoints| |expr| |pureLex| |zero?| |largest| |series| - |rationalPoints| |stronglyReduce| |OMgetEndAttr| |reducedSystem| - |iprint| |quadratic| |basisOfCommutingElements| - |tableForDiscreteLogarithm| |intcompBasis| |iomode| - |genericRightDiscriminant| |diagonal?| |linSolve| |anticoord| - |squareFreePolynomial| |palgintegrate| |e02bdf| GE |inconsistent?| - |traceMatrix| |selectOrPolynomials| |purelyAlgebraicLeadingMonomial?| - |dequeue| |linearAssociatedLog| |e02ahf| |cTan| |lazyPrem| GT FG2F - |lazyPquo| |subResultantGcd| |setlast!| |repeatUntilLoop| - |triangular?| |distance| |variable| |curveColor| |algint| LE - |leftTrace| |min| |rootOfIrreduciblePoly| |bandedJacobian| - |dictionary| |weakBiRank| |createNormalPoly| |euclideanGroebner| |log| - |iterators| |youngGroup| |list?| LT |byte| |permutationGroup| - |lifting| |prod| |lfextlimint| |minPol| |pastel| |collectUnder| - |pushuconst| |stopTableGcd!| |nullary| |bandedHessian| |rotate| - |exponential1| |rubiksGroup| |stiffnessAndStabilityFactor| |fmecg| - |univariateSolve| |positiveSolve| |numericIfCan| |insertRoot!| - |completeEval| |oddlambert| |constantOperator| |initiallyReduce| - |getConstant| BY |numberOfHues| |sort!| |s17akf| |freeOf?| - |degreeSubResultant| |modularGcd| |depth| |c06gcf| |acothIfCan| - |internalInfRittWu?| |zerosOf| |sign| |explicitEntries?| |flexible?| - |birth| |poisson| |factorsOfDegree| |definingPolynomial| - |transcendent?| |rootPoly| |polar| |writeInt8!| |inputBinaryFile| - |mappingAst| |univcase| |dark| |integral?| |areEquivalent?| - |prinpolINFO| |cSinh| |mix| |setright!| |unravel| |setStatus!| - |physicalLength| |fixPredicate| |solveLinearlyOverQ| - |complexEigenvalues| |startTable!| |simplify| |extendIfCan| |region| - |critMonD1| |componentUpperBound| |currentCategoryFrame| |mpsode| - |limitedint| |generalTwoFactor| |tValues| |nor| - |getSyntaxFormsFromFile| |capacity| |genus| |sPol| |inRadical?| - |airyAi| |product| |external?| |elem?| |OMencodingSGML| NOT - |outputList| |difference| |lflimitedint| |isOr| |cyclicEqual?| - |LiePoly| |horizConcat| |cyclePartition| |internalZeroSetSplit| OR - |graphs| |iicos| |closeComponent| |expPot| |getPickedPoints| - |extractPoint| |tanh2trigh| |safetyMargin| |exprex| |debug| |monic?| - AND |OMputBind| |unrankImproperPartitions0| |arrayStack| - |euclideanNormalForm| |setTopPredicate| |sts2stst| |subResultantChain| - D |imagK| |deepestTail| |bernoulliB| |getProperty| |palgLODE0| - |associator| |symmetricPower| |nextsousResultant2| |internalIntegrate| - |nthFractionalTerm| |preprocess| |changeVar| |zeroVector| |edf2df| - |nextNormalPrimitivePoly| |digits| |isExpt| |properties| |e02dff| - |stirling2| |f04mcf| |setButtonValue| |adaptive3D?| |localReal?| - |minimize| |zeroDimPrimary?| |setMaxPoints| |translate| |finiteBasis| - |radPoly| |alternating| |OMsupportsSymbol?| |nthExpon| - |internalIntegrate0| |extractClosed| |nextSubsetGray| |submod| - |function| |groebner?| |reduceLODE| |expressIdealMember| |parabolic| - |listYoungTableaus| |column| |setEpilogue!| |multiset| |removeZero| - |charClass| |jordanAdmissible?| |bytes| |besselI| |e04naf| - |reducedForm| |changeThreshhold| |OMputString| |light| |eval| - |functionIsOscillatory| |solid?| |inR?| |iiasin| |nextPrimitivePoly| - |index?| |invertibleSet| |createMultiplicationTable| |oddintegers| - |univariatePolynomial| |infix| |numberOfComponents| |mapBivariate| - |movedPoints| |argument| |leftMult| |fill!| |wrregime| |subtractIfCan| - |optimize| |cross| |monomialIntegrate| * |internalDecompose| - |computePowers| |overset?| |purelyTranscendental?| |inHallBasis?| - |perfectNthPower?| |discreteLog| |print| |startStats!| |prime?| - |zeroDimensional?| |e02ajf| |nthFlag| |closedCurve?| - |LyndonWordsList1| |atrapezoidal| |resolve| |mightHaveRoots| - |divisorCascade| |unparse| |exQuo| GF2FG |patternMatch| |mainMonomial| - |ParCond| |string?| |interpret| |denominator| |e01bff| - |orthonormalBasis| |c06ecf| = |cAtan| |setnext!| - |semiDegreeSubResultantEuclidean| |mapExponents| |empty| - |deleteRoutine!| |leadingIdeal| |tanh2coth| |quoted?| |f04mbf| - |bfKeys| |writeByte!| |writable?| |UP2ifCan| |returnType!| |recur| - |splitDenominator| < |aLinear| |cyclotomic| |find| |dmpToHdmp| - |increase| |s17dhf| |fixedPointExquo| |digit| |square?| > |reseed| - |paren| |partialNumerators| |OMParseError?| |cscIfCan| |besselJ| - |divideIfCan| |setAttributeButtonStep| |validExponential| <= - |numberOfImproperPartitions| |changeWeightLevel| |ip4Address| - |nullSpace| |semiResultantEuclidean2| |cycleRagits| |hitherPlane| - |cyclotomicFactorization| |e02daf| >= |transpose| |inspect| - |showTheFTable| |cRationalPower| |numericalIntegration| - |numberOfIrreduciblePoly| |true| |mathieu24| |ef2edf| |directSum| - |getCurve| |rightRank| |doubleDisc| |noLinearFactor?| |nextSublist| - |subResultantGcdEuclidean| |normalForm| |lazyIntegrate| - |generalPosition| |mantissa| |sparsityIF| |bringDown| |pointColor| - |binomial| |lllip| |primPartElseUnitCanonical!| |getOperator| - |elseBranch| + |algintegrate| |nodes| |removeDuplicates!| - |leftQuotient| |bit?| |bumprow| |rdregime| |digamma| - |varList| - |exptMod| |conjugates| |normalizedAssociate| |relativeApprox| - |iflist2Result| |tryFunctionalDecomposition| |nil| |trace2PowMod| / - |pade| |mvar| |frst| |s18aff| |addMatchRestricted| |element?| - |bothWays| |subst| |ODESolve| |functorData| |shift| |coordinate| - |randnum| |mainPrimitivePart| |category| |toseInvertibleSet| - |createLowComplexityNormalBasis| |rst| |toScale| |extendedIntegrate| - |aQuadratic| |wreath| |rur| |domain| |derivationCoordinates| - |quadraticNorm| |s13adf| |approximate| |factorsOfCyclicGroupSize| - |retract| |swap!| |integers| |package| |BumInSepFFE| |hexDigit| - |complex| |indicialEquations| |nthFactor| |subset?| |nextItem| - |basisOfCentroid| |splitSquarefree| |rangePascalTriangle| |property| - |computeInt| |insertMatch| |d01apf| |sum| |getRef| |color| |show| - |c06fpf| |algebraicSort| |center| |leftRemainder| |f01mcf| |powers| - |selectfirst| |removeRedundantFactorsInContents| |usingTable?| - |functionIsFracPolynomial?| |subNode?| |infieldint| |makeGraphImage| - |objects| |cap| |categoryFrame| |trace| |sayLength| - |rightAlternative?| |sortConstraints| |slash| |safeFloor| |units| - |mapMatrixIfCan| |base| |rk4f| |isOpen?| |HermiteIntegrate| |elements| - |lp| |inverseLaplace| |cCsc| |zeroSetSplit| |cPower| |identity| - |e02agf| |separateDegrees| |totalDegree| |seriesSolve| - |shanksDiscLogAlgorithm| |limitedIntegrate| |setPosition| |vertConcat| - |isAnd| |conjug| |copyInto!| |jacobian| |semiResultantReduitEuclidean| - |s19adf| |mapUp!| |c06eaf| |viewDefaults| |ddFact| |aromberg| |vark| - |romberg| |multiplyCoefficients| |trueEqual| |plus| |exponents| - |showTheSymbolTable| |primeFactor| |ReduceOrder| |code| |prinb| - |minRowIndex| |monicDecomposeIfCan| |symmetricProduct| |f04adf| - |minrank| |move| |uniform01| |linear| |Lazard| |primintfldpoly| - |s17adf| |varselect| |baseRDE| |bfEntry| |elColumn2!| |merge!| - |s18adf| |complexEigenvectors| |asinhIfCan| |reopen!| |zeroDim?| - |pair?| |compound?| |polynomial| |perfectSqrt| |iibinom| - |pseudoDivide| |characteristicSerie| |times| |s15aef| |goodnessOfFit| - |taylorQuoByVar| |totolex| |linGenPos| |ratDenom| |qinterval| - |deepestInitial| |dihedralGroup| |pole?| |findConstructor| - |factorOfDegree| |dom| |rationalApproximation| - |rewriteSetByReducingWithParticularGenerators| |outputAsTex| - |addPoint2| |forLoop| |commonDenominator| |powerSum| - |lazyIrreducibleFactors| |cosh2sech| |rightFactorIfCan| |rightDivide| - |removeRedundantFactorsInPols| |lazyPseudoDivide| |zeroOf| - |coordinates| |setProperties| |clipParametric| |setClosed| - |stoseInvertibleSetsqfreg| |colorFunction| |integer?| |cAtanh| |monom| - |node| |reverse| |integralMatrixAtInfinity| |cExp| |nil?| - |getVariableOrder| |newTypeLists| |binaryTree| |laplace| |c02aff| - |untab| |vedf2vef| |complexIntegrate| |augment| |scale| - |transcendenceDegree| |top| |OMsupportsCD?| - |rewriteIdealWithHeadRemainder| |possiblyNewVariety?| - |realEigenvectors| |OMreadStr| |explicitlyFinite?| |associates?| - |subNodeOf?| |c06ekf| |interactiveEnv| - |setLegalFortranSourceExtensions| |complexForm| |title| |comp| - |cycleSplit!| |common| |ellipticCylindrical| |fortranCarriageReturn| - |associatedSystem| |d01alf| |s17ahf| |interReduce| |super| |mesh| - |karatsubaDivide| |generic?| |options| |edf2fi| |Beta| |atoms| - |coleman| |tanSum| |continue| |double?| |shallowCopy| |listOfLists| - |rename| |sequence| |nullity| |droot| - |generalizedContinuumHypothesisAssumed?| |cyclicCopy| |e| - |rischNormalize| |conjugate| |partialDenominators| - |symmetricRemainder| |fullPartialFraction| - |removeRoughlyRedundantFactorsInPol| |coHeight| - |basisOfRightAnnihilator| |linearPolynomials| |chainSubResultants| - |list| |irreducibleFactor| |mapSolve| |d01anf| - |semiSubResultantGcdEuclidean1| |extendedResultant| |string| - |integralAtInfinity?| |selectNonFiniteRoutines| - |genericLeftDiscriminant| |pointData| |cyclicParents| |car| |bottom!| - |equality| |df2mf| |sinIfCan| |flagFactor| - |rewriteIdealWithQuasiMonicGenerators| |f01qef| |sqfree| - |checkForZero| |hMonic| |cdr| |basicSet| |var1Steps| |unit?| - |antisymmetric?| |primextendedint| |cAcot| |rowEchelonLocal| - |monicRightFactorIfCan| |deepCopy| |taylorIfCan| |setDifference| - |extension| |gcdcofactprim| |nothing| |coth2tanh| |startTableInvSet!| - |imagi| |debug3D| |antiAssociative?| |d01bbf| |indices| - |setIntersection| |tubePointsDefault| |leftUnit| |approxNthRoot| - |pushdterm| |numeric| |doubleFloatFormat| |gcdPrimitive| |conditionP| - |putGraph| |lowerCase| |setUnion| |radicalEigenvector| - |binaryTournament| |OMgetAttr| |open?| |innerint| |radical| - |minPoints3D| |degree| |monicModulo| |equation| |readUInt32!| |apply| - |bezoutResultant| |OMputEndAtp| |OMlistCDs| |getGoodPrime| |matrixGcd| - |subPolSet?| |cyclicGroup| |algebraic?| |principalIdeal| |central?| - |OMputEndBind| |generalLambert| |partition| |zero| |e01baf| - |acotIfCan| |paraboloidal| |squareMatrix| |jordanAlgebra?| |size| - |OMputEndError| |cCos| |d02ejf| |bezoutDiscriminant| |complex?| - |push!| |sinh2csch| |width| |truncate| |unit| |readInt16!| |concat!| - |evenlambert| |cAcsc| |And| |clearTheSymbolTable| |less?| |callForm?| - |beauzamyBound| |overbar| |subresultantVector| |deepExpand| - |frobenius| |entry?| |Or| |any| |represents| |stoseInvertibleSet| - |rightZero| |composites| |removeCosSq| |first| |OMencodingUnknown| - |f07adf| |nextsubResultant2| |f02agf| |Not| |zeroSquareMatrix| - |henselFact| |repSq| |f02aaf| |linkToFortran| |rest| |operation| - |sturmSequence| |any?| |pow| |fractRagits| |palgRDE| |rightRemainder| - |linear?| |viewDeltaYDefault| |dominantTerm| |substitute| |leader| - |quasiMonic?| |reduction| |zCoord| |normalized?| |partialQuotients| - |isEquiv| |weights| |extractIfCan| |parts| |cCoth| |removeDuplicates| - |ceiling| |anfactor| |addPoint| |pointSizeDefault| |localUnquote| - |complexZeros| |associatorDependence| |numericalOptimization| |hash| - |coerceL| |makeViewport3D| |mr| |setCondition!| |karatsuba| - |leftMinimalPolynomial| |count| |symmetricSquare| - |univariatePolynomialsGcds| |optional| |extractIndex| - |pointColorDefault| |normalDenom| |OMputEndAttr| |nullary?| - |enterPointData| |doubleResultant| |rightPower| |partitions| - |plotPolar| |f01maf| |body| |lexGroebner| |reindex| |lieAdmissible?| - |s14baf| |createThreeSpace| |mainForm| |green| |domainTemplate| - |OMgetEndAtp| |torsionIfCan| |specialTrigs| |dimensionsOf| |contours| - |coth2trigh| |elRow1!| |round| |pdf2ef| |dmpToP| |rootNormalize| - |stack| |leftCharacteristicPolynomial| |setColumn!| |setAdaptive| - |sin2csc| |tower| |associative?| |palglimint0| |makeop| - |headRemainder| |nextIrreduciblePoly| |writeUInt8!| |idealiser| - |quadraticForm| |rootPower| |singRicDE| |minPoints| |rightExtendedGcd| - |squareFreeFactors| |reduceBasisAtInfinity| |quasiMonicPolynomials| - |rightCharacteristicPolynomial| |parametric?| |integerBound| - |fortranReal| |groebner| |sumOfDivisors| |rk4a| |c06frf| |summation| - |UnVectorise| |commaSeparate| SEGMENT |error| |fortranDoubleComplex| - |basisOfLeftNucloid| |testModulus| |port| |expandTrigProducts| |axes| - |palgint0| |constant| |finite?| |basisOfCenter| |shade| |quadratic?| - |assert| |nsqfree| |lprop| |bits| |contractSolve| |LyndonWordsList| - |exprToUPS| |fixedPoints| |lex| |withPredicates| |complexNumeric| - |inputOutputBinaryFile| |makeSeries| |lexTriangular| |makeTerm| |t| - |vector| |removeSquaresIfCan| |fortranInteger| - |resultantEuclideannaif| |univariate?| |OMconnOutDevice| - |matrixDimensions| |variationOfParameters| |changeBase| - |differentiate| |rarrow| |iterationVar| |f02axf| |exprToGenUPS| - |removeSinhSq| |bsolve| |kernels| |balancedBinaryTree| |split| - |ParCondList| |regime| |noncommutativeJordanAlgebra?| - |generalizedEigenvector| |shellSort| |dmp2rfi| |quasiComponent| - |operator| |f2st| |c05pbf| |rk4| |length| |removeSuperfluousCases| - |monomial?| |e02bbf| |continuedFraction| |genericLeftTrace| - |stoseSquareFreePart| |sumOfSquares| |radicalOfLeftTraceForm| - |leadingTerm| |FormatArabic| |scripts| |cyclic?| |inGroundField?| - |toroidal| |packageCall| |loadNativeModule| |genericPosition| - |corrPoly| |symmetricGroup| |univariate| |logGamma| |positive?| - |insert!| |tube| |factorSFBRlcUnit| |tubeRadius| |s17ajf| |iroot| - |denominators| |d02bhf| |concat| |mapDown!| |cSec| |setvalue!| - |OMgetEndBind| |lowerPolynomial| |subTriSet?| |OMgetInteger| - |selectPolynomials| |halfExtendedSubResultantGcd1| |torsion?| |isPlus| - |signAround| |rightRankPolynomial| |rationalPoint?| |d01amf| - |combineFeatureCompatibility| |factor| F2FG - |semiDiscriminantEuclidean| |reciprocalPolynomial| |deriv| - |rightExactQuotient| |countRealRootsMultiple| |iiatan| |OMcloseConn| - |integrate| |sqrt| |leastPower| |constantRight| |step| - |fractionFreeGauss!| |bitCoef| |getMultiplicationTable| |unmakeSUP| - |e02dcf| |real| |createZechTable| |failed?| |pointLists| - |flexibleArray| |outputArgs| |trapezoidal| |cCot| |mainSquareFreePart| - |possiblyInfinite?| |imag| |abelianGroup| |mainValue| |quotient| - |realEigenvalues| |elRow2!| |byteBuffer| |numFunEvals| - |semiLastSubResultantEuclidean| |readable?| |directProduct| - |genericRightMinimalPolynomial| |s14abf| |lieAlgebra?| |mdeg| |tab| - |externalList| |imagI| |OMputEndApp| |source| |numberOfChildren| - |ptree| |iicoth| |listexp| |fillPascalTriangle| - |ScanFloatIgnoreSpaces| |OMmakeConn| |printStats!| |invmod| |brace| - |host| |sec2cos| |ignore?| |s14aaf| |eyeDistance| |front| |makeSin| - |supersub| |ideal| |destruct| |representationType| |roughUnitIdeal?| - |s18aef| |reducedDiscriminant| |iisinh| |setOfMinN| |heapSort| - |jacobi| |permutations| |normal?| |symmetric?| |distFact| - |singularAtInfinity?| |lfinfieldint| |s17dcf| |iiGamma| - |intermediateResultsIF| |realSolve| |restorePrecision| |orbits| - |critT| |c06fuf| |OMclose| |more?| |normalizeAtInfinity| |target| - |viewWriteDefault| |red| |sample| |interpolate| |supRittWu?| - |factorSquareFree| |inc| |encodingDirectory| |monomial| |kovacic| - |adjoint| |recolor| |dimensionOfIrreducibleRepresentation| - |palgextint0| |scaleRoots| |nextLatticePermutation| |multivariate| - |isobaric?| |sub| |qPot| |pdct| |kind| |s19aaf| |simplifyPower| - |useEisensteinCriterion| |messagePrint| |maxPoints3D| |variables| - |geometric| |terms| |mapGen| |tensorProduct| |op| - |numberOfPrimitivePoly| |reverse!| |OMgetAtp| |plot| |partialFraction| - |stFuncN| |showTheRoutinesTable| |quartic| |d01asf| |hdmpToP| - |getButtonValue| |iCompose| |binarySearchTree| |maxColIndex| - |clearFortranOutputStack| |initTable!| |ravel| |elementary| |odd?| - |e01saf| |f02wef| |rationalIfCan| |iiasech| |d02bbf| |drawComplex| - |child| |regularRepresentation| |setPoly| |viewport2D| |reshape| - |stosePrepareSubResAlgo| |explicitlyEmpty?| |headAst| |leftRecip| - |e02aef| |setelt| |heap| |trigs| |iitanh| |makeCos| |setVariableOrder| - |clikeUniv| |s21bdf| |precision| |makingStats?| |setAdaptive3D| - |LazardQuotient| |ipow| |hasoln| |taylor| |mathieu23| - |lazyResidueClass| |fullDisplay| |polyred| |aQuartic| |rightOne| - |fracPart| |copy| |upperCase!| |sylvesterSequence| |gderiv| - |sqfrFactor| |stopTableInvSet!| |binomThmExpt| |stFunc1| |curryLeft| - |union| |iisech| |gcdPolynomial| |before?| |queue| |upperCase| - |basisOfLeftNucleus| |belong?| |saturate| |squareFreePart| |rightUnit| - |listOfMonoms| |hclf| |unaryFunction| |conditionsForIdempotents| - |mainVariables| |inf| |lyndon| |intersect| - |internalSubQuasiComponent?| |update| |setsubMatrix!| |airyBi| - |stoseInvertibleSetreg| |autoCoerce| |cycleLength| |firstNumer| - |primitiveElement| |cschIfCan| |selectSumOfSquaresRoutines| |cos2sec| - |showRegion| |e02bef| |d02gaf| |prepareSubResAlgo| |f02ajf| - |OMputFloat| |numberOfVariables| |headReduce| |parents| |leaves| - |bombieriNorm| |radicalRoots| |functionIsContinuousAtEndPoints| - |clearTheIFTable| |sn| |useNagFunctions| |setFormula!| |argscript| - |palgint| |order| |ratpart| |generalSqFr| |minimalPolynomial| - |setEmpty!| |cAsech| |monomRDEsys| |increasePrecision| |makeResult| - |selectODEIVPRoutines| |returnTypeOf| |identification| |rquo| |isMult| - |clipPointsDefault| |laplacian| |declare| |explogs2trigs| - |scalarMatrix| |OMputEndObject| |complement| |imagj| |limit| |presub| - |generalizedInverse| |clipSurface| |radix| |position| - |interpretString| |cfirst| |zoom| |constDsolve| |roughBase?| - |factorAndSplit| |makeMulti| |insertBottom!| |multinomial| - |resetBadValues| |match?| |makeSketch| |scalarTypeOf| |d02cjf| - |leadingCoefficientRicDE| |push| |e04gcf| |nlde| |viewZoomDefault| - |myDegree| |internalLastSubResultant| |alphanumeric?| - |algebraicVariables| |zeroSetSplitIntoTriangularSystems| - |outputAsScript| |critBonD| |argumentList!| |coerceS| - |algebraicCoefficients?| |cylindrical| |getCode| |replace| - |lowerBound| |evenInfiniteProduct| |number?| |rowEchLocal| - |leftRegularRepresentation| |linears| |s20adf| |invertible?| - |makeVariable| |fglmIfCan| |collect| |quote| |tanAn| |pascalTriangle| - |arg2| |isNot| |meshPar2Var| |unprotectedRemoveRedundantFactors| - |countable?| |sech2cosh| |prolateSpheroidal| |s21baf| |power| |f04qaf| - |fractionPart| |df2st| |rowEch| |doubleRank| |twoFactor| |double| - |blue| |euler| |var2StepsDefault| |expextendedint| |quotientByP| - |enumerate| |iExquo| |bernoulli| |mulmod| |conditions| |atom?| - |createNormalElement| |monicRightDivide| |iiacsch| |infRittWu?| - |integralDerivationMatrix| |f04maf| |f04faf| |multiple?| |s19abf| - |strongGenerators| |match| |expIfCan| |constantToUnaryFunction| - |characteristicPolynomial| |f02aef| |redpps| |differentialVariables| - |close!| |iidprod| |e02def| |complexNumericIfCan| |removeCoshSq| - |arguments| |li| |infiniteProduct| |e04ycf| |polyRDE| |commutator| - |integralLastSubResultant| |character?| |genericLeftMinimalPolynomial| - |f01rdf| |coefficient| |tracePowMod| |lquo| |screenResolution3D| - |intensity| |duplicates| |OMputEndBVar| |monicLeftDivide| - |certainlySubVariety?| |toseInvertible?| |csch2sinh| - |branchPointAtInfinity?| |prefixRagits| |leftOne| |randomLC| - |padicallyExpand| |expandLog| |factor1| |isTimes| |close| - |tryFunctionalDecomposition?| |resultantReduit| |singularitiesOf| - |quasiRegular| |Ei| |minset| |contract| |sechIfCan| - |linearAssociatedOrder| |definingEquations| |findBinding| - |rewriteSetWithReduction| |attributeData| |iiacos| |constantKernel| - |degreeSubResultantEuclidean| |declare!| |schema| |endSubProgram| - |newReduc| |divisors| |display| |d02kef| |screenResolution| - |leftExtendedGcd| |nativeModuleExtension| |algebraicOf| |findCycle| - |applyRules| |asechIfCan| |subMatrix| |roughEqualIdeals?| - |permutation| |imagE| |whileLoop| |iifact| |bitTruth| |simpson| - |e01sef| |shufflein| |dfRange| |primextintfrac| |iiacot| - |OMgetEndError| |bounds| |lSpaceBasis| |moduloP| |medialSet| |d03faf| - |cot2tan| |pmintegrate| |totalLex| |root?| |hostPlatform| - |localIntegralBasis| |gradient| |rightTrace| |reduced?| |setref| - |bubbleSort!| |read!| |useEisensteinCriterion?| |accuracyIF| - |cycleTail| |reducedQPowers| |chebyshevU| |iidsum| |exponentialOrder| - |log2| |revert| |test| |input| |OMgetType| |mapmult| - |subscriptedVariables| |measure2Result| |row| |internal?| |inrootof| - |principal?| |oneDimensionalArray| |duplicates?| |singleFactorBound| - |fTable| |library| |rightMult| |xCoord| |littleEndian| |comment| - |power!| |mainMonomials| |wholeRagits| |segment| |swap| |showAll?| - |root| |psolve| |hypergeometric0F1| |subHeight| |secIfCan| - |lowerCase!| |taylorRep| |OMencodingBinary| |nonQsign| |transform| - |makeSUP| |leadingSupport| |solve1| |OMUnknownSymbol?| |expt| |df2ef| - |factorByRecursion| |rightRegularRepresentation| |eigenvalues| - |LyndonBasis| |primintegrate| |thetaCoord| |sizeLess?| - |primlimintfrac| |rightScalarTimes!| |eq| |clearTable!| |overlap| - |prefix| |numberOfDivisors| |invertIfCan| |rootDirectory| |HenselLift| - |hdmpToDmp| |iter| |id| |postfix| |modulus| |set| |OMUnknownCD?| - |midpoint| |errorInfo| |incrementKthElement| |OMputBVar| |remove!| - |addBadValue| |wholePart| |members| |measure| |listConjugateBases| - |nthRoot| |identitySquareMatrix| |autoReduced?| |PollardSmallFactor| - |magnitude| |getStream| |supDimElseRittWu?| |edf2efi| - |positiveRemainder| |table| |iicosh| |internalAugment| |returns| - |splitLinear| |diagonalMatrix| |unitsColorDefault| |setRealSteps| - |over| |leftTraceMatrix| |insert| |new| |modifyPoint| |bag| - |UpTriBddDenomInv| |cot2trig| |pseudoQuotient| |obj| |reorder| - |module| |cyclicSubmodule| |cubic| |setrest!| - |solveLinearPolynomialEquationByRecursion| |maxrow| |brillhartTrials| - |scopes| |critB| |leftDivide| |coerceP| |companionBlocks| |cache| - |maxRowIndex| |rootKerSimp| |numberOfNormalPoly| |checkPrecision| - |legendre| |perspective| |copy!| |OMopenFile| |maxdeg| - |clipWithRanges| |chiSquare| |exprHasAlgebraicWeight| |resetNew| - |stoseInvertible?sqfreg| |laurentIfCan| |viewPhiDefault| |repeating| - |signature| |reducedContinuedFraction| |rootProduct| - |invertibleElseSplit?| |ode| |extendedEuclidean| |readBytes!| - |principalAncestors| |setProperty!| |perfectNthRoot| - |absolutelyIrreducible?| |exp| |iisec| |qqq| |retractIfCan| |e02gaf| - |setStatus| |coord| |lazyVariations| |generateIrredPoly| |delete| - |standardBasisOfCyclicSubmodule| |lastSubResultantEuclidean| - |permutationRepresentation| |setClipValue| |polCase| |hspace| - |exists?| |fortranTypeOf| |cartesian| |meshPar1Var| - |basisOfLeftAnnihilator| |fintegrate| |numer| |wronskianMatrix| - |polyRicDE| |traverse| |totalDifferential| |prindINFO| |notelem| - |roughSubIdeal?| |cyclic| |iicsc| |simpleBounds?| |surface| |denom| - |realZeros| |solveLinear| |scan| |drawCurves| |Ci| |argumentListOf| - |subResultantsChain| |complete| |qroot| |lastSubResultant| - |expenseOfEvaluationIF| |expint| |padecf| |Lazard2| |simpsono| - |extractProperty| |integralCoordinates| |multisect| |formula| - |complexExpand| |graphStates| |makeUnit| |pi| |dn| |realElementary| - |rightQuotient| |morphism| |firstSubsetGray| |left| |mapCoef| |s13aaf| - |basisOfMiddleNucleus| |infinity| |e02adf| |float?| |prologue| - |exprHasWeightCosWXorSinWX| |identityMatrix| |innerEigenvectors| - |LyndonCoordinates| |right| |e04ucf| |LowTriBddDenomInv| |readByte!| - |factorList| |genericRightNorm| |pop!| |normalizeIfCan| - |radicalEigenvectors| |rotatey| |rationalPower| |dioSolve| |cAsin| - |dflist| |probablyZeroDim?| |imagJ| |epilogue| |map| |palglimint| - |f01qdf| |lookupFunction| |computeBasis| |kernel| |hasSolution?| - |nrows| |cAcos| |eisensteinIrreducible?| |basis| |isQuotient| - |weighted| |viewWriteAvailable| |resetAttributeButtons| |alphanumeric| - |dimensions| |eulerE| |expand| |draw| |one?| |ncols| |arbitrary| - |plus!| |isList| |Aleph| |setScreenResolution3D| |createPrimitivePoly| - |radicalSimplify| |stoseLastSubResultant| |upperBound| |filterWhile| - |cond| |f02awf| |graeffe| |nthr| |infLex?| |chineseRemainder| |pushup| - |nil| |infinite| |arbitraryExponent| |approximate| |complex| - |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| + |Union| |zeroOf| |rootsOf| |makeSketch| |inrootof| |droot| |iroot| |size?| + |eq?| |assoc| |doublyTransitive?| |knownInfBasis| |rootSplit| |ratDenom| + |ratPoly| |rootPower| |rootProduct| |rootSimp| |rootKerSimp| |leftRank| + |rightRank| |doubleRank| |weakBiRank| |biRank| |basisOfCommutingElements| + |basisOfLeftAnnihilator| |basisOfRightAnnihilator| |basisOfLeftNucleus| + |basisOfRightNucleus| |basisOfMiddleNucleus| |basisOfNucleus| |basisOfCenter| + |basisOfLeftNucloid| |basisOfRightNucloid| |basisOfCentroid| + |radicalOfLeftTraceForm| |obj| |dom| |any| |applyRules| |localUnquote| + |arbitrary| |setColumn!| |setRow!| |oneDimensionalArray| |associatedSystem| + |uncouplingMatrices| |associatedEquations| |arrayStack| |setButtonValue| + |setAttributeButtonStep| |resetAttributeButtons| |getButtonValue| |decrease| + |increase| |morphism| |balancedFactorisation| |mapDown!| |mapUp!| |setleaves!| + |balancedBinaryTree| |sylvesterMatrix| |bezoutMatrix| |bezoutResultant| + |bezoutDiscriminant| |bfEntry| |bfKeys| |inspect| |extract!| |bag| |binding| + |test| |setProperties| |setProperty| |deleteProperty!| |has?| |comparison| + |equality| |nary?| |unary?| |nullary?| |properties| |derivative| + |constantOperator| |constantOpIfCan| |integerBound| |setright!| |setleft!| + |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| + |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |byte| + |setLength!| |capacity| |byteBuffer| |unknownEndian| |bigEndian| + |littleEndian| |subtractIfCan| |setPosition| + |generalizedContinuumHypothesisAssumed| + |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel| + |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |parents| + |principalAncestors| |exportedOperators| |alphanumeric| |alphabetic| + |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| |upperCase?| + |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| |mkIntegral| + |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| |find| |e| + |clipParametric| |clipWithRanges| |numberOfHues| |yellow| |iifact| |iibinom| + |iiperm| |iipow| |iidsum| |iidprod| |ipow| |factorial| |multinomial| + |permutation| |stirling1| |stirling2| |summation| |factorials| |mkcomm| + |polarCoordinates| |complex| |imaginary| |solid| |solid?| |denominators| + |numerators| |convergents| |approximants| |reducedForm| |partialQuotients| + |partialDenominators| |partialNumerators| |reducedContinuedFraction| |push| + |bindings| |cartesian| |polar| |cylindrical| |spherical| |parabolic| + |parabolicCylindrical| |paraboloidal| |ellipticCylindrical| + |prolateSpheroidal| |oblateSpheroidal| |bipolar| |bipolarCylindrical| + |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros| + |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius| + |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt| + |computeCycleLength| |computeCycleEntry| |findConstructor| |arguments| + |operations| |dualSignature| |kind| |package| |domain| |category| |coerceP| + |powerSum| |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath| + |SFunction| |skewSFunction| |cyclotomicDecomposition| + |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints| + |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX| + |exprHasAlgebraicWeight| |exprHasLogarithmicWeights| + |combineFeatureCompatibility| |sparsityIF| |stiffnessAndStabilityFactor| + |stiffnessAndStabilityOfODEIF| |systemSizeIF| |expenseOfEvaluationIF| + |accuracyIF| |intermediateResultsIF| |subscriptedVariables| |central?| + |elliptic?| |qsetelt| |doubleResultant| |distdfact| |separateDegrees| + |trace2PowMod| |tracePowMod| |irreducible?| |decimal| |innerint| + |exteriorDifferential| |totalDifferential| |homogeneous?| |leadingBasisTerm| + |ignore?| |computeInt| |checkForZero| |logGamma| |hypergeometric0F1| |rotatez| + |rotatey| |rotatex| |identity| |dictionary| |dioSolve| |directProduct| + |newLine| |copies| |say| |sayLength| |setnext!| |setprevious!| |next| + |previous| |datalist| |shanksDiscLogAlgorithm| |showSummary| |reflect| |reify| + |constructor| |functorData| |separant| |initial| |leader| |isobaric?| + |weights| |differentialVariables| |extractBottom!| |extractTop!| + |insertBottom!| |insertTop!| |bottom!| |top!| |dequeue| |makeObject| |recolor| + |drawComplex| |drawComplexVectorField| |setRealSteps| |setImagSteps| + |setClipValue| |draw| |option?| |range| |colorFunction| |curveColor| + |pointColor| |clip| |clipBoolean| |style| |toScale| |pointColorPalette| + |curveColorPalette| |var1Steps| |var2Steps| |space| |tubePoints| |tubeRadius| + |option| |weight| |makeVariable| |finiteBound| |sortConstraints| + |sumOfSquares| |splitLinear| |simpleBounds?| |linearMatrix| |linearPart| + |nonLinearPart| |quadratic?| |changeNameToObjf| |optAttributes| |Nul| + |exponents| |iisqrt2| |iisqrt3| |iiexp| |iilog| |iisin| |iicos| |iitan| + |iicot| |iisec| |iicsc| |iiasin| |iiacos| |iiatan| |iiacot| |iiasec| |iiacsc| + |iisinh| |iicosh| |iitanh| |iicoth| |iisech| |iicsch| |iiasinh| |iiacosh| + |iiatanh| |iiacoth| |iiasech| |iiacsch| |specialTrigs| |localReal?| + |rischNormalize| |realElementary| |validExponential| |rootNormalize| |tanQ| + |callForm?| |getIdentifier| |variable?| |getConstant| |type| |select!| + |delete!| |sn| |cn| |dn| |sncndn| |qsetelt!| |categoryFrame| |interactiveEnv| + |currentEnv| |setProperties!| |getProperties| |setProperty!| |getProperty| + |scopes| |eigenvalues| |eigenvector| |generalizedEigenvector| + |generalizedEigenvectors| |eigenvectors| |factorAndSplit| |rightOne| |leftOne| + |rightZero| |leftZero| |swap| |error| |minPoly| |freeOf?| |operators| |tower| + |kernels| |mainKernel| |distribute| |subst| |functionIsFracPolynomial?| + |problemPoints| |zerosOf| |singularitiesOf| |polynomialZeros| |f2df| |ef2edf| + |ocf2ocdf| |socf2socdf| |df2fi| |edf2fi| |edf2df| |expenseOfEvaluation| + |numberOfOperations| |edf2efi| |dfRange| |dflist| |df2mf| |ldf2vmf| |edf2ef| + |vedf2vef| |df2st| |f2st| |ldf2lst| |sdf2lst| |getlo| |gethi| |outputMeasure| + |measure2Result| |att2Result| |iflist2Result| |pdf2ef| |pdf2df| |df2ef| + |fi2df| |mat| |neglist| |multiEuclidean| |extendedEuclidean| |euclideanSize| + |sizeLess?| |simplifyPower| |number?| |seriesSolve| |constantToUnaryFunction| + |tubePlot| |exponentialOrder| |completeEval| |lowerPolynomial| + |raisePolynomial| |normalDeriv| |ran| |highCommonTerms| |mapCoef| |nthCoef| + |binomThmExpt| |pomopo!| |mapExponents| |linearAssociatedLog| + |linearAssociatedOrder| |linearAssociatedExp| |createNormalElement| + |setLabelValue| |getCode| |printCode| |code| |operation| |common| + |printStatement| |save| |stop| |block| |cond| |returns| |call| |comment| + |continue| |goto| |repeatUntilLoop| |whileLoop| |forLoop| |sin?| |zeroVector| + |zeroSquareMatrix| |identitySquareMatrix| |lookupFunction| |encodingDirectory| + |attributeData| |domainTemplate| |lSpaceBasis| |finiteBasis| |principal?| + |divisor| |useNagFunctions| |rationalPoints| |nonSingularModel| + |algSplitSimple| |hyperelliptic| |elliptic| |integralDerivationMatrix| + |integralRepresents| |integralCoordinates| |yCoordinates| + |inverseIntegralMatrixAtInfinity| |integralMatrixAtInfinity| + |inverseIntegralMatrix| |integralMatrix| |reduceBasisAtInfinity| + |normalizeAtInfinity| |complementaryBasis| |integral?| |integralAtInfinity?| + |integralBasisAtInfinity| |ramified?| |ramifiedAtInfinity?| |singular?| + |singularAtInfinity?| |branchPoint?| |branchPointAtInfinity?| |rationalPoint?| + |absolutelyIrreducible?| |genus| |getZechTable| |createZechTable| + |createMultiplicationTable| |createMultiplicationMatrix| + |createLowComplexityTable| |createLowComplexityNormalBasis| + |representationType| |createPrimitiveElement| |tableForDiscreteLogarithm| + |factorsOfCyclicGroupSize| |sizeMultiplication| |getMultiplicationMatrix| + |getMultiplicationTable| |primitive?| |numberOfIrreduciblePoly| + |numberOfPrimitivePoly| |numberOfNormalPoly| |createIrreduciblePoly| + |createPrimitivePoly| |createNormalPoly| |createNormalPrimitivePoly| + |createPrimitiveNormalPoly| |nextIrreduciblePoly| |nextPrimitivePoly| + |nextNormalPoly| |nextNormalPrimitivePoly| |nextPrimitiveNormalPoly| + |leastAffineMultiple| |reducedQPowers| |rootOfIrreduciblePoly| |write!| + |read!| |iomode| |close!| |reopen!| |open| |rightUnit| |leftUnit| + |rightMinimalPolynomial| |leftMinimalPolynomial| |associatorDependence| + |lieAlgebra?| |jordanAlgebra?| |noncommutativeJordanAlgebra?| + |jordanAdmissible?| |lieAdmissible?| |jacobiIdentity?| |powerAssociative?| + |alternative?| |flexible?| |rightAlternative?| |leftAlternative?| + |antiAssociative?| |associative?| |antiCommutative?| |commutative?| + |rightCharacteristicPolynomial| |leftCharacteristicPolynomial| |rightNorm| + |leftNorm| |rightTrace| |leftTrace| |someBasis| |sort!| |copyInto!| |sorted?| + |LiePoly| |quickSort| |heapSort| |shellSort| |outputSpacing| |outputGeneral| + |outputFixed| |outputFloating| |exp1| |log10| |log2| |rationalApproximation| + |relerror| |complexSolve| |complexRoots| |realRoots| |leadingTerm| |overlap| + |hcrf| |hclf| |writable?| |readable?| |exists?| |extension| |directory| + |filename| |shallowExpand| |deepExpand| |clearFortranOutputStack| + |showFortranOutputStack| |popFortranOutputStack| |pushFortranOutputStack| + |topFortranOutputStack| |setFormula!| |formula| |linkToFortran| + |setLegalFortranSourceExtensions| |fracPart| |polyPart| |fullPartialFraction| + |primeFrobenius| |discreteLog| |decreasePrecision| |increasePrecision| |bits| + |unitNormalize| |unit| |flagFactor| |sqfrFactor| |primeFactor| |nthFlag| + |nthExponent| |irreducibleFactor| |factors| |nilFactor| + |regularRepresentation| |traceMatrix| |randomLC| |minimize| |module| + |rightRegularRepresentation| |leftRegularRepresentation| |rightTraceMatrix| + |leftTraceMatrix| |rightDiscriminant| |leftDiscriminant| |represents| + |mergeFactors| |isMult| |applyQuote| |ground| |ground?| |exprToXXP| + |exprToUPS| |exprToGenUPS| |localAbs| |universe| |complement| |cardinality| + |internalIntegrate0| |makeCos| |makeSin| |iiGamma| |iiabs| |bringDown| + |newReduc| |logical?| |character?| |doubleComplex?| |complex?| |double?| + |ffactor| |qfactor| |UP2ifCan| |anfactor| |fortranCharacter| + |fortranDoubleComplex| |fortranComplex| |fortranLogical| |fortranInteger| + |fortranDouble| |fortranReal| |external?| |scalarTypeOf| + |fortranCarriageReturn| |fortranLiteral| |fortranLiteralLine| + |processTemplate| |makeFR| |musserTrials| |stopMusserTrials| |numberOfFactors| + |modularFactor| |useSingleFactorBound?| |useSingleFactorBound| + |useEisensteinCriterion?| |useEisensteinCriterion| |eisensteinIrreducible?| + |tryFunctionalDecomposition?| |tryFunctionalDecomposition| |btwFact| + |beauzamyBound| |bombieriNorm| |rootBound| |singleFactorBound| |quadraticNorm| + |infinityNorm| |scaleRoots| |shiftRoots| |degreePartition| |factorOfDegree| + |factorsOfDegree| |pascalTriangle| |rangePascalTriangle| |sizePascalTriangle| + |fillPascalTriangle| |safeCeiling| |safeFloor| |safetyMargin| |sumSquares| + |euclideanNormalForm| |euclideanGroebner| |factorGroebnerBasis| + |groebnerFactorize| |credPol| |redPol| |gbasis| |critT| |critM| |critB| + |critBonD| |critMTonD1| |critMonD1| |redPo| |hMonic| |updatF| |sPol| |updatD| + |minGbasis| |lepol| |prinshINFO| |prindINFO| |fprindINFO| |prinpolINFO| + |prinb| |critpOrder| |makeCrit| |virtualDegree| |lcm| + |conditionsForIdempotents| |genericRightDiscriminant| |genericRightTraceForm| + |genericLeftDiscriminant| |genericLeftTraceForm| |genericRightNorm| + |genericRightTrace| |genericRightMinimalPolynomial| |rightRankPolynomial| + |genericLeftNorm| |genericLeftTrace| |genericLeftMinimalPolynomial| + |leftRankPolynomial| |generic| |rightUnits| |leftUnits| |compBound| |tablePow| + |solveid| |testModulus| |HenselLift| |completeHensel| |multMonom| |build| + |leadingIndex| |leadingExponent| |GospersMethod| |nextSubsetGray| + |firstSubsetGray| |clipPointsDefault| |drawToScale| |adaptive| |figureUnits| + |putColorInfo| |appendPoint| |component| |ranges| |pointLists| + |makeGraphImage| |graphImage| |groebSolve| |testDim| |genericPosition| |lfunc| + |inHallBasis?| |reorder| |parameters| |headAst| |heap| |gcdprim| |gcdcofact| + |gcdcofactprim| |lintgcd| |hex| |parts| |count| |every?| |any?| |map!| |host| + |trueEqual| |factorList| |listConjugateBases| |matrixGcd| |divideIfCan!| + |leastPower| |idealiser| |idealiserMatrix| |moduleSum| |mapUnivariate| + |mapUnivariateIfCan| |mapMatrixIfCan| |mapBivariate| |fullDisplay| + |relationsIdeal| |saturate| |groebner?| |groebnerIdeal| |ideal| |leadingIdeal| + |backOldPos| |generalPosition| |quotient| |zeroDim?| |inRadical?| |in?| + |element?| |zeroDimPrime?| |zeroDimPrimary?| |radical| |primaryDecomp| + |contract| |gensym| |leadingSupport| |shrinkable| |physicalLength!| + |physicalLength| |flexibleArray| |elseBranch| |thenBranch| + |generalizedInverse| |imports| |sequence| |readBytes!| |readUInt32!| + |readInt32!| |readUInt16!| |readInt16!| |readUInt8!| |readInt8!| |readByte!| + |setFieldInfo| |pol| |xn| |dAndcExp| |repSq| |expPot| |qPot| |lookup| + |normal?| |basis| |normalElement| |minimalPolynomial| |position!| |eof?| + |inputBinaryFile| |increment| |incrementBy| |charpol| |solve1| + |innerEigenvectors| |compile| |declare| |parseString| |unparse| |flatten| + |lambda| |binary| |packageCall| |interpret| |innerSolve1| |innerSolve| + |makeEq| |modularGcdPrimitive| |modularGcd| |reduction| |signAround| |invmod| + |powmod| |mulmod| |submod| |addmod| |mask| |dec| |inc| |symmetricRemainder| + |positiveRemainder| |bit?| |algint| |algintegrate| |palgintegrate| + |palginfieldint| |bitLength| |bitCoef| |bitTruth| |contains?| |inf| + |qinterval| |interval| |unit?| |associates?| |unitCanonical| |unitNormal| + |lfextendedint| |lflimitedint| |lfinfieldint| |lfintegrate| |lfextlimint| + |BasicMethod| |PollardSmallFactor| |showTheFTable| |clearTheFTable| |fTable| + |showAttributes| |entry| |palgint0| |palgextint0| |palglimint0| |palgRDE0| + |palgLODE0| |chineseRemainder| |divisors| |eulerPhi| |fibonacci| |harmonic| + |jacobi| |moebiusMu| |numberOfDivisors| |sumOfDivisors| + |sumOfKthPowerDivisors| |HermiteIntegrate| |palgint| |palgextint| |palglimint| + |palgRDE| |palgLODE| |splitConstant| |pmComplexintegrate| |pmintegrate| + |infieldint| |extendedint| |limitedint| |integerIfCan| |internalIntegrate| + |infieldIntegrate| |limitedIntegrate| |extendedIntegrate| |varselect| |kmax| + |ksec| |vark| |removeConstantTerm| |mkPrim| |intPatternMatch| |primintegrate| + |expintegrate| |tanintegrate| |primextendedint| |expextendedint| + |primlimitedint| |explimitedint| |primextintfrac| |primlimintfrac| + |primintfldpoly| |expintfldpoly| |monomialIntegrate| |monomialIntPoly| + |inverseLaplace| |inputOutputBinaryFile| |bothWays| |input| |resolve| |bytes| + |ip4Address| |iprint| |elem?| |notelem| |logpart| |ratpart| |mkAnswer| + |perfectNthPower?| |perfectNthRoot| |approxNthRoot| |perfectSquare?| + |perfectSqrt| |approxSqrt| |generateIrredPoly| |complexExpand| + |complexIntegrate| |dimensionOfIrreducibleRepresentation| + |irreducibleRepresentation| |checkRur| |cAcsch| |cAsech| |cAcoth| |cAtanh| + |cAcosh| |cAsinh| |cCsch| |cSech| |cCoth| |cTanh| |cCosh| |cSinh| |cAcsc| + |cAsec| |cAcot| |cAtan| |cAcos| |cAsin| |cCsc| |cSec| |cCot| |cTan| |cCos| + |cSin| |cLog| |cExp| |cRationalPower| |cPower| |seriesToOutputForm| |iCompose| + |taylorQuoByVar| |iExquo| |getStream| |getRef| |makeSeries| GF2FG FG2F F2FG + |explogs2trigs| |trigs2explogs| |swap!| |fill!| |minIndex| |maxIndex| |entry?| + |indices| |index?| |entries| |categories| |search| |key?| |symbolIfCan| + |kernel| |argument| |constantKernel| |constantIfCan| |kovacic| |unknown| + |laplace| |trailingCoefficient| |normalizeIfCan| |polCase| |distFact| + |identification| |LyndonCoordinates| |LyndonBasis| |zeroDimensional?| + |fglmIfCan| |groebner| |lexTriangular| |squareFreeLexTriangular| |belong?| + |erf| |dilog| |li| |Ci| |Si| |Ei| |linGenPos| |groebgen| |totolex| |minPol| + |computeBasis| |coord| |anticoord| |intcompBasis| |choosemon| |transform| + |pack!| |library| |complexLimit| |limit| |linearlyDependent?| + |linearDependence| |solveLinear| |reducedSystem| |setDifference| + |setIntersection| |setUnion| |append| |null| |nil| |substitute| |duplicates?| + |mapGen| |mapExpon| |commutativeEquality| |leftMult| |rightMult| |makeUnit| + |reverse!| |reverse| |nthFactor| |nthExpon| |makeMulti| |makeTerm| + |listOfMonoms| |insert| |delete| |symmetricSquare| |factor1| + |symmetricProduct| |symmetricPower| |directSum| |\\/| |/\\| ~ + |solveLinearPolynomialEquationByFractions| |hasSolution?| |linSolve| + |LyndonWordsList| |LyndonWordsList1| |lyndonIfCan| |lyndon| |lyndon?| + |numberOfComputedEntries| |rst| |frst| |lazyEvaluate| |lazy?| + |explicitlyEmpty?| |explicitEntries?| |matrixDimensions| |matrixConcat3D| + |setelt!| |plus| |identityMatrix| |zeroMatrix| |iter| |arg1| |arg2| |comp| + |mappingAst| |nullary| |fixedPoint| |id| |recur| |const| |curry| |diag| + |curryRight| |curryLeft| |constantRight| |constantLeft| |twist| + |setsubMatrix!| |subMatrix| |swapColumns!| |swapRows!| |vertConcat| + |horizConcat| |squareTop| |elRow1!| |elRow2!| |elColumn2!| + |fractionFreeGauss!| |invertIfCan| |copy!| |plus!| |minus!| |leftScalarTimes!| + |rightScalarTimes!| |times!| |power!| |nothing| |just| |gradient| |divergence| + |laplacian| |hessian| |bandedHessian| |jacobian| |bandedJacobian| |duplicates| + |removeDuplicates!| |linears| |ddFact| |separateFactors| |exptMod| + |meshPar2Var| |meshFun2Var| |meshPar1Var| |ptFunc| |minimumExponent| + |maximumExponent| |precision| |mantissa| |rowEch| |rowEchLocal| + |rowEchelonLocal| |normalizedDivide| |maxint| |binaryFunction| + |makeFloatFunction| |function| |makeRecord| |unaryFunction| |compiledFunction| + |corrPoly| |lifting| |lifting1| |exprex| |coerceL| |coerceS| |frobenius| + |computePowers| |pow| |An| |UnVectorise| |Vectorise| |setPoly| |index| + |exponent| |exQuo| |moebius| |rightRecip| |leftRecip| |leftPower| |rightPower| + |derivationCoordinates| |generator| |one?| |splitSquarefree| |normalDenom| + |reshape| |totalfract| |pushdterm| |pushucoef| |pushuconst| + |numberOfMonomials| |multiset| |systemCommand| |mergeDifference| + |squareFreePrim| |compdegd| |univcase| |consnewpol| |nsqfree| |intChoose| + |coefChoose| |myDegree| |normDeriv2| |plenaryPower| |c02aff| |c02agf| |c05adf| + |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf| + |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf| + |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf| + |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf| + |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff| + |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e01sff| |e02adf| + |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf| + |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf| + |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf| + |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef| + |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff| + |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf| + |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf| + |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf| + |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf| + |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf| + |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf| + |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf| + |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf| + |fortranCompilerName| |fortranLinkerArgs| |aspFilename| |dimensionsOf| + |checkPrecision| |restorePrecision| |antiCommutator| |commutator| |associator| + |complexEigenvalues| |complexEigenvectors| |isConnected?| |connectTo| |shift| + |normalizedAssociate| |normalize| |outputArgs| |normInvertible?| |normFactors| + |npcoef| |listexp| |characteristicPolynomial| |realEigenvalues| + |realEigenvectors| |halfExtendedResultant2| |halfExtendedResultant1| + |extendedResultant| |subResultantsChain| |lazyPseudoQuotient| + |lazyPseudoRemainder| |bernoulliB| |eulerE| |numeric| |complexNumeric| + |numericIfCan| |complexNumericIfCan| |FormatArabic| |ScanArabic| |FormatRoman| + |ScanRoman| |ScanFloatIgnoreSpaces| |ScanFloatIgnoreSpacesIfCan| + |numericalIntegration| |rk4| |rk4a| |rk4qc| |rk4f| |aromberg| |asimpson| + |atrapezoidal| |romberg| |simpson| |trapezoidal| |rombergo| |simpsono| + |trapezoidalo| |sup| |inv| |imagE| |imagk| |imagj| |imagi| |octon| |ODESolve| + |constDsolve| |showTheIFTable| |clearTheIFTable| |keys| |iFTable| + |showIntensityFunctions| |expint| |diff| |algDsolve| |denomLODE| + |indicialEquations| |indicialEquation| |denomRicDE| |leadingCoefficientRicDE| + |constantCoefficientRicDE| |changeVar| |ratDsolve| + |indicialEquationAtInfinity| |reduceLODE| |singRicDE| |polyRicDE| |ricDsolve| + |triangulate| |solveInField| |wronskianMatrix| |variationOfParameters| + |lexico| |OMmakeConn| |OMcloseConn| |OMconnInDevice| |OMconnOutDevice| + |OMconnectTCP| |OMbindTCP| |OMopenFile| |OMopenString| |OMclose| + |OMsetEncoding| |OMputApp| |OMputAtp| |OMputAttr| |OMputBind| |OMputBVar| + |OMputError| |OMputObject| |OMputEndApp| |OMputEndAtp| |OMputEndAttr| + |OMputEndBind| |OMputEndBVar| |OMputEndError| |OMputEndObject| |OMputInteger| + |OMputFloat| |OMputVariable| |OMputString| |OMputSymbol| |OMgetApp| |OMgetAtp| + |OMgetAttr| |OMgetBind| |OMgetBVar| |OMgetError| |OMgetObject| |OMgetEndApp| + |OMgetEndAtp| |OMgetEndAttr| |OMgetEndBind| |OMgetEndBVar| |OMgetEndError| + |OMgetEndObject| |OMgetInteger| |OMgetFloat| |OMgetVariable| |OMgetString| + |OMgetSymbol| |OMgetType| |OMencodingBinary| |OMencodingSGML| |OMencodingXML| + |OMencodingUnknown| |omError| |errorInfo| |errorKind| |OMReadError?| + |OMUnknownSymbol?| |OMUnknownCD?| |OMParseError?| |OMwrite| |po| |op| |OMread| + |OMreadFile| |OMreadStr| |OMlistCDs| |OMlistSymbols| |OMsupportsCD?| + |OMsupportsSymbol?| |OMunhandledSymbol| |OMreceive| |OMsend| |OMserve| + |infinity| |makeop| |opeval| |evaluateInverse| |evaluate| |conjug| |adjoint| + |arity| |getDatabase| |numericalOptimization| |optimize| |goodnessOfFit| + |whatInfinity| |infinite?| |finite?| |minusInfinity| |plusInfinity| |pureLex| + |totalLex| |reverseLex| |min| |leftLcm| |rightExtendedGcd| |rightGcd| + |rightExactQuotient| |rightRemainder| |rightQuotient| |rightLcm| + |leftExtendedGcd| |leftGcd| |leftExactQuotient| |leftRemainder| |leftQuotient| + |times| |apply| |monicLeftDivide| |monicRightDivide| |leftDivide| + |rightDivide| |hermiteH| |laguerreL| |legendreP| |outputList| |writeBytes!| + |writeUInt8!| |writeInt8!| |writeByte!| |isOpen?| |outputBinaryFile| |quo| + |rem| |div| >= > ~= |blankSeparate| |semicolonSeparate| |commaSeparate| |pile| + |paren| |bracket| |prod| |overlabel| |overbar| |prime| |quote| |supersub| + |presuper| |presub| |super| |sub| |rarrow| |assign| |slash| |over| |zag| |box| + |label| |infix?| |postfix| |infix| |prefix| |vconcat| |hconcat| |rspace| + |vspace| |hspace| |superHeight| |subHeight| |height| |width| + |doubleFloatFormat| |messagePrint| |message| |members| |padecf| |pade| |root| + |quotientByP| |moduloP| |modulus| |digits| |continuedFraction| |pair| |light| + |pastel| |bright| |dim| |dark| |getSyntaxFormsFromFile| |surface| |coordinate| + |partitions| |conjugates| |shuffle| |shufflein| |sequences| |permutations| + |lists| |atoms| |makeResult| |is?| |Is| |addMatchRestricted| |insertMatch| + |addMatch| |getMatch| |failed| |failed?| |optpair| |getBadValues| + |resetBadValues| |hasTopPredicate?| |topPredicate| |setTopPredicate| + |patternVariable| |withPredicates| |setPredicates| |predicates| + |hasPredicate?| |optional?| |multiple?| |generic?| |quoted?| |inR?| |isList| + |isQuotient| |isOp| |satisfy?| |addBadValue| |badValues| |retractable?| + |ListOfTerms| |One| |PDESolve| |leftFactor| |rightFactorCandidate| |measure| D + |ptree| |coerceImages| |fixedPoints| |odd?| |even?| |numberOfCycles| + |cyclePartition| |coerceListOfPairs| |coercePreimagesImages| + |listRepresentation| |permanent| |cycles| |cycle| + |initializeGroupForWordProblem| <= < |movedPoints| |wordInGenerators| + |wordInStrongGenerators| |orbits| |orbit| |permutationGroup| + |wordsForStrongGenerators| |strongGenerators| |base| |generators| + |bivariateSLPEBR| |solveLinearPolynomialEquationByRecursion| + |factorByRecursion| |factorSquareFreeByRecursion| |randomR| |factorSFBRlcUnit| + |charthRoot| |conditionP| |solveLinearPolynomialEquation| + |factorSquareFreePolynomial| |factorPolynomial| |squareFreePolynomial| + |gcdPolynomial| |torsion?| |torsionIfCan| |getGoodPrime| |badNum| |mix| + |doubleDisc| |polyred| |padicFraction| |padicallyExpand| + |numberOfFractionalTerms| |nthFractionalTerm| |firstNumer| |firstDenom| + |compactFraction| |partialFraction| |gcdPrimitive| |symmetricGroup| + |alternatingGroup| |abelianGroup| |cyclicGroup| |dihedralGroup| |mathieu11| + |mathieu12| |mathieu22| |mathieu23| |mathieu24| |janko2| |rubiksGroup| + |youngGroup| |lexGroebner| |totalGroebner| |expressIdealMember| + |principalIdeal| |LagrangeInterpolation| |psolve| |wrregime| |rdregime| + |bsolve| |dmp2rfi| |se2rfi| |pr2dmp| |hasoln| |ParCondList| |redpps| |B1solve| + |factorset| |maxrank| |minrank| |minset| |nextSublist| |overset?| |ParCond| + |redmat| |regime| |sqfree| |inconsistent?| |debug| |numFunEvals| |setAdaptive| + |adaptive?| |setScreenResolution| |screenResolution| |setMaxPoints| + |maxPoints| |setMinPoints| |minPoints| |parametric?| |plotPolar| |debug3D| + |numFunEvals3D| |setAdaptive3D| |adaptive3D?| |setScreenResolution3D| + |screenResolution3D| |setMaxPoints3D| |maxPoints3D| |setMinPoints3D| + |minPoints3D| |tValues| |tRange| |plot| |pointPlot| |calcRanges| |assert| + |optional| |multiple| |fixPredicate| |patternMatch| |patternMatchTimes| + |bernoulli| |chebyshevT| |chebyshevU| |cyclotomic| |euler| |fixedDivisor| + |laguerre| |legendre| |dmpToHdmp| |hdmpToDmp| |pToHdmp| |hdmpToP| |dmpToP| + |pToDmp| |sylvesterSequence| |sturmSequence| |boundOfCauchy| + |sturmVariationsOf| |lazyVariations| |content| |primitiveMonomials| + |totalDegree| |minimumDegree| |monomials| |isPlus| |isTimes| |isExpt| + |isPower| |rroot| |qroot| |froot| |nthr| |port| |firstUncouplingMatrix| + |integral| |primitiveElement| |nextPrime| |prevPrime| |primes| |print| + |selectsecond| |selectfirst| |makeprod| |property| |disjunction| |conjunction| + |isEquiv| |isImplies| |isOr| |isAnd| |isNot| |isTerm| |equiv| |implies| |or| + |and| |false| |true| |merge!| |max| |resultantEuclidean| + |semiResultantEuclidean2| |semiResultantEuclidean1| |indiceSubResultant| + |indiceSubResultantEuclidean| |semiIndiceSubResultantEuclidean| + |degreeSubResultant| |degreeSubResultantEuclidean| + |semiDegreeSubResultantEuclidean| |lastSubResultantEuclidean| + |semiLastSubResultantEuclidean| |subResultantGcdEuclidean| + |semiSubResultantGcdEuclidean2| |semiSubResultantGcdEuclidean1| + |discriminantEuclidean| |semiDiscriminantEuclidean| |chainSubResultants| + |schema| |resultantReduit| |resultantReduitEuclidean| + |semiResultantReduitEuclidean| |divide| |Lazard| |Lazard2| + |nextsousResultant2| |resultantnaif| |resultantEuclideannaif| + |semiResultantEuclideannaif| |pdct| |powers| |partition| |complete| |pole?| + |monomial| |leadingMonomial| |zRange| |yRange| |xRange| |listBranches| + |triangular?| |rewriteIdealWithRemainder| |rewriteIdealWithHeadRemainder| + |remainder| |headRemainder| |roughUnitIdeal?| |roughEqualIdeals?| + |roughSubIdeal?| |roughBase?| |trivialIdeal?| |sort| |collectUpper| |collect| + |collectUnder| |mainVariable?| |mainVariables| |removeSquaresIfCan| + |unprotectedRemoveRedundantFactors| |removeRedundantFactors| + |certainlySubVariety?| |possiblyNewVariety?| |probablyZeroDim?| + |selectPolynomials| |selectOrPolynomials| |selectAndPolynomials| + |quasiMonicPolynomials| |univariate?| |univariatePolynomials| |linear?| + |linearPolynomials| |bivariate?| |bivariatePolynomials| + |removeRoughlyRedundantFactorsInPols| |removeRoughlyRedundantFactorsInPol| + |interReduce| |roughBasicSet| |crushedSet| + |rewriteSetByReducingWithParticularGenerators| + |rewriteIdealWithQuasiMonicGenerators| |squareFreeFactors| + |univariatePolynomialsGcds| |removeRoughlyRedundantFactorsInContents| + |removeRedundantFactorsInContents| |removeRedundantFactorsInPols| + |irreducibleFactors| |lazyIrreducibleFactors| + |removeIrreducibleRedundantFactors| |normalForm| |changeBase| + |companionBlocks| |xCoord| |yCoord| |zCoord| |rCoord| |thetaCoord| |phiCoord| + |color| |hue| |shade| |nthRootIfCan| |expIfCan| |logIfCan| |sinIfCan| + |cosIfCan| |tanIfCan| |cotIfCan| |secIfCan| |cscIfCan| |asinIfCan| |acosIfCan| + |atanIfCan| |acotIfCan| |asecIfCan| |acscIfCan| |sinhIfCan| |coshIfCan| + |tanhIfCan| |cothIfCan| |sechIfCan| |cschIfCan| |asinhIfCan| |acoshIfCan| + |atanhIfCan| |acothIfCan| |asechIfCan| |acschIfCan| |pushdown| |pushup| + |reducedDiscriminant| |idealSimplify| |definingInequation| |definingEquations| + |setStatus| |quasiAlgebraicSet| |radicalSimplify| |random| |denominator| + |numerator| |denom| |numer| |quadraticForm| |back| |front| |rotate!| + |dequeue!| |enqueue!| |quatern| |imagK| |imagJ| |imagI| |conjugate| |queue| + |nthRoot| |fractRadix| |wholeRadix| |cycleRagits| |prefixRagits| |fractRagits| + |wholeRagits| |radix| |randnum| |reseed| |seed| |rational| |rational?| + |rationalIfCan| |setvalue!| |setchildren!| |node?| |child?| |distance| + |leaves| |nodes| |rename| |rename!| |mainValue| |mainDefiningPolynomial| + |mainForm| |sqrt| |rischDE| |rischDEsys| |monomRDE| |baseRDE| |polyRDE| + |monomRDEsys| |baseRDEsys| |weighted| |rdHack1| |operator| |midpoint| + |midpoints| |realZeros| |mainCharacterization| |algebraicOf| |ReduceOrder| = + |setref| |deref| |ref| |radicalEigenvectors| |radicalEigenvector| + |radicalEigenvalues| |eigenMatrix| |normalise| |gramschmidt| + |orthonormalBasis| |antisymmetricTensors| |createGenericMatrix| + |symmetricTensors| |tensorProduct| |permutationRepresentation| + |completeEchelonBasis| |createRandomElement| |cyclicSubmodule| + |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?| + |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |showArrayValues| + |showScalarValues| |solveRetract| |variables| |mainVariable| |univariate| + |multivariate| |uniform01| |normal01| |exponential1| |chiSquare1| |normal| + |exponential| |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue| + |green| |red| |whitePoint| |uniform| |binomial| |poisson| |geometric| + |ridHack1| |interpolate| |Zero| |nullSpace| |nullity| |rank| |rowEchelon| + |column| |row| |qelt| |ncols| |nrows| |maxColIndex| |minColIndex| + |maxRowIndex| |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| + |square?| |matrix| |rectangularMatrix| |characteristic| |round| |fractionPart| + |wholePart| |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| + |right| |left| |roman| |recoverAfterFail| |showTheRoutinesTable| + |deleteRoutine!| |getExplanations| |getMeasure| |changeMeasure| + |changeThreshhold| |selectMultiDimensionalRoutines| |selectNonFiniteRoutines| + |selectSumOfSquaresRoutines| |selectFiniteRoutines| |selectODEIVPRoutines| + |selectPDERoutines| |selectOptimizationRoutines| |selectIntegrationRoutines| + |routines| |mainSquareFreePart| |mainPrimitivePart| |mainContent| + |primitivePart!| |gcd| |nextsubResultant2| |LazardQuotient2| |LazardQuotient| + |subResultantChain| |halfExtendedSubResultantGcd2| + |halfExtendedSubResultantGcd1| |extendedSubResultantGcd| |exactQuotient!| + |exactQuotient| |primPartElseUnitCanonical!| |primPartElseUnitCanonical| + |retract| |retractIfCan| |lazyResidueClass| |monicModulo| |lazyPseudoDivide| + |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?| + |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial| + |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial| + |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators| + |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?| + |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit| + |invertibleSet| |invertible?| |invertibleElseSplit?| + |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?| + |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo| + |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant| + |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression| + |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create| + |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope| + |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates| + |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?| + |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |before?| + |latex| |hash| |delta| |member?| |enumerate| |setOfMinN| |elements| + |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer| + |symbol| |destruct| |float?| |integer?| |symbol?| |string?| |list?| |pair?| + |atom?| |null?| |eq| |fortran| |startTable!| |stopTable!| |supDimElseRittWu?| + |algebraicSort| |moreAlgebraic?| |subTriSet?| |subPolSet?| + |internalSubPolSet?| |internalInfRittWu?| |internalSubQuasiComponent?| + |subQuasiComponent?| |removeSuperfluousQuasiComponents| |subCase?| + |removeSuperfluousCases| |prepareDecompose| |branchIfCan| |startTableGcd!| + |stopTableGcd!| |startTableInvSet!| |stopTableInvSet!| + |stosePrepareSubResAlgo| |stoseInternalLastSubResultant| + |stoseIntegralLastSubResultant| |stoseLastSubResultant| + |stoseInvertible?sqfreg| |stoseInvertibleSetsqfreg| |stoseInvertible?reg| + |stoseInvertibleSetreg| |stoseInvertible?| |stoseInvertibleSet| + |stoseSquareFreePart| |coleman| |inverseColeman| |listYoungTableaus| + |makeYoungTableau| |nextColeman| |nextLatticePermutation| |nextPartition| + |numberOfImproperPartitions| |subSet| |unrankImproperPartitions0| + |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence| + |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots| + |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature| + |signatureAst| |Or| |And| |Not| |xor| |not| |depth| |top| |pop!| |push!| + |minordet| |determinant| |diagonalProduct| |trace| |diagonal| |diagonalMatrix| + |scalarMatrix| |hermite| |completeHermite| |smith| |completeSmith| + |diophantineSystem| |csubst| |particularSolution| |mapSolve| |linear| + |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| |aCubic| |aQuartic| + |radicalSolve| |radicalRoots| |contractSolve| |decomposeFunc| |unvectorise| + |bubbleSort!| |insertionSort!| |check| |objects| |lprop| |llprop| |lllp| + |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| |closedCurve?| |closedCurve| + |curve?| |curve| |point?| |enterPointData| |composites| |components| + |numberOfComposites| |numberOfComponents| |create3Space| |parse| + |outputAsFortran| |outputAsScript| |outputAsTex| |abs| |Beta| |digamma| + |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| |airyAi| |airyBi| + |subNode?| |infLex?| |setEmpty!| |setStatus!| |setCondition!| |setValue!| + |copy| |status| |value| |empty?| |splitNodeOf!| |remove!| |remove| + |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!| + |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim| + |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?| + |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| |KrullNumber| + |numberOfVariables| |algebraicDecompose| |transcendentalDecompose| + |internalDecompose| |decompose| |upDateBranches| |printInfo| |preprocess| + |internalZeroSetSplit| |internalAugment| |stack| |possiblyInfinite?| + |explicitlyFinite?| |nextItem| |init| |step| |upperBound| |lowerBound| + |iterationVar| |infiniteProduct| |evenInfiniteProduct| |oddInfiniteProduct| + |generalInfiniteProduct| |filterUntil| |filterWhile| |generate| |showAll?| + |showAllElements| |output| |cons| |delay| |findCycle| |repeating?| |repeating| + |exquo| |recip| |integers| |oddintegers| |int| |mapmult| |deriv| |gderiv| + |compose| |addiag| |lazyIntegrate| |nlde| |powern| |mapdiv| |lazyGintegrate| + |power| |sincos| |sinhcosh| |asin| |acos| |atan| |acot| |asec| |acsc| |sinh| + |cosh| |tanh| |coth| |sech| |csch| |asinh| |acosh| |atanh| |acoth| |asech| + |acsch| |subresultantVector| |primitivePart| |pointData| |parent| |level| + |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse| + |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2| + |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children| + |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct| + |predicate| |sum| |outputForm| NOT AND EQ OR GE LE GT LT |list| |string| + |argscript| |superscript| |subscript| |script| |scripts| |scripted?| |name| + |resetNew| |symFunc| |symbolTableOf| |argumentListOf| |returnTypeOf| + |printHeader| |returnType!| |argumentList!| |endSubProgram| + |currentSubProgram| |newSubProgram| |clearTheSymbolTable| |showTheSymbolTable| + |symbolTable| |printTypes| |newTypeLists| |typeLists| |externalList| + |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| |case| + |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| |autoCoerce| + |solve| |triangularSystems| |loadNativeModule| |nativeModuleExtension| + |hostByteOrder| |hostPlatform| |rootDirectory| |bumprow| |bumptab| |bumptab1| + |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| |inverse| |maxrow| |mr| + |tableau| |listOfLists| |tanSum| |tanAn| |tanNa| |table| |initTable!| + |printInfo!| |startStats!| |printStats!| |clearTable!| |usingTable?| + |printingInfo?| |makingStats?| |extractIfCan| |insert!| |interpretString| + |stripCommentsAndBlanks| |setPrologue!| |setTex!| |setEpilogue!| |prologue| + |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!| + |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi| + |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?| + |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary| + |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv| + |LowTriBddDenomInv| |simplify| |htrigs| |simplifyExp| |simplifyLog| + |expandPower| |expandLog| |cos2sec| |cosh2sech| |cot2trig| |coth2trigh| + |csc2sin| |csch2sinh| |sec2cos| |sech2cosh| |sin2csc| |sinh2csch| |tan2trig| + |tanh2trigh| |tan2cot| |tanh2coth| |cot2tan| |coth2tanh| |removeCosSq| + |removeSinSq| |removeCoshSq| |removeSinhSq| |expandTrigProducts| |fintegrate| + |coefficient| |coHeight| |extendIfCan| |algebraicVariables| + |zeroSetSplitIntoTriangularSystems| |zeroSetSplit| |reduceByQuasiMonic| + |collectQuasiMonic| |removeZero| |initiallyReduce| |headReduce| + |stronglyReduce| |rewriteSetWithReduction| |autoReduced?| |initiallyReduced?| + |headReduced?| |stronglyReduced?| |reduced?| |normalized?| |quasiComponent| + |initials| |basicSet| |infRittWu?| |getCurve| |listLoops| |closed?| |open?| + |setClosed| |tube| |point| |unitVector| |cosSinInfo| |loopPoints| |select| + |generalTwoFactor| |generalSqFr| |twoFactor| |setOrder| |getOrder| |less?| + |userOrdered?| |largest| |more?| |setVariableOrder| |getVariableOrder| + |resetVariableOrder| |prime?| |sample| |bitior| |bitand| |rationalFunction| + |taylorIfCan| |taylor| |removeZeroes| |taylorRep| |factor| |factorSquareFree| + |henselFact| |hasHi| |segment| SEGMENT |fmecg| |commonDenominator| + |clearDenominator| |splitDenominator| |monicRightFactorIfCan| + |rightFactorIfCan| |leftFactorIfCan| |monicDecomposeIfCan| + |monicCompleteDecompose| |divideIfCan| |noKaratsuba| |karatsubaOnce| + |karatsuba| |separate| |pseudoDivide| |pseudoQuotient| |composite| + |subResultantGcd| |resultant| |discriminant| |pseudoRemainder| |shiftLeft| + |shiftRight| |karatsubaDivide| |monicDivide| |divideExponents| |unmakeSUP| + |makeSUP| |vectorise| |eval| |extend| |approximate| |truncate| |order| + |center| |terms| |squareFreePart| |BumInSepFFE| |multiplyExponents| + |laurentIfCan| |laurent| |laurentRep| |rationalPower| |puiseux| |dominantTerm| + |limitPlus| |split!| |setlast!| |setrest!| |setelt| |setfirst!| |cycleSplit!| + |concat!| |cycleTail| |cycleLength| |cycleEntry| |third| |second| |tail| + |last| |rest| |elt| |first| |concat| |invmultisect| |multisect| |revert| + |generalLambert| |evenlambert| |oddlambert| |lambert| |lagrange| + |differentiate| |univariatePolynomial| |integrate| ** |polynomial| + |multiplyCoefficients| |quoByVar| |coefficients| |series| |stFunc1| |stFunc2| + |stFuncN| |fixedPointExquo| |ode1| |ode2| |ode| |mpsode| UP2UTS UTS2UP + LODO2FUN RF2UTS |variable| |magnitude| |length| |cross| |outerProduct| |dot| - + |zero| + |vector| |scan| |reduce| |graphCurves| |drawCurves| |update| |show| + |scale| |connect| |region| |points| |units| |getGraph| |putGraph| |graphs| + |graphStates| |graphState| |makeViewport2D| |viewport2D| |getPickedPoints| + |key| |close| |write| |colorDef| |reset| |intensity| |lighting| |clipSurface| + |showClipRegion| |showRegion| |hitherPlane| |eyeDistance| |perspective| + |translate| |zoom| |rotate| |drawStyle| |outlineRender| |diagonals| |axes| + |controlPanel| |viewpoint| |dimensions| |title| |resize| |move| |options| + |modifyPointData| |subspace| |makeViewport3D| |viewport3D| |viewDeltaYDefault| + |viewDeltaXDefault| |viewZoomDefault| |viewPhiDefault| |viewThetaDefault| + |pointColorDefault| |lineColorDefault| |axesColorDefault| |unitsColorDefault| + |pointSizeDefault| |viewPosDefault| |viewSizeDefault| |viewDefaults| + |viewWriteDefault| |viewWriteAvailable| |var1StepsDefault| |var2StepsDefault| + |tubePointsDefault| |tubeRadiusDefault| |void| |dimension| |crest| |cfirst| + |sts2stst| |clikeUniv| |weierstrass| |qqq| |integralBasis| + |localIntegralBasis| |qualifier| |mainExpression| |condition| + |changeWeightLevel| |characteristicSerie| |characteristicSet| |medialSet| + |Hausdorff| |Frobenius| |transcendenceDegree| |extensionDegree| + |inGroundField?| |transcendent?| |algebraic?| |varList| |sh| |mirror| + |monomial?| |monom| |rquo| |lquo| |mindegTerm| |log| |exp| |product| + |LiePolyIfCan| |coerce| |trunc| |degree| / |quasiRegular| |quasiRegular?| + |constant| |constant?| |coef| |mindeg| |maxdeg| |#| |map| |reductum| * + |RemainderList| |unexpand| |expand| Y |triangSolve| |univariateSolve| + |realSolve| |positiveSolve| |squareFree| |convert| |linearlyDependentOverZ?| + |linearDependenceOverZ| |solveLinearlyOverQ| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| + |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 46298bbc..3c816213 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5353 +1,5357 @@ -(3223649 . 3474699339) -((-2051 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-2767 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3824 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-1236 (-567)) |#2|) 44)) (-3790 (($ $) 81)) (-2617 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3932 (((-567) (-1 (-112) |#2|) $) 27) (((-567) |#2| $) NIL) (((-567) |#2| $ (-567)) 97)) (-3468 (((-645 |#2|) $) 13)) (-1315 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2021 (($ (-1 |#2| |#2|) $) 37)) (-4364 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4222 (($ |#2| $ (-567)) NIL) (($ $ $ (-567)) 67)) (-2989 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1430 (((-112) (-1 (-112) |#2|) $) 23)) (-1882 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL) (($ $ (-1236 (-567))) 66)) (-4281 (($ $ (-567)) 76) (($ $ (-1236 (-567))) 75)) (-3486 (((-772) (-1 (-112) |#2|) $) 34) (((-772) |#2| $) NIL)) (-3161 (($ $ $ (-567)) 69)) (-3846 (($ $) 68)) (-2516 (($ (-645 |#2|)) 73)) (-3644 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-645 $)) 86)) (-2504 (((-863) $) 93)) (-3450 (((-112) (-1 (-112) |#2|) $) 22)) (-2968 (((-112) $ $) 96)) (-2986 (((-112) $ $) 100))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2968 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -2767 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3161 (|#1| |#1| |#1| (-567))) (-15 -2051 ((-112) |#1|)) (-15 -1315 (|#1| |#1| |#1|)) (-15 -3932 ((-567) |#2| |#1| (-567))) (-15 -3932 ((-567) |#2| |#1|)) (-15 -3932 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2051 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1315 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3824 (|#2| |#1| (-1236 (-567)) |#2|)) (-15 -4222 (|#1| |#1| |#1| (-567))) (-15 -4222 (|#1| |#2| |#1| (-567))) (-15 -4281 (|#1| |#1| (-1236 (-567)))) (-15 -4281 (|#1| |#1| (-567))) (-15 -1882 (|#1| |#1| (-1236 (-567)))) (-15 -4364 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3644 (|#1| (-645 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#2|)) (-15 -2516 (|#1| (-645 |#2|))) (-15 -2989 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1882 (|#2| |#1| (-567))) (-15 -1882 (|#2| |#1| (-567) |#2|)) (-15 -3824 (|#2| |#1| (-567) |#2|)) (-15 -3486 ((-772) |#2| |#1|)) (-15 -3468 ((-645 |#2|) |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2021 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3846 (|#1| |#1|))) (-19 |#2|) (-1219)) (T -18)) +(3213809 . 3477417285) +((-1900 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-1898 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4219 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-1236 (-549)) |#2|) 44)) (-2442 (($ $) 81)) (-4274 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3843 (((-549) (-1 (-112) |#2|) $) 27) (((-549) |#2| $) NIL) (((-549) |#2| $ (-549)) 97)) (-2124 (((-643 |#2|) $) 13)) (-3941 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2128 (($ (-1 |#2| |#2|) $) 37)) (-4390 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2449 (($ |#2| $ (-549)) NIL) (($ $ $ (-549)) 67)) (-1441 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2126 (((-112) (-1 (-112) |#2|) $) 23)) (-4231 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL) (($ $ (-1236 (-549))) 66)) (-2450 (($ $ (-549)) 76) (($ $ (-1236 (-549))) 75)) (-2125 (((-773) (-1 (-112) |#2|) $) 34) (((-773) |#2| $) NIL)) (-1899 (($ $ $ (-549)) 69)) (-3824 (($ $) 68)) (-3953 (($ (-643 |#2|)) 73)) (-4233 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-643 $)) 86)) (-4378 (((-865) $) 93)) (-2127 (((-112) (-1 (-112) |#2|) $) 22)) (-3455 (((-112) $ $) 96)) (-3088 (((-112) $ $) 100))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -1899 (|#1| |#1| |#1| (-549))) (-15 -1900 ((-112) |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4219 (|#2| |#1| (-1236 (-549)) |#2|)) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4219 (|#2| |#1| (-549) |#2|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2124 ((-643 |#2|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#1| |#1|))) (-19 |#2|) (-1219)) (T -18)) NIL -(-10 -8 (-15 -2968 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -2767 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3790 (|#1| |#1|)) (-15 -3161 (|#1| |#1| |#1| (-567))) (-15 -2051 ((-112) |#1|)) (-15 -1315 (|#1| |#1| |#1|)) (-15 -3932 ((-567) |#2| |#1| (-567))) (-15 -3932 ((-567) |#2| |#1|)) (-15 -3932 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2051 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1315 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3824 (|#2| |#1| (-1236 (-567)) |#2|)) (-15 -4222 (|#1| |#1| |#1| (-567))) (-15 -4222 (|#1| |#2| |#1| (-567))) (-15 -4281 (|#1| |#1| (-1236 (-567)))) (-15 -4281 (|#1| |#1| (-567))) (-15 -1882 (|#1| |#1| (-1236 (-567)))) (-15 -4364 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3644 (|#1| (-645 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#2|)) (-15 -2516 (|#1| (-645 |#2|))) (-15 -2989 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1882 (|#2| |#1| (-567))) (-15 -1882 (|#2| |#1| (-567) |#2|)) (-15 -3824 (|#2| |#1| (-567) |#2|)) (-15 -3486 ((-772) |#2| |#1|)) (-15 -3468 ((-645 |#2|) |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2021 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3846 (|#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3790 (($ $) 91 (|has| $ (-6 -4423)))) (-3247 (($ $) 101)) (-3470 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 52)) (-3932 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4223 (($ (-772) |#1|) 70)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-2727 (($ $ $) 88 (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-1446 (($ $ $) 87 (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 43 (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2930 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-4281 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3161 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 71)) (-3644 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3006 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +(-10 -8 (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -1899 (|#1| |#1| |#1| (-549))) (-15 -1900 ((-112) |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4219 (|#2| |#1| (-1236 (-549)) |#2|)) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4219 (|#2| |#1| (-549) |#2|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2124 ((-643 |#2|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-3843 (((-549) (-1 (-112) |#1|) $) 98) (((-549) |#1| $) 97 (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) 96 (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 84 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 86 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 83 (|has| |#1| (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-19 |#1|) (-140) (-1219)) (T -19)) NIL -(-13 (-375 |t#1|) (-10 -7 (-6 -4423))) -(((-34) . T) ((-102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1219) . T)) -((-2932 (((-3 $ "failed") $ $) 12)) (-3054 (($ $) NIL) (($ $ $) 9)) (* (($ (-923) $) NIL) (($ (-772) $) 16) (($ (-567) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -2932 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-21)) (T -20)) +(-13 (-374 |t#1|) (-10 -7 (-6 -4426))) +(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-374 |#1|) . T) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1219) . T)) +((-1407 (((-3 $ "failed") $ $) 12)) (-4269 (($ $) NIL) (($ $ $) 9)) (* (($ (-922) $) NIL) (($ (-773) $) 16) (($ (-549) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -1407 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -2932 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24))) +(-10 -8 (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -1407 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24))) (((-21) (-140)) (T -21)) -((-3054 (*1 *1 *1) (-4 *1 (-21))) (-3054 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-131) (-647 (-567)) (-10 -8 (-15 -3054 ($ $)) (-15 -3054 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1102) . T)) -((-2684 (((-112) $) 10)) (-3758 (($) 15)) (* (($ (-923) $) 14) (($ (-772) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2684 ((-112) |#1|)) (-15 -3758 (|#1|)) (-15 * (|#1| (-923) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2684 ((-112) |#1|)) (-15 -3758 (|#1|)) (-15 * (|#1| (-923) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16))) +((-4269 (*1 *1 *1) (-4 *1 (-21))) (-4269 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-131) (-648 (-549)) (-10 -8 (-15 -4269 ($ $)) (-15 -4269 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-1104) . T)) +((-3608 (((-112) $) 10)) (-4156 (($) 15)) (* (($ (-922) $) 14) (($ (-773) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 -4156 (|#1|)) (-15 * (|#1| (-922) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 -4156 (|#1|)) (-15 * (|#1| (-922) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16))) (((-23) (-140)) (T -23)) -((-1807 (*1 *1) (-4 *1 (-23))) (-3758 (*1 *1) (-4 *1 (-23))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772))))) -(-13 (-25) (-10 -8 (-15 (-1807) ($) -3562) (-15 -3758 ($) -3562) (-15 -2684 ((-112) $)) (-15 * ($ (-772) $)))) -(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((* (($ (-923) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-923) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-923) |#1|))) -((-2487 (((-112) $ $) 7)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14))) +((-3510 (*1 *1) (-4 *1 (-23))) (-4156 (*1 *1) (-4 *1 (-23))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-773))))) +(-13 (-25) (-10 -8 (-15 (-3510) ($) -4384) (-15 -4156 ($) -4384) (-15 -3608 ((-112) $)) (-15 * ($ (-773) $)))) +(((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((* (($ (-922) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-922) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-922) |#1|))) +((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14))) (((-25) (-140)) (T -25)) -((-3045 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923))))) -(-13 (-1102) (-10 -8 (-15 -3045 ($ $ $)) (-15 * ($ (-923) $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2776 (((-645 $) (-954 $)) 32) (((-645 $) (-1175 $)) 16) (((-645 $) (-1175 $) (-1179)) 20)) (-3236 (($ (-954 $)) 30) (($ (-1175 $)) 11) (($ (-1175 $) (-1179)) 60)) (-2161 (((-645 $) (-954 $)) 33) (((-645 $) (-1175 $)) 18) (((-645 $) (-1175 $) (-1179)) 19)) (-1617 (($ (-954 $)) 31) (($ (-1175 $)) 13) (($ (-1175 $) (-1179)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -2776 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -2776 ((-645 |#1|) (-1175 |#1|))) (-15 -2776 ((-645 |#1|) (-954 |#1|))) (-15 -3236 (|#1| (-1175 |#1|) (-1179))) (-15 -3236 (|#1| (-1175 |#1|))) (-15 -3236 (|#1| (-954 |#1|))) (-15 -2161 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -2161 ((-645 |#1|) (-1175 |#1|))) (-15 -2161 ((-645 |#1|) (-954 |#1|))) (-15 -1617 (|#1| (-1175 |#1|) (-1179))) (-15 -1617 (|#1| (-1175 |#1|))) (-15 -1617 (|#1| (-954 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -2776 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -2776 ((-645 |#1|) (-1175 |#1|))) (-15 -2776 ((-645 |#1|) (-954 |#1|))) (-15 -3236 (|#1| (-1175 |#1|) (-1179))) (-15 -3236 (|#1| (-1175 |#1|))) (-15 -3236 (|#1| (-954 |#1|))) (-15 -2161 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -2161 ((-645 |#1|) (-1175 |#1|))) (-15 -2161 ((-645 |#1|) (-954 |#1|))) (-15 -1617 (|#1| (-1175 |#1|) (-1179))) (-15 -1617 (|#1| (-1175 |#1|))) (-15 -1617 (|#1| (-954 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2776 (((-645 $) (-954 $)) 88) (((-645 $) (-1175 $)) 87) (((-645 $) (-1175 $) (-1179)) 86)) (-3236 (($ (-954 $)) 91) (($ (-1175 $)) 90) (($ (-1175 $) (-1179)) 89)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-3671 (($ $) 100)) (-4175 (((-112) $ $) 65)) (-3758 (($) 18 T CONST)) (-2161 (((-645 $) (-954 $)) 94) (((-645 $) (-1175 $)) 93) (((-645 $) (-1175 $) (-1179)) 92)) (-1617 (($ (-954 $)) 97) (($ (-1175 $)) 96) (($ (-1175 $) (-1179)) 95)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-2946 (((-112) $) 79)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 99)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3661 (((-421 $) $) 82)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 73)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +((-4271 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-922))))) +(-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)) (-15 * ($ (-922) $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-1715 (((-643 $) (-949 $)) 32) (((-643 $) (-1174 $)) 16) (((-643 $) (-1174 $) (-1180)) 20)) (-1303 (($ (-949 $)) 30) (($ (-1174 $)) 11) (($ (-1174 $) (-1180)) 60)) (-1304 (((-643 $) (-949 $)) 33) (((-643 $) (-1174 $)) 18) (((-643 $) (-1174 $) (-1180)) 19)) (-3603 (($ (-949 $)) 31) (($ (-1174 $)) 13) (($ (-1174 $) (-1180)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1715 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1715 ((-643 |#1|) (-1174 |#1|))) (-15 -1715 ((-643 |#1|) (-949 |#1|))) (-15 -1303 (|#1| (-1174 |#1|) (-1180))) (-15 -1303 (|#1| (-1174 |#1|))) (-15 -1303 (|#1| (-949 |#1|))) (-15 -1304 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1304 ((-643 |#1|) (-1174 |#1|))) (-15 -1304 ((-643 |#1|) (-949 |#1|))) (-15 -3603 (|#1| (-1174 |#1|) (-1180))) (-15 -3603 (|#1| (-1174 |#1|))) (-15 -3603 (|#1| (-949 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1715 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1715 ((-643 |#1|) (-1174 |#1|))) (-15 -1715 ((-643 |#1|) (-949 |#1|))) (-15 -1303 (|#1| (-1174 |#1|) (-1180))) (-15 -1303 (|#1| (-1174 |#1|))) (-15 -1303 (|#1| (-949 |#1|))) (-15 -1304 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1304 ((-643 |#1|) (-1174 |#1|))) (-15 -1304 ((-643 |#1|) (-949 |#1|))) (-15 -3603 (|#1| (-1174 |#1|) (-1180))) (-15 -3603 (|#1| (-1174 |#1|))) (-15 -3603 (|#1| (-949 |#1|)))) +((-2968 (((-112) $ $) 7)) (-1715 (((-643 $) (-949 $)) 88) (((-643 $) (-1174 $)) 87) (((-643 $) (-1174 $) (-1180)) 86)) (-1303 (($ (-949 $)) 91) (($ (-1174 $)) 90) (($ (-1174 $) (-1180)) 89)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3438 (($ $) 100)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-1304 (((-643 $) (-949 $)) 94) (((-643 $) (-1174 $)) 93) (((-643 $) (-1174 $) (-1180)) 92)) (-3603 (($ (-949 $)) 97) (($ (-1174 $)) 96) (($ (-1174 $) (-1180)) 95)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 99)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77) (($ $ (-410 (-549))) 98)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) (((-27) (-140)) (T -27)) -((-1617 (*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) (-1617 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1179)) (-4 *1 (-27)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2161 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1179)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) (-3236 (*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) (-3236 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1179)) (-4 *1 (-27)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2776 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1179)) (-4 *1 (-27)) (-5 *2 (-645 *1))))) -(-13 (-365) (-1004) (-10 -8 (-15 -1617 ($ (-954 $))) (-15 -1617 ($ (-1175 $))) (-15 -1617 ($ (-1175 $) (-1179))) (-15 -2161 ((-645 $) (-954 $))) (-15 -2161 ((-645 $) (-1175 $))) (-15 -2161 ((-645 $) (-1175 $) (-1179))) (-15 -3236 ($ (-954 $))) (-15 -3236 ($ (-1175 $))) (-15 -3236 ($ (-1175 $) (-1179))) (-15 -2776 ((-645 $) (-954 $))) (-15 -2776 ((-645 $) (-1175 $))) (-15 -2776 ((-645 $) (-1175 $) (-1179))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1004) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T)) -((-2776 (((-645 $) (-954 $)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-1175 $) (-1179)) 55) (((-645 $) $) 22) (((-645 $) $ (-1179)) 46)) (-3236 (($ (-954 $)) NIL) (($ (-1175 $)) NIL) (($ (-1175 $) (-1179)) 57) (($ $) 20) (($ $ (-1179)) 40)) (-2161 (((-645 $) (-954 $)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-1175 $) (-1179)) 53) (((-645 $) $) 18) (((-645 $) $ (-1179)) 48)) (-1617 (($ (-954 $)) NIL) (($ (-1175 $)) NIL) (($ (-1175 $) (-1179)) NIL) (($ $) 15) (($ $ (-1179)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -2776 ((-645 |#1|) |#1| (-1179))) (-15 -3236 (|#1| |#1| (-1179))) (-15 -2776 ((-645 |#1|) |#1|)) (-15 -3236 (|#1| |#1|)) (-15 -2161 ((-645 |#1|) |#1| (-1179))) (-15 -1617 (|#1| |#1| (-1179))) (-15 -2161 ((-645 |#1|) |#1|)) (-15 -1617 (|#1| |#1|)) (-15 -2776 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -2776 ((-645 |#1|) (-1175 |#1|))) (-15 -2776 ((-645 |#1|) (-954 |#1|))) (-15 -3236 (|#1| (-1175 |#1|) (-1179))) (-15 -3236 (|#1| (-1175 |#1|))) (-15 -3236 (|#1| (-954 |#1|))) (-15 -2161 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -2161 ((-645 |#1|) (-1175 |#1|))) (-15 -2161 ((-645 |#1|) (-954 |#1|))) (-15 -1617 (|#1| (-1175 |#1|) (-1179))) (-15 -1617 (|#1| (-1175 |#1|))) (-15 -1617 (|#1| (-954 |#1|)))) (-29 |#2|) (-559)) (T -28)) -NIL -(-10 -8 (-15 -2776 ((-645 |#1|) |#1| (-1179))) (-15 -3236 (|#1| |#1| (-1179))) (-15 -2776 ((-645 |#1|) |#1|)) (-15 -3236 (|#1| |#1|)) (-15 -2161 ((-645 |#1|) |#1| (-1179))) (-15 -1617 (|#1| |#1| (-1179))) (-15 -2161 ((-645 |#1|) |#1|)) (-15 -1617 (|#1| |#1|)) (-15 -2776 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -2776 ((-645 |#1|) (-1175 |#1|))) (-15 -2776 ((-645 |#1|) (-954 |#1|))) (-15 -3236 (|#1| (-1175 |#1|) (-1179))) (-15 -3236 (|#1| (-1175 |#1|))) (-15 -3236 (|#1| (-954 |#1|))) (-15 -2161 ((-645 |#1|) (-1175 |#1|) (-1179))) (-15 -2161 ((-645 |#1|) (-1175 |#1|))) (-15 -2161 ((-645 |#1|) (-954 |#1|))) (-15 -1617 (|#1| (-1175 |#1|) (-1179))) (-15 -1617 (|#1| (-1175 |#1|))) (-15 -1617 (|#1| (-954 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2776 (((-645 $) (-954 $)) 88) (((-645 $) (-1175 $)) 87) (((-645 $) (-1175 $) (-1179)) 86) (((-645 $) $) 134) (((-645 $) $ (-1179)) 132)) (-3236 (($ (-954 $)) 91) (($ (-1175 $)) 90) (($ (-1175 $) (-1179)) 89) (($ $) 135) (($ $ (-1179)) 133)) (-2684 (((-112) $) 17)) (-3783 (((-645 (-1179)) $) 203)) (-3633 (((-410 (-1175 $)) $ (-613 $)) 235 (|has| |#1| (-559)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-3526 (((-645 (-613 $)) $) 166)) (-2932 (((-3 $ "failed") $ $) 20)) (-3072 (($ $ (-645 (-613 $)) (-645 $)) 156) (($ $ (-645 (-295 $))) 155) (($ $ (-295 $)) 154)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-3671 (($ $) 100)) (-4175 (((-112) $ $) 65)) (-3758 (($) 18 T CONST)) (-2161 (((-645 $) (-954 $)) 94) (((-645 $) (-1175 $)) 93) (((-645 $) (-1175 $) (-1179)) 92) (((-645 $) $) 138) (((-645 $) $ (-1179)) 136)) (-1617 (($ (-954 $)) 97) (($ (-1175 $)) 96) (($ (-1175 $) (-1179)) 95) (($ $) 139) (($ $ (-1179)) 137)) (-4275 (((-3 (-954 |#1|) "failed") $) 253 (|has| |#1| (-1051))) (((-3 (-410 (-954 |#1|)) "failed") $) 237 (|has| |#1| (-559))) (((-3 |#1| "failed") $) 199) (((-3 (-567) "failed") $) 196 (|has| |#1| (-1040 (-567)))) (((-3 (-1179) "failed") $) 190) (((-3 (-613 $) "failed") $) 141) (((-3 (-410 (-567)) "failed") $) 130 (-2836 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-3094 (((-954 |#1|) $) 252 (|has| |#1| (-1051))) (((-410 (-954 |#1|)) $) 236 (|has| |#1| (-559))) ((|#1| $) 198) (((-567) $) 197 (|has| |#1| (-1040 (-567)))) (((-1179) $) 189) (((-613 $) $) 140) (((-410 (-567)) $) 131 (-2836 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2432 (($ $ $) 61)) (-2690 (((-690 |#1|) (-690 $)) 243 (|has| |#1| (-1051))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 242 (|has| |#1| (-1051))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 129 (-2836 (-1750 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-1750 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (((-690 (-567)) (-690 $)) 128 (-2836 (-1750 (|has| |#1| (-1051)) (|has| |#1| (-640 (-567)))) (-1750 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-2946 (((-112) $) 79)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 195 (|has| |#1| (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 194 (|has| |#1| (-888 (-567))))) (-2998 (($ (-645 $)) 160) (($ $) 159)) (-2131 (((-645 (-114)) $) 167)) (-3609 (((-114) (-114)) 168)) (-4384 (((-112) $) 35)) (-3807 (((-112) $) 188 (|has| $ (-1040 (-567))))) (-1550 (($ $) 220 (|has| |#1| (-1051)))) (-4294 (((-1127 |#1| (-613 $)) $) 219 (|has| |#1| (-1051)))) (-4203 (($ $ (-567)) 99)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1935 (((-1175 $) (-613 $)) 185 (|has| $ (-1051)))) (-4364 (($ (-1 $ $) (-613 $)) 174)) (-2126 (((-3 (-613 $) "failed") $) 164)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-3599 (((-645 (-613 $)) $) 165)) (-4369 (($ (-114) (-645 $)) 173) (($ (-114) $) 172)) (-4056 (((-3 (-645 $) "failed") $) 214 (|has| |#1| (-1114)))) (-1415 (((-3 (-2 (|:| |val| $) (|:| -2618 (-567))) "failed") $) 223 (|has| |#1| (-1051)))) (-3655 (((-3 (-645 $) "failed") $) 216 (|has| |#1| (-25)))) (-3918 (((-3 (-2 (|:| -1344 (-567)) (|:| |var| (-613 $))) "failed") $) 217 (|has| |#1| (-25)))) (-2873 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-1179)) 222 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-114)) 221 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $) 215 (|has| |#1| (-1114)))) (-2208 (((-112) $ (-1179)) 171) (((-112) $ (-114)) 170)) (-1752 (($ $) 78)) (-1337 (((-772) $) 163)) (-3479 (((-1122) $) 11)) (-1762 (((-112) $) 201)) (-1774 ((|#1| $) 202)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-2769 (((-112) $ (-1179)) 176) (((-112) $ $) 175)) (-3661 (((-421 $) $) 82)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-1359 (((-112) $) 187 (|has| $ (-1040 (-567))))) (-2913 (($ $ (-1179) (-772) (-1 $ $)) 227 (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ (-645 $))) 226 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 225 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $))) 224 (|has| |#1| (-1051))) (($ $ (-645 (-114)) (-645 $) (-1179)) 213 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1179)) 212 (|has| |#1| (-615 (-539)))) (($ $) 211 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179))) 210 (|has| |#1| (-615 (-539)))) (($ $ (-1179)) 209 (|has| |#1| (-615 (-539)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-645 $))) 183) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 182) (($ $ (-645 (-114)) (-645 (-1 $ $))) 181) (($ $ (-1179) (-1 $ $)) 180) (($ $ (-1179) (-1 $ (-645 $))) 179) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) 178) (($ $ (-645 (-1179)) (-645 (-1 $ $))) 177) (($ $ (-645 $) (-645 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-645 (-295 $))) 145) (($ $ (-645 (-613 $)) (-645 $)) 144) (($ $ (-613 $) $) 143)) (-2465 (((-772) $) 64)) (-1882 (($ (-114) (-645 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-1929 (($ $ $) 162) (($ $) 161)) (-3592 (($ $ (-1179)) 251 (|has| |#1| (-1051))) (($ $ (-645 (-1179))) 250 (|has| |#1| (-1051))) (($ $ (-1179) (-772)) 249 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) 248 (|has| |#1| (-1051)))) (-2964 (($ $) 230 (|has| |#1| (-559)))) (-4306 (((-1127 |#1| (-613 $)) $) 229 (|has| |#1| (-559)))) (-2783 (($ $) 186 (|has| $ (-1051)))) (-1322 (((-539) $) 257 (|has| |#1| (-615 (-539)))) (($ (-421 $)) 228 (|has| |#1| (-559))) (((-894 (-381)) $) 193 (|has| |#1| (-615 (-894 (-381))))) (((-894 (-567)) $) 192 (|has| |#1| (-615 (-894 (-567)))))) (-3307 (($ $ $) 256 (|has| |#1| (-476)))) (-4033 (($ $ $) 255 (|has| |#1| (-476)))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-954 |#1|)) 254 (|has| |#1| (-1051))) (($ (-410 (-954 |#1|))) 238 (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) 234 (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) 233 (|has| |#1| (-559))) (($ (-410 |#1|)) 232 (|has| |#1| (-559))) (($ (-1127 |#1| (-613 $))) 218 (|has| |#1| (-1051))) (($ |#1|) 200) (($ (-1179)) 191) (($ (-613 $)) 142)) (-2318 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-2130 (($ (-645 $)) 158) (($ $) 157)) (-3862 (((-112) (-114)) 169)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1541 (($ (-1179) (-645 $)) 208) (($ (-1179) $ $ $ $) 207) (($ (-1179) $ $ $) 206) (($ (-1179) $ $) 205) (($ (-1179) $) 204)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-1179)) 247 (|has| |#1| (-1051))) (($ $ (-645 (-1179))) 246 (|has| |#1| (-1051))) (($ $ (-1179) (-772)) 245 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) 244 (|has| |#1| (-1051)))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 73) (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 231 (|has| |#1| (-559)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) -(((-29 |#1|) (-140) (-559)) (T -29)) -((-1617 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-2161 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-1617 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-2161 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))) (-3236 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-2776 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-2776 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -1617 ($ $)) (-15 -2161 ((-645 $) $)) (-15 -1617 ($ $ (-1179))) (-15 -2161 ((-645 $) $ (-1179))) (-15 -3236 ($ $)) (-15 -2776 ((-645 $) $)) (-15 -3236 ($ $ (-1179))) (-15 -2776 ((-645 $) $ (-1179))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 #1=(-410 (-954 |#1|))) |has| |#1| (-559)) ((-617 (-567)) . T) ((-617 #2=(-613 $)) . T) ((-617 #3=(-954 |#1|)) |has| |#1| (-1051)) ((-617 #4=(-1179)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1051)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-433 |#1|) . T) ((-455) . T) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) . T) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) ((-640 |#1|) |has| |#1| (-1051)) ((-718 #0#) . T) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) . T) ((-727) . T) ((-902 (-1179)) |has| |#1| (-1051)) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-922) . T) ((-1004) . T) ((-1040 (-410 (-567))) -2836 (|has| |#1| (-1040 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) ((-1040 #1#) |has| |#1| (-559)) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 #3#) |has| |#1| (-1051)) ((-1040 #4#) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) |has| |#1| (-172)) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1219) . T) ((-1223) . T)) -((-2002 (((-1096 (-225)) $) NIL)) (-1991 (((-1096 (-225)) $) NIL)) (-2548 (($ $ (-225)) 166)) (-3944 (($ (-954 (-567)) (-1179) (-1179) (-1096 (-410 (-567))) (-1096 (-410 (-567)))) 104)) (-1502 (((-645 (-645 (-945 (-225)))) $) 182)) (-2504 (((-863) $) 196))) -(((-30) (-13 (-957) (-10 -8 (-15 -3944 ($ (-954 (-567)) (-1179) (-1179) (-1096 (-410 (-567))) (-1096 (-410 (-567))))) (-15 -2548 ($ $ (-225)))))) (T -30)) -((-3944 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-954 (-567))) (-5 *3 (-1179)) (-5 *4 (-1096 (-410 (-567)))) (-5 *1 (-30)))) (-2548 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) -(-13 (-957) (-10 -8 (-15 -3944 ($ (-954 (-567)) (-1179) (-1179) (-1096 (-410 (-567))) (-1096 (-410 (-567))))) (-15 -2548 ($ $ (-225))))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-1137) $) 11)) (-3858 (((-112) $ $) NIL)) (-3140 (((-1137) $) 9)) (-2968 (((-112) $ $) NIL))) -(((-31) (-13 (-1085) (-10 -8 (-15 -3140 ((-1137) $)) (-15 -3501 ((-1137) $))))) (T -31)) -((-3140 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31))))) -(-13 (-1085) (-10 -8 (-15 -3140 ((-1137) $)) (-15 -3501 ((-1137) $)))) -((-1617 ((|#2| (-1175 |#2|) (-1179)) 41)) (-3609 (((-114) (-114)) 55)) (-1935 (((-1175 |#2|) (-613 |#2|)) 149 (|has| |#1| (-1040 (-567))))) (-3641 ((|#2| |#1| (-567)) 137 (|has| |#1| (-1040 (-567))))) (-4136 ((|#2| (-1175 |#2|) |#2|) 29)) (-3302 (((-863) (-645 |#2|)) 86)) (-2783 ((|#2| |#2|) 144 (|has| |#1| (-1040 (-567))))) (-3862 (((-112) (-114)) 17)) (** ((|#2| |#2| (-410 (-567))) 103 (|has| |#1| (-1040 (-567)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -1617 (|#2| (-1175 |#2|) (-1179))) (-15 -3609 ((-114) (-114))) (-15 -3862 ((-112) (-114))) (-15 -4136 (|#2| (-1175 |#2|) |#2|)) (-15 -3302 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1040 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -1935 ((-1175 |#2|) (-613 |#2|))) (-15 -2783 (|#2| |#2|)) (-15 -3641 (|#2| |#1| (-567)))) |%noBranch|)) (-559) (-433 |#1|)) (T -32)) -((-3641 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1040 *4)) (-4 *3 (-559)))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-1040 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *2 (-1175 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))) (-4136 (*1 *2 *3 *2) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-3609 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *2)) (-5 *4 (-1179)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-559))))) -(-10 -7 (-15 -1617 (|#2| (-1175 |#2|) (-1179))) (-15 -3609 ((-114) (-114))) (-15 -3862 ((-112) (-114))) (-15 -4136 (|#2| (-1175 |#2|) |#2|)) (-15 -3302 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1040 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -1935 ((-1175 |#2|) (-613 |#2|))) (-15 -2783 (|#2| |#2|)) (-15 -3641 (|#2| |#1| (-567)))) |%noBranch|)) -((-1555 (((-112) $ (-772)) 20)) (-3758 (($) 10)) (-3753 (((-112) $ (-772)) 19)) (-3421 (((-112) $ (-772)) 17)) (-2222 (((-112) $ $) 8)) (-2319 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -3758 (|#1|)) (-15 -1555 ((-112) |#1| (-772))) (-15 -3753 ((-112) |#1| (-772))) (-15 -3421 ((-112) |#1| (-772))) (-15 -2319 ((-112) |#1|)) (-15 -2222 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3758 (|#1|)) (-15 -1555 ((-112) |#1| (-772))) (-15 -3753 ((-112) |#1| (-772))) (-15 -3421 ((-112) |#1| (-772))) (-15 -2319 ((-112) |#1|)) (-15 -2222 ((-112) |#1| |#1|))) -((-1555 (((-112) $ (-772)) 8)) (-3758 (($) 7 T CONST)) (-3753 (((-112) $ (-772)) 9)) (-3421 (((-112) $ (-772)) 10)) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-3846 (($ $) 13)) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +((-3603 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-3603 (*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) (-3603 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1180)) (-4 *1 (-27)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1180)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1303 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-1303 (*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) (-1303 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1180)) (-4 *1 (-27)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) (-1715 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1180)) (-4 *1 (-27)) (-5 *2 (-643 *1))))) +(-13 (-365) (-1005) (-10 -8 (-15 -3603 ($ (-949 $))) (-15 -3603 ($ (-1174 $))) (-15 -3603 ($ (-1174 $) (-1180))) (-15 -1304 ((-643 $) (-949 $))) (-15 -1304 ((-643 $) (-1174 $))) (-15 -1304 ((-643 $) (-1174 $) (-1180))) (-15 -1303 ($ (-949 $))) (-15 -1303 ($ (-1174 $))) (-15 -1303 ($ (-1174 $) (-1180))) (-15 -1715 ((-643 $) (-949 $))) (-15 -1715 ((-643 $) (-1174 $))) (-15 -1715 ((-643 $) (-1174 $) (-1180))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1005) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) +((-1715 (((-643 $) (-949 $)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-1174 $) (-1180)) 55) (((-643 $) $) 22) (((-643 $) $ (-1180)) 46)) (-1303 (($ (-949 $)) NIL) (($ (-1174 $)) NIL) (($ (-1174 $) (-1180)) 57) (($ $) 20) (($ $ (-1180)) 40)) (-1304 (((-643 $) (-949 $)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-1174 $) (-1180)) 53) (((-643 $) $) 18) (((-643 $) $ (-1180)) 48)) (-3603 (($ (-949 $)) NIL) (($ (-1174 $)) NIL) (($ (-1174 $) (-1180)) NIL) (($ $) 15) (($ $ (-1180)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1715 ((-643 |#1|) |#1| (-1180))) (-15 -1303 (|#1| |#1| (-1180))) (-15 -1715 ((-643 |#1|) |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -1304 ((-643 |#1|) |#1| (-1180))) (-15 -3603 (|#1| |#1| (-1180))) (-15 -1304 ((-643 |#1|) |#1|)) (-15 -3603 (|#1| |#1|)) (-15 -1715 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1715 ((-643 |#1|) (-1174 |#1|))) (-15 -1715 ((-643 |#1|) (-949 |#1|))) (-15 -1303 (|#1| (-1174 |#1|) (-1180))) (-15 -1303 (|#1| (-1174 |#1|))) (-15 -1303 (|#1| (-949 |#1|))) (-15 -1304 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1304 ((-643 |#1|) (-1174 |#1|))) (-15 -1304 ((-643 |#1|) (-949 |#1|))) (-15 -3603 (|#1| (-1174 |#1|) (-1180))) (-15 -3603 (|#1| (-1174 |#1|))) (-15 -3603 (|#1| (-949 |#1|)))) (-29 |#2|) (-560)) (T -28)) +NIL +(-10 -8 (-15 -1715 ((-643 |#1|) |#1| (-1180))) (-15 -1303 (|#1| |#1| (-1180))) (-15 -1715 ((-643 |#1|) |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -1304 ((-643 |#1|) |#1| (-1180))) (-15 -3603 (|#1| |#1| (-1180))) (-15 -1304 ((-643 |#1|) |#1|)) (-15 -3603 (|#1| |#1|)) (-15 -1715 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1715 ((-643 |#1|) (-1174 |#1|))) (-15 -1715 ((-643 |#1|) (-949 |#1|))) (-15 -1303 (|#1| (-1174 |#1|) (-1180))) (-15 -1303 (|#1| (-1174 |#1|))) (-15 -1303 (|#1| (-949 |#1|))) (-15 -1304 ((-643 |#1|) (-1174 |#1|) (-1180))) (-15 -1304 ((-643 |#1|) (-1174 |#1|))) (-15 -1304 ((-643 |#1|) (-949 |#1|))) (-15 -3603 (|#1| (-1174 |#1|) (-1180))) (-15 -3603 (|#1| (-1174 |#1|))) (-15 -3603 (|#1| (-949 |#1|)))) +((-2968 (((-112) $ $) 7)) (-1715 (((-643 $) (-949 $)) 88) (((-643 $) (-1174 $)) 87) (((-643 $) (-1174 $) (-1180)) 86) (((-643 $) $) 134) (((-643 $) $ (-1180)) 132)) (-1303 (($ (-949 $)) 91) (($ (-1174 $)) 90) (($ (-1174 $) (-1180)) 89) (($ $) 135) (($ $ (-1180)) 133)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1180)) $) 203)) (-3487 (((-410 (-1174 $)) $ (-613 $)) 235 (|has| |#1| (-560)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1708 (((-643 (-613 $)) $) 166)) (-1407 (((-3 $ "failed") $ $) 20)) (-1712 (($ $ (-643 (-613 $)) (-643 $)) 156) (($ $ (-643 (-294 $))) 155) (($ $ (-294 $)) 154)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3438 (($ $) 100)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-1304 (((-643 $) (-949 $)) 94) (((-643 $) (-1174 $)) 93) (((-643 $) (-1174 $) (-1180)) 92) (((-643 $) $) 138) (((-643 $) $ (-1180)) 136)) (-3603 (($ (-949 $)) 97) (($ (-1174 $)) 96) (($ (-1174 $) (-1180)) 95) (($ $) 139) (($ $ (-1180)) 137)) (-3577 (((-3 (-949 |#1|) #1="failed") $) 253 (|has| |#1| (-1052))) (((-3 (-410 (-949 |#1|)) #1#) $) 237 (|has| |#1| (-560))) (((-3 |#1| #1#) $) 199) (((-3 (-549) #1#) $) 196 (|has| |#1| (-1041 (-549)))) (((-3 (-1180) #1#) $) 190) (((-3 (-613 $) #1#) $) 141) (((-3 (-410 (-549)) #1#) $) 130 (-3960 (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549))))))) (-3576 (((-949 |#1|) $) 252 (|has| |#1| (-1052))) (((-410 (-949 |#1|)) $) 236 (|has| |#1| (-560))) ((|#1| $) 198) (((-549) $) 197 (|has| |#1| (-1041 (-549)))) (((-1180) $) 189) (((-613 $) $) 140) (((-410 (-549)) $) 131 (-3960 (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549))))))) (-2964 (($ $ $) 61)) (-2427 (((-691 |#1|) (-691 $)) 243 (|has| |#1| (-1052))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 242 (|has| |#1| (-1052))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 129 (-3960 (-3256 (|has| |#1| (-1052)) (|has| |#1| (-641 (-549)))) (-3256 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (((-691 (-549)) (-691 $)) 128 (-3960 (-3256 (|has| |#1| (-1052)) (|has| |#1| (-641 (-549)))) (-3256 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 195 (|has| |#1| (-889 (-380)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 194 (|has| |#1| (-889 (-549))))) (-2973 (($ (-643 $)) 160) (($ $) 159)) (-1707 (((-643 (-113)) $) 167)) (-3448 (((-113) (-113)) 168)) (-2573 (((-112) $) 35)) (-3076 (((-112) $) 188 (|has| $ (-1041 (-549))))) (-3397 (($ $) 220 (|has| |#1| (-1052)))) (-3399 (((-1128 |#1| (-613 $)) $) 219 (|has| |#1| (-1052)))) (-3412 (($ $ (-549)) 99)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 58)) (-1705 (((-1174 $) (-613 $)) 185 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) 174)) (-1710 (((-3 (-613 $) "failed") $) 164)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-1709 (((-643 (-613 $)) $) 165)) (-2384 (($ (-113) (-643 $)) 173) (($ (-113) $) 172)) (-3226 (((-3 (-643 $) #3="failed") $) 214 (|has| |#1| (-1115)))) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) #3#) $) 223 (|has| |#1| (-1052)))) (-3225 (((-3 (-643 $) #3#) $) 216 (|has| |#1| (-25)))) (-1969 (((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) #3#) $) 217 (|has| |#1| (-25)))) (-3227 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $ (-1180)) 222 (|has| |#1| (-1052))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $ (-113)) 221 (|has| |#1| (-1052))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $) 215 (|has| |#1| (-1115)))) (-3035 (((-112) $ (-1180)) 171) (((-112) $ (-113)) 170)) (-2806 (($ $) 78)) (-3003 (((-773) $) 163)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 201)) (-1971 ((|#1| $) 202)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1706 (((-112) $ (-1180)) 176) (((-112) $ $) 175)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-3077 (((-112) $) 187 (|has| $ (-1041 (-549))))) (-4199 (($ $ (-1180) (-773) (-1 $ $)) 227 (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ (-643 $))) 226 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $)))) 225 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $))) 224 (|has| |#1| (-1052))) (($ $ (-643 (-113)) (-643 $) (-1180)) 213 (|has| |#1| (-616 (-538)))) (($ $ (-113) $ (-1180)) 212 (|has| |#1| (-616 (-538)))) (($ $) 211 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180))) 210 (|has| |#1| (-616 (-538)))) (($ $ (-1180)) 209 (|has| |#1| (-616 (-538)))) (($ $ (-113) (-1 $ $)) 184) (($ $ (-113) (-1 $ (-643 $))) 183) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) 182) (($ $ (-643 (-113)) (-643 (-1 $ $))) 181) (($ $ (-1180) (-1 $ $)) 180) (($ $ (-1180) (-1 $ (-643 $))) 179) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) 178) (($ $ (-643 (-1180)) (-643 (-1 $ $))) 177) (($ $ (-643 $) (-643 $)) 148) (($ $ $ $) 147) (($ $ (-294 $)) 146) (($ $ (-643 (-294 $))) 145) (($ $ (-643 (-613 $)) (-643 $)) 144) (($ $ (-613 $) $) 143)) (-1752 (((-773) $) 64)) (-4231 (($ (-113) (-643 $)) 153) (($ (-113) $ $ $ $) 152) (($ (-113) $ $ $) 151) (($ (-113) $ $) 150) (($ (-113) $) 149)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1711 (($ $ $) 162) (($ $) 161)) (-4242 (($ $ (-1180)) 251 (|has| |#1| (-1052))) (($ $ (-643 (-1180))) 250 (|has| |#1| (-1052))) (($ $ (-1180) (-773)) 249 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) 248 (|has| |#1| (-1052)))) (-3396 (($ $) 230 (|has| |#1| (-560)))) (-3398 (((-1128 |#1| (-613 $)) $) 229 (|has| |#1| (-560)))) (-3605 (($ $) 186 (|has| $ (-1052)))) (-4402 (((-538) $) 257 (|has| |#1| (-616 (-538)))) (($ (-408 $)) 228 (|has| |#1| (-560))) (((-893 (-380)) $) 193 (|has| |#1| (-616 (-893 (-380))))) (((-893 (-549)) $) 192 (|has| |#1| (-616 (-893 (-549)))))) (-3410 (($ $ $) 256 (|has| |#1| (-476)))) (-2756 (($ $ $) 255 (|has| |#1| (-476)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ (-949 |#1|)) 254 (|has| |#1| (-1052))) (($ (-410 (-949 |#1|))) 238 (|has| |#1| (-560))) (($ (-410 (-949 (-410 |#1|)))) 234 (|has| |#1| (-560))) (($ (-949 (-410 |#1|))) 233 (|has| |#1| (-560))) (($ (-410 |#1|)) 232 (|has| |#1| (-560))) (($ (-1128 |#1| (-613 $))) 218 (|has| |#1| (-1052))) (($ |#1|) 200) (($ (-1180)) 191) (($ (-613 $)) 142)) (-3105 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-2990 (($ (-643 $)) 158) (($ $) 157)) (-2403 (((-112) (-113)) 169)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-1970 (($ (-1180) (-643 $)) 208) (($ (-1180) $ $ $ $) 207) (($ (-1180) $ $ $) 206) (($ (-1180) $ $) 205) (($ (-1180) $) 204)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1180)) 247 (|has| |#1| (-1052))) (($ $ (-643 (-1180))) 246 (|has| |#1| (-1052))) (($ $ (-1180) (-773)) 245 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) 244 (|has| |#1| (-1052)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73) (($ (-1128 |#1| (-613 $)) (-1128 |#1| (-613 $))) 231 (|has| |#1| (-560)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77) (($ $ (-410 (-549))) 98)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172))))) +(((-29 |#1|) (-140) (-560)) (T -29)) +((-3603 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-560)))) (-1304 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *3)))) (-3603 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-29 *3)) (-4 *3 (-560)))) (-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *4)))) (-1303 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-560)))) (-1715 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *3)))) (-1303 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-29 *3)) (-4 *3 (-560)))) (-1715 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-424 |t#1|) (-10 -8 (-15 -3603 ($ $)) (-15 -1304 ((-643 $) $)) (-15 -3603 ($ $ (-1180))) (-15 -1304 ((-643 $) $ (-1180))) (-15 -1303 ($ $)) (-15 -1715 ((-643 $) $)) (-15 -1303 ($ $ (-1180))) (-15 -1715 ((-643 $) $ (-1180))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) . T) ((-618 #2=(-410 (-949 |#1|))) |has| |#1| (-560)) ((-618 (-549)) . T) ((-618 #3=(-613 $)) . T) ((-618 #4=(-949 |#1|)) |has| |#1| (-1052)) ((-618 #5=(-1180)) . T) ((-618 |#1|) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-299) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1052)) ((-403 |#1|) . T) ((-415 |#1|) . T) ((-424 |#1|) . T) ((-455) . T) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) . T) ((-650 #1#) . T) ((-650 |#1|) |has| |#1| (-172)) ((-650 $) . T) ((-642 #1#) . T) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) . T) ((-641 (-549)) -12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) ((-641 |#1|) |has| |#1| (-1052)) ((-719 #1#) . T) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) . T) ((-728) . T) ((-903 (-1180)) |has| |#1| (-1052)) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-887 |#1|) . T) ((-924) . T) ((-1005) . T) ((-1041 (-410 (-549))) -3960 (|has| |#1| (-1041 (-410 (-549)))) (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) ((-1041 #2#) |has| |#1| (-560)) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 #3#) . T) ((-1041 #4#) |has| |#1| (-1052)) ((-1041 #5#) . T) ((-1041 |#1|) . T) ((-1054 #1#) . T) ((-1054 |#1|) |has| |#1| (-172)) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 |#1|) |has| |#1| (-172)) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1219) . T) ((-1224) . T)) +((-3297 (((-1092 (-225)) $) NIL)) (-3298 (((-1092 (-225)) $) NIL)) (-3538 (($ $ (-225)) 164)) (-1305 (($ (-949 (-549)) (-1180) (-1180) (-1092 (-410 (-549))) (-1092 (-410 (-549)))) 104)) (-3299 (((-643 (-643 (-946 (-225)))) $) 180)) (-4378 (((-865) $) 194))) +(((-30) (-13 (-958) (-10 -8 (-15 -1305 ($ (-949 (-549)) (-1180) (-1180) (-1092 (-410 (-549))) (-1092 (-410 (-549))))) (-15 -3538 ($ $ (-225)))))) (T -30)) +((-1305 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-949 (-549))) (-5 *3 (-1180)) (-5 *4 (-1092 (-410 (-549)))) (-5 *1 (-30)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) +(-13 (-958) (-10 -8 (-15 -1305 ($ (-949 (-549)) (-1180) (-1180) (-1092 (-410 (-549))) (-1092 (-410 (-549))))) (-15 -3538 ($ $ (-225))))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 11)) (-3662 (((-112) $ $) NIL)) (-3097 (((-1138) $) 9)) (-3455 (((-112) $ $) NIL))) +(((-31) (-13 (-1086) (-10 -8 (-15 -3097 ((-1138) $)) (-15 -3653 ((-1138) $))))) (T -31)) +((-3097 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-31)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-31))))) +(-13 (-1086) (-10 -8 (-15 -3097 ((-1138) $)) (-15 -3653 ((-1138) $)))) +((-3603 ((|#2| (-1174 |#2|) (-1180)) 41)) (-3448 (((-113) (-113)) 55)) (-1705 (((-1174 |#2|) (-613 |#2|)) 149 (|has| |#1| (-1041 (-549))))) (-1308 ((|#2| |#1| (-549)) 137 (|has| |#1| (-1041 (-549))))) (-1306 ((|#2| (-1174 |#2|) |#2|) 29)) (-1307 (((-865) (-643 |#2|)) 86)) (-3605 ((|#2| |#2|) 144 (|has| |#1| (-1041 (-549))))) (-2403 (((-112) (-113)) 17)) (** ((|#2| |#2| (-410 (-549))) 103 (|has| |#1| (-1041 (-549)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3603 (|#2| (-1174 |#2|) (-1180))) (-15 -3448 ((-113) (-113))) (-15 -2403 ((-112) (-113))) (-15 -1306 (|#2| (-1174 |#2|) |#2|)) (-15 -1307 ((-865) (-643 |#2|))) (IF (|has| |#1| (-1041 (-549))) (PROGN (-15 ** (|#2| |#2| (-410 (-549)))) (-15 -1705 ((-1174 |#2|) (-613 |#2|))) (-15 -3605 (|#2| |#2|)) (-15 -1308 (|#2| |#1| (-549)))) |%noBranch|)) (-560) (-424 |#1|)) (T -32)) +((-1308 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1041 *4)) (-4 *3 (-560)))) (-3605 (*1 *2 *2) (-12 (-4 *3 (-1041 (-549))) (-4 *3 (-560)) (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-613 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1041 (-549))) (-4 *4 (-560)) (-5 *2 (-1174 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-549))) (-4 *4 (-1041 (-549))) (-4 *4 (-560)) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-643 *5)) (-4 *5 (-424 *4)) (-4 *4 (-560)) (-5 *2 (-865)) (-5 *1 (-32 *4 *5)))) (-1306 (*1 *2 *3 *2) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) (-5 *1 (-32 *4 *2)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-32 *3 *4)) (-4 *4 (-424 *3)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *2)) (-5 *4 (-1180)) (-4 *2 (-424 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-560))))) +(-10 -7 (-15 -3603 (|#2| (-1174 |#2|) (-1180))) (-15 -3448 ((-113) (-113))) (-15 -2403 ((-112) (-113))) (-15 -1306 (|#2| (-1174 |#2|) |#2|)) (-15 -1307 ((-865) (-643 |#2|))) (IF (|has| |#1| (-1041 (-549))) (PROGN (-15 ** (|#2| |#2| (-410 (-549)))) (-15 -1705 ((-1174 |#2|) (-613 |#2|))) (-15 -3605 (|#2| |#2|)) (-15 -1308 (|#2| |#1| (-549)))) |%noBranch|)) +((-1309 (((-112) $ (-773)) 20)) (-4156 (($) 10)) (-4151 (((-112) $ (-773)) 19)) (-4148 (((-112) $ (-773)) 17)) (-1310 (((-112) $ $) 8)) (-3827 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -4156 (|#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773))) (-15 -3827 ((-112) |#1|)) (-15 -1310 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -4156 (|#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773))) (-15 -3827 ((-112) |#1|)) (-15 -1310 ((-112) |#1| |#1|))) +((-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-4151 (((-112) $ (-773)) 9)) (-4148 (((-112) $ (-773)) 10)) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3824 (($ $) 13)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-34) (-140)) (T -34)) -((-2222 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3846 (*1 *1 *1) (-4 *1 (-34))) (-2973 (*1 *1) (-4 *1 (-34))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3421 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-3753 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-1555 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-3758 (*1 *1) (-4 *1 (-34))) (-2498 (*1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-34)) (-5 *2 (-772))))) -(-13 (-1219) (-10 -8 (-15 -2222 ((-112) $ $)) (-15 -3846 ($ $)) (-15 -2973 ($)) (-15 -2319 ((-112) $)) (-15 -3421 ((-112) $ (-772))) (-15 -3753 ((-112) $ (-772))) (-15 -1555 ((-112) $ (-772))) (-15 -3758 ($) -3562) (IF (|has| $ (-6 -4422)) (-15 -2498 ((-772) $)) |%noBranch|))) +((-1310 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3824 (*1 *1 *1) (-4 *1 (-34))) (-3996 (*1 *1) (-4 *1 (-34))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4148 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) (-4151 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) (-1309 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) (-4156 (*1 *1) (-4 *1 (-34))) (-4389 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-34)) (-5 *2 (-773))))) +(-13 (-1219) (-10 -8 (-15 -1310 ((-112) $ $)) (-15 -3824 ($ $)) (-15 -3996 ($)) (-15 -3827 ((-112) $)) (-15 -4148 ((-112) $ (-773))) (-15 -4151 ((-112) $ (-773))) (-15 -1309 ((-112) $ (-773))) (-15 -4156 ($) -4384) (IF (|has| $ (-6 -4425)) (-15 -4389 ((-773) $)) |%noBranch|))) (((-1219) . T)) -((-1481 (($ $) 11)) (-1456 (($ $) 10)) (-1505 (($ $) 9)) (-2090 (($ $) 8)) (-1492 (($ $) 7)) (-1468 (($ $) 6))) +((-3921 (($ $) 11)) (-3919 (($ $) 10)) (-3923 (($ $) 9)) (-3924 (($ $) 8)) (-3922 (($ $) 7)) (-3920 (($ $) 6))) (((-35) (-140)) (T -35)) -((-1481 (*1 *1 *1) (-4 *1 (-35))) (-1456 (*1 *1 *1) (-4 *1 (-35))) (-1505 (*1 *1 *1) (-4 *1 (-35))) (-2090 (*1 *1 *1) (-4 *1 (-35))) (-1492 (*1 *1 *1) (-4 *1 (-35))) (-1468 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -1468 ($ $)) (-15 -1492 ($ $)) (-15 -2090 ($ $)) (-15 -1505 ($ $)) (-15 -1456 ($ $)) (-15 -1481 ($ $)))) -((-2487 (((-112) $ $) 19 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-2233 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 126)) (-2587 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 149)) (-1493 (($ $) 147)) (-4212 (($) 73) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 72)) (-3095 (((-1274) $ |#1| |#1|) 100 (|has| $ (-6 -4423))) (((-1274) $ (-567) (-567)) 179 (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) 160 (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2767 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 201 (|has| $ (-6 -4423))) (($ $) 200 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)) (|has| $ (-6 -4423))))) (-2080 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-1555 (((-112) $ (-772)) 8)) (-3647 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 135 (|has| $ (-6 -4423)))) (-4234 (($ $ $) 156 (|has| $ (-6 -4423)))) (-2718 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 158 (|has| $ (-6 -4423)))) (-1588 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 154 (|has| $ (-6 -4423)))) (-3824 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 190 (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-1236 (-567)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 161 (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "last" (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 159 (|has| $ (-6 -4423))) (($ $ "rest" $) 157 (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "first" (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 155 (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "value" (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 134 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 133 (|has| $ (-6 -4423)))) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 46 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 217)) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 56 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 176 (|has| $ (-6 -4422)))) (-2574 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 148)) (-2412 (((-3 |#2| "failed") |#1| $) 62)) (-3758 (($) 7 T CONST)) (-3790 (($ $) 202 (|has| $ (-6 -4423)))) (-3247 (($ $) 212)) (-3447 (($ $ (-772)) 143) (($ $) 141)) (-3048 (($ $) 215 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-3470 (($ $) 59 (-2836 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422))) (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 47 (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 221) (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 216 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 55 (|has| $ (-6 -4422))) (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 178 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 175 (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 57 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 54 (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 53 (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 177 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 174 (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 173 (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 191 (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) 89) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) 189)) (-3689 (((-112) $) 193)) (-3932 (((-567) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 209) (((-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 208 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) (((-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) 207 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 31 (|has| $ (-6 -4422))) (((-645 |#2|) $) 80 (|has| $ (-6 -4422))) (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 115 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 124)) (-2373 (((-112) $ $) 132 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-4223 (($ (-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 170)) (-3753 (((-112) $ (-772)) 9)) (-2407 ((|#1| $) 97 (|has| |#1| (-851))) (((-567) $) 181 (|has| (-567) (-851)))) (-2727 (($ $ $) 199 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-3196 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-1315 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 30 (|has| $ (-6 -4422))) (((-645 |#2|) $) 81 (|has| $ (-6 -4422))) (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 116 (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422)))) (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-2346 ((|#1| $) 96 (|has| |#1| (-851))) (((-567) $) 182 (|has| (-567) (-851)))) (-1446 (($ $ $) 198 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 35 (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4423))) (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 111 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 110)) (-3316 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 226)) (-3421 (((-112) $ (-772)) 10)) (-3895 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 129)) (-1972 (((-112) $) 125)) (-1812 (((-1161) $) 22 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-1725 (($ $ (-772)) 146) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 144)) (-1512 (((-645 |#1|) $) 64)) (-1560 (((-112) |#1| $) 65)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 40)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 41) (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) 220) (($ $ $ (-567)) 219)) (-4222 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) 163) (($ $ $ (-567)) 162)) (-3360 (((-645 |#1|) $) 94) (((-645 (-567)) $) 184)) (-2919 (((-112) |#1| $) 93) (((-112) (-567) $) 185)) (-3479 (((-1122) $) 21 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-3436 ((|#2| $) 98 (|has| |#1| (-851))) (($ $ (-772)) 140) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 138)) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 52) (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 172)) (-2930 (($ $ |#2|) 99 (|has| $ (-6 -4423))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 180 (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 42)) (-3268 (((-112) $) 192)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 33 (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 113 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) 27 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 26 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 25 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 24 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 122 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 121 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 120 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) 119 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 183 (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-1804 (((-645 |#2|) $) 92) (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 186)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 188) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) 187) (($ $ (-1236 (-567))) 166) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "first") 139) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "value") 127)) (-2721 (((-567) $ $) 130)) (-2730 (($) 50) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 49)) (-1664 (($ $ (-567)) 223) (($ $ (-1236 (-567))) 222)) (-4281 (($ $ (-567)) 165) (($ $ (-1236 (-567))) 164)) (-3625 (((-112) $) 128)) (-4121 (($ $) 152)) (-3277 (($ $) 153 (|has| $ (-6 -4423)))) (-3880 (((-772) $) 151)) (-1908 (($ $) 150)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 32 (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 114 (|has| $ (-6 -4422)))) (-3161 (($ $ $ (-567)) 203 (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539)))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 51) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 171)) (-3416 (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 225) (($ $ $) 224)) (-3644 (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 169) (($ (-645 $)) 168) (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 137) (($ $ $) 136)) (-2504 (((-863) $) 18 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863)))))) (-2629 (((-645 $) $) 123)) (-2049 (((-112) $ $) 131 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-3858 (((-112) $ $) 23 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 43)) (-1733 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") |#1| $) 109)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 34 (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 112 (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) 196 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2996 (((-112) $ $) 195 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2968 (((-112) $ $) 20 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-3006 (((-112) $ $) 197 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2986 (((-112) $ $) 194 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-36 |#1| |#2|) (-140) (-1102) (-1102)) (T -36)) -((-1733 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| -2025 *3) (|:| -2265 *4)))))) -(-13 (-1195 |t#1| |t#2|) (-667 (-2 (|:| -2025 |t#1|) (|:| -2265 |t#2|))) (-10 -8 (-15 -1733 ((-3 (-2 (|:| -2025 |t#1|) (|:| -2265 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T) ((-102) -2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851))) ((-614 (-863)) -2836 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863)))) ((-151 #1=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T) ((-615 (-539)) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-567) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-283 #1#) . T) ((-375 #1#) . T) ((-492 #1#) . T) ((-492 |#2|) . T) ((-605 #2# #1#) . T) ((-605 |#1| |#2|) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-611 |#1| |#2|) . T) ((-652 #1#) . T) ((-667 #1#) . T) ((-851) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)) ((-1012 #1#) . T) ((-1102) -2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851))) ((-1151 #1#) . T) ((-1195 |#1| |#2|) . T) ((-1219) . T) ((-1257 #1#) . T)) -((-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-38 |#2|) (-172)) (T -37)) -NIL -(-10 -8 (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3921 (*1 *1 *1) (-4 *1 (-35))) (-3919 (*1 *1 *1) (-4 *1 (-35))) (-3923 (*1 *1 *1) (-4 *1 (-35))) (-3924 (*1 *1 *1) (-4 *1 (-35))) (-3922 (*1 *1 *1) (-4 *1 (-35))) (-3920 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3920 ($ $)) (-15 -3922 ($ $)) (-15 -3924 ($ $)) (-15 -3923 ($ $)) (-15 -3919 ($ $)) (-15 -3921 ($ $)))) +((-2968 (((-112) $ $) 19 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3826 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 126)) (-4226 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 149)) (-4228 (($ $) 147)) (-4029 (($) 73) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 72)) (-2372 (((-1275) $ |#1| |#1|) 100 (|has| $ (-6 -4426))) (((-1275) $ (-549) (-549)) 179 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 160 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-1898 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 201 (|has| $ (-6 -4426))) (($ $) 200 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-1309 (((-112) $ (-773)) 8)) (-3426 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 135 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 156 (|has| $ (-6 -4426)))) (-4217 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 158 (|has| $ (-6 -4426)))) (-4220 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 154 (|has| $ (-6 -4426)))) (-4219 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 190 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-1236 (-549)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 161 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #1="last" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 159 (|has| $ (-6 -4426))) (($ $ #2="rest" $) 157 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #3="first" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 155 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #4="value" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 134 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 133 (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 46 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 217)) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 56 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 176 (|has| $ (-6 -4425)))) (-4227 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 148)) (-2381 (((-3 |#2| #5="failed") |#1| $) 62)) (-4156 (($) 7 T CONST)) (-2442 (($ $) 202 (|has| $ (-6 -4426)))) (-2443 (($ $) 212)) (-4230 (($ $ (-773)) 143) (($ $) 141)) (-2526 (($ $) 215 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1440 (($ $) 59 (-3960 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))) (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 47 (|has| $ (-6 -4425))) (((-3 |#2| #5#) |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 221) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 216 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 55 (|has| $ (-6 -4425))) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 178 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 175 (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 57 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 54 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 53 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 177 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 174 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 173 (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 191 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) 89) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 189)) (-3866 (((-112) $) 193)) (-3843 (((-549) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 209) (((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 208 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) (((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 207 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 31 (|has| $ (-6 -4425))) (((-643 |#2|) $) 80 (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 115 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 124)) (-3428 (((-112) $ $) 132 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-4046 (($ (-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 170)) (-4151 (((-112) $ (-773)) 9)) (-2374 ((|#1| $) 97 (|has| |#1| (-852))) (((-549) $) 181 (|has| (-549) (-852)))) (-2934 (($ $ $) 199 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3259 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3941 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 30 (|has| $ (-6 -4425))) (((-643 |#2|) $) 81 (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 116 (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425)))) (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-2375 ((|#1| $) 96 (|has| |#1| (-852))) (((-549) $) 182 (|has| (-549) (-852)))) (-3260 (($ $ $) 198 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 35 (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4426))) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 111 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 110)) (-3965 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 226)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 129)) (-3950 (((-112) $) 125)) (-3663 (((-1162) $) 22 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4229 (($ $ (-773)) 146) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 144)) (-2816 (((-643 |#1|) $) 64)) (-2382 (((-112) |#1| $) 65)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 40)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 41) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 220) (($ $ $ (-549)) 219)) (-2449 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 163) (($ $ $ (-549)) 162)) (-2377 (((-643 |#1|) $) 94) (((-643 (-549)) $) 184)) (-2378 (((-112) |#1| $) 93) (((-112) (-549) $) 185)) (-3664 (((-1123) $) 21 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4232 ((|#2| $) 98 (|has| |#1| (-852))) (($ $ (-773)) 140) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 138)) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 52) (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #6#) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 172)) (-2373 (($ $ |#2|) 99 (|has| $ (-6 -4426))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 180 (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 42)) (-3867 (((-112) $) 192)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 33 (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 113 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) 27 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 26 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 25 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 24 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 122 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 121 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 120 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) 119 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 183 (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-2379 (((-643 |#2|) $) 92) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 186)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 188) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) 187) (($ $ (-1236 (-549))) 166) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #1#) 145) (($ $ #2#) 142) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #3#) 139) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #4#) 127)) (-3430 (((-549) $ $) 130)) (-1567 (($) 50) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 49)) (-1679 (($ $ (-549)) 223) (($ $ (-1236 (-549))) 222)) (-2450 (($ $ (-549)) 165) (($ $ (-1236 (-549))) 164)) (-4065 (((-112) $) 128)) (-4223 (($ $) 152)) (-4221 (($ $) 153 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 151)) (-4225 (($ $) 150)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 32 (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-773) |#2| $) 82 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 114 (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) 203 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538)))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 51) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 171)) (-4222 (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 225) (($ $ $) 224)) (-4233 (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 169) (($ (-643 $)) 168) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 137) (($ $ $) 136)) (-4378 (((-865) $) 18 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865)))))) (-3945 (((-643 $) $) 123)) (-3429 (((-112) $ $) 131 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-3662 (((-112) $ $) 23 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 43)) (-1311 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") |#1| $) 109)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 34 (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 112 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 196 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-2967 (((-112) $ $) 195 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3455 (((-112) $ $) 20 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3087 (((-112) $ $) 197 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3088 (((-112) $ $) 194 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-36 |#1| |#2|) (-140) (-1104) (-1104)) (T -36)) +((-1311 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-2 (|:| -4292 *3) (|:| -2254 *4)))))) +(-13 (-1196 |t#1| |t#2|) (-668 (-2 (|:| -4292 |t#1|) (|:| -2254 |t#2|))) (-10 -8 (-15 -1311 ((-3 (-2 (|:| -4292 |t#1|) (|:| -2254 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((-102) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) (|has| |#2| (-1104))) ((-615 (-865)) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-1104)) (|has| |#2| (-615 (-865)))) ((-151 #2=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((-616 (-538)) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))) ((-229 #1#) . T) ((-235 #1#) . T) ((-287 #3=(-549) #2#) . T) ((-287 |#1| |#2|) . T) ((-289 #3# #2#) . T) ((-289 |#1| |#2|) . T) ((-310 #2#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-283 #2#) . T) ((-374 #2#) . T) ((-492 #2#) . T) ((-492 |#2|) . T) ((-606 #3# #2#) . T) ((-606 |#1| |#2|) . T) ((-517 #2# #2#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-612 |#1| |#2|) . T) ((-653 #2#) . T) ((-668 #2#) . T) ((-852) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) ((-1013 #2#) . T) ((-1104) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)) (|has| |#2| (-1104))) ((-1152 #2#) . T) ((-1196 |#1| |#2|) . T) ((-1219) . T) ((-1258 #2#) . T)) +((-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-38 |#2|) (-172)) (T -37)) +NIL +(-10 -8 (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-140) (-172)) (T -38)) NIL -(-13 (-1051) (-718 |t#1|) (-617 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-3601 (((-421 |#1|) |#1|) 41)) (-3661 (((-421 |#1|) |#1|) 30) (((-421 |#1|) |#1| (-645 (-48))) 33)) (-1407 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -3661 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -3601 ((-421 |#1|) |#1|)) (-15 -1407 ((-112) |#1|))) (-1245 (-48))) (T -39)) -((-1407 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-3601 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-3661 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48)))))) -(-10 -7 (-15 -3661 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -3601 ((-421 |#1|) |#1|)) (-15 -1407 ((-112) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2628 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-1987 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3342 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2706 (((-690 (-410 |#2|)) (-1269 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-3132 (((-410 |#2|) $) NIL)) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1466 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4175 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3404 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-3742 (((-112)) NIL)) (-2334 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3431 (($ (-1269 (-410 |#2|)) (-1269 $)) NIL) (($ (-1269 (-410 |#2|))) 61) (($ (-1269 |#2|) |#2|) 136)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2432 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3815 (((-690 (-410 |#2|)) $ (-1269 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-690 $) (-1269 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-3540 (((-1269 $) (-1269 $)) NIL)) (-2617 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-1377 (((-3 $ "failed") $) NIL)) (-2687 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-3658 (((-112) |#1| |#1|) NIL)) (-1471 (((-923)) NIL)) (-2119 (($) NIL (|has| (-410 |#2|) (-370)))) (-2210 (((-112)) NIL)) (-1936 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2443 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-1873 (($ $) NIL)) (-3882 (($) NIL (|has| (-410 |#2|) (-351)))) (-1816 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-2559 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-2946 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-3905 (((-923) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) NIL (|has| (-410 |#2|) (-351)))) (-4384 (((-112) $) NIL)) (-2925 (((-772)) NIL)) (-3754 (((-1269 $) (-1269 $)) 111)) (-2013 (((-410 |#2|) $) NIL)) (-1651 (((-645 (-954 |#1|)) (-1179)) NIL (|has| |#1| (-365)))) (-3104 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3908 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-2667 (((-923) $) NIL (|has| (-410 |#2|) (-370)))) (-2606 ((|#3| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1812 (((-1161) $) NIL)) (-2491 (((-1274) (-772)) 88)) (-1373 (((-690 (-410 |#2|))) 56)) (-1422 (((-690 (-410 |#2|))) 49)) (-1752 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1984 (($ (-1269 |#2|) |#2|) 137)) (-3248 (((-690 (-410 |#2|))) 50)) (-2150 (((-690 (-410 |#2|))) 48)) (-4010 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-4323 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 68)) (-2115 (((-1269 $)) 47)) (-2171 (((-1269 $)) 46)) (-3323 (((-112) $) NIL)) (-2792 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2221 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-2188 (($ (-923)) NIL (|has| (-410 |#2|) (-370)))) (-1597 (((-3 |#2| "failed")) NIL)) (-3479 (((-1122) $) NIL)) (-2818 (((-772)) NIL)) (-2335 (($) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-410 |#2|) (-365)))) (-1870 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-3661 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2478 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2465 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1882 ((|#1| $ |#1| |#1|) NIL)) (-1985 (((-3 |#2| "failed")) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2254 (((-410 |#2|) (-1269 $)) NIL) (((-410 |#2|)) 44)) (-2943 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-3592 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-772)) NIL (-2836 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2836 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3089 (((-690 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-2783 ((|#3|) 55)) (-1876 (($) NIL (|has| (-410 |#2|) (-351)))) (-3237 (((-1269 (-410 |#2|)) $ (-1269 $)) NIL) (((-690 (-410 |#2|)) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 |#2|)) $) 62) (((-690 (-410 |#2|)) (-1269 $)) 112)) (-1322 (((-1269 (-410 |#2|)) $) NIL) (($ (-1269 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-1641 (((-1269 $) (-1269 $)) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2836 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2318 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-4019 ((|#3| $) NIL)) (-2214 (((-772)) NIL T CONST)) (-4049 (((-112)) 42)) (-2463 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) 102)) (-3269 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-1846 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4271 (((-112)) NIL)) (-1807 (($) 17 T CONST)) (-1820 (($) 27 T CONST)) (-2856 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-772)) NIL (-2836 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2836 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -2491 ((-1274) (-772))))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) |#3|) (T -40)) -((-2491 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *2 (-1274)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1245 (-410 *5))) (-14 *7 *6)))) -(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -2491 ((-1274) (-772))))) -((-2223 ((|#2| |#2|) 47)) (-1919 ((|#2| |#2|) 139 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-4263 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-3535 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-4245 ((|#2| (-114) |#2| (-772)) 135 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1040 (-567))))))) (-2235 (((-1175 |#2|) |#2|) 44)) (-3215 ((|#2| |#2| (-645 (-613 |#2|))) 18) ((|#2| |#2| (-645 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -2223 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)) (-15 -3215 (|#2| |#2| |#2|)) (-15 -3215 (|#2| |#2| (-645 |#2|))) (-15 -3215 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -2235 ((-1175 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1040 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -3535 (|#2| |#2|)) (-15 -4263 (|#2| |#2|)) (-15 -1919 (|#2| |#2|)) (-15 -4245 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) (-559) (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 |#1| (-613 $)) $)) (-15 -4306 ((-1127 |#1| (-613 $)) $)) (-15 -2504 ($ (-1127 |#1| (-613 $))))))) (T -41)) -((-4245 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)))) (-4 *5 (-559)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *5 (-613 $)) $)) (-15 -4306 ((-1127 *5 (-613 $)) $)) (-15 -2504 ($ (-1127 *5 (-613 $))))))))) (-1919 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) (-15 -4306 ((-1127 *3 (-613 $)) $)) (-15 -2504 ($ (-1127 *3 (-613 $))))))))) (-4263 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) (-15 -4306 ((-1127 *3 (-613 $)) $)) (-15 -2504 ($ (-1127 *3 (-613 $))))))))) (-3535 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) (-15 -4306 ((-1127 *3 (-613 $)) $)) (-15 -2504 ($ (-1127 *3 (-613 $))))))))) (-2235 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1175 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *4 (-613 $)) $)) (-15 -4306 ((-1127 *4 (-613 $)) $)) (-15 -2504 ($ (-1127 *4 (-613 $))))))))) (-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-613 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *4 (-613 $)) $)) (-15 -4306 ((-1127 *4 (-613 $)) $)) (-15 -2504 ($ (-1127 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-3215 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *4 (-613 $)) $)) (-15 -4306 ((-1127 *4 (-613 $)) $)) (-15 -2504 ($ (-1127 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-3215 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) (-15 -4306 ((-1127 *3 (-613 $)) $)) (-15 -2504 ($ (-1127 *3 (-613 $))))))))) (-3215 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) (-15 -4306 ((-1127 *3 (-613 $)) $)) (-15 -2504 ($ (-1127 *3 (-613 $))))))))) (-2223 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) (-15 -4306 ((-1127 *3 (-613 $)) $)) (-15 -2504 ($ (-1127 *3 (-613 $)))))))))) -(-10 -7 (-15 -2223 (|#2| |#2|)) (-15 -3215 (|#2| |#2|)) (-15 -3215 (|#2| |#2| |#2|)) (-15 -3215 (|#2| |#2| (-645 |#2|))) (-15 -3215 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -2235 ((-1175 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1040 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -3535 (|#2| |#2|)) (-15 -4263 (|#2| |#2|)) (-15 -1919 (|#2| |#2|)) (-15 -4245 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) -((-3661 (((-421 (-1175 |#3|)) (-1175 |#3|) (-645 (-48))) 23) (((-421 |#3|) |#3| (-645 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3661 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -3661 ((-421 (-1175 |#3|)) (-1175 |#3|) (-645 (-48))))) (-851) (-794) (-951 (-48) |#2| |#1|)) (T -42)) -((-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *7 (-951 (-48) *6 *5)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-951 (-48) *6 *5))))) -(-10 -7 (-15 -3661 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -3661 ((-421 (-1175 |#3|)) (-1175 |#3|) (-645 (-48))))) -((-2731 (((-772) |#2|) 72)) (-3028 (((-772) |#2|) 76)) (-3621 (((-645 |#2|)) 39)) (-1949 (((-772) |#2|) 75)) (-3992 (((-772) |#2|) 71)) (-1966 (((-772) |#2|) 74)) (-1928 (((-645 (-690 |#1|))) 67)) (-1745 (((-645 |#2|)) 62)) (-3313 (((-645 |#2|) |#2|) 50)) (-1387 (((-645 |#2|)) 64)) (-4338 (((-645 |#2|)) 63)) (-3556 (((-645 (-690 |#1|))) 55)) (-3861 (((-645 |#2|)) 61)) (-4292 (((-645 |#2|) |#2|) 49)) (-2693 (((-645 |#2|)) 57)) (-3105 (((-645 (-690 |#1|))) 68)) (-3564 (((-645 |#2|)) 66)) (-4374 (((-1269 |#2|) (-1269 |#2|)) 101 (|has| |#1| (-308))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1949 ((-772) |#2|)) (-15 -3028 ((-772) |#2|)) (-15 -3992 ((-772) |#2|)) (-15 -2731 ((-772) |#2|)) (-15 -1966 ((-772) |#2|)) (-15 -2693 ((-645 |#2|))) (-15 -4292 ((-645 |#2|) |#2|)) (-15 -3313 ((-645 |#2|) |#2|)) (-15 -3861 ((-645 |#2|))) (-15 -1745 ((-645 |#2|))) (-15 -4338 ((-645 |#2|))) (-15 -1387 ((-645 |#2|))) (-15 -3564 ((-645 |#2|))) (-15 -3556 ((-645 (-690 |#1|)))) (-15 -1928 ((-645 (-690 |#1|)))) (-15 -3105 ((-645 (-690 |#1|)))) (-15 -3621 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -4374 ((-1269 |#2|) (-1269 |#2|))) |%noBranch|)) (-559) (-420 |#1|)) (T -43)) -((-4374 (*1 *2 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) (-3621 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3105 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1928 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3556 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3564 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1387 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-4338 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1745 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3861 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3313 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-4292 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2693 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2731 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3992 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3028 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-1949 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4))))) -(-10 -7 (-15 -1949 ((-772) |#2|)) (-15 -3028 ((-772) |#2|)) (-15 -3992 ((-772) |#2|)) (-15 -2731 ((-772) |#2|)) (-15 -1966 ((-772) |#2|)) (-15 -2693 ((-645 |#2|))) (-15 -4292 ((-645 |#2|) |#2|)) (-15 -3313 ((-645 |#2|) |#2|)) (-15 -3861 ((-645 |#2|))) (-15 -1745 ((-645 |#2|))) (-15 -4338 ((-645 |#2|))) (-15 -1387 ((-645 |#2|))) (-15 -3564 ((-645 |#2|))) (-15 -3556 ((-645 (-690 |#1|)))) (-15 -1928 ((-645 (-690 |#1|)))) (-15 -3105 ((-645 (-690 |#1|)))) (-15 -3621 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -4374 ((-1269 |#2|) (-1269 |#2|))) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3414 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-1998 (((-1269 (-690 |#1|)) (-1269 $)) NIL) (((-1269 (-690 |#1|))) 24)) (-1931 (((-1269 $)) 55)) (-3758 (($) NIL T CONST)) (-2670 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-3865 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-1426 (((-690 |#1|) (-1269 $)) NIL) (((-690 |#1|)) NIL)) (-4114 ((|#1| $) NIL)) (-4170 (((-690 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) $) NIL)) (-1511 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-3657 (((-1175 (-954 |#1|))) NIL (|has| |#1| (-365)))) (-3497 (($ $ (-923)) NIL)) (-1607 ((|#1| $) NIL)) (-1375 (((-1175 |#1|) $) NIL (|has| |#1| (-559)))) (-2260 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-3542 (((-1175 |#1|) $) NIL)) (-3134 (((-112)) 102)) (-3431 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) NIL)) (-1377 (((-3 $ "failed") $) 14 (|has| |#1| (-559)))) (-1471 (((-923)) 56)) (-1586 (((-112)) NIL)) (-2258 (($ $ (-923)) NIL)) (-3604 (((-112)) NIL)) (-3703 (((-112)) NIL)) (-3504 (((-112)) 104)) (-1478 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-3363 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-4221 (((-690 |#1|) (-1269 $)) NIL) (((-690 |#1|)) NIL)) (-2726 ((|#1| $) NIL)) (-3969 (((-690 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) $) NIL)) (-3822 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-2626 (((-1175 (-954 |#1|))) NIL (|has| |#1| (-365)))) (-2310 (($ $ (-923)) NIL)) (-2152 ((|#1| $) NIL)) (-3485 (((-1175 |#1|) $) NIL (|has| |#1| (-559)))) (-1741 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-3522 (((-1175 |#1|) $) NIL)) (-1830 (((-112)) 101)) (-1812 (((-1161) $) NIL)) (-3403 (((-112)) 109)) (-2905 (((-112)) 108)) (-2541 (((-112)) 110)) (-3479 (((-1122) $) NIL)) (-2779 (((-112)) 103)) (-1882 ((|#1| $ (-567)) 58)) (-3237 (((-1269 |#1|) $ (-1269 $)) 53) (((-690 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) 28) (((-690 |#1|) (-1269 $)) NIL)) (-1322 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL)) (-3869 (((-645 (-954 |#1|)) (-1269 $)) NIL) (((-645 (-954 |#1|))) NIL)) (-4033 (($ $ $) NIL)) (-2441 (((-112)) 98)) (-2504 (((-863) $) 75) (($ (-1269 |#1|)) 22)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) 49)) (-3477 (((-645 (-1269 |#1|))) NIL (|has| |#1| (-559)))) (-2862 (($ $ $ $) NIL)) (-3527 (((-112)) 94)) (-3384 (($ (-690 |#1|) $) 18)) (-1793 (($ $ $) NIL)) (-1959 (((-112)) 100)) (-3358 (((-112)) 95)) (-2035 (((-112)) 93)) (-1807 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1144 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-420 |#1|) (-649 (-1144 |#2| |#1|)) (-10 -8 (-15 -2504 ($ (-1269 |#1|))))) (-365) (-923) (-645 (-1179)) (-1269 (-690 |#1|))) (T -44)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-14 *6 (-1269 (-690 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1179)))))) -(-13 (-420 |#1|) (-649 (-1144 |#2| |#1|)) (-10 -8 (-15 -2504 ($ (-1269 |#1|))))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2233 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-2587 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-1493 (($ $) NIL)) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3095 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423))) (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2767 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851))))) (-2080 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3647 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423)))) (-4234 (($ $ $) 33 (|has| $ (-6 -4423)))) (-2718 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423)))) (-1588 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 35 (|has| $ (-6 -4423)))) (-3824 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-1236 (-567)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "last" (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423))) (($ $ "rest" $) NIL (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "first" (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "value" (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2574 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-2412 (((-3 |#2| "failed") |#1| $) 43)) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3447 (($ $ (-772)) NIL) (($ $) 29)) (-3048 (($ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) NIL) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) NIL)) (-3689 (((-112) $) NIL)) (-3932 (((-567) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (((-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) (((-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 20 (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422))) (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 20 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-4223 (($ (-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 38 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-3196 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-1315 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422))) (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-2346 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 40 (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-3316 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-3895 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-1972 (((-112) $) NIL)) (-1812 (((-1161) $) 49 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1725 (($ $ (-772)) NIL) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-1512 (((-645 |#1|) $) 22)) (-1560 (((-112) |#1| $) NIL)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL) (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-4222 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 |#1|) $) NIL) (((-645 (-567)) $) NIL)) (-2919 (((-112) |#1| $) NIL) (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3436 ((|#2| $) NIL (|has| |#1| (-851))) (($ $ (-772)) NIL) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 27)) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3268 (((-112) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-1804 (((-645 |#2|) $) NIL) (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 19)) (-2319 (((-112) $) 18)) (-2973 (($) 14)) (-1882 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ (-567)) NIL) (($ $ (-1236 (-567))) NIL) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "first") NIL) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $ "value") NIL)) (-2721 (((-567) $ $) NIL)) (-2730 (($) 13) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-1664 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3625 (((-112) $) NIL)) (-4121 (($ $) NIL)) (-3277 (($ $) NIL (|has| $ (-6 -4423)))) (-3880 (((-772) $) NIL)) (-1908 (($ $) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3416 (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL) (($ $ $) NIL)) (-3644 (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL) (($ (-645 $)) NIL) (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 31) (($ $ $) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-1733 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") |#1| $) 51)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3006 (((-112) $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-851)))) (-2498 (((-772) $) 25 (|has| $ (-6 -4422))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1102) (-1102)) (T -45)) +(-13 (-1052) (-719 |t#1|) (-618 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-3842 (((-408 |#1|) |#1|) 41)) (-4164 (((-408 |#1|) |#1|) 30) (((-408 |#1|) |#1| (-643 (-48))) 33)) (-1312 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1| (-643 (-48)))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3842 ((-408 |#1|) |#1|)) (-15 -1312 ((-112) |#1|))) (-1245 (-48))) (T -39)) +((-1312 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-3842 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-48))) (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48)))))) +(-10 -7 (-15 -4164 ((-408 |#1|) |#1| (-643 (-48)))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3842 ((-408 |#1|) |#1|)) (-15 -1312 ((-112) |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1815 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-2241 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2239 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-1957 (((-691 (-410 |#2|)) (-1269 $)) NIL) (((-691 (-410 |#2|))) NIL)) (-3754 (((-410 |#2|) $) NIL)) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-410 |#2|) (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4401 (((-408 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1753 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3540 (((-773)) NIL (|has| (-410 |#2|) (-370)))) (-1829 (((-112)) NIL)) (-1828 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| (-410 |#2|) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-3 (-410 |#2|) #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| (-410 |#2|) (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-410 |#2|) $) NIL)) (-1967 (($ (-1269 (-410 |#2|)) (-1269 $)) NIL) (($ (-1269 (-410 |#2|))) 61) (($ (-1269 |#2|) |#2|) 134)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-352)))) (-2964 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1956 (((-691 (-410 |#2|)) $ (-1269 $)) NIL) (((-691 (-410 |#2|)) $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-691 $) (-1269 $)) NIL) (((-691 (-410 |#2|)) (-691 $)) NIL)) (-1820 (((-1269 $) (-1269 $)) NIL)) (-4274 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-1807 (((-643 (-643 |#1|))) NIL (|has| |#1| (-370)))) (-1832 (((-112) |#1| |#1|) NIL)) (-3513 (((-922)) NIL)) (-3395 (($) NIL (|has| (-410 |#2|) (-370)))) (-1827 (((-112)) NIL)) (-1826 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2963 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| (-410 |#2|) (-365)))) (-3926 (($ $) NIL)) (-3236 (($) NIL (|has| (-410 |#2|) (-352)))) (-1848 (((-112) $) NIL (|has| (-410 |#2|) (-352)))) (-1941 (($ $ (-773)) NIL (|has| (-410 |#2|) (-352))) (($ $) NIL (|has| (-410 |#2|) (-352)))) (-4155 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-4203 (((-922) $) NIL (|has| (-410 |#2|) (-352))) (((-834 (-922)) $) NIL (|has| (-410 |#2|) (-352)))) (-2573 (((-112) $) NIL)) (-3801 (((-773)) NIL)) (-1821 (((-1269 $) (-1269 $)) 109)) (-3536 (((-410 |#2|) $) NIL)) (-1808 (((-643 (-949 |#1|)) (-1180)) NIL (|has| |#1| (-365)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2192 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-2188 (((-922) $) NIL (|has| (-410 |#2|) (-370)))) (-3481 ((|#3| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3663 (((-1162) $) NIL)) (-1313 (((-1275) (-773)) 87)) (-1816 (((-691 (-410 |#2|))) 56)) (-1818 (((-691 (-410 |#2|))) 49)) (-2806 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1813 (($ (-1269 |#2|) |#2|) 135)) (-1817 (((-691 (-410 |#2|))) 50)) (-1819 (((-691 (-410 |#2|))) 48)) (-1812 (((-2 (|:| |num| (-691 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-1814 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 68)) (-1825 (((-1269 $)) 47)) (-4350 (((-1269 $)) 46)) (-1824 (((-112) $) NIL)) (-1823 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3869 (($) NIL (|has| (-410 |#2|) (-352)) CONST)) (-2563 (($ (-922)) NIL (|has| (-410 |#2|) (-370)))) (-1810 (((-3 |#2| #3="failed")) NIL)) (-3664 (((-1123) $) NIL)) (-1834 (((-773)) NIL)) (-2572 (($) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-410 |#2|) (-365)))) (-3564 (($ (-643 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-410 |#2|) (-352)))) (-4164 (((-408 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1752 (((-773) $) NIL (|has| (-410 |#2|) (-365)))) (-4231 ((|#1| $ |#1| |#1|) NIL)) (-1811 (((-3 |#2| #3#)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-4189 (((-410 |#2|) (-1269 $)) NIL) (((-410 |#2|)) 44)) (-1942 (((-773) $) NIL (|has| (-410 |#2|) (-352))) (((-3 (-773) "failed") $ $) NIL (|has| (-410 |#2|) (-352)))) (-4242 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-2571 (((-691 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3605 ((|#3|) 55)) (-1842 (($) NIL (|has| (-410 |#2|) (-352)))) (-3644 (((-1269 (-410 |#2|)) $ (-1269 $)) NIL) (((-691 (-410 |#2|)) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 |#2|)) $) 62) (((-691 (-410 |#2|)) (-1269 $)) 110)) (-4402 (((-1269 (-410 |#2|)) $) NIL) (($ (-1269 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-410 |#2|) (-352)))) (-1822 (((-1269 $) (-1269 $)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1041 (-410 (-549)))))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3105 (($ $) NIL (|has| (-410 |#2|) (-352))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2770 ((|#3| $) NIL)) (-3530 (((-773)) NIL T CONST)) (-1831 (((-112)) 42)) (-1830 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL)) (-2240 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-1809 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1833 (((-112)) NIL)) (-3510 (($) 17 T CONST)) (-3067 (($) 27 T CONST)) (-3072 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-549)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-549))) NIL (|has| (-410 |#2|) (-365))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -1313 ((-1275) (-773))))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) |#3|) (T -40)) +((-1313 (*1 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *2 (-1275)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1245 (-410 *5))) (-14 *7 *6)))) +(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -1313 ((-1275) (-773))))) +((-1314 ((|#2| |#2|) 47)) (-1319 ((|#2| |#2|) 139 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-13 (-455) (-1041 (-549))))))) (-1318 ((|#2| |#2|) 100 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-13 (-455) (-1041 (-549))))))) (-1317 ((|#2| |#2|) 101 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-13 (-455) (-1041 (-549))))))) (-1320 ((|#2| (-113) |#2| (-773)) 135 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-13 (-455) (-1041 (-549))))))) (-1316 (((-1174 |#2|) |#2|) 44)) (-1315 ((|#2| |#2| (-643 (-613 |#2|))) 18) ((|#2| |#2| (-643 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1314 (|#2| |#2|)) (-15 -1315 (|#2| |#2|)) (-15 -1315 (|#2| |#2| |#2|)) (-15 -1315 (|#2| |#2| (-643 |#2|))) (-15 -1315 (|#2| |#2| (-643 (-613 |#2|)))) (-15 -1316 ((-1174 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1041 (-549)))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -1317 (|#2| |#2|)) (-15 -1318 (|#2| |#2|)) (-15 -1319 (|#2| |#2|)) (-15 -1320 (|#2| (-113) |#2| (-773)))) |%noBranch|) |%noBranch|)) (-560) (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 |#1| (-613 $)) $)) (-15 -3398 ((-1128 |#1| (-613 $)) $)) (-15 -4378 ($ (-1128 |#1| (-613 $))))))) (T -41)) +((-1320 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-773)) (-4 *5 (-13 (-455) (-1041 (-549)))) (-4 *5 (-560)) (-5 *1 (-41 *5 *2)) (-4 *2 (-424 *5)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *5 (-613 $)) $)) (-15 -3398 ((-1128 *5 (-613 $)) $)) (-15 -4378 ($ (-1128 *5 (-613 $))))))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1318 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1317 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1316 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-1174 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) (-15 -3398 ((-1128 *4 (-613 $)) $)) (-15 -4378 ($ (-1128 *4 (-613 $))))))))) (-1315 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-613 *2))) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) (-15 -3398 ((-1128 *4 (-613 $)) $)) (-15 -4378 ($ (-1128 *4 (-613 $))))))) (-4 *4 (-560)) (-5 *1 (-41 *4 *2)))) (-1315 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) (-15 -3398 ((-1128 *4 (-613 $)) $)) (-15 -4378 ($ (-1128 *4 (-613 $))))))) (-4 *4 (-560)) (-5 *1 (-41 *4 *2)))) (-1315 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1315 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $))))))))) (-1314 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-299) (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) (-15 -3398 ((-1128 *3 (-613 $)) $)) (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) +(-10 -7 (-15 -1314 (|#2| |#2|)) (-15 -1315 (|#2| |#2|)) (-15 -1315 (|#2| |#2| |#2|)) (-15 -1315 (|#2| |#2| (-643 |#2|))) (-15 -1315 (|#2| |#2| (-643 (-613 |#2|)))) (-15 -1316 ((-1174 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1041 (-549)))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -1317 (|#2| |#2|)) (-15 -1318 (|#2| |#2|)) (-15 -1319 (|#2| |#2|)) (-15 -1320 (|#2| (-113) |#2| (-773)))) |%noBranch|) |%noBranch|)) +((-4164 (((-408 (-1174 |#3|)) (-1174 |#3|) (-643 (-48))) 23) (((-408 |#3|) |#3| (-643 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4164 ((-408 |#3|) |#3| (-643 (-48)))) (-15 -4164 ((-408 (-1174 |#3|)) (-1174 |#3|) (-643 (-48))))) (-852) (-795) (-953 (-48) |#2| |#1|)) (T -42)) +((-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-48))) (-4 *5 (-852)) (-4 *6 (-795)) (-4 *7 (-953 (-48) *6 *5)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-48))) (-4 *5 (-852)) (-4 *6 (-795)) (-5 *2 (-408 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-953 (-48) *6 *5))))) +(-10 -7 (-15 -4164 ((-408 |#3|) |#3| (-643 (-48)))) (-15 -4164 ((-408 (-1174 |#3|)) (-1174 |#3|) (-643 (-48))))) +((-1324 (((-773) |#2|) 72)) (-1322 (((-773) |#2|) 76)) (-1337 (((-643 |#2|)) 39)) (-1321 (((-773) |#2|) 75)) (-1323 (((-773) |#2|) 71)) (-1325 (((-773) |#2|) 74)) (-1335 (((-643 (-691 |#1|))) 67)) (-1330 (((-643 |#2|)) 62)) (-1328 (((-643 |#2|) |#2|) 50)) (-1332 (((-643 |#2|)) 64)) (-1331 (((-643 |#2|)) 63)) (-1334 (((-643 (-691 |#1|))) 55)) (-1329 (((-643 |#2|)) 61)) (-1327 (((-643 |#2|) |#2|) 49)) (-1326 (((-643 |#2|)) 57)) (-1336 (((-643 (-691 |#1|))) 68)) (-1333 (((-643 |#2|)) 66)) (-2190 (((-1269 |#2|) (-1269 |#2|)) 101 (|has| |#1| (-308))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1321 ((-773) |#2|)) (-15 -1322 ((-773) |#2|)) (-15 -1323 ((-773) |#2|)) (-15 -1324 ((-773) |#2|)) (-15 -1325 ((-773) |#2|)) (-15 -1326 ((-643 |#2|))) (-15 -1327 ((-643 |#2|) |#2|)) (-15 -1328 ((-643 |#2|) |#2|)) (-15 -1329 ((-643 |#2|))) (-15 -1330 ((-643 |#2|))) (-15 -1331 ((-643 |#2|))) (-15 -1332 ((-643 |#2|))) (-15 -1333 ((-643 |#2|))) (-15 -1334 ((-643 (-691 |#1|)))) (-15 -1335 ((-643 (-691 |#1|)))) (-15 -1336 ((-643 (-691 |#1|)))) (-15 -1337 ((-643 |#2|))) (IF (|has| |#1| (-308)) (-15 -2190 ((-1269 |#2|) (-1269 |#2|))) |%noBranch|)) (-560) (-421 |#1|)) (T -43)) +((-2190 (*1 *2 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-421 *3)) (-4 *3 (-308)) (-4 *3 (-560)) (-5 *1 (-43 *3 *4)))) (-1337 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1336 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1335 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1334 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1333 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1332 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1331 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1330 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1329 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1328 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1327 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1326 (*1 *2) (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3)))) (-1325 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1324 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1323 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1322 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4)))) (-1321 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) +(-10 -7 (-15 -1321 ((-773) |#2|)) (-15 -1322 ((-773) |#2|)) (-15 -1323 ((-773) |#2|)) (-15 -1324 ((-773) |#2|)) (-15 -1325 ((-773) |#2|)) (-15 -1326 ((-643 |#2|))) (-15 -1327 ((-643 |#2|) |#2|)) (-15 -1328 ((-643 |#2|) |#2|)) (-15 -1329 ((-643 |#2|))) (-15 -1330 ((-643 |#2|))) (-15 -1331 ((-643 |#2|))) (-15 -1332 ((-643 |#2|))) (-15 -1333 ((-643 |#2|))) (-15 -1334 ((-643 (-691 |#1|)))) (-15 -1335 ((-643 (-691 |#1|)))) (-15 -1336 ((-643 (-691 |#1|)))) (-15 -1337 ((-643 |#2|))) (IF (|has| |#1| (-308)) (-15 -2190 ((-1269 |#2|) (-1269 |#2|))) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 |#1|)) (-1269 $)) NIL) (((-1269 (-691 |#1|))) 24)) (-1897 (((-1269 $)) 55)) (-4156 (($) NIL T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (|has| |#1| (-560)))) (-1871 (((-3 $ #1#)) NIL (|has| |#1| (-560)))) (-1963 (((-691 |#1|) (-1269 $)) NIL) (((-691 |#1|)) NIL)) (-1895 ((|#1| $) NIL)) (-1961 (((-691 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) $) NIL)) (-2567 (((-3 $ #1#) $) NIL (|has| |#1| (-560)))) (-2078 (((-1174 (-949 |#1|))) NIL (|has| |#1| (-365)))) (-2570 (($ $ (-922)) NIL)) (-1893 ((|#1| $) NIL)) (-1873 (((-1174 |#1|) $) NIL (|has| |#1| (-560)))) (-1965 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-1891 (((-1174 |#1|) $) NIL)) (-1885 (((-112)) 101)) (-1967 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) NIL)) (-3890 (((-3 $ #1#) $) 14 (|has| |#1| (-560)))) (-3513 (((-922)) 56)) (-1882 (((-112)) NIL)) (-2594 (($ $ (-922)) NIL)) (-1878 (((-112)) NIL)) (-1876 (((-112)) NIL)) (-1880 (((-112)) 103)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (|has| |#1| (-560)))) (-1872 (((-3 $ #1#)) NIL (|has| |#1| (-560)))) (-1964 (((-691 |#1|) (-1269 $)) NIL) (((-691 |#1|)) NIL)) (-1896 ((|#1| $) NIL)) (-1962 (((-691 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) $) NIL)) (-2568 (((-3 $ #1#) $) NIL (|has| |#1| (-560)))) (-2082 (((-1174 (-949 |#1|))) NIL (|has| |#1| (-365)))) (-2569 (($ $ (-922)) NIL)) (-1894 ((|#1| $) NIL)) (-1874 (((-1174 |#1|) $) NIL (|has| |#1| (-560)))) (-1966 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-1892 (((-1174 |#1|) $) NIL)) (-1886 (((-112)) 100)) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) 108)) (-1879 (((-112)) 107)) (-1881 (((-112)) 109)) (-3664 (((-1123) $) NIL)) (-1884 (((-112)) 102)) (-4231 ((|#1| $ (-549)) 58)) (-3644 (((-1269 |#1|) $ (-1269 $)) 52) (((-691 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) 28) (((-691 |#1|) (-1269 $)) NIL)) (-4402 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL)) (-2070 (((-643 (-949 |#1|)) (-1269 $)) NIL) (((-643 (-949 |#1|))) NIL)) (-2756 (($ $ $) NIL)) (-1890 (((-112)) 97)) (-4378 (((-865) $) 74) (($ (-1269 |#1|)) 22)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 54)) (-1875 (((-643 (-1269 |#1|))) NIL (|has| |#1| (-560)))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) 93)) (-2948 (($ (-691 |#1|) $) 18)) (-2755 (($ $ $) NIL)) (-1889 (((-112)) 99)) (-1887 (((-112)) 94)) (-1883 (((-112)) 92)) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1145 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-421 |#1|) (-650 (-1145 |#2| |#1|)) (-10 -8 (-15 -4378 ($ (-1269 |#1|))))) (-365) (-922) (-643 (-1180)) (-1269 (-691 |#1|))) (T -44)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-14 *6 (-1269 (-691 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-643 (-1180)))))) +(-13 (-421 |#1|) (-650 (-1145 |#2| |#1|)) (-10 -8 (-15 -4378 ($ (-1269 |#1|))))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-3826 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4226 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4228 (($ $) NIL)) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426))) (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-1898 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852))))) (-3310 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-3426 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) 33 (|has| $ (-6 -4426)))) (-4217 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-4220 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 35 (|has| $ (-6 -4426)))) (-4219 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-1236 (-549)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #1="last" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #3="first" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #4="value" (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4227 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2381 (((-3 |#2| #5="failed") |#1| $) 43)) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-4230 (($ $ (-773)) NIL) (($ $) 29)) (-2526 (($ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #5#) |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-3843 (((-549) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) (((-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 20 (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 20 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-4046 (($ (-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852))) (((-549) $) 38 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3259 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3941 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852))) (((-549) $) 40 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-3965 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) 49 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4229 (($ $ (-773)) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2816 (((-643 |#1|) $) 22)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2449 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 |#1|) $) NIL) (((-643 (-549)) $) NIL)) (-2378 (((-112) |#1| $) NIL) (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852))) (($ $ (-773)) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 27)) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) #6#) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-3867 (((-112) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-2379 (((-643 |#2|) $) NIL) (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 19)) (-3827 (((-112) $) 18)) (-3996 (($) 14)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ (-549)) NIL) (($ $ (-1236 (-549))) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #3#) NIL) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $ #4#) NIL)) (-3430 (((-549) $ $) NIL)) (-1567 (($) 13) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-1679 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4065 (((-112) $) NIL)) (-4223 (($ $) NIL)) (-4221 (($ $) NIL (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4222 (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL) (($ $ $) NIL)) (-4233 (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL) (($ (-643 $)) NIL) (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 31) (($ $ $) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-1311 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") |#1| $) 51)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-3087 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-852)))) (-4389 (((-773) $) 25 (|has| $ (-6 -4425))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1104) (-1104)) (T -45)) NIL (-36 |#1| |#2|) -((-3615 (((-112) $) 12)) (-4364 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-410 (-567)) $) 25) (($ $ (-410 (-567))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3615 ((-112) |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-47 |#2| |#3|) (-1051) (-793)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3615 ((-112) |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1833 (($ $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-3615 (((-112) $) 74)) (-3764 (($ |#1| |#2|) 73)) (-4364 (($ (-1 |#1| |#1|) $) 75)) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3380 ((|#2| $) 76)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4038 ((|#1| $ |#2|) 71)) (-2318 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-47 |#1| |#2|) (-140) (-1051) (-793)) (T -47)) -((-1809 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-1796 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) (-3764 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-1833 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-4038 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-365))))) -(-13 (-1051) (-111 |t#1| |t#1|) (-10 -8 (-15 -1809 (|t#1| $)) (-15 -1796 ($ $)) (-15 -3380 (|t#2| $)) (-15 -4364 ($ (-1 |t#1| |t#1|) $)) (-15 -3615 ((-112) $)) (-15 -3764 ($ |t#1| |t#2|)) (-15 -1833 ($ $)) (-15 -4038 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3064 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-559)) (-6 (-559)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-6 (-38 (-410 (-567)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2776 (((-645 $) (-1175 $) (-1179)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-954 $)) NIL)) (-3236 (($ (-1175 $) (-1179)) NIL) (($ (-1175 $)) NIL) (($ (-954 $)) NIL)) (-2684 (((-112) $) 11)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-3526 (((-645 (-613 $)) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3072 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-3671 (($ $) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-2161 (((-645 $) (-1175 $) (-1179)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-954 $)) NIL)) (-1617 (($ (-1175 $) (-1179)) NIL) (($ (-1175 $)) NIL) (($ (-954 $)) NIL)) (-4275 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-3094 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2432 (($ $ $) NIL)) (-2690 (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2434 (-690 (-410 (-567)))) (|:| |vec| (-1269 (-410 (-567))))) (-690 $) (-1269 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2617 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-2998 (($ $) NIL) (($ (-645 $)) NIL)) (-2131 (((-645 (-114)) $) NIL)) (-3609 (((-114) (-114)) NIL)) (-4384 (((-112) $) 14)) (-3807 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-4294 (((-1127 (-567) (-613 $)) $) NIL)) (-4203 (($ $ (-567)) NIL)) (-2013 (((-1175 $) (-1175 $) (-613 $)) NIL) (((-1175 $) (-1175 $) (-645 (-613 $))) NIL) (($ $ (-613 $)) NIL) (($ $ (-645 (-613 $))) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1935 (((-1175 $) (-613 $)) NIL (|has| $ (-1051)))) (-4364 (($ (-1 $ $) (-613 $)) NIL)) (-2126 (((-3 (-613 $) "failed") $) NIL)) (-1831 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3599 (((-645 (-613 $)) $) NIL)) (-4369 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-2208 (((-112) $ (-114)) NIL) (((-112) $ (-1179)) NIL)) (-1752 (($ $) NIL)) (-1337 (((-772) $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2769 (((-112) $ $) NIL) (((-112) $ (-1179)) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1359 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2913 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2465 (((-772) $) NIL)) (-1882 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-1929 (($ $) NIL) (($ $ $) NIL)) (-3592 (($ $ (-772)) NIL) (($ $) NIL)) (-4306 (((-1127 (-567) (-613 $)) $) NIL)) (-2783 (($ $) NIL (|has| $ (-1051)))) (-1322 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-2504 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1127 (-567) (-613 $))) NIL)) (-2214 (((-772)) NIL T CONST)) (-2130 (($ $) NIL) (($ (-645 $)) NIL)) (-3862 (((-112) (-114)) NIL)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) 7 T CONST)) (-1820 (($) 12 T CONST)) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) 16)) (-3064 (($ $ $) NIL)) (-3054 (($ $ $) 15) (($ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) NIL) (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL))) -(((-48) (-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -2504 ($ (-1127 (-567) (-613 $)))) (-15 -4294 ((-1127 (-567) (-613 $)) $)) (-15 -4306 ((-1127 (-567) (-613 $)) $)) (-15 -2617 ($ $)) (-15 -2013 ((-1175 $) (-1175 $) (-613 $))) (-15 -2013 ((-1175 $) (-1175 $) (-645 (-613 $)))) (-15 -2013 ($ $ (-613 $))) (-15 -2013 ($ $ (-645 (-613 $))))))) (T -48)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-2617 (*1 *1 *1) (-5 *1 (-48))) (-2013 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48))))) -(-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -2504 ($ (-1127 (-567) (-613 $)))) (-15 -4294 ((-1127 (-567) (-613 $)) $)) (-15 -4306 ((-1127 (-567) (-613 $)) $)) (-15 -2617 ($ $)) (-15 -2013 ((-1175 $) (-1175 $) (-613 $))) (-15 -2013 ((-1175 $) (-1175 $) (-645 (-613 $)))) (-15 -2013 ($ $ (-613 $))) (-15 -2013 ($ $ (-645 (-613 $)))))) -((-2487 (((-112) $ $) NIL)) (-2389 (((-645 (-509)) $) 17)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 7)) (-3501 (((-1184) $) 18)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-49) (-13 (-1102) (-10 -8 (-15 -2389 ((-645 (-509)) $)) (-15 -3501 ((-1184) $))))) (T -49)) -((-2389 (*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-49))))) -(-13 (-1102) (-10 -8 (-15 -2389 ((-645 (-509)) $)) (-15 -3501 ((-1184) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 87)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-2110 (((-112) $) 30)) (-4275 (((-3 |#1| "failed") $) 33)) (-3094 ((|#1| $) 34)) (-1833 (($ $) 40)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-1809 ((|#1| $) 31)) (-2580 (($ $) 76)) (-1812 (((-1161) $) NIL)) (-1308 (((-112) $) 43)) (-3479 (((-1122) $) NIL)) (-2335 (($ (-772)) 74)) (-4272 (($ (-645 (-567))) 75)) (-3380 (((-772) $) 44)) (-2504 (((-863) $) 93) (($ (-567)) 71) (($ |#1|) 69)) (-4038 ((|#1| $ $) 28)) (-2214 (((-772)) 73 T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 45 T CONST)) (-1820 (($) 17 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) -(((-50 |#1| |#2|) (-13 (-621 |#1|) (-1040 |#1|) (-10 -8 (-15 -1809 (|#1| $)) (-15 -2580 ($ $)) (-15 -1833 ($ $)) (-15 -4038 (|#1| $ $)) (-15 -2335 ($ (-772))) (-15 -4272 ($ (-645 (-567)))) (-15 -1308 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -3380 ((-772) $)) (-15 -4364 ($ (-1 |#1| |#1|) $)))) (-1051) (-645 (-1179))) (T -50)) -((-1809 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1179))))) (-2580 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179))))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179))))) (-4038 (*1 *2 *1 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1179))))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-4272 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) (-14 *4 (-645 (-1179))))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-50 *3 *4)) (-14 *4 (-645 (-1179)))))) -(-13 (-621 |#1|) (-1040 |#1|) (-10 -8 (-15 -1809 (|#1| $)) (-15 -2580 ($ $)) (-15 -1833 ($ $)) (-15 -4038 (|#1| $ $)) (-15 -2335 ($ (-772))) (-15 -4272 ($ (-645 (-567)))) (-15 -1308 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -3380 ((-772) $)) (-15 -4364 ($ (-1 |#1| |#1|) $)))) -((-2110 (((-112) (-52)) 18)) (-4275 (((-3 |#1| "failed") (-52)) 20)) (-3094 ((|#1| (-52)) 21)) (-2504 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -2504 ((-52) |#1|)) (-15 -4275 ((-3 |#1| "failed") (-52))) (-15 -2110 ((-112) (-52))) (-15 -3094 (|#1| (-52)))) (-1219)) (T -51)) -((-3094 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1219)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1219)))) (-4275 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1219)))) (-2504 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1219))))) -(-10 -7 (-15 -2504 ((-52) |#1|)) (-15 -4275 ((-3 |#1| "failed") (-52))) (-15 -2110 ((-112) (-52))) (-15 -3094 (|#1| (-52)))) -((-2487 (((-112) $ $) NIL)) (-4229 (((-775) $) 8)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3222 (((-1106) $) 10)) (-2504 (((-863) $) 15)) (-3858 (((-112) $ $) NIL)) (-3430 (($ (-1106) (-775)) 16)) (-2968 (((-112) $ $) 12))) -(((-52) (-13 (-1102) (-10 -8 (-15 -3430 ($ (-1106) (-775))) (-15 -3222 ((-1106) $)) (-15 -4229 ((-775) $))))) (T -52)) -((-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-52)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-52)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52))))) -(-13 (-1102) (-10 -8 (-15 -3430 ($ (-1106) (-775))) (-15 -3222 ((-1106) $)) (-15 -4229 ((-775) $)))) -((-3384 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3384 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1051) (-649 |#1|) (-853 |#1|)) (T -53)) -((-3384 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1051)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5))))) -(-10 -7 (-15 -3384 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-3475 ((|#3| |#3| (-645 (-1179))) 46)) (-4086 ((|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923)) 32) ((|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4086 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -4086 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923))) (-15 -3475 (|#3| |#3| (-645 (-1179))))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -54)) -((-3475 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-4086 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 (-1078 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1102)) (-4 *6 (-13 (-1051) (-888 *5) (-615 (-894 *5)))) (-4 *2 (-13 (-433 *6) (-888 *5) (-615 (-894 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4086 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-1078 *4 *5 *2))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -4086 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -4086 (|#3| (-645 (-1078 |#1| |#2| |#3|)) |#3| (-923))) (-15 -3475 (|#3| |#3| (-645 (-1179))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 14)) (-4275 (((-3 (-772) "failed") $) 34)) (-3094 (((-772) $) NIL)) (-4384 (((-112) $) 16)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) 18)) (-2504 (((-863) $) 23) (($ (-772)) 29)) (-3858 (((-112) $ $) NIL)) (-4386 (($) 11 T CONST)) (-2968 (((-112) $ $) 20))) -(((-55) (-13 (-1102) (-1040 (-772)) (-10 -8 (-15 -4386 ($) -3562) (-15 -2684 ((-112) $)) (-15 -4384 ((-112) $))))) (T -55)) -((-4386 (*1 *1) (-5 *1 (-55))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1102) (-1040 (-772)) (-10 -8 (-15 -4386 ($) -3562) (-15 -2684 ((-112) $)) (-15 -4384 ((-112) $)))) -((-1555 (((-112) $ (-772)) 27)) (-2391 (($ $ (-567) |#3|) 66)) (-3523 (($ $ (-567) |#4|) 70)) (-4134 ((|#3| $ (-567)) 79)) (-3468 (((-645 |#2|) $) 47)) (-3753 (((-112) $ (-772)) 31)) (-2203 (((-112) |#2| $) 74)) (-2021 (($ (-1 |#2| |#2|) $) 55)) (-4364 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-3421 (((-112) $ (-772)) 29)) (-2930 (($ $ |#2|) 52)) (-1430 (((-112) (-1 (-112) |#2|) $) 21)) (-1882 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) 35)) (-3486 (((-772) (-1 (-112) |#2|) $) 41) (((-772) |#2| $) 76)) (-3846 (($ $) 51)) (-2900 ((|#4| $ (-567)) 82)) (-2504 (((-863) $) 88)) (-3450 (((-112) (-1 (-112) |#2|) $) 20)) (-2968 (((-112) $ $) 73)) (-2498 (((-772) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4364 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2021 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-567) |#4|)) (-15 -2391 (|#1| |#1| (-567) |#3|)) (-15 -3468 ((-645 |#2|) |#1|)) (-15 -2900 (|#4| |#1| (-567))) (-15 -4134 (|#3| |#1| (-567))) (-15 -1882 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567) (-567))) (-15 -2930 (|#1| |#1| |#2|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2203 ((-112) |#2| |#1|)) (-15 -3486 ((-772) |#2| |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2498 ((-772) |#1|)) (-15 -1555 ((-112) |#1| (-772))) (-15 -3753 ((-112) |#1| (-772))) (-15 -3421 ((-112) |#1| (-772))) (-15 -3846 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1219) (-375 |#2|) (-375 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4364 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2021 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3523 (|#1| |#1| (-567) |#4|)) (-15 -2391 (|#1| |#1| (-567) |#3|)) (-15 -3468 ((-645 |#2|) |#1|)) (-15 -2900 (|#4| |#1| (-567))) (-15 -4134 (|#3| |#1| (-567))) (-15 -1882 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567) (-567))) (-15 -2930 (|#1| |#1| |#2|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2203 ((-112) |#2| |#1|)) (-15 -3486 ((-772) |#2| |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2498 ((-772) |#1|)) (-15 -1555 ((-112) |#1| (-772))) (-15 -3753 ((-112) |#1| (-772))) (-15 -3421 ((-112) |#1| (-772))) (-15 -3846 (|#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#1| $ (-567) (-567) |#1|) 45)) (-2391 (($ $ (-567) |#2|) 43)) (-3523 (($ $ (-567) |#3|) 42)) (-3758 (($) 7 T CONST)) (-4134 ((|#2| $ (-567)) 47)) (-2036 ((|#1| $ (-567) (-567) |#1|) 44)) (-1970 ((|#1| $ (-567) (-567)) 49)) (-3468 (((-645 |#1|) $) 31)) (-4371 (((-772) $) 52)) (-4223 (($ (-772) (-772) |#1|) 58)) (-4385 (((-772) $) 51)) (-3753 (((-112) $ (-772)) 9)) (-3181 (((-567) $) 56)) (-2631 (((-567) $) 54)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4244 (((-567) $) 55)) (-3802 (((-567) $) 53)) (-2021 (($ (-1 |#1| |#1|) $) 35)) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2930 (($ $ |#1|) 57)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2900 ((|#3| $ (-567)) 46)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-57 |#1| |#2| |#3|) (-140) (-1219) (-375 |t#1|) (-375 |t#1|)) (T -57)) -((-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4223 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1219)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2930 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-2631 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-1882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1219)))) (-1970 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1219)))) (-1882 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1219)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2900 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1219)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) (-3824 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-2036 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-2391 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-3523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1219)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-2021 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4364 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4364 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(-13 (-492 |t#1|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -4223 ($ (-772) (-772) |t#1|)) (-15 -2930 ($ $ |t#1|)) (-15 -3181 ((-567) $)) (-15 -4244 ((-567) $)) (-15 -2631 ((-567) $)) (-15 -3802 ((-567) $)) (-15 -4371 ((-772) $)) (-15 -4385 ((-772) $)) (-15 -1882 (|t#1| $ (-567) (-567))) (-15 -1970 (|t#1| $ (-567) (-567))) (-15 -1882 (|t#1| $ (-567) (-567) |t#1|)) (-15 -4134 (|t#2| $ (-567))) (-15 -2900 (|t#3| $ (-567))) (-15 -3468 ((-645 |t#1|) $)) (-15 -3824 (|t#1| $ (-567) (-567) |t#1|)) (-15 -2036 (|t#1| $ (-567) (-567) |t#1|)) (-15 -2391 ($ $ (-567) |t#2|)) (-15 -3523 ($ $ (-567) |t#3|)) (-15 -4364 ($ (-1 |t#1| |t#1|) $)) (-15 -2021 ($ (-1 |t#1| |t#1|) $)) (-15 -4364 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4364 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-4309 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2617 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4364 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -4309 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2617 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4364 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1219) (-1219)) (T -58)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-58 *5 *2)))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -4309 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2617 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4364 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3932 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4138 (($ (-645 |#1|)) 11) (($ (-772) |#1|) 14)) (-4223 (($ (-772) |#1|) 13)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) NIL (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 10)) (-3644 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4138 ($ (-645 |#1|))) (-15 -4138 ($ (-772) |#1|)))) (-1219)) (T -59)) -((-4138 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-59 *3)))) (-4138 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1219))))) -(-13 (-19 |#1|) (-10 -8 (-15 -4138 ($ (-645 |#1|))) (-15 -4138 ($ (-772) |#1|)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) (-567) |#1|) NIL)) (-2391 (($ $ (-567) (-59 |#1|)) NIL)) (-3523 (($ $ (-567) (-59 |#1|)) NIL)) (-3758 (($) NIL T CONST)) (-4134 (((-59 |#1|) $ (-567)) NIL)) (-2036 ((|#1| $ (-567) (-567) |#1|) NIL)) (-1970 ((|#1| $ (-567) (-567)) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-4371 (((-772) $) NIL)) (-4223 (($ (-772) (-772) |#1|) NIL)) (-4385 (((-772) $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-3181 (((-567) $) NIL)) (-2631 (((-567) $) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4244 (((-567) $) NIL)) (-3802 (((-567) $) NIL)) (-2021 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2930 (($ $ |#1|) NIL)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2900 (((-59 |#1|) $ (-567)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4423))) (-1219)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4423))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 74) (((-3 $ "failed") (-1269 (-317 (-567)))) 63) (((-3 $ "failed") (-1269 (-954 (-381)))) 94) (((-3 $ "failed") (-1269 (-954 (-567)))) 84) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 52) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 39)) (-3094 (($ (-1269 (-317 (-381)))) 70) (($ (-1269 (-317 (-567)))) 59) (($ (-1269 (-954 (-381)))) 90) (($ (-1269 (-954 (-567)))) 80) (($ (-1269 (-410 (-954 (-381))))) 48) (($ (-1269 (-410 (-954 (-567))))) 32)) (-2229 (((-1274) $) 127)) (-2504 (((-863) $) 121) (($ (-645 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 101) (($ (-1269 (-341 (-2516 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2516) (-700)))) 31))) -(((-61 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2516) (-700))))))) (-1179)) (T -61)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2516) (-700)))) (-5 *1 (-61 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2516) (-700))))))) -((-2229 (((-1274) $) 54) (((-1274)) 55)) (-2504 (((-863) $) 51))) -(((-62 |#1|) (-13 (-398) (-10 -7 (-15 -2229 ((-1274))))) (-1179)) (T -62)) -((-2229 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-62 *3)) (-14 *3 (-1179))))) -(-13 (-398) (-10 -7 (-15 -2229 ((-1274))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 154) (((-3 $ "failed") (-1269 (-317 (-567)))) 144) (((-3 $ "failed") (-1269 (-954 (-381)))) 174) (((-3 $ "failed") (-1269 (-954 (-567)))) 164) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 133) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 121)) (-3094 (($ (-1269 (-317 (-381)))) 150) (($ (-1269 (-317 (-567)))) 140) (($ (-1269 (-954 (-381)))) 170) (($ (-1269 (-954 (-567)))) 160) (($ (-1269 (-410 (-954 (-381))))) 129) (($ (-1269 (-410 (-954 (-567))))) 114)) (-2229 (((-1274) $) 107)) (-2504 (((-863) $) 101) (($ (-645 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 33) (($ (-1269 (-341 (-2516) (-2516 (QUOTE XC)) (-700)))) 99))) -(((-63 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516) (-2516 (QUOTE XC)) (-700))))))) (-1179)) (T -63)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516) (-2516 (QUOTE XC)) (-700)))) (-5 *1 (-63 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516) (-2516 (QUOTE XC)) (-700))))))) -((-4275 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-567))) 46) (((-3 $ "failed") (-954 (-381))) 50) (((-3 $ "failed") (-954 (-567))) 54) (((-3 $ "failed") (-410 (-954 (-381)))) 36) (((-3 $ "failed") (-410 (-954 (-567)))) 29)) (-3094 (($ (-317 (-381))) 39) (($ (-317 (-567))) 44) (($ (-954 (-381))) 48) (($ (-954 (-567))) 52) (($ (-410 (-954 (-381)))) 34) (($ (-410 (-954 (-567)))) 26)) (-2229 (((-1274) $) 76)) (-2504 (((-863) $) 69) (($ (-645 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 64) (($ (-341 (-2516 (QUOTE X)) (-2516) (-700))) 25))) -(((-64 |#1|) (-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516 (QUOTE X)) (-2516) (-700)))))) (-1179)) (T -64)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-341 (-2516 (QUOTE X)) (-2516) (-700))) (-5 *1 (-64 *3)) (-14 *3 (-1179))))) -(-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516 (QUOTE X)) (-2516) (-700)))))) -((-4275 (((-3 $ "failed") (-690 (-317 (-381)))) 114) (((-3 $ "failed") (-690 (-317 (-567)))) 102) (((-3 $ "failed") (-690 (-954 (-381)))) 136) (((-3 $ "failed") (-690 (-954 (-567)))) 125) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 90) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 76)) (-3094 (($ (-690 (-317 (-381)))) 110) (($ (-690 (-317 (-567)))) 98) (($ (-690 (-954 (-381)))) 132) (($ (-690 (-954 (-567)))) 121) (($ (-690 (-410 (-954 (-381))))) 86) (($ (-690 (-410 (-954 (-567))))) 69)) (-2229 (((-1274) $) 144)) (-2504 (((-863) $) 138) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 32) (($ (-690 (-341 (-2516) (-2516 (QUOTE X) (QUOTE HESS)) (-700)))) 59))) -(((-65 |#1|) (-13 (-386) (-617 (-690 (-341 (-2516) (-2516 (QUOTE X) (QUOTE HESS)) (-700))))) (-1179)) (T -65)) -NIL -(-13 (-386) (-617 (-690 (-341 (-2516) (-2516 (QUOTE X) (QUOTE HESS)) (-700))))) -((-4275 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-567))) 65) (((-3 $ "failed") (-954 (-381))) 69) (((-3 $ "failed") (-954 (-567))) 73) (((-3 $ "failed") (-410 (-954 (-381)))) 55) (((-3 $ "failed") (-410 (-954 (-567)))) 48)) (-3094 (($ (-317 (-381))) 58) (($ (-317 (-567))) 63) (($ (-954 (-381))) 67) (($ (-954 (-567))) 71) (($ (-410 (-954 (-381)))) 53) (($ (-410 (-954 (-567)))) 45)) (-2229 (((-1274) $) 82)) (-2504 (((-863) $) 76) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 32) (($ (-341 (-2516) (-2516 (QUOTE XC)) (-700))) 40))) -(((-66 |#1|) (-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516) (-2516 (QUOTE XC)) (-700)))))) (-1179)) (T -66)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-341 (-2516) (-2516 (QUOTE XC)) (-700))) (-5 *1 (-66 *3)) (-14 *3 (-1179))))) -(-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516) (-2516 (QUOTE XC)) (-700)))))) -((-2229 (((-1274) $) 68)) (-2504 (((-863) $) 62) (($ (-690 (-700))) 54) (($ (-645 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 58))) -(((-67 |#1|) (-385) (-1179)) (T -67)) +((-4369 (((-112) $) 12)) (-4390 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-410 (-549)) $) 25) (($ $ (-410 (-549))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4369 ((-112) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-47 |#2| |#3|) (-1052) (-794)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4369 ((-112) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| |#2|) 73)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-4380 ((|#2| $) 76)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4109 ((|#1| $ |#2|) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-47 |#1| |#2|) (-140) (-1052) (-794)) (T -47)) +((-3594 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-112)))) (-3294 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) (-4109 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-365))))) +(-13 (-1052) (-111 |t#1| |t#1|) (-10 -8 (-15 -3594 (|t#1| $)) (-15 -3295 ($ $)) (-15 -4380 (|t#2| $)) (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (-15 -4369 ((-112) $)) (-15 -3294 ($ |t#1| |t#2|)) (-15 -4391 ($ $)) (-15 -4109 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -4381 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-560)) (-6 (-560)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-549)))) (-6 (-38 (-410 (-549)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-291) |has| |#1| (-560)) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-1715 (((-643 $) (-1174 $) (-1180)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-949 $)) NIL)) (-1303 (($ (-1174 $) (-1180)) NIL) (($ (-1174 $)) NIL) (($ (-949 $)) NIL)) (-3608 (((-112) $) 9)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1708 (((-643 (-613 $)) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-1304 (((-643 $) (-1174 $) (-1180)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-949 $)) NIL)) (-3603 (($ (-1174 $) (-1180)) NIL) (($ (-1174 $)) NIL) (($ (-949 $)) NIL)) (-3577 (((-3 (-613 $) #1="failed") $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 (-410 (-549)) #1#) $) NIL)) (-3576 (((-613 $) $) NIL) (((-549) $) NIL) (((-410 (-549)) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-410 (-549)))) (|:| |vec| (-1269 (-410 (-549))))) (-691 $) (-1269 $)) NIL) (((-691 (-410 (-549))) (-691 $)) NIL)) (-4274 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2973 (($ $) NIL) (($ (-643 $)) NIL)) (-1707 (((-643 (-113)) $) NIL)) (-3448 (((-113) (-113)) NIL)) (-2573 (((-112) $) 11)) (-3076 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-3399 (((-1128 (-549) (-613 $)) $) NIL)) (-3412 (($ $ (-549)) NIL)) (-3536 (((-1174 $) (-1174 $) (-613 $)) NIL) (((-1174 $) (-1174 $) (-643 (-613 $))) NIL) (($ $ (-613 $)) NIL) (($ $ (-643 (-613 $))) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-1705 (((-1174 $) (-613 $)) NIL (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) NIL)) (-1710 (((-3 (-613 $) "failed") $) NIL)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-1709 (((-643 (-613 $)) $) NIL)) (-2384 (($ (-113) $) NIL) (($ (-113) (-643 $)) NIL)) (-3035 (((-112) $ (-113)) NIL) (((-112) $ (-1180)) NIL)) (-2806 (($ $) NIL)) (-3003 (((-773) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-1706 (((-112) $ $) NIL) (((-112) $ (-1180)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1752 (((-773) $) NIL)) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-3398 (((-1128 (-549) (-613 $)) $) NIL)) (-3605 (($ $) NIL (|has| $ (-1052)))) (-4402 (((-380) $) NIL) (((-225) $) NIL) (((-168 (-380)) $) NIL)) (-4378 (((-865) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-549))) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-1128 (-549) (-613 $))) NIL)) (-3530 (((-773)) NIL T CONST)) (-2990 (($ $) NIL) (($ (-643 $)) NIL)) (-2403 (((-112) (-113)) NIL)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 6 T CONST)) (-3067 (($) 10 T CONST)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) 13)) (-4381 (($ $ $) NIL)) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-410 (-549))) NIL) (($ $ (-549)) NIL) (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL))) +(((-48) (-13 (-299) (-27) (-1041 (-549)) (-1041 (-410 (-549))) (-641 (-549)) (-1023) (-641 (-410 (-549))) (-147) (-616 (-168 (-380))) (-233) (-10 -8 (-15 -4378 ($ (-1128 (-549) (-613 $)))) (-15 -3399 ((-1128 (-549) (-613 $)) $)) (-15 -3398 ((-1128 (-549) (-613 $)) $)) (-15 -4274 ($ $)) (-15 -3536 ((-1174 $) (-1174 $) (-613 $))) (-15 -3536 ((-1174 $) (-1174 $) (-643 (-613 $)))) (-15 -3536 ($ $ (-613 $))) (-15 -3536 ($ $ (-643 (-613 $))))))) (T -48)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) (-4274 (*1 *1 *1) (-5 *1 (-48))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-643 (-613 (-48)))) (-5 *1 (-48)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-613 (-48)))) (-5 *1 (-48))))) +(-13 (-299) (-27) (-1041 (-549)) (-1041 (-410 (-549))) (-641 (-549)) (-1023) (-641 (-410 (-549))) (-147) (-616 (-168 (-380))) (-233) (-10 -8 (-15 -4378 ($ (-1128 (-549) (-613 $)))) (-15 -3399 ((-1128 (-549) (-613 $)) $)) (-15 -3398 ((-1128 (-549) (-613 $)) $)) (-15 -4274 ($ $)) (-15 -3536 ((-1174 $) (-1174 $) (-613 $))) (-15 -3536 ((-1174 $) (-1174 $) (-643 (-613 $)))) (-15 -3536 ($ $ (-613 $))) (-15 -3536 ($ $ (-643 (-613 $)))))) +((-2968 (((-112) $ $) NIL)) (-2116 (((-643 (-509)) $) 17)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 7)) (-3653 (((-1185) $) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-49) (-13 (-1104) (-10 -8 (-15 -2116 ((-643 (-509)) $)) (-15 -3653 ((-1185) $))))) (T -49)) +((-2116 (*1 *2 *1) (-12 (-5 *2 (-643 (-509))) (-5 *1 (-49)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-49))))) +(-13 (-1104) (-10 -8 (-15 -2116 ((-643 (-509)) $)) (-15 -3653 ((-1185) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 87)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3065 (((-112) $) 30)) (-3577 (((-3 |#1| "failed") $) 33)) (-3576 ((|#1| $) 34)) (-4391 (($ $) 40)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3594 ((|#1| $) 31)) (-1557 (($ $) 76)) (-3663 (((-1162) $) NIL)) (-1556 (((-112) $) 43)) (-3664 (((-1123) $) NIL)) (-2572 (($ (-773)) 74)) (-4375 (($ (-643 (-549))) 75)) (-4380 (((-773) $) 44)) (-4378 (((-865) $) 93) (($ (-549)) 71) (($ |#1|) 69)) (-4109 ((|#1| $ $) 28)) (-3530 (((-773)) 73 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 45 T CONST)) (-3067 (($) 17 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 66)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) +(((-50 |#1| |#2|) (-13 (-623 |#1|) (-1041 |#1|) (-10 -8 (-15 -3594 (|#1| $)) (-15 -1557 ($ $)) (-15 -4391 ($ $)) (-15 -4109 (|#1| $ $)) (-15 -2572 ($ (-773))) (-15 -4375 ($ (-643 (-549)))) (-15 -1556 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -4380 ((-773) $)) (-15 -4390 ($ (-1 |#1| |#1|) $)))) (-1052) (-643 (-1180))) (T -50)) +((-3594 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-50 *2 *3)) (-14 *3 (-643 (-1180))))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))))) (-4109 (*1 *2 *1 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-50 *2 *3)) (-14 *3 (-643 (-1180))))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) (-14 *4 (-643 (-1180))))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-50 *3 *4)) (-14 *4 (-643 (-1180)))))) +(-13 (-623 |#1|) (-1041 |#1|) (-10 -8 (-15 -3594 (|#1| $)) (-15 -1557 ($ $)) (-15 -4391 ($ $)) (-15 -4109 (|#1| $ $)) (-15 -2572 ($ (-773))) (-15 -4375 ($ (-643 (-549)))) (-15 -1556 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -4380 ((-773) $)) (-15 -4390 ($ (-1 |#1| |#1|) $)))) +((-2968 (((-112) $ $) NIL)) (-1338 (((-775) $) 8)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1339 (((-1106) $) 10)) (-4378 (((-865) $) 15)) (-3662 (((-112) $ $) NIL)) (-1340 (($ (-1106) (-775)) 16)) (-3455 (((-112) $ $) 12))) +(((-51) (-13 (-1104) (-10 -8 (-15 -1340 ($ (-1106) (-775))) (-15 -1339 ((-1106) $)) (-15 -1338 ((-775) $))))) (T -51)) +((-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-51)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-51)))) (-1338 (*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-51))))) +(-13 (-1104) (-10 -8 (-15 -1340 ($ (-1106) (-775))) (-15 -1339 ((-1106) $)) (-15 -1338 ((-775) $)))) +((-3065 (((-112) (-51)) 18)) (-3577 (((-3 |#1| "failed") (-51)) 20)) (-3576 ((|#1| (-51)) 21)) (-4378 (((-51) |#1|) 14))) +(((-52 |#1|) (-10 -7 (-15 -4378 ((-51) |#1|)) (-15 -3577 ((-3 |#1| "failed") (-51))) (-15 -3065 ((-112) (-51))) (-15 -3576 (|#1| (-51)))) (-1219)) (T -52)) +((-3576 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1219)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1219)))) (-3577 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1219)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1219))))) +(-10 -7 (-15 -4378 ((-51) |#1|)) (-15 -3577 ((-3 |#1| "failed") (-51))) (-15 -3065 ((-112) (-51))) (-15 -3576 (|#1| (-51)))) +((-2948 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2948 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1052) (-650 |#1|) (-854 |#1|)) (T -53)) +((-2948 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-650 *5)) (-4 *5 (-1052)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-854 *5))))) +(-10 -7 (-15 -2948 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1342 ((|#3| |#3| (-643 (-1180))) 46)) (-1341 ((|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3| (-922)) 32) ((|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1341 (|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -1341 (|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3| (-922))) (-15 -1342 (|#3| |#3| (-643 (-1180))))) (-1104) (-13 (-1052) (-889 |#1|) (-616 (-893 |#1|))) (-13 (-424 |#2|) (-889 |#1|) (-616 (-893 |#1|)))) (T -54)) +((-1342 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) (-1341 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-643 (-1078 *5 *6 *2))) (-5 *4 (-922)) (-4 *5 (-1104)) (-4 *6 (-13 (-1052) (-889 *5) (-616 (-893 *5)))) (-4 *2 (-13 (-424 *6) (-889 *5) (-616 (-893 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1341 (*1 *2 *3 *2) (-12 (-5 *3 (-643 (-1078 *4 *5 *2))) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -1341 (|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3|)) (-15 -1341 (|#3| (-643 (-1078 |#1| |#2| |#3|)) |#3| (-922))) (-15 -1342 (|#3| |#3| (-643 (-1180))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 14)) (-3577 (((-3 (-773) "failed") $) 34)) (-3576 (((-773) $) NIL)) (-2573 (((-112) $) 16)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) 18)) (-4378 (((-865) $) 23) (($ (-773)) 29)) (-3662 (((-112) $ $) NIL)) (-1343 (($) 11 T CONST)) (-3455 (((-112) $ $) 20))) +(((-55) (-13 (-1104) (-1041 (-773)) (-10 -8 (-15 -1343 ($) -4384) (-15 -3608 ((-112) $)) (-15 -2573 ((-112) $))))) (T -55)) +((-1343 (*1 *1) (-5 *1 (-55))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1104) (-1041 (-773)) (-10 -8 (-15 -1343 ($) -4384) (-15 -3608 ((-112) $)) (-15 -2573 ((-112) $)))) +((-1309 (((-112) $ (-773)) 27)) (-1345 (($ $ (-549) |#3|) 66)) (-1344 (($ $ (-549) |#4|) 70)) (-3516 ((|#3| $ (-549)) 79)) (-2124 (((-643 |#2|) $) 47)) (-4151 (((-112) $ (-773)) 31)) (-3666 (((-112) |#2| $) 74)) (-2128 (($ (-1 |#2| |#2|) $) 55)) (-4390 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4148 (((-112) $ (-773)) 29)) (-2373 (($ $ |#2|) 52)) (-2126 (((-112) (-1 (-112) |#2|) $) 21)) (-4231 ((|#2| $ (-549) (-549)) NIL) ((|#2| $ (-549) (-549) |#2|) 35)) (-2125 (((-773) (-1 (-112) |#2|) $) 41) (((-773) |#2| $) 76)) (-3824 (($ $) 51)) (-3515 ((|#4| $ (-549)) 82)) (-4378 (((-865) $) 88)) (-2127 (((-112) (-1 (-112) |#2|) $) 20)) (-3455 (((-112) $ $) 73)) (-4389 (((-773) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1344 (|#1| |#1| (-549) |#4|)) (-15 -1345 (|#1| |#1| (-549) |#3|)) (-15 -2124 ((-643 |#2|) |#1|)) (-15 -3515 (|#4| |#1| (-549))) (-15 -3516 (|#3| |#1| (-549))) (-15 -4231 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549))) (-15 -2373 (|#1| |#1| |#2|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3666 ((-112) |#2| |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773))) (-15 -3824 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1219) (-374 |#2|) (-374 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1344 (|#1| |#1| (-549) |#4|)) (-15 -1345 (|#1| |#1| (-549) |#3|)) (-15 -2124 ((-643 |#2|) |#1|)) (-15 -3515 (|#4| |#1| (-549))) (-15 -3516 (|#3| |#1| (-549))) (-15 -4231 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549))) (-15 -2373 (|#1| |#1| |#2|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3666 ((-112) |#2| |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773))) (-15 -3824 (|#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) (-549) |#1|) 45)) (-1345 (($ $ (-549) |#2|) 43)) (-1344 (($ $ (-549) |#3|) 42)) (-4156 (($) 7 T CONST)) (-3516 ((|#2| $ (-549)) 47)) (-1684 ((|#1| $ (-549) (-549) |#1|) 44)) (-3517 ((|#1| $ (-549) (-549)) 49)) (-2124 (((-643 |#1|) $) 31)) (-3519 (((-773) $) 52)) (-4046 (($ (-773) (-773) |#1|) 58)) (-3518 (((-773) $) 51)) (-4151 (((-112) $ (-773)) 9)) (-3523 (((-549) $) 56)) (-3521 (((-549) $) 54)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3522 (((-549) $) 55)) (-3520 (((-549) $) 53)) (-2128 (($ (-1 |#1| |#1|) $) 35)) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) 57)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) (-549)) 50) ((|#1| $ (-549) (-549) |#1|) 48)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-3515 ((|#3| $ (-549)) 46)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-57 |#1| |#2| |#3|) (-140) (-1219) (-374 |t#1|) (-374 |t#1|)) (T -57)) +((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4046 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-773)) (-4 *3 (-1219)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2373 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-549)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-549)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-549)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-549)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-773)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-773)))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-1219)))) (-3517 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)))) (-3516 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) (-4 *2 (-374 *4)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) (-4 *2 (-374 *4)))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-643 *3)))) (-4219 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)))) (-1684 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) (-4 *5 (-374 *2)))) (-1345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-374 *4)) (-4 *5 (-374 *4)))) (-1344 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) (-4 *3 (-374 *4)))) (-2128 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4390 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3))))) +(-13 (-492 |t#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -4046 ($ (-773) (-773) |t#1|)) (-15 -2373 ($ $ |t#1|)) (-15 -3523 ((-549) $)) (-15 -3522 ((-549) $)) (-15 -3521 ((-549) $)) (-15 -3520 ((-549) $)) (-15 -3519 ((-773) $)) (-15 -3518 ((-773) $)) (-15 -4231 (|t#1| $ (-549) (-549))) (-15 -3517 (|t#1| $ (-549) (-549))) (-15 -4231 (|t#1| $ (-549) (-549) |t#1|)) (-15 -3516 (|t#2| $ (-549))) (-15 -3515 (|t#3| $ (-549))) (-15 -2124 ((-643 |t#1|) $)) (-15 -4219 (|t#1| $ (-549) (-549) |t#1|)) (-15 -1684 (|t#1| $ (-549) (-549) |t#1|)) (-15 -1345 ($ $ (-549) |t#2|)) (-15 -1344 ($ $ (-549) |t#3|)) (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (-15 -2128 ($ (-1 |t#1| |t#1|) $)) (-15 -4390 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4390 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-1346 (($ (-643 |#1|)) 11) (($ (-773) |#1|) 14)) (-4046 (($ (-773) |#1|) 13)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 10)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1346 ($ (-643 |#1|))) (-15 -1346 ($ (-773) |#1|)))) (-1219)) (T -58)) +((-1346 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-58 *3)))) (-1346 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *1 (-58 *3)) (-4 *3 (-1219))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1346 ($ (-643 |#1|))) (-15 -1346 ($ (-773) |#1|)))) +((-4273 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-4274 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-4390 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) +(((-59 |#1| |#2|) (-10 -7 (-15 -4273 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4390 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1219) (-1219)) (T -59)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-59 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +(-10 -7 (-15 -4273 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4390 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1345 (($ $ (-549) (-58 |#1|)) NIL)) (-1344 (($ $ (-549) (-58 |#1|)) NIL)) (-4156 (($) NIL T CONST)) (-3516 (((-58 |#1|) $ (-549)) NIL)) (-1684 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3519 (((-773) $) NIL)) (-4046 (($ (-773) (-773) |#1|) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 (((-58 |#1|) $ (-549)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4426))) (-1219)) (T -60)) +NIL +(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4426))) +((-3577 (((-3 $ #1="failed") (-315 (-380))) 41) (((-3 $ #1#) (-315 (-549))) 46) (((-3 $ #1#) (-949 (-380))) 50) (((-3 $ #1#) (-949 (-549))) 54) (((-3 $ #1#) (-410 (-949 (-380)))) 36) (((-3 $ #1#) (-410 (-949 (-549)))) 29)) (-3576 (($ (-315 (-380))) 39) (($ (-315 (-549))) 44) (($ (-949 (-380))) 48) (($ (-949 (-549))) 52) (($ (-410 (-949 (-380)))) 34) (($ (-410 (-949 (-549)))) 26)) (-3804 (((-1275) $) 76)) (-4378 (((-865) $) 69) (($ (-643 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 64) (($ (-341 (-3953 (QUOTE X)) (-3953) (-701))) 25))) +(((-61 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953 (QUOTE X)) (-3953) (-701)))))) (-1180)) (T -61)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953 (QUOTE X)) (-3953) (-701))) (-5 *1 (-61 *3)) (-14 *3 (-1180))))) +(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953 (QUOTE X)) (-3953) (-701)))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 74) (((-3 $ #1#) (-1269 (-315 (-549)))) 63) (((-3 $ #1#) (-1269 (-949 (-380)))) 94) (((-3 $ #1#) (-1269 (-949 (-549)))) 84) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 52) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 39)) (-3576 (($ (-1269 (-315 (-380)))) 70) (($ (-1269 (-315 (-549)))) 59) (($ (-1269 (-949 (-380)))) 90) (($ (-1269 (-949 (-549)))) 80) (($ (-1269 (-410 (-949 (-380))))) 48) (($ (-1269 (-410 (-949 (-549))))) 32)) (-3804 (((-1275) $) 124)) (-4378 (((-865) $) 118) (($ (-643 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 101) (($ (-1269 (-341 (-3953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3953) (-701)))) 31))) +(((-62 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3953) (-701))))))) (-1180)) (T -62)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3953) (-701)))) (-5 *1 (-62 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3953) (-701))))))) +((-3804 (((-1275) $) 54) (((-1275)) 55)) (-4378 (((-865) $) 51))) +(((-63 |#1|) (-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) (-1180)) (T -63)) +((-3804 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-63 *3)) (-14 *3 (-1180))))) +(-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 153) (((-3 $ #1#) (-1269 (-315 (-549)))) 143) (((-3 $ #1#) (-1269 (-949 (-380)))) 173) (((-3 $ #1#) (-1269 (-949 (-549)))) 163) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 132) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 120)) (-3576 (($ (-1269 (-315 (-380)))) 149) (($ (-1269 (-315 (-549)))) 139) (($ (-1269 (-949 (-380)))) 169) (($ (-1269 (-949 (-549)))) 159) (($ (-1269 (-410 (-949 (-380))))) 128) (($ (-1269 (-410 (-949 (-549))))) 113)) (-3804 (((-1275) $) 106)) (-4378 (((-865) $) 100) (($ (-643 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 33) (($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701)))) 98))) +(((-64 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701))))))) (-1180)) (T -64)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701)))) (-5 *1 (-64 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701))))))) +((-3577 (((-3 $ #1="failed") (-691 (-315 (-380)))) 114) (((-3 $ #1#) (-691 (-315 (-549)))) 102) (((-3 $ #1#) (-691 (-949 (-380)))) 136) (((-3 $ #1#) (-691 (-949 (-549)))) 125) (((-3 $ #1#) (-691 (-410 (-949 (-380))))) 90) (((-3 $ #1#) (-691 (-410 (-949 (-549))))) 76)) (-3576 (($ (-691 (-315 (-380)))) 110) (($ (-691 (-315 (-549)))) 98) (($ (-691 (-949 (-380)))) 132) (($ (-691 (-949 (-549)))) 121) (($ (-691 (-410 (-949 (-380))))) 86) (($ (-691 (-410 (-949 (-549))))) 69)) (-3804 (((-1275) $) 144)) (-4378 (((-865) $) 138) (($ (-643 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 32) (($ (-691 (-341 (-3953) (-3953 (QUOTE X) (QUOTE HESS)) (-701)))) 59))) +(((-65 |#1|) (-13 (-387) (-618 (-691 (-341 (-3953) (-3953 (QUOTE X) (QUOTE HESS)) (-701))))) (-1180)) (T -65)) +NIL +(-13 (-387) (-618 (-691 (-341 (-3953) (-3953 (QUOTE X) (QUOTE HESS)) (-701))))) +((-3577 (((-3 $ #1="failed") (-315 (-380))) 60) (((-3 $ #1#) (-315 (-549))) 65) (((-3 $ #1#) (-949 (-380))) 69) (((-3 $ #1#) (-949 (-549))) 73) (((-3 $ #1#) (-410 (-949 (-380)))) 55) (((-3 $ #1#) (-410 (-949 (-549)))) 48)) (-3576 (($ (-315 (-380))) 58) (($ (-315 (-549))) 63) (($ (-949 (-380))) 67) (($ (-949 (-549))) 71) (($ (-410 (-949 (-380)))) 53) (($ (-410 (-949 (-549)))) 45)) (-3804 (((-1275) $) 82)) (-4378 (((-865) $) 76) (($ (-643 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 32) (($ (-341 (-3953) (-3953 (QUOTE XC)) (-701))) 40))) +(((-66 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE XC)) (-701)))))) (-1180)) (T -66)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953) (-3953 (QUOTE XC)) (-701))) (-5 *1 (-66 *3)) (-14 *3 (-1180))))) +(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE XC)) (-701)))))) +((-3804 (((-1275) $) 68)) (-4378 (((-865) $) 62) (($ (-691 (-701))) 54) (($ (-643 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 58))) +(((-67 |#1|) (-385) (-1180)) (T -67)) NIL (-385) -((-2229 (((-1274) $) 69)) (-2504 (((-863) $) 63) (($ (-690 (-700))) 55) (($ (-645 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 60))) -(((-68 |#1|) (-385) (-1179)) (T -68)) +((-3804 (((-1275) $) 69)) (-4378 (((-865) $) 63) (($ (-691 (-701))) 55) (($ (-643 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 60))) +(((-68 |#1|) (-385) (-1180)) (T -68)) NIL (-385) -((-2229 (((-1274) $) NIL) (((-1274)) 33)) (-2504 (((-863) $) NIL))) -(((-69 |#1|) (-13 (-398) (-10 -7 (-15 -2229 ((-1274))))) (-1179)) (T -69)) -((-2229 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-69 *3)) (-14 *3 (-1179))))) -(-13 (-398) (-10 -7 (-15 -2229 ((-1274))))) -((-2229 (((-1274) $) 75)) (-2504 (((-863) $) 69) (($ (-690 (-700))) 61) (($ (-645 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 60))) -(((-70 |#1|) (-385) (-1179)) (T -70)) +((-3804 (((-1275) $) NIL) (((-1275)) 33)) (-4378 (((-865) $) NIL))) +(((-69 |#1|) (-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) (-1180)) (T -69)) +((-3804 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-69 *3)) (-14 *3 (-1180))))) +(-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) +((-3804 (((-1275) $) 75)) (-4378 (((-865) $) 69) (($ (-691 (-701))) 61) (($ (-643 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 60))) +(((-70 |#1|) (-385) (-1180)) (T -70)) NIL (-385) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 111) (((-3 $ "failed") (-1269 (-317 (-567)))) 100) (((-3 $ "failed") (-1269 (-954 (-381)))) 131) (((-3 $ "failed") (-1269 (-954 (-567)))) 121) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 89) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 76)) (-3094 (($ (-1269 (-317 (-381)))) 107) (($ (-1269 (-317 (-567)))) 96) (($ (-1269 (-954 (-381)))) 127) (($ (-1269 (-954 (-567)))) 117) (($ (-1269 (-410 (-954 (-381))))) 85) (($ (-1269 (-410 (-954 (-567))))) 69)) (-2229 (((-1274) $) 144)) (-2504 (((-863) $) 138) (($ (-645 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 61) (($ (-1269 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700)))) 62))) -(((-71 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700))))))) (-1179)) (T -71)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700)))) (-5 *1 (-71 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700))))))) -((-2229 (((-1274) $) 33) (((-1274)) 32)) (-2504 (((-863) $) 36))) -(((-72 |#1|) (-13 (-398) (-10 -7 (-15 -2229 ((-1274))))) (-1179)) (T -72)) -((-2229 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-72 *3)) (-14 *3 (-1179))))) -(-13 (-398) (-10 -7 (-15 -2229 ((-1274))))) -((-2229 (((-1274) $) 65)) (-2504 (((-863) $) 59) (($ (-690 (-700))) 51) (($ (-645 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 50))) -(((-73 |#1|) (-385) (-1179)) (T -73)) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 111) (((-3 $ #1#) (-1269 (-315 (-549)))) 100) (((-3 $ #1#) (-1269 (-949 (-380)))) 131) (((-3 $ #1#) (-1269 (-949 (-549)))) 121) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 89) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 76)) (-3576 (($ (-1269 (-315 (-380)))) 107) (($ (-1269 (-315 (-549)))) 96) (($ (-1269 (-949 (-380)))) 127) (($ (-1269 (-949 (-549)))) 117) (($ (-1269 (-410 (-949 (-380))))) 85) (($ (-1269 (-410 (-949 (-549))))) 69)) (-3804 (((-1275) $) 144)) (-4378 (((-865) $) 138) (($ (-643 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 61) (($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))) 62))) +(((-71 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))))))) (-1180)) (T -71)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))) (-5 *1 (-71 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))))))) +((-3804 (((-1275) $) 33) (((-1275)) 32)) (-4378 (((-865) $) 36))) +(((-72 |#1|) (-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) (-1180)) (T -72)) +((-3804 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-72 *3)) (-14 *3 (-1180))))) +(-13 (-399) (-10 -7 (-15 -3804 ((-1275))))) +((-3804 (((-1275) $) 65)) (-4378 (((-865) $) 59) (($ (-691 (-701))) 51) (($ (-643 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 50))) +(((-73 |#1|) (-385) (-1180)) (T -73)) NIL (-385) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 130) (((-3 $ "failed") (-1269 (-317 (-567)))) 120) (((-3 $ "failed") (-1269 (-954 (-381)))) 150) (((-3 $ "failed") (-1269 (-954 (-567)))) 140) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 110) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 98)) (-3094 (($ (-1269 (-317 (-381)))) 126) (($ (-1269 (-317 (-567)))) 116) (($ (-1269 (-954 (-381)))) 146) (($ (-1269 (-954 (-567)))) 136) (($ (-1269 (-410 (-954 (-381))))) 106) (($ (-1269 (-410 (-954 (-567))))) 91)) (-2229 (((-1274) $) 83)) (-2504 (((-863) $) 28) (($ (-645 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 76) (($ (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700)))) 70))) -(((-74 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700))))))) (-1179)) (T -74)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700)))) (-5 *1 (-74 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700))))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 135) (((-3 $ "failed") (-1269 (-317 (-567)))) 124) (((-3 $ "failed") (-1269 (-954 (-381)))) 155) (((-3 $ "failed") (-1269 (-954 (-567)))) 145) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 113) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 100)) (-3094 (($ (-1269 (-317 (-381)))) 131) (($ (-1269 (-317 (-567)))) 120) (($ (-1269 (-954 (-381)))) 151) (($ (-1269 (-954 (-567)))) 141) (($ (-1269 (-410 (-954 (-381))))) 109) (($ (-1269 (-410 (-954 (-567))))) 93)) (-2229 (((-1274) $) 85)) (-2504 (((-863) $) 77) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) NIL) (($ (-1269 (-341 (-2516 (QUOTE X) (QUOTE EPS)) (-2516 (QUOTE -1535)) (-700)))) 72))) -(((-75 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X) (QUOTE EPS)) (-2516 (QUOTE -1535)) (-700))))))) (-1179) (-1179) (-1179)) (T -75)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516 (QUOTE X) (QUOTE EPS)) (-2516 (QUOTE -1535)) (-700)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1179)) (-14 *4 (-1179)) (-14 *5 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X) (QUOTE EPS)) (-2516 (QUOTE -1535)) (-700))))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 141) (((-3 $ "failed") (-1269 (-317 (-567)))) 130) (((-3 $ "failed") (-1269 (-954 (-381)))) 161) (((-3 $ "failed") (-1269 (-954 (-567)))) 151) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 119) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 106)) (-3094 (($ (-1269 (-317 (-381)))) 137) (($ (-1269 (-317 (-567)))) 126) (($ (-1269 (-954 (-381)))) 157) (($ (-1269 (-954 (-567)))) 147) (($ (-1269 (-410 (-954 (-381))))) 115) (($ (-1269 (-410 (-954 (-567))))) 99)) (-2229 (((-1274) $) 91)) (-2504 (((-863) $) 83) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) NIL) (($ (-1269 (-341 (-2516 (QUOTE EPS)) (-2516 (QUOTE YA) (QUOTE YB)) (-700)))) 78))) -(((-76 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE EPS)) (-2516 (QUOTE YA) (QUOTE YB)) (-700))))))) (-1179) (-1179) (-1179)) (T -76)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516 (QUOTE EPS)) (-2516 (QUOTE YA) (QUOTE YB)) (-700)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1179)) (-14 *4 (-1179)) (-14 *5 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE EPS)) (-2516 (QUOTE YA) (QUOTE YB)) (-700))))))) -((-4275 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-567))) 88) (((-3 $ "failed") (-954 (-381))) 92) (((-3 $ "failed") (-954 (-567))) 96) (((-3 $ "failed") (-410 (-954 (-381)))) 78) (((-3 $ "failed") (-410 (-954 (-567)))) 71)) (-3094 (($ (-317 (-381))) 81) (($ (-317 (-567))) 86) (($ (-954 (-381))) 90) (($ (-954 (-567))) 94) (($ (-410 (-954 (-381)))) 76) (($ (-410 (-954 (-567)))) 68)) (-2229 (((-1274) $) 63)) (-2504 (((-863) $) 51) (($ (-645 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 55) (($ (-341 (-2516) (-2516 (QUOTE X)) (-700))) 48))) -(((-77 |#1|) (-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516) (-2516 (QUOTE X)) (-700)))))) (-1179)) (T -77)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-341 (-2516) (-2516 (QUOTE X)) (-700))) (-5 *1 (-77 *3)) (-14 *3 (-1179))))) -(-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516) (-2516 (QUOTE X)) (-700)))))) -((-4275 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-567))) 52) (((-3 $ "failed") (-954 (-381))) 56) (((-3 $ "failed") (-954 (-567))) 60) (((-3 $ "failed") (-410 (-954 (-381)))) 42) (((-3 $ "failed") (-410 (-954 (-567)))) 35)) (-3094 (($ (-317 (-381))) 45) (($ (-317 (-567))) 50) (($ (-954 (-381))) 54) (($ (-954 (-567))) 58) (($ (-410 (-954 (-381)))) 40) (($ (-410 (-954 (-567)))) 32)) (-2229 (((-1274) $) 81)) (-2504 (((-863) $) 75) (($ (-645 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 70) (($ (-341 (-2516) (-2516 (QUOTE X)) (-700))) 31))) -(((-78 |#1|) (-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516) (-2516 (QUOTE X)) (-700)))))) (-1179)) (T -78)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-341 (-2516) (-2516 (QUOTE X)) (-700))) (-5 *1 (-78 *3)) (-14 *3 (-1179))))) -(-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516) (-2516 (QUOTE X)) (-700)))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 90) (((-3 $ "failed") (-1269 (-317 (-567)))) 79) (((-3 $ "failed") (-1269 (-954 (-381)))) 110) (((-3 $ "failed") (-1269 (-954 (-567)))) 100) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 68) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 55)) (-3094 (($ (-1269 (-317 (-381)))) 86) (($ (-1269 (-317 (-567)))) 75) (($ (-1269 (-954 (-381)))) 106) (($ (-1269 (-954 (-567)))) 96) (($ (-1269 (-410 (-954 (-381))))) 64) (($ (-1269 (-410 (-954 (-567))))) 48)) (-2229 (((-1274) $) 126)) (-2504 (((-863) $) 120) (($ (-645 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 116) (($ (-1269 (-341 (-2516) (-2516 (QUOTE XC)) (-700)))) 39))) -(((-79 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516) (-2516 (QUOTE XC)) (-700))))))) (-1179)) (T -79)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516) (-2516 (QUOTE XC)) (-700)))) (-5 *1 (-79 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516) (-2516 (QUOTE XC)) (-700))))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 158) (((-3 $ "failed") (-1269 (-317 (-567)))) 148) (((-3 $ "failed") (-1269 (-954 (-381)))) 178) (((-3 $ "failed") (-1269 (-954 (-567)))) 168) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 138) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 126)) (-3094 (($ (-1269 (-317 (-381)))) 154) (($ (-1269 (-317 (-567)))) 144) (($ (-1269 (-954 (-381)))) 174) (($ (-1269 (-954 (-567)))) 164) (($ (-1269 (-410 (-954 (-381))))) 134) (($ (-1269 (-410 (-954 (-567))))) 119)) (-2229 (((-1274) $) 112)) (-2504 (((-863) $) 106) (($ (-645 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 102) (($ (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700)))) 98))) -(((-80 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700))))))) (-1179)) (T -80)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700)))) (-5 *1 (-80 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700))))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 79) (((-3 $ "failed") (-1269 (-317 (-567)))) 68) (((-3 $ "failed") (-1269 (-954 (-381)))) 99) (((-3 $ "failed") (-1269 (-954 (-567)))) 89) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 57) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 44)) (-3094 (($ (-1269 (-317 (-381)))) 75) (($ (-1269 (-317 (-567)))) 64) (($ (-1269 (-954 (-381)))) 95) (($ (-1269 (-954 (-567)))) 85) (($ (-1269 (-410 (-954 (-381))))) 53) (($ (-1269 (-410 (-954 (-567))))) 37)) (-2229 (((-1274) $) 125)) (-2504 (((-863) $) 119) (($ (-645 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 114) (($ (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700)))) 36))) -(((-81 |#1|) (-13 (-444) (-617 (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700))))) (-1179)) (T -81)) -NIL -(-13 (-444) (-617 (-1269 (-341 (-2516) (-2516 (QUOTE X)) (-700))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 98) (((-3 $ "failed") (-1269 (-317 (-567)))) 87) (((-3 $ "failed") (-1269 (-954 (-381)))) 118) (((-3 $ "failed") (-1269 (-954 (-567)))) 108) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 76) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 63)) (-3094 (($ (-1269 (-317 (-381)))) 94) (($ (-1269 (-317 (-567)))) 83) (($ (-1269 (-954 (-381)))) 114) (($ (-1269 (-954 (-567)))) 104) (($ (-1269 (-410 (-954 (-381))))) 72) (($ (-1269 (-410 (-954 (-567))))) 56)) (-2229 (((-1274) $) 48)) (-2504 (((-863) $) 42) (($ (-645 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 38) (($ (-1269 (-341 (-2516 (QUOTE X) (QUOTE -1535)) (-2516) (-700)))) 33))) -(((-82 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X) (QUOTE -1535)) (-2516) (-700))))))) (-1179)) (T -82)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516 (QUOTE X) (QUOTE -1535)) (-2516) (-700)))) (-5 *1 (-82 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X) (QUOTE -1535)) (-2516) (-700))))))) -((-4275 (((-3 $ "failed") (-690 (-317 (-381)))) 118) (((-3 $ "failed") (-690 (-317 (-567)))) 107) (((-3 $ "failed") (-690 (-954 (-381)))) 140) (((-3 $ "failed") (-690 (-954 (-567)))) 129) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 96) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 83)) (-3094 (($ (-690 (-317 (-381)))) 114) (($ (-690 (-317 (-567)))) 103) (($ (-690 (-954 (-381)))) 136) (($ (-690 (-954 (-567)))) 125) (($ (-690 (-410 (-954 (-381))))) 92) (($ (-690 (-410 (-954 (-567))))) 76)) (-2229 (((-1274) $) 66)) (-2504 (((-863) $) 53) (($ (-645 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 58) (($ (-690 (-341 (-2516 (QUOTE X) (QUOTE -1535)) (-2516) (-700)))) 50))) -(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -2504 ($ (-690 (-341 (-2516 (QUOTE X) (QUOTE -1535)) (-2516) (-700))))))) (-1179)) (T -83)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-2516 (QUOTE X) (QUOTE -1535)) (-2516) (-700)))) (-5 *1 (-83 *3)) (-14 *3 (-1179))))) -(-13 (-386) (-10 -8 (-15 -2504 ($ (-690 (-341 (-2516 (QUOTE X) (QUOTE -1535)) (-2516) (-700))))))) -((-4275 (((-3 $ "failed") (-690 (-317 (-381)))) 113) (((-3 $ "failed") (-690 (-317 (-567)))) 101) (((-3 $ "failed") (-690 (-954 (-381)))) 135) (((-3 $ "failed") (-690 (-954 (-567)))) 124) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 89) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 75)) (-3094 (($ (-690 (-317 (-381)))) 109) (($ (-690 (-317 (-567)))) 97) (($ (-690 (-954 (-381)))) 131) (($ (-690 (-954 (-567)))) 120) (($ (-690 (-410 (-954 (-381))))) 85) (($ (-690 (-410 (-954 (-567))))) 68)) (-2229 (((-1274) $) 60)) (-2504 (((-863) $) 54) (($ (-645 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 45) (($ (-690 (-341 (-2516 (QUOTE X)) (-2516) (-700)))) 46))) -(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -2504 ($ (-690 (-341 (-2516 (QUOTE X)) (-2516) (-700))))))) (-1179)) (T -84)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-2516 (QUOTE X)) (-2516) (-700)))) (-5 *1 (-84 *3)) (-14 *3 (-1179))))) -(-13 (-386) (-10 -8 (-15 -2504 ($ (-690 (-341 (-2516 (QUOTE X)) (-2516) (-700))))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 105) (((-3 $ "failed") (-1269 (-317 (-567)))) 94) (((-3 $ "failed") (-1269 (-954 (-381)))) 125) (((-3 $ "failed") (-1269 (-954 (-567)))) 115) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 83) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 70)) (-3094 (($ (-1269 (-317 (-381)))) 101) (($ (-1269 (-317 (-567)))) 90) (($ (-1269 (-954 (-381)))) 121) (($ (-1269 (-954 (-567)))) 111) (($ (-1269 (-410 (-954 (-381))))) 79) (($ (-1269 (-410 (-954 (-567))))) 63)) (-2229 (((-1274) $) 47)) (-2504 (((-863) $) 41) (($ (-645 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 53) (($ (-1269 (-341 (-2516 (QUOTE X)) (-2516) (-700)))) 38))) -(((-85 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X)) (-2516) (-700))))))) (-1179)) (T -85)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516 (QUOTE X)) (-2516) (-700)))) (-5 *1 (-85 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X)) (-2516) (-700))))))) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 80) (((-3 $ "failed") (-1269 (-317 (-567)))) 69) (((-3 $ "failed") (-1269 (-954 (-381)))) 100) (((-3 $ "failed") (-1269 (-954 (-567)))) 90) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 58) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 45)) (-3094 (($ (-1269 (-317 (-381)))) 76) (($ (-1269 (-317 (-567)))) 65) (($ (-1269 (-954 (-381)))) 96) (($ (-1269 (-954 (-567)))) 86) (($ (-1269 (-410 (-954 (-381))))) 54) (($ (-1269 (-410 (-954 (-567))))) 38)) (-2229 (((-1274) $) 126)) (-2504 (((-863) $) 120) (($ (-645 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 115) (($ (-1269 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700)))) 37))) -(((-86 |#1|) (-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700))))))) (-1179)) (T -86)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700)))) (-5 *1 (-86 *3)) (-14 *3 (-1179))))) -(-13 (-444) (-10 -8 (-15 -2504 ($ (-1269 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700))))))) -((-4275 (((-3 $ "failed") (-690 (-317 (-381)))) 117) (((-3 $ "failed") (-690 (-317 (-567)))) 105) (((-3 $ "failed") (-690 (-954 (-381)))) 139) (((-3 $ "failed") (-690 (-954 (-567)))) 128) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 93) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 79)) (-3094 (($ (-690 (-317 (-381)))) 113) (($ (-690 (-317 (-567)))) 101) (($ (-690 (-954 (-381)))) 135) (($ (-690 (-954 (-567)))) 124) (($ (-690 (-410 (-954 (-381))))) 89) (($ (-690 (-410 (-954 (-567))))) 72)) (-2229 (((-1274) $) 63)) (-2504 (((-863) $) 57) (($ (-645 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 52) (($ (-690 (-341 (-2516 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2516) (-700)))) 48))) -(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -2504 ($ (-690 (-341 (-2516 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2516) (-700))))))) (-1179)) (T -87)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-2516 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2516) (-700)))) (-5 *1 (-87 *3)) (-14 *3 (-1179))))) -(-13 (-386) (-10 -8 (-15 -2504 ($ (-690 (-341 (-2516 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2516) (-700))))))) -((-2229 (((-1274) $) 45)) (-2504 (((-863) $) 39) (($ (-1269 (-700))) 101) (($ (-645 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 34))) -(((-88 |#1|) (-443) (-1179)) (T -88)) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 130) (((-3 $ #1#) (-1269 (-315 (-549)))) 120) (((-3 $ #1#) (-1269 (-949 (-380)))) 150) (((-3 $ #1#) (-1269 (-949 (-549)))) 140) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 110) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 98)) (-3576 (($ (-1269 (-315 (-380)))) 126) (($ (-1269 (-315 (-549)))) 116) (($ (-1269 (-949 (-380)))) 146) (($ (-1269 (-949 (-549)))) 136) (($ (-1269 (-410 (-949 (-380))))) 106) (($ (-1269 (-410 (-949 (-549))))) 91)) (-3804 (((-1275) $) 83)) (-4378 (((-865) $) 28) (($ (-643 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 76) (($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) 70))) +(((-74 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))))) (-1180)) (T -74)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) (-5 *1 (-74 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))))) +((-3577 (((-3 $ #1="failed") (-315 (-380))) 47) (((-3 $ #1#) (-315 (-549))) 52) (((-3 $ #1#) (-949 (-380))) 56) (((-3 $ #1#) (-949 (-549))) 60) (((-3 $ #1#) (-410 (-949 (-380)))) 42) (((-3 $ #1#) (-410 (-949 (-549)))) 35)) (-3576 (($ (-315 (-380))) 45) (($ (-315 (-549))) 50) (($ (-949 (-380))) 54) (($ (-949 (-549))) 58) (($ (-410 (-949 (-380)))) 40) (($ (-410 (-949 (-549)))) 32)) (-3804 (((-1275) $) 81)) (-4378 (((-865) $) 75) (($ (-643 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 70) (($ (-341 (-3953) (-3953 (QUOTE X)) (-701))) 31))) +(((-75 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE X)) (-701)))))) (-1180)) (T -75)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953) (-3953 (QUOTE X)) (-701))) (-5 *1 (-75 *3)) (-14 *3 (-1180))))) +(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE X)) (-701)))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 135) (((-3 $ #1#) (-1269 (-315 (-549)))) 124) (((-3 $ #1#) (-1269 (-949 (-380)))) 155) (((-3 $ #1#) (-1269 (-949 (-549)))) 145) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 113) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 100)) (-3576 (($ (-1269 (-315 (-380)))) 131) (($ (-1269 (-315 (-549)))) 120) (($ (-1269 (-949 (-380)))) 151) (($ (-1269 (-949 (-549)))) 141) (($ (-1269 (-410 (-949 (-380))))) 109) (($ (-1269 (-410 (-949 (-549))))) 93)) (-3804 (((-1275) $) 85)) (-4378 (((-865) $) 77) (($ (-643 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) NIL) (($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE EPS)) (-3953 (QUOTE -4396)) (-701)))) 72))) +(((-76 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE EPS)) (-3953 (QUOTE -4396)) (-701))))))) (-1180) (-1180) (-1180)) (T -76)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X) (QUOTE EPS)) (-3953 (QUOTE -4396)) (-701)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1180)) (-14 *4 (-1180)) (-14 *5 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE EPS)) (-3953 (QUOTE -4396)) (-701))))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 141) (((-3 $ #1#) (-1269 (-315 (-549)))) 130) (((-3 $ #1#) (-1269 (-949 (-380)))) 161) (((-3 $ #1#) (-1269 (-949 (-549)))) 151) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 119) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 106)) (-3576 (($ (-1269 (-315 (-380)))) 137) (($ (-1269 (-315 (-549)))) 126) (($ (-1269 (-949 (-380)))) 157) (($ (-1269 (-949 (-549)))) 147) (($ (-1269 (-410 (-949 (-380))))) 115) (($ (-1269 (-410 (-949 (-549))))) 99)) (-3804 (((-1275) $) 91)) (-4378 (((-865) $) 83) (($ (-643 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) NIL) (($ (-1269 (-341 (-3953 (QUOTE EPS)) (-3953 (QUOTE YA) (QUOTE YB)) (-701)))) 78))) +(((-77 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE EPS)) (-3953 (QUOTE YA) (QUOTE YB)) (-701))))))) (-1180) (-1180) (-1180)) (T -77)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE EPS)) (-3953 (QUOTE YA) (QUOTE YB)) (-701)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1180)) (-14 *4 (-1180)) (-14 *5 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE EPS)) (-3953 (QUOTE YA) (QUOTE YB)) (-701))))))) +((-3577 (((-3 $ #1="failed") (-315 (-380))) 83) (((-3 $ #1#) (-315 (-549))) 88) (((-3 $ #1#) (-949 (-380))) 92) (((-3 $ #1#) (-949 (-549))) 96) (((-3 $ #1#) (-410 (-949 (-380)))) 78) (((-3 $ #1#) (-410 (-949 (-549)))) 71)) (-3576 (($ (-315 (-380))) 81) (($ (-315 (-549))) 86) (($ (-949 (-380))) 90) (($ (-949 (-549))) 94) (($ (-410 (-949 (-380)))) 76) (($ (-410 (-949 (-549)))) 68)) (-3804 (((-1275) $) 63)) (-4378 (((-865) $) 51) (($ (-643 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 55) (($ (-341 (-3953) (-3953 (QUOTE X)) (-701))) 48))) +(((-78 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE X)) (-701)))))) (-1180)) (T -78)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953) (-3953 (QUOTE X)) (-701))) (-5 *1 (-78 *3)) (-14 *3 (-1180))))) +(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953) (-3953 (QUOTE X)) (-701)))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 90) (((-3 $ #1#) (-1269 (-315 (-549)))) 79) (((-3 $ #1#) (-1269 (-949 (-380)))) 110) (((-3 $ #1#) (-1269 (-949 (-549)))) 100) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 68) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 55)) (-3576 (($ (-1269 (-315 (-380)))) 86) (($ (-1269 (-315 (-549)))) 75) (($ (-1269 (-949 (-380)))) 106) (($ (-1269 (-949 (-549)))) 96) (($ (-1269 (-410 (-949 (-380))))) 64) (($ (-1269 (-410 (-949 (-549))))) 48)) (-3804 (((-1275) $) 126)) (-4378 (((-865) $) 120) (($ (-643 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 116) (($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701)))) 39))) +(((-79 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701))))))) (-1180)) (T -79)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701)))) (-5 *1 (-79 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE XC)) (-701))))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 154) (((-3 $ #1#) (-1269 (-315 (-549)))) 144) (((-3 $ #1#) (-1269 (-949 (-380)))) 174) (((-3 $ #1#) (-1269 (-949 (-549)))) 164) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 134) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 122)) (-3576 (($ (-1269 (-315 (-380)))) 150) (($ (-1269 (-315 (-549)))) 140) (($ (-1269 (-949 (-380)))) 170) (($ (-1269 (-949 (-549)))) 160) (($ (-1269 (-410 (-949 (-380))))) 130) (($ (-1269 (-410 (-949 (-549))))) 115)) (-3804 (((-1275) $) 108)) (-4378 (((-865) $) 102) (($ (-643 (-331))) 93) (($ (-331)) 100) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 98) (($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) 94))) +(((-80 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))))) (-1180)) (T -80)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) (-5 *1 (-80 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 79) (((-3 $ #1#) (-1269 (-315 (-549)))) 68) (((-3 $ #1#) (-1269 (-949 (-380)))) 99) (((-3 $ #1#) (-1269 (-949 (-549)))) 89) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 57) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 44)) (-3576 (($ (-1269 (-315 (-380)))) 75) (($ (-1269 (-315 (-549)))) 64) (($ (-1269 (-949 (-380)))) 95) (($ (-1269 (-949 (-549)))) 85) (($ (-1269 (-410 (-949 (-380))))) 53) (($ (-1269 (-410 (-949 (-549))))) 37)) (-3804 (((-1275) $) 125)) (-4378 (((-865) $) 119) (($ (-643 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 114) (($ (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701)))) 36))) +(((-81 |#1|) (-13 (-444) (-618 (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))) (-1180)) (T -81)) +NIL +(-13 (-444) (-618 (-1269 (-341 (-3953) (-3953 (QUOTE X)) (-701))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 80) (((-3 $ #1#) (-1269 (-315 (-549)))) 69) (((-3 $ #1#) (-1269 (-949 (-380)))) 100) (((-3 $ #1#) (-1269 (-949 (-549)))) 90) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 58) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 45)) (-3576 (($ (-1269 (-315 (-380)))) 76) (($ (-1269 (-315 (-549)))) 65) (($ (-1269 (-949 (-380)))) 96) (($ (-1269 (-949 (-549)))) 86) (($ (-1269 (-410 (-949 (-380))))) 54) (($ (-1269 (-410 (-949 (-549))))) 38)) (-3804 (((-1275) $) 126)) (-4378 (((-865) $) 120) (($ (-643 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 115) (($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))) 37))) +(((-82 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))))))) (-1180)) (T -82)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))) (-5 *1 (-82 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 98) (((-3 $ #1#) (-1269 (-315 (-549)))) 87) (((-3 $ #1#) (-1269 (-949 (-380)))) 118) (((-3 $ #1#) (-1269 (-949 (-549)))) 108) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 76) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 63)) (-3576 (($ (-1269 (-315 (-380)))) 94) (($ (-1269 (-315 (-549)))) 83) (($ (-1269 (-949 (-380)))) 114) (($ (-1269 (-949 (-549)))) 104) (($ (-1269 (-410 (-949 (-380))))) 72) (($ (-1269 (-410 (-949 (-549))))) 56)) (-3804 (((-1275) $) 48)) (-4378 (((-865) $) 42) (($ (-643 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 38) (($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701)))) 33))) +(((-83 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701))))))) (-1180)) (T -83)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701)))) (-5 *1 (-83 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701))))))) +((-3577 (((-3 $ #1="failed") (-691 (-315 (-380)))) 118) (((-3 $ #1#) (-691 (-315 (-549)))) 107) (((-3 $ #1#) (-691 (-949 (-380)))) 140) (((-3 $ #1#) (-691 (-949 (-549)))) 129) (((-3 $ #1#) (-691 (-410 (-949 (-380))))) 96) (((-3 $ #1#) (-691 (-410 (-949 (-549))))) 83)) (-3576 (($ (-691 (-315 (-380)))) 114) (($ (-691 (-315 (-549)))) 103) (($ (-691 (-949 (-380)))) 136) (($ (-691 (-949 (-549)))) 125) (($ (-691 (-410 (-949 (-380))))) 92) (($ (-691 (-410 (-949 (-549))))) 76)) (-3804 (((-1275) $) 66)) (-4378 (((-865) $) 53) (($ (-643 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 58) (($ (-691 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701)))) 50))) +(((-84 |#1|) (-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701))))))) (-1180)) (T -84)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-691 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701)))) (-5 *1 (-84 *3)) (-14 *3 (-1180))))) +(-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE X) (QUOTE -4396)) (-3953) (-701))))))) +((-3577 (((-3 $ #1="failed") (-691 (-315 (-380)))) 113) (((-3 $ #1#) (-691 (-315 (-549)))) 101) (((-3 $ #1#) (-691 (-949 (-380)))) 135) (((-3 $ #1#) (-691 (-949 (-549)))) 124) (((-3 $ #1#) (-691 (-410 (-949 (-380))))) 89) (((-3 $ #1#) (-691 (-410 (-949 (-549))))) 75)) (-3576 (($ (-691 (-315 (-380)))) 109) (($ (-691 (-315 (-549)))) 97) (($ (-691 (-949 (-380)))) 131) (($ (-691 (-949 (-549)))) 120) (($ (-691 (-410 (-949 (-380))))) 85) (($ (-691 (-410 (-949 (-549))))) 68)) (-3804 (((-1275) $) 60)) (-4378 (((-865) $) 54) (($ (-643 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 45) (($ (-691 (-341 (-3953 (QUOTE X)) (-3953) (-701)))) 46))) +(((-85 |#1|) (-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE X)) (-3953) (-701))))))) (-1180)) (T -85)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-691 (-341 (-3953 (QUOTE X)) (-3953) (-701)))) (-5 *1 (-85 *3)) (-14 *3 (-1180))))) +(-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE X)) (-3953) (-701))))))) +((-3577 (((-3 $ #1="failed") (-1269 (-315 (-380)))) 105) (((-3 $ #1#) (-1269 (-315 (-549)))) 94) (((-3 $ #1#) (-1269 (-949 (-380)))) 125) (((-3 $ #1#) (-1269 (-949 (-549)))) 115) (((-3 $ #1#) (-1269 (-410 (-949 (-380))))) 83) (((-3 $ #1#) (-1269 (-410 (-949 (-549))))) 70)) (-3576 (($ (-1269 (-315 (-380)))) 101) (($ (-1269 (-315 (-549)))) 90) (($ (-1269 (-949 (-380)))) 121) (($ (-1269 (-949 (-549)))) 111) (($ (-1269 (-410 (-949 (-380))))) 79) (($ (-1269 (-410 (-949 (-549))))) 63)) (-3804 (((-1275) $) 47)) (-4378 (((-865) $) 41) (($ (-643 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 53) (($ (-1269 (-341 (-3953 (QUOTE X)) (-3953) (-701)))) 38))) +(((-86 |#1|) (-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953) (-701))))))) (-1180)) (T -86)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-341 (-3953 (QUOTE X)) (-3953) (-701)))) (-5 *1 (-86 *3)) (-14 *3 (-1180))))) +(-13 (-444) (-10 -8 (-15 -4378 ($ (-1269 (-341 (-3953 (QUOTE X)) (-3953) (-701))))))) +((-3804 (((-1275) $) 45)) (-4378 (((-865) $) 39) (($ (-1269 (-701))) 100) (($ (-643 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 34))) +(((-87 |#1|) (-443) (-1180)) (T -87)) NIL (-443) -((-4275 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-567))) 53) (((-3 $ "failed") (-954 (-381))) 57) (((-3 $ "failed") (-954 (-567))) 61) (((-3 $ "failed") (-410 (-954 (-381)))) 43) (((-3 $ "failed") (-410 (-954 (-567)))) 36)) (-3094 (($ (-317 (-381))) 46) (($ (-317 (-567))) 51) (($ (-954 (-381))) 55) (($ (-954 (-567))) 59) (($ (-410 (-954 (-381)))) 41) (($ (-410 (-954 (-567)))) 33)) (-2229 (((-1274) $) 91)) (-2504 (((-863) $) 85) (($ (-645 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 77) (($ (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700))) 32))) -(((-89 |#1|) (-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700)))))) (-1179)) (T -89)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700))) (-5 *1 (-89 *3)) (-14 *3 (-1179))))) -(-13 (-399) (-10 -8 (-15 -2504 ($ (-341 (-2516 (QUOTE X)) (-2516 (QUOTE -1535)) (-700)))))) -((-1698 (((-1269 (-690 |#1|)) (-690 |#1|)) 65)) (-3281 (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 (-645 (-923))))) |#2| (-923)) 54)) (-1963 (((-2 (|:| |minor| (-645 (-923))) (|:| -4178 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923)) 76 (|has| |#1| (-365))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -3281 ((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 (-645 (-923))))) |#2| (-923))) (-15 -1698 ((-1269 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -1963 ((-2 (|:| |minor| (-645 (-923))) (|:| -4178 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923))) |%noBranch|)) (-559) (-657 |#1|)) (T -90)) -((-1963 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |minor| (-645 (-923))) (|:| -4178 *3) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))) (-3281 (*1 *2 *3 *4) (-12 (-4 *5 (-559)) (-5 *2 (-2 (|:| -2434 (-690 *5)) (|:| |vec| (-1269 (-645 (-923)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5))))) -(-10 -7 (-15 -3281 ((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 (-645 (-923))))) |#2| (-923))) (-15 -1698 ((-1269 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -1963 ((-2 (|:| |minor| (-645 (-923))) (|:| -4178 |#2|) (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 |#2|))) |#2| (-923))) |%noBranch|)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3262 ((|#1| $) 42)) (-1555 (((-112) $ (-772)) NIL)) (-3758 (($) NIL T CONST)) (-3410 ((|#1| |#1| $) 37)) (-4353 ((|#1| $) 35)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3018 ((|#1| $) NIL)) (-3636 (($ |#1| $) 38)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1713 ((|#1| $) 36)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 18)) (-2973 (($) 46)) (-2772 (((-772) $) 33)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) 17)) (-2504 (((-863) $) 32 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) NIL)) (-2851 (($ (-645 |#1|)) 44)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 15 (|has| |#1| (-1102)))) (-2498 (((-772) $) 12 (|has| $ (-6 -4422))))) -(((-91 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -2851 ($ (-645 |#1|))))) (-1102)) (T -91)) -((-2851 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-91 *3))))) -(-13 (-1123 |#1|) (-10 -8 (-15 -2851 ($ (-645 |#1|))))) -((-2504 (((-863) $) 13) (($ (-1184)) 9) (((-1184) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -2504 ((-1184) |#1|)) (-15 -2504 (|#1| (-1184))) (-15 -2504 ((-863) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2504 ((-1184) |#1|)) (-15 -2504 (|#1| (-1184))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-1184)) 17) (((-1184) $) 16)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) +((-3577 (((-3 $ #1="failed") (-691 (-315 (-380)))) 117) (((-3 $ #1#) (-691 (-315 (-549)))) 105) (((-3 $ #1#) (-691 (-949 (-380)))) 139) (((-3 $ #1#) (-691 (-949 (-549)))) 128) (((-3 $ #1#) (-691 (-410 (-949 (-380))))) 93) (((-3 $ #1#) (-691 (-410 (-949 (-549))))) 79)) (-3576 (($ (-691 (-315 (-380)))) 113) (($ (-691 (-315 (-549)))) 101) (($ (-691 (-949 (-380)))) 135) (($ (-691 (-949 (-549)))) 124) (($ (-691 (-410 (-949 (-380))))) 89) (($ (-691 (-410 (-949 (-549))))) 72)) (-3804 (((-1275) $) 63)) (-4378 (((-865) $) 57) (($ (-643 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 52) (($ (-691 (-341 (-3953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3953) (-701)))) 48))) +(((-88 |#1|) (-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3953) (-701))))))) (-1180)) (T -88)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-691 (-341 (-3953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3953) (-701)))) (-5 *1 (-88 *3)) (-14 *3 (-1180))))) +(-13 (-387) (-10 -8 (-15 -4378 ($ (-691 (-341 (-3953 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3953) (-701))))))) +((-3577 (((-3 $ #1="failed") (-315 (-380))) 48) (((-3 $ #1#) (-315 (-549))) 53) (((-3 $ #1#) (-949 (-380))) 57) (((-3 $ #1#) (-949 (-549))) 61) (((-3 $ #1#) (-410 (-949 (-380)))) 43) (((-3 $ #1#) (-410 (-949 (-549)))) 36)) (-3576 (($ (-315 (-380))) 46) (($ (-315 (-549))) 51) (($ (-949 (-380))) 55) (($ (-949 (-549))) 59) (($ (-410 (-949 (-380)))) 41) (($ (-410 (-949 (-549)))) 33)) (-3804 (((-1275) $) 91)) (-4378 (((-865) $) 85) (($ (-643 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 77) (($ (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))) 32))) +(((-89 |#1|) (-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))))) (-1180)) (T -89)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701))) (-5 *1 (-89 *3)) (-14 *3 (-1180))))) +(-13 (-400) (-10 -8 (-15 -4378 ($ (-341 (-3953 (QUOTE X)) (-3953 (QUOTE -4396)) (-701)))))) +((-1348 (((-1269 (-691 |#1|)) (-691 |#1|)) 64)) (-1347 (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 (-643 (-922))))) |#2| (-922)) 54)) (-1349 (((-2 (|:| |minor| (-643 (-922))) (|:| -3687 |#2|) (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 |#2|))) |#2| (-922)) 75 (|has| |#1| (-365))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1347 ((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 (-643 (-922))))) |#2| (-922))) (-15 -1348 ((-1269 (-691 |#1|)) (-691 |#1|))) (IF (|has| |#1| (-365)) (-15 -1349 ((-2 (|:| |minor| (-643 (-922))) (|:| -3687 |#2|) (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 |#2|))) |#2| (-922))) |%noBranch|)) (-560) (-660 |#1|)) (T -90)) +((-1349 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |minor| (-643 (-922))) (|:| -3687 *3) (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-660 *5)))) (-1348 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-691 *4)) (-4 *5 (-660 *4)))) (-1347 (*1 *2 *3 *4) (-12 (-4 *5 (-560)) (-5 *2 (-2 (|:| -1748 (-691 *5)) (|:| |vec| (-1269 (-643 (-922)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-660 *5))))) +(-10 -7 (-15 -1347 ((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 (-643 (-922))))) |#2| (-922))) (-15 -1348 ((-1269 (-691 |#1|)) (-691 |#1|))) (IF (|has| |#1| (-365)) (-15 -1349 ((-2 (|:| |minor| (-643 (-922))) (|:| -3687 |#2|) (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 |#2|))) |#2| (-922))) |%noBranch|)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3748 ((|#1| $) 42)) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3750 ((|#1| |#1| $) 37)) (-3749 ((|#1| $) 35)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) NIL)) (-4039 (($ |#1| $) 38)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1370 ((|#1| $) 36)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 18)) (-3996 (($) 46)) (-3747 (((-773) $) 33)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 17)) (-4378 (((-865) $) 32 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) NIL)) (-1350 (($ (-643 |#1|)) 44)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 15 (|has| |#1| (-1104)))) (-4389 (((-773) $) 12 (|has| $ (-6 -4425))))) +(((-91 |#1|) (-13 (-1124 |#1|) (-10 -8 (-15 -1350 ($ (-643 |#1|))))) (-1104)) (T -91)) +((-1350 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-91 *3))))) +(-13 (-1124 |#1|) (-10 -8 (-15 -1350 ($ (-643 |#1|))))) +((-4378 (((-865) $) 13) (($ (-1185)) 9) (((-1185) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -4378 ((-1185) |#1|)) (-15 -4378 (|#1| (-1185))) (-15 -4378 ((-865) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -4378 ((-1185) |#1|)) (-15 -4378 (|#1| (-1185))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-1185)) 17) (((-1185) $) 16)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) (((-93) (-140)) (T -93)) NIL -(-13 (-1102) (-493 (-1184))) -(((-102) . T) ((-617 #0=(-1184)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T)) -((-2632 (($ $) 10)) (-1367 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -1367 (|#1| |#1|)) (-15 -2632 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1104) (-493 (-1185))) +(((-102) . T) ((-618 #1=(-1185)) . T) ((-615 (-865)) . T) ((-615 #1#) . T) ((-493 #1#) . T) ((-1104) . T)) +((-3911 (($ $) 10)) (-3912 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3912 (|#1| |#1|)) (-15 -3911 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -1367 (|#1| |#1|)) (-15 -2632 (|#1| |#1|))) -((-2610 (($ $) 11)) (-2588 (($ $) 10)) (-2632 (($ $) 9)) (-1367 (($ $) 8)) (-2621 (($ $) 7)) (-2599 (($ $) 6))) +(-10 -8 (-15 -3912 (|#1| |#1|)) (-15 -3911 (|#1| |#1|))) +((-3909 (($ $) 11)) (-3907 (($ $) 10)) (-3911 (($ $) 9)) (-3912 (($ $) 8)) (-3910 (($ $) 7)) (-3908 (($ $) 6))) (((-95) (-140)) (T -95)) -((-2610 (*1 *1 *1) (-4 *1 (-95))) (-2588 (*1 *1 *1) (-4 *1 (-95))) (-2632 (*1 *1 *1) (-4 *1 (-95))) (-1367 (*1 *1 *1) (-4 *1 (-95))) (-2621 (*1 *1 *1) (-4 *1 (-95))) (-2599 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2599 ($ $)) (-15 -2621 ($ $)) (-15 -1367 ($ $)) (-15 -2632 ($ $)) (-15 -2588 ($ $)) (-15 -2610 ($ $)))) -((-2487 (((-112) $ $) NIL)) (-1646 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-96) (-13 (-1085) (-10 -8 (-15 -1646 ((-1137) $))))) (T -96)) -((-1646 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-96))))) -(-13 (-1085) (-10 -8 (-15 -1646 ((-1137) $)))) -((-2487 (((-112) $ $) NIL)) (-2878 (((-381) (-1161) (-381)) 47) (((-381) (-1161) (-1161) (-381)) 45)) (-3004 (((-381) (-381)) 35)) (-4378 (((-1274)) 38)) (-1812 (((-1161) $) NIL)) (-2991 (((-381) (-1161) (-1161)) 51) (((-381) (-1161)) 53)) (-3479 (((-1122) $) NIL)) (-3799 (((-381) (-1161) (-1161)) 52)) (-2163 (((-381) (-1161) (-1161)) 54) (((-381) (-1161)) 55)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-97) (-13 (-1102) (-10 -7 (-15 -2991 ((-381) (-1161) (-1161))) (-15 -2991 ((-381) (-1161))) (-15 -2163 ((-381) (-1161) (-1161))) (-15 -2163 ((-381) (-1161))) (-15 -3799 ((-381) (-1161) (-1161))) (-15 -4378 ((-1274))) (-15 -3004 ((-381) (-381))) (-15 -2878 ((-381) (-1161) (-381))) (-15 -2878 ((-381) (-1161) (-1161) (-381))) (-6 -4422)))) (T -97)) -((-2991 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2163 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3799 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) (-4378 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-97)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-2878 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1161)) (-5 *1 (-97)))) (-2878 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1161)) (-5 *1 (-97))))) -(-13 (-1102) (-10 -7 (-15 -2991 ((-381) (-1161) (-1161))) (-15 -2991 ((-381) (-1161))) (-15 -2163 ((-381) (-1161) (-1161))) (-15 -2163 ((-381) (-1161))) (-15 -3799 ((-381) (-1161) (-1161))) (-15 -4378 ((-1274))) (-15 -3004 ((-381) (-381))) (-15 -2878 ((-381) (-1161) (-381))) (-15 -2878 ((-381) (-1161) (-1161) (-381))) (-6 -4422))) +((-3909 (*1 *1 *1) (-4 *1 (-95))) (-3907 (*1 *1 *1) (-4 *1 (-95))) (-3911 (*1 *1 *1) (-4 *1 (-95))) (-3912 (*1 *1 *1) (-4 *1 (-95))) (-3910 (*1 *1 *1) (-4 *1 (-95))) (-3908 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3908 ($ $)) (-15 -3910 ($ $)) (-15 -3912 ($ $)) (-15 -3911 ($ $)) (-15 -3907 ($ $)) (-15 -3909 ($ $)))) +((-2968 (((-112) $ $) NIL)) (-3973 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-96) (-13 (-1086) (-10 -8 (-15 -3973 ((-1138) $))))) (T -96)) +((-3973 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-96))))) +(-13 (-1086) (-10 -8 (-15 -3973 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-1351 (((-380) (-1162) (-380)) 46) (((-380) (-1162) (-1162) (-380)) 44)) (-1352 (((-380) (-380)) 35)) (-1353 (((-1275)) 37)) (-3663 (((-1162) $) NIL)) (-1356 (((-380) (-1162) (-1162)) 50) (((-380) (-1162)) 52)) (-3664 (((-1123) $) NIL)) (-1354 (((-380) (-1162) (-1162)) 51)) (-1355 (((-380) (-1162) (-1162)) 53) (((-380) (-1162)) 54)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-97) (-13 (-1104) (-10 -7 (-15 -1356 ((-380) (-1162) (-1162))) (-15 -1356 ((-380) (-1162))) (-15 -1355 ((-380) (-1162) (-1162))) (-15 -1355 ((-380) (-1162))) (-15 -1354 ((-380) (-1162) (-1162))) (-15 -1353 ((-1275))) (-15 -1352 ((-380) (-380))) (-15 -1351 ((-380) (-1162) (-380))) (-15 -1351 ((-380) (-1162) (-1162) (-380))) (-6 -4425)))) (T -97)) +((-1356 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1355 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1354 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) (-1353 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-97)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-97)))) (-1351 (*1 *2 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-1162)) (-5 *1 (-97)))) (-1351 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-1162)) (-5 *1 (-97))))) +(-13 (-1104) (-10 -7 (-15 -1356 ((-380) (-1162) (-1162))) (-15 -1356 ((-380) (-1162))) (-15 -1355 ((-380) (-1162) (-1162))) (-15 -1355 ((-380) (-1162))) (-15 -1354 ((-380) (-1162) (-1162))) (-15 -1353 ((-1275))) (-15 -1352 ((-380) (-380))) (-15 -1351 ((-380) (-1162) (-380))) (-15 -1351 ((-380) (-1162) (-1162) (-380))) (-6 -4425))) NIL (((-98) (-140)) (T -98)) NIL -(-13 (-10 -7 (-6 -4422) (-6 (-4424 "*")) (-6 -4423) (-6 -4419) (-6 -4417) (-6 -4416) (-6 -4415) (-6 -4420) (-6 -4414) (-6 -4413) (-6 -4412) (-6 -4411) (-6 -4410) (-6 -4418) (-6 -4421) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4409))) -((-2487 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-4333 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-567))) 24)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 16)) (-3479 (((-1122) $) NIL)) (-1882 ((|#1| $ |#1|) 13)) (-3307 (($ $ $) NIL)) (-4033 (($ $ $) NIL)) (-2504 (((-863) $) 22)) (-3858 (((-112) $ $) NIL)) (-1820 (($) 8 T CONST)) (-2968 (((-112) $ $) 10)) (-3064 (($ $ $) NIL)) (** (($ $ (-923)) 34) (($ $ (-772)) NIL) (($ $ (-567)) 18)) (* (($ $ $) 35))) -(((-99 |#1|) (-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -4333 ($ (-1 |#1| |#1|))) (-15 -4333 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4333 ($ (-1 |#1| |#1| (-567)))))) (-1051)) (T -99)) -((-4333 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) (-4333 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-99 *3))))) -(-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -4333 ($ (-1 |#1| |#1|))) (-15 -4333 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4333 ($ (-1 |#1| |#1| (-567)))))) -((-1561 (((-421 |#2|) |#2| (-645 |#2|)) 10) (((-421 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1561 ((-421 |#2|) |#2| |#2|)) (-15 -1561 ((-421 |#2|) |#2| (-645 |#2|)))) (-13 (-455) (-147)) (-1245 |#1|)) (T -100)) -((-1561 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))) (-1561 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -1561 ((-421 |#2|) |#2| |#2|)) (-15 -1561 ((-421 |#2|) |#2| (-645 |#2|)))) -((-2487 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2487 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2487 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2968 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4425) (-6 (-4427 "*")) (-6 -4426) (-6 -4422) (-6 -4420) (-6 -4419) (-6 -4418) (-6 -4423) (-6 -4417) (-6 -4416) (-6 -4415) (-6 -4414) (-6 -4413) (-6 -4421) (-6 -4424) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4412))) +((-2968 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-1357 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-549))) 24)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 16)) (-3664 (((-1123) $) NIL)) (-4231 ((|#1| $ |#1|) 13)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 22)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 8 T CONST)) (-3455 (((-112) $ $) 10)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) 34) (($ $ (-773)) NIL) (($ $ (-549)) 18)) (* (($ $ $) 35))) +(((-99 |#1|) (-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -1357 ($ (-1 |#1| |#1|))) (-15 -1357 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1357 ($ (-1 |#1| |#1| (-549)))))) (-1052)) (T -99)) +((-1357 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-99 *3)))) (-1357 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-99 *3)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-549))) (-4 *3 (-1052)) (-5 *1 (-99 *3))))) +(-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -1357 ($ (-1 |#1| |#1|))) (-15 -1357 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1357 ($ (-1 |#1| |#1| (-549)))))) +((-1358 (((-408 |#2|) |#2| (-643 |#2|)) 10) (((-408 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -1358 ((-408 |#2|) |#2| |#2|)) (-15 -1358 ((-408 |#2|) |#2| (-643 |#2|)))) (-13 (-455) (-147)) (-1245 |#1|)) (T -100)) +((-1358 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-13 (-455) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-100 *5 *3)))) (-1358 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -1358 ((-408 |#2|) |#2| |#2|)) (-15 -1358 ((-408 |#2|) |#2| (-643 |#2|)))) +((-2968 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2968 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2968 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3455 (((-112) $ $) 6))) (((-102) (-140)) (T -102)) -((-2487 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2968 ((-112) $ $)) (-15 -2487 ((-112) $ $)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3647 ((|#1| $ |#1|) 24 (|has| $ (-6 -4423)))) (-2797 (($ $ $) NIL (|has| $ (-6 -4423)))) (-2009 (($ $ $) NIL (|has| $ (-6 -4423)))) (-1401 (($ $ (-645 |#1|)) 34)) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4347 (($ $) 12)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3246 (($ $ |#1| $) 36)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3165 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3645 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)) 53)) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-4335 (($ $) 11)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) 13)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 9)) (-2973 (($) 35)) (-1882 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2721 (((-567) $ $) NIL)) (-3625 (((-112) $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3600 (($ (-772) |#1|) 37)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -3600 ($ (-772) |#1|)) (-15 -1401 ($ $ (-645 |#1|))) (-15 -3165 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3165 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3645 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3645 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) (-1102)) (T -103)) -((-3600 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1102)))) (-1401 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) (-3165 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1102)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) (-3645 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2)))) (-3645 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -3600 ($ (-772) |#1|)) (-15 -1401 ($ $ (-645 |#1|))) (-15 -3165 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3165 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3645 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3645 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) -((-1585 ((|#3| |#2| |#2|) 36)) (-3385 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4424 "*"))))) (-2333 ((|#3| |#2| |#2|) 38)) (-3408 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4424 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1585 (|#3| |#2| |#2|)) (-15 -2333 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4424 "*"))) (PROGN (-15 -3385 (|#1| |#2| |#2|)) (-15 -3408 (|#1| |#2|))) |%noBranch|)) (-1051) (-1245 |#1|) (-688 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104)) -((-3408 (*1 *2 *3) (-12 (|has| *2 (-6 (-4424 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) (-4 *4 (-688 *2 *5 *6)))) (-3385 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4424 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) (-4 *4 (-688 *2 *5 *6)))) (-2333 (*1 *2 *3 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-1585 (*1 *2 *3 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))))) -(-10 -7 (-15 -1585 (|#3| |#2| |#2|)) (-15 -2333 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4424 "*"))) (PROGN (-15 -3385 (|#1| |#2| |#2|)) (-15 -3408 (|#1| |#2|))) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-2979 (((-645 (-1179))) 37)) (-3194 (((-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) (|:| |singularities| (-1159 (-225)))) (-1179)) 39)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-105) (-13 (-1102) (-10 -7 (-15 -2979 ((-645 (-1179)))) (-15 -3194 ((-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) (|:| |singularities| (-1159 (-225)))) (-1179))) (-6 -4422)))) (T -105)) -((-2979 (*1 *2) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-105)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) (|:| |singularities| (-1159 (-225))))) (-5 *1 (-105))))) -(-13 (-1102) (-10 -7 (-15 -2979 ((-645 (-1179)))) (-15 -3194 ((-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) (|:| |singularities| (-1159 (-225)))) (-1179))) (-6 -4422))) -((-4225 (($ (-645 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -4225 (|#1| (-645 |#2|)))) (-107 |#2|) (-1219)) (T -106)) -NIL -(-10 -8 (-15 -4225 (|#1| (-645 |#2|)))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-3758 (($) 7 T CONST)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +((-2968 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3455 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -3455 ((-112) $ $)) (-15 -2968 ((-112) $ $)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) 24 (|has| $ (-6 -4426)))) (-1388 (($ $ $) NIL (|has| $ (-6 -4426)))) (-1389 (($ $ $) NIL (|has| $ (-6 -4426)))) (-1361 (($ $ (-643 |#1|)) 34)) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 12)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) 36)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1360 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-1359 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-643 |#1|) |#1| |#1| |#1|)) 53)) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) 11)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) 13)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 9)) (-3996 (($) 35)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1362 (($ (-773) |#1|) 37)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -1362 ($ (-773) |#1|)) (-15 -1361 ($ $ (-643 |#1|))) (-15 -1360 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1360 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1359 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1359 ($ $ |#1| (-1 (-643 |#1|) |#1| |#1| |#1|))))) (-1104)) (T -103)) +((-1362 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *1 (-103 *3)) (-4 *3 (-1104)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-103 *3)))) (-1360 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1104)))) (-1360 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-103 *3)))) (-1359 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1104)) (-5 *1 (-103 *2)))) (-1359 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-643 *2) *2 *2 *2)) (-4 *2 (-1104)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -1362 ($ (-773) |#1|)) (-15 -1361 ($ $ (-643 |#1|))) (-15 -1360 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1360 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1359 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1359 ($ $ |#1| (-1 (-643 |#1|) |#1| |#1| |#1|))))) +((-1363 ((|#3| |#2| |#2|) 36)) (-1365 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4427 #1="*"))))) (-1364 ((|#3| |#2| |#2|) 38)) (-1366 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4427 #1#)))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1363 (|#3| |#2| |#2|)) (-15 -1364 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4427 "*"))) (PROGN (-15 -1365 (|#1| |#2| |#2|)) (-15 -1366 (|#1| |#2|))) |%noBranch|)) (-1052) (-1245 |#1|) (-688 |#1| |#4| |#5|) (-374 |#1|) (-374 |#1|)) (T -104)) +((-1366 (*1 *2 *3) (-12 (|has| *2 (-6 (-4427 #1="*"))) (-4 *5 (-374 *2)) (-4 *6 (-374 *2)) (-4 *2 (-1052)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) (-4 *4 (-688 *2 *5 *6)))) (-1365 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4427 #1#))) (-4 *5 (-374 *2)) (-4 *6 (-374 *2)) (-4 *2 (-1052)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) (-4 *4 (-688 *2 *5 *6)))) (-1364 (*1 *2 *3 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)))) (-1363 (*1 *2 *3 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4))))) +(-10 -7 (-15 -1363 (|#3| |#2| |#2|)) (-15 -1364 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4427 "*"))) (PROGN (-15 -1365 (|#1| |#2| |#2|)) (-15 -1366 (|#1| |#2|))) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-1368 (((-643 (-1180))) 37)) (-1367 (((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1180)) 39)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-105) (-13 (-1104) (-10 -7 (-15 -1368 ((-643 (-1180)))) (-15 -1367 ((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1180))) (-6 -4425)))) (T -105)) +((-1368 (*1 *2) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-105)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225))))) (-5 *1 (-105))))) +(-13 (-1104) (-10 -7 (-15 -1368 ((-643 (-1180)))) (-15 -1367 ((-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) (|:| |singularities| (-1157 (-225)))) (-1180))) (-6 -4425))) +((-1371 (($ (-643 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -1371 (|#1| (-643 |#2|)))) (-107 |#2|) (-1219)) (T -106)) +NIL +(-10 -8 (-15 -1371 (|#1| (-643 |#2|)))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-107 |#1|) (-140) (-1219)) (T -107)) -((-4225 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-107 *3)))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) (-3636 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) -(-13 (-492 |t#1|) (-10 -8 (-6 -4423) (-15 -4225 ($ (-645 |t#1|))) (-15 -1713 (|t#1| $)) (-15 -3636 ($ |t#1| $)) (-15 -3018 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 (((-567) $) NIL (|has| (-567) (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| (-567) (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-567) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-3094 (((-567) $) NIL) (((-1179) $) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-567) (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) NIL (|has| (-567) (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL)) (-4294 (((-567) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| (-567) (-1154)))) (-2585 (((-112) $) NIL (|has| (-567) (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| (-567) (-851)))) (-4364 (($ (-1 (-567) (-567)) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-567) (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-1952 (((-567) $) NIL (|has| (-567) (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1179)) (-645 (-567))) NIL (|has| (-567) (-517 (-1179) (-567)))) (($ $ (-1179) (-567)) NIL (|has| (-567) (-517 (-1179) (-567))))) (-2465 (((-772) $) NIL)) (-1882 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2964 (($ $) NIL)) (-4306 (((-567) $) NIL)) (-1322 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1179)) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL) (((-1006 2) $) 10)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-2214 (((-772)) NIL T CONST)) (-3471 (((-567) $) NIL (|has| (-567) (-548)))) (-2336 (($ (-410 (-567))) 9)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1368 (($ $) NIL (|has| (-567) (-821)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3016 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3064 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) -(((-108) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 2)) (-10 -8 (-15 -3989 ((-410 (-567)) $)) (-15 -2336 ($ (-410 (-567))))))) (T -108)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) (-2336 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))) -(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 2)) (-10 -8 (-15 -3989 ((-410 (-567)) $)) (-15 -2336 ($ (-410 (-567)))))) -((-2874 (((-645 (-967)) $) 13)) (-1646 (((-509) $) 9)) (-2504 (((-863) $) 20)) (-2547 (($ (-509) (-645 (-967))) 15))) -(((-109) (-13 (-614 (-863)) (-10 -8 (-15 -1646 ((-509) $)) (-15 -2874 ((-645 (-967)) $)) (-15 -2547 ($ (-509) (-645 (-967))))))) (T -109)) -((-1646 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-645 (-967))) (-5 *1 (-109)))) (-2547 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-109))))) -(-13 (-614 (-863)) (-10 -8 (-15 -1646 ((-509) $)) (-15 -2874 ((-645 (-967)) $)) (-15 -2547 ($ (-509) (-645 (-967)))))) -((-2487 (((-112) $ $) NIL)) (-2509 (($ $) NIL)) (-1779 (($ $ $) NIL)) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2767 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4423)))) (-2080 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3824 (((-112) $ (-1236 (-567)) (-112)) NIL (|has| $ (-6 -4423))) (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-1695 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2617 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2036 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4423)))) (-1970 (((-112) $ (-567)) NIL)) (-3932 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1102))) (((-567) (-112) $) NIL (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) NIL)) (-3468 (((-645 (-112)) $) NIL (|has| $ (-6 -4422)))) (-1763 (($ $ $) NIL)) (-1736 (($ $) NIL)) (-2815 (($ $ $) NIL)) (-4223 (($ (-772) (-112)) 10)) (-1837 (($ $ $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL)) (-1315 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4200 (((-645 (-112)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL)) (-2021 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-4222 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-112) $) NIL (|has| (-567) (-851)))) (-2989 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2930 (($ $ (-112)) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-1804 (((-645 (-112)) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 (($ $ (-1236 (-567))) NIL) (((-112) $ (-567)) NIL) (((-112) $ (-567) (-112)) NIL)) (-4281 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3486 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-2516 (($ (-645 (-112))) NIL)) (-3644 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2504 (((-863) $) NIL)) (-3570 (($ (-772) (-112)) 11)) (-3858 (((-112) $ $) NIL)) (-3450 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-1750 (($ $ $) NIL)) (-2552 (($ $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-2542 (($ $ $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-110) (-13 (-123) (-10 -8 (-15 -3570 ($ (-772) (-112)))))) (T -110)) -((-3570 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -3570 ($ (-772) (-112))))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-140) (-1051) (-1051)) (T -111)) -NIL -(-13 (-649 |t#1|) (-1058 |t#2|) (-10 -7 (-6 -4417) (-6 -4416))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2509 (($ $) 13)) (-1779 (($ $ $) 18)) (-3023 (($) 7 T CONST)) (-4128 (($ $) 6)) (-3404 (((-772)) 26)) (-2119 (($) 34)) (-1763 (($ $ $) 16)) (-1736 (($ $) 9)) (-2815 (($ $ $) 19)) (-1837 (($ $ $) 20)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) 32)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) 30)) (-2406 (($ $ $) 22)) (-3479 (((-1122) $) NIL)) (-1883 (($) 8 T CONST)) (-2663 (($ $ $) 23)) (-1322 (((-539) $) 36)) (-2504 (((-863) $) 38)) (-3858 (((-112) $ $) NIL)) (-1750 (($ $ $) 14)) (-2552 (($ $ $) 17)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 21)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 24)) (-2542 (($ $ $) 15))) -(((-112) (-13 (-845) (-662) (-969) (-615 (-539)) (-10 -8 (-15 -1779 ($ $ $)) (-15 -1837 ($ $ $)) (-15 -2815 ($ $ $)) (-15 -4128 ($ $))))) (T -112)) -((-1779 (*1 *1 *1 *1) (-5 *1 (-112))) (-1837 (*1 *1 *1 *1) (-5 *1 (-112))) (-2815 (*1 *1 *1 *1) (-5 *1 (-112))) (-4128 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-845) (-662) (-969) (-615 (-539)) (-10 -8 (-15 -1779 ($ $ $)) (-15 -1837 ($ $ $)) (-15 -2815 ($ $ $)) (-15 -4128 ($ $)))) -((-1484 (((-3 (-1 |#1| (-645 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-645 |#1|))) 11) (((-3 |#1| "failed") (-114) (-645 |#1|)) 25)) (-2368 (((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-645 (-1 |#1| (-645 |#1|)))) 30)) (-2762 (((-114) |#1|) 63)) (-2386 (((-3 |#1| "failed") (-114)) 58))) -(((-113 |#1|) (-10 -7 (-15 -1484 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -1484 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -1484 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1484 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -2368 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2368 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2368 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -2762 ((-114) |#1|)) (-15 -2386 ((-3 |#1| "failed") (-114)))) (-1102)) (T -113)) -((-2386 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1102)))) (-2762 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1102)))) (-2368 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1102)))) (-2368 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-2368 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-1484 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1102)))) (-1484 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-1484 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1102)) (-5 *1 (-113 *4)))) (-1484 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1102))))) -(-10 -7 (-15 -1484 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -1484 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -1484 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1484 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -2368 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2368 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2368 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -2762 ((-114) |#1|)) (-15 -2386 ((-3 |#1| "failed") (-114)))) -((-2487 (((-112) $ $) NIL)) (-1895 (((-772) $) 91) (($ $ (-772)) 37)) (-1680 (((-112) $) 41)) (-1546 (($ $ (-1161) (-775)) 58) (($ $ (-509) (-775)) 33)) (-3238 (($ $ (-45 (-1161) (-775))) 16)) (-3108 (((-3 (-775) "failed") $ (-1161)) 27) (((-692 (-775)) $ (-509)) 32)) (-2874 (((-45 (-1161) (-775)) $) 15)) (-3609 (($ (-1179)) 20) (($ (-1179) (-772)) 23) (($ (-1179) (-55)) 24)) (-3494 (((-112) $) 39)) (-1341 (((-112) $) 43)) (-1646 (((-1179) $) 8)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-2208 (((-112) $ (-1179)) 11)) (-4129 (($ $ (-1 (-539) (-645 (-539)))) 64) (((-3 (-1 (-539) (-645 (-539))) "failed") $) 71)) (-3479 (((-1122) $) NIL)) (-1679 (((-112) $ (-509)) 36)) (-3330 (($ $ (-1 (-112) $ $)) 45)) (-4079 (((-3 (-1 (-863) (-645 (-863))) "failed") $) 69) (($ $ (-1 (-863) (-645 (-863)))) 51) (($ $ (-1 (-863) (-863))) 53)) (-1476 (($ $ (-1161)) 55) (($ $ (-509)) 56)) (-3846 (($ $) 77)) (-1437 (($ $ (-1 (-112) $ $)) 46)) (-2504 (((-863) $) 60)) (-3858 (((-112) $ $) NIL)) (-3567 (($ $ (-509)) 34)) (-2619 (((-55) $) 72)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 89)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 103))) -(((-114) (-13 (-851) (-836 (-1179)) (-10 -8 (-15 -2874 ((-45 (-1161) (-775)) $)) (-15 -3846 ($ $)) (-15 -3609 ($ (-1179))) (-15 -3609 ($ (-1179) (-772))) (-15 -3609 ($ (-1179) (-55))) (-15 -3494 ((-112) $)) (-15 -1680 ((-112) $)) (-15 -1341 ((-112) $)) (-15 -1895 ((-772) $)) (-15 -1895 ($ $ (-772))) (-15 -3330 ($ $ (-1 (-112) $ $))) (-15 -1437 ($ $ (-1 (-112) $ $))) (-15 -4079 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4079 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4079 ($ $ (-1 (-863) (-863)))) (-15 -4129 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4129 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -1679 ((-112) $ (-509))) (-15 -3567 ($ $ (-509))) (-15 -1476 ($ $ (-1161))) (-15 -1476 ($ $ (-509))) (-15 -3108 ((-3 (-775) "failed") $ (-1161))) (-15 -3108 ((-692 (-775)) $ (-509))) (-15 -1546 ($ $ (-1161) (-775))) (-15 -1546 ($ $ (-509) (-775))) (-15 -3238 ($ $ (-45 (-1161) (-775))))))) (T -114)) -((-2874 (*1 *2 *1) (-12 (-5 *2 (-45 (-1161) (-775))) (-5 *1 (-114)))) (-3846 (*1 *1 *1) (-5 *1 (-114))) (-3609 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-114)))) (-3609 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *1 (-114)))) (-3609 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-55)) (-5 *1 (-114)))) (-3494 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-1895 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4079 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4079 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-4079 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114)))) (-4129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-4129 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-1679 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3567 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1476 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-114)))) (-1476 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-3108 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1161)) (-5 *2 (-775)) (-5 *1 (-114)))) (-3108 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114)))) (-1546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-775)) (-5 *1 (-114)))) (-1546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) (-3238 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1161) (-775))) (-5 *1 (-114))))) -(-13 (-851) (-836 (-1179)) (-10 -8 (-15 -2874 ((-45 (-1161) (-775)) $)) (-15 -3846 ($ $)) (-15 -3609 ($ (-1179))) (-15 -3609 ($ (-1179) (-772))) (-15 -3609 ($ (-1179) (-55))) (-15 -3494 ((-112) $)) (-15 -1680 ((-112) $)) (-15 -1341 ((-112) $)) (-15 -1895 ((-772) $)) (-15 -1895 ($ $ (-772))) (-15 -3330 ($ $ (-1 (-112) $ $))) (-15 -1437 ($ $ (-1 (-112) $ $))) (-15 -4079 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -4079 ($ $ (-1 (-863) (-645 (-863))))) (-15 -4079 ($ $ (-1 (-863) (-863)))) (-15 -4129 ($ $ (-1 (-539) (-645 (-539))))) (-15 -4129 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -1679 ((-112) $ (-509))) (-15 -3567 ($ $ (-509))) (-15 -1476 ($ $ (-1161))) (-15 -1476 ($ $ (-509))) (-15 -3108 ((-3 (-775) "failed") $ (-1161))) (-15 -3108 ((-692 (-775)) $ (-509))) (-15 -1546 ($ $ (-1161) (-775))) (-15 -1546 ($ $ (-509) (-775))) (-15 -3238 ($ $ (-45 (-1161) (-775)))))) -((-3544 (((-567) |#2|) 41))) -(((-115 |#1| |#2|) (-10 -7 (-15 -3544 ((-567) |#2|))) (-13 (-365) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -115)) -((-3544 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1040 (-410 *2)))) (-5 *2 (-567)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3544 ((-567) |#2|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3671 (($ $ (-567)) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-4153 (($ (-1175 (-567)) (-567)) NIL)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3999 (($ $) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3905 (((-772) $) NIL)) (-4384 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4190 (((-567)) NIL)) (-4104 (((-567) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1678 (($ $ (-567)) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2872 (((-1159 (-567)) $) NIL)) (-4314 (($ $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-3092 (((-567) $ (-567)) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-870 |#1|) (-567)) (T -116)) -NIL -(-870 |#1|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| (-116 |#1|) (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-116 |#1|) (-1040 (-567))))) (-3094 (((-116 |#1|) $) NIL) (((-1179) $) NIL (|has| (-116 |#1|) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-116 |#1|) (-1040 (-567)))) (((-567) $) NIL (|has| (-116 |#1|) (-1040 (-567))))) (-1881 (($ $) NIL) (($ (-567) $) NIL)) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-116 |#1|))) (|:| |vec| (-1269 (-116 |#1|)))) (-690 $) (-1269 $)) NIL) (((-690 (-116 |#1|)) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-116 |#1|) (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-116 |#1|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-116 |#1|) (-888 (-381))))) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL)) (-4294 (((-116 |#1|) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1154)))) (-2585 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-1446 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-4364 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-116 |#1|) (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-1952 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-116 |#1|) (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 (-116 |#1|)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-1179)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-517 (-1179) (-116 |#1|)))) (($ $ (-1179) (-116 |#1|)) NIL (|has| (-116 |#1|) (-517 (-1179) (-116 |#1|))))) (-2465 (((-772) $) NIL)) (-1882 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1179)) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2964 (($ $) NIL)) (-4306 (((-116 |#1|) $) NIL)) (-1322 (((-894 (-567)) $) NIL (|has| (-116 |#1|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-116 |#1|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-116 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-116 |#1|) (-1024))) (((-225) $) NIL (|has| (-116 |#1|) (-1024)))) (-3617 (((-174 (-410 (-567))) $) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-116 |#1|)) NIL) (($ (-1179)) NIL (|has| (-116 |#1|) (-1040 (-1179))))) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-911))) (|has| (-116 |#1|) (-145))))) (-2214 (((-772)) NIL T CONST)) (-3471 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-3092 (((-410 (-567)) $ (-567)) NIL)) (-1368 (($ $) NIL (|has| (-116 |#1|) (-821)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1179)) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-116 |#1|) (-902 (-1179)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3016 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3064 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-994 (-116 |#1|)) (-10 -8 (-15 -3092 ((-410 (-567)) $ (-567))) (-15 -3617 ((-174 (-410 (-567))) $)) (-15 -1881 ($ $)) (-15 -1881 ($ (-567) $)))) (-567)) (T -117)) -((-3092 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) (-1881 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) (-1881 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-994 (-116 |#1|)) (-10 -8 (-15 -3092 ((-410 (-567)) $ (-567))) (-15 -3617 ((-174 (-410 (-567))) $)) (-15 -1881 ($ $)) (-15 -1881 ($ (-567) $)))) -((-3824 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3047 (((-645 $) $) 31)) (-2373 (((-112) $ $) 36)) (-2203 (((-112) |#2| $) 40)) (-3895 (((-645 |#2|) $) 25)) (-1972 (((-112) $) 18)) (-1882 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3625 (((-112) $) 57)) (-2504 (((-863) $) 47)) (-2629 (((-645 $) $) 32)) (-2968 (((-112) $ $) 38)) (-2498 (((-772) $) 50))) -(((-118 |#1| |#2|) (-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -3824 (|#1| |#1| "right" |#1|)) (-15 -3824 (|#1| |#1| "left" |#1|)) (-15 -1882 (|#1| |#1| "right")) (-15 -1882 (|#1| |#1| "left")) (-15 -3824 (|#2| |#1| "value" |#2|)) (-15 -2373 ((-112) |#1| |#1|)) (-15 -3895 ((-645 |#2|) |#1|)) (-15 -3625 ((-112) |#1|)) (-15 -1882 (|#2| |#1| "value")) (-15 -1972 ((-112) |#1|)) (-15 -3047 ((-645 |#1|) |#1|)) (-15 -2629 ((-645 |#1|) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2203 ((-112) |#2| |#1|)) (-15 -2498 ((-772) |#1|))) (-119 |#2|) (-1219)) (T -118)) -NIL -(-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -3824 (|#1| |#1| "right" |#1|)) (-15 -3824 (|#1| |#1| "left" |#1|)) (-15 -1882 (|#1| |#1| "right")) (-15 -1882 (|#1| |#1| "left")) (-15 -3824 (|#2| |#1| "value" |#2|)) (-15 -2373 ((-112) |#1| |#1|)) (-15 -3895 ((-645 |#2|) |#1|)) (-15 -3625 ((-112) |#1|)) (-15 -1882 (|#2| |#1| "value")) (-15 -1972 ((-112) |#1|)) (-15 -3047 ((-645 |#1|) |#1|)) (-15 -2629 ((-645 |#1|) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2203 ((-112) |#2| |#1|)) (-15 -2498 ((-772) |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2233 ((|#1| $) 49)) (-1555 (((-112) $ (-772)) 8)) (-3647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-2797 (($ $ $) 53 (|has| $ (-6 -4423)))) (-2009 (($ $ $) 55 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) (($ $ "left" $) 56 (|has| $ (-6 -4423))) (($ $ "right" $) 54 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3758 (($) 7 T CONST)) (-4347 (($ $) 58)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 51)) (-2373 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-4335 (($ $) 60)) (-3895 (((-645 |#1|) $) 46)) (-1972 (((-112) $) 50)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2721 (((-567) $ $) 45)) (-3625 (((-112) $) 47)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 52)) (-2049 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +((-1371 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-107 *3)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) (-4039 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) +(-13 (-492 |t#1|) (-10 -8 (-6 -4426) (-15 -1371 ($ (-643 |t#1|))) (-15 -1370 (|t#1| $)) (-15 -4039 ($ |t#1| $)) (-15 -1369 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-549) $) NIL (|has| (-549) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-549) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-549) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-549) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-549) (-1041 (-549))))) (-3576 (((-549) $) NIL) (((-1180) $) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-549) (-1041 (-549)))) (((-549) $) NIL (|has| (-549) (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-549) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-549) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-549) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-549) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-549) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-549) (-1154)))) (-3607 (((-112) $) NIL (|has| (-549) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-549) (-852)))) (-4390 (($ (-1 (-549) (-549)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-549) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-549) (-308))) (((-410 (-549)) $) NIL)) (-3534 (((-549) $) NIL (|has| (-549) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-549)) (-643 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-310 (-549)))) (($ $ (-294 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-294 (-549)))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-1180)) (-643 (-549))) NIL (|has| (-549) (-517 (-1180) (-549)))) (($ $ (-1180) (-549)) NIL (|has| (-549) (-517 (-1180) (-549))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-549)) NIL (|has| (-549) (-287 (-549) (-549))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-549) $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| (-549) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-549) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-549) (-616 (-538)))) (((-380) $) NIL (|has| (-549) (-1023))) (((-225) $) NIL (|has| (-549) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-549) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 8) (($ (-549)) NIL) (($ (-1180)) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL) (((-1007 2) $) 10)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-549) (-913))) (|has| (-549) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-549) $) NIL (|has| (-549) (-548)))) (-2207 (($ (-410 (-549))) 9)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-549) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-549) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-549) (-852)))) (-4381 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL))) +(((-108) (-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 2)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -2207 ($ (-410 (-549))))))) (T -108)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-108)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-108))))) +(-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 2)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -2207 ($ (-410 (-549)))))) +((-1383 (((-643 (-968)) $) 13)) (-3973 (((-509) $) 9)) (-4378 (((-865) $) 20)) (-1372 (($ (-509) (-643 (-968))) 15))) +(((-109) (-13 (-615 (-865)) (-10 -8 (-15 -3973 ((-509) $)) (-15 -1383 ((-643 (-968)) $)) (-15 -1372 ($ (-509) (-643 (-968))))))) (T -109)) +((-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-643 (-968))) (-5 *1 (-109)))) (-1372 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-968))) (-5 *1 (-109))))) +(-13 (-615 (-865)) (-10 -8 (-15 -3973 ((-509) $)) (-15 -1383 ((-643 (-968)) $)) (-15 -1372 ($ (-509) (-643 (-968)))))) +((-2968 (((-112) $ $) NIL)) (-2458 (($ $) NIL)) (-3745 (($ $ $) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| (-112) (-852))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-112) (-852)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4426)))) (-3310 (($ $) NIL (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-112) $ (-1236 (-549)) (-112)) NIL (|has| $ (-6 -4426))) (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-3830 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-4274 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-1684 (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4426)))) (-3517 (((-112) $ (-549)) NIL)) (-3843 (((-549) (-112) $ (-549)) NIL (|has| (-112) (-1104))) (((-549) (-112) $) NIL (|has| (-112) (-1104))) (((-549) (-1 (-112) (-112)) $) NIL)) (-2124 (((-643 (-112)) $) NIL (|has| $ (-6 -4425)))) (-3255 (($ $ $) NIL)) (-3746 (($ $) NIL)) (-1395 (($ $ $) NIL)) (-4046 (($ (-773) (-112)) 10)) (-1396 (($ $ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL)) (-3941 (($ $ $) NIL (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3008 (((-643 (-112)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL)) (-2128 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ (-112) $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-112) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2373 (($ $ (-112)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-112)) (-643 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-643 (-294 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2379 (((-643 (-112)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (($ $ (-1236 (-549))) NIL) (((-112) $ (-549)) NIL) (((-112) $ (-549) (-112)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2125 (((-773) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104)))) (((-773) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-112) (-616 (-538))))) (-3953 (($ (-643 (-112))) NIL)) (-4233 (($ (-643 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4378 (((-865) $) NIL)) (-1945 (($ (-773) (-112)) 11)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-3256 (($ $ $) NIL)) (-2456 (($ $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-2457 (($ $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-110) (-13 (-123) (-10 -8 (-15 -1945 ($ (-773) (-112)))))) (T -110)) +((-1945 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -1945 ($ (-773) (-112))))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-140) (-1052) (-1052)) (T -111)) +NIL +(-13 (-650 |t#1|) (-1059 |t#2|) (-10 -7 (-6 -4420) (-6 -4419))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-2458 (($ $) 10)) (-3745 (($ $ $) 15)) (-3258 (($) 7 T CONST)) (-1373 (($ $) 6)) (-3540 (((-773)) 24)) (-3395 (($) 32)) (-3255 (($ $ $) 13)) (-3746 (($ $) 9)) (-1395 (($ $ $) 16)) (-1396 (($ $ $) 17)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) 30)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 28)) (-3254 (($ $ $) 20)) (-3664 (((-1123) $) NIL)) (-3257 (($) 8 T CONST)) (-3253 (($ $ $) 21)) (-4402 (((-538) $) 34)) (-4378 (((-865) $) 36)) (-3662 (((-112) $ $) NIL)) (-3256 (($ $ $) 11)) (-2456 (($ $ $) 14)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 19)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 22)) (-2457 (($ $ $) 12))) +(((-112) (-13 (-846) (-664) (-970) (-616 (-538)) (-10 -8 (-15 -3745 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -1373 ($ $))))) (T -112)) +((-3745 (*1 *1 *1 *1) (-5 *1 (-112))) (-1396 (*1 *1 *1 *1) (-5 *1 (-112))) (-1395 (*1 *1 *1 *1) (-5 *1 (-112))) (-1373 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-846) (-664) (-970) (-616 (-538)) (-10 -8 (-15 -3745 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -1373 ($ $)))) +((-2968 (((-112) $ $) NIL)) (-1623 (((-773) $) 91) (($ $ (-773)) 37)) (-1381 (((-112) $) 41)) (-1375 (($ $ (-1162) (-775)) 58) (($ $ (-509) (-775)) 33)) (-1374 (($ $ (-45 (-1162) (-775))) 16)) (-3244 (((-3 (-775) "failed") $ (-1162)) 27) (((-693 (-775)) $ (-509)) 32)) (-1383 (((-45 (-1162) (-775)) $) 15)) (-3448 (($ (-1180)) 20) (($ (-1180) (-773)) 23) (($ (-1180) (-55)) 24)) (-1382 (((-112) $) 39)) (-1380 (((-112) $) 43)) (-3973 (((-1180) $) 8)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3035 (((-112) $ (-1180)) 11)) (-2310 (($ $ (-1 (-538) (-643 (-538)))) 64) (((-3 (-1 (-538) (-643 (-538))) "failed") $) 71)) (-3664 (((-1123) $) NIL)) (-1377 (((-112) $ (-509)) 36)) (-1379 (($ $ (-1 (-112) $ $)) 45)) (-4049 (((-3 (-1 (-865) (-643 (-865))) "failed") $) 69) (($ $ (-1 (-865) (-643 (-865)))) 51) (($ $ (-1 (-865) (-865))) 53)) (-1376 (($ $ (-1162)) 55) (($ $ (-509)) 56)) (-3824 (($ $) 77)) (-1378 (($ $ (-1 (-112) $ $)) 46)) (-4378 (((-865) $) 60)) (-3662 (((-112) $ $) NIL)) (-3195 (($ $ (-509)) 34)) (-2921 (((-55) $) 72)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 89)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 103))) +(((-113) (-13 (-852) (-838 (-1180)) (-10 -8 (-15 -1383 ((-45 (-1162) (-775)) $)) (-15 -3824 ($ $)) (-15 -3448 ($ (-1180))) (-15 -3448 ($ (-1180) (-773))) (-15 -3448 ($ (-1180) (-55))) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1380 ((-112) $)) (-15 -1623 ((-773) $)) (-15 -1623 ($ $ (-773))) (-15 -1379 ($ $ (-1 (-112) $ $))) (-15 -1378 ($ $ (-1 (-112) $ $))) (-15 -4049 ((-3 (-1 (-865) (-643 (-865))) "failed") $)) (-15 -4049 ($ $ (-1 (-865) (-643 (-865))))) (-15 -4049 ($ $ (-1 (-865) (-865)))) (-15 -2310 ($ $ (-1 (-538) (-643 (-538))))) (-15 -2310 ((-3 (-1 (-538) (-643 (-538))) "failed") $)) (-15 -1377 ((-112) $ (-509))) (-15 -3195 ($ $ (-509))) (-15 -1376 ($ $ (-1162))) (-15 -1376 ($ $ (-509))) (-15 -3244 ((-3 (-775) "failed") $ (-1162))) (-15 -3244 ((-693 (-775)) $ (-509))) (-15 -1375 ($ $ (-1162) (-775))) (-15 -1375 ($ $ (-509) (-775))) (-15 -1374 ($ $ (-45 (-1162) (-775))))))) (T -113)) +((-1383 (*1 *2 *1) (-12 (-5 *2 (-45 (-1162) (-775))) (-5 *1 (-113)))) (-3824 (*1 *1 *1) (-5 *1 (-113))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-113)))) (-3448 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *1 (-113)))) (-3448 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-55)) (-5 *1 (-113)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-113)))) (-1623 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-113)))) (-1379 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1378 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-4049 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-865) (-643 (-865)))) (-5 *1 (-113)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-865) (-643 (-865)))) (-5 *1 (-113)))) (-4049 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-865) (-865))) (-5 *1 (-113)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-643 (-538)))) (-5 *1 (-113)))) (-2310 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-538) (-643 (-538)))) (-5 *1 (-113)))) (-1377 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-113)))) (-1376 (*1 *1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-113)))) (-1376 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-113)))) (-3244 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1162)) (-5 *2 (-775)) (-5 *1 (-113)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-775))) (-5 *1 (-113)))) (-1375 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-775)) (-5 *1 (-113)))) (-1375 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-113)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1162) (-775))) (-5 *1 (-113))))) +(-13 (-852) (-838 (-1180)) (-10 -8 (-15 -1383 ((-45 (-1162) (-775)) $)) (-15 -3824 ($ $)) (-15 -3448 ($ (-1180))) (-15 -3448 ($ (-1180) (-773))) (-15 -3448 ($ (-1180) (-55))) (-15 -1382 ((-112) $)) (-15 -1381 ((-112) $)) (-15 -1380 ((-112) $)) (-15 -1623 ((-773) $)) (-15 -1623 ($ $ (-773))) (-15 -1379 ($ $ (-1 (-112) $ $))) (-15 -1378 ($ $ (-1 (-112) $ $))) (-15 -4049 ((-3 (-1 (-865) (-643 (-865))) "failed") $)) (-15 -4049 ($ $ (-1 (-865) (-643 (-865))))) (-15 -4049 ($ $ (-1 (-865) (-865)))) (-15 -2310 ($ $ (-1 (-538) (-643 (-538))))) (-15 -2310 ((-3 (-1 (-538) (-643 (-538))) "failed") $)) (-15 -1377 ((-112) $ (-509))) (-15 -3195 ($ $ (-509))) (-15 -1376 ($ $ (-1162))) (-15 -1376 ($ $ (-509))) (-15 -3244 ((-3 (-775) "failed") $ (-1162))) (-15 -3244 ((-693 (-775)) $ (-509))) (-15 -1375 ($ $ (-1162) (-775))) (-15 -1375 ($ $ (-509) (-775))) (-15 -1374 ($ $ (-45 (-1162) (-775)))))) +((-2918 (((-3 (-1 |#1| (-643 |#1|)) "failed") (-113)) 23) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-643 |#1|))) 11) (((-3 |#1| "failed") (-113) (-643 |#1|)) 25)) (-1384 (((-3 (-643 (-1 |#1| (-643 |#1|))) "failed") (-113)) 29) (((-113) (-113) (-1 |#1| |#1|)) 33) (((-113) (-113) (-643 (-1 |#1| (-643 |#1|)))) 30)) (-1385 (((-113) |#1|) 63)) (-1386 (((-3 |#1| "failed") (-113)) 58))) +(((-114 |#1|) (-10 -7 (-15 -2918 ((-3 |#1| "failed") (-113) (-643 |#1|))) (-15 -2918 ((-113) (-113) (-1 |#1| (-643 |#1|)))) (-15 -2918 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2918 ((-3 (-1 |#1| (-643 |#1|)) "failed") (-113))) (-15 -1384 ((-113) (-113) (-643 (-1 |#1| (-643 |#1|))))) (-15 -1384 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1384 ((-3 (-643 (-1 |#1| (-643 |#1|))) "failed") (-113))) (-15 -1385 ((-113) |#1|)) (-15 -1386 ((-3 |#1| "failed") (-113)))) (-1104)) (T -114)) +((-1386 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *1 (-114 *2)) (-4 *2 (-1104)))) (-1385 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-1104)))) (-1384 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-643 (-1 *4 (-643 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1104)))) (-1384 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) (-1384 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 (-1 *4 (-643 *4)))) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) (-2918 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-643 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1104)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-643 *4))) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) (-2918 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-643 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1104))))) +(-10 -7 (-15 -2918 ((-3 |#1| "failed") (-113) (-643 |#1|))) (-15 -2918 ((-113) (-113) (-1 |#1| (-643 |#1|)))) (-15 -2918 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2918 ((-3 (-1 |#1| (-643 |#1|)) "failed") (-113))) (-15 -1384 ((-113) (-113) (-643 (-1 |#1| (-643 |#1|))))) (-15 -1384 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1384 ((-3 (-643 (-1 |#1| (-643 |#1|))) "failed") (-113))) (-15 -1385 ((-113) |#1|)) (-15 -1386 ((-3 |#1| "failed") (-113)))) +((-1387 (((-549) |#2|) 41))) +(((-115 |#1| |#2|) (-10 -7 (-15 -1387 ((-549) |#2|))) (-13 (-365) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -115)) +((-1387 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1041 (-410 *2)))) (-5 *2 (-549)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -1387 ((-549) |#2|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $ (-549)) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3011 (($ (-1174 (-549)) (-549)) NIL)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3012 (($ $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4203 (((-773) $) NIL)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 (((-549)) NIL)) (-3013 (((-549) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4200 (($ $ (-549)) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3015 (((-1157 (-549)) $) NIL)) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-549) $ (-549)) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-872 |#1|) (-549)) (T -116)) +NIL +(-872 |#1|) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-116 |#1|) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-116 |#1|) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-116 |#1|) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-116 |#1|) (-1041 (-549))))) (-3576 (((-116 |#1|) $) NIL) (((-1180) $) NIL (|has| (-116 |#1|) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-116 |#1|) (-1041 (-549)))) (((-549) $) NIL (|has| (-116 |#1|) (-1041 (-549))))) (-4162 (($ $) NIL) (($ (-549) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-116 |#1|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-116 |#1|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-116 |#1|))) (|:| |vec| (-1269 (-116 |#1|)))) (-691 $) (-1269 $)) NIL) (((-691 (-116 |#1|)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-116 |#1|) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-116 |#1|) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-116 |#1|) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-116 |#1|) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-116 |#1|) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1154)))) (-3607 (((-112) $) NIL (|has| (-116 |#1|) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-116 |#1|) (-852)))) (-3260 (($ $ $) NIL (|has| (-116 |#1|) (-852)))) (-4390 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-116 |#1|) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-3534 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-116 |#1|) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-116 |#1|)) (-643 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-643 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-643 (-1180)) (-643 (-116 |#1|))) NIL (|has| (-116 |#1|) (-517 (-1180) (-116 |#1|)))) (($ $ (-1180) (-116 |#1|)) NIL (|has| (-116 |#1|) (-517 (-1180) (-116 |#1|))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-773)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1180)) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-773)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-116 |#1|) $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| (-116 |#1|) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-116 |#1|) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-116 |#1|) (-616 (-538)))) (((-380) $) NIL (|has| (-116 |#1|) (-1023))) (((-225) $) NIL (|has| (-116 |#1|) (-1023)))) (-3016 (((-174 (-410 (-549))) $) NIL)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-116 |#1|)) NIL) (($ (-1180)) NIL (|has| (-116 |#1|) (-1041 (-1180))))) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-913))) (|has| (-116 |#1|) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-410 (-549)) $ (-549)) NIL)) (-3807 (($ $) NIL (|has| (-116 |#1|) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-773)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1180)) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-116 |#1|) (-903 (-1180)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-773)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-116 |#1|) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-116 |#1|) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-116 |#1|) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-116 |#1|) (-852)))) (-4381 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-994 (-116 |#1|)) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) (-549)) (T -117)) +((-4201 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-549)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-117 *3)) (-14 *3 (-549)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-549)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-994 (-116 |#1|)) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) +((-4219 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-3432 (((-643 $) $) 31)) (-3428 (((-112) $ $) 36)) (-3666 (((-112) |#2| $) 40)) (-3431 (((-643 |#2|) $) 25)) (-3950 (((-112) $) 18)) (-4231 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4065 (((-112) $) 57)) (-4378 (((-865) $) 47)) (-3945 (((-643 $) $) 32)) (-3455 (((-112) $ $) 38)) (-4389 (((-773) $) 50))) +(((-118 |#1| |#2|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4219 (|#1| |#1| "right" |#1|)) (-15 -4219 (|#1| |#1| "left" |#1|)) (-15 -4231 (|#1| |#1| "right")) (-15 -4231 (|#1| |#1| "left")) (-15 -4219 (|#2| |#1| #1="value" |#2|)) (-15 -3428 ((-112) |#1| |#1|)) (-15 -3431 ((-643 |#2|) |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3666 ((-112) |#2| |#1|)) (-15 -4389 ((-773) |#1|))) (-119 |#2|) (-1219)) (T -118)) +NIL +(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4219 (|#1| |#1| "right" |#1|)) (-15 -4219 (|#1| |#1| "left" |#1|)) (-15 -4231 (|#1| |#1| "right")) (-15 -4231 (|#1| |#1| "left")) (-15 -4219 (|#2| |#1| #1="value" |#2|)) (-15 -3428 ((-112) |#1| |#1|)) (-15 -3431 ((-643 |#2|) |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -3666 ((-112) |#2| |#1|)) (-15 -4389 ((-773) |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-1388 (($ $ $) 53 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 55 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) (($ $ "left" $) 56 (|has| $ (-6 -4426))) (($ $ "right" $) 54 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-3541 (($ $) 58)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3542 (($ $) 60)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) (($ $ "left") 59) (($ $ "right") 57)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-119 |#1|) (-140) (-1219)) (T -119)) -((-4335 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-4347 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-3824 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4423)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-2009 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-3824 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4423)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-2797 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) -(-13 (-1012 |t#1|) (-10 -8 (-15 -4335 ($ $)) (-15 -1882 ($ $ "left")) (-15 -4347 ($ $)) (-15 -1882 ($ $ "right")) (IF (|has| $ (-6 -4423)) (PROGN (-15 -3824 ($ $ "left" $)) (-15 -2009 ($ $ $)) (-15 -3824 ($ $ "right" $)) (-15 -2797 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-3030 (((-112) |#1|) 29)) (-4237 (((-772) (-772)) 28) (((-772)) 27)) (-1682 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-120 |#1|) (-10 -7 (-15 -1682 ((-112) |#1|)) (-15 -1682 ((-112) |#1| (-112))) (-15 -4237 ((-772))) (-15 -4237 ((-772) (-772))) (-15 -3030 ((-112) |#1|))) (-1245 (-567))) (T -120)) -((-3030 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) (-4237 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) (-1682 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) (-1682 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567)))))) -(-10 -7 (-15 -1682 ((-112) |#1|)) (-15 -1682 ((-112) |#1| (-112))) (-15 -4237 ((-772))) (-15 -4237 ((-772) (-772))) (-15 -3030 ((-112) |#1|))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) 18)) (-3601 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1555 (((-112) $ (-772)) NIL)) (-3647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-2797 (($ $ $) 21 (|has| $ (-6 -4423)))) (-2009 (($ $ $) 23 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4347 (($ $) 20)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3246 (($ $ |#1| $) 27)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-4335 (($ $) 22)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-2759 (($ |#1| $) 28)) (-3636 (($ |#1| $) 15)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 17)) (-2973 (($) 11)) (-1882 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2721 (((-567) $ $) NIL)) (-3625 (((-112) $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3801 (($ (-645 |#1|)) 16)) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -3801 ($ (-645 |#1|))) (-15 -3636 ($ |#1| $)) (-15 -2759 ($ |#1| $)) (-15 -3601 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-851)) (T -121)) -((-3801 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))) (-3636 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-2759 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-3601 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-851))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -3801 ($ (-645 |#1|))) (-15 -3636 ($ |#1| $)) (-15 -2759 ($ |#1| $)) (-15 -3601 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2509 (($ $) 13)) (-1736 (($ $) 11)) (-2815 (($ $ $) 23)) (-1837 (($ $ $) 21)) (-2552 (($ $ $) 19)) (-2542 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -2815 (|#1| |#1| |#1|)) (-15 -1837 (|#1| |#1| |#1|)) (-15 -1736 (|#1| |#1|)) (-15 -2509 (|#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2552 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -2815 (|#1| |#1| |#1|)) (-15 -1837 (|#1| |#1| |#1|)) (-15 -1736 (|#1| |#1|)) (-15 -2509 (|#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2552 (|#1| |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2509 (($ $) 104)) (-1779 (($ $ $) 26)) (-3095 (((-1274) $ (-567) (-567)) 67 (|has| $ (-6 -4423)))) (-2051 (((-112) $) 99 (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-2767 (($ $) 103 (-12 (|has| (-112) (-851)) (|has| $ (-6 -4423)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4423)))) (-2080 (($ $) 98 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1555 (((-112) $ (-772)) 38)) (-3824 (((-112) $ (-1236 (-567)) (-112)) 89 (|has| $ (-6 -4423))) (((-112) $ (-567) (-112)) 55 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4422)))) (-3758 (($) 39 T CONST)) (-3790 (($ $) 101 (|has| $ (-6 -4423)))) (-3247 (($ $) 91)) (-3470 (($ $) 69 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4422))) (($ (-112) $) 70 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422))))) (-2617 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422))))) (-2036 (((-112) $ (-567) (-112)) 54 (|has| $ (-6 -4423)))) (-1970 (((-112) $ (-567)) 56)) (-3932 (((-567) (-112) $ (-567)) 96 (|has| (-112) (-1102))) (((-567) (-112) $) 95 (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) 94)) (-3468 (((-645 (-112)) $) 46 (|has| $ (-6 -4422)))) (-1763 (($ $ $) 27)) (-1736 (($ $) 31)) (-2815 (($ $ $) 29)) (-4223 (($ (-772) (-112)) 78)) (-1837 (($ $ $) 30)) (-3753 (((-112) $ (-772)) 37)) (-2407 (((-567) $) 64 (|has| (-567) (-851)))) (-2727 (($ $ $) 14)) (-1315 (($ $ $) 97 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-4200 (((-645 (-112)) $) 47 (|has| $ (-6 -4422)))) (-2203 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 63 (|has| (-567) (-851)))) (-1446 (($ $ $) 15)) (-2021 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-3421 (((-112) $ (-772)) 36)) (-1812 (((-1161) $) 10)) (-4222 (($ $ $ (-567)) 88) (($ (-112) $ (-567)) 87)) (-3360 (((-645 (-567)) $) 61)) (-2919 (((-112) (-567) $) 60)) (-3479 (((-1122) $) 11)) (-3436 (((-112) $) 65 (|has| (-567) (-851)))) (-2989 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2930 (($ $ (-112)) 66 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-112)) (-645 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-2222 (((-112) $ $) 32)) (-3428 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-1804 (((-645 (-112)) $) 59)) (-2319 (((-112) $) 35)) (-2973 (($) 34)) (-1882 (($ $ (-1236 (-567))) 84) (((-112) $ (-567)) 58) (((-112) $ (-567) (-112)) 57)) (-4281 (($ $ (-1236 (-567))) 86) (($ $ (-567)) 85)) (-3486 (((-772) (-112) $) 48 (-12 (|has| (-112) (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4422)))) (-3161 (($ $ $ (-567)) 100 (|has| $ (-6 -4423)))) (-3846 (($ $) 33)) (-1322 (((-539) $) 68 (|has| (-112) (-615 (-539))))) (-2516 (($ (-645 (-112))) 77)) (-3644 (($ (-645 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3450 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4422)))) (-1750 (($ $ $) 28)) (-2552 (($ $ $) 106)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (-2542 (($ $ $) 105)) (-2498 (((-772) $) 40 (|has| $ (-6 -4422))))) +((-3542 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-3541 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-4219 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4426)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-1389 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-119 *2)) (-4 *2 (-1219)))) (-4219 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4426)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) (-1388 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) +(-13 (-1013 |t#1|) (-10 -8 (-15 -3542 ($ $)) (-15 -4231 ($ $ "left")) (-15 -3541 ($ $)) (-15 -4231 ($ $ "right")) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4219 ($ $ "left" $)) (-15 -1389 ($ $ $)) (-15 -4219 ($ $ "right" $)) (-15 -1388 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-1392 (((-112) |#1|) 29)) (-1391 (((-773) (-773)) 28) (((-773)) 27)) (-1390 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-120 |#1|) (-10 -7 (-15 -1390 ((-112) |#1|)) (-15 -1390 ((-112) |#1| (-112))) (-15 -1391 ((-773))) (-15 -1391 ((-773) (-773))) (-15 -1392 ((-112) |#1|))) (-1245 (-549))) (T -120)) +((-1392 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) (-1391 (*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) (-1391 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) (-1390 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) (-1390 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549)))))) +(-10 -7 (-15 -1390 ((-112) |#1|)) (-15 -1390 ((-112) |#1| (-112))) (-15 -1391 ((-773))) (-15 -1391 ((-773) (-773))) (-15 -1392 ((-112) |#1|))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 18)) (-3842 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-1388 (($ $ $) 21 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 23 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 20)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) 27)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) 22)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1393 (($ |#1| $) 28)) (-4039 (($ |#1| $) 15)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 11)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1394 (($ (-643 |#1|)) 16)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -1394 ($ (-643 |#1|))) (-15 -4039 ($ |#1| $)) (-15 -1393 ($ |#1| $)) (-15 -3842 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-852)) (T -121)) +((-1394 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-121 *3)))) (-4039 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-852)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-852)))) (-3842 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-852))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -1394 ($ (-643 |#1|))) (-15 -4039 ($ |#1| $)) (-15 -1393 ($ |#1| $)) (-15 -3842 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2458 (($ $) 13)) (-3746 (($ $) 11)) (-1395 (($ $ $) 23)) (-1396 (($ $ $) 21)) (-2456 (($ $ $) 19)) (-2457 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -1395 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -1395 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2457 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-2458 (($ $) 104)) (-3745 (($ $ $) 26)) (-2372 (((-1275) $ (-549) (-549)) 67 (|has| $ (-6 -4426)))) (-1900 (((-112) $) 99 (|has| (-112) (-852))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-1898 (($ $) 103 (-12 (|has| (-112) (-852)) (|has| $ (-6 -4426)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4426)))) (-3310 (($ $) 98 (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1309 (((-112) $ (-773)) 38)) (-4219 (((-112) $ (-1236 (-549)) (-112)) 89 (|has| $ (-6 -4426))) (((-112) $ (-549) (-112)) 55 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4425)))) (-4156 (($) 39 T CONST)) (-2442 (($ $) 101 (|has| $ (-6 -4426)))) (-2443 (($ $) 91)) (-1440 (($ $) 69 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4425))) (($ (-112) $) 70 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425))))) (-4274 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425))))) (-1684 (((-112) $ (-549) (-112)) 54 (|has| $ (-6 -4426)))) (-3517 (((-112) $ (-549)) 56)) (-3843 (((-549) (-112) $ (-549)) 96 (|has| (-112) (-1104))) (((-549) (-112) $) 95 (|has| (-112) (-1104))) (((-549) (-1 (-112) (-112)) $) 94)) (-2124 (((-643 (-112)) $) 46 (|has| $ (-6 -4425)))) (-3255 (($ $ $) 27)) (-3746 (($ $) 31)) (-1395 (($ $ $) 29)) (-4046 (($ (-773) (-112)) 78)) (-1396 (($ $ $) 30)) (-4151 (((-112) $ (-773)) 37)) (-2374 (((-549) $) 64 (|has| (-549) (-852)))) (-2934 (($ $ $) 14)) (-3941 (($ $ $) 97 (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-3008 (((-643 (-112)) $) 47 (|has| $ (-6 -4425)))) (-3666 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 63 (|has| (-549) (-852)))) (-3260 (($ $ $) 15)) (-2128 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-4148 (((-112) $ (-773)) 36)) (-3663 (((-1162) $) 10)) (-2449 (($ $ $ (-549)) 88) (($ (-112) $ (-549)) 87)) (-2377 (((-643 (-549)) $) 61)) (-2378 (((-112) (-549) $) 60)) (-3664 (((-1123) $) 11)) (-4232 (((-112) $) 65 (|has| (-549) (-852)))) (-1441 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2373 (($ $ (-112)) 66 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-112)) (-643 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-294 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-643 (-294 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))))) (-1310 (((-112) $ $) 32)) (-2376 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2379 (((-643 (-112)) $) 59)) (-3827 (((-112) $) 35)) (-3996 (($) 34)) (-4231 (($ $ (-1236 (-549))) 84) (((-112) $ (-549)) 58) (((-112) $ (-549) (-112)) 57)) (-2450 (($ $ (-1236 (-549))) 86) (($ $ (-549)) 85)) (-2125 (((-773) (-112) $) 48 (-12 (|has| (-112) (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) 100 (|has| $ (-6 -4426)))) (-3824 (($ $) 33)) (-4402 (((-538) $) 68 (|has| (-112) (-616 (-538))))) (-3953 (($ (-643 (-112))) 77)) (-4233 (($ (-643 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4425)))) (-3256 (($ $ $) 28)) (-2456 (($ $ $) 106)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-2457 (($ $ $) 105)) (-4389 (((-773) $) 40 (|has| $ (-6 -4425))))) (((-123) (-140)) (T -123)) -((-1736 (*1 *1 *1) (-4 *1 (-123))) (-1837 (*1 *1 *1 *1) (-4 *1 (-123))) (-2815 (*1 *1 *1 *1) (-4 *1 (-123))) (-1750 (*1 *1 *1 *1) (-4 *1 (-123))) (-1763 (*1 *1 *1 *1) (-4 *1 (-123))) (-1779 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-851) (-662) (-19 (-112)) (-10 -8 (-15 -1736 ($ $)) (-15 -1837 ($ $ $)) (-15 -2815 ($ $ $)) (-15 -1750 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -1779 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-112)) . T) ((-615 (-539)) |has| (-112) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))) ((-652 #0#) . T) ((-662) . T) ((-19 #0#) . T) ((-851) . T) ((-1102) . T) ((-1219) . T)) -((-2021 (($ (-1 |#2| |#2|) $) 22)) (-3846 (($ $) 16)) (-2498 (((-772) $) 25))) -(((-124 |#1| |#2|) (-10 -8 (-15 -2021 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2498 ((-772) |#1|)) (-15 -3846 (|#1| |#1|))) (-125 |#2|) (-1102)) (T -124)) -NIL -(-10 -8 (-15 -2021 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2498 ((-772) |#1|)) (-15 -3846 (|#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2233 ((|#1| $) 49)) (-1555 (((-112) $ (-772)) 8)) (-3647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-2797 (($ $ $) 53 (|has| $ (-6 -4423)))) (-2009 (($ $ $) 55 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) (($ $ "left" $) 56 (|has| $ (-6 -4423))) (($ $ "right" $) 54 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3758 (($) 7 T CONST)) (-4347 (($ $) 58)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 51)) (-2373 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3246 (($ $ |#1| $) 61)) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-4335 (($ $) 60)) (-3895 (((-645 |#1|) $) 46)) (-1972 (((-112) $) 50)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2721 (((-567) $ $) 45)) (-3625 (((-112) $) 47)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 52)) (-2049 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-125 |#1|) (-140) (-1102)) (T -125)) -((-3246 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1102))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -3246 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-119 |#1|) . T) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) 18)) (-1555 (((-112) $ (-772)) NIL)) (-3647 ((|#1| $ |#1|) 22 (|has| $ (-6 -4423)))) (-2797 (($ $ $) 23 (|has| $ (-6 -4423)))) (-2009 (($ $ $) 21 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4347 (($ $) 24)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3246 (($ $ |#1| $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-4335 (($ $) NIL)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3636 (($ |#1| $) 15)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 17)) (-2973 (($) 11)) (-1882 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2721 (((-567) $ $) NIL)) (-3625 (((-112) $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) 20)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3374 (($ (-645 |#1|)) 16)) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4423) (-15 -3374 ($ (-645 |#1|))) (-15 -3636 ($ |#1| $)))) (-851)) (T -126)) -((-3374 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))) (-3636 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4423) (-15 -3374 ($ (-645 |#1|))) (-15 -3636 ($ |#1| $)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) 30)) (-1555 (((-112) $ (-772)) NIL)) (-3647 ((|#1| $ |#1|) 32 (|has| $ (-6 -4423)))) (-2797 (($ $ $) 36 (|has| $ (-6 -4423)))) (-2009 (($ $ $) 34 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4347 (($ $) 23)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3246 (($ $ |#1| $) 16)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-4335 (($ $) 22)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) 25)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 20)) (-2973 (($) 11)) (-1882 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2721 (((-567) $ $) NIL)) (-3625 (((-112) $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3253 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 10 (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -3253 ($ |#1|)) (-15 -3253 ($ $ |#1| $)))) (-1102)) (T -127)) -((-3253 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))) (-3253 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102))))) -(-13 (-125 |#1|) (-10 -8 (-15 -3253 ($ |#1|)) (-15 -3253 ($ $ |#1| $)))) -((-2487 (((-112) $ $) NIL (|has| (-129) (-1102)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-851)))) (-2767 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-129) (-851))))) (-2080 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 (((-129) $ (-567) (-129)) 26 (|has| $ (-6 -4423))) (((-129) $ (-1236 (-567)) (-129)) NIL (|has| $ (-6 -4423)))) (-2164 (((-772) $ (-772)) 34)) (-1316 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102))))) (-1695 (($ (-129) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4422))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4422)))) (-2036 (((-129) $ (-567) (-129)) 25 (|has| $ (-6 -4423)))) (-1970 (((-129) $ (-567)) 20)) (-3932 (((-567) (-1 (-112) (-129)) $) NIL) (((-567) (-129) $) NIL (|has| (-129) (-1102))) (((-567) (-129) $ (-567)) NIL (|has| (-129) (-1102)))) (-3468 (((-645 (-129)) $) NIL (|has| $ (-6 -4422)))) (-4223 (($ (-772) (-129)) 14)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) 27 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| (-129) (-851)))) (-1315 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-851)))) (-4200 (((-645 (-129)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102))))) (-2346 (((-567) $) 30 (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| (-129) (-851)))) (-2021 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| (-129) (-1102)))) (-4222 (($ (-129) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| (-129) (-1102)))) (-3436 (((-129) $) NIL (|has| (-567) (-851)))) (-2989 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2930 (($ $ (-129)) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102)))) (($ $ (-645 (-129)) (-645 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102))))) (-1804 (((-645 (-129)) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 12)) (-1882 (((-129) $ (-567) (-129)) NIL) (((-129) $ (-567)) 23) (($ $ (-1236 (-567))) NIL)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3486 (((-772) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422))) (((-772) (-129) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-129) (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-129) (-615 (-539))))) (-2516 (($ (-645 (-129))) 47)) (-3644 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-645 $)) NIL)) (-2504 (((-960 (-129)) $) 35) (((-1161) $) 44) (((-863) $) NIL (|has| (-129) (-614 (-863))))) (-2817 (((-772) $) 18)) (-3696 (($ (-772)) 8)) (-3858 (((-112) $ $) NIL (|has| (-129) (-1102)))) (-3450 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2968 (((-112) $ $) 32 (|has| (-129) (-1102)))) (-3006 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2498 (((-772) $) 15 (|has| $ (-6 -4422))))) -(((-128) (-13 (-19 (-129)) (-614 (-960 (-129))) (-614 (-1161)) (-10 -8 (-15 -3696 ($ (-772))) (-15 -2817 ((-772) $)) (-15 -2164 ((-772) $ (-772))) (-6 -4422)))) (T -128)) -((-3696 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2164 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) -(-13 (-19 (-129)) (-614 (-960 (-129))) (-614 (-1161)) (-10 -8 (-15 -3696 ($ (-772))) (-15 -2817 ((-772) $)) (-15 -2164 ((-772) $ (-772))) (-6 -4422))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) 27)) (-3758 (($) 12 T CONST)) (-2119 (($) 36)) (-2727 (($ $ $) NIL) (($) 25 T CONST)) (-1446 (($ $ $) NIL) (($) 26 T CONST)) (-2667 (((-923) $) 34)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) 32)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-2739 (($ (-772)) 8)) (-1355 (($ $ $) 38)) (-1343 (($ $ $) 37)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) 23)) (-2996 (((-112) $ $) 21)) (-2968 (((-112) $ $) 19)) (-3006 (((-112) $ $) 22)) (-2986 (((-112) $ $) 20))) -(((-129) (-13 (-845) (-493 (-144)) (-10 -8 (-15 -2739 ($ (-772))) (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562)))) (T -129)) -((-2739 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))) (-1343 (*1 *1 *1 *1) (-5 *1 (-129))) (-1355 (*1 *1 *1 *1) (-5 *1 (-129))) (-3758 (*1 *1) (-5 *1 (-129)))) -(-13 (-845) (-493 (-144)) (-10 -8 (-15 -2739 ($ (-772))) (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562))) +((-3746 (*1 *1 *1) (-4 *1 (-123))) (-1396 (*1 *1 *1 *1) (-4 *1 (-123))) (-1395 (*1 *1 *1 *1) (-4 *1 (-123))) (-3256 (*1 *1 *1 *1) (-4 *1 (-123))) (-3255 (*1 *1 *1 *1) (-4 *1 (-123))) (-3745 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-852) (-664) (-19 (-112)) (-10 -8 (-15 -3746 ($ $)) (-15 -1396 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)) (-15 -3745 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 #1=(-112)) . T) ((-616 (-538)) |has| (-112) (-616 (-538))) ((-287 #2=(-549) #1#) . T) ((-289 #2# #1#) . T) ((-310 #1#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))) ((-374 #1#) . T) ((-492 #1#) . T) ((-606 #2# #1#) . T) ((-517 #1# #1#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))) ((-653 #1#) . T) ((-664) . T) ((-19 #1#) . T) ((-852) . T) ((-1104) . T) ((-1219) . T)) +((-2128 (($ (-1 |#2| |#2|) $) 22)) (-3824 (($ $) 16)) (-4389 (((-773) $) 25))) +(((-124 |#1| |#2|) (-10 -8 (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -3824 (|#1| |#1|))) (-125 |#2|) (-1104)) (T -124)) +NIL +(-10 -8 (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -3824 (|#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-1388 (($ $ $) 53 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 55 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) (($ $ #2="left" $) 56 (|has| $ (-6 -4426))) (($ $ #3="right" $) 54 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-3541 (($ $) 58)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) 61)) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3542 (($ $) 60)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) (($ $ #2#) 59) (($ $ #3#) 57)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-125 |#1|) (-140) (-1104)) (T -125)) +((-1397 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1104))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -1397 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-119 |#1|) . T) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 18)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) 22 (|has| $ (-6 -4426)))) (-1388 (($ $ $) 23 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 21 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 24)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4039 (($ |#1| $) 15)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 11)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 20)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1398 (($ (-643 |#1|)) 16)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4426) (-15 -1398 ($ (-643 |#1|))) (-15 -4039 ($ |#1| $)))) (-852)) (T -126)) +((-1398 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-126 *3)))) (-4039 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-852))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4426) (-15 -1398 ($ (-643 |#1|))) (-15 -4039 ($ |#1| $)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 30)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) 32 (|has| $ (-6 -4426)))) (-1388 (($ $ $) 36 (|has| $ (-6 -4426)))) (-1389 (($ $ $) 34 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 23)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1397 (($ $ |#1| $) 16)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) 22)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) 25)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 20)) (-3996 (($) 11)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1399 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 10 (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1399 ($ |#1|)) (-15 -1399 ($ $ |#1| $)))) (-1104)) (T -127)) +((-1399 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1104)))) (-1399 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1104))))) +(-13 (-125 |#1|) (-10 -8 (-15 -1399 ($ |#1|)) (-15 -1399 ($ $ |#1| $)))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) 26)) (-4156 (($) NIL T CONST)) (-3395 (($) 35)) (-2934 (($ $ $) NIL) (($) 24 T CONST)) (-3260 (($ $ $) NIL) (($) 25 T CONST)) (-2188 (((-922) $) 33)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 31)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-144)) 15) (((-144) $) 17)) (-1400 (($ (-773)) 8)) (-4157 (($ $ $) 37)) (-4158 (($ $ $) 36)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 22)) (-2967 (((-112) $ $) 20)) (-3455 (((-112) $ $) 18)) (-3087 (((-112) $ $) 21)) (-3088 (((-112) $ $) 19))) +(((-128) (-13 (-846) (-493 (-144)) (-10 -8 (-15 -1400 ($ (-773))) (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -128)) +((-1400 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-128)))) (-4158 (*1 *1 *1 *1) (-5 *1 (-128))) (-4157 (*1 *1 *1 *1) (-5 *1 (-128))) (-4156 (*1 *1) (-5 *1 (-128)))) +(-13 (-846) (-493 (-144)) (-10 -8 (-15 -1400 ($ (-773))) (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) ((|NonNegativeInteger|) (< |#1| 256)) -((-2487 (((-112) $ $) NIL)) (-1842 (($) 6 T CONST)) (-4145 (($) 7 T CONST)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 14)) (-1872 (($) 8 T CONST)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 10))) -(((-130) (-13 (-1102) (-10 -8 (-15 -4145 ($) -3562) (-15 -1872 ($) -3562) (-15 -1842 ($) -3562)))) (T -130)) -((-4145 (*1 *1) (-5 *1 (-130))) (-1872 (*1 *1) (-5 *1 (-130))) (-1842 (*1 *1) (-5 *1 (-130)))) -(-13 (-1102) (-10 -8 (-15 -4145 ($) -3562) (-15 -1872 ($) -3562) (-15 -1842 ($) -3562))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16))) +((-2968 (((-112) $ $) NIL (|has| (-128) (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-852)))) (-1898 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-128) (-852))))) (-3310 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-128) $ (-549) (-128)) 26 (|has| $ (-6 -4426))) (((-128) $ (-1236 (-549)) (-128)) NIL (|has| $ (-6 -4426)))) (-1401 (((-773) $ (-773)) 34)) (-4142 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104))))) (-3830 (($ (-128) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4425))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-128) $ (-549) (-128)) 25 (|has| $ (-6 -4426)))) (-3517 (((-128) $ (-549)) 20)) (-3843 (((-549) (-1 (-112) (-128)) $) NIL) (((-549) (-128) $) NIL (|has| (-128) (-1104))) (((-549) (-128) $ (-549)) NIL (|has| (-128) (-1104)))) (-2124 (((-643 (-128)) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-128)) 14)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 27 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| (-128) (-852)))) (-3941 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-852)))) (-3008 (((-643 (-128)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104))))) (-2375 (((-549) $) 30 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-128) (-852)))) (-2128 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| (-128) (-1104)))) (-2449 (($ (-128) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| (-128) (-1104)))) (-4232 (((-128) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2373 (($ $ (-128)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-128)))) NIL (-12 (|has| (-128) (-310 (-128))) (|has| (-128) (-1104)))) (($ $ (-294 (-128))) NIL (-12 (|has| (-128) (-310 (-128))) (|has| (-128) (-1104)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-310 (-128))) (|has| (-128) (-1104)))) (($ $ (-643 (-128)) (-643 (-128))) NIL (-12 (|has| (-128) (-310 (-128))) (|has| (-128) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104))))) (-2379 (((-643 (-128)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 12)) (-4231 (((-128) $ (-549) (-128)) NIL) (((-128) $ (-549)) 23) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425))) (((-773) (-128) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-128) (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-128) (-616 (-538))))) (-3953 (($ (-643 (-128))) 47)) (-4233 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 48) (($ (-643 $)) NIL)) (-4378 (((-961 (-128)) $) 35) (((-1162) $) 44) (((-865) $) NIL (|has| (-128) (-615 (-865))))) (-1402 (((-773) $) 18)) (-1403 (($ (-773)) 8)) (-3662 (((-112) $ $) NIL (|has| (-128) (-1104)))) (-2127 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| (-128) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-128) (-852)))) (-3455 (((-112) $ $) 32 (|has| (-128) (-1104)))) (-3087 (((-112) $ $) NIL (|has| (-128) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-128) (-852)))) (-4389 (((-773) $) 15 (|has| $ (-6 -4425))))) +(((-129) (-13 (-19 (-128)) (-615 (-961 (-128))) (-615 (-1162)) (-10 -8 (-15 -1403 ($ (-773))) (-15 -1402 ((-773) $)) (-15 -1401 ((-773) $ (-773))) (-6 -4425)))) (T -129)) +((-1403 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-129)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-129)))) (-1401 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-129))))) +(-13 (-19 (-128)) (-615 (-961 (-128))) (-615 (-1162)) (-10 -8 (-15 -1403 ($ (-773))) (-15 -1402 ((-773) $)) (-15 -1401 ((-773) $ (-773))) (-6 -4425))) +((-2968 (((-112) $ $) NIL)) (-1404 (($) 6 T CONST)) (-1406 (($) 7 T CONST)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 14)) (-1405 (($) 8 T CONST)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 10))) +(((-130) (-13 (-1104) (-10 -8 (-15 -1406 ($) -4384) (-15 -1405 ($) -4384) (-15 -1404 ($) -4384)))) (T -130)) +((-1406 (*1 *1) (-5 *1 (-130))) (-1405 (*1 *1) (-5 *1 (-130))) (-1404 (*1 *1) (-5 *1 (-130)))) +(-13 (-1104) (-10 -8 (-15 -1406 ($) -4384) (-15 -1405 ($) -4384) (-15 -1404 ($) -4384))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16))) (((-131) (-140)) (T -131)) -((-2932 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(-13 (-23) (-10 -8 (-15 -2932 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 7)) (-3157 (((-1274) $ (-772)) 14)) (-3932 (((-772) $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) +((-1407 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(-13 (-23) (-10 -8 (-15 -1407 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-1408 (((-1275) $ (-773)) 14)) (-3843 (((-773) $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) (((-132) (-140)) (T -132)) -((-3932 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772)))) (-3157 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1274))))) -(-13 (-1102) (-10 -8 (-15 -3932 ((-772) $)) (-15 -3157 ((-1274) $ (-772))))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 16) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-645 (-1137)) $) 10)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-133) (-13 (-1085) (-10 -8 (-15 -3501 ((-645 (-1137)) $))))) (T -133)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-133))))) -(-13 (-1085) (-10 -8 (-15 -3501 ((-645 (-1137)) $)))) -((-2487 (((-112) $ $) 49)) (-2684 (((-112) $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-772) "failed") $) 58)) (-3094 (((-772) $) 56)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) 37)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3303 (((-112)) 59)) (-1810 (((-112) (-112)) 61)) (-3563 (((-112) $) 30)) (-3983 (((-112) $) 55)) (-2504 (((-863) $) 28) (($ (-772)) 20)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 18 T CONST)) (-1820 (($) 19 T CONST)) (-4389 (($ (-772)) 21)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) 40)) (-2968 (((-112) $ $) 32)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 35)) (-3054 (((-3 $ "failed") $ $) 42)) (-3045 (($ $ $) 38)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL) (($ $ $) 54)) (* (($ (-772) $) 48) (($ (-923) $) NIL) (($ $ $) 45))) -(((-134) (-13 (-851) (-23) (-727) (-1040 (-772)) (-10 -8 (-6 (-4424 "*")) (-15 -3054 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4389 ($ (-772))) (-15 -3563 ((-112) $)) (-15 -3983 ((-112) $)) (-15 -3303 ((-112))) (-15 -1810 ((-112) (-112)))))) (T -134)) -((-3054 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-4389 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3303 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(-13 (-851) (-23) (-727) (-1040 (-772)) (-10 -8 (-6 (-4424 "*")) (-15 -3054 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4389 ($ (-772))) (-15 -3563 ((-112) $)) (-15 -3983 ((-112) $)) (-15 -3303 ((-112))) (-15 -1810 ((-112) (-112))))) -((-3818 (((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-4364 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3818 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -4364 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-567) (-772) (-172) (-172)) (T -135)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -3818 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -4364 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) -((-2487 (((-112) $ $) NIL)) (-2798 (($ (-645 |#3|)) 64)) (-3017 (($ $) 126) (($ $ (-567) (-567)) 125)) (-3758 (($) 20)) (-4275 (((-3 |#3| "failed") $) 86)) (-3094 ((|#3| $) NIL)) (-3503 (($ $ (-645 (-567))) 127)) (-3805 (((-645 |#3|) $) 59)) (-1471 (((-772) $) 69)) (-2822 (($ $ $) 120)) (-2479 (($) 68)) (-1812 (((-1161) $) NIL)) (-1381 (($) 19)) (-3479 (((-1122) $) NIL)) (-1882 ((|#3| $) 71) ((|#3| $ (-567)) 72) ((|#3| $ (-567) (-567)) 73) ((|#3| $ (-567) (-567) (-567)) 74) ((|#3| $ (-567) (-567) (-567) (-567)) 75) ((|#3| $ (-645 (-567))) 76)) (-3380 (((-772) $) 70)) (-4064 (($ $ (-567) $ (-567)) 121) (($ $ (-567) (-567)) 123)) (-2504 (((-863) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1144 |#2| |#3|)) 105) (($ (-645 |#3|)) 77) (($ (-645 $)) 83)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 96 T CONST)) (-1820 (($) 97 T CONST)) (-2968 (((-112) $ $) 107)) (-3054 (($ $) 113) (($ $ $) 111)) (-3045 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-567)) 116) (($ (-567) $) 115) (($ $ $) 122))) -(((-136 |#1| |#2| |#3|) (-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -2504 ($ (-240 |#2| |#3|))) (-15 -2504 ($ (-1144 |#2| |#3|))) (-15 -2504 ($ (-645 |#3|))) (-15 -2504 ($ (-645 $))) (-15 -1471 ((-772) $)) (-15 -1882 (|#3| $)) (-15 -1882 (|#3| $ (-567))) (-15 -1882 (|#3| $ (-567) (-567))) (-15 -1882 (|#3| $ (-567) (-567) (-567))) (-15 -1882 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1882 (|#3| $ (-645 (-567)))) (-15 -2822 ($ $ $)) (-15 * ($ $ $)) (-15 -4064 ($ $ (-567) $ (-567))) (-15 -4064 ($ $ (-567) (-567))) (-15 -3017 ($ $)) (-15 -3017 ($ $ (-567) (-567))) (-15 -3503 ($ $ (-645 (-567)))) (-15 -1381 ($)) (-15 -2479 ($)) (-15 -3805 ((-645 |#3|) $)) (-15 -2798 ($ (-645 |#3|))) (-15 -3758 ($)))) (-567) (-772) (-172)) (T -136)) -((-2822 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1144 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 *2) (-4 *5 (-172)))) (-1882 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567)) (-14 *4 (-772)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1882 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1882 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-567)) (-14 *5 (-772)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4064 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-4064 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-3017 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3017 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-3503 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1381 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-2479 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3805 (*1 *2 *1) (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-3758 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172))))) -(-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -2504 ($ (-240 |#2| |#3|))) (-15 -2504 ($ (-1144 |#2| |#3|))) (-15 -2504 ($ (-645 |#3|))) (-15 -2504 ($ (-645 $))) (-15 -1471 ((-772) $)) (-15 -1882 (|#3| $)) (-15 -1882 (|#3| $ (-567))) (-15 -1882 (|#3| $ (-567) (-567))) (-15 -1882 (|#3| $ (-567) (-567) (-567))) (-15 -1882 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1882 (|#3| $ (-645 (-567)))) (-15 -2822 ($ $ $)) (-15 * ($ $ $)) (-15 -4064 ($ $ (-567) $ (-567))) (-15 -4064 ($ $ (-567) (-567))) (-15 -3017 ($ $)) (-15 -3017 ($ $ (-567) (-567))) (-15 -3503 ($ $ (-645 (-567)))) (-15 -1381 ($)) (-15 -2479 ($)) (-15 -3805 ((-645 |#3|) $)) (-15 -2798 ($ (-645 |#3|))) (-15 -3758 ($)))) -((-2487 (((-112) $ $) NIL)) (-2141 (((-1137) $) 11)) (-2128 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-137) (-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1137) $))))) (T -137)) -((-2128 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137))))) -(-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1137) $)))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3777 (((-186) $) 10)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 20) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-645 (-1137)) $) 13)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-138) (-13 (-1085) (-10 -8 (-15 -3777 ((-186) $)) (-15 -3501 ((-645 (-1137)) $))))) (T -138)) -((-3777 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-138))))) -(-13 (-1085) (-10 -8 (-15 -3777 ((-186) $)) (-15 -3501 ((-645 (-1137)) $)))) -((-2487 (((-112) $ $) NIL)) (-1746 (((-645 (-866)) $) NIL)) (-1646 (((-509) $) NIL)) (-1812 (((-1161) $) NIL)) (-3777 (((-186) $) NIL)) (-2208 (((-112) $ (-509)) NIL)) (-3479 (((-1122) $) NIL)) (-2331 (((-645 (-112)) $) NIL)) (-2504 (((-863) $) NIL) (((-187) $) 6)) (-3858 (((-112) $ $) NIL)) (-2619 (((-55) $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-139) (-13 (-185) (-614 (-187)))) (T -139)) -NIL -(-13 (-185) (-614 (-187))) -((-4268 (((-645 (-183 (-139))) $) 13)) (-3894 (((-645 (-183 (-139))) $) 14)) (-1917 (((-645 (-839)) $) 10)) (-1548 (((-139) $) 7)) (-2504 (((-863) $) 16))) -(((-140) (-13 (-614 (-863)) (-10 -8 (-15 -1548 ((-139) $)) (-15 -1917 ((-645 (-839)) $)) (-15 -4268 ((-645 (-183 (-139))) $)) (-15 -3894 ((-645 (-183 (-139))) $))))) (T -140)) -((-1548 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140))))) -(-13 (-614 (-863)) (-10 -8 (-15 -1548 ((-139) $)) (-15 -1917 ((-645 (-839)) $)) (-15 -4268 ((-645 (-183 (-139))) $)) (-15 -3894 ((-645 (-183 (-139))) $)))) -((-2487 (((-112) $ $) NIL)) (-3860 (($) 17 T CONST)) (-1738 (($) NIL (|has| (-144) (-370)))) (-3855 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-1321 (($ $ $) NIL)) (-3103 (((-112) $ $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3404 (((-772)) NIL (|has| (-144) (-370)))) (-4191 (($) NIL) (($ (-645 (-144))) NIL)) (-2105 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-4197 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422))) (($ (-144) $) 61 (|has| $ (-6 -4422)))) (-1695 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2617 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2119 (($) NIL (|has| (-144) (-370)))) (-3468 (((-645 (-144)) $) 70 (|has| $ (-6 -4422)))) (-2117 (((-112) $ $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2727 (((-144) $) NIL (|has| (-144) (-851)))) (-4200 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1446 (((-144) $) NIL (|has| (-144) (-851)))) (-2021 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-144) (-144)) $) 65)) (-3371 (($) 18 T CONST)) (-2667 (((-923) $) NIL (|has| (-144) (-370)))) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-3873 (($ $ $) 30)) (-3018 (((-144) $) 62)) (-3636 (($ (-144) $) 60)) (-2188 (($ (-923)) NIL (|has| (-144) (-370)))) (-3099 (($) 16 T CONST)) (-3479 (((-1122) $) NIL)) (-2989 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1713 (((-144) $) 63)) (-1430 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 58)) (-2994 (($) 15 T CONST)) (-2828 (($ $ $) 32) (($ $ (-144)) NIL)) (-2730 (($ (-645 (-144))) NIL) (($) NIL)) (-3486 (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-1161) $) 37) (((-539) $) NIL (|has| (-144) (-615 (-539)))) (((-645 (-144)) $) 35)) (-2516 (($ (-645 (-144))) NIL)) (-3925 (($ $) 33 (|has| (-144) (-370)))) (-2504 (((-863) $) 55)) (-2904 (($ (-1161)) 14) (($ (-645 (-144))) 52)) (-2091 (((-772) $) NIL)) (-3719 (($) 59) (($ (-645 (-144))) NIL)) (-3858 (((-112) $ $) NIL)) (-4225 (($ (-645 (-144))) NIL)) (-3450 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-4379 (($) 21 T CONST)) (-1461 (($) 20 T CONST)) (-2968 (((-112) $ $) 24)) (-2498 (((-772) $) 57 (|has| $ (-6 -4422))))) -(((-141) (-13 (-1102) (-615 (-1161)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -2904 ($ (-1161))) (-15 -2904 ($ (-645 (-144)))) (-15 -2994 ($) -3562) (-15 -3099 ($) -3562) (-15 -3860 ($) -3562) (-15 -3371 ($) -3562) (-15 -1461 ($) -3562) (-15 -4379 ($) -3562)))) (T -141)) -((-2904 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-141)))) (-2904 (*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) (-2994 (*1 *1) (-5 *1 (-141))) (-3099 (*1 *1) (-5 *1 (-141))) (-3860 (*1 *1) (-5 *1 (-141))) (-3371 (*1 *1) (-5 *1 (-141))) (-1461 (*1 *1) (-5 *1 (-141))) (-4379 (*1 *1) (-5 *1 (-141)))) -(-13 (-1102) (-615 (-1161)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -2904 ($ (-1161))) (-15 -2904 ($ (-645 (-144)))) (-15 -2994 ($) -3562) (-15 -3099 ($) -3562) (-15 -3860 ($) -3562) (-15 -3371 ($) -3562) (-15 -1461 ($) -3562) (-15 -4379 ($) -3562))) -((-2985 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3228 ((|#1| |#3|) 9)) (-2448 ((|#3| |#3|) 15))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3228 (|#1| |#3|)) (-15 -2448 (|#3| |#3|)) (-15 -2985 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-994 |#1|) (-375 |#2|)) (T -142)) -((-2985 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-3228 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4))))) -(-10 -7 (-15 -3228 (|#1| |#3|)) (-15 -2448 (|#3| |#3|)) (-15 -2985 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4090 (($ $ $) 8)) (-2256 (($ $) 7)) (-3040 (($ $ $) 6))) +((-3843 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-773)))) (-1408 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-773)) (-5 *2 (-1275))))) +(-13 (-1104) (-10 -8 (-15 -3843 ((-773) $)) (-15 -1408 ((-1275) $ (-773))))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 16) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-643 (-1138)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-133) (-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $))))) (T -133)) +((-3653 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-133))))) +(-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $)))) +((-2968 (((-112) $ $) 49)) (-3608 (((-112) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-773) "failed") $) 58)) (-3576 (((-773) $) 56)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) 37)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1410 (((-112)) 59)) (-1409 (((-112) (-112)) 61)) (-2928 (((-112) $) 30)) (-1411 (((-112) $) 55)) (-4378 (((-865) $) 28) (($ (-773)) 20)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 18 T CONST)) (-3067 (($) 19 T CONST)) (-1412 (($ (-773)) 21)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) 40)) (-3455 (((-112) $ $) 32)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 35)) (-4269 (((-3 $ "failed") $ $) 42)) (-4271 (($ $ $) 38)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL) (($ $ $) 54)) (* (($ (-773) $) 48) (($ (-922) $) NIL) (($ $ $) 45))) +(((-134) (-13 (-852) (-23) (-728) (-1041 (-773)) (-10 -8 (-6 (-4427 "*")) (-15 -4269 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1412 ($ (-773))) (-15 -2928 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -1410 ((-112))) (-15 -1409 ((-112) (-112)))))) (T -134)) +((-4269 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1412 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-134)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1410 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(-13 (-852) (-23) (-728) (-1041 (-773)) (-10 -8 (-6 (-4427 "*")) (-15 -4269 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1412 ($ (-773))) (-15 -2928 ((-112) $)) (-15 -1411 ((-112) $)) (-15 -1410 ((-112))) (-15 -1409 ((-112) (-112))))) +((-2968 (((-112) $ $) NIL)) (-1413 (($ (-643 |#3|)) 64)) (-3838 (($ $) 126) (($ $ (-549) (-549)) 125)) (-4156 (($) 20)) (-3577 (((-3 |#3| "failed") $) 86)) (-3576 ((|#3| $) NIL)) (-1417 (($ $ (-643 (-549))) 127)) (-1414 (((-643 |#3|) $) 59)) (-3513 (((-773) $) 69)) (-4376 (($ $ $) 120)) (-1415 (($) 68)) (-3663 (((-1162) $) NIL)) (-1416 (($) 19)) (-3664 (((-1123) $) NIL)) (-4231 ((|#3| $) 71) ((|#3| $ (-549)) 72) ((|#3| $ (-549) (-549)) 73) ((|#3| $ (-549) (-549) (-549)) 74) ((|#3| $ (-549) (-549) (-549) (-549)) 75) ((|#3| $ (-643 (-549))) 76)) (-4380 (((-773) $) 70)) (-2161 (($ $ (-549) $ (-549)) 121) (($ $ (-549) (-549)) 123)) (-4378 (((-865) $) 94) (($ |#3|) 95) (($ (-239 |#2| |#3|)) 102) (($ (-1145 |#2| |#3|)) 105) (($ (-643 |#3|)) 77) (($ (-643 $)) 83)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 96 T CONST)) (-3067 (($) 97 T CONST)) (-3455 (((-112) $ $) 107)) (-4269 (($ $) 113) (($ $ $) 111)) (-4271 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-549)) 116) (($ (-549) $) 115) (($ $ $) 122))) +(((-135 |#1| |#2| |#3|) (-13 (-468 |#3| (-773)) (-473 (-549) (-773)) (-10 -8 (-15 -4378 ($ (-239 |#2| |#3|))) (-15 -4378 ($ (-1145 |#2| |#3|))) (-15 -4378 ($ (-643 |#3|))) (-15 -4378 ($ (-643 $))) (-15 -3513 ((-773) $)) (-15 -4231 (|#3| $)) (-15 -4231 (|#3| $ (-549))) (-15 -4231 (|#3| $ (-549) (-549))) (-15 -4231 (|#3| $ (-549) (-549) (-549))) (-15 -4231 (|#3| $ (-549) (-549) (-549) (-549))) (-15 -4231 (|#3| $ (-643 (-549)))) (-15 -4376 ($ $ $)) (-15 * ($ $ $)) (-15 -2161 ($ $ (-549) $ (-549))) (-15 -2161 ($ $ (-549) (-549))) (-15 -3838 ($ $)) (-15 -3838 ($ $ (-549) (-549))) (-15 -1417 ($ $ (-643 (-549)))) (-15 -1416 ($)) (-15 -1415 ($)) (-15 -1414 ((-643 |#3|) $)) (-15 -1413 ($ (-643 |#3|))) (-15 -4156 ($)))) (-549) (-773) (-172)) (T -135)) +((-4376 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-773)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1145 *4 *5)) (-14 *4 (-773)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)) (-4 *5 (-172)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 *2) (-4 *5 (-172)))) (-4231 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-549)) (-14 *4 (-773)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-773)))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-773)))) (-4231 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-773)))) (-4231 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-773)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-643 (-549))) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-549)) (-14 *5 (-773)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-2161 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) (-4 *5 (-172)))) (-2161 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) (-4 *5 (-172)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-3838 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) (-4 *5 (-172)))) (-1417 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)) (-4 *5 (-172)))) (-1416 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-1415 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-643 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)) (-4 *5 (-172)))) (-1413 (*1 *1 *2) (-12 (-5 *2 (-643 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 (-773)))) (-4156 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172))))) +(-13 (-468 |#3| (-773)) (-473 (-549) (-773)) (-10 -8 (-15 -4378 ($ (-239 |#2| |#3|))) (-15 -4378 ($ (-1145 |#2| |#3|))) (-15 -4378 ($ (-643 |#3|))) (-15 -4378 ($ (-643 $))) (-15 -3513 ((-773) $)) (-15 -4231 (|#3| $)) (-15 -4231 (|#3| $ (-549))) (-15 -4231 (|#3| $ (-549) (-549))) (-15 -4231 (|#3| $ (-549) (-549) (-549))) (-15 -4231 (|#3| $ (-549) (-549) (-549) (-549))) (-15 -4231 (|#3| $ (-643 (-549)))) (-15 -4376 ($ $ $)) (-15 * ($ $ $)) (-15 -2161 ($ $ (-549) $ (-549))) (-15 -2161 ($ $ (-549) (-549))) (-15 -3838 ($ $)) (-15 -3838 ($ $ (-549) (-549))) (-15 -1417 ($ $ (-643 (-549)))) (-15 -1416 ($)) (-15 -1415 ($)) (-15 -1414 ((-643 |#3|) $)) (-15 -1413 ($ (-643 |#3|))) (-15 -4156 ($)))) +((-2576 (((-135 |#1| |#2| |#4|) (-643 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-4390 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2576 ((-135 |#1| |#2| |#4|) (-643 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4390 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-549) (-773) (-172) (-172)) (T -136)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) (-14 *6 (-773)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) (-14 *6 (-773)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -2576 ((-135 |#1| |#2| |#4|) (-643 |#4|) (-135 |#1| |#2| |#3|))) (-15 -4390 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) +((-2968 (((-112) $ $) NIL)) (-3951 (((-1138) $) 11)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-137) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $))))) (T -137)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-137)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-137))))) +(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-1510 (((-187) $) 10)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-643 (-1138)) $) 13)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-138) (-13 (-1086) (-10 -8 (-15 -1510 ((-187) $)) (-15 -3653 ((-643 (-1138)) $))))) (T -138)) +((-1510 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-138))))) +(-13 (-1086) (-10 -8 (-15 -1510 ((-187) $)) (-15 -3653 ((-643 (-1138)) $)))) +((-2968 (((-112) $ $) NIL)) (-1508 (((-643 (-867)) $) NIL)) (-3973 (((-509) $) NIL)) (-3663 (((-1162) $) NIL)) (-1510 (((-187) $) NIL)) (-3035 (((-112) $ (-509)) NIL)) (-3664 (((-1123) $) NIL)) (-1509 (((-643 (-112)) $) NIL)) (-4378 (((-865) $) NIL) (((-183) $) 6)) (-3662 (((-112) $ $) NIL)) (-2921 (((-55) $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-139) (-13 (-186) (-615 (-183)))) (T -139)) +NIL +(-13 (-186) (-615 (-183))) +((-1419 (((-643 (-184 (-139))) $) 13)) (-1418 (((-643 (-184 (-139))) $) 14)) (-1420 (((-643 (-840)) $) 10)) (-1583 (((-139) $) 7)) (-4378 (((-865) $) 16))) +(((-140) (-13 (-615 (-865)) (-10 -8 (-15 -1583 ((-139) $)) (-15 -1420 ((-643 (-840)) $)) (-15 -1419 ((-643 (-184 (-139))) $)) (-15 -1418 ((-643 (-184 (-139))) $))))) (T -140)) +((-1583 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-643 (-840))) (-5 *1 (-140)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-643 (-184 (-139)))) (-5 *1 (-140)))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-643 (-184 (-139)))) (-5 *1 (-140))))) +(-13 (-615 (-865)) (-10 -8 (-15 -1583 ((-139) $)) (-15 -1420 ((-643 (-840)) $)) (-15 -1419 ((-643 (-184 (-139))) $)) (-15 -1418 ((-643 (-184 (-139))) $)))) +((-2968 (((-112) $ $) NIL)) (-3851 (($) 17 T CONST)) (-1977 (($) NIL (|has| (-144) (-370)))) (-3654 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3656 (($ $ $) NIL)) (-3655 (((-112) $ $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| (-144) (-370)))) (-3659 (($) NIL) (($ (-643 (-144))) NIL)) (-1678 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3829 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425))) (($ (-144) $) 61 (|has| $ (-6 -4425)))) (-3830 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3395 (($) NIL (|has| (-144) (-370)))) (-2124 (((-643 (-144)) $) 70 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2934 (((-144) $) NIL (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3260 (((-144) $) NIL (|has| (-144) (-852)))) (-2128 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) 65)) (-3853 (($) 18 T CONST)) (-2188 (((-922) $) NIL (|has| (-144) (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3658 (($ $ $) 30)) (-1369 (((-144) $) 62)) (-4039 (($ (-144) $) 60)) (-2563 (($ (-922)) NIL (|has| (-144) (-370)))) (-1423 (($) 16 T CONST)) (-3664 (((-1123) $) NIL)) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1370 (((-144) $) 63)) (-2126 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-144)) (-643 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-294 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 58)) (-1424 (($) 15 T CONST)) (-3657 (($ $ $) 32) (($ $ (-144)) NIL)) (-1567 (($ (-643 (-144))) NIL) (($) NIL)) (-2125 (((-773) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (((-773) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-1162) $) 37) (((-538) $) NIL (|has| (-144) (-616 (-538)))) (((-643 (-144)) $) 35)) (-3953 (($ (-643 (-144))) NIL)) (-1978 (($ $) 33 (|has| (-144) (-370)))) (-4378 (((-865) $) 55)) (-1425 (($ (-1162)) 14) (($ (-643 (-144))) 52)) (-1979 (((-773) $) NIL)) (-3660 (($) 59) (($ (-643 (-144))) NIL)) (-3662 (((-112) $ $) NIL)) (-1371 (($ (-643 (-144))) NIL)) (-2127 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-1421 (($) 21 T CONST)) (-1422 (($) 20 T CONST)) (-3455 (((-112) $ $) 24)) (-4389 (((-773) $) 57 (|has| $ (-6 -4425))))) +(((-141) (-13 (-1104) (-616 (-1162)) (-429 (-144)) (-616 (-643 (-144))) (-10 -8 (-15 -1425 ($ (-1162))) (-15 -1425 ($ (-643 (-144)))) (-15 -1424 ($) -4384) (-15 -1423 ($) -4384) (-15 -3851 ($) -4384) (-15 -3853 ($) -4384) (-15 -1422 ($) -4384) (-15 -1421 ($) -4384)))) (T -141)) +((-1425 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-141)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-643 (-144))) (-5 *1 (-141)))) (-1424 (*1 *1) (-5 *1 (-141))) (-1423 (*1 *1) (-5 *1 (-141))) (-3851 (*1 *1) (-5 *1 (-141))) (-3853 (*1 *1) (-5 *1 (-141))) (-1422 (*1 *1) (-5 *1 (-141))) (-1421 (*1 *1) (-5 *1 (-141)))) +(-13 (-1104) (-616 (-1162)) (-429 (-144)) (-616 (-643 (-144))) (-10 -8 (-15 -1425 ($ (-1162))) (-15 -1425 ($ (-643 (-144)))) (-15 -1424 ($) -4384) (-15 -1423 ($) -4384) (-15 -3851 ($) -4384) (-15 -3853 ($) -4384) (-15 -1422 ($) -4384) (-15 -1421 ($) -4384))) +((-4173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4171 ((|#1| |#3|) 9)) (-4172 ((|#3| |#3|) 15))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4171 (|#1| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-560) (-994 |#1|) (-374 |#2|)) (T -142)) +((-4173 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-374 *5)))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-560)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-374 *4)))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-374 *4))))) +(-10 -7 (-15 -4171 (|#1| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1456 (($ $ $) 8)) (-1454 (($ $) 7)) (-3505 (($ $ $) 6))) (((-143) (-140)) (T -143)) -((-4090 (*1 *1 *1 *1) (-4 *1 (-143))) (-2256 (*1 *1 *1) (-4 *1 (-143))) (-3040 (*1 *1 *1 *1) (-4 *1 (-143)))) -(-13 (-10 -8 (-15 -3040 ($ $ $)) (-15 -2256 ($ $)) (-15 -4090 ($ $ $)))) -((-2487 (((-112) $ $) NIL)) (-2062 (((-112) $) 39)) (-3860 (($ $) 55)) (-1416 (($) 26 T CONST)) (-3404 (((-772)) 13)) (-2119 (($) 25)) (-3976 (($) 27 T CONST)) (-2234 (((-772) $) 21)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2142 (((-112) $) 41)) (-3371 (($ $) 56)) (-2667 (((-923) $) 23)) (-1812 (((-1161) $) 49)) (-2188 (($ (-923)) 20)) (-1347 (((-112) $) 37)) (-3479 (((-1122) $) NIL)) (-2440 (($) 28 T CONST)) (-1317 (((-112) $) 35)) (-2504 (((-863) $) 30)) (-2560 (($ (-772)) 19) (($ (-1161)) 54)) (-3858 (((-112) $ $) NIL)) (-3954 (((-112) $) 45)) (-1703 (((-112) $) 43)) (-3016 (((-112) $ $) 11)) (-2996 (((-112) $ $) 9)) (-2968 (((-112) $ $) 7)) (-3006 (((-112) $ $) 10)) (-2986 (((-112) $ $) 8))) -(((-144) (-13 (-845) (-10 -8 (-15 -2234 ((-772) $)) (-15 -2560 ($ (-772))) (-15 -2560 ($ (-1161))) (-15 -1416 ($) -3562) (-15 -3976 ($) -3562) (-15 -2440 ($) -3562) (-15 -3860 ($ $)) (-15 -3371 ($ $)) (-15 -1317 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -1703 ((-112) $)) (-15 -2062 ((-112) $)) (-15 -2142 ((-112) $)) (-15 -3954 ((-112) $))))) (T -144)) -((-2234 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-144)))) (-1416 (*1 *1) (-5 *1 (-144))) (-3976 (*1 *1) (-5 *1 (-144))) (-2440 (*1 *1) (-5 *1 (-144))) (-3860 (*1 *1 *1) (-5 *1 (-144))) (-3371 (*1 *1 *1) (-5 *1 (-144))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(-13 (-845) (-10 -8 (-15 -2234 ((-772) $)) (-15 -2560 ($ (-772))) (-15 -2560 ($ (-1161))) (-15 -1416 ($) -3562) (-15 -3976 ($) -3562) (-15 -2440 ($) -3562) (-15 -3860 ($ $)) (-15 -3371 ($ $)) (-15 -1317 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -1703 ((-112) $)) (-15 -2062 ((-112) $)) (-15 -2142 ((-112) $)) (-15 -3954 ((-112) $)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2318 (((-3 $ "failed") $) 39)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-1456 (*1 *1 *1 *1) (-4 *1 (-143))) (-1454 (*1 *1 *1) (-4 *1 (-143))) (-3505 (*1 *1 *1 *1) (-4 *1 (-143)))) +(-13 (-10 -8 (-15 -3505 ($ $ $)) (-15 -1454 ($ $)) (-15 -1456 ($ $ $)))) +((-2968 (((-112) $ $) NIL)) (-1428 (((-112) $) 39)) (-3851 (($ $) 55)) (-1619 (($) 26 T CONST)) (-3540 (((-773)) 13)) (-3395 (($) 25)) (-2979 (($) 27 T CONST)) (-1434 (((-773) $) 21)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-1427 (((-112) $) 41)) (-3853 (($ $) 56)) (-2188 (((-922) $) 23)) (-3663 (((-1162) $) 49)) (-2563 (($ (-922)) 20)) (-1430 (((-112) $) 37)) (-3664 (((-1123) $) NIL)) (-1432 (($) 28 T CONST)) (-1431 (((-112) $) 35)) (-4378 (((-865) $) 30)) (-1433 (($ (-773)) 19) (($ (-1162)) 54)) (-3662 (((-112) $ $) NIL)) (-1426 (((-112) $) 45)) (-1429 (((-112) $) 43)) (-2966 (((-112) $ $) 11)) (-2967 (((-112) $ $) 9)) (-3455 (((-112) $ $) 7)) (-3087 (((-112) $ $) 10)) (-3088 (((-112) $ $) 8))) +(((-144) (-13 (-846) (-10 -8 (-15 -1434 ((-773) $)) (-15 -1433 ($ (-773))) (-15 -1433 ($ (-1162))) (-15 -1619 ($) -4384) (-15 -2979 ($) -4384) (-15 -1432 ($) -4384) (-15 -3851 ($ $)) (-15 -3853 ($ $)) (-15 -1431 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1429 ((-112) $)) (-15 -1428 ((-112) $)) (-15 -1427 ((-112) $)) (-15 -1426 ((-112) $))))) (T -144)) +((-1434 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-144)))) (-1433 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-144)))) (-1433 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-144)))) (-1619 (*1 *1) (-5 *1 (-144))) (-2979 (*1 *1) (-5 *1 (-144))) (-1432 (*1 *1) (-5 *1 (-144))) (-3851 (*1 *1 *1) (-5 *1 (-144))) (-3853 (*1 *1 *1) (-5 *1 (-144))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(-13 (-846) (-10 -8 (-15 -1434 ((-773) $)) (-15 -1433 ($ (-773))) (-15 -1433 ($ (-1162))) (-15 -1619 ($) -4384) (-15 -2979 ($) -4384) (-15 -1432 ($) -4384) (-15 -3851 ($ $)) (-15 -3853 ($ $)) (-15 -1431 ((-112) $)) (-15 -1430 ((-112) $)) (-15 -1429 ((-112) $)) (-15 -1428 ((-112) $)) (-15 -1427 ((-112) $)) (-15 -1426 ((-112) $)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3105 (((-3 $ "failed") $) 39)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-145) (-140)) (T -145)) -((-2318 (*1 *1 *1) (|partial| -4 *1 (-145)))) -(-13 (-1051) (-10 -8 (-15 -2318 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-4019 ((|#1| (-690 |#1|) |#1|) 23))) -(((-146 |#1|) (-10 -7 (-15 -4019 (|#1| (-690 |#1|) |#1|))) (-172)) (T -146)) -((-4019 (*1 *2 *3 *2) (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) -(-10 -7 (-15 -4019 (|#1| (-690 |#1|) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-3105 (*1 *1 *1) (|partial| -4 *1 (-145)))) +(-13 (-1052) (-10 -8 (-15 -3105 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2770 ((|#1| (-691 |#1|) |#1|) 23))) +(((-146 |#1|) (-10 -7 (-15 -2770 (|#1| (-691 |#1|) |#1|))) (-172)) (T -146)) +((-2770 (*1 *2 *3 *2) (-12 (-5 *3 (-691 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) +(-10 -7 (-15 -2770 (|#1| (-691 |#1|) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-147) (-140)) (T -147)) NIL -(-13 (-1051)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2785 (((-2 (|:| -2618 (-772)) (|:| -1344 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772)) 76)) (-2886 (((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|) 56)) (-2508 (((-2 (|:| -1344 (-410 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1551 ((|#1| |#3| |#3|) 44)) (-2913 ((|#3| |#3| (-410 |#2|) (-410 |#2|)) 20)) (-2133 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|) 53))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2508 ((-2 (|:| -1344 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2886 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -2785 ((-2 (|:| -2618 (-772)) (|:| -1344 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -1551 (|#1| |#3| |#3|)) (-15 -2913 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -2133 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) (-1223) (-1245 |#1|) (-1245 (-410 |#2|))) (T -148)) -((-2133 (*1 *2 *3 *3) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))) (-2913 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1245 *3)))) (-1551 (*1 *2 *3 *3) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-1223)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-2785 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *6)) (-4 *5 (-1223)) (-4 *6 (-1245 *5)) (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1245 *3)))) (-2886 (*1 *2 *3) (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -1344 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) -(-10 -7 (-15 -2508 ((-2 (|:| -1344 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2886 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -2785 ((-2 (|:| -2618 (-772)) (|:| -1344 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -1551 (|#1| |#3| |#3|)) (-15 -2913 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -2133 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) -((-1621 (((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|)) 35))) -(((-149 |#1| |#2|) (-10 -7 (-15 -1621 ((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|)))) (-548) (-166 |#1|)) (T -149)) -((-1621 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *5))) (-5 *3 (-1175 *5)) (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5))))) -(-10 -7 (-15 -1621 ((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|)))) -((-1316 (($ (-1 (-112) |#2|) $) 35)) (-3470 (($ $) 42)) (-1695 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-2617 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-2989 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-1430 (((-112) (-1 (-112) |#2|) $) 22)) (-3486 (((-772) (-1 (-112) |#2|) $) 18) (((-772) |#2| $) NIL)) (-3450 (((-112) (-1 (-112) |#2|) $) 21)) (-2498 (((-772) $) 12))) -(((-150 |#1| |#2|) (-10 -8 (-15 -3470 (|#1| |#1|)) (-15 -1695 (|#1| |#2| |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1316 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1695 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2989 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3486 ((-772) |#2| |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2498 ((-772) |#1|))) (-151 |#2|) (-1219)) (T -150)) -NIL -(-10 -8 (-15 -3470 (|#1| |#1|)) (-15 -1695 (|#1| |#2| |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1316 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1695 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2989 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3486 ((-772) |#2| |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2498 ((-772) |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-1316 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3470 (($ $) 42 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422))) (($ |#1| $) 43 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 41 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 50)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +(-13 (-1052)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-1437 (((-2 (|:| -2564 (-773)) (|:| -4386 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-773)) 76)) (-1436 (((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-773))) "failed") |#3|) 56)) (-1435 (((-2 (|:| -4386 (-410 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1438 ((|#1| |#3| |#3|) 44)) (-4199 ((|#3| |#3| (-410 |#2|) (-410 |#2|)) 20)) (-1439 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-773))) |#3| |#3|) 53))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1435 ((-2 (|:| -4386 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1436 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-773))) "failed") |#3|)) (-15 -1437 ((-2 (|:| -2564 (-773)) (|:| -4386 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-773))) (-15 -1438 (|#1| |#3| |#3|)) (-15 -4199 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -1439 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-773))) |#3| |#3|))) (-1224) (-1245 |#1|) (-1245 (-410 |#2|))) (T -148)) +((-1439 (*1 *2 *3 *3) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) (|:| |c2| (-410 *5)) (|:| |deg| (-773)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))) (-4199 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1245 *3)))) (-1438 (*1 *2 *3 *3) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-1224)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-1437 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *6)) (-4 *5 (-1224)) (-4 *6 (-1245 *5)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-773)) (-4 *7 (-1245 *3)))) (-1436 (*1 *2 *3) (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-773)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5))))) (-1435 (*1 *2 *3) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -4386 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) +(-10 -7 (-15 -1435 ((-2 (|:| -4386 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1436 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-773))) "failed") |#3|)) (-15 -1437 ((-2 (|:| -2564 (-773)) (|:| -4386 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-773))) (-15 -1438 (|#1| |#3| |#3|)) (-15 -4199 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -1439 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-773))) |#3| |#3|))) +((-3107 (((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|)) 35))) +(((-149 |#1| |#2|) (-10 -7 (-15 -3107 ((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|)))) (-548) (-166 |#1|)) (T -149)) +((-3107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5))))) +(-10 -7 (-15 -3107 ((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|)))) +((-4142 (($ (-1 (-112) |#2|) $) 35)) (-1440 (($ $) 42)) (-3830 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-4274 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-1441 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2126 (((-112) (-1 (-112) |#2|) $) 22)) (-2125 (((-773) (-1 (-112) |#2|) $) 18) (((-773) |#2| $) NIL)) (-2127 (((-112) (-1 (-112) |#2|) $) 21)) (-4389 (((-773) $) 12))) +(((-150 |#1| |#2|) (-10 -8 (-15 -1440 (|#1| |#1|)) (-15 -3830 (|#1| |#2| |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4142 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3830 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|))) (-151 |#2|) (-1219)) (T -150)) +NIL +(-10 -8 (-15 -1440 (|#1| |#1|)) (-15 -3830 (|#1| |#2| |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4142 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3830 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4142 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 42 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425))) (($ |#1| $) 43 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 41 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 50)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-151 |#1|) (-140) (-1219)) (T -151)) -((-2516 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-151 *3)))) (-2989 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-2617 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-2617 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *3)) (-4 *3 (-1219)))) (-1316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *3)) (-4 *3 (-1219)))) (-2617 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-1695 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))) (-3470 (*1 *1 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) (-4 *2 (-1102))))) -(-13 (-492 |t#1|) (-10 -8 (-15 -2516 ($ (-645 |t#1|))) (-15 -2989 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4422)) (PROGN (-15 -2617 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2617 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1695 ($ (-1 (-112) |t#1|) $)) (-15 -1316 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2617 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1695 ($ |t#1| $)) (-15 -3470 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) 114)) (-4384 (((-112) $) NIL)) (-3764 (($ |#2| (-645 (-923))) 74)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3305 (($ (-923)) 61)) (-2589 (((-134)) 26)) (-2504 (((-863) $) 89) (($ (-567)) 57) (($ |#2|) 58)) (-4038 ((|#2| $ (-645 (-923))) 77)) (-2214 (((-772)) 23 T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 51 T CONST)) (-1820 (($) 55 T CONST)) (-2968 (((-112) $ $) 37)) (-3064 (($ $ |#2|) NIL)) (-3054 (($ $) 46) (($ $ $) 44)) (-3045 (($ $ $) 42)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) -(((-152 |#1| |#2| |#3|) (-13 (-1051) (-38 |#2|) (-1276 |#2|) (-10 -8 (-15 -3305 ($ (-923))) (-15 -3764 ($ |#2| (-645 (-923)))) (-15 -4038 (|#2| $ (-645 (-923)))) (-15 -1377 ((-3 $ "failed") $)))) (-923) (-365) (-995 |#1| |#2|)) (T -152)) -((-1377 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-365)) (-14 *4 (-995 *2 *3)))) (-3305 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-995 *3 *4)))) (-3764 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-923))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-4 *2 (-365)) (-14 *5 (-995 *4 *2)))) (-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-923))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) (-14 *5 (-995 *4 *2))))) -(-13 (-1051) (-38 |#2|) (-1276 |#2|) (-10 -8 (-15 -3305 ($ (-923))) (-15 -3764 ($ |#2| (-645 (-923)))) (-15 -4038 (|#2| $ (-645 (-923)))) (-15 -1377 ((-3 $ "failed") $)))) -((-4253 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-3239 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567))) 101) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929)) 102)) (-1754 (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225))))) 105) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225)))) 104) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567))) 96) (((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929)) 97))) -(((-153) (-10 -7 (-15 -1754 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -1754 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -3239 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -3239 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -4253 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1754 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225))))) (-15 -1754 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))))))) (T -153)) -((-1754 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 (-225))))))) (-1754 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-945 (-225)))))) (-4253 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 *4)))) (|:| |xValues| (-1096 *4)) (|:| |yValues| (-1096 *4)))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 *4)))))) (-3239 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-1754 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-929)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) (-5 *1 (-153))))) -(-10 -7 (-15 -1754 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -1754 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -3239 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929))) (-15 -3239 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-929) (-410 (-567)) (-410 (-567)))) (-15 -4253 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1754 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-945 (-225))))) (-15 -1754 ((-2 (|:| |brans| (-645 (-645 (-945 (-225))))) (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225)))) (-645 (-645 (-945 (-225))))))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-2735 (((-645 (-1137)) $) 20)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 27) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-1137) $) 9)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-154) (-13 (-1085) (-10 -8 (-15 -2735 ((-645 (-1137)) $)) (-15 -3501 ((-1137) $))))) (T -154)) -((-2735 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-154)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-154))))) -(-13 (-1085) (-10 -8 (-15 -2735 ((-645 (-1137)) $)) (-15 -3501 ((-1137) $)))) -((-3476 (((-645 (-169 |#2|)) |#1| |#2|) 50))) -(((-155 |#1| |#2|) (-10 -7 (-15 -3476 ((-645 (-169 |#2|)) |#1| |#2|))) (-1245 (-169 (-567))) (-13 (-365) (-849))) (T -155)) -((-3476 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1245 (-169 (-567)))) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -3476 ((-645 (-169 |#2|)) |#1| |#2|))) -((-2487 (((-112) $ $) NIL)) (-2141 (((-1218) $) 12)) (-2128 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-156) (-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1218) $))))) (T -156)) -((-2128 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-156)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-156))))) -(-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1218) $)))) -((-2487 (((-112) $ $) NIL)) (-1325 (($) 41)) (-3757 (($) 40)) (-2766 (((-923)) 46)) (-1812 (((-1161) $) NIL)) (-2676 (((-567) $) 44)) (-3479 (((-1122) $) NIL)) (-3508 (($) 42)) (-3114 (($ (-567)) 47)) (-2504 (((-863) $) 53)) (-3995 (($) 43)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 38)) (-3045 (($ $ $) 35)) (* (($ (-923) $) 45) (($ (-225) $) 11))) -(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-225) $)) (-15 -3045 ($ $ $)) (-15 -3757 ($)) (-15 -1325 ($)) (-15 -3508 ($)) (-15 -3995 ($)) (-15 -2676 ((-567) $)) (-15 -2766 ((-923))) (-15 -3114 ($ (-567)))))) (T -157)) -((-3045 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3757 (*1 *1) (-5 *1 (-157))) (-1325 (*1 *1) (-5 *1 (-157))) (-3508 (*1 *1) (-5 *1 (-157))) (-3995 (*1 *1) (-5 *1 (-157))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) (-2766 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) (-3114 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157))))) -(-13 (-25) (-10 -8 (-15 * ($ (-923) $)) (-15 * ($ (-225) $)) (-15 -3045 ($ $ $)) (-15 -3757 ($)) (-15 -1325 ($)) (-15 -3508 ($)) (-15 -3995 ($)) (-15 -2676 ((-567) $)) (-15 -2766 ((-923))) (-15 -3114 ($ (-567))))) -((-3550 ((|#2| |#2| (-1094 |#2|)) 98) ((|#2| |#2| (-1179)) 75)) (-2822 ((|#2| |#2| (-1094 |#2|)) 97) ((|#2| |#2| (-1179)) 74)) (-4090 ((|#2| |#2| |#2|) 25)) (-3609 (((-114) (-114)) 111)) (-3836 ((|#2| (-645 |#2|)) 130)) (-2392 ((|#2| (-645 |#2|)) 152)) (-2082 ((|#2| (-645 |#2|)) 138)) (-4093 ((|#2| |#2|) 136)) (-4124 ((|#2| (-645 |#2|)) 124)) (-4024 ((|#2| (-645 |#2|)) 125)) (-3206 ((|#2| (-645 |#2|)) 150)) (-1379 ((|#2| |#2| (-1179)) 63) ((|#2| |#2|) 62)) (-2256 ((|#2| |#2|) 21)) (-3040 ((|#2| |#2| |#2|) 24)) (-3862 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-158 |#1| |#2|) (-10 -7 (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3040 (|#2| |#2| |#2|)) (-15 -4090 (|#2| |#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -1379 (|#2| |#2| (-1179))) (-15 -3550 (|#2| |#2| (-1179))) (-15 -3550 (|#2| |#2| (-1094 |#2|))) (-15 -2822 (|#2| |#2| (-1179))) (-15 -2822 (|#2| |#2| (-1094 |#2|))) (-15 -4093 (|#2| |#2|)) (-15 -3206 (|#2| (-645 |#2|))) (-15 -2082 (|#2| (-645 |#2|))) (-15 -2392 (|#2| (-645 |#2|))) (-15 -4124 (|#2| (-645 |#2|))) (-15 -4024 (|#2| (-645 |#2|))) (-15 -3836 (|#2| (-645 |#2|)))) (-559) (-433 |#1|)) (T -158)) -((-3836 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2822 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-2822 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-3550 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-3550 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-1379 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-4090 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3040 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3609 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4)) (-4 *4 (-433 *3)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4))))) -(-10 -7 (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3040 (|#2| |#2| |#2|)) (-15 -4090 (|#2| |#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -1379 (|#2| |#2| (-1179))) (-15 -3550 (|#2| |#2| (-1179))) (-15 -3550 (|#2| |#2| (-1094 |#2|))) (-15 -2822 (|#2| |#2| (-1179))) (-15 -2822 (|#2| |#2| (-1094 |#2|))) (-15 -4093 (|#2| |#2|)) (-15 -3206 (|#2| (-645 |#2|))) (-15 -2082 (|#2| (-645 |#2|))) (-15 -2392 (|#2| (-645 |#2|))) (-15 -4124 (|#2| (-645 |#2|))) (-15 -4024 (|#2| (-645 |#2|))) (-15 -3836 (|#2| (-645 |#2|)))) -((-2876 ((|#1| |#1| |#1|) 67)) (-2586 ((|#1| |#1| |#1|) 64)) (-4090 ((|#1| |#1| |#1|) 58)) (-3397 ((|#1| |#1|) 45)) (-3941 ((|#1| |#1| (-645 |#1|)) 55)) (-2256 ((|#1| |#1|) 48)) (-3040 ((|#1| |#1| |#1|) 51))) -(((-159 |#1|) (-10 -7 (-15 -3040 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -3941 (|#1| |#1| (-645 |#1|))) (-15 -3397 (|#1| |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -2586 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1| |#1|))) (-548)) (T -159)) -((-2876 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-2586 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-4090 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3397 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))) (-2256 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3040 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(-10 -7 (-15 -3040 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -3941 (|#1| |#1| (-645 |#1|))) (-15 -3397 (|#1| |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -2586 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1| |#1|))) -((-3550 (($ $ (-1179)) 12) (($ $ (-1094 $)) 11)) (-2822 (($ $ (-1179)) 10) (($ $ (-1094 $)) 9)) (-4090 (($ $ $) 8)) (-1379 (($ $) 14) (($ $ (-1179)) 13)) (-2256 (($ $) 7)) (-3040 (($ $ $) 6))) +((-3953 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-151 *3)))) (-1441 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-4274 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-4274 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-3830 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *3)) (-4 *3 (-1219)))) (-4142 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *3)) (-4 *3 (-1219)))) (-4274 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1104)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)))) (-3830 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) (-1440 (*1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) (-4 *2 (-1104))))) +(-13 (-492 |t#1|) (-10 -8 (-15 -3953 ($ (-643 |t#1|))) (-15 -1441 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4425)) (PROGN (-15 -4274 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4274 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3830 ($ (-1 (-112) |t#1|) $)) (-15 -4142 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -4274 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3830 ($ |t#1| $)) (-15 -1440 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) 113)) (-2573 (((-112) $) NIL)) (-3294 (($ |#2| (-643 (-922))) 73)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1442 (($ (-922)) 60)) (-4343 (((-134)) 26)) (-4378 (((-865) $) 88) (($ (-549)) 56) (($ |#2|) 57)) (-4109 ((|#2| $ (-643 (-922))) 76)) (-3530 (((-773)) 23 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 51 T CONST)) (-3067 (($) 54 T CONST)) (-3455 (((-112) $ $) 37)) (-4381 (($ $ |#2|) NIL)) (-4269 (($ $) 46) (($ $ $) 44)) (-4271 (($ $ $) 42)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL))) +(((-152 |#1| |#2| |#3|) (-13 (-1052) (-38 |#2|) (-1277 |#2|) (-10 -8 (-15 -1442 ($ (-922))) (-15 -3294 ($ |#2| (-643 (-922)))) (-15 -4109 (|#2| $ (-643 (-922)))) (-15 -3890 ((-3 $ "failed") $)))) (-922) (-365) (-996 |#1| |#2|)) (T -152)) +((-3890 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-922)) (-4 *3 (-365)) (-14 *4 (-996 *2 *3)))) (-1442 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-996 *3 *4)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-643 (-922))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) (-4 *2 (-365)) (-14 *5 (-996 *4 *2)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-643 (-922))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) (-14 *5 (-996 *4 *2))))) +(-13 (-1052) (-38 |#2|) (-1277 |#2|) (-10 -8 (-15 -1442 ($ (-922))) (-15 -3294 ($ |#2| (-643 (-922)))) (-15 -4109 (|#2| $ (-643 (-922)))) (-15 -3890 ((-3 $ "failed") $)))) +((-1444 (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-1443 (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549))) 99) (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928)) 100)) (-1611 (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225))))) 103) (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-946 (-225)))) 102) (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549))) 94) (((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928)) 95))) +(((-153) (-10 -7 (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549)))) (-15 -1443 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928))) (-15 -1443 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549)))) (-15 -1444 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-946 (-225))))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225)))))))) (T -153)) +((-1611 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)) (-5 *3 (-643 (-643 (-946 (-225))))))) (-1611 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)) (-5 *3 (-643 (-946 (-225)))))) (-1444 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 *4)))) (|:| |xValues| (-1092 *4)) (|:| |yValues| (-1092 *4)))) (-5 *1 (-153)) (-5 *3 (-643 (-643 (-946 *4)))))) (-1443 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-410 (-549))) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)))) (-1611 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-410 (-549))) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) (-5 *1 (-153))))) +(-10 -7 (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549)))) (-15 -1443 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928))) (-15 -1443 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-928) (-410 (-549)) (-410 (-549)))) (-15 -1444 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225)))) (-225) (-225) (-225) (-225))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-946 (-225))))) (-15 -1611 ((-2 (|:| |brans| (-643 (-643 (-946 (-225))))) (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225)))) (-643 (-643 (-946 (-225))))))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3601 (((-643 (-1138)) $) 20)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 27) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 9)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-154) (-13 (-1086) (-10 -8 (-15 -3601 ((-643 (-1138)) $)) (-15 -3653 ((-1138) $))))) (T -154)) +((-3601 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-154)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-154))))) +(-13 (-1086) (-10 -8 (-15 -3601 ((-643 (-1138)) $)) (-15 -3653 ((-1138) $)))) +((-1494 (((-643 (-168 |#2|)) |#1| |#2|) 50))) +(((-155 |#1| |#2|) (-10 -7 (-15 -1494 ((-643 (-168 |#2|)) |#1| |#2|))) (-1245 (-168 (-549))) (-13 (-365) (-850))) (T -155)) +((-1494 (*1 *2 *3 *4) (-12 (-5 *2 (-643 (-168 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1245 (-168 (-549)))) (-4 *4 (-13 (-365) (-850)))))) +(-10 -7 (-15 -1494 ((-643 (-168 |#2|)) |#1| |#2|))) +((-2968 (((-112) $ $) NIL)) (-3951 (((-1220) $) 12)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-156) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1220) $))))) (T -156)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-156)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-156))))) +(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1220) $)))) +((-2968 (((-112) $ $) NIL)) (-1446 (($) 41)) (-3502 (($) 40)) (-1445 (((-922)) 46)) (-3663 (((-1162) $) NIL)) (-3357 (((-549) $) 44)) (-3664 (((-1123) $) NIL)) (-3501 (($) 42)) (-3356 (($ (-549)) 47)) (-4378 (((-865) $) 53)) (-3500 (($) 43)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 38)) (-4271 (($ $ $) 35)) (* (($ (-922) $) 45) (($ (-225) $) 11))) +(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-922) $)) (-15 * ($ (-225) $)) (-15 -4271 ($ $ $)) (-15 -3502 ($)) (-15 -1446 ($)) (-15 -3501 ($)) (-15 -3500 ($)) (-15 -3357 ((-549) $)) (-15 -1445 ((-922))) (-15 -3356 ($ (-549)))))) (T -157)) +((-4271 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-3502 (*1 *1) (-5 *1 (-157))) (-1446 (*1 *1) (-5 *1 (-157))) (-3501 (*1 *1) (-5 *1 (-157))) (-3500 (*1 *1) (-5 *1 (-157))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-157)))) (-1445 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-157))))) +(-13 (-25) (-10 -8 (-15 * ($ (-922) $)) (-15 * ($ (-225) $)) (-15 -4271 ($ $ $)) (-15 -3502 ($)) (-15 -1446 ($)) (-15 -3501 ($)) (-15 -3500 ($)) (-15 -3357 ((-549) $)) (-15 -1445 ((-922))) (-15 -3356 ($ (-549))))) +((-1459 ((|#2| |#2| (-1095 |#2|)) 98) ((|#2| |#2| (-1180)) 75)) (-4376 ((|#2| |#2| (-1095 |#2|)) 97) ((|#2| |#2| (-1180)) 74)) (-1456 ((|#2| |#2| |#2|) 25)) (-3448 (((-113) (-113)) 111)) (-1453 ((|#2| (-643 |#2|)) 130)) (-1450 ((|#2| (-643 |#2|)) 152)) (-1449 ((|#2| (-643 |#2|)) 138)) (-1447 ((|#2| |#2|) 136)) (-1451 ((|#2| (-643 |#2|)) 124)) (-1452 ((|#2| (-643 |#2|)) 125)) (-1448 ((|#2| (-643 |#2|)) 150)) (-1460 ((|#2| |#2| (-1180)) 63) ((|#2| |#2|) 62)) (-1454 ((|#2| |#2|) 21)) (-3505 ((|#2| |#2| |#2|) 24)) (-2403 (((-112) (-113)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-158 |#1| |#2|) (-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3505 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -1460 (|#2| |#2| (-1180))) (-15 -1459 (|#2| |#2| (-1180))) (-15 -1459 (|#2| |#2| (-1095 |#2|))) (-15 -4376 (|#2| |#2| (-1180))) (-15 -4376 (|#2| |#2| (-1095 |#2|))) (-15 -1447 (|#2| |#2|)) (-15 -1448 (|#2| (-643 |#2|))) (-15 -1449 (|#2| (-643 |#2|))) (-15 -1450 (|#2| (-643 |#2|))) (-15 -1451 (|#2| (-643 |#2|))) (-15 -1452 (|#2| (-643 |#2|))) (-15 -1453 (|#2| (-643 |#2|)))) (-560) (-424 |#1|)) (T -158)) +((-1453 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1448 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-560)))) (-1447 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)))) (-4376 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) (-1459 (*1 *2 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)))) (-1459 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) (-1460 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) (-1460 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-1454 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-1456 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-3505 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-158 *3 *4)) (-4 *4 (-424 *3)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-424 *4))))) +(-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3505 (|#2| |#2| |#2|)) (-15 -1456 (|#2| |#2| |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -1460 (|#2| |#2|)) (-15 -1460 (|#2| |#2| (-1180))) (-15 -1459 (|#2| |#2| (-1180))) (-15 -1459 (|#2| |#2| (-1095 |#2|))) (-15 -4376 (|#2| |#2| (-1180))) (-15 -4376 (|#2| |#2| (-1095 |#2|))) (-15 -1447 (|#2| |#2|)) (-15 -1448 (|#2| (-643 |#2|))) (-15 -1449 (|#2| (-643 |#2|))) (-15 -1450 (|#2| (-643 |#2|))) (-15 -1451 (|#2| (-643 |#2|))) (-15 -1452 (|#2| (-643 |#2|))) (-15 -1453 (|#2| (-643 |#2|)))) +((-1458 ((|#1| |#1| |#1|) 67)) (-1457 ((|#1| |#1| |#1|) 64)) (-1456 ((|#1| |#1| |#1|) 58)) (-3291 ((|#1| |#1|) 45)) (-1455 ((|#1| |#1| (-643 |#1|)) 55)) (-1454 ((|#1| |#1|) 48)) (-3505 ((|#1| |#1| |#1|) 51))) +(((-159 |#1|) (-10 -7 (-15 -3505 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -1455 (|#1| |#1| (-643 |#1|))) (-15 -3291 (|#1| |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1458 (|#1| |#1| |#1|))) (-548)) (T -159)) +((-1458 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1457 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1456 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3291 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1455 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))) (-1454 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3505 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(-10 -7 (-15 -3505 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -1455 (|#1| |#1| (-643 |#1|))) (-15 -3291 (|#1| |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -1458 (|#1| |#1| |#1|))) +((-1459 (($ $ (-1180)) 12) (($ $ (-1095 $)) 11)) (-4376 (($ $ (-1180)) 10) (($ $ (-1095 $)) 9)) (-1456 (($ $ $) 8)) (-1460 (($ $) 14) (($ $ (-1180)) 13)) (-1454 (($ $) 7)) (-3505 (($ $ $) 6))) (((-160) (-140)) (T -160)) -((-1379 (*1 *1 *1) (-4 *1 (-160))) (-1379 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))) (-3550 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))) (-3550 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))) (-2822 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))) (-2822 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160))))) -(-13 (-143) (-10 -8 (-15 -1379 ($ $)) (-15 -1379 ($ $ (-1179))) (-15 -3550 ($ $ (-1179))) (-15 -3550 ($ $ (-1094 $))) (-15 -2822 ($ $ (-1179))) (-15 -2822 ($ $ (-1094 $))))) +((-1460 (*1 *1 *1) (-4 *1 (-160))) (-1460 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) (-1459 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) (-1459 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-160)))) (-4376 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-160))))) +(-13 (-143) (-10 -8 (-15 -1460 ($ $)) (-15 -1460 ($ $ (-1180))) (-15 -1459 ($ $ (-1180))) (-15 -1459 ($ $ (-1095 $))) (-15 -4376 ($ $ (-1180))) (-15 -4376 ($ $ (-1095 $))))) (((-143) . T)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 16) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-645 (-1137)) $) 10)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-161) (-13 (-1085) (-10 -8 (-15 -3501 ((-645 (-1137)) $))))) (T -161)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-161))))) -(-13 (-1085) (-10 -8 (-15 -3501 ((-645 (-1137)) $)))) -((-2487 (((-112) $ $) NIL)) (-1866 (($ (-567)) 14) (($ $ $) 15)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 18)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 9))) -(((-162) (-13 (-1102) (-10 -8 (-15 -1866 ($ (-567))) (-15 -1866 ($ $ $))))) (T -162)) -((-1866 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))) (-1866 (*1 *1 *1 *1) (-5 *1 (-162)))) -(-13 (-1102) (-10 -8 (-15 -1866 ($ (-567))) (-15 -1866 ($ $ $)))) -((-3609 (((-114) (-1179)) 102))) -(((-163) (-10 -7 (-15 -3609 ((-114) (-1179))))) (T -163)) -((-3609 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-114)) (-5 *1 (-163))))) -(-10 -7 (-15 -3609 ((-114) (-1179)))) -((-4151 ((|#3| |#3|) 19))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -4151 (|#3| |#3|))) (-1051) (-1245 |#1|) (-1245 |#2|)) (T -164)) -((-4151 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-4 *4 (-1245 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1245 *4))))) -(-10 -7 (-15 -4151 (|#3| |#3|))) -((-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 223)) (-3132 ((|#2| $) 102)) (-1406 (($ $) 256)) (-2545 (($ $) 250)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 47)) (-1380 (($ $) 254)) (-2524 (($ $) 248)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-3094 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 144)) (-2432 (($ $ $) 229)) (-2690 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 160) (((-690 |#2|) (-690 $)) 154)) (-2617 (($ (-1175 |#2|)) 125) (((-3 $ "failed") (-410 (-1175 |#2|))) NIL)) (-1377 (((-3 $ "failed") $) 214)) (-3810 (((-3 (-410 (-567)) "failed") $) 204)) (-1527 (((-112) $) 199)) (-2485 (((-410 (-567)) $) 202)) (-1471 (((-923)) 96)) (-2443 (($ $ $) 231)) (-2209 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-4329 (($) 245)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 193) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 198)) (-2013 ((|#2| $) 100)) (-3908 (((-1175 |#2|) $) 127)) (-4364 (($ (-1 |#2| |#2|) $) 108)) (-2734 (($ $) 247)) (-2606 (((-1175 |#2|) $) 126)) (-1752 (($ $) 207)) (-2032 (($) 103)) (-2273 (((-421 (-1175 $)) (-1175 $)) 95)) (-2579 (((-421 (-1175 $)) (-1175 $)) 64)) (-2478 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4272 (($ $) 246)) (-2465 (((-772) $) 226)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 236)) (-2254 ((|#2| (-1269 $)) NIL) ((|#2|) 98)) (-3592 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-2783 (((-1175 |#2|)) 120)) (-1394 (($ $) 255)) (-2533 (($ $) 249)) (-3237 (((-1269 |#2|) $ (-1269 $)) 136) (((-690 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 116) (((-690 |#2|) (-1269 $)) NIL)) (-1322 (((-1269 |#2|) $) NIL) (($ (-1269 |#2|)) NIL) (((-1175 |#2|) $) NIL) (($ (-1175 |#2|)) NIL) (((-894 (-567)) $) 184) (((-894 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-539) $) 180)) (-3307 (($ $) 104)) (-2504 (((-863) $) 143) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-410 (-567))) NIL) (($ $) NIL)) (-4019 (((-1175 |#2|) $) 32)) (-2214 (((-772)) 106)) (-3858 (((-112) $ $) 13)) (-1481 (($ $) 259)) (-2610 (($ $) 253)) (-1456 (($ $) 257)) (-2588 (($ $) 251)) (-2928 ((|#2| $) 242)) (-1468 (($ $) 258)) (-2599 (($ $) 252)) (-1368 (($ $) 162)) (-2968 (((-112) $ $) 110)) (-3054 (($ $) 112) (($ $ $) NIL)) (-3045 (($ $ $) 111)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) 277) (($ $ $) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL))) -(((-165 |#1| |#2|) (-10 -8 (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -2504 (|#1| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2054 ((-2 (|:| -3414 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2465 ((-772) |#1|)) (-15 -2401 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -1322 ((-539) |#1|)) (-15 -1322 ((-169 (-225)) |#1|)) (-15 -1322 ((-169 (-381)) |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2524 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -2599 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -1380 (|#1| |#1|)) (-15 -1406 (|#1| |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4329 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2579 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2273 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -1621 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -2209 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2928 (|#2| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3307 (|#1| |#1|)) (-15 -2032 (|#1|)) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -2959 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2617 ((-3 |#1| "failed") (-410 (-1175 |#2|)))) (-15 -2606 ((-1175 |#2|) |#1|)) (-15 -1322 (|#1| (-1175 |#2|))) (-15 -2617 (|#1| (-1175 |#2|))) (-15 -2783 ((-1175 |#2|))) (-15 -2690 ((-690 |#2|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -1322 ((-1175 |#2|) |#1|)) (-15 -2254 (|#2|)) (-15 -1322 (|#1| (-1269 |#2|))) (-15 -1322 ((-1269 |#2|) |#1|)) (-15 -3237 ((-690 |#2|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1|)) (-15 -3908 ((-1175 |#2|) |#1|)) (-15 -4019 ((-1175 |#2|) |#1|)) (-15 -2254 (|#2| (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -2013 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -1471 ((-923))) (-15 -2504 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -1377 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3858 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) -((-2214 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1471 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-923)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2254 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-2783 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1175 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) -(-10 -8 (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -2504 (|#1| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2054 ((-2 (|:| -3414 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2465 ((-772) |#1|)) (-15 -2401 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -1322 ((-539) |#1|)) (-15 -1322 ((-169 (-225)) |#1|)) (-15 -1322 ((-169 (-381)) |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2524 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -2599 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -1380 (|#1| |#1|)) (-15 -1406 (|#1| |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4329 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2579 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2273 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -1621 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -2209 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2928 (|#2| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3307 (|#1| |#1|)) (-15 -2032 (|#1|)) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -2959 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2617 ((-3 |#1| "failed") (-410 (-1175 |#2|)))) (-15 -2606 ((-1175 |#2|) |#1|)) (-15 -1322 (|#1| (-1175 |#2|))) (-15 -2617 (|#1| (-1175 |#2|))) (-15 -2783 ((-1175 |#2|))) (-15 -2690 ((-690 |#2|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -1322 ((-1175 |#2|) |#1|)) (-15 -2254 (|#2|)) (-15 -1322 (|#1| (-1269 |#2|))) (-15 -1322 ((-1269 |#2|) |#1|)) (-15 -3237 ((-690 |#2|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1|)) (-15 -3908 ((-1175 |#2|) |#1|)) (-15 -4019 ((-1175 |#2|) |#1|)) (-15 -2254 (|#2| (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -2013 (|#2| |#1|)) (-15 -3132 (|#2| |#1|)) (-15 -1471 ((-923))) (-15 -2504 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -1377 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3858 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 102 (-2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1987 (($ $) 103 (-2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3342 (((-112) $) 105 (-2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2706 (((-690 |#1|) (-1269 $)) 53) (((-690 |#1|)) 68)) (-3132 ((|#1| $) 59)) (-1406 (($ $) 229 (|has| |#1| (-1204)))) (-2545 (($ $) 212 (|has| |#1| (-1204)))) (-2694 (((-1192 (-923) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-2932 (((-3 $ "failed") $ $) 20)) (-2701 (((-421 (-1175 $)) (-1175 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3864 (($ $) 122 (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-1466 (((-421 $) $) 123 (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-3671 (($ $) 242 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-4175 (((-112) $ $) 113 (|has| |#1| (-308)))) (-3404 (((-772)) 96 (|has| |#1| (-370)))) (-1380 (($ $) 228 (|has| |#1| (-1204)))) (-2524 (($ $) 213 (|has| |#1| (-1204)))) (-1431 (($ $) 227 (|has| |#1| (-1204)))) (-2565 (($ $) 214 (|has| |#1| (-1204)))) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-3094 (((-567) $) 177 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 174)) (-3431 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2432 (($ $ $) 117 (|has| |#1| (-308)))) (-3815 (((-690 |#1|) $ (-1269 $)) 60) (((-690 |#1|) $) 66)) (-2690 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2617 (($ (-1175 |#1|)) 166) (((-3 $ "failed") (-410 (-1175 |#1|))) 163 (|has| |#1| (-365)))) (-1377 (((-3 $ "failed") $) 37)) (-3680 ((|#1| $) 254)) (-3810 (((-3 (-410 (-567)) "failed") $) 247 (|has| |#1| (-548)))) (-1527 (((-112) $) 249 (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) 248 (|has| |#1| (-548)))) (-1471 (((-923)) 61)) (-2119 (($) 99 (|has| |#1| (-370)))) (-2443 (($ $ $) 116 (|has| |#1| (-308)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 111 (|has| |#1| (-308)))) (-3882 (($) 157 (|has| |#1| (-351)))) (-1816 (((-112) $) 158 (|has| |#1| (-351)))) (-2559 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-2946 (((-112) $) 124 (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2209 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1062)) (|has| |#1| (-1204))))) (-4329 (($) 239 (|has| |#1| (-1204)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 262 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 261 (|has| |#1| (-888 (-381))))) (-3905 (((-923) $) 160 (|has| |#1| (-351))) (((-834 (-923)) $) 146 (|has| |#1| (-351)))) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 241 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))))) (-2013 ((|#1| $) 58)) (-3104 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-308)))) (-3908 (((-1175 |#1|) $) 51 (|has| |#1| (-365)))) (-4364 (($ (-1 |#1| |#1|) $) 263)) (-2667 (((-923) $) 98 (|has| |#1| (-370)))) (-2734 (($ $) 236 (|has| |#1| (-1204)))) (-2606 (((-1175 |#1|) $) 164)) (-1831 (($ (-645 $)) 109 (-2836 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (($ $ $) 108 (-2836 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1812 (((-1161) $) 10)) (-1752 (($ $) 125 (|has| |#1| (-365)))) (-2221 (($) 151 (|has| |#1| (-351)) CONST)) (-2188 (($ (-923)) 97 (|has| |#1| (-370)))) (-2032 (($) 258)) (-3690 ((|#1| $) 255)) (-3479 (((-1122) $) 11)) (-2335 (($) 168)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 110 (-2836 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1870 (($ (-645 $)) 107 (-2836 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (($ $ $) 106 (-2836 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 154 (|has| |#1| (-351)))) (-2273 (((-421 (-1175 $)) (-1175 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2579 (((-421 (-1175 $)) (-1175 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3661 (((-421 $) $) 121 (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 118 (|has| |#1| (-308)))) (-2478 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (-2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-308)))) (-4272 (($ $) 237 (|has| |#1| (-1204)))) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 265 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) 264 (|has| |#1| (-517 (-1179) |#1|)))) (-2465 (((-772) $) 114 (|has| |#1| (-308)))) (-1882 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 115 (|has| |#1| (-308)))) (-2254 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-2943 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-3592 (($ $ (-1 |#1| |#1|) (-772)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-645 (-1179)) (-645 (-772))) 138 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 139 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 140 (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 141 (|has| |#1| (-902 (-1179)))) (($ $ (-772)) 143 (-2836 (-1750 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1750 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2836 (-1750 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1750 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3089 (((-690 |#1|) (-1269 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2783 (((-1175 |#1|)) 167)) (-1443 (($ $) 226 (|has| |#1| (-1204)))) (-2576 (($ $) 215 (|has| |#1| (-1204)))) (-1876 (($) 156 (|has| |#1| (-351)))) (-1418 (($ $) 225 (|has| |#1| (-1204)))) (-2555 (($ $) 216 (|has| |#1| (-1204)))) (-1394 (($ $) 224 (|has| |#1| (-1204)))) (-2533 (($ $) 217 (|has| |#1| (-1204)))) (-3237 (((-1269 |#1|) $ (-1269 $)) 57) (((-690 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-690 |#1|) (-1269 $)) 72)) (-1322 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69) (((-1175 |#1|) $) 179) (($ (-1175 |#1|)) 165) (((-894 (-567)) $) 260 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 259 (|has| |#1| (-615 (-894 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1024))) (((-169 (-225)) $) 210 (|has| |#1| (-1024))) (((-539) $) 209 (|has| |#1| (-615 (-539))))) (-3307 (($ $) 257)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 153 (-2836 (-1750 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (|has| |#1| (-351))))) (-3100 (($ |#1| |#1|) 256)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 95 (-2836 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) 100 (-2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-2318 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2836 (-1750 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))) (|has| |#1| (-145))))) (-4019 (((-1175 |#1|) $) 52)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-4374 (((-1269 $)) 74)) (-1481 (($ $) 235 (|has| |#1| (-1204)))) (-2610 (($ $) 223 (|has| |#1| (-1204)))) (-3269 (((-112) $ $) 104 (-2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911)))))) (-1456 (($ $) 234 (|has| |#1| (-1204)))) (-2588 (($ $) 222 (|has| |#1| (-1204)))) (-1505 (($ $) 233 (|has| |#1| (-1204)))) (-2632 (($ $) 221 (|has| |#1| (-1204)))) (-2928 ((|#1| $) 251 (|has| |#1| (-1204)))) (-2090 (($ $) 232 (|has| |#1| (-1204)))) (-1367 (($ $) 220 (|has| |#1| (-1204)))) (-1492 (($ $) 231 (|has| |#1| (-1204)))) (-2621 (($ $) 219 (|has| |#1| (-1204)))) (-1468 (($ $) 230 (|has| |#1| (-1204)))) (-2599 (($ $) 218 (|has| |#1| (-1204)))) (-1368 (($ $) 252 (|has| |#1| (-1062)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-1 |#1| |#1|) (-772)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-645 (-1179)) (-645 (-772))) 134 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 135 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 136 (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 137 (|has| |#1| (-902 (-1179)))) (($ $ (-772)) 142 (-2836 (-1750 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1750 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2836 (-1750 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1750 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 129 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-410 (-567))) 240 (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204)))) (($ $ $) 238 (|has| |#1| (-1204))) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365))))) +((-2968 (((-112) $ $) NIL)) (-1461 (($ (-549)) 14) (($ $ $) 15)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9))) +(((-161) (-13 (-1104) (-10 -8 (-15 -1461 ($ (-549))) (-15 -1461 ($ $ $))))) (T -161)) +((-1461 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-161)))) (-1461 (*1 *1 *1 *1) (-5 *1 (-161)))) +(-13 (-1104) (-10 -8 (-15 -1461 ($ (-549))) (-15 -1461 ($ $ $)))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 16) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-643 (-1138)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-162) (-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $))))) (T -162)) +((-3653 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-162))))) +(-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $)))) +((-3448 (((-113) (-1180)) 102))) +(((-163) (-10 -7 (-15 -3448 ((-113) (-1180))))) (T -163)) +((-3448 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-113)) (-5 *1 (-163))))) +(-10 -7 (-15 -3448 ((-113) (-1180)))) +((-1703 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1703 (|#3| |#3|))) (-1052) (-1245 |#1|) (-1245 |#2|)) (T -164)) +((-1703 (*1 *2 *2) (-12 (-4 *3 (-1052)) (-4 *4 (-1245 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1245 *4))))) +(-10 -7 (-15 -1703 (|#3| |#3|))) +((-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 223)) (-3754 ((|#2| $) 102)) (-3915 (($ $) 256)) (-4071 (($ $) 250)) (-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 47)) (-3913 (($ $) 254)) (-4070 (($ $) 248)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 146)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#2| $) 144)) (-2964 (($ $ $) 229)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 160) (((-691 |#2|) (-691 $)) 154)) (-4274 (($ (-1174 |#2|)) 125) (((-3 $ "failed") (-410 (-1174 |#2|))) NIL)) (-3890 (((-3 $ "failed") $) 214)) (-3425 (((-3 (-410 (-549)) "failed") $) 204)) (-3424 (((-112) $) 199)) (-3423 (((-410 (-549)) $) 202)) (-3513 (((-922)) 96)) (-2963 (($ $ $) 231)) (-1462 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-4059 (($) 245)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 193) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 198)) (-3536 ((|#2| $) 100)) (-2192 (((-1174 |#2|) $) 127)) (-4390 (($ (-1 |#2| |#2|) $) 108)) (-4374 (($ $) 247)) (-3481 (((-1174 |#2|) $) 126)) (-2806 (($ $) 207)) (-1464 (($) 103)) (-3108 (((-408 (-1174 $)) (-1174 $)) 95)) (-3109 (((-408 (-1174 $)) (-1174 $)) 64)) (-3889 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4375 (($ $) 246)) (-1752 (((-773) $) 226)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 236)) (-4189 ((|#2| (-1269 $)) NIL) ((|#2|) 98)) (-4242 (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-3605 (((-1174 |#2|)) 120)) (-3914 (($ $) 255)) (-4066 (($ $) 249)) (-3644 (((-1269 |#2|) $ (-1269 $)) 136) (((-691 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 116) (((-691 |#2|) (-1269 $)) NIL)) (-4402 (((-1269 |#2|) $) NIL) (($ (-1269 |#2|)) NIL) (((-1174 |#2|) $) NIL) (($ (-1174 |#2|)) NIL) (((-893 (-549)) $) 184) (((-893 (-380)) $) 188) (((-168 (-380)) $) 172) (((-168 (-225)) $) 167) (((-538) $) 180)) (-3410 (($ $) 104)) (-4378 (((-865) $) 143) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-410 (-549))) NIL) (($ $) NIL)) (-2770 (((-1174 |#2|) $) 32)) (-3530 (((-773)) 106)) (-3662 (((-112) $ $) 13)) (-3921 (($ $) 259)) (-3909 (($ $) 253)) (-3919 (($ $) 257)) (-3907 (($ $) 251)) (-2385 ((|#2| $) 242)) (-3920 (($ $) 258)) (-3908 (($ $) 252)) (-3807 (($ $) 162)) (-3455 (((-112) $ $) 110)) (-4269 (($ $) 112) (($ $ $) NIL)) (-4271 (($ $ $) 111)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-410 (-549))) 276) (($ $ $) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4378 (|#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -1752 ((-773) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-168 (-225)) |#1|)) (-15 -4402 ((-168 (-380)) |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4059 (|#1|)) (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -1462 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2385 (|#2| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3410 (|#1| |#1|)) (-15 -1464 (|#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4274 ((-3 |#1| "failed") (-410 (-1174 |#2|)))) (-15 -3481 ((-1174 |#2|) |#1|)) (-15 -4402 (|#1| (-1174 |#2|))) (-15 -4274 (|#1| (-1174 |#2|))) (-15 -3605 ((-1174 |#2|))) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 ((-1174 |#2|) |#1|)) (-15 -4189 (|#2|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -2192 ((-1174 |#2|) |#1|)) (-15 -2770 ((-1174 |#2|) |#1|)) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3536 (|#2| |#1|)) (-15 -3754 (|#2| |#1|)) (-15 -3513 ((-922))) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) +((-3530 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3513 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-922)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4189 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3605 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4378 (|#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -1752 ((-773) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-168 (-225)) |#1|)) (-15 -4402 ((-168 (-380)) |#1|)) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4059 (|#1|)) (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -1462 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2385 (|#2| |#1|)) (-15 -3807 (|#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3410 (|#1| |#1|)) (-15 -1464 (|#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4274 ((-3 |#1| "failed") (-410 (-1174 |#2|)))) (-15 -3481 ((-1174 |#2|) |#1|)) (-15 -4402 (|#1| (-1174 |#2|))) (-15 -4274 (|#1| (-1174 |#2|))) (-15 -3605 ((-1174 |#2|))) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 ((-1174 |#2|) |#1|)) (-15 -4189 (|#2|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -2192 ((-1174 |#2|) |#1|)) (-15 -2770 ((-1174 |#2|) |#1|)) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3536 (|#2| |#1|)) (-15 -3754 (|#2| |#1|)) (-15 -3513 ((-922))) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 102 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-2241 (($ $) 103 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-2239 (((-112) $) 105 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-1957 (((-691 |#1|) (-1269 $)) 53) (((-691 |#1|)) 68)) (-3754 ((|#1| $) 59)) (-3915 (($ $) 229 (|has| |#1| (-1205)))) (-4071 (($ $) 212 (|has| |#1| (-1205)))) (-1843 (((-1192 (-922) (-773)) (-549)) 155 (|has| |#1| (-352)))) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-4206 (($ $) 122 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-4401 (((-408 $) $) 123 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-3438 (($ $) 242 (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))))) (-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-1753 (((-112) $ $) 113 (|has| |#1| (-308)))) (-3540 (((-773)) 96 (|has| |#1| (-370)))) (-3913 (($ $) 228 (|has| |#1| (-1205)))) (-4070 (($ $) 213 (|has| |#1| (-1205)))) (-3917 (($ $) 227 (|has| |#1| (-1205)))) (-4069 (($ $) 214 (|has| |#1| (-1205)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 178 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 176 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 173)) (-3576 (((-549) $) 177 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 175 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 174)) (-1967 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-352)))) (-2964 (($ $ $) 117 (|has| |#1| (-308)))) (-1956 (((-691 |#1|) $ (-1269 $)) 60) (((-691 |#1|) $) 66)) (-2427 (((-691 (-549)) (-691 $)) 172 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 171 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 170) (((-691 |#1|) (-691 $)) 169)) (-4274 (($ (-1174 |#1|)) 166) (((-3 $ "failed") (-410 (-1174 |#1|))) 163 (|has| |#1| (-365)))) (-3890 (((-3 $ "failed") $) 37)) (-4075 ((|#1| $) 254)) (-3425 (((-3 (-410 (-549)) "failed") $) 247 (|has| |#1| (-548)))) (-3424 (((-112) $) 249 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 248 (|has| |#1| (-548)))) (-3513 (((-922)) 61)) (-3395 (($) 99 (|has| |#1| (-370)))) (-2963 (($ $ $) 116 (|has| |#1| (-308)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 111 (|has| |#1| (-308)))) (-3236 (($) 157 (|has| |#1| (-352)))) (-1848 (((-112) $) 158 (|has| |#1| (-352)))) (-1941 (($ $ (-773)) 149 (|has| |#1| (-352))) (($ $) 148 (|has| |#1| (-352)))) (-4155 (((-112) $) 124 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-1462 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1063)) (|has| |#1| (-1205))))) (-4059 (($) 239 (|has| |#1| (-1205)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 262 (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 261 (|has| |#1| (-889 (-380))))) (-4203 (((-922) $) 160 (|has| |#1| (-352))) (((-834 (-922)) $) 146 (|has| |#1| (-352)))) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 241 (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))))) (-3536 ((|#1| $) 58)) (-3868 (((-3 $ "failed") $) 150 (|has| |#1| (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 120 (|has| |#1| (-308)))) (-2192 (((-1174 |#1|) $) 51 (|has| |#1| (-365)))) (-4390 (($ (-1 |#1| |#1|) $) 263)) (-2188 (((-922) $) 98 (|has| |#1| (-370)))) (-4374 (($ $) 236 (|has| |#1| (-1205)))) (-3481 (((-1174 |#1|) $) 164)) (-2069 (($ (-643 $)) 109 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (($ $ $) 108 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 125 (|has| |#1| (-365)))) (-3869 (($) 151 (|has| |#1| (-352)) CONST)) (-2563 (($ (-922)) 97 (|has| |#1| (-370)))) (-1464 (($) 258)) (-4076 ((|#1| $) 255)) (-3664 (((-1123) $) 11)) (-2572 (($) 168)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 110 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3564 (($ (-643 $)) 107 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (($ $ $) 106 (-3960 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 154 (|has| |#1| (-352)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-3109 (((-408 (-1174 $)) (-1174 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-4164 (((-408 $) $) 121 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 118 (|has| |#1| (-308)))) (-3889 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 101 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 112 (|has| |#1| (-308)))) (-4375 (($ $) 237 (|has| |#1| (-1205)))) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 265 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) 264 (|has| |#1| (-517 (-1180) |#1|)))) (-1752 (((-773) $) 114 (|has| |#1| (-308)))) (-4231 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 115 (|has| |#1| (-308)))) (-4189 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-1942 (((-773) $) 159 (|has| |#1| (-352))) (((-3 (-773) "failed") $ $) 147 (|has| |#1| (-352)))) (-4242 (($ $ (-1 |#1| |#1|) (-773)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-643 (-1180)) (-643 (-773))) 138 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 139 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 140 (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 141 (|has| |#1| (-903 (-1180)))) (($ $ (-773)) 143 (-3960 (-3256 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-3960 (-3256 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3256 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2571 (((-691 |#1|) (-1269 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3605 (((-1174 |#1|)) 167)) (-3918 (($ $) 226 (|has| |#1| (-1205)))) (-4068 (($ $) 215 (|has| |#1| (-1205)))) (-1842 (($) 156 (|has| |#1| (-352)))) (-3916 (($ $) 225 (|has| |#1| (-1205)))) (-4067 (($ $) 216 (|has| |#1| (-1205)))) (-3914 (($ $) 224 (|has| |#1| (-1205)))) (-4066 (($ $) 217 (|has| |#1| (-1205)))) (-3644 (((-1269 |#1|) $ (-1269 $)) 57) (((-691 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-691 |#1|) (-1269 $)) 72)) (-4402 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69) (((-1174 |#1|) $) 179) (($ (-1174 |#1|)) 165) (((-893 (-549)) $) 260 (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) 259 (|has| |#1| (-616 (-893 (-380))))) (((-168 (-380)) $) 211 (|has| |#1| (-1023))) (((-168 (-225)) $) 210 (|has| |#1| (-1023))) (((-538) $) 209 (|has| |#1| (-616 (-538))))) (-3410 (($ $) 257)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 153 (-3960 (-3256 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))) (|has| |#1| (-352))))) (-1463 (($ |#1| |#1|) 256)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44) (($ (-410 (-549))) 95 (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) 100 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3105 (($ $) 152 (|has| |#1| (-352))) (((-3 $ "failed") $) 50 (-3960 (-3256 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))) (|has| |#1| (-145))))) (-2770 (((-1174 |#1|) $) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 74)) (-3921 (($ $) 235 (|has| |#1| (-1205)))) (-3909 (($ $) 223 (|has| |#1| (-1205)))) (-2240 (((-112) $ $) 104 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913)))))) (-3919 (($ $) 234 (|has| |#1| (-1205)))) (-3907 (($ $) 222 (|has| |#1| (-1205)))) (-3923 (($ $) 233 (|has| |#1| (-1205)))) (-3911 (($ $) 221 (|has| |#1| (-1205)))) (-2385 ((|#1| $) 251 (|has| |#1| (-1205)))) (-3924 (($ $) 232 (|has| |#1| (-1205)))) (-3912 (($ $) 220 (|has| |#1| (-1205)))) (-3922 (($ $) 231 (|has| |#1| (-1205)))) (-3910 (($ $) 219 (|has| |#1| (-1205)))) (-3920 (($ $) 230 (|has| |#1| (-1205)))) (-3908 (($ $) 218 (|has| |#1| (-1205)))) (-3807 (($ $) 252 (|has| |#1| (-1063)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 |#1| |#1|) (-773)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-643 (-1180)) (-643 (-773))) 134 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 135 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 136 (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 137 (|has| |#1| (-903 (-1180)))) (($ $ (-773)) 142 (-3960 (-3256 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-3960 (-3256 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3256 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 129 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-410 (-549))) 240 (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205)))) (($ $ $) 238 (|has| |#1| (-1205))) (($ $ (-549)) 126 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-549)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-549))) 127 (|has| |#1| (-365))))) (((-166 |#1|) (-140) (-172)) (T -166)) -((-2013 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2032 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3100 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-1368 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1204)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1062)) (-4 *3 (-1204)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567)))))) -(-13 (-725 |t#1| (-1175 |t#1|)) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-403 |t#1|) (-886 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -3100) (-15 -2032 ($)) (-15 -3307 ($ $)) (-15 -3100 ($ |t#1| |t#1|)) (-15 -3690 (|t#1| $)) (-15 -3680 (|t#1| $)) (-15 -2013 (|t#1| $)) (IF (|has| |t#1| (-559)) (PROGN (-6 (-559)) (-15 -2478 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4421)) (-6 -4421) |%noBranch|) (IF (|has| |t#1| (-6 -4418)) (-6 -4418) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1024)) (PROGN (-6 (-615 (-169 (-225)))) (-6 (-615 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -1368 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1204)) (PROGN (-6 (-1204)) (-15 -2928 (|t#1| $)) (IF (|has| |t#1| (-1004)) (-6 (-1004)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -2209 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-911)) (IF (|has| |t#1| (-308)) (-6 (-911)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1204)) ((-95) |has| |#1| (-1204)) ((-102) . T) ((-111 #0# #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2836 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-614 (-863)) . T) ((-172) . T) ((-615 (-169 (-225))) |has| |#1| (-1024)) ((-615 (-169 (-381))) |has| |#1| (-1024)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-615 #1=(-1175 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2836 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1204)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2836 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2836 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2836 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-412 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) -2836 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-496) |has| |#1| (-1204)) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) -2836 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-647 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-725 |#1| #1#) . T) ((-727) . T) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-911) -12 (|has| |#1| (-308)) (|has| |#1| (-911))) ((-922) -2836 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1004) -12 (|has| |#1| (-1004)) (|has| |#1| (-1204))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-351)) ((-1204) |has| |#1| (-1204)) ((-1207) |has| |#1| (-1204)) ((-1219) . T) ((-1223) -2836 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) -((-3661 (((-421 |#2|) |#2|) 69))) -(((-167 |#1| |#2|) (-10 -7 (-15 -3661 ((-421 |#2|) |#2|))) (-308) (-1245 (-169 |#1|))) (T -167)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1245 (-169 *4)))))) -(-10 -7 (-15 -3661 ((-421 |#2|) |#2|))) -((-4364 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) -(((-168 |#1| |#2|) (-10 -7 (-15 -4364 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) -(-10 -7 (-15 -4364 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 34)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-1987 (($ $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-3342 (((-112) $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-2706 (((-690 |#1|) (-1269 $)) NIL) (((-690 |#1|)) NIL)) (-3132 ((|#1| $) NIL)) (-1406 (($ $) NIL (|has| |#1| (-1204)))) (-2545 (($ $) NIL (|has| |#1| (-1204)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3864 (($ $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-1466 (((-421 $) $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-3671 (($ $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-308)))) (-3404 (((-772)) NIL (|has| |#1| (-370)))) (-1380 (($ $) NIL (|has| |#1| (-1204)))) (-2524 (($ $) NIL (|has| |#1| (-1204)))) (-1431 (($ $) NIL (|has| |#1| (-1204)))) (-2565 (($ $) NIL (|has| |#1| (-1204)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3431 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2432 (($ $ $) NIL (|has| |#1| (-308)))) (-3815 (((-690 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2617 (($ (-1175 |#1|)) NIL) (((-3 $ "failed") (-410 (-1175 |#1|))) NIL (|has| |#1| (-365)))) (-1377 (((-3 $ "failed") $) NIL)) (-3680 ((|#1| $) 13)) (-3810 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1527 (((-112) $) NIL (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1471 (((-923)) NIL)) (-2119 (($) NIL (|has| |#1| (-370)))) (-2443 (($ $ $) NIL (|has| |#1| (-308)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-308)))) (-3882 (($) NIL (|has| |#1| (-351)))) (-1816 (((-112) $) NIL (|has| |#1| (-351)))) (-2559 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-2946 (((-112) $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-2209 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1062)) (|has| |#1| (-1204))))) (-4329 (($) NIL (|has| |#1| (-1204)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#1| (-888 (-381))))) (-3905 (((-923) $) NIL (|has| |#1| (-351))) (((-834 (-923)) $) NIL (|has| |#1| (-351)))) (-4384 (((-112) $) 36)) (-4203 (($ $ (-567)) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204))))) (-2013 ((|#1| $) 47)) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-3908 (((-1175 |#1|) $) NIL (|has| |#1| (-365)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2667 (((-923) $) NIL (|has| |#1| (-370)))) (-2734 (($ $) NIL (|has| |#1| (-1204)))) (-2606 (((-1175 |#1|) $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-2221 (($) NIL (|has| |#1| (-351)) CONST)) (-2188 (($ (-923)) NIL (|has| |#1| (-370)))) (-2032 (($) NIL)) (-3690 ((|#1| $) 15)) (-3479 (((-1122) $) NIL)) (-2335 (($) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-308)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| |#1| (-351)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-911))))) (-3661 (((-421 $) $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-365))))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-308)))) (-2478 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 48 (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-4272 (($ $) NIL (|has| |#1| (-1204)))) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|)))) (-2465 (((-772) $) NIL (|has| |#1| (-308)))) (-1882 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-308)))) (-2254 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-2943 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-3592 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3089 (((-690 |#1|) (-1269 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2783 (((-1175 |#1|)) NIL)) (-1443 (($ $) NIL (|has| |#1| (-1204)))) (-2576 (($ $) NIL (|has| |#1| (-1204)))) (-1876 (($) NIL (|has| |#1| (-351)))) (-1418 (($ $) NIL (|has| |#1| (-1204)))) (-2555 (($ $) NIL (|has| |#1| (-1204)))) (-1394 (($ $) NIL (|has| |#1| (-1204)))) (-2533 (($ $) NIL (|has| |#1| (-1204)))) (-3237 (((-1269 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) NIL) (((-690 |#1|) (-1269 $)) NIL)) (-1322 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL) (((-1175 |#1|) $) NIL) (($ (-1175 |#1|)) NIL) (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1024))) (((-169 (-225)) $) NIL (|has| |#1| (-1024))) (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-3307 (($ $) 46)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-351))))) (-3100 (($ |#1| |#1|) 38)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 37) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-2318 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-4019 (((-1175 |#1|) $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL)) (-1481 (($ $) NIL (|has| |#1| (-1204)))) (-2610 (($ $) NIL (|has| |#1| (-1204)))) (-3269 (((-112) $ $) NIL (-2836 (-12 (|has| |#1| (-308)) (|has| |#1| (-911))) (|has| |#1| (-559))))) (-1456 (($ $) NIL (|has| |#1| (-1204)))) (-2588 (($ $) NIL (|has| |#1| (-1204)))) (-1505 (($ $) NIL (|has| |#1| (-1204)))) (-2632 (($ $) NIL (|has| |#1| (-1204)))) (-2928 ((|#1| $) NIL (|has| |#1| (-1204)))) (-2090 (($ $) NIL (|has| |#1| (-1204)))) (-1367 (($ $) NIL (|has| |#1| (-1204)))) (-1492 (($ $) NIL (|has| |#1| (-1204)))) (-2621 (($ $) NIL (|has| |#1| (-1204)))) (-1468 (($ $) NIL (|has| |#1| (-1204)))) (-2599 (($ $) NIL (|has| |#1| (-1204)))) (-1368 (($ $) NIL (|has| |#1| (-1062)))) (-1807 (($) 28 T CONST)) (-1820 (($) 30 T CONST)) (-2166 (((-1161) $) 23 (|has| |#1| (-829))) (((-1161) $ (-112)) 25 (|has| |#1| (-829))) (((-1274) (-823) $) 26 (|has| |#1| (-829))) (((-1274) (-823) $ (-112)) 27 (|has| |#1| (-829)))) (-2856 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 40)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1204)))) (($ $ $) NIL (|has| |#1| (-1204))) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))))) -(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-172)) (T -169)) -NIL -(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) -((-1322 (((-894 |#1|) |#3|) 22))) -(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -1322 ((-894 |#1|) |#3|))) (-1102) (-13 (-615 (-894 |#1|)) (-172)) (-166 |#2|)) (T -170)) -((-1322 (*1 *2 *3) (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-894 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1102)) (-4 *3 (-166 *5))))) -(-10 -7 (-15 -1322 ((-894 |#1|) |#3|))) -((-2487 (((-112) $ $) NIL)) (-2915 (((-112) $) 9)) (-1420 (((-112) $ (-112)) 11)) (-4223 (($) 13)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3846 (($ $) 14)) (-2504 (((-863) $) 18)) (-2563 (((-112) $) 8)) (-4057 (((-112) $ (-112)) 10)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-171) (-13 (-1102) (-10 -8 (-15 -4223 ($)) (-15 -2563 ((-112) $)) (-15 -2915 ((-112) $)) (-15 -4057 ((-112) $ (-112))) (-15 -1420 ((-112) $ (-112))) (-15 -3846 ($ $))))) (T -171)) -((-4223 (*1 *1) (-5 *1 (-171))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4057 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1420 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3846 (*1 *1 *1) (-5 *1 (-171)))) -(-13 (-1102) (-10 -8 (-15 -4223 ($)) (-15 -2563 ((-112) $)) (-15 -2915 ((-112) $)) (-15 -4057 ((-112) $ (-112))) (-15 -1420 ((-112) $ (-112))) (-15 -3846 ($ $)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-3536 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1464 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3410 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1463 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) (-3807 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1205)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1063)) (-4 *3 (-1205)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549)))))) +(-13 (-726 |t#1| (-1174 |t#1|)) (-415 |t#1|) (-231 |t#1|) (-340 |t#1|) (-403 |t#1|) (-887 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -1463) (-15 -1464 ($)) (-15 -3410 ($ $)) (-15 -1463 ($ |t#1| |t#1|)) (-15 -4076 (|t#1| $)) (-15 -4075 (|t#1| $)) (-15 -3536 (|t#1| $)) (IF (|has| |t#1| (-560)) (PROGN (-6 (-560)) (-15 -3889 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4424)) (-6 -4424) |%noBranch|) (IF (|has| |t#1| (-6 -4421)) (-6 -4421) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-6 (-616 (-168 (-225)))) (-6 (-616 (-168 (-380))))) |%noBranch|) (IF (|has| |t#1| (-1063)) (-15 -3807 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1205)) (PROGN (-6 (-1205)) (-15 -2385 (|t#1| $)) (IF (|has| |t#1| (-1005)) (-6 (-1005)) |%noBranch|) (IF (|has| |t#1| (-1063)) (-15 -1462 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-913)) (IF (|has| |t#1| (-308)) (-6 (-913)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1205)) ((-95) |has| |#1| (-1205)) ((-102) . T) ((-111 #1# #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| |#1| (-352)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-352)) (|has| |#1| (-365))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-615 (-865)) . T) ((-172) . T) ((-616 (-168 (-225))) |has| |#1| (-1023)) ((-616 (-168 (-380))) |has| |#1| (-1023)) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549)))) ((-616 #2=(-1174 |#1|)) . T) ((-231 |#1|) . T) ((-233) -3960 (|has| |#1| (-352)) (|has| |#1| (-233))) ((-243) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1205)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-405) |has| |#1| (-352)) ((-370) -3960 (|has| |#1| (-352)) (|has| |#1| (-370))) ((-352) |has| |#1| (-352)) ((-372 |#1| #2#) . T) ((-413 |#1| #2#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-496) |has| |#1| (-1205)) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-648 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-642 |#1|) . T) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-719 |#1|) . T) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-726 |#1| #2#) . T) ((-728) . T) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-887 |#1|) . T) ((-913) -12 (|has| |#1| (-308)) (|has| |#1| (-913))) ((-924) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1005) -12 (|has| |#1| (-1005)) (|has| |#1| (-1205))) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-352)) ((-1205) |has| |#1| (-1205)) ((-1208) |has| |#1| (-1205)) ((-1219) . T) ((-1224) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) +((-4164 (((-408 |#2|) |#2|) 69))) +(((-167 |#1| |#2|) (-10 -7 (-15 -4164 ((-408 |#2|) |#2|))) (-308) (-1245 (-168 |#1|))) (T -167)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1245 (-168 *4)))))) +(-10 -7 (-15 -4164 ((-408 |#2|) |#2|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 34)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-2241 (($ $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-2239 (((-112) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-1957 (((-691 |#1|) (-1269 $)) NIL) (((-691 |#1|)) NIL)) (-3754 ((|#1| $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-1205)))) (-4071 (($ $) NIL (|has| |#1| (-1205)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-4206 (($ $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-4401 (((-408 $) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-3438 (($ $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-308)))) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-3913 (($ $) NIL (|has| |#1| (-1205)))) (-4070 (($ $) NIL (|has| |#1| (-1205)))) (-3917 (($ $) NIL (|has| |#1| (-1205)))) (-4069 (($ $) NIL (|has| |#1| (-1205)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-2964 (($ $ $) NIL (|has| |#1| (-308)))) (-1956 (((-691 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-4274 (($ (-1174 |#1|)) NIL) (((-3 $ "failed") (-410 (-1174 |#1|))) NIL (|has| |#1| (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-4075 ((|#1| $) 13)) (-3425 (((-3 (-410 (-549)) #3="failed") $) NIL (|has| |#1| (-548)))) (-3424 (((-112) $) NIL (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) NIL (|has| |#1| (-548)))) (-3513 (((-922)) NIL)) (-3395 (($) NIL (|has| |#1| (-370)))) (-2963 (($ $ $) NIL (|has| |#1| (-308)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-308)))) (-3236 (($) NIL (|has| |#1| (-352)))) (-1848 (((-112) $) NIL (|has| |#1| (-352)))) (-1941 (($ $ (-773)) NIL (|has| |#1| (-352))) (($ $) NIL (|has| |#1| (-352)))) (-4155 (((-112) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-1462 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1063)) (|has| |#1| (-1205))))) (-4059 (($) NIL (|has| |#1| (-1205)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| |#1| (-889 (-380))))) (-4203 (((-922) $) NIL (|has| |#1| (-352))) (((-834 (-922)) $) NIL (|has| |#1| (-352)))) (-2573 (((-112) $) 36)) (-3412 (($ $ (-549)) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205))))) (-3536 ((|#1| $) 47)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-1750 (((-3 (-643 $) #4="failed") (-643 $) $) NIL (|has| |#1| (-308)))) (-2192 (((-1174 |#1|) $) NIL (|has| |#1| (-365)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-4374 (($ $) NIL (|has| |#1| (-1205)))) (-3481 (((-1174 |#1|) $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-3869 (($) NIL (|has| |#1| (-352)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-1464 (($) NIL)) (-4076 ((|#1| $) 15)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-308)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-352)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-913))))) (-4164 (((-408 $) $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-365))))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-308)))) (-3889 (((-3 $ #3#) $ |#1|) 45 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 48 (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-308)))) (-4375 (($ $) NIL (|has| |#1| (-1205)))) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|)))) (-1752 (((-773) $) NIL (|has| |#1| (-308)))) (-4231 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-308)))) (-4189 ((|#1| (-1269 $)) NIL) ((|#1|) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-352))) (((-3 (-773) "failed") $ $) NIL (|has| |#1| (-352)))) (-4242 (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2571 (((-691 |#1|) (-1269 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3605 (((-1174 |#1|)) NIL)) (-3918 (($ $) NIL (|has| |#1| (-1205)))) (-4068 (($ $) NIL (|has| |#1| (-1205)))) (-1842 (($) NIL (|has| |#1| (-352)))) (-3916 (($ $) NIL (|has| |#1| (-1205)))) (-4067 (($ $) NIL (|has| |#1| (-1205)))) (-3914 (($ $) NIL (|has| |#1| (-1205)))) (-4066 (($ $) NIL (|has| |#1| (-1205)))) (-3644 (((-1269 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) NIL) (((-691 |#1|) (-1269 $)) NIL)) (-4402 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL) (((-1174 |#1|) $) NIL) (($ (-1174 |#1|)) NIL) (((-893 (-549)) $) NIL (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| |#1| (-616 (-893 (-380))))) (((-168 (-380)) $) NIL (|has| |#1| (-1023))) (((-168 (-225)) $) NIL (|has| |#1| (-1023))) (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3410 (($ $) 46)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-352))))) (-1463 (($ |#1| |#1|) 38)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) 37) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-3105 (($ $) NIL (|has| |#1| (-352))) (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-2770 (((-1174 |#1|) $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL)) (-3921 (($ $) NIL (|has| |#1| (-1205)))) (-3909 (($ $) NIL (|has| |#1| (-1205)))) (-2240 (((-112) $ $) NIL (-3960 (-12 (|has| |#1| (-308)) (|has| |#1| (-913))) (|has| |#1| (-560))))) (-3919 (($ $) NIL (|has| |#1| (-1205)))) (-3907 (($ $) NIL (|has| |#1| (-1205)))) (-3923 (($ $) NIL (|has| |#1| (-1205)))) (-3911 (($ $) NIL (|has| |#1| (-1205)))) (-2385 ((|#1| $) NIL (|has| |#1| (-1205)))) (-3924 (($ $) NIL (|has| |#1| (-1205)))) (-3912 (($ $) NIL (|has| |#1| (-1205)))) (-3922 (($ $) NIL (|has| |#1| (-1205)))) (-3910 (($ $) NIL (|has| |#1| (-1205)))) (-3920 (($ $) NIL (|has| |#1| (-1205)))) (-3908 (($ $) NIL (|has| |#1| (-1205)))) (-3807 (($ $) NIL (|has| |#1| (-1063)))) (-3510 (($) 28 T CONST)) (-3067 (($) 30 T CONST)) (-2900 (((-1162) $) 23 (|has| |#1| (-823))) (((-1162) $ (-112)) 25 (|has| |#1| (-823))) (((-1275) (-825) $) 26 (|has| |#1| (-823))) (((-1275) (-825) $ (-112)) 27 (|has| |#1| (-823)))) (-3072 (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 40)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-410 (-549))) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1205)))) (($ $ $) NIL (|has| |#1| (-1205))) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-549))) NIL (|has| |#1| (-365))))) +(((-168 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-172)) (T -168)) +NIL +(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) +((-4390 (((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)) 14))) +(((-169 |#1| |#2|) (-10 -7 (-15 -4390 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) (-172) (-172)) (T -169)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-168 *6)) (-5 *1 (-169 *5 *6))))) +(-10 -7 (-15 -4390 ((-168 |#2|) (-1 |#2| |#1|) (-168 |#1|)))) +((-4402 (((-893 |#1|) |#3|) 22))) +(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -4402 ((-893 |#1|) |#3|))) (-1104) (-13 (-616 (-893 |#1|)) (-172)) (-166 |#2|)) (T -170)) +((-4402 (*1 *2 *3) (-12 (-4 *5 (-13 (-616 *2) (-172))) (-5 *2 (-893 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1104)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -4402 ((-893 |#1|) |#3|))) +((-2968 (((-112) $ $) NIL)) (-1466 (((-112) $) 9)) (-1465 (((-112) $ (-112)) 11)) (-4046 (($) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3824 (($ $) 14)) (-4378 (((-865) $) 18)) (-4134 (((-112) $) 8)) (-4293 (((-112) $ (-112)) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-171) (-13 (-1104) (-10 -8 (-15 -4046 ($)) (-15 -4134 ((-112) $)) (-15 -1466 ((-112) $)) (-15 -4293 ((-112) $ (-112))) (-15 -1465 ((-112) $ (-112))) (-15 -3824 ($ $))))) (T -171)) +((-4046 (*1 *1) (-5 *1 (-171))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4293 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1465 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3824 (*1 *1 *1) (-5 *1 (-171)))) +(-13 (-1104) (-10 -8 (-15 -4046 ($)) (-15 -4134 ((-112) $)) (-15 -1466 ((-112) $)) (-15 -4293 ((-112) $ (-112))) (-15 -1465 ((-112) $ (-112))) (-15 -3824 ($ $)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-172) (-140)) (T -172)) NIL -(-13 (-1051) (-111 $ $) (-10 -7 (-6 (-4424 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-4023 (($ $) 6))) +(-13 (-1052) (-111 $ $) (-10 -7 (-6 (-4427 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-1868 (($ $) 6))) (((-173) (-140)) (T -173)) -((-4023 (*1 *1 *1) (-4 *1 (-173)))) -(-13 (-10 -8 (-15 -4023 ($ $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 ((|#1| $) 81)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-2432 (($ $ $) NIL)) (-2909 (($ $) 21)) (-4262 (($ |#1| (-1159 |#1|)) 50)) (-1377 (((-3 $ "failed") $) 123)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3464 (((-1159 |#1|) $) 88)) (-2999 (((-1159 |#1|) $) 85)) (-3308 (((-1159 |#1|) $) 86)) (-4384 (((-112) $) NIL)) (-1802 (((-1159 |#1|) $) 94)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1831 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-1678 (($ $ (-567)) 97)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3642 (((-1159 |#1|) $) 95)) (-2186 (((-1159 (-410 |#1|)) $) 14)) (-3617 (($ (-410 |#1|)) 17) (($ |#1| (-1159 |#1|) (-1159 |#1|)) 40)) (-4314 (($ $) 99)) (-2504 (((-863) $) 140) (($ (-567)) 53) (($ |#1|) 54) (($ (-410 |#1|)) 38) (($ (-410 (-567))) NIL) (($ $) NIL)) (-2214 (((-772)) 70 T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-2067 (((-1159 (-410 |#1|)) $) 20)) (-1807 (($) 27 T CONST)) (-1820 (($) 30 T CONST)) (-2968 (((-112) $ $) 37)) (-3064 (($ $ $) 121)) (-3054 (($ $) 112) (($ $ $) 109)) (-3045 (($ $ $) 107)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-410 |#1|) $) 117) (($ $ (-410 |#1|)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL))) -(((-174 |#1|) (-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -3617 ($ (-410 |#1|))) (-15 -3617 ($ |#1| (-1159 |#1|) (-1159 |#1|))) (-15 -4262 ($ |#1| (-1159 |#1|))) (-15 -2999 ((-1159 |#1|) $)) (-15 -3308 ((-1159 |#1|) $)) (-15 -3464 ((-1159 |#1|) $)) (-15 -4199 (|#1| $)) (-15 -2909 ($ $)) (-15 -2067 ((-1159 (-410 |#1|)) $)) (-15 -2186 ((-1159 (-410 |#1|)) $)) (-15 -1802 ((-1159 |#1|) $)) (-15 -3642 ((-1159 |#1|) $)) (-15 -1678 ($ $ (-567))) (-15 -4314 ($ $)))) (-308)) (T -174)) -((-3617 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-3617 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1159 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-4262 (*1 *1 *2 *3) (-12 (-5 *3 (-1159 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4199 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2909 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-1159 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1159 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) -(-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -3617 ($ (-410 |#1|))) (-15 -3617 ($ |#1| (-1159 |#1|) (-1159 |#1|))) (-15 -4262 ($ |#1| (-1159 |#1|))) (-15 -2999 ((-1159 |#1|) $)) (-15 -3308 ((-1159 |#1|) $)) (-15 -3464 ((-1159 |#1|) $)) (-15 -4199 (|#1| $)) (-15 -2909 ($ $)) (-15 -2067 ((-1159 (-410 |#1|)) $)) (-15 -2186 ((-1159 (-410 |#1|)) $)) (-15 -1802 ((-1159 |#1|) $)) (-15 -3642 ((-1159 |#1|) $)) (-15 -1678 ($ $ (-567))) (-15 -4314 ($ $)))) -((-3948 (($ (-109) $) 15)) (-4068 (((-692 (-109)) (-509) $) 14)) (-2504 (((-863) $) 18)) (-1472 (((-645 (-109)) $) 8))) -(((-175) (-13 (-614 (-863)) (-10 -8 (-15 -1472 ((-645 (-109)) $)) (-15 -3948 ($ (-109) $)) (-15 -4068 ((-692 (-109)) (-509) $))))) (T -175)) -((-1472 (*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))) (-3948 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-4068 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175))))) -(-13 (-614 (-863)) (-10 -8 (-15 -1472 ((-645 (-109)) $)) (-15 -3948 ($ (-109) $)) (-15 -4068 ((-692 (-109)) (-509) $)))) -((-3627 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 40)) (-2369 (((-945 |#1|) (-945 |#1|)) 24)) (-3985 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 36)) (-2786 (((-945 |#1|) (-945 |#1|)) 22)) (-3401 (((-945 |#1|) (-945 |#1|)) 30)) (-1485 (((-945 |#1|) (-945 |#1|)) 29)) (-2898 (((-945 |#1|) (-945 |#1|)) 28)) (-1645 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 37)) (-3279 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 35)) (-1985 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 34)) (-3962 (((-945 |#1|) (-945 |#1|)) 23)) (-1829 (((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|) 43)) (-4290 (((-945 |#1|) (-945 |#1|)) 8)) (-1785 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 39)) (-2634 (((-1 (-945 |#1|) (-945 |#1|)) |#1|) 38))) -(((-176 |#1|) (-10 -7 (-15 -4290 ((-945 |#1|) (-945 |#1|))) (-15 -2786 ((-945 |#1|) (-945 |#1|))) (-15 -3962 ((-945 |#1|) (-945 |#1|))) (-15 -2369 ((-945 |#1|) (-945 |#1|))) (-15 -2898 ((-945 |#1|) (-945 |#1|))) (-15 -1485 ((-945 |#1|) (-945 |#1|))) (-15 -3401 ((-945 |#1|) (-945 |#1|))) (-15 -1985 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3279 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3985 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1645 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2634 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1785 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3627 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1829 ((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|))) (-13 (-365) (-1204) (-1004))) (T -176)) -((-1829 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-3627 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-1785 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-2634 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-1645 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-3985 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-3279 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-1985 (*1 *2 *3) (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-2369 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-3962 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3)))) (-4290 (*1 *2 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -4290 ((-945 |#1|) (-945 |#1|))) (-15 -2786 ((-945 |#1|) (-945 |#1|))) (-15 -3962 ((-945 |#1|) (-945 |#1|))) (-15 -2369 ((-945 |#1|) (-945 |#1|))) (-15 -2898 ((-945 |#1|) (-945 |#1|))) (-15 -1485 ((-945 |#1|) (-945 |#1|))) (-15 -3401 ((-945 |#1|) (-945 |#1|))) (-15 -1985 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3279 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3985 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1645 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -2634 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1785 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -3627 ((-1 (-945 |#1|) (-945 |#1|)) |#1|)) (-15 -1829 ((-1 (-945 |#1|) (-945 |#1|)) |#1| |#1|))) -((-4019 ((|#2| |#3|) 28))) -(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -4019 (|#2| |#3|))) (-172) (-1245 |#1|) (-725 |#1| |#2|)) (T -177)) -((-4019 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1245 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-725 *4 *2))))) -(-10 -7 (-15 -4019 (|#2| |#3|))) -((-2959 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 44 (|has| (-954 |#2|) (-888 |#1|))))) -(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-954 |#2|) (-888 |#1|)) (-15 -2959 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) |%noBranch|)) (-1102) (-13 (-888 |#1|) (-172)) (-166 |#2|)) (T -178)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *3 (-166 *6)) (-4 (-954 *6) (-888 *5)) (-4 *6 (-13 (-888 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) -(-10 -7 (IF (|has| (-954 |#2|) (-888 |#1|)) (-15 -2959 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) |%noBranch|)) -((-2326 (((-645 |#1|) (-645 |#1|) |#1|) 41)) (-2537 (((-645 |#1|) |#1| (-645 |#1|)) 20)) (-4401 (((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|)) 36) ((|#1| (-645 |#1|) (-645 |#1|)) 32))) -(((-179 |#1|) (-10 -7 (-15 -2537 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -4401 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -4401 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2326 ((-645 |#1|) (-645 |#1|) |#1|))) (-308)) (T -179)) -((-2326 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-4401 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-4401 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-2537 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(-10 -7 (-15 -2537 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -4401 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -4401 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -2326 ((-645 |#1|) (-645 |#1|) |#1|))) -((-2487 (((-112) $ $) NIL)) (-3755 (((-1218) $) 13)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1378 (((-1137) $) 10)) (-2504 (((-863) $) 20) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-180) (-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)) (-15 -3755 ((-1218) $))))) (T -180)) -((-1378 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-180)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-180))))) -(-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)) (-15 -3755 ((-1218) $)))) -((-1814 (((-2 (|:| |start| |#2|) (|:| -1444 (-421 |#2|))) |#2|) 66)) (-1383 ((|#1| |#1|) 58)) (-2268 (((-169 |#1|) |#2|) 93)) (-1463 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-3664 ((|#2| |#2|) 91)) (-1580 (((-421 |#2|) |#2| |#1|) 121) (((-421 |#2|) |#2| |#1| (-112)) 88)) (-2013 ((|#1| |#2|) 120)) (-4398 ((|#2| |#2|) 135)) (-3661 (((-421 |#2|) |#2|) 158) (((-421 |#2|) |#2| |#1|) 33) (((-421 |#2|) |#2| |#1| (-112)) 157)) (-2955 (((-645 (-2 (|:| -1444 (-645 |#2|)) (|:| -3554 |#1|))) |#2| |#2|) 156) (((-645 (-2 (|:| -1444 (-645 |#2|)) (|:| -3554 |#1|))) |#2| |#2| (-112)) 81)) (-3476 (((-645 (-169 |#1|)) |#2| |#1|) 42) (((-645 (-169 |#1|)) |#2|) 43))) -(((-181 |#1| |#2|) (-10 -7 (-15 -3476 ((-645 (-169 |#1|)) |#2|)) (-15 -3476 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -2955 ((-645 (-2 (|:| -1444 (-645 |#2|)) (|:| -3554 |#1|))) |#2| |#2| (-112))) (-15 -2955 ((-645 (-2 (|:| -1444 (-645 |#2|)) (|:| -3554 |#1|))) |#2| |#2|)) (-15 -3661 ((-421 |#2|) |#2| |#1| (-112))) (-15 -3661 ((-421 |#2|) |#2| |#1|)) (-15 -3661 ((-421 |#2|) |#2|)) (-15 -4398 (|#2| |#2|)) (-15 -2013 (|#1| |#2|)) (-15 -1580 ((-421 |#2|) |#2| |#1| (-112))) (-15 -1580 ((-421 |#2|) |#2| |#1|)) (-15 -3664 (|#2| |#2|)) (-15 -1463 (|#1| |#2| |#1|)) (-15 -1463 (|#1| |#2|)) (-15 -2268 ((-169 |#1|) |#2|)) (-15 -1383 (|#1| |#1|)) (-15 -1814 ((-2 (|:| |start| |#2|) (|:| -1444 (-421 |#2|))) |#2|))) (-13 (-365) (-849)) (-1245 (-169 |#1|))) (T -181)) -((-1814 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-2 (|:| |start| *3) (|:| -1444 (-421 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-1383 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-169 *2))))) (-2268 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1245 *2)))) (-1463 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-169 *2))))) (-1463 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-169 *2))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1245 (-169 *3))))) (-1580 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-1580 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-2013 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-169 *2))))) (-4398 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1245 (-169 *3))))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-3661 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-3661 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-2955 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -1444 (-645 *3)) (|:| -3554 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-2955 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -1444 (-645 *3)) (|:| -3554 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1245 (-169 *5))))) (-3476 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) (-3476 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))) -(-10 -7 (-15 -3476 ((-645 (-169 |#1|)) |#2|)) (-15 -3476 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -2955 ((-645 (-2 (|:| -1444 (-645 |#2|)) (|:| -3554 |#1|))) |#2| |#2| (-112))) (-15 -2955 ((-645 (-2 (|:| -1444 (-645 |#2|)) (|:| -3554 |#1|))) |#2| |#2|)) (-15 -3661 ((-421 |#2|) |#2| |#1| (-112))) (-15 -3661 ((-421 |#2|) |#2| |#1|)) (-15 -3661 ((-421 |#2|) |#2|)) (-15 -4398 (|#2| |#2|)) (-15 -2013 (|#1| |#2|)) (-15 -1580 ((-421 |#2|) |#2| |#1| (-112))) (-15 -1580 ((-421 |#2|) |#2| |#1|)) (-15 -3664 (|#2| |#2|)) (-15 -1463 (|#1| |#2| |#1|)) (-15 -1463 (|#1| |#2|)) (-15 -2268 ((-169 |#1|) |#2|)) (-15 -1383 (|#1| |#1|)) (-15 -1814 ((-2 (|:| |start| |#2|) (|:| -1444 (-421 |#2|))) |#2|))) -((-2325 (((-3 |#2| "failed") |#2|) 20)) (-1767 (((-772) |#2|) 23)) (-1845 ((|#2| |#2| |#2|) 25))) -(((-182 |#1| |#2|) (-10 -7 (-15 -2325 ((-3 |#2| "failed") |#2|)) (-15 -1767 ((-772) |#2|)) (-15 -1845 (|#2| |#2| |#2|))) (-1219) (-675 |#1|)) (T -182)) -((-1845 (*1 *2 *2 *2) (-12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))) (-1767 (*1 *2 *3) (-12 (-4 *4 (-1219)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) (-4 *3 (-675 *4)))) (-2325 (*1 *2 *2) (|partial| -12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3))))) -(-10 -7 (-15 -2325 ((-3 |#2| "failed") |#2|)) (-15 -1767 ((-772) |#2|)) (-15 -1845 (|#2| |#2| |#2|))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1548 ((|#1| $) 7)) (-2504 (((-863) $) 14)) (-3858 (((-112) $ $) NIL)) (-4028 (((-645 (-1184)) $) 10)) (-2968 (((-112) $ $) 12))) -(((-183 |#1|) (-13 (-1102) (-10 -8 (-15 -1548 (|#1| $)) (-15 -4028 ((-645 (-1184)) $)))) (-185)) (T -183)) -((-1548 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) -(-13 (-1102) (-10 -8 (-15 -1548 (|#1| $)) (-15 -4028 ((-645 (-1184)) $)))) -((-1746 (((-645 (-866)) $) 16)) (-3777 (((-186) $) 8)) (-2331 (((-645 (-112)) $) 13)) (-2619 (((-55) $) 10))) -(((-184 |#1|) (-10 -8 (-15 -1746 ((-645 (-866)) |#1|)) (-15 -2331 ((-645 (-112)) |#1|)) (-15 -3777 ((-186) |#1|)) (-15 -2619 ((-55) |#1|))) (-185)) (T -184)) -NIL -(-10 -8 (-15 -1746 ((-645 (-866)) |#1|)) (-15 -2331 ((-645 (-112)) |#1|)) (-15 -3777 ((-186) |#1|)) (-15 -2619 ((-55) |#1|))) -((-2487 (((-112) $ $) 7)) (-1746 (((-645 (-866)) $) 19)) (-1646 (((-509) $) 16)) (-1812 (((-1161) $) 10)) (-3777 (((-186) $) 21)) (-2208 (((-112) $ (-509)) 14)) (-3479 (((-1122) $) 11)) (-2331 (((-645 (-112)) $) 20)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2619 (((-55) $) 15)) (-2968 (((-112) $ $) 6))) -(((-185) (-140)) (T -185)) -((-3777 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866)))))) -(-13 (-836 (-509)) (-10 -8 (-15 -3777 ((-186) $)) (-15 -2331 ((-645 (-112)) $)) (-15 -1746 ((-645 (-866)) $)))) -(((-102) . T) ((-614 (-863)) . T) ((-836 (-509)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-8 (($) 7 T CONST)) (-2504 (((-863) $) 12)) (-9 (($) 6 T CONST)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 10))) -(((-186) (-13 (-1102) (-10 -8 (-15 -9 ($) -3562) (-15 -8 ($) -3562) (-15 -7 ($) -3562)))) (T -186)) -((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186)))) -(-13 (-1102) (-10 -8 (-15 -9 ($) -3562) (-15 -8 ($) -3562) (-15 -7 ($) -3562))) -((-2487 (((-112) $ $) NIL)) (-1746 (((-645 (-866)) $) NIL)) (-1646 (((-509) $) 8)) (-1812 (((-1161) $) NIL)) (-3777 (((-186) $) 10)) (-2208 (((-112) $ (-509)) NIL)) (-3479 (((-1122) $) NIL)) (-3220 (((-692 $) (-509)) 17)) (-2331 (((-645 (-112)) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2619 (((-55) $) 12)) (-2968 (((-112) $ $) NIL))) -(((-187) (-13 (-185) (-10 -8 (-15 -3220 ((-692 $) (-509)))))) (T -187)) -((-3220 (*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187))))) -(-13 (-185) (-10 -8 (-15 -3220 ((-692 $) (-509))))) -((-3826 ((|#2| |#2|) 28)) (-1503 (((-112) |#2|) 19)) (-3680 (((-317 |#1|) |#2|) 12)) (-3690 (((-317 |#1|) |#2|) 14)) (-2069 ((|#2| |#2| (-1179)) 69) ((|#2| |#2|) 70)) (-3274 (((-169 (-317 |#1|)) |#2|) 10)) (-1362 ((|#2| |#2| (-1179)) 66) ((|#2| |#2|) 60))) -(((-188 |#1| |#2|) (-10 -7 (-15 -2069 (|#2| |#2|)) (-15 -2069 (|#2| |#2| (-1179))) (-15 -1362 (|#2| |#2|)) (-15 -1362 (|#2| |#2| (-1179))) (-15 -3680 ((-317 |#1|) |#2|)) (-15 -3690 ((-317 |#1|) |#2|)) (-15 -1503 ((-112) |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3274 ((-169 (-317 |#1|)) |#2|))) (-13 (-559) (-1040 (-567))) (-13 (-27) (-1204) (-433 (-169 |#1|)))) (T -188)) -((-3274 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3)))))) (-1503 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-3690 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-3680 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-1362 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-1362 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3)))))) (-2069 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *4)))))) (-2069 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3))))))) -(-10 -7 (-15 -2069 (|#2| |#2|)) (-15 -2069 (|#2| |#2| (-1179))) (-15 -1362 (|#2| |#2|)) (-15 -1362 (|#2| |#2| (-1179))) (-15 -3680 ((-317 |#1|) |#2|)) (-15 -3690 ((-317 |#1|) |#2|)) (-15 -1503 ((-112) |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -3274 ((-169 (-317 |#1|)) |#2|))) -((-4241 (((-1269 (-690 (-954 |#1|))) (-1269 (-690 |#1|))) 26)) (-2504 (((-1269 (-690 (-410 (-954 |#1|)))) (-1269 (-690 |#1|))) 37))) -(((-189 |#1|) (-10 -7 (-15 -4241 ((-1269 (-690 (-954 |#1|))) (-1269 (-690 |#1|)))) (-15 -2504 ((-1269 (-690 (-410 (-954 |#1|)))) (-1269 (-690 |#1|))))) (-172)) (T -189)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-1269 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1269 (-690 (-410 (-954 *4))))) (-5 *1 (-189 *4)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-1269 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1269 (-690 (-954 *4)))) (-5 *1 (-189 *4))))) -(-10 -7 (-15 -4241 ((-1269 (-690 (-954 |#1|))) (-1269 (-690 |#1|)))) (-15 -2504 ((-1269 (-690 (-410 (-954 |#1|)))) (-1269 (-690 |#1|))))) -((-3086 (((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567)))) 89)) (-2571 (((-1181 (-410 (-567))) (-645 (-567)) (-645 (-567))) 100)) (-3229 (((-1181 (-410 (-567))) (-567)) 56)) (-2837 (((-1181 (-410 (-567))) (-567)) 75)) (-2913 (((-410 (-567)) (-1181 (-410 (-567)))) 85)) (-3806 (((-1181 (-410 (-567))) (-567)) 37)) (-1718 (((-1181 (-410 (-567))) (-567)) 68)) (-4302 (((-1181 (-410 (-567))) (-567)) 62)) (-1602 (((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567)))) 83)) (-4314 (((-1181 (-410 (-567))) (-567)) 29)) (-3130 (((-410 (-567)) (-1181 (-410 (-567))) (-1181 (-410 (-567)))) 87)) (-2887 (((-1181 (-410 (-567))) (-567)) 35)) (-1850 (((-1181 (-410 (-567))) (-645 (-567))) 96))) -(((-190) (-10 -7 (-15 -4314 ((-1181 (-410 (-567))) (-567))) (-15 -3229 ((-1181 (-410 (-567))) (-567))) (-15 -3806 ((-1181 (-410 (-567))) (-567))) (-15 -2887 ((-1181 (-410 (-567))) (-567))) (-15 -4302 ((-1181 (-410 (-567))) (-567))) (-15 -1718 ((-1181 (-410 (-567))) (-567))) (-15 -2837 ((-1181 (-410 (-567))) (-567))) (-15 -3130 ((-410 (-567)) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -1602 ((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -2913 ((-410 (-567)) (-1181 (-410 (-567))))) (-15 -3086 ((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -1850 ((-1181 (-410 (-567))) (-645 (-567)))) (-15 -2571 ((-1181 (-410 (-567))) (-645 (-567)) (-645 (-567)))))) (T -190)) -((-2571 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))) (-3086 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-1181 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-1602 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)))) (-3130 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-2837 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-1718 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-4302 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2887 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3806 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-3229 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-4314 (*1 *2 *3) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(-10 -7 (-15 -4314 ((-1181 (-410 (-567))) (-567))) (-15 -3229 ((-1181 (-410 (-567))) (-567))) (-15 -3806 ((-1181 (-410 (-567))) (-567))) (-15 -2887 ((-1181 (-410 (-567))) (-567))) (-15 -4302 ((-1181 (-410 (-567))) (-567))) (-15 -1718 ((-1181 (-410 (-567))) (-567))) (-15 -2837 ((-1181 (-410 (-567))) (-567))) (-15 -3130 ((-410 (-567)) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -1602 ((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -2913 ((-410 (-567)) (-1181 (-410 (-567))))) (-15 -3086 ((-1181 (-410 (-567))) (-1181 (-410 (-567))) (-1181 (-410 (-567))))) (-15 -1850 ((-1181 (-410 (-567))) (-645 (-567)))) (-15 -2571 ((-1181 (-410 (-567))) (-645 (-567)) (-645 (-567))))) -((-3014 (((-421 (-1175 (-567))) (-567)) 38)) (-2279 (((-645 (-1175 (-567))) (-567)) 33)) (-2988 (((-1175 (-567)) (-567)) 28))) -(((-191) (-10 -7 (-15 -2279 ((-645 (-1175 (-567))) (-567))) (-15 -2988 ((-1175 (-567)) (-567))) (-15 -3014 ((-421 (-1175 (-567))) (-567))))) (T -191)) -((-3014 (*1 *2 *3) (-12 (-5 *2 (-421 (-1175 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))) (-2988 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) (-2279 (*1 *2 *3) (-12 (-5 *2 (-645 (-1175 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) -(-10 -7 (-15 -2279 ((-645 (-1175 (-567))) (-567))) (-15 -2988 ((-1175 (-567)) (-567))) (-15 -3014 ((-421 (-1175 (-567))) (-567)))) -((-4060 (((-1159 (-225)) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-1707 (((-645 (-1161)) (-1159 (-225))) NIL)) (-2387 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-1967 (((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225)))) NIL)) (-2459 (((-645 (-1161)) (-645 (-225))) NIL)) (-1740 (((-225) (-1096 (-844 (-225)))) 31)) (-1907 (((-225) (-1096 (-844 (-225)))) 32)) (-2914 (((-381) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-3898 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3990 (((-1161) (-225)) NIL)) (-3552 (((-1161) (-645 (-1161))) 27)) (-1440 (((-1037) (-1179) (-1179) (-1037)) 13))) -(((-192) (-10 -7 (-15 -2387 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3898 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1740 ((-225) (-1096 (-844 (-225))))) (-15 -1907 ((-225) (-1096 (-844 (-225))))) (-15 -2914 ((-381) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1967 ((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225))))) (-15 -4060 ((-1159 (-225)) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3990 ((-1161) (-225))) (-15 -2459 ((-645 (-1161)) (-645 (-225)))) (-15 -1707 ((-645 (-1161)) (-1159 (-225)))) (-15 -3552 ((-1161) (-645 (-1161)))) (-15 -1440 ((-1037) (-1179) (-1179) (-1037))))) (T -192)) -((-1440 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1179)) (-5 *1 (-192)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-192)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-192)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-192)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-192)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-192)))) (-1967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1179)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2387 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) -(-10 -7 (-15 -2387 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3898 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1740 ((-225) (-1096 (-844 (-225))))) (-15 -1907 ((-225) (-1096 (-844 (-225))))) (-15 -2914 ((-381) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1967 ((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225))))) (-15 -4060 ((-1159 (-225)) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3990 ((-1161) (-225))) (-15 -2459 ((-645 (-1161)) (-645 (-225)))) (-15 -1707 ((-645 (-1161)) (-1159 (-225)))) (-15 -3552 ((-1161) (-645 (-1161)))) (-15 -1440 ((-1037) (-1179) (-1179) (-1037)))) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 61) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-193) (-788)) (T -193)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 66) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-194) (-788)) (T -194)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 81) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-195) (-788)) (T -195)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 63) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-196) (-788)) (T -196)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 75) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-197) (-788)) (T -197)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-198) (-788)) (T -198)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-199) (-788)) (T -199)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 77) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-200) (-788)) (T -200)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 78)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-201) (-788)) (T -201)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 79)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-202) (-788)) (T -202)) -NIL -(-788) -((-2487 (((-112) $ $) NIL)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 105) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-203) (-788)) (T -203)) -NIL -(-788) -((-4343 (((-3 (-2 (|:| -3788 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-2360 (((-567) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-4255 (((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91))) -(((-204) (-10 -7 (-15 -4343 ((-3 (-2 (|:| -3788 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4255 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2360 ((-567) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) -((-2360 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-567)) (-5 *1 (-204)))) (-4255 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-204)))) (-4343 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3788 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(-10 -7 (-15 -4343 ((-3 (-2 (|:| -3788 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4255 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2360 ((-567) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-1402 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-1768 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-2754 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225)))) 112)) (-3037 (((-381) (-690 (-317 (-225)))) 140)) (-3162 (((-690 (-317 (-225))) (-1269 (-317 (-225))) (-645 (-1179))) 136)) (-3746 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-4317 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2913 (((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1179)) (-1269 (-317 (-225)))) 125)) (-3660 (((-381) (-381) (-645 (-381))) 133) (((-381) (-381) (-381)) 128)) (-4120 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) -(((-205) (-10 -7 (-15 -3660 ((-381) (-381) (-381))) (-15 -3660 ((-381) (-381) (-645 (-381)))) (-15 -3037 ((-381) (-690 (-317 (-225))))) (-15 -3162 ((-690 (-317 (-225))) (-1269 (-317 (-225))) (-645 (-1179)))) (-15 -2913 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1179)) (-1269 (-317 (-225))))) (-15 -2754 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -1768 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1402 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4317 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4120 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3746 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) -((-3746 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2913 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1179))) (-5 *4 (-1269 (-317 (-225)))) (-5 *1 (-205)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *4 (-645 (-1179))) (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3660 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3660 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))) -(-10 -7 (-15 -3660 ((-381) (-381) (-381))) (-15 -3660 ((-381) (-381) (-645 (-381)))) (-15 -3037 ((-381) (-690 (-317 (-225))))) (-15 -3162 ((-690 (-317 (-225))) (-1269 (-317 (-225))) (-645 (-1179)))) (-15 -2913 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1179)) (-1269 (-317 (-225))))) (-15 -2754 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -1768 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1402 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4317 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4120 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3746 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2487 (((-112) $ $) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3073 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2968 (((-112) $ $) NIL))) -(((-206) (-801)) (T -206)) -NIL -(-801) -((-2487 (((-112) $ $) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3073 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2968 (((-112) $ $) NIL))) -(((-207) (-801)) (T -207)) -NIL -(-801) -((-2487 (((-112) $ $) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3073 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2968 (((-112) $ $) NIL))) -(((-208) (-801)) (T -208)) -NIL -(-801) -((-2487 (((-112) $ $) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3073 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2968 (((-112) $ $) NIL))) -(((-209) (-801)) (T -209)) -NIL -(-801) -((-3055 (((-645 (-1179)) (-1179) (-772)) 26)) (-4132 (((-317 (-225)) (-317 (-225))) 35)) (-1976 (((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 87)) (-3394 (((-112) (-225) (-225) (-645 (-317 (-225)))) 47))) -(((-210) (-10 -7 (-15 -3055 ((-645 (-1179)) (-1179) (-772))) (-15 -4132 ((-317 (-225)) (-317 (-225)))) (-15 -3394 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -1976 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))))) (T -210)) -((-1976 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-3394 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-4132 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1179))) (-5 *1 (-210)) (-5 *3 (-1179))))) -(-10 -7 (-15 -3055 ((-645 (-1179)) (-1179) (-772))) (-15 -4132 ((-317 (-225)) (-317 (-225)))) (-15 -3394 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -1976 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))))) -((-2487 (((-112) $ $) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 28)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2520 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 70)) (-2968 (((-112) $ $) NIL))) -(((-211) (-897)) (T -211)) -NIL -(-897) -((-2487 (((-112) $ $) NIL)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 24)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2520 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) NIL)) (-2968 (((-112) $ $) NIL))) -(((-212) (-897)) (T -212)) -NIL -(-897) -((-2487 (((-112) $ $) NIL)) (-1980 ((|#2| $ (-772) |#2|) 11)) (-1970 ((|#2| $ (-772)) 10)) (-4223 (($) 8)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 26)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 13))) -(((-213 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -4223 ($)) (-15 -1970 (|#2| $ (-772))) (-15 -1980 (|#2| $ (-772) |#2|)))) (-923) (-1102)) (T -213)) -((-4223 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1102)))) (-1970 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-1102)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)))) (-1980 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)) (-4 *2 (-1102))))) -(-13 (-1102) (-10 -8 (-15 -4223 ($)) (-15 -1970 (|#2| $ (-772))) (-15 -1980 (|#2| $ (-772) |#2|)))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3841 (((-1274) $) 37) (((-1274) $ (-923) (-923)) 44)) (-1882 (($ $ (-991)) 19) (((-245 (-1161)) $ (-1179)) 15)) (-4079 (((-1274) $) 35)) (-2504 (((-863) $) 32) (($ (-645 |#1|)) 8)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $ $) 27)) (-3045 (($ $ $) 22))) -(((-214 |#1|) (-13 (-1102) (-617 (-645 |#1|)) (-10 -8 (-15 -1882 ($ $ (-991))) (-15 -1882 ((-245 (-1161)) $ (-1179))) (-15 -3045 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $)) (-15 -3841 ((-1274) $ (-923) (-923))))) (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $))))) (T -214)) -((-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-991)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $))))))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-245 (-1161))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ *3)) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $))))))) (-3045 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $))))))) (-3054 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $))))))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 (*2 $)) (-15 -3841 (*2 $))))))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 (*2 $)) (-15 -3841 (*2 $))))))) (-3841 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 (*2 $)) (-15 -3841 (*2 $)))))))) -(-13 (-1102) (-617 (-645 |#1|)) (-10 -8 (-15 -1882 ($ $ (-991))) (-15 -1882 ((-245 (-1161)) $ (-1179))) (-15 -3045 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $)) (-15 -3841 ((-1274) $ (-923) (-923))))) -((-3496 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3496 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -215)) -((-3496 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1245 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) -(-10 -7 (-15 -3496 (|#2| |#4| (-1 |#2| |#2|)))) -((-4039 ((|#2| |#2| (-772) |#2|) 58)) (-3063 ((|#2| |#2| (-772) |#2|) 54)) (-1397 (((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2742 |#2|)))) 82)) (-3152 (((-645 (-2 (|:| |deg| (-772)) (|:| -2742 |#2|))) |#2|) 76)) (-2525 (((-112) |#2|) 74)) (-3761 (((-421 |#2|) |#2|) 96)) (-3661 (((-421 |#2|) |#2|) 95)) (-3056 ((|#2| |#2| (-772) |#2|) 52)) (-1327 (((-2 (|:| |cont| |#1|) (|:| -1444 (-645 (-2 (|:| |irr| |#2|) (|:| -3451 (-567)))))) |#2| (-112)) 88))) -(((-216 |#1| |#2|) (-10 -7 (-15 -3661 ((-421 |#2|) |#2|)) (-15 -3761 ((-421 |#2|) |#2|)) (-15 -1327 ((-2 (|:| |cont| |#1|) (|:| -1444 (-645 (-2 (|:| |irr| |#2|) (|:| -3451 (-567)))))) |#2| (-112))) (-15 -3152 ((-645 (-2 (|:| |deg| (-772)) (|:| -2742 |#2|))) |#2|)) (-15 -1397 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2742 |#2|))))) (-15 -3056 (|#2| |#2| (-772) |#2|)) (-15 -3063 (|#2| |#2| (-772) |#2|)) (-15 -4039 (|#2| |#2| (-772) |#2|)) (-15 -2525 ((-112) |#2|))) (-351) (-1245 |#1|)) (T -216)) -((-2525 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-4039 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-3063 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-3056 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-1397 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -2742 *5)))) (-4 *5 (-1245 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) (-5 *1 (-216 *4 *5)))) (-3152 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -2742 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-1327 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1444 (-645 (-2 (|:| |irr| *3) (|:| -3451 (-567))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1245 *5)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3661 ((-421 |#2|) |#2|)) (-15 -3761 ((-421 |#2|) |#2|)) (-15 -1327 ((-2 (|:| |cont| |#1|) (|:| -1444 (-645 (-2 (|:| |irr| |#2|) (|:| -3451 (-567)))))) |#2| (-112))) (-15 -3152 ((-645 (-2 (|:| |deg| (-772)) (|:| -2742 |#2|))) |#2|)) (-15 -1397 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -2742 |#2|))))) (-15 -3056 (|#2| |#2| (-772) |#2|)) (-15 -3063 (|#2| |#2| (-772) |#2|)) (-15 -4039 (|#2| |#2| (-772) |#2|)) (-15 -2525 ((-112) |#2|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 (((-567) $) NIL (|has| (-567) (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| (-567) (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-567) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-3094 (((-567) $) NIL) (((-1179) $) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-567) (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) NIL (|has| (-567) (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL)) (-4294 (((-567) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| (-567) (-1154)))) (-2585 (((-112) $) NIL (|has| (-567) (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| (-567) (-851)))) (-4364 (($ (-1 (-567) (-567)) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-567) (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-1952 (((-567) $) NIL (|has| (-567) (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1179)) (-645 (-567))) NIL (|has| (-567) (-517 (-1179) (-567)))) (($ $ (-1179) (-567)) NIL (|has| (-567) (-517 (-1179) (-567))))) (-2465 (((-772) $) NIL)) (-1882 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2964 (($ $) NIL)) (-4306 (((-567) $) NIL)) (-1409 (($ (-410 (-567))) 9)) (-1322 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1179)) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL) (((-1006 10) $) 10)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-2214 (((-772)) NIL T CONST)) (-3471 (((-567) $) NIL (|has| (-567) (-548)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1368 (($ $) NIL (|has| (-567) (-821)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3016 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3064 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) -(((-217) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 10)) (-10 -8 (-15 -3989 ((-410 (-567)) $)) (-15 -1409 ($ (-410 (-567))))))) (T -217)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) (-1409 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))) -(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 10)) (-10 -8 (-15 -3989 ((-410 (-567)) $)) (-15 -1409 ($ (-410 (-567)))))) -((-2487 (((-112) $ $) NIL)) (-4261 (((-1120) $) 13)) (-1812 (((-1161) $) NIL)) (-2404 (((-486) $) 10)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 23) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-1137) $) 15)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-218) (-13 (-1085) (-10 -8 (-15 -2404 ((-486) $)) (-15 -4261 ((-1120) $)) (-15 -3501 ((-1137) $))))) (T -218)) -((-2404 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-218)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-218))))) -(-13 (-1085) (-10 -8 (-15 -2404 ((-486) $)) (-15 -4261 ((-1120) $)) (-15 -3501 ((-1137) $)))) -((-3670 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1161)) 29) (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|))) 25)) (-3377 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1179) (-844 |#2|) (-844 |#2|) (-112)) 17))) -(((-219 |#1| |#2|) (-10 -7 (-15 -3670 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)))) (-15 -3670 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1161))) (-15 -3377 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1179) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-961) (-29 |#1|))) (T -219)) -((-3377 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1179)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-1204) (-961) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))) (-3670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-844 *3))) (-5 *5 (-1161)) (-4 *3 (-13 (-1204) (-961) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 *3))) (-4 *3 (-13 (-1204) (-961) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) -(-10 -7 (-15 -3670 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)))) (-15 -3670 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1094 (-844 |#2|)) (-1161))) (-15 -3377 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1179) (-844 |#2|) (-844 |#2|) (-112)))) -((-3670 (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1161)) 49) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|))))) 46) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1161)) 50) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|)))) 22))) -(((-220 |#1|) (-10 -7 (-15 -3670 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))))) (-15 -3670 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1161))) (-15 -3670 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))))) (-15 -3670 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1161)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (T -220)) -((-3670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-844 (-410 (-954 *6))))) (-5 *5 (-1161)) (-5 *3 (-410 (-954 *6))) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 (-410 (-954 *5))))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3670 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1094 (-844 (-317 *6)))) (-5 *5 (-1161)) (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1094 (-844 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) -(-10 -7 (-15 -3670 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))))) (-15 -3670 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-317 |#1|))) (-1161))) (-15 -3670 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))))) (-15 -3670 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-954 |#1|)) (-1094 (-844 (-410 (-954 |#1|)))) (-1161)))) -((-2617 (((-2 (|:| -1916 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|)) 26)) (-4382 (((-645 (-317 |#2|)) (-317 |#2|) (-923)) 54))) -(((-221 |#1| |#2|) (-10 -7 (-15 -2617 ((-2 (|:| -1916 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|))) (-15 -4382 ((-645 (-317 |#2|)) (-317 |#2|) (-923)))) (-1051) (-559)) (T -221)) -((-4382 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1051)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-2 (|:| -1916 (-1175 *4)) (|:| |deg| (-923)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-559))))) -(-10 -7 (-15 -2617 ((-2 (|:| -1916 (-1175 |#1|)) (|:| |deg| (-923))) (-1175 |#1|))) (-15 -4382 ((-645 (-317 |#2|)) (-317 |#2|) (-923)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1760 ((|#1| $) NIL)) (-3262 ((|#1| $) 30)) (-1555 (((-112) $ (-772)) NIL)) (-3758 (($) NIL T CONST)) (-2450 (($ $) NIL)) (-3790 (($ $) 39)) (-3410 ((|#1| |#1| $) NIL)) (-4353 ((|#1| $) NIL)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-3613 (((-772) $) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3018 ((|#1| $) NIL)) (-1661 ((|#1| |#1| $) 35)) (-3940 ((|#1| |#1| $) 37)) (-3636 (($ |#1| $) NIL)) (-1337 (((-772) $) 33)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3725 ((|#1| $) NIL)) (-2252 ((|#1| $) 31)) (-1965 ((|#1| $) 29)) (-1713 ((|#1| $) NIL)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2337 ((|#1| |#1| $) NIL)) (-2319 (((-112) $) 9)) (-2973 (($) NIL)) (-1933 ((|#1| $) NIL)) (-2709 (($) NIL) (($ (-645 |#1|)) 16)) (-2772 (((-772) $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3329 ((|#1| $) 13)) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) NIL)) (-1715 ((|#1| $) NIL)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -2709 ($ (-645 |#1|))))) (-1102)) (T -222)) -((-2709 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-222 *3))))) -(-13 (-255 |#1|) (-10 -8 (-15 -2709 ($ (-645 |#1|))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4298 (($ (-317 |#1|)) 27)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-2110 (((-112) $) NIL)) (-4275 (((-3 (-317 |#1|) "failed") $) NIL)) (-3094 (((-317 |#1|) $) NIL)) (-1833 (($ $) 35)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-4364 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-1809 (((-317 |#1|) $) NIL)) (-2580 (($ $) 34)) (-1812 (((-1161) $) NIL)) (-1308 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-2335 (($ (-772)) NIL)) (-2397 (($ $) 36)) (-3380 (((-567) $) NIL)) (-2504 (((-863) $) 68) (($ (-567)) NIL) (($ (-317 |#1|)) NIL)) (-4038 (((-317 |#1|) $ $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 29 T CONST)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) 32)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22))) -(((-223 |#1| |#2|) (-13 (-621 (-317 |#1|)) (-1040 (-317 |#1|)) (-10 -8 (-15 -1809 ((-317 |#1|) $)) (-15 -2580 ($ $)) (-15 -1833 ($ $)) (-15 -4038 ((-317 |#1|) $ $)) (-15 -2335 ($ (-772))) (-15 -1308 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -3380 ((-567) $)) (-15 -4364 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4298 ($ (-317 |#1|))) (-15 -2397 ($ $)))) (-13 (-1051) (-851)) (-645 (-1179))) (T -223)) -((-1809 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-2580 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1179))))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1179))))) (-4038 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1051) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1179))))) (-4298 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1051) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1179))))) (-2397 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) (-14 *3 (-645 (-1179)))))) -(-13 (-621 (-317 |#1|)) (-1040 (-317 |#1|)) (-10 -8 (-15 -1809 ((-317 |#1|) $)) (-15 -2580 ($ $)) (-15 -1833 ($ $)) (-15 -4038 ((-317 |#1|) $ $)) (-15 -2335 ($ (-772))) (-15 -1308 ((-112) $)) (-15 -2110 ((-112) $)) (-15 -3380 ((-567) $)) (-15 -4364 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -4298 ($ (-317 |#1|))) (-15 -2397 ($ $)))) -((-3722 (((-112) (-1161)) 26)) (-3109 (((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112)) 35)) (-3337 (((-3 (-112) "failed") (-1175 |#2|) (-844 |#2|) (-844 |#2|) (-112)) 84) (((-3 (-112) "failed") (-954 |#1|) (-1179) (-844 |#2|) (-844 |#2|) (-112)) 85))) -(((-224 |#1| |#2|) (-10 -7 (-15 -3722 ((-112) (-1161))) (-15 -3109 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -3337 ((-3 (-112) "failed") (-954 |#1|) (-1179) (-844 |#2|) (-844 |#2|) (-112))) (-15 -3337 ((-3 (-112) "failed") (-1175 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-29 |#1|))) (T -224)) -((-3337 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1175 *6)) (-5 *4 (-844 *6)) (-4 *6 (-13 (-1204) (-29 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *5 *6)))) (-3337 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-954 *6)) (-5 *4 (-1179)) (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *7 (-13 (-1204) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-3109 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1204) (-29 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-224 *6 *4)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1204) (-29 *4)))))) -(-10 -7 (-15 -3722 ((-112) (-1161))) (-15 -3109 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -3337 ((-3 (-112) "failed") (-954 |#1|) (-1179) (-844 |#2|) (-844 |#2|) (-112))) (-15 -3337 ((-3 (-112) "failed") (-1175 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 100)) (-4199 (((-567) $) 36)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-3413 (($ $) NIL)) (-1406 (($ $) 89)) (-2545 (($ $) 77)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-3671 (($ $) 68)) (-4175 (((-112) $ $) NIL)) (-1380 (($ $) 87)) (-2524 (($ $) 75)) (-2777 (((-567) $) 130)) (-1431 (($ $) 92)) (-2565 (($ $) 79)) (-3758 (($) NIL T CONST)) (-3517 (($ $) NIL)) (-4275 (((-3 (-567) "failed") $) 129) (((-3 (-410 (-567)) "failed") $) 126)) (-3094 (((-567) $) 127) (((-410 (-567)) $) 124)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) 105)) (-3223 (((-410 (-567)) $ (-772)) 119) (((-410 (-567)) $ (-772) (-772)) 118)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3832 (((-923)) 29) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-3635 (((-112) $) NIL)) (-4329 (($) 47)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-3905 (((-567) $) 43)) (-4384 (((-112) $) 101)) (-4203 (($ $ (-567)) NIL)) (-2013 (($ $) NIL)) (-2585 (((-112) $) 99)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) 65) (($) 39 (-12 (-1736 (|has| $ (-6 -4405))) (-1736 (|has| $ (-6 -4413)))))) (-1446 (($ $ $) 64) (($) 38 (-12 (-1736 (|has| $ (-6 -4405))) (-1736 (|has| $ (-6 -4413)))))) (-3036 (((-567) $) 27)) (-4126 (($ $) 34)) (-1329 (($ $) 69)) (-2734 (($ $) 74)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-3912 (((-923) (-567)) NIL (|has| $ (-6 -4413)))) (-3479 (((-1122) $) 103)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL)) (-1952 (($ $) NIL)) (-2627 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-923)) 112)) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2618 (((-567) $) 28)) (-2614 (($) 46)) (-4272 (($ $) 73)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2872 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-3592 (($ $ (-772)) NIL) (($ $) 106)) (-1339 (((-923) (-567)) NIL (|has| $ (-6 -4413)))) (-1443 (($ $) 90)) (-2576 (($ $) 80)) (-1418 (($ $) 91)) (-2555 (($ $) 78)) (-1394 (($ $) 88)) (-2533 (($ $) 76)) (-1322 (((-381) $) 115) (((-225) $) 14) (((-894 (-381)) $) NIL) (((-539) $) 53)) (-2504 (((-863) $) 50) (($ (-567)) 72) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 72) (($ (-410 (-567))) NIL)) (-2214 (((-772)) NIL T CONST)) (-3471 (($ $) NIL)) (-3570 (((-923)) 37) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-3858 (((-112) $ $) NIL)) (-3140 (((-923)) 25)) (-1481 (($ $) 95)) (-2610 (($ $) 83) (($ $ $) 122)) (-3269 (((-112) $ $) NIL)) (-1456 (($ $) 93)) (-2588 (($ $) 81)) (-1505 (($ $) 98)) (-2632 (($ $) 86)) (-2090 (($ $) 96)) (-1367 (($ $) 84)) (-1492 (($ $) 97)) (-2621 (($ $) 85)) (-1468 (($ $) 94)) (-2599 (($ $) 82)) (-1368 (($ $) 121)) (-1807 (($) 23 T CONST)) (-1820 (($) 44 T CONST)) (-2166 (((-1161) $) 18) (((-1161) $ (-112)) 20) (((-1274) (-823) $) 21) (((-1274) (-823) $ (-112)) 22)) (-1370 (($ $) 109)) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-3291 (($ $ $) 111)) (-3016 (((-112) $ $) 58)) (-2996 (((-112) $ $) 55)) (-2968 (((-112) $ $) 66)) (-3006 (((-112) $ $) 57)) (-2986 (((-112) $ $) 54)) (-3064 (($ $ $) 45) (($ $ (-567)) 67)) (-3054 (($ $) 59) (($ $ $) 61)) (-3045 (($ $ $) 60)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 70) (($ $ (-410 (-567))) 154) (($ $ $) 71)) (* (($ (-923) $) 35) (($ (-772) $) NIL) (($ (-567) $) 63) (($ $ $) 62) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-225) (-13 (-407) (-233) (-829) (-1204) (-615 (-539)) (-10 -8 (-15 -3064 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -2614 ($)) (-15 -4126 ($ $)) (-15 -1329 ($ $)) (-15 -2610 ($ $ $)) (-15 -1370 ($ $)) (-15 -3291 ($ $ $)) (-15 -3223 ((-410 (-567)) $ (-772))) (-15 -3223 ((-410 (-567)) $ (-772) (-772)))))) (T -225)) -((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3064 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225)))) (-2614 (*1 *1) (-5 *1 (-225))) (-4126 (*1 *1 *1) (-5 *1 (-225))) (-1329 (*1 *1 *1) (-5 *1 (-225))) (-2610 (*1 *1 *1 *1) (-5 *1 (-225))) (-1370 (*1 *1 *1) (-5 *1 (-225))) (-3291 (*1 *1 *1 *1) (-5 *1 (-225))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) (-3223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))) -(-13 (-407) (-233) (-829) (-1204) (-615 (-539)) (-10 -8 (-15 -3064 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -2614 ($)) (-15 -4126 ($ $)) (-15 -1329 ($ $)) (-15 -2610 ($ $ $)) (-15 -1370 ($ $)) (-15 -3291 ($ $ $)) (-15 -3223 ((-410 (-567)) $ (-772))) (-15 -3223 ((-410 (-567)) $ (-772) (-772))))) -((-2611 (((-169 (-225)) (-772) (-169 (-225))) 11) (((-225) (-772) (-225)) 12)) (-3634 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-4155 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-3053 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-2083 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-2551 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3002 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-2907 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3877 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2821 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-1370 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-3291 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) -(((-226) (-10 -7 (-15 -1370 ((-225) (-225))) (-15 -1370 ((-169 (-225)) (-169 (-225)))) (-15 -3291 ((-225) (-225) (-225))) (-15 -3291 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3634 ((-225) (-225))) (-15 -3634 ((-169 (-225)) (-169 (-225)))) (-15 -3053 ((-225) (-225))) (-15 -3053 ((-169 (-225)) (-169 (-225)))) (-15 -2611 ((-225) (-772) (-225))) (-15 -2611 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -3002 ((-225) (-225) (-225))) (-15 -3002 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2083 ((-225) (-225) (-225))) (-15 -2083 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2907 ((-225) (-225) (-225))) (-15 -2907 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2551 ((-225) (-225) (-225))) (-15 -2551 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2821 ((-169 (-225)) (-169 (-225)))) (-15 -2821 ((-225) (-225))) (-15 -3877 ((-225) (-225))) (-15 -3877 ((-169 (-225)) (-169 (-225)))) (-15 -4155 ((-225) (-225) (-225))) (-15 -4155 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) -((-4155 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4155 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2821 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2551 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2551 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2907 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2907 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2083 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2083 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3002 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3002 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2611 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) (-2611 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3053 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3291 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3291 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) -(-10 -7 (-15 -1370 ((-225) (-225))) (-15 -1370 ((-169 (-225)) (-169 (-225)))) (-15 -3291 ((-225) (-225) (-225))) (-15 -3291 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3634 ((-225) (-225))) (-15 -3634 ((-169 (-225)) (-169 (-225)))) (-15 -3053 ((-225) (-225))) (-15 -3053 ((-169 (-225)) (-169 (-225)))) (-15 -2611 ((-225) (-772) (-225))) (-15 -2611 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -3002 ((-225) (-225) (-225))) (-15 -3002 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2083 ((-225) (-225) (-225))) (-15 -2083 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2907 ((-225) (-225) (-225))) (-15 -2907 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2551 ((-225) (-225) (-225))) (-15 -2551 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2821 ((-169 (-225)) (-169 (-225)))) (-15 -2821 ((-225) (-225))) (-15 -3877 ((-225) (-225))) (-15 -3877 ((-169 (-225)) (-169 (-225)))) (-15 -4155 ((-225) (-225) (-225))) (-15 -4155 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3398 (($ (-772) (-772)) NIL)) (-3158 (($ $ $) NIL)) (-3017 (($ (-1269 |#1|)) NIL) (($ $) NIL)) (-2884 (($ |#1| |#1| |#1|) 33)) (-3740 (((-112) $) NIL)) (-2017 (($ $ (-567) (-567)) NIL)) (-2302 (($ $ (-567) (-567)) NIL)) (-4088 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-1395 (($ $) NIL)) (-2995 (((-112) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3876 (($ $ (-567) (-567) $) NIL)) (-3824 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2391 (($ $ (-567) (-1269 |#1|)) NIL)) (-3523 (($ $ (-567) (-1269 |#1|)) NIL)) (-3260 (($ |#1| |#1| |#1|) 32)) (-3923 (($ (-772) |#1|) NIL)) (-3758 (($) NIL T CONST)) (-2367 (($ $) NIL (|has| |#1| (-308)))) (-4134 (((-1269 |#1|) $ (-567)) NIL)) (-1624 (($ |#1|) 31)) (-4356 (($ |#1|) 30)) (-2601 (($ |#1|) 29)) (-1471 (((-772) $) NIL (|has| |#1| (-559)))) (-2036 ((|#1| $ (-567) (-567) |#1|) NIL)) (-1970 ((|#1| $ (-567) (-567)) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-3301 (((-772) $) NIL (|has| |#1| (-559)))) (-3010 (((-645 (-1269 |#1|)) $) NIL (|has| |#1| (-559)))) (-4371 (((-772) $) NIL)) (-4223 (($ (-772) (-772) |#1|) NIL)) (-4385 (((-772) $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2241 ((|#1| $) NIL (|has| |#1| (-6 (-4424 "*"))))) (-3181 (((-567) $) NIL)) (-2631 (((-567) $) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4244 (((-567) $) NIL)) (-3802 (((-567) $) NIL)) (-2446 (($ (-645 (-645 |#1|))) 11)) (-2021 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3298 (((-645 (-645 |#1|)) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1656 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-3150 (($) 12)) (-2833 (($ $ $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2930 (($ $ |#1|) NIL)) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-4217 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-2698 (((-112) $) NIL)) (-2593 ((|#1| $) NIL (|has| |#1| (-6 (-4424 "*"))))) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2900 (((-1269 |#1|) $ (-567)) NIL)) (-2504 (($ (-1269 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3343 (((-112) $) NIL)) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $ $) NIL) (($ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1269 |#1|) $ (-1269 |#1|)) 15) (((-1269 |#1|) (-1269 |#1|) $) NIL) (((-945 |#1|) $ (-945 |#1|)) 21)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-227 |#1|) (-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 * ((-945 |#1|) $ (-945 |#1|))) (-15 -3150 ($)) (-15 -2601 ($ |#1|)) (-15 -4356 ($ |#1|)) (-15 -1624 ($ |#1|)) (-15 -3260 ($ |#1| |#1| |#1|)) (-15 -2884 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1204))) (T -227)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204))) (-5 *1 (-227 *3)))) (-3150 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-2601 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-4356 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-1624 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-3260 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) (-2884 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204)))))) -(-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 * ((-945 |#1|) $ (-945 |#1|))) (-15 -3150 ($)) (-15 -2601 ($ |#1|)) (-15 -4356 ($ |#1|)) (-15 -1624 ($ |#1|)) (-15 -3260 ($ |#1| |#1| |#1|)) (-15 -2884 ($ |#1| |#1| |#1|)))) -((-2105 (($ (-1 (-112) |#2|) $) 16)) (-4197 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2730 (($) NIL) (($ (-645 |#2|)) 11)) (-2968 (((-112) $ $) 25))) -(((-228 |#1| |#2|) (-10 -8 (-15 -2105 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| |#2| |#1|)) (-15 -2730 (|#1| (-645 |#2|))) (-15 -2730 (|#1|)) (-15 -2968 ((-112) |#1| |#1|))) (-229 |#2|) (-1102)) (T -228)) -NIL -(-10 -8 (-15 -2105 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| |#2| |#1|)) (-15 -2730 (|#1| (-645 |#2|))) (-15 -2730 (|#1|)) (-15 -2968 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-2105 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3470 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-1695 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-2730 (($) 50) (($ (-645 |#1|)) 49)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 51)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-229 |#1|) (-140) (-1102)) (T -229)) +((-1868 (*1 *1 *1) (-4 *1 (-173)))) +(-13 (-10 -8 (-15 -1868 ($ $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 ((|#1| $) 81)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL)) (-1471 (($ $) 21)) (-1475 (($ |#1| (-1157 |#1|)) 50)) (-3890 (((-3 $ "failed") $) 123)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-1472 (((-1157 |#1|) $) 88)) (-1474 (((-1157 |#1|) $) 85)) (-1473 (((-1157 |#1|) $) 86)) (-2573 (((-112) $) NIL)) (-1468 (((-1157 |#1|) $) 94)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-4200 (($ $ (-549)) 97)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1467 (((-1157 |#1|) $) 95)) (-1469 (((-1157 (-410 |#1|)) $) 14)) (-3016 (($ (-410 |#1|)) 17) (($ |#1| (-1157 |#1|) (-1157 |#1|)) 40)) (-3292 (($ $) 99)) (-4378 (((-865) $) 140) (($ (-549)) 53) (($ |#1|) 54) (($ (-410 |#1|)) 38) (($ (-410 (-549))) NIL) (($ $) NIL)) (-3530 (((-773)) 69 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-1470 (((-1157 (-410 |#1|)) $) 20)) (-3510 (($) 27 T CONST)) (-3067 (($) 30 T CONST)) (-3455 (((-112) $ $) 37)) (-4381 (($ $ $) 121)) (-4269 (($ $) 112) (($ $ $) 109)) (-4271 (($ $ $) 107)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-410 |#1|) $) 117) (($ $ (-410 |#1|)) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL))) +(((-174 |#1|) (-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -3016 ($ (-410 |#1|))) (-15 -3016 ($ |#1| (-1157 |#1|) (-1157 |#1|))) (-15 -1475 ($ |#1| (-1157 |#1|))) (-15 -1474 ((-1157 |#1|) $)) (-15 -1473 ((-1157 |#1|) $)) (-15 -1472 ((-1157 |#1|) $)) (-15 -3533 (|#1| $)) (-15 -1471 ($ $)) (-15 -1470 ((-1157 (-410 |#1|)) $)) (-15 -1469 ((-1157 (-410 |#1|)) $)) (-15 -1468 ((-1157 |#1|) $)) (-15 -1467 ((-1157 |#1|) $)) (-15 -4200 ($ $ (-549))) (-15 -3292 ($ $)))) (-308)) (T -174)) +((-3016 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-3016 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-1475 (*1 *1 *2 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3533 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-1471 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3292 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) +(-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -3016 ($ (-410 |#1|))) (-15 -3016 ($ |#1| (-1157 |#1|) (-1157 |#1|))) (-15 -1475 ($ |#1| (-1157 |#1|))) (-15 -1474 ((-1157 |#1|) $)) (-15 -1473 ((-1157 |#1|) $)) (-15 -1472 ((-1157 |#1|) $)) (-15 -3533 (|#1| $)) (-15 -1471 ($ $)) (-15 -1470 ((-1157 (-410 |#1|)) $)) (-15 -1469 ((-1157 (-410 |#1|)) $)) (-15 -1468 ((-1157 |#1|) $)) (-15 -1467 ((-1157 |#1|) $)) (-15 -4200 ($ $ (-549))) (-15 -3292 ($ $)))) +((-1476 (($ (-109) $) 15)) (-3641 (((-693 (-109)) (-509) $) 14)) (-4378 (((-865) $) 18)) (-1477 (((-643 (-109)) $) 8))) +(((-175) (-13 (-615 (-865)) (-10 -8 (-15 -1477 ((-643 (-109)) $)) (-15 -1476 ($ (-109) $)) (-15 -3641 ((-693 (-109)) (-509) $))))) (T -175)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-643 (-109))) (-5 *1 (-175)))) (-1476 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3641 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-109))) (-5 *1 (-175))))) +(-13 (-615 (-865)) (-10 -8 (-15 -1477 ((-643 (-109)) $)) (-15 -1476 ($ (-109) $)) (-15 -3641 ((-693 (-109)) (-509) $)))) +((-1490 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 38)) (-1481 (((-946 |#1|) (-946 |#1|)) 22)) (-1486 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 34)) (-1479 (((-946 |#1|) (-946 |#1|)) 20)) (-1484 (((-946 |#1|) (-946 |#1|)) 28)) (-1483 (((-946 |#1|) (-946 |#1|)) 27)) (-1482 (((-946 |#1|) (-946 |#1|)) 26)) (-1487 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 35)) (-1485 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 33)) (-1811 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 32)) (-1480 (((-946 |#1|) (-946 |#1|)) 21)) (-1491 (((-1 (-946 |#1|) (-946 |#1|)) |#1| |#1|) 41)) (-1478 (((-946 |#1|) (-946 |#1|)) 8)) (-1489 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 37)) (-1488 (((-1 (-946 |#1|) (-946 |#1|)) |#1|) 36))) +(((-176 |#1|) (-10 -7 (-15 -1478 ((-946 |#1|) (-946 |#1|))) (-15 -1479 ((-946 |#1|) (-946 |#1|))) (-15 -1480 ((-946 |#1|) (-946 |#1|))) (-15 -1481 ((-946 |#1|) (-946 |#1|))) (-15 -1482 ((-946 |#1|) (-946 |#1|))) (-15 -1483 ((-946 |#1|) (-946 |#1|))) (-15 -1484 ((-946 |#1|) (-946 |#1|))) (-15 -1811 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1485 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1486 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1487 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1488 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1489 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1490 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1491 ((-1 (-946 |#1|) (-946 |#1|)) |#1| |#1|))) (-13 (-365) (-1205) (-1005))) (T -176)) +((-1491 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1490 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1489 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1488 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1487 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1486 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1485 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1811 (*1 *2 *3) (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1483 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1480 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3)))) (-1478 (*1 *2 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -1478 ((-946 |#1|) (-946 |#1|))) (-15 -1479 ((-946 |#1|) (-946 |#1|))) (-15 -1480 ((-946 |#1|) (-946 |#1|))) (-15 -1481 ((-946 |#1|) (-946 |#1|))) (-15 -1482 ((-946 |#1|) (-946 |#1|))) (-15 -1483 ((-946 |#1|) (-946 |#1|))) (-15 -1484 ((-946 |#1|) (-946 |#1|))) (-15 -1811 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1485 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1486 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1487 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1488 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1489 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1490 ((-1 (-946 |#1|) (-946 |#1|)) |#1|)) (-15 -1491 ((-1 (-946 |#1|) (-946 |#1|)) |#1| |#1|))) +((-2770 ((|#2| |#3|) 28))) +(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2770 (|#2| |#3|))) (-172) (-1245 |#1|) (-726 |#1| |#2|)) (T -177)) +((-2770 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1245 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-726 *4 *2))))) +(-10 -7 (-15 -2770 (|#2| |#3|))) +((-3199 (((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)) 44 (|has| (-949 |#2|) (-889 |#1|))))) +(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-949 |#2|) (-889 |#1|)) (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))) |%noBranch|)) (-1104) (-13 (-889 |#1|) (-172)) (-166 |#2|)) (T -178)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *3 (-166 *6)) (-4 (-949 *6) (-889 *5)) (-4 *6 (-13 (-889 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) +(-10 -7 (IF (|has| (-949 |#2|) (-889 |#1|)) (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))) |%noBranch|)) +((-1493 (((-643 |#1|) (-643 |#1|) |#1|) 41)) (-1492 (((-643 |#1|) |#1| (-643 |#1|)) 20)) (-2260 (((-643 |#1|) (-643 (-643 |#1|)) (-643 |#1|)) 36) ((|#1| (-643 |#1|) (-643 |#1|)) 32))) +(((-179 |#1|) (-10 -7 (-15 -1492 ((-643 |#1|) |#1| (-643 |#1|))) (-15 -2260 (|#1| (-643 |#1|) (-643 |#1|))) (-15 -2260 ((-643 |#1|) (-643 (-643 |#1|)) (-643 |#1|))) (-15 -1493 ((-643 |#1|) (-643 |#1|) |#1|))) (-308)) (T -179)) +((-1493 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-2260 (*1 *2 *3 *2) (-12 (-5 *3 (-643 (-643 *4))) (-5 *2 (-643 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-2260 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-1492 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -1492 ((-643 |#1|) |#1| (-643 |#1|))) (-15 -2260 (|#1| (-643 |#1|) (-643 |#1|))) (-15 -2260 ((-643 |#1|) (-643 (-643 |#1|)) (-643 |#1|))) (-15 -1493 ((-643 |#1|) (-643 |#1|) |#1|))) +((-2968 (((-112) $ $) NIL)) (-3739 (((-1220) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 10)) (-4378 (((-865) $) 20) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-180) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $))))) (T -180)) +((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-180)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-180))))) +(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $)))) +((-1502 (((-2 (|:| |start| |#2|) (|:| -1954 (-408 |#2|))) |#2|) 66)) (-1501 ((|#1| |#1|) 58)) (-1500 (((-168 |#1|) |#2|) 93)) (-1499 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-1498 ((|#2| |#2|) 91)) (-1497 (((-408 |#2|) |#2| |#1|) 121) (((-408 |#2|) |#2| |#1| (-112)) 88)) (-3536 ((|#1| |#2|) 120)) (-1496 ((|#2| |#2|) 135)) (-4164 (((-408 |#2|) |#2|) 158) (((-408 |#2|) |#2| |#1|) 33) (((-408 |#2|) |#2| |#1| (-112)) 157)) (-1495 (((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2|) 156) (((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2| (-112)) 81)) (-1494 (((-643 (-168 |#1|)) |#2| |#1|) 42) (((-643 (-168 |#1|)) |#2|) 43))) +(((-181 |#1| |#2|) (-10 -7 (-15 -1494 ((-643 (-168 |#1|)) |#2|)) (-15 -1494 ((-643 (-168 |#1|)) |#2| |#1|)) (-15 -1495 ((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2| (-112))) (-15 -1495 ((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2|)) (-15 -4164 ((-408 |#2|) |#2| |#1| (-112))) (-15 -4164 ((-408 |#2|) |#2| |#1|)) (-15 -4164 ((-408 |#2|) |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3536 (|#1| |#2|)) (-15 -1497 ((-408 |#2|) |#2| |#1| (-112))) (-15 -1497 ((-408 |#2|) |#2| |#1|)) (-15 -1498 (|#2| |#2|)) (-15 -1499 (|#1| |#2| |#1|)) (-15 -1499 (|#1| |#2|)) (-15 -1500 ((-168 |#1|) |#2|)) (-15 -1501 (|#1| |#1|)) (-15 -1502 ((-2 (|:| |start| |#2|) (|:| -1954 (-408 |#2|))) |#2|))) (-13 (-365) (-850)) (-1245 (-168 |#1|))) (T -181)) +((-1502 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-2 (|:| |start| *3) (|:| -1954 (-408 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1501 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-168 *2))))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-168 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-850))) (-4 *3 (-1245 *2)))) (-1499 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-168 *2))))) (-1499 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-168 *2))))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-850))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1245 (-168 *3))))) (-1497 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-3536 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1245 (-168 *2))))) (-1496 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-850))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1245 (-168 *3))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-4164 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1495 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-2 (|:| -1954 (-643 *3)) (|:| -1704 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1495 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-850))) (-5 *2 (-643 (-2 (|:| -1954 (-643 *3)) (|:| -1704 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1245 (-168 *5))))) (-1494 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-168 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) (-1494 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-168 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4)))))) +(-10 -7 (-15 -1494 ((-643 (-168 |#1|)) |#2|)) (-15 -1494 ((-643 (-168 |#1|)) |#2| |#1|)) (-15 -1495 ((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2| (-112))) (-15 -1495 ((-643 (-2 (|:| -1954 (-643 |#2|)) (|:| -1704 |#1|))) |#2| |#2|)) (-15 -4164 ((-408 |#2|) |#2| |#1| (-112))) (-15 -4164 ((-408 |#2|) |#2| |#1|)) (-15 -4164 ((-408 |#2|) |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3536 (|#1| |#2|)) (-15 -1497 ((-408 |#2|) |#2| |#1| (-112))) (-15 -1497 ((-408 |#2|) |#2| |#1|)) (-15 -1498 (|#2| |#2|)) (-15 -1499 (|#1| |#2| |#1|)) (-15 -1499 (|#1| |#2|)) (-15 -1500 ((-168 |#1|) |#2|)) (-15 -1501 (|#1| |#1|)) (-15 -1502 ((-2 (|:| |start| |#2|) (|:| -1954 (-408 |#2|))) |#2|))) +((-1503 (((-3 |#2| "failed") |#2|) 20)) (-1504 (((-773) |#2|) 23)) (-1505 ((|#2| |#2| |#2|) 25))) +(((-182 |#1| |#2|) (-10 -7 (-15 -1503 ((-3 |#2| "failed") |#2|)) (-15 -1504 ((-773) |#2|)) (-15 -1505 (|#2| |#2| |#2|))) (-1219) (-676 |#1|)) (T -182)) +((-1505 (*1 *2 *2 *2) (-12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-676 *3)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-1219)) (-5 *2 (-773)) (-5 *1 (-182 *4 *3)) (-4 *3 (-676 *4)))) (-1503 (*1 *2 *2) (|partial| -12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-676 *3))))) +(-10 -7 (-15 -1503 ((-3 |#2| "failed") |#2|)) (-15 -1504 ((-773) |#2|)) (-15 -1505 (|#2| |#2| |#2|))) +((-2968 (((-112) $ $) NIL)) (-1508 (((-643 (-867)) $) NIL)) (-3973 (((-509) $) 8)) (-3663 (((-1162) $) NIL)) (-1510 (((-187) $) 10)) (-3035 (((-112) $ (-509)) NIL)) (-3664 (((-1123) $) NIL)) (-1506 (((-693 $) (-509)) 17)) (-1509 (((-643 (-112)) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2921 (((-55) $) 12)) (-3455 (((-112) $ $) NIL))) +(((-183) (-13 (-186) (-10 -8 (-15 -1506 ((-693 $) (-509)))))) (T -183)) +((-1506 (*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-183))) (-5 *1 (-183))))) +(-13 (-186) (-10 -8 (-15 -1506 ((-693 $) (-509))))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1583 ((|#1| $) 7)) (-4378 (((-865) $) 14)) (-3662 (((-112) $ $) NIL)) (-1507 (((-643 (-1185)) $) 10)) (-3455 (((-112) $ $) 12))) +(((-184 |#1|) (-13 (-1104) (-10 -8 (-15 -1583 (|#1| $)) (-15 -1507 ((-643 (-1185)) $)))) (-186)) (T -184)) +((-1583 (*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-184 *3)) (-4 *3 (-186))))) +(-13 (-1104) (-10 -8 (-15 -1583 (|#1| $)) (-15 -1507 ((-643 (-1185)) $)))) +((-1508 (((-643 (-867)) $) 16)) (-1510 (((-187) $) 8)) (-1509 (((-643 (-112)) $) 13)) (-2921 (((-55) $) 10))) +(((-185 |#1|) (-10 -8 (-15 -1508 ((-643 (-867)) |#1|)) (-15 -1509 ((-643 (-112)) |#1|)) (-15 -1510 ((-187) |#1|)) (-15 -2921 ((-55) |#1|))) (-186)) (T -185)) +NIL +(-10 -8 (-15 -1508 ((-643 (-867)) |#1|)) (-15 -1509 ((-643 (-112)) |#1|)) (-15 -1510 ((-187) |#1|)) (-15 -2921 ((-55) |#1|))) +((-2968 (((-112) $ $) 7)) (-1508 (((-643 (-867)) $) 19)) (-3973 (((-509) $) 16)) (-3663 (((-1162) $) 10)) (-1510 (((-187) $) 21)) (-3035 (((-112) $ (-509)) 14)) (-3664 (((-1123) $) 11)) (-1509 (((-643 (-112)) $) 20)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2921 (((-55) $) 15)) (-3455 (((-112) $ $) 6))) +(((-186) (-140)) (T -186)) +((-1510 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-643 (-112))))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-643 (-867)))))) +(-13 (-838 (-509)) (-10 -8 (-15 -1510 ((-187) $)) (-15 -1509 ((-643 (-112)) $)) (-15 -1508 ((-643 (-867)) $)))) +(((-102) . T) ((-615 (-865)) . T) ((-838 (-509)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-8 (($) 7 T CONST)) (-4378 (((-865) $) 12)) (-9 (($) 6 T CONST)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 10))) +(((-187) (-13 (-1104) (-10 -8 (-15 -9 ($) -4384) (-15 -8 ($) -4384) (-15 -7 ($) -4384)))) (T -187)) +((-9 (*1 *1) (-5 *1 (-187))) (-8 (*1 *1) (-5 *1 (-187))) (-7 (*1 *1) (-5 *1 (-187)))) +(-13 (-1104) (-10 -8 (-15 -9 ($) -4384) (-15 -8 ($) -4384) (-15 -7 ($) -4384))) +((-4074 ((|#2| |#2|) 28)) (-4077 (((-112) |#2|) 19)) (-4075 (((-315 |#1|) |#2|) 12)) (-4076 (((-315 |#1|) |#2|) 14)) (-4072 ((|#2| |#2| (-1180)) 69) ((|#2| |#2|) 70)) (-4078 (((-168 (-315 |#1|)) |#2|) 10)) (-4073 ((|#2| |#2| (-1180)) 66) ((|#2| |#2|) 60))) +(((-188 |#1| |#2|) (-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -4072 (|#2| |#2| (-1180))) (-15 -4073 (|#2| |#2|)) (-15 -4073 (|#2| |#2| (-1180))) (-15 -4075 ((-315 |#1|) |#2|)) (-15 -4076 ((-315 |#1|) |#2|)) (-15 -4077 ((-112) |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4078 ((-168 (-315 |#1|)) |#2|))) (-13 (-560) (-1041 (-549))) (-13 (-27) (-1205) (-424 (-168 |#1|)))) (T -188)) +((-4078 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-168 (-315 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) (-4077 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4076 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-315 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-315 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) (-4072 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *4)))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3))))))) +(-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -4072 (|#2| |#2| (-1180))) (-15 -4073 (|#2| |#2|)) (-15 -4073 (|#2| |#2| (-1180))) (-15 -4075 ((-315 |#1|) |#2|)) (-15 -4076 ((-315 |#1|) |#2|)) (-15 -4077 ((-112) |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4078 ((-168 (-315 |#1|)) |#2|))) +((-1514 (((-1269 (-691 (-949 |#1|))) (-1269 (-691 |#1|))) 26)) (-4378 (((-1269 (-691 (-410 (-949 |#1|)))) (-1269 (-691 |#1|))) 37))) +(((-189 |#1|) (-10 -7 (-15 -1514 ((-1269 (-691 (-949 |#1|))) (-1269 (-691 |#1|)))) (-15 -4378 ((-1269 (-691 (-410 (-949 |#1|)))) (-1269 (-691 |#1|))))) (-172)) (T -189)) +((-4378 (*1 *2 *3) (-12 (-5 *3 (-1269 (-691 *4))) (-4 *4 (-172)) (-5 *2 (-1269 (-691 (-410 (-949 *4))))) (-5 *1 (-189 *4)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-1269 (-691 *4))) (-4 *4 (-172)) (-5 *2 (-1269 (-691 (-949 *4)))) (-5 *1 (-189 *4))))) +(-10 -7 (-15 -1514 ((-1269 (-691 (-949 |#1|))) (-1269 (-691 |#1|)))) (-15 -4378 ((-1269 (-691 (-410 (-949 |#1|)))) (-1269 (-691 |#1|))))) +((-1522 (((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549)))) 88)) (-1524 (((-1182 (-410 (-549))) (-643 (-549)) (-643 (-549))) 99)) (-1515 (((-1182 (-410 (-549))) (-549)) 55)) (-4286 (((-1182 (-410 (-549))) (-549)) 74)) (-4199 (((-410 (-549)) (-1182 (-410 (-549)))) 84)) (-1516 (((-1182 (-410 (-549))) (-549)) 37)) (-1519 (((-1182 (-410 (-549))) (-549)) 67)) (-1518 (((-1182 (-410 (-549))) (-549)) 61)) (-1521 (((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549)))) 82)) (-3292 (((-1182 (-410 (-549))) (-549)) 29)) (-1520 (((-410 (-549)) (-1182 (-410 (-549))) (-1182 (-410 (-549)))) 86)) (-1517 (((-1182 (-410 (-549))) (-549)) 35)) (-1523 (((-1182 (-410 (-549))) (-643 (-549))) 95))) +(((-190) (-10 -7 (-15 -3292 ((-1182 (-410 (-549))) (-549))) (-15 -1515 ((-1182 (-410 (-549))) (-549))) (-15 -1516 ((-1182 (-410 (-549))) (-549))) (-15 -1517 ((-1182 (-410 (-549))) (-549))) (-15 -1518 ((-1182 (-410 (-549))) (-549))) (-15 -1519 ((-1182 (-410 (-549))) (-549))) (-15 -4286 ((-1182 (-410 (-549))) (-549))) (-15 -1520 ((-410 (-549)) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -1521 ((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -4199 ((-410 (-549)) (-1182 (-410 (-549))))) (-15 -1522 ((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -1523 ((-1182 (-410 (-549))) (-643 (-549)))) (-15 -1524 ((-1182 (-410 (-549))) (-643 (-549)) (-643 (-549)))))) (T -190)) +((-1524 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)))) (-1522 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)))) (-4199 (*1 *2 *3) (-12 (-5 *3 (-1182 (-410 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-190)))) (-1521 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)))) (-1520 (*1 *2 *3 *3) (-12 (-5 *3 (-1182 (-410 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-190)))) (-4286 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1519 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1517 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) (-3292 (*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) +(-10 -7 (-15 -3292 ((-1182 (-410 (-549))) (-549))) (-15 -1515 ((-1182 (-410 (-549))) (-549))) (-15 -1516 ((-1182 (-410 (-549))) (-549))) (-15 -1517 ((-1182 (-410 (-549))) (-549))) (-15 -1518 ((-1182 (-410 (-549))) (-549))) (-15 -1519 ((-1182 (-410 (-549))) (-549))) (-15 -4286 ((-1182 (-410 (-549))) (-549))) (-15 -1520 ((-410 (-549)) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -1521 ((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -4199 ((-410 (-549)) (-1182 (-410 (-549))))) (-15 -1522 ((-1182 (-410 (-549))) (-1182 (-410 (-549))) (-1182 (-410 (-549))))) (-15 -1523 ((-1182 (-410 (-549))) (-643 (-549)))) (-15 -1524 ((-1182 (-410 (-549))) (-643 (-549)) (-643 (-549))))) +((-1526 (((-408 (-1174 (-549))) (-549)) 38)) (-1525 (((-643 (-1174 (-549))) (-549)) 33)) (-3204 (((-1174 (-549)) (-549)) 28))) +(((-191) (-10 -7 (-15 -1525 ((-643 (-1174 (-549))) (-549))) (-15 -3204 ((-1174 (-549)) (-549))) (-15 -1526 ((-408 (-1174 (-549))) (-549))))) (T -191)) +((-1526 (*1 *2 *3) (-12 (-5 *2 (-408 (-1174 (-549)))) (-5 *1 (-191)) (-5 *3 (-549)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-191)) (-5 *3 (-549)))) (-1525 (*1 *2 *3) (-12 (-5 *2 (-643 (-1174 (-549)))) (-5 *1 (-191)) (-5 *3 (-549))))) +(-10 -7 (-15 -1525 ((-643 (-1174 (-549))) (-549))) (-15 -3204 ((-1174 (-549)) (-549))) (-15 -1526 ((-408 (-1174 (-549))) (-549)))) +((-1716 (((-1157 (-225)) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-1737 (((-643 (-1162)) (-1157 (-225))) NIL)) (-1527 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-1714 (((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225)))) NIL)) (-1736 (((-643 (-1162)) (-643 (-225))) NIL)) (-1738 (((-225) (-1092 (-844 (-225)))) 31)) (-1739 (((-225) (-1092 (-844 (-225)))) 32)) (-1529 (((-380) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-1528 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-1734 (((-1162) (-225)) NIL)) (-2971 (((-1162) (-643 (-1162))) 27)) (-1530 (((-1038) (-1180) (-1180) (-1038)) 13))) +(((-192) (-10 -7 (-15 -1527 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1528 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -1529 ((-380) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1714 ((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))) (-15 -2971 ((-1162) (-643 (-1162)))) (-15 -1530 ((-1038) (-1180) (-1180) (-1038))))) (T -192)) +((-1530 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1038)) (-5 *3 (-1180)) (-5 *1 (-192)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-192)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-192)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-192)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-192)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-192)))) (-1714 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-192)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-192)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) +(-10 -7 (-15 -1527 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1528 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -1529 ((-380) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1714 ((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))) (-15 -2971 ((-1162) (-643 (-1162)))) (-15 -1530 ((-1038) (-1180) (-1180) (-1038)))) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 61) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-193) (-789)) (T -193)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 66) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-194) (-789)) (T -194)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 81) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-195) (-789)) (T -195)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 63) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-196) (-789)) (T -196)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 75) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-197) (-789)) (T -197)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 90) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-198) (-789)) (T -198)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 90) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-199) (-789)) (T -199)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 77) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-200) (-789)) (T -200)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 78)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-201) (-789)) (T -201)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 79)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-202) (-789)) (T -202)) +NIL +(-789) +((-2968 (((-112) $ $) NIL)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 105) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-203) (-789)) (T -203)) +NIL +(-789) +((-1531 (((-3 (-2 (|:| -2902 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-1533 (((-549) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-1532 (((-3 (-643 (-225)) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91))) +(((-204) (-10 -7 (-15 -1531 ((-3 (-2 (|:| -2902 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1532 ((-3 (-643 (-225)) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1533 ((-549) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) +((-1533 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-549)) (-5 *1 (-204)))) (-1532 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-204)))) (-1531 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2902 (-113)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(-10 -7 (-15 -1531 ((-3 (-2 (|:| -2902 (-113)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1532 ((-3 (-643 (-225)) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1533 ((-549) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1538 (((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-1537 (((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-1536 (((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-691 (-315 (-225)))) 112)) (-1535 (((-380) (-691 (-315 (-225)))) 140)) (-2523 (((-691 (-315 (-225))) (-1269 (-315 (-225))) (-643 (-1180))) 136)) (-1541 (((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-1539 (((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-4199 (((-691 (-315 (-225))) (-691 (-315 (-225))) (-643 (-1180)) (-1269 (-315 (-225)))) 125)) (-1534 (((-380) (-380) (-643 (-380))) 133) (((-380) (-380) (-380)) 128)) (-1540 (((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) +(((-205) (-10 -7 (-15 -1534 ((-380) (-380) (-380))) (-15 -1534 ((-380) (-380) (-643 (-380)))) (-15 -1535 ((-380) (-691 (-315 (-225))))) (-15 -2523 ((-691 (-315 (-225))) (-1269 (-315 (-225))) (-643 (-1180)))) (-15 -4199 ((-691 (-315 (-225))) (-691 (-315 (-225))) (-643 (-1180)) (-1269 (-315 (-225))))) (-15 -1536 ((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-691 (-315 (-225))))) (-15 -1537 ((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1538 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1539 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1540 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1541 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) +((-1541 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380)))) (-5 *1 (-205)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-691 (-315 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380)))) (-5 *1 (-205)))) (-4199 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-691 (-315 (-225)))) (-5 *3 (-643 (-1180))) (-5 *4 (-1269 (-315 (-225)))) (-5 *1 (-205)))) (-2523 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *4 (-643 (-1180))) (-5 *2 (-691 (-315 (-225)))) (-5 *1 (-205)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-691 (-315 (-225)))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1534 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-380))) (-5 *2 (-380)) (-5 *1 (-205)))) (-1534 (*1 *2 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-205))))) +(-10 -7 (-15 -1534 ((-380) (-380) (-380))) (-15 -1534 ((-380) (-380) (-643 (-380)))) (-15 -1535 ((-380) (-691 (-315 (-225))))) (-15 -2523 ((-691 (-315 (-225))) (-1269 (-315 (-225))) (-643 (-1180)))) (-15 -4199 ((-691 (-315 (-225))) (-691 (-315 (-225))) (-643 (-1180)) (-1269 (-315 (-225))))) (-15 -1536 ((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-691 (-315 (-225))))) (-15 -1537 ((-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1538 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1539 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1540 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1541 ((-380) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-3455 (((-112) $ $) NIL))) +(((-206) (-802)) (T -206)) +NIL +(-802) +((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-3455 (((-112) $ $) NIL))) +(((-207) (-802)) (T -207)) +NIL +(-802) +((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-3455 (((-112) $ $) NIL))) +(((-208) (-802)) (T -208)) +NIL +(-802) +((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-3455 (((-112) $ $) NIL))) +(((-209) (-802)) (T -209)) +NIL +(-802) +((-4366 (((-643 (-1180)) (-1180) (-773)) 26)) (-1542 (((-315 (-225)) (-315 (-225))) 35)) (-1544 (((-112) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 87)) (-1543 (((-112) (-225) (-225) (-643 (-315 (-225)))) 47))) +(((-210) (-10 -7 (-15 -4366 ((-643 (-1180)) (-1180) (-773))) (-15 -1542 ((-315 (-225)) (-315 (-225)))) (-15 -1543 ((-112) (-225) (-225) (-643 (-315 (-225))))) (-15 -1544 ((-112) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))))) (T -210)) +((-1544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-1543 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-643 (-315 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-315 (-225))) (-5 *1 (-210)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-5 *2 (-643 (-1180))) (-5 *1 (-210)) (-5 *3 (-1180))))) +(-10 -7 (-15 -4366 ((-643 (-1180)) (-1180) (-773))) (-15 -1542 ((-315 (-225)) (-315 (-225)))) (-15 -1543 ((-112) (-225) (-225) (-643 (-315 (-225))))) (-15 -1544 ((-112) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))))) +((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 28)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3068 (((-1038) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 70)) (-3455 (((-112) $ $) NIL))) +(((-211) (-898)) (T -211)) +NIL +(-898) +((-2968 (((-112) $ $) NIL)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 24)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3068 (((-1038) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) NIL)) (-3455 (((-112) $ $) NIL))) +(((-212) (-898)) (T -212)) +NIL +(-898) +((-2968 (((-112) $ $) NIL)) (-1545 ((|#2| $ (-773) |#2|) 11)) (-3517 ((|#2| $ (-773)) 10)) (-4046 (($) 8)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 26)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 13))) +(((-213 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -4046 ($)) (-15 -3517 (|#2| $ (-773))) (-15 -1545 (|#2| $ (-773) |#2|)))) (-922) (-1104)) (T -213)) +((-4046 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1104)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *2 (-1104)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)))) (-1545 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)) (-4 *2 (-1104))))) +(-13 (-1104) (-10 -8 (-15 -4046 ($)) (-15 -3517 (|#2| $ (-773))) (-15 -1545 (|#2| $ (-773) |#2|)))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2143 (((-1275) $) 37) (((-1275) $ (-922) (-922)) 44)) (-4231 (($ $ (-992)) 19) (((-245 (-1162)) $ (-1180)) 15)) (-4049 (((-1275) $) 35)) (-4378 (((-865) $) 32) (($ (-643 |#1|)) 8)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $ $) 27)) (-4271 (($ $ $) 22))) +(((-214 |#1|) (-13 (-1104) (-618 (-643 |#1|)) (-10 -8 (-15 -4231 ($ $ (-992))) (-15 -4231 ((-245 (-1162)) $ (-1180))) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $)) (-15 -2143 ((-1275) $ (-922) (-922))))) (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))) (T -214)) +((-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-992)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-245 (-1162))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ *3)) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))))) (-4271 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))))) (-4269 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $))))))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) (-15 -2143 (*2 $))))))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) (-15 -2143 (*2 $))))))) (-2143 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) (-15 -2143 (*2 $)))))))) +(-13 (-1104) (-618 (-643 |#1|)) (-10 -8 (-15 -4231 ($ $ (-992))) (-15 -4231 ((-245 (-1162)) $ (-1180))) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $)) (-15 -2143 ((-1275) $ (-922) (-922))))) +((-1546 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1546 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -215)) +((-1546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1245 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) +(-10 -7 (-15 -1546 (|#2| |#4| (-1 |#2| |#2|)))) +((-1550 ((|#2| |#2| (-773) |#2|) 58)) (-1549 ((|#2| |#2| (-773) |#2|) 54)) (-2529 (((-643 |#2|) (-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|)))) 82)) (-1548 (((-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))) |#2|) 76)) (-1551 (((-112) |#2|) 74)) (-4165 (((-408 |#2|) |#2|) 94)) (-4164 (((-408 |#2|) |#2|) 93)) (-2530 ((|#2| |#2| (-773) |#2|) 52)) (-1547 (((-2 (|:| |cont| |#1|) (|:| -1954 (-643 (-2 (|:| |irr| |#2|) (|:| -2558 (-549)))))) |#2| (-112)) 88))) +(((-216 |#1| |#2|) (-10 -7 (-15 -4164 ((-408 |#2|) |#2|)) (-15 -4165 ((-408 |#2|) |#2|)) (-15 -1547 ((-2 (|:| |cont| |#1|) (|:| -1954 (-643 (-2 (|:| |irr| |#2|) (|:| -2558 (-549)))))) |#2| (-112))) (-15 -1548 ((-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))) |#2|)) (-15 -2529 ((-643 |#2|) (-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))))) (-15 -2530 (|#2| |#2| (-773) |#2|)) (-15 -1549 (|#2| |#2| (-773) |#2|)) (-15 -1550 (|#2| |#2| (-773) |#2|)) (-15 -1551 ((-112) |#2|))) (-352) (-1245 |#1|)) (T -216)) +((-1551 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-1550 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-1549 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-2530 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) (-2529 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| |deg| (-773)) (|:| -2975 *5)))) (-4 *5 (-1245 *4)) (-4 *4 (-352)) (-5 *2 (-643 *5)) (-5 *1 (-216 *4 *5)))) (-1548 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-643 (-2 (|:| |deg| (-773)) (|:| -2975 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-352)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1245 *5)))) (-4165 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -4164 ((-408 |#2|) |#2|)) (-15 -4165 ((-408 |#2|) |#2|)) (-15 -1547 ((-2 (|:| |cont| |#1|) (|:| -1954 (-643 (-2 (|:| |irr| |#2|) (|:| -2558 (-549)))))) |#2| (-112))) (-15 -1548 ((-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))) |#2|)) (-15 -2529 ((-643 |#2|) (-643 (-2 (|:| |deg| (-773)) (|:| -2975 |#2|))))) (-15 -2530 (|#2| |#2| (-773) |#2|)) (-15 -1549 (|#2| |#2| (-773) |#2|)) (-15 -1550 (|#2| |#2| (-773) |#2|)) (-15 -1551 ((-112) |#2|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-549) $) NIL (|has| (-549) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-549) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-549) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-549) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-549) (-1041 (-549))))) (-3576 (((-549) $) NIL) (((-1180) $) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-549) (-1041 (-549)))) (((-549) $) NIL (|has| (-549) (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-549) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-549) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-549) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-549) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-549) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-549) (-1154)))) (-3607 (((-112) $) NIL (|has| (-549) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-549) (-852)))) (-4390 (($ (-1 (-549) (-549)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-549) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-549) (-308))) (((-410 (-549)) $) NIL)) (-3534 (((-549) $) NIL (|has| (-549) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-549)) (-643 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-310 (-549)))) (($ $ (-294 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-294 (-549)))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-1180)) (-643 (-549))) NIL (|has| (-549) (-517 (-1180) (-549)))) (($ $ (-1180) (-549)) NIL (|has| (-549) (-517 (-1180) (-549))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-549)) NIL (|has| (-549) (-287 (-549) (-549))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-549) $) NIL)) (-1552 (($ (-410 (-549))) 9)) (-4402 (((-893 (-549)) $) NIL (|has| (-549) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-549) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-549) (-616 (-538)))) (((-380) $) NIL (|has| (-549) (-1023))) (((-225) $) NIL (|has| (-549) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-549) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 8) (($ (-549)) NIL) (($ (-1180)) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL) (((-1007 10) $) 10)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-549) (-913))) (|has| (-549) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-549) $) NIL (|has| (-549) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-549) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-549) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-549) (-852)))) (-4381 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL))) +(((-217) (-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 10)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -1552 ($ (-410 (-549))))))) (T -217)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-217)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-217))))) +(-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 10)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -1552 ($ (-410 (-549)))))) +((-2968 (((-112) $ $) NIL)) (-3740 (((-1118) $) 13)) (-3663 (((-1162) $) NIL)) (-3598 (((-486) $) 10)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 23) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 15)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-218) (-13 (-1086) (-10 -8 (-15 -3598 ((-486) $)) (-15 -3740 ((-1118) $)) (-15 -3653 ((-1138) $))))) (T -218)) +((-3598 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-218)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-218))))) +(-13 (-1086) (-10 -8 (-15 -3598 ((-486) $)) (-15 -3740 ((-1118) $)) (-15 -3653 ((-1138) $)))) +((-4244 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1095 (-844 |#2|)) (-1162)) 29) (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1095 (-844 |#2|))) 25)) (-1553 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1180) (-844 |#2|) (-844 |#2|) (-112)) 17))) +(((-219 |#1| |#2|) (-10 -7 (-15 -4244 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1095 (-844 |#2|)))) (-15 -4244 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1095 (-844 |#2|)) (-1162))) (-15 -1553 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1180) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-963) (-29 |#1|))) (T -219)) +((-1553 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1180)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-4 *3 (-13 (-1205) (-963) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095 (-844 *3))) (-5 *5 (-1162)) (-4 *3 (-13 (-1205) (-963) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *6 *3)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-844 *3))) (-4 *3 (-13 (-1205) (-963) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-219 *5 *3))))) +(-10 -7 (-15 -4244 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1095 (-844 |#2|)))) (-15 -4244 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1095 (-844 |#2|)) (-1162))) (-15 -1553 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-643 (-844 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1180) (-844 |#2|) (-844 |#2|) (-112)))) +((-4244 (((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))) (-1162)) 49) (((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|))))) 46) (((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))) (-1162)) 50) (((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|)))) 22))) +(((-220 |#1|) (-10 -7 (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))) (-1162))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))) (-1162)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (T -220)) +((-4244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095 (-844 (-410 (-949 *6))))) (-5 *5 (-1162)) (-5 *3 (-410 (-949 *6))) (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 (-315 *6))) (|:| |f2| (-643 (-844 (-315 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-220 *6)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-844 (-410 (-949 *5))))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 (-315 *5))) (|:| |f2| (-643 (-844 (-315 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *5)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-410 (-949 *6))) (-5 *4 (-1095 (-844 (-315 *6)))) (-5 *5 (-1162)) (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 (-315 *6))) (|:| |f2| (-643 (-844 (-315 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *6)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1095 (-844 (-315 *5)))) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |f1| (-844 (-315 *5))) (|:| |f2| (-643 (-844 (-315 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-220 *5))))) +(-10 -7 (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-315 |#1|))) (-1162))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))))) (-15 -4244 ((-3 (|:| |f1| (-844 (-315 |#1|))) (|:| |f2| (-643 (-844 (-315 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-410 (-949 |#1|)) (-1095 (-844 (-410 (-949 |#1|)))) (-1162)))) +((-4274 (((-2 (|:| -2182 (-1174 |#1|)) (|:| |deg| (-922))) (-1174 |#1|)) 26)) (-4395 (((-643 (-315 |#2|)) (-315 |#2|) (-922)) 54))) +(((-221 |#1| |#2|) (-10 -7 (-15 -4274 ((-2 (|:| -2182 (-1174 |#1|)) (|:| |deg| (-922))) (-1174 |#1|))) (-15 -4395 ((-643 (-315 |#2|)) (-315 |#2|) (-922)))) (-1052) (-560)) (T -221)) +((-4395 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *6 (-560)) (-5 *2 (-643 (-315 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1052)))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-2 (|:| -2182 (-1174 *4)) (|:| |deg| (-922)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-560))))) +(-10 -7 (-15 -4274 ((-2 (|:| -2182 (-1174 |#1|)) (|:| |deg| (-922))) (-1174 |#1|))) (-15 -4395 ((-643 (-315 |#2|)) (-315 |#2|) (-922)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1596 ((|#1| $) NIL)) (-3748 ((|#1| $) 30)) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3403 (($ $) NIL)) (-2442 (($ $) 39)) (-3750 ((|#1| |#1| $) NIL)) (-3749 ((|#1| $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-4265 (((-773) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) NIL)) (-1594 ((|#1| |#1| $) 35)) (-1593 ((|#1| |#1| $) 37)) (-4039 (($ |#1| $) NIL)) (-3003 (((-773) $) 33)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-3402 ((|#1| $) NIL)) (-1592 ((|#1| $) 31)) (-1591 ((|#1| $) 29)) (-1370 ((|#1| $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3405 ((|#1| |#1| $) NIL)) (-3827 (((-112) $) 9)) (-3996 (($) NIL)) (-3404 ((|#1| $) NIL)) (-1597 (($) NIL) (($ (-643 |#1|)) 16)) (-3747 (((-773) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-1595 ((|#1| $) 13)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) NIL)) (-3401 ((|#1| $) NIL)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -1597 ($ (-643 |#1|))))) (-1104)) (T -222)) +((-1597 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-222 *3))))) +(-13 (-255 |#1|) (-10 -8 (-15 -1597 ($ (-643 |#1|))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1555 (($ (-315 |#1|)) 27)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3065 (((-112) $) NIL)) (-3577 (((-3 (-315 |#1|) "failed") $) NIL)) (-3576 (((-315 |#1|) $) NIL)) (-4391 (($ $) 35)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-4390 (($ (-1 (-315 |#1|) (-315 |#1|)) $) NIL)) (-3594 (((-315 |#1|) $) NIL)) (-1557 (($ $) 34)) (-3663 (((-1162) $) NIL)) (-1556 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($ (-773)) NIL)) (-1554 (($ $) 36)) (-4380 (((-549) $) NIL)) (-4378 (((-865) $) 68) (($ (-549)) NIL) (($ (-315 |#1|)) NIL)) (-4109 (((-315 |#1|) $ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 29 T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) 32)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 23)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 28) (($ (-315 |#1|) $) 22))) +(((-223 |#1| |#2|) (-13 (-623 (-315 |#1|)) (-1041 (-315 |#1|)) (-10 -8 (-15 -3594 ((-315 |#1|) $)) (-15 -1557 ($ $)) (-15 -4391 ($ $)) (-15 -4109 ((-315 |#1|) $ $)) (-15 -2572 ($ (-773))) (-15 -1556 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -4380 ((-549) $)) (-15 -4390 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -1555 ($ (-315 |#1|))) (-15 -1554 ($ $)))) (-13 (-1052) (-852)) (-643 (-1180))) (T -223)) +((-3594 (*1 *2 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-1557 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) (-14 *3 (-643 (-1180))))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) (-14 *3 (-643 (-1180))))) (-4109 (*1 *2 *1 *1) (-12 (-5 *2 (-315 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) (-14 *4 (-643 (-1180))))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1052) (-852))) (-5 *1 (-223 *3 *4)) (-14 *4 (-643 (-1180))))) (-1555 (*1 *1 *2) (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1052) (-852))) (-5 *1 (-223 *3 *4)) (-14 *4 (-643 (-1180))))) (-1554 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) (-14 *3 (-643 (-1180)))))) +(-13 (-623 (-315 |#1|)) (-1041 (-315 |#1|)) (-10 -8 (-15 -3594 ((-315 |#1|) $)) (-15 -1557 ($ $)) (-15 -4391 ($ $)) (-15 -4109 ((-315 |#1|) $ $)) (-15 -2572 ($ (-773))) (-15 -1556 ((-112) $)) (-15 -3065 ((-112) $)) (-15 -4380 ((-549) $)) (-15 -4390 ($ (-1 (-315 |#1|) (-315 |#1|)) $)) (-15 -1555 ($ (-315 |#1|))) (-15 -1554 ($ $)))) +((-1558 (((-112) (-1162)) 26)) (-1559 (((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112)) 35)) (-1560 (((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)) 84) (((-3 (-112) "failed") (-949 |#1|) (-1180) (-844 |#2|) (-844 |#2|) (-112)) 85))) +(((-224 |#1| |#2|) (-10 -7 (-15 -1558 ((-112) (-1162))) (-15 -1559 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -1560 ((-3 (-112) "failed") (-949 |#1|) (-1180) (-844 |#2|) (-844 |#2|) (-112))) (-15 -1560 ((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-29 |#1|))) (T -224)) +((-1560 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1174 *6)) (-5 *4 (-844 *6)) (-4 *6 (-13 (-1205) (-29 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-224 *5 *6)))) (-1560 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1180)) (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-4 *7 (-13 (-1205) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-1559 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1205) (-29 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-224 *6 *4)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1205) (-29 *4)))))) +(-10 -7 (-15 -1558 ((-112) (-1162))) (-15 -1559 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -1560 ((-3 (-112) "failed") (-949 |#1|) (-1180) (-844 |#2|) (-844 |#2|) (-112))) (-15 -1560 ((-3 (-112) "failed") (-1174 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 99)) (-3533 (((-549) $) 35)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4202 (($ $) NIL)) (-3915 (($ $) 88)) (-4071 (($ $) 76)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) 67)) (-1753 (((-112) $ $) NIL)) (-3913 (($ $) 86)) (-4070 (($ $) 74)) (-4055 (((-549) $) 129)) (-3917 (($ $) 91)) (-4069 (($ $) 78)) (-4156 (($) NIL T CONST)) (-3531 (($ $) NIL)) (-3577 (((-3 (-549) #1="failed") $) 128) (((-3 (-410 (-549)) #1#) $) 125)) (-3576 (((-549) $) 126) (((-410 (-549)) $) 123)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) 104)) (-1912 (((-410 (-549)) $ (-773)) 118) (((-410 (-549)) $ (-773) (-773)) 117)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2537 (((-922)) 29) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-3606 (((-112) $) NIL)) (-4059 (($) 46)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL)) (-4203 (((-549) $) 42)) (-2573 (((-112) $) 100)) (-3412 (($ $ (-549)) NIL)) (-3536 (($ $) NIL)) (-3607 (((-112) $) 98)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-2934 (($ $ $) 64) (($) 38 (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-3260 (($ $ $) 63) (($) 37 (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-2538 (((-549) $) 27)) (-1911 (($ $) 33)) (-1910 (($ $) 68)) (-4374 (($ $) 73)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-1944 (((-922) (-549)) NIL (|has| $ (-6 -4416)))) (-3664 (((-1123) $) 102)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL)) (-3534 (($ $) NIL)) (-3675 (($ (-549) (-549)) NIL) (($ (-549) (-549) (-922)) 111)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2564 (((-549) $) 28)) (-1909 (($) 45)) (-4375 (($ $) 72)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3015 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-4242 (($ $ (-773)) NIL) (($ $) 105)) (-1943 (((-922) (-549)) NIL (|has| $ (-6 -4416)))) (-3918 (($ $) 89)) (-4068 (($ $) 79)) (-3916 (($ $) 90)) (-4067 (($ $) 77)) (-3914 (($ $) 87)) (-4066 (($ $) 75)) (-4402 (((-380) $) 114) (((-225) $) 14) (((-893 (-380)) $) NIL) (((-538) $) 52)) (-4378 (((-865) $) 49) (($ (-549)) 71) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-549)) 71) (($ (-410 (-549))) NIL)) (-3530 (((-773)) NIL T CONST)) (-3535 (($ $) NIL)) (-1945 (((-922)) 36) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-3662 (((-112) $ $) NIL)) (-3097 (((-922)) 25)) (-3921 (($ $) 94)) (-3909 (($ $) 82) (($ $ $) 121)) (-2240 (((-112) $ $) NIL)) (-3919 (($ $) 92)) (-3907 (($ $) 80)) (-3923 (($ $) 97)) (-3911 (($ $) 85)) (-3924 (($ $) 95)) (-3912 (($ $) 83)) (-3922 (($ $) 96)) (-3910 (($ $) 84)) (-3920 (($ $) 93)) (-3908 (($ $) 81)) (-3807 (($ $) 120)) (-3510 (($) 23 T CONST)) (-3067 (($) 43 T CONST)) (-2900 (((-1162) $) 18) (((-1162) $ (-112)) 20) (((-1275) (-825) $) 21) (((-1275) (-825) $ (-112)) 22)) (-3811 (($ $) 108)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3808 (($ $ $) 110)) (-2966 (((-112) $ $) 57)) (-2967 (((-112) $ $) 54)) (-3455 (((-112) $ $) 65)) (-3087 (((-112) $ $) 56)) (-3088 (((-112) $ $) 53)) (-4381 (($ $ $) 44) (($ $ (-549)) 66)) (-4269 (($ $) 58) (($ $ $) 60)) (-4271 (($ $ $) 59)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 69) (($ $ (-410 (-549))) 153) (($ $ $) 70)) (* (($ (-922) $) 34) (($ (-773) $) NIL) (($ (-549) $) 62) (($ $ $) 61) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) +(((-225) (-13 (-407) (-233) (-823) (-1205) (-616 (-538)) (-10 -8 (-15 -4381 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -1909 ($)) (-15 -1911 ($ $)) (-15 -1910 ($ $)) (-15 -3909 ($ $ $)) (-15 -3811 ($ $)) (-15 -3808 ($ $ $)) (-15 -1912 ((-410 (-549)) $ (-773))) (-15 -1912 ((-410 (-549)) $ (-773) (-773)))))) (T -225)) +((** (*1 *1 *1 *1) (-5 *1 (-225))) (-4381 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-225)))) (-1909 (*1 *1) (-5 *1 (-225))) (-1911 (*1 *1 *1) (-5 *1 (-225))) (-1910 (*1 *1 *1) (-5 *1 (-225))) (-3909 (*1 *1 *1 *1) (-5 *1 (-225))) (-3811 (*1 *1 *1) (-5 *1 (-225))) (-3808 (*1 *1 *1 *1) (-5 *1 (-225))) (-1912 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-225)))) (-1912 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-225))))) +(-13 (-407) (-233) (-823) (-1205) (-616 (-538)) (-10 -8 (-15 -4381 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -1909 ($)) (-15 -1911 ($ $)) (-15 -1910 ($ $)) (-15 -3909 ($ $ $)) (-15 -3811 ($ $)) (-15 -3808 ($ $ $)) (-15 -1912 ((-410 (-549)) $ (-773))) (-15 -1912 ((-410 (-549)) $ (-773) (-773))))) +((-3810 (((-168 (-225)) (-773) (-168 (-225))) 11) (((-225) (-773) (-225)) 12)) (-1561 (((-168 (-225)) (-168 (-225))) 13) (((-225) (-225)) 14)) (-1562 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 19) (((-225) (-225) (-225)) 22)) (-3809 (((-168 (-225)) (-168 (-225))) 27) (((-225) (-225)) 26)) (-3813 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3815 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3812 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3814 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3817 (((-168 (-225)) (-168 (-225))) 74) (((-225) (-225)) 73)) (-3816 (((-225) (-225)) 68) (((-168 (-225)) (-168 (-225))) 72)) (-3811 (((-168 (-225)) (-168 (-225))) 8) (((-225) (-225)) 9)) (-3808 (((-168 (-225)) (-168 (-225)) (-168 (-225))) 35) (((-225) (-225) (-225)) 31))) +(((-226) (-10 -7 (-15 -3811 ((-225) (-225))) (-15 -3811 ((-168 (-225)) (-168 (-225)))) (-15 -3808 ((-225) (-225) (-225))) (-15 -3808 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -1561 ((-225) (-225))) (-15 -1561 ((-168 (-225)) (-168 (-225)))) (-15 -3809 ((-225) (-225))) (-15 -3809 ((-168 (-225)) (-168 (-225)))) (-15 -3810 ((-225) (-773) (-225))) (-15 -3810 ((-168 (-225)) (-773) (-168 (-225)))) (-15 -3812 ((-225) (-225) (-225))) (-15 -3812 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3813 ((-225) (-225) (-225))) (-15 -3813 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3814 ((-225) (-225) (-225))) (-15 -3814 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3815 ((-225) (-225) (-225))) (-15 -3815 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3816 ((-168 (-225)) (-168 (-225)))) (-15 -3816 ((-225) (-225))) (-15 -3817 ((-225) (-225))) (-15 -3817 ((-168 (-225)) (-168 (-225)))) (-15 -1562 ((-225) (-225) (-225))) (-15 -1562 ((-168 (-225)) (-168 (-225)) (-168 (-225)))))) (T -226)) +((-1562 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-1562 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3817 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3817 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3815 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3815 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3814 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3814 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3813 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3813 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3812 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3812 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-168 (-225))) (-5 *3 (-773)) (-5 *1 (-226)))) (-3810 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-773)) (-5 *1 (-226)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) +(-10 -7 (-15 -3811 ((-225) (-225))) (-15 -3811 ((-168 (-225)) (-168 (-225)))) (-15 -3808 ((-225) (-225) (-225))) (-15 -3808 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -1561 ((-225) (-225))) (-15 -1561 ((-168 (-225)) (-168 (-225)))) (-15 -3809 ((-225) (-225))) (-15 -3809 ((-168 (-225)) (-168 (-225)))) (-15 -3810 ((-225) (-773) (-225))) (-15 -3810 ((-168 (-225)) (-773) (-168 (-225)))) (-15 -3812 ((-225) (-225) (-225))) (-15 -3812 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3813 ((-225) (-225) (-225))) (-15 -3813 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3814 ((-225) (-225) (-225))) (-15 -3814 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3815 ((-225) (-225) (-225))) (-15 -3815 ((-168 (-225)) (-168 (-225)) (-168 (-225)))) (-15 -3816 ((-168 (-225)) (-168 (-225)))) (-15 -3816 ((-225) (-225))) (-15 -3817 ((-225) (-225))) (-15 -3817 ((-168 (-225)) (-168 (-225)))) (-15 -1562 ((-225) (-225) (-225))) (-15 -1562 ((-168 (-225)) (-168 (-225)) (-168 (-225))))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773) (-773)) NIL)) (-2501 (($ $ $) NIL)) (-3838 (($ (-1269 |#1|)) NIL) (($ $) NIL)) (-4305 (($ |#1| |#1| |#1|) 33)) (-3525 (((-112) $) NIL)) (-2500 (($ $ (-549) (-549)) NIL)) (-2499 (($ $ (-549) (-549)) NIL)) (-2498 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-2503 (($ $) NIL)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-2497 (($ $ (-549) (-549) $) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549)) $) NIL)) (-1345 (($ $ (-549) (-1269 |#1|)) NIL)) (-1344 (($ $ (-549) (-1269 |#1|)) NIL)) (-4279 (($ |#1| |#1| |#1|) 32)) (-3757 (($ (-773) |#1|) NIL)) (-4156 (($) NIL T CONST)) (-3514 (($ $) NIL (|has| |#1| (-308)))) (-3516 (((-1269 |#1|) $ (-549)) NIL)) (-1563 (($ |#1|) 31)) (-1564 (($ |#1|) 30)) (-1565 (($ |#1|) 29)) (-3513 (((-773) $) NIL (|has| |#1| (-560)))) (-1684 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3512 (((-773) $) NIL (|has| |#1| (-560)))) (-3511 (((-643 (-1269 |#1|)) $) NIL (|has| |#1| (-560)))) (-3519 (((-773) $) NIL)) (-4046 (($ (-773) (-773) |#1|) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#1| $) NIL (|has| |#1| (-6 (-4427 #1="*"))))) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#1|))) 11)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4025 (((-643 (-643 |#1|)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4021 (((-3 $ #2="failed") $) NIL (|has| |#1| (-365)))) (-1566 (($) 12)) (-2502 (($ $ $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-3889 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-560)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549))) NIL)) (-3756 (($ (-643 |#1|)) NIL) (($ (-643 $)) NIL)) (-3526 (((-112) $) NIL)) (-3752 ((|#1| $) NIL (|has| |#1| (-6 (-4427 #1#))))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 (((-1269 |#1|) $ (-549)) NIL)) (-4378 (($ (-1269 |#1|)) NIL) (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-1269 |#1|) $ (-1269 |#1|)) 15) (((-1269 |#1|) (-1269 |#1|) $) NIL) (((-946 |#1|) $ (-946 |#1|)) 21)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-227 |#1|) (-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 * ((-946 |#1|) $ (-946 |#1|))) (-15 -1566 ($)) (-15 -1565 ($ |#1|)) (-15 -1564 ($ |#1|)) (-15 -1563 ($ |#1|)) (-15 -4279 ($ |#1| |#1| |#1|)) (-15 -4305 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1205))) (T -227)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205))) (-5 *1 (-227 *3)))) (-1566 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-1565 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-1564 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-1563 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-4279 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) (-4305 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) +(-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 * ((-946 |#1|) $ (-946 |#1|))) (-15 -1566 ($)) (-15 -1565 ($ |#1|)) (-15 -1564 ($ |#1|)) (-15 -1563 ($ |#1|)) (-15 -4279 ($ |#1| |#1| |#1|)) (-15 -4305 ($ |#1| |#1| |#1|)))) +((-1678 (($ (-1 (-112) |#2|) $) 16)) (-3829 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-1567 (($) NIL) (($ (-643 |#2|)) 11)) (-3455 (((-112) $ $) 25))) +(((-228 |#1| |#2|) (-10 -8 (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -1567 (|#1| (-643 |#2|))) (-15 -1567 (|#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-229 |#2|) (-1104)) (T -228)) +NIL +(-10 -8 (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -1567 (|#1| (-643 |#2|))) (-15 -1567 (|#1|)) (-15 -3455 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-229 |#1|) (-140) (-1104)) (T -229)) NIL (-13 (-235 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-3592 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) 14) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) 22) (($ $ (-772)) NIL) (($ $) 19)) (-2856 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-772)) 17) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL))) -(((-230 |#1| |#2|) (-10 -8 (-15 -3592 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -2856 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2856 (|#1| |#1| (-1179))) (-15 -2856 (|#1| |#1| (-645 (-1179)))) (-15 -2856 (|#1| |#1| (-1179) (-772))) (-15 -2856 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2856 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2856 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1051)) (T -230)) -NIL -(-10 -8 (-15 -3592 (|#1| |#1|)) (-15 -2856 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -2856 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2856 (|#1| |#1| (-1179))) (-15 -2856 (|#1| |#1| (-645 (-1179)))) (-15 -2856 (|#1| |#1| (-1179) (-772))) (-15 -2856 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2856 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2856 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3592 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-772)) 55) (($ $ (-645 (-1179)) (-645 (-772))) 48 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 47 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 46 (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 45 (|has| |#1| (-902 (-1179)))) (($ $ (-772)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-772)) 53) (($ $ (-645 (-1179)) (-645 (-772))) 52 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 51 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 50 (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 49 (|has| |#1| (-902 (-1179)))) (($ $ (-772)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-231 |#1|) (-140) (-1051)) (T -231)) -((-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) (-3592 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1051)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) (-2856 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1051))))) -(-13 (-1051) (-10 -8 (-15 -3592 ($ $ (-1 |t#1| |t#1|))) (-15 -3592 ($ $ (-1 |t#1| |t#1|) (-772))) (-15 -2856 ($ $ (-1 |t#1| |t#1|))) (-15 -2856 ($ $ (-1 |t#1| |t#1|) (-772))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-902 (-1179))) (-6 (-902 (-1179))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-233) |has| |#1| (-233)) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-3592 (($ $) NIL) (($ $ (-772)) 13)) (-2856 (($ $) 8) (($ $ (-772)) 15))) -(((-232 |#1|) (-10 -8 (-15 -2856 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-772))) (-15 -2856 (|#1| |#1|)) (-15 -3592 (|#1| |#1|))) (-233)) (T -232)) -NIL -(-10 -8 (-15 -2856 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-772))) (-15 -2856 (|#1| |#1|)) (-15 -3592 (|#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3592 (($ $) 42) (($ $ (-772)) 40)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $) 41) (($ $ (-772)) 39)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-4242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) 14) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) 22) (($ $ (-773)) NIL) (($ $) 19)) (-3072 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-773)) 17) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL))) +(((-230 |#1| |#2|) (-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3072 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3072 (|#1| |#1| (-1180))) (-15 -3072 (|#1| |#1| (-643 (-1180)))) (-15 -3072 (|#1| |#1| (-1180) (-773))) (-15 -3072 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1052)) (T -230)) +NIL +(-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3072 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3072 (|#1| |#1| (-1180))) (-15 -3072 (|#1| |#1| (-643 (-1180)))) (-15 -3072 (|#1| |#1| (-1180) (-773))) (-15 -3072 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4242 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-773)) 55) (($ $ (-643 (-1180)) (-643 (-773))) 48 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 47 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 46 (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 45 (|has| |#1| (-903 (-1180)))) (($ $ (-773)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-773)) 53) (($ $ (-643 (-1180)) (-643 (-773))) 52 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 51 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 50 (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 49 (|has| |#1| (-903 (-1180)))) (($ $ (-773)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-231 |#1|) (-140) (-1052)) (T -231)) +((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1052)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *1 (-231 *4)) (-4 *4 (-1052)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1052)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *1 (-231 *4)) (-4 *4 (-1052))))) +(-13 (-1052) (-10 -8 (-15 -4242 ($ $ (-1 |t#1| |t#1|))) (-15 -4242 ($ $ (-1 |t#1| |t#1|) (-773))) (-15 -3072 ($ $ (-1 |t#1| |t#1|))) (-15 -3072 ($ $ (-1 |t#1| |t#1|) (-773))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-903 (-1180))) (-6 (-903 (-1180))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-233) |has| |#1| (-233)) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-4242 (($ $) NIL) (($ $ (-773)) 13)) (-3072 (($ $) 8) (($ $ (-773)) 15))) +(((-232 |#1|) (-10 -8 (-15 -3072 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-773))) (-15 -3072 (|#1| |#1|)) (-15 -4242 (|#1| |#1|))) (-233)) (T -232)) +NIL +(-10 -8 (-15 -3072 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-773))) (-15 -3072 (|#1| |#1|)) (-15 -4242 (|#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4242 (($ $) 42) (($ $ (-773)) 40)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $) 41) (($ $ (-773)) 39)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-233) (-140)) (T -233)) -((-3592 (*1 *1 *1) (-4 *1 (-233))) (-2856 (*1 *1 *1) (-4 *1 (-233))) (-3592 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) (-2856 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772))))) -(-13 (-1051) (-10 -8 (-15 -3592 ($ $)) (-15 -2856 ($ $)) (-15 -3592 ($ $ (-772))) (-15 -2856 ($ $ (-772))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2730 (($) 12) (($ (-645 |#2|)) NIL)) (-3846 (($ $) 14)) (-2516 (($ (-645 |#2|)) 10)) (-2504 (((-863) $) 21))) -(((-234 |#1| |#2|) (-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -2730 (|#1| (-645 |#2|))) (-15 -2730 (|#1|)) (-15 -2516 (|#1| (-645 |#2|))) (-15 -3846 (|#1| |#1|))) (-235 |#2|) (-1102)) (T -234)) -NIL -(-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -2730 (|#1| (-645 |#2|))) (-15 -2730 (|#1|)) (-15 -2516 (|#1| (-645 |#2|))) (-15 -3846 (|#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-2105 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3470 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-1695 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-2730 (($) 50) (($ (-645 |#1|)) 49)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 51)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-235 |#1|) (-140) (-1102)) (T -235)) -((-2730 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1102)))) (-2730 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-235 *3)))) (-4197 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-235 *2)) (-4 *2 (-1102)))) (-4197 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-235 *3)) (-4 *3 (-1102)))) (-2105 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-235 *3)) (-4 *3 (-1102))))) -(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -2730 ($)) (-15 -2730 ($ (-645 |t#1|))) (IF (|has| $ (-6 -4422)) (PROGN (-15 -4197 ($ |t#1| $)) (-15 -4197 ($ (-1 (-112) |t#1|) $)) (-15 -2105 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-4358 (((-2 (|:| |varOrder| (-645 (-1179))) (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) (|:| |hom| (-645 (-1269 (-772))))) (-295 (-954 (-567)))) 42))) -(((-236) (-10 -7 (-15 -4358 ((-2 (|:| |varOrder| (-645 (-1179))) (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) (|:| |hom| (-645 (-1269 (-772))))) (-295 (-954 (-567))))))) (T -236)) -((-4358 (*1 *2 *3) (-12 (-5 *3 (-295 (-954 (-567)))) (-5 *2 (-2 (|:| |varOrder| (-645 (-1179))) (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) (|:| |hom| (-645 (-1269 (-772)))))) (-5 *1 (-236))))) -(-10 -7 (-15 -4358 ((-2 (|:| |varOrder| (-645 (-1179))) (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) (|:| |hom| (-645 (-1269 (-772))))) (-295 (-954 (-567)))))) -((-3404 (((-772)) 56)) (-2690 (((-2 (|:| -2434 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 $) (-1269 $)) 53) (((-690 |#3|) (-690 $)) 44) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-2589 (((-134)) 62)) (-3592 (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-2504 (((-1269 |#3|) $) NIL) (($ |#3|) NIL) (((-863) $) NIL) (($ (-567)) 12) (($ (-410 (-567))) NIL)) (-2214 (((-772)) 15)) (-3064 (($ $ |#3|) 59))) -(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|)) (-15 -2214 ((-772))) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2504 (|#1| |#3|)) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -2690 ((-690 |#3|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 |#1|) (-1269 |#1|))) (-15 -3404 ((-772))) (-15 -3064 (|#1| |#1| |#3|)) (-15 -2589 ((-134))) (-15 -2504 ((-1269 |#3|) |#1|))) (-238 |#2| |#3|) (-772) (-1219)) (T -237)) -((-2589 (*1 *2) (-12 (-14 *4 (-772)) (-4 *5 (-1219)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3404 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2214 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) -(-10 -8 (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|)) (-15 -2214 ((-772))) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2504 (|#1| |#3|)) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -2690 ((-690 |#3|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 |#1|) (-1269 |#1|))) (-15 -3404 ((-772))) (-15 -3064 (|#1| |#1| |#3|)) (-15 -2589 ((-134))) (-15 -2504 ((-1269 |#3|) |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#2| (-1102)))) (-2684 (((-112) $) 73 (|has| |#2| (-131)))) (-1771 (($ (-923)) 126 (|has| |#2| (-1051)))) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-1992 (($ $ $) 122 (|has| |#2| (-794)))) (-2932 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1555 (((-112) $ (-772)) 8)) (-3404 (((-772)) 108 (|has| |#2| (-370)))) (-2777 (((-567) $) 120 (|has| |#2| (-849)))) (-3824 ((|#2| $ (-567) |#2|) 53 (|has| $ (-6 -4423)))) (-3758 (($) 7 T CONST)) (-4275 (((-3 (-567) "failed") $) 68 (-1750 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) 65 (-1750 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1102)))) (-3094 (((-567) $) 67 (-1750 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) 64 (-1750 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) 63 (|has| |#2| (-1102)))) (-2690 (((-690 (-567)) (-690 $)) 107 (-1750 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 106 (-1750 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 105 (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) 104 (|has| |#2| (-1051)))) (-1377 (((-3 $ "failed") $) 80 (|has| |#2| (-727)))) (-2119 (($) 111 (|has| |#2| (-370)))) (-2036 ((|#2| $ (-567) |#2|) 54 (|has| $ (-6 -4423)))) (-1970 ((|#2| $ (-567)) 52)) (-3635 (((-112) $) 118 (|has| |#2| (-849)))) (-3468 (((-645 |#2|) $) 31 (|has| $ (-6 -4422)))) (-4384 (((-112) $) 82 (|has| |#2| (-727)))) (-2585 (((-112) $) 119 (|has| |#2| (-849)))) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-2727 (($ $ $) 117 (-2836 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-4200 (((-645 |#2|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-1446 (($ $ $) 116 (-2836 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2021 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#2| |#2|) $) 36)) (-2667 (((-923) $) 110 (|has| |#2| (-370)))) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#2| (-1102)))) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-2188 (($ (-923)) 109 (|has| |#2| (-370)))) (-3479 (((-1122) $) 21 (|has| |#2| (-1102)))) (-3436 ((|#2| $) 43 (|has| (-567) (-851)))) (-2930 (($ $ |#2|) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#2| $ (-567) |#2|) 51) ((|#2| $ (-567)) 50)) (-1336 ((|#2| $ $) 125 (|has| |#2| (-1051)))) (-3700 (($ (-1269 |#2|)) 127)) (-2589 (((-134)) 124 (|has| |#2| (-365)))) (-3592 (($ $) 99 (-1750 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) 97 (-1750 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) 95 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) 94 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) 93 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) 92 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) 85 (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1051)))) (-3486 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4422))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-1269 |#2|) $) 128) (($ (-567)) 69 (-2836 (-1750 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) 66 (-1750 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) 61 (|has| |#2| (-1102))) (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-2214 (((-772)) 103 (|has| |#2| (-1051)) CONST)) (-3858 (((-112) $ $) 23 (|has| |#2| (-1102)))) (-3450 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4422)))) (-1368 (($ $) 121 (|has| |#2| (-849)))) (-1807 (($) 72 (|has| |#2| (-131)) CONST)) (-1820 (($) 83 (|has| |#2| (-727)) CONST)) (-2856 (($ $) 98 (-1750 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) 96 (-1750 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) 91 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) 90 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) 89 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) 88 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) 87 (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1051)))) (-3016 (((-112) $ $) 114 (-2836 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2996 (((-112) $ $) 113 (-2836 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2968 (((-112) $ $) 20 (|has| |#2| (-1102)))) (-3006 (((-112) $ $) 115 (-2836 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-2986 (((-112) $ $) 112 (-2836 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3064 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3054 (($ $ $) 102 (|has| |#2| (-1051))) (($ $) 101 (|has| |#2| (-1051)))) (-3045 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-772)) 81 (|has| |#2| (-727))) (($ $ (-923)) 78 (|has| |#2| (-727)))) (* (($ (-567) $) 100 (|has| |#2| (-1051))) (($ $ $) 79 (|has| |#2| (-727))) (($ $ |#2|) 77 (|has| |#2| (-727))) (($ |#2| $) 76 (|has| |#2| (-727))) (($ (-772) $) 74 (|has| |#2| (-131))) (($ (-923) $) 71 (|has| |#2| (-25)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-238 |#1| |#2|) (-140) (-772) (-1219)) (T -238)) -((-3700 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1219)) (-4 *1 (-238 *3 *4)))) (-1771 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1051)) (-4 *4 (-1219)))) (-1336 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-727))))) -(-13 (-605 (-567) |t#2|) (-614 (-1269 |t#2|)) (-10 -8 (-6 -4422) (-15 -3700 ($ (-1269 |t#2|))) (IF (|has| |t#2| (-1102)) (-6 (-414 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1051)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -1771 ($ (-923))) (-15 -1336 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-727)) (PROGN (-6 (-727)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4419)) (-6 -4419) |%noBranch|) (IF (|has| |t#2| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |t#2| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1276 |t#2|)) |%noBranch|))) -(((-21) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2836 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2836 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-617 #0=(-410 (-567))) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))) ((-617 (-567)) -2836 (|has| |#2| (-1051)) (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-617 |#2|) -2836 (|has| |#2| (-1102)) (|has| |#2| (-172))) ((-614 (-863)) -2836 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-614 (-863))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-614 (-1269 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1051)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1051))) ((-287 #1=(-567) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1051)) ((-414 |#2|) |has| |#2| (-1102)) ((-492 |#2|) . T) ((-605 #1# |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-647 (-567)) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 |#2|) -2836 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 $) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-649 |#2|) -2836 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-649 $) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-641 |#2|) -2836 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-640 (-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051))) ((-640 |#2|) |has| |#2| (-1051)) ((-718 |#2|) -2836 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-727) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-792) |has| |#2| (-849)) ((-793) -2836 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-794) |has| |#2| (-794)) ((-795) -2836 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-796) -2836 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-849) |has| |#2| (-849)) ((-851) -2836 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-902 (-1179)) -12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051))) ((-1040 #0#) -12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102))) ((-1040 (-567)) -12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) ((-1040 |#2|) |has| |#2| (-1102)) ((-1053 |#2|) -2836 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1053 $) |has| |#2| (-172)) ((-1058 |#2|) -2836 (|has| |#2| (-1051)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1058 $) |has| |#2| (-172)) ((-1051) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1060) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1114) -2836 (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-1102) -2836 (|has| |#2| (-1102)) (|has| |#2| (-1051)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1219) . T) ((-1276 |#2|) |has| |#2| (-365))) -((-4309 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2617 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-4364 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) -(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -4309 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2617 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4364 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-772) (-1219) (-1219)) (T -239)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1219)) (-4 *2 (-1219)) (-5 *1 (-239 *5 *6 *2)))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) (-4 *7 (-1219)) (-4 *5 (-1219)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) -(-10 -7 (-15 -4309 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2617 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -4364 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) -((-2487 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2684 (((-112) $) NIL (|has| |#2| (-131)))) (-1771 (($ (-923)) 65 (|has| |#2| (-1051)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1992 (($ $ $) 70 (|has| |#2| (-794)))) (-2932 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1555 (((-112) $ (-772)) 17)) (-3404 (((-772)) NIL (|has| |#2| (-370)))) (-2777 (((-567) $) NIL (|has| |#2| (-849)))) (-3824 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1102)))) (-3094 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) 32 (|has| |#2| (-1102)))) (-2690 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-1377 (((-3 $ "failed") $) 61 (|has| |#2| (-727)))) (-2119 (($) NIL (|has| |#2| (-370)))) (-2036 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ (-567)) 59)) (-3635 (((-112) $) NIL (|has| |#2| (-849)))) (-3468 (((-645 |#2|) $) 15 (|has| $ (-6 -4422)))) (-4384 (((-112) $) NIL (|has| |#2| (-727)))) (-2585 (((-112) $) NIL (|has| |#2| (-849)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) 20 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-4200 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 (((-567) $) 58 (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2021 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#2| |#2|) $) 47)) (-2667 (((-923) $) NIL (|has| |#2| (-370)))) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#2| (-1102)))) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-2188 (($ (-923)) NIL (|has| |#2| (-370)))) (-3479 (((-1122) $) NIL (|has| |#2| (-1102)))) (-3436 ((|#2| $) NIL (|has| (-567) (-851)))) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) 21)) (-1336 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-3700 (($ (-1269 |#2|)) 18)) (-2589 (((-134)) NIL (|has| |#2| (-365)))) (-3592 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3486 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-1269 |#2|) $) 10) (($ (-567)) NIL (-2836 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) 13 (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2214 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-3858 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3450 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-1368 (($ $) NIL (|has| |#2| (-849)))) (-1807 (($) 40 (|has| |#2| (-131)) CONST)) (-1820 (($) 44 (|has| |#2| (-727)) CONST)) (-2856 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3016 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2996 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2968 (((-112) $ $) 31 (|has| |#2| (-1102)))) (-3006 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2986 (((-112) $ $) 68 (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3045 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) 50 (|has| |#2| (-727))) (($ $ |#2|) 48 (|has| |#2| (-727))) (($ |#2| $) 49 (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-240 |#1| |#2|) (-238 |#1| |#2|) (-772) (-1219)) (T -240)) +((-4242 (*1 *1 *1) (-4 *1 (-233))) (-3072 (*1 *1 *1) (-4 *1 (-233))) (-4242 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-773)))) (-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-773))))) +(-13 (-1052) (-10 -8 (-15 -4242 ($ $)) (-15 -3072 ($ $)) (-15 -4242 ($ $ (-773))) (-15 -3072 ($ $ (-773))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-1567 (($) 12) (($ (-643 |#2|)) NIL)) (-3824 (($ $) 14)) (-3953 (($ (-643 |#2|)) 10)) (-4378 (((-865) $) 21))) +(((-234 |#1| |#2|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -1567 (|#1| (-643 |#2|))) (-15 -1567 (|#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -3824 (|#1| |#1|))) (-235 |#2|) (-1104)) (T -234)) +NIL +(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -1567 (|#1| (-643 |#2|))) (-15 -1567 (|#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -3824 (|#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-235 |#1|) (-140) (-1104)) (T -235)) +((-1567 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1104)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-235 *3)))) (-3829 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-235 *2)) (-4 *2 (-1104)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-235 *3)) (-4 *3 (-1104)))) (-1678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-235 *3)) (-4 *3 (-1104))))) +(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1567 ($)) (-15 -1567 ($ (-643 |t#1|))) (IF (|has| $ (-6 -4425)) (PROGN (-15 -3829 ($ |t#1| $)) (-15 -3829 ($ (-1 (-112) |t#1|) $)) (-15 -1678 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-1568 (((-2 (|:| |varOrder| (-643 (-1180))) (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) (|:| |hom| (-643 (-1269 (-773))))) (-294 (-949 (-549)))) 42))) +(((-236) (-10 -7 (-15 -1568 ((-2 (|:| |varOrder| (-643 (-1180))) (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) (|:| |hom| (-643 (-1269 (-773))))) (-294 (-949 (-549))))))) (T -236)) +((-1568 (*1 *2 *3) (-12 (-5 *3 (-294 (-949 (-549)))) (-5 *2 (-2 (|:| |varOrder| (-643 (-1180))) (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) (|:| |hom| (-643 (-1269 (-773)))))) (-5 *1 (-236))))) +(-10 -7 (-15 -1568 ((-2 (|:| |varOrder| (-643 (-1180))) (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) (|:| |hom| (-643 (-1269 (-773))))) (-294 (-949 (-549)))))) +((-3540 (((-773)) 56)) (-2427 (((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 $) (-1269 $)) 53) (((-691 |#3|) (-691 $)) 44) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-4343 (((-134)) 62)) (-4242 (($ $ (-1 |#3| |#3|) (-773)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-4378 (((-1269 |#3|) $) NIL) (($ |#3|) NIL) (((-865) $) NIL) (($ (-549)) 12) (($ (-410 (-549))) NIL)) (-3530 (((-773)) 15)) (-4381 (($ $ |#3|) 59))) +(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|)) (-15 -3530 ((-773))) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -4378 (|#1| |#3|)) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|) (-773))) (-15 -2427 ((-691 |#3|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 |#1|) (-1269 |#1|))) (-15 -3540 ((-773))) (-15 -4381 (|#1| |#1| |#3|)) (-15 -4343 ((-134))) (-15 -4378 ((-1269 |#3|) |#1|))) (-238 |#2| |#3|) (-773) (-1219)) (T -237)) +((-4343 (*1 *2) (-12 (-14 *4 (-773)) (-4 *5 (-1219)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3540 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-773)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3530 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-773)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) +(-10 -8 (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|)) (-15 -3530 ((-773))) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -4378 (|#1| |#3|)) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|) (-773))) (-15 -2427 ((-691 |#3|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 |#1|) (-1269 |#1|))) (-15 -3540 ((-773))) (-15 -4381 (|#1| |#1| |#3|)) (-15 -4343 ((-134))) (-15 -4378 ((-1269 |#3|) |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#2| (-1104)))) (-3608 (((-112) $) 73 (|has| |#2| (-131)))) (-4139 (($ (-922)) 126 (|has| |#2| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-2805 (($ $ $) 122 (|has| |#2| (-795)))) (-1407 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1309 (((-112) $ (-773)) 8)) (-3540 (((-773)) 108 (|has| |#2| (-370)))) (-4055 (((-549) $) 120 (|has| |#2| (-850)))) (-4219 ((|#2| $ (-549) |#2|) 53 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 68 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-3 (-410 (-549)) #1#) $) 65 (-3256 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (((-3 |#2| #1#) $) 62 (|has| |#2| (-1104)))) (-3576 (((-549) $) 67 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-410 (-549)) $) 64 (-3256 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) ((|#2| $) 63 (|has| |#2| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) 107 (-3256 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 106 (-3256 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 105 (|has| |#2| (-1052))) (((-691 |#2|) (-691 $)) 104 (|has| |#2| (-1052)))) (-3890 (((-3 $ "failed") $) 80 (|has| |#2| (-728)))) (-3395 (($) 111 (|has| |#2| (-370)))) (-1684 ((|#2| $ (-549) |#2|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ (-549)) 52)) (-3606 (((-112) $) 118 (|has| |#2| (-850)))) (-2124 (((-643 |#2|) $) 31 (|has| $ (-6 -4425)))) (-2573 (((-112) $) 82 (|has| |#2| (-728)))) (-3607 (((-112) $) 119 (|has| |#2| (-850)))) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 117 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-3008 (((-643 |#2|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 116 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-2128 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) 36)) (-2188 (((-922) $) 110 (|has| |#2| (-370)))) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#2| (-1104)))) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-2563 (($ (-922)) 109 (|has| |#2| (-370)))) (-3664 (((-1123) $) 21 (|has| |#2| (-1104)))) (-4232 ((|#2| $) 43 (|has| (-549) (-852)))) (-2373 (($ $ |#2|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#2| $ (-549) |#2|) 51) ((|#2| $ (-549)) 50)) (-4268 ((|#2| $ $) 125 (|has| |#2| (-1052)))) (-1569 (($ (-1269 |#2|)) 127)) (-4343 (((-134)) 124 (|has| |#2| (-365)))) (-4242 (($ $) 99 (-3256 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) 97 (-3256 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) 95 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) 94 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) 93 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) 92 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) 85 (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1052)))) (-2125 (((-773) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4425))) (((-773) |#2| $) 29 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-1269 |#2|) $) 128) (($ (-549)) 69 (-3960 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052)))) (($ (-410 (-549))) 66 (-3256 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (($ |#2|) 61 (|has| |#2| (-1104))) (((-865) $) 18 (|has| |#2| (-615 (-865))))) (-3530 (((-773)) 103 (|has| |#2| (-1052)) CONST)) (-3662 (((-112) $ $) 23 (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4425)))) (-3807 (($ $) 121 (|has| |#2| (-850)))) (-3510 (($) 72 (|has| |#2| (-131)) CONST)) (-3067 (($) 83 (|has| |#2| (-728)) CONST)) (-3072 (($ $) 98 (-3256 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) 96 (-3256 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) 91 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) 90 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) 89 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) 88 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) 87 (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1052)))) (-2966 (((-112) $ $) 114 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-2967 (((-112) $ $) 113 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-3455 (((-112) $ $) 20 (|has| |#2| (-1104)))) (-3087 (((-112) $ $) 115 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-3088 (((-112) $ $) 112 (-3960 (|has| |#2| (-850)) (|has| |#2| (-795))))) (-4381 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-4269 (($ $ $) 102 (|has| |#2| (-1052))) (($ $) 101 (|has| |#2| (-1052)))) (-4271 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-773)) 81 (|has| |#2| (-728))) (($ $ (-922)) 78 (|has| |#2| (-728)))) (* (($ (-549) $) 100 (|has| |#2| (-1052))) (($ $ $) 79 (|has| |#2| (-728))) (($ $ |#2|) 77 (|has| |#2| (-728))) (($ |#2| $) 76 (|has| |#2| (-728))) (($ (-773) $) 74 (|has| |#2| (-131))) (($ (-922) $) 71 (|has| |#2| (-25)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-238 |#1| |#2|) (-140) (-773) (-1219)) (T -238)) +((-1569 (*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1219)) (-4 *1 (-238 *3 *4)))) (-4139 (*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1052)) (-4 *4 (-1219)))) (-4268 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-1052)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-728))))) +(-13 (-606 (-549) |t#2|) (-615 (-1269 |t#2|)) (-10 -8 (-6 -4425) (-15 -1569 ($ (-1269 |t#2|))) (IF (|has| |t#2| (-1104)) (-6 (-415 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1052)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -4139 ($ (-922))) (-15 -4268 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-728)) (PROGN (-6 (-728)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |t#2| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#2| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1277 |t#2|)) |%noBranch|))) +(((-21) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -3960 (|has| |#2| (-1104)) (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-728)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-618 #1=(-410 (-549))) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104))) ((-618 (-549)) -3960 (|has| |#2| (-1052)) (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-618 |#2|) -3960 (|has| |#2| (-1104)) (|has| |#2| (-172))) ((-615 (-865)) -3960 (|has| |#2| (-1104)) (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-728)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-615 (-865))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-615 (-1269 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1052)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1052))) ((-287 #2=(-549) |#2|) . T) ((-289 #2# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1052)) ((-415 |#2|) |has| |#2| (-1104)) ((-492 |#2|) . T) ((-606 #2# |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-648 (-549)) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-648 |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-648 $) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-650 |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-650 $) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-642 |#2|) -3960 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-641 (-549)) -12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052))) ((-641 |#2|) |has| |#2| (-1052)) ((-719 |#2|) -3960 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-728) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-728)) (|has| |#2| (-172))) ((-793) |has| |#2| (-850)) ((-794) -3960 (|has| |#2| (-850)) (|has| |#2| (-795))) ((-795) |has| |#2| (-795)) ((-796) -3960 (|has| |#2| (-850)) (|has| |#2| (-795))) ((-799) -3960 (|has| |#2| (-850)) (|has| |#2| (-795))) ((-850) |has| |#2| (-850)) ((-852) -3960 (|has| |#2| (-850)) (|has| |#2| (-795))) ((-903 (-1180)) -12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052))) ((-1041 #1#) -12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104))) ((-1041 (-549)) -12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) ((-1041 |#2|) |has| |#2| (-1104)) ((-1054 |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1054 $) |has| |#2| (-172)) ((-1059 |#2|) -3960 (|has| |#2| (-1052)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1059 $) |has| |#2| (-172)) ((-1052) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-1060) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-172))) ((-1115) -3960 (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-728)) (|has| |#2| (-172))) ((-1104) -3960 (|has| |#2| (-1104)) (|has| |#2| (-1052)) (|has| |#2| (-850)) (|has| |#2| (-795)) (|has| |#2| (-728)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1219) . T) ((-1277 |#2|) |has| |#2| (-365))) +((-2968 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3608 (((-112) $) NIL (|has| |#2| (-131)))) (-4139 (($ (-922)) 65 (|has| |#2| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) 70 (|has| |#2| (-795)))) (-1407 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1309 (((-112) $ (-773)) 17)) (-3540 (((-773)) NIL (|has| |#2| (-370)))) (-4055 (((-549) $) NIL (|has| |#2| (-850)))) (-4219 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (((-3 |#2| #1#) $) 34 (|has| |#2| (-1104)))) (-3576 (((-549) $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) ((|#2| $) 32 (|has| |#2| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL (|has| |#2| (-1052))) (((-691 |#2|) (-691 $)) NIL (|has| |#2| (-1052)))) (-3890 (((-3 $ "failed") $) 61 (|has| |#2| (-728)))) (-3395 (($) NIL (|has| |#2| (-370)))) (-1684 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ (-549)) 59)) (-3606 (((-112) $) NIL (|has| |#2| (-850)))) (-2124 (((-643 |#2|) $) 15 (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (|has| |#2| (-728)))) (-3607 (((-112) $) NIL (|has| |#2| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 20 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 (((-549) $) 58 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) 47)) (-2188 (((-922) $) NIL (|has| |#2| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#2| (-1104)))) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#2| (-370)))) (-3664 (((-1123) $) NIL (|has| |#2| (-1104)))) (-4232 ((|#2| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) 21)) (-4268 ((|#2| $ $) NIL (|has| |#2| (-1052)))) (-1569 (($ (-1269 |#2|)) 18)) (-4343 (((-134)) NIL (|has| |#2| (-365)))) (-4242 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#2|) $) 10) (($ (-549)) NIL (-3960 (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (($ |#2|) 13 (|has| |#2| (-1104))) (((-865) $) NIL (|has| |#2| (-615 (-865))))) (-3530 (((-773)) NIL (|has| |#2| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#2| (-850)))) (-3510 (($) 40 (|has| |#2| (-131)) CONST)) (-3067 (($) 44 (|has| |#2| (-728)) CONST)) (-3072 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3455 (((-112) $ $) 31 (|has| |#2| (-1104)))) (-3087 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3088 (((-112) $ $) 68 (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $ $) NIL (|has| |#2| (-1052))) (($ $) NIL (|has| |#2| (-1052)))) (-4271 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-773)) NIL (|has| |#2| (-728))) (($ $ (-922)) NIL (|has| |#2| (-728)))) (* (($ (-549) $) NIL (|has| |#2| (-1052))) (($ $ $) 50 (|has| |#2| (-728))) (($ $ |#2|) 48 (|has| |#2| (-728))) (($ |#2| $) 49 (|has| |#2| (-728))) (($ (-773) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-239 |#1| |#2|) (-238 |#1| |#2|) (-773) (-1219)) (T -239)) NIL (-238 |#1| |#2|) -((-3133 (((-567) (-645 (-1161))) 36) (((-567) (-1161)) 29)) (-1584 (((-1274) (-645 (-1161))) 41) (((-1274) (-1161)) 40)) (-1889 (((-1161)) 16)) (-2650 (((-1161) (-567) (-1161)) 23)) (-3118 (((-645 (-1161)) (-645 (-1161)) (-567) (-1161)) 37) (((-1161) (-1161) (-567) (-1161)) 35)) (-2295 (((-645 (-1161)) (-645 (-1161))) 15) (((-645 (-1161)) (-1161)) 11))) -(((-241) (-10 -7 (-15 -2295 ((-645 (-1161)) (-1161))) (-15 -2295 ((-645 (-1161)) (-645 (-1161)))) (-15 -1889 ((-1161))) (-15 -2650 ((-1161) (-567) (-1161))) (-15 -3118 ((-1161) (-1161) (-567) (-1161))) (-15 -3118 ((-645 (-1161)) (-645 (-1161)) (-567) (-1161))) (-15 -1584 ((-1274) (-1161))) (-15 -1584 ((-1274) (-645 (-1161)))) (-15 -3133 ((-567) (-1161))) (-15 -3133 ((-567) (-645 (-1161)))))) (T -241)) -((-3133 (*1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-567)) (-5 *1 (-241)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-567)) (-5 *1 (-241)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1274)) (-5 *1 (-241)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-241)))) (-3118 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 (-1161))) (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *1 (-241)))) (-3118 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-241)))) (-2650 (*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-241)))) (-1889 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-241)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-241)))) (-2295 (*1 *2 *3) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-241)) (-5 *3 (-1161))))) -(-10 -7 (-15 -2295 ((-645 (-1161)) (-1161))) (-15 -2295 ((-645 (-1161)) (-645 (-1161)))) (-15 -1889 ((-1161))) (-15 -2650 ((-1161) (-567) (-1161))) (-15 -3118 ((-1161) (-1161) (-567) (-1161))) (-15 -3118 ((-645 (-1161)) (-645 (-1161)) (-567) (-1161))) (-15 -1584 ((-1274) (-1161))) (-15 -1584 ((-1274) (-645 (-1161)))) (-15 -3133 ((-567) (-1161))) (-15 -3133 ((-567) (-645 (-1161))))) -((** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 20)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) NIL))) -(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-243)) (T -242)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 47)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 51)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 48)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 50) (($ $ (-410 (-567))) 49))) +((-4273 (((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 21)) (-4274 ((|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|) 23)) (-4390 (((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)) 18))) +(((-240 |#1| |#2| |#3|) (-10 -7 (-15 -4273 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4274 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4390 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) (-773) (-1219) (-1219)) (T -240)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-773)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-5 *2 (-239 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-773)) (-4 *6 (-1219)) (-4 *2 (-1219)) (-5 *1 (-240 *5 *6 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-773)) (-4 *7 (-1219)) (-4 *5 (-1219)) (-5 *2 (-239 *6 *5)) (-5 *1 (-240 *6 *7 *5))))) +(-10 -7 (-15 -4273 ((-239 |#1| |#3|) (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4274 (|#3| (-1 |#3| |#2| |#3|) (-239 |#1| |#2|) |#3|)) (-15 -4390 ((-239 |#1| |#3|) (-1 |#3| |#2|) (-239 |#1| |#2|)))) +((-1573 (((-549) (-643 (-1162))) 36) (((-549) (-1162)) 29)) (-1572 (((-1275) (-643 (-1162))) 40) (((-1275) (-1162)) 39)) (-1570 (((-1162)) 16)) (-1571 (((-1162) (-549) (-1162)) 23)) (-4204 (((-643 (-1162)) (-643 (-1162)) (-549) (-1162)) 37) (((-1162) (-1162) (-549) (-1162)) 35)) (-3020 (((-643 (-1162)) (-643 (-1162))) 15) (((-643 (-1162)) (-1162)) 11))) +(((-241) (-10 -7 (-15 -3020 ((-643 (-1162)) (-1162))) (-15 -3020 ((-643 (-1162)) (-643 (-1162)))) (-15 -1570 ((-1162))) (-15 -1571 ((-1162) (-549) (-1162))) (-15 -4204 ((-1162) (-1162) (-549) (-1162))) (-15 -4204 ((-643 (-1162)) (-643 (-1162)) (-549) (-1162))) (-15 -1572 ((-1275) (-1162))) (-15 -1572 ((-1275) (-643 (-1162)))) (-15 -1573 ((-549) (-1162))) (-15 -1573 ((-549) (-643 (-1162)))))) (T -241)) +((-1573 (*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-549)) (-5 *1 (-241)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-549)) (-5 *1 (-241)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1275)) (-5 *1 (-241)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-241)))) (-4204 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-643 (-1162))) (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *1 (-241)))) (-4204 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-241)))) (-1571 (*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-241)))) (-1570 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-241)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-241)))) (-3020 (*1 *2 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-241)) (-5 *3 (-1162))))) +(-10 -7 (-15 -3020 ((-643 (-1162)) (-1162))) (-15 -3020 ((-643 (-1162)) (-643 (-1162)))) (-15 -1570 ((-1162))) (-15 -1571 ((-1162) (-549) (-1162))) (-15 -4204 ((-1162) (-1162) (-549) (-1162))) (-15 -4204 ((-643 (-1162)) (-643 (-1162)) (-549) (-1162))) (-15 -1572 ((-1275) (-1162))) (-15 -1572 ((-1275) (-643 (-1162)))) (-15 -1573 ((-549) (-1162))) (-15 -1573 ((-549) (-643 (-1162))))) +((** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 20)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ (-410 (-549)) $) 27) (($ $ (-410 (-549))) NIL))) +(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-243)) (T -242)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 47)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 51)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 48)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ (-410 (-549)) $) 50) (($ $ (-410 (-549))) 49))) (((-243) (-140)) (T -243)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567)))) (-1752 (*1 *1 *1) (-4 *1 (-243)))) -(-13 (-291) (-38 (-410 (-567))) (-10 -8 (-15 ** ($ $ (-567))) (-15 -1752 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-291) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-718 #0#) . T) ((-727) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2233 ((|#1| $) 49)) (-1493 (($ $) 58)) (-1555 (((-112) $ (-772)) 8)) (-3647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-1506 (($ $ $) 54 (|has| $ (-6 -4423)))) (-2970 (($ $ $) 53 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3758 (($) 7 T CONST)) (-2094 (($ $) 57)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 51)) (-2373 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-2074 (($ $) 56)) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-3895 (((-645 |#1|) $) 46)) (-1972 (((-112) $) 50)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-1725 ((|#1| $) 60)) (-2404 (($ $) 59)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ "value") 48)) (-2721 (((-567) $ $) 45)) (-3625 (((-112) $) 47)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-3416 (($ $ $) 55 (|has| $ (-6 -4423)))) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 52)) (-2049 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-549)))) (-2806 (*1 *1 *1) (-4 *1 (-243)))) +(-13 (-291) (-38 (-410 (-549))) (-10 -8 (-15 ** ($ $ (-549))) (-15 -2806 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-291) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-719 #1#) . T) ((-728) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4228 (($ $) 58)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-1575 (($ $ $) 54 (|has| $ (-6 -4426)))) (-1574 (($ $ $) 53 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-1577 (($ $) 57)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-1576 (($ $) 56)) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 60)) (-3598 (($ $) 59)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4222 (($ $ $) 55 (|has| $ (-6 -4426)))) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-244 |#1|) (-140) (-1219)) (T -244)) -((-1725 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-2404 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1493 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-2094 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-2074 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-3416 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1506 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-2970 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(-13 (-1012 |t#1|) (-10 -8 (-15 -1725 (|t#1| $)) (-15 -2404 ($ $)) (-15 -1493 ($ $)) (-15 -2094 ($ $)) (-15 -2074 ($ $)) (IF (|has| $ (-6 -4423)) (PROGN (-15 -3416 ($ $ $)) (-15 -1506 ($ $ $)) (-15 -2970 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) NIL)) (-2587 ((|#1| $) NIL)) (-1493 (($ $) NIL)) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2767 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-2080 (($ $) 10 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4234 (($ $ $) NIL (|has| $ (-6 -4423)))) (-2718 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-1588 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "rest" $) NIL (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-2105 (($ (-1 (-112) |#1|) $) NIL)) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2574 ((|#1| $) NIL)) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3447 (($ $) NIL) (($ $ (-772)) NIL)) (-3048 (($ $) NIL (|has| |#1| (-1102)))) (-3470 (($ $) 7 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4197 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-1695 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3689 (((-112) $) NIL)) (-3932 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4223 (($ (-772) |#1|) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-3196 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1315 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3316 (($ |#1|) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1725 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-3636 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-4222 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-3268 (((-112) $) NIL)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1236 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-772) $ "count") 16)) (-2721 (((-567) $ $) NIL)) (-1664 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-4281 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-2039 (($ (-645 |#1|)) 22)) (-3625 (((-112) $) NIL)) (-4121 (($ $) NIL)) (-3277 (($ $) NIL (|has| $ (-6 -4423)))) (-3880 (((-772) $) NIL)) (-1908 (($ $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) NIL)) (-3416 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3644 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-2504 (($ (-645 |#1|)) 17) (((-645 |#1|) $) 18) (((-863) $) 21 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2498 (((-772) $) 14 (|has| $ (-6 -4422))))) -(((-245 |#1|) (-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -2039 ($ (-645 |#1|))) (-15 -1882 ($ $ "unique")) (-15 -1882 ($ $ "sort")) (-15 -1882 ((-772) $ "count")))) (-851)) (T -245)) -((-2039 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851))))) -(-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -2039 ($ (-645 |#1|))) (-15 -1882 ($ $ "unique")) (-15 -1882 ($ $ "sort")) (-15 -1882 ((-772) $ "count")))) -((-3155 (((-3 (-772) "failed") |#1| |#1| (-772)) 43))) -(((-246 |#1|) (-10 -7 (-15 -3155 ((-3 (-772) "failed") |#1| |#1| (-772)))) (-13 (-727) (-370) (-10 -7 (-15 ** (|#1| |#1| (-567)))))) (T -246)) -((-3155 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-772)) (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) (-5 *1 (-246 *3))))) -(-10 -7 (-15 -3155 ((-3 (-772) "failed") |#1| |#1| (-772)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-865 |#1|)) $) NIL)) (-3633 (((-1175 $) $ (-865 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1987 (($ $) NIL (|has| |#2| (-559)))) (-3342 (((-112) $) NIL (|has| |#2| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3864 (($ $) NIL (|has| |#2| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-3094 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2304 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-4230 (($ $ (-645 (-567))) NIL)) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#2| (-911)))) (-1978 (($ $ |#2| (-240 (-2498 |#1|) (-772)) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3772 (($ (-1175 |#2|) (-865 |#1|)) NIL) (($ (-1175 $) (-865 |#1|)) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#2| (-240 (-2498 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-865 |#1|)) NIL)) (-1562 (((-240 (-2498 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-2972 (($ (-1 (-240 (-2498 |#1|) (-772)) (-240 (-2498 |#1|) (-772))) $) NIL)) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-2047 (((-3 (-865 |#1|) "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#2| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1812 (((-1161) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -2618 (-772))) "failed") $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#2| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-2254 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-3592 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3380 (((-240 (-2498 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1390 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ (-240 (-2498 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-247 |#1| |#2|) (-13 (-951 |#2| (-240 (-2498 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -4230 ($ $ (-645 (-567)))))) (-645 (-1179)) (-1051)) (T -247)) -((-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) (-14 *3 (-645 (-1179))) (-4 *4 (-1051))))) -(-13 (-951 |#2| (-240 (-2498 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -4230 ($ $ (-645 (-567)))))) -((-2487 (((-112) $ $) NIL)) (-1572 (((-1274) $) 17)) (-2034 (((-183 (-249)) $) 11)) (-1433 (($ (-183 (-249))) 12)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1548 (((-249) $) 7)) (-2504 (((-863) $) 9)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 15))) -(((-248) (-13 (-1102) (-10 -8 (-15 -1548 ((-249) $)) (-15 -2034 ((-183 (-249)) $)) (-15 -1433 ($ (-183 (-249)))) (-15 -1572 ((-1274) $))))) (T -248)) -((-1548 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-1433 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-248))))) -(-13 (-1102) (-10 -8 (-15 -1548 ((-249) $)) (-15 -2034 ((-183 (-249)) $)) (-15 -1433 ($ (-183 (-249)))) (-15 -1572 ((-1274) $)))) -((-2487 (((-112) $ $) NIL)) (-1746 (((-645 (-866)) $) NIL)) (-1646 (((-509) $) NIL)) (-1812 (((-1161) $) NIL)) (-3777 (((-186) $) NIL)) (-2208 (((-112) $ (-509)) NIL)) (-3479 (((-1122) $) NIL)) (-3074 (((-334) $) 7)) (-2331 (((-645 (-112)) $) NIL)) (-2504 (((-863) $) NIL) (((-187) $) 8)) (-3858 (((-112) $ $) NIL)) (-2619 (((-55) $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-249) (-13 (-185) (-614 (-187)) (-10 -8 (-15 -3074 ((-334) $))))) (T -249)) -((-3074 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) -(-13 (-185) (-614 (-187)) (-10 -8 (-15 -3074 ((-334) $)))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1882 (((-1184) $ (-772)) 13)) (-2504 (((-863) $) 20)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 16)) (-2498 (((-772) $) 9))) -(((-250) (-13 (-1102) (-10 -8 (-15 -2498 ((-772) $)) (-15 -1882 ((-1184) $ (-772)))))) (T -250)) -((-2498 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-250))))) -(-13 (-1102) (-10 -8 (-15 -2498 ((-772) $)) (-15 -1882 ((-1184) $ (-772))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-1771 (($ (-923)) NIL (|has| |#4| (-1051)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1992 (($ $ $) NIL (|has| |#4| (-794)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3404 (((-772)) NIL (|has| |#4| (-370)))) (-2777 (((-567) $) NIL (|has| |#4| (-849)))) (-3824 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1102))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-3094 ((|#4| $) NIL (|has| |#4| (-1102))) (((-567) $) NIL (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-2690 (((-2 (|:| -2434 (-690 |#4|)) (|:| |vec| (-1269 |#4|))) (-690 $) (-1269 $)) NIL (|has| |#4| (-1051))) (((-690 |#4|) (-690 $)) NIL (|has| |#4| (-1051))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))))) (-1377 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))))) (-2119 (($) NIL (|has| |#4| (-370)))) (-2036 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#4| $ (-567)) NIL)) (-3635 (((-112) $) NIL (|has| |#4| (-849)))) (-3468 (((-645 |#4|) $) NIL (|has| $ (-6 -4422)))) (-4384 (((-112) $) NIL (-2836 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))))) (-2585 (((-112) $) NIL (|has| |#4| (-849)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (-2836 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-4200 (((-645 |#4|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (-2836 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2021 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) NIL)) (-2667 (((-923) $) NIL (|has| |#4| (-370)))) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-2188 (($ (-923)) NIL (|has| |#4| (-370)))) (-3479 (((-1122) $) NIL)) (-3436 ((|#4| $) NIL (|has| (-567) (-851)))) (-2930 (($ $ |#4|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-1804 (((-645 |#4|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#4| $ (-567) |#4|) NIL) ((|#4| $ (-567)) 16)) (-1336 ((|#4| $ $) NIL (|has| |#4| (-1051)))) (-3700 (($ (-1269 |#4|)) NIL)) (-2589 (((-134)) NIL (|has| |#4| (-365)))) (-3592 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1051))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))))) (-3486 (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-1269 |#4|) $) NIL) (((-863) $) NIL) (($ |#4|) NIL (|has| |#4| (-1102))) (($ (-567)) NIL (-2836 (-12 (|has| |#4| (-1040 (-567))) (|has| |#4| (-1102))) (|has| |#4| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#4| (-1040 (-410 (-567)))) (|has| |#4| (-1102))))) (-2214 (((-772)) NIL (|has| |#4| (-1051)) CONST)) (-3858 (((-112) $ $) NIL)) (-3450 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-1368 (($ $) NIL (|has| |#4| (-849)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL (-2836 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) CONST)) (-2856 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1051))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))))) (-3016 (((-112) $ $) NIL (-2836 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2996 (((-112) $ $) NIL (-2836 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (-2836 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-2986 (((-112) $ $) NIL (-2836 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3064 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3054 (($ $ $) NIL) (($ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2836 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051))))) (($ $ (-923)) NIL (-2836 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))))) (* (($ |#2| $) 18) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-727))) (($ |#4| $) NIL (|has| |#4| (-727))) (($ $ $) NIL (-2836 (-12 (|has| |#4| (-233)) (|has| |#4| (-1051))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1051))) (|has| |#4| (-727)) (-12 (|has| |#4| (-902 (-1179))) (|has| |#4| (-1051)))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|)) (-923) (-1051) (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-649 |#2|)) (T -251)) -NIL -(-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-1771 (($ (-923)) NIL (|has| |#3| (-1051)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1992 (($ $ $) NIL (|has| |#3| (-794)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3404 (((-772)) NIL (|has| |#3| (-370)))) (-2777 (((-567) $) NIL (|has| |#3| (-849)))) (-3824 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1102))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-3094 ((|#3| $) NIL (|has| |#3| (-1102))) (((-567) $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-2690 (((-2 (|:| -2434 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 $) (-1269 $)) NIL (|has| |#3| (-1051))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1051))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))))) (-1377 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))))) (-2119 (($) NIL (|has| |#3| (-370)))) (-2036 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#3| $ (-567)) NIL)) (-3635 (((-112) $) NIL (|has| |#3| (-849)))) (-3468 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-4384 (((-112) $) NIL (-2836 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))))) (-2585 (((-112) $) NIL (|has| |#3| (-849)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-4200 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2021 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#3| |#3|) $) NIL)) (-2667 (((-923) $) NIL (|has| |#3| (-370)))) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-2188 (($ (-923)) NIL (|has| |#3| (-370)))) (-3479 (((-1122) $) NIL)) (-3436 ((|#3| $) NIL (|has| (-567) (-851)))) (-2930 (($ $ |#3|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-1804 (((-645 |#3|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) 15)) (-1336 ((|#3| $ $) NIL (|has| |#3| (-1051)))) (-3700 (($ (-1269 |#3|)) NIL)) (-2589 (((-134)) NIL (|has| |#3| (-365)))) (-3592 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))))) (-3486 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-1269 |#3|) $) NIL) (((-863) $) NIL) (($ |#3|) NIL (|has| |#3| (-1102))) (($ (-567)) NIL (-2836 (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102))))) (-2214 (((-772)) NIL (|has| |#3| (-1051)) CONST)) (-3858 (((-112) $ $) NIL)) (-3450 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-1368 (($ $) NIL (|has| |#3| (-849)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL (-2836 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) CONST)) (-2856 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))))) (-3016 (((-112) $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2996 (((-112) $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2986 (((-112) $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3064 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3054 (($ $ $) NIL) (($ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2836 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051))))) (($ $ (-923)) NIL (-2836 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))))) (* (($ |#2| $) 17) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ $ $) NIL (-2836 (-12 (|has| |#3| (-233)) (|has| |#3| (-1051))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051))) (|has| |#3| (-727)) (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-649 |#2|)) (-772) (-1051) (-649 |#2|)) (T -252)) -NIL -(-13 (-238 |#1| |#3|) (-649 |#2|)) -((-3466 (((-645 (-772)) $) 56) (((-645 (-772)) $ |#3|) 59)) (-1895 (((-772) $) 58) (((-772) $ |#3|) 61)) (-1309 (($ $) 76)) (-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3905 (((-772) $ |#3|) 43) (((-772) $) 38)) (-3973 (((-1 $ (-772)) |#3|) 15) (((-1 $ (-772)) $) 88)) (-3459 ((|#4| $) 69)) (-3773 (((-112) $) 67)) (-1413 (($ $) 75)) (-2913 (($ $ (-645 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-645 |#3|) (-645 |#2|)) 100)) (-3592 (($ $ |#4|) NIL) (($ $ (-645 |#4|)) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) NIL) (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-4022 (((-645 |#3|) $) 86)) (-3380 ((|#5| $) NIL) (((-772) $ |#4|) NIL) (((-645 (-772)) $ (-645 |#4|)) NIL) (((-772) $ |#3|) 49)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-410 (-567))) NIL) (($ $) NIL))) -(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2504 (|#1| |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2913 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#3| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#3| |#1|)) (-15 -3973 ((-1 |#1| (-772)) |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -3459 (|#4| |#1|)) (-15 -3773 ((-112) |#1|)) (-15 -1895 ((-772) |#1| |#3|)) (-15 -3466 ((-645 (-772)) |#1| |#3|)) (-15 -1895 ((-772) |#1|)) (-15 -3466 ((-645 (-772)) |#1|)) (-15 -3380 ((-772) |#1| |#3|)) (-15 -3905 ((-772) |#1|)) (-15 -3905 ((-772) |#1| |#3|)) (-15 -4022 ((-645 |#3|) |#1|)) (-15 -3973 ((-1 |#1| (-772)) |#3|)) (-15 -2504 (|#1| |#3|)) (-15 -4275 ((-3 |#3| "failed") |#1|)) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1|)) (-15 -3380 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3380 ((-772) |#1| |#4|)) (-15 -2504 (|#1| |#4|)) (-15 -4275 ((-3 |#4| "failed") |#1|)) (-15 -2913 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#4| |#1|)) (-15 -2913 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#4| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3380 (|#5| |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -3592 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -3592 (|#1| |#1| |#4| (-772))) (-15 -3592 (|#1| |#1| (-645 |#4|))) (-15 -3592 (|#1| |#1| |#4|)) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1051) (-851) (-267 |#3|) (-794)) (T -253)) -NIL -(-10 -8 (-15 -2504 (|#1| |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2913 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#3| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#3| |#1|)) (-15 -3973 ((-1 |#1| (-772)) |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -1413 (|#1| |#1|)) (-15 -3459 (|#4| |#1|)) (-15 -3773 ((-112) |#1|)) (-15 -1895 ((-772) |#1| |#3|)) (-15 -3466 ((-645 (-772)) |#1| |#3|)) (-15 -1895 ((-772) |#1|)) (-15 -3466 ((-645 (-772)) |#1|)) (-15 -3380 ((-772) |#1| |#3|)) (-15 -3905 ((-772) |#1|)) (-15 -3905 ((-772) |#1| |#3|)) (-15 -4022 ((-645 |#3|) |#1|)) (-15 -3973 ((-1 |#1| (-772)) |#3|)) (-15 -2504 (|#1| |#3|)) (-15 -4275 ((-3 |#3| "failed") |#1|)) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1|)) (-15 -3380 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3380 ((-772) |#1| |#4|)) (-15 -2504 (|#1| |#4|)) (-15 -4275 ((-3 |#4| "failed") |#1|)) (-15 -2913 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#4| |#1|)) (-15 -2913 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#4| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3380 (|#5| |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -3592 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -3592 (|#1| |#1| |#4| (-772))) (-15 -3592 (|#1| |#1| (-645 |#4|))) (-15 -3592 (|#1| |#1| |#4|)) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3466 (((-645 (-772)) $) 216) (((-645 (-772)) $ |#2|) 214)) (-1895 (((-772) $) 215) (((-772) $ |#2|) 213)) (-3783 (((-645 |#3|) $) 112)) (-3633 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-1987 (($ $) 90 (|has| |#1| (-559)))) (-3342 (((-112) $) 92 (|has| |#1| (-559)))) (-3153 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-2932 (((-3 $ "failed") $ $) 20)) (-2701 (((-421 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-911)))) (-3864 (($ $) 100 (|has| |#1| (-455)))) (-1466 (((-421 $) $) 99 (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-911)))) (-1309 (($ $) 209)) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-3094 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139) ((|#2| $) 224)) (-2304 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-1833 (($ $) 156)) (-2690 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-1377 (((-3 $ "failed") $) 37)) (-1873 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-1818 (((-645 $) $) 111)) (-2946 (((-112) $) 98 (|has| |#1| (-911)))) (-1978 (($ $ |#1| |#4| $) 174)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3905 (((-772) $ |#2|) 219) (((-772) $) 218)) (-4384 (((-112) $) 35)) (-1921 (((-772) $) 171)) (-3772 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-2615 (((-645 $) $) 128)) (-3615 (((-112) $) 154)) (-3764 (($ |#1| |#4|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ |#3|) 122)) (-1562 ((|#4| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-2972 (($ (-1 |#4| |#4|) $) 173)) (-4364 (($ (-1 |#1| |#1|) $) 153)) (-3973 (((-1 $ (-772)) |#2|) 221) (((-1 $ (-772)) $) 208 (|has| |#1| (-233)))) (-2047 (((-3 |#3| "failed") $) 125)) (-1796 (($ $) 151)) (-1809 ((|#1| $) 150)) (-3459 ((|#3| $) 211)) (-1831 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1812 (((-1161) $) 10)) (-3773 (((-112) $) 212)) (-4056 (((-3 (-645 $) "failed") $) 116)) (-3655 (((-3 (-645 $) "failed") $) 117)) (-2873 (((-3 (-2 (|:| |var| |#3|) (|:| -2618 (-772))) "failed") $) 115)) (-1413 (($ $) 210)) (-3479 (((-1122) $) 11)) (-1762 (((-112) $) 168)) (-1774 ((|#1| $) 169)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-455)))) (-1870 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-911)))) (-3661 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2478 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) 204 (|has| |#1| (-233)))) (-2254 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3592 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-772)) 238 (|has| |#1| (-233))) (($ $ (-1179)) 236 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 235 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 234 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 233 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4022 (((-645 |#2|) $) 220)) (-3380 ((|#4| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131) (((-772) $ |#2|) 217)) (-1322 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 106 (-1750 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-410 (-567))) 80 (-2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) 170)) (-4038 ((|#1| $ |#4|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-2318 (((-3 $ "failed") $) 81 (-2836 (-1750 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) 32 T CONST)) (-3852 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-772)) 237 (|has| |#1| (-233))) (($ $ (-1179)) 232 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 231 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 230 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 229 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-254 |#1| |#2| |#3| |#4|) (-140) (-1051) (-851) (-267 |t#2|) (-794)) (T -254)) -((-3973 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))) (-3905 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3380 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3466 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-1895 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-794)) (-4 *2 (-267 *4)))) (-1413 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-1309 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-3973 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6))))) -(-13 (-951 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1040 |t#2|) (-10 -8 (-15 -3973 ((-1 $ (-772)) |t#2|)) (-15 -4022 ((-645 |t#2|) $)) (-15 -3905 ((-772) $ |t#2|)) (-15 -3905 ((-772) $)) (-15 -3380 ((-772) $ |t#2|)) (-15 -3466 ((-645 (-772)) $)) (-15 -1895 ((-772) $)) (-15 -3466 ((-645 (-772)) $ |t#2|)) (-15 -1895 ((-772) $ |t#2|)) (-15 -3773 ((-112) $)) (-15 -3459 (|t#3| $)) (-15 -1413 ($ $)) (-15 -1309 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-517 |t#2| |t#1|)) (-6 (-517 |t#2| $)) (-6 (-310 $)) (-15 -3973 ((-1 $ (-772)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#2|) . T) ((-617 |#3|) . T) ((-617 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2836 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#2| |#1|) |has| |#1| (-233)) ((-517 |#2| $) |has| |#1| (-233)) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-951 |#1| |#4| |#3|) . T) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#2|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) |has| |#1| (-911))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1760 ((|#1| $) 55)) (-3262 ((|#1| $) 45)) (-1555 (((-112) $ (-772)) 8)) (-3758 (($) 7 T CONST)) (-2450 (($ $) 61)) (-3790 (($ $) 49)) (-3410 ((|#1| |#1| $) 47)) (-4353 ((|#1| $) 46)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-3613 (((-772) $) 62)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3018 ((|#1| $) 40)) (-1661 ((|#1| |#1| $) 53)) (-3940 ((|#1| |#1| $) 52)) (-3636 (($ |#1| $) 41)) (-1337 (((-772) $) 56)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3725 ((|#1| $) 63)) (-2252 ((|#1| $) 51)) (-1965 ((|#1| $) 50)) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2337 ((|#1| |#1| $) 59)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1933 ((|#1| $) 60)) (-2709 (($) 58) (($ (-645 |#1|)) 57)) (-2772 (((-772) $) 44)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3329 ((|#1| $) 54)) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 43)) (-1715 ((|#1| $) 64)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +((-4229 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1577 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1576 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1575 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) (-1574 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) +(-13 (-1013 |t#1|) (-10 -8 (-15 -4229 (|t#1| $)) (-15 -3598 ($ $)) (-15 -4228 ($ $)) (-15 -1577 ($ $)) (-15 -1576 ($ $)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4222 ($ $ $)) (-15 -1575 ($ $ $)) (-15 -1574 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-4226 ((|#1| $) NIL)) (-4228 (($ $) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| |#1| (-852))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-3310 (($ $) 10 (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) NIL (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) NIL)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4227 ((|#1| $) NIL)) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-4230 (($ $) NIL) (($ $ (-773)) NIL)) (-2526 (($ $) NIL (|has| |#1| (-1104)))) (-1440 (($ $) 7 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) NIL)) (-3830 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-3843 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104))) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3941 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3965 (($ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4229 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-4039 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-3867 (((-112) $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1236 (-549))) NIL) ((|#1| $ (-549)) NIL) ((|#1| $ (-549) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-773) $ "count") 16)) (-3430 (((-549) $ $) NIL)) (-1679 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-1578 (($ (-643 |#1|)) 22)) (-4065 (((-112) $) NIL)) (-4223 (($ $) NIL)) (-4221 (($ $) NIL (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4222 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4233 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-643 $)) NIL) (($ $ |#1|) NIL)) (-4378 (($ (-643 |#1|)) 17) (((-643 |#1|) $) 18) (((-865) $) 21 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 14 (|has| $ (-6 -4425))))) +(((-245 |#1|) (-13 (-668 |#1|) (-493 (-643 |#1|)) (-10 -8 (-15 -1578 ($ (-643 |#1|))) (-15 -4231 ($ $ "unique")) (-15 -4231 ($ $ "sort")) (-15 -4231 ((-773) $ "count")))) (-852)) (T -245)) +((-1578 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-245 *3)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-852)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-852)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-773)) (-5 *1 (-245 *4)) (-4 *4 (-852))))) +(-13 (-668 |#1|) (-493 (-643 |#1|)) (-10 -8 (-15 -1578 ($ (-643 |#1|))) (-15 -4231 ($ $ "unique")) (-15 -4231 ($ $ "sort")) (-15 -4231 ((-773) $ "count")))) +((-1579 (((-3 (-773) "failed") |#1| |#1| (-773)) 43))) +(((-246 |#1|) (-10 -7 (-15 -1579 ((-3 (-773) "failed") |#1| |#1| (-773)))) (-13 (-728) (-370) (-10 -7 (-15 ** (|#1| |#1| (-549)))))) (T -246)) +((-1579 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-773)) (-4 *3 (-13 (-728) (-370) (-10 -7 (-15 ** (*3 *3 (-549)))))) (-5 *1 (-246 *3))))) +(-10 -7 (-15 -1579 ((-3 (-773) "failed") |#1| |#1| (-773)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-866 |#1|)) $) NIL)) (-3487 (((-1174 $) $ (-866 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-866 |#1|))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-866 |#1|) #2#) $) NIL)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-866 |#1|) $) NIL)) (-4188 (($ $ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-2115 (($ $ (-643 (-549))) NIL)) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| (-239 (-4389 |#1|) (-773)) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#2|) (-866 |#1|)) NIL) (($ (-1174 $) (-866 |#1|)) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#2| (-239 (-4389 |#1|) (-773))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-866 |#1|)) NIL)) (-3223 (((-239 (-4389 |#1|) (-773)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-1770 (($ (-1 (-239 (-4389 |#1|) (-773)) (-239 (-4389 |#1|) (-773))) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-3486 (((-3 (-866 |#1|) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-866 |#1|)) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#2| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-866 |#1|) |#2|) NIL) (($ $ (-643 (-866 |#1|)) (-643 |#2|)) NIL) (($ $ (-866 |#1|) $) NIL) (($ $ (-643 (-866 |#1|)) (-643 $)) NIL)) (-4189 (($ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4380 (((-239 (-4389 |#1|) (-773)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-866 |#1|) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-866 |#1|)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#2| (-560)))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-239 (-4389 |#1|) (-773))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-247 |#1| |#2|) (-13 (-953 |#2| (-239 (-4389 |#1|) (-773)) (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) (-643 (-1180)) (-1052)) (T -247)) +((-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-247 *3 *4)) (-14 *3 (-643 (-1180))) (-4 *4 (-1052))))) +(-13 (-953 |#2| (-239 (-4389 |#1|) (-773)) (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) +((-2968 (((-112) $ $) NIL)) (-1580 (((-1275) $) 17)) (-1582 (((-184 (-249)) $) 11)) (-1581 (($ (-184 (-249))) 12)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1583 (((-249) $) 7)) (-4378 (((-865) $) 9)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 15))) +(((-248) (-13 (-1104) (-10 -8 (-15 -1583 ((-249) $)) (-15 -1582 ((-184 (-249)) $)) (-15 -1581 ($ (-184 (-249)))) (-15 -1580 ((-1275) $))))) (T -248)) +((-1583 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-184 (-249))) (-5 *1 (-248)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-184 (-249))) (-5 *1 (-248)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-248))))) +(-13 (-1104) (-10 -8 (-15 -1583 ((-249) $)) (-15 -1582 ((-184 (-249)) $)) (-15 -1581 ($ (-184 (-249)))) (-15 -1580 ((-1275) $)))) +((-2968 (((-112) $ $) NIL)) (-1508 (((-643 (-867)) $) NIL)) (-3973 (((-509) $) NIL)) (-3663 (((-1162) $) NIL)) (-1510 (((-187) $) NIL)) (-3035 (((-112) $ (-509)) NIL)) (-3664 (((-1123) $) NIL)) (-1584 (((-334) $) 7)) (-1509 (((-643 (-112)) $) NIL)) (-4378 (((-865) $) NIL) (((-183) $) 8)) (-3662 (((-112) $ $) NIL)) (-2921 (((-55) $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-249) (-13 (-186) (-615 (-183)) (-10 -8 (-15 -1584 ((-334) $))))) (T -249)) +((-1584 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) +(-13 (-186) (-615 (-183)) (-10 -8 (-15 -1584 ((-334) $)))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4231 (((-1185) $ (-773)) 13)) (-4378 (((-865) $) 20)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 16)) (-4389 (((-773) $) 9))) +(((-250) (-13 (-1104) (-10 -8 (-15 -4389 ((-773) $)) (-15 -4231 ((-1185) $ (-773)))))) (T -250)) +((-4389 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-250)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-250))))) +(-13 (-1104) (-10 -8 (-15 -4389 ((-773) $)) (-15 -4231 ((-1185) $ (-773))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4139 (($ (-922)) NIL (|has| |#4| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#4| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#4| (-370)))) (-4055 (((-549) $) NIL (|has| |#4| (-850)))) (-4219 ((|#4| $ (-549) |#4|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1104))) (((-3 (-549) #1#) $) NIL (-12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104))))) (-3576 ((|#4| $) NIL (|has| |#4| (-1104))) (((-549) $) NIL (-12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104))))) (-2427 (((-2 (|:| -1748 (-691 |#4|)) (|:| |vec| (-1269 |#4|))) (-691 $) (-1269 $)) NIL (|has| |#4| (-1052))) (((-691 |#4|) (-691 $)) NIL (|has| |#4| (-1052))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))))) (-3890 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))))) (-3395 (($) NIL (|has| |#4| (-370)))) (-1684 ((|#4| $ (-549) |#4|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#4| $ (-549)) NIL)) (-3606 (((-112) $) NIL (|has| |#4| (-850)))) (-2124 (((-643 |#4|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))))) (-3607 (((-112) $) NIL (|has| |#4| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-3008 (((-643 |#4|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-2128 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#4| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#4| (-370)))) (-3664 (((-1123) $) NIL)) (-4232 ((|#4| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#4|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2379 (((-643 |#4|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#4| $ (-549) |#4|) NIL) ((|#4| $ (-549)) 16)) (-4268 ((|#4| $ $) NIL (|has| |#4| (-1052)))) (-1569 (($ (-1269 |#4|)) NIL)) (-4343 (((-134)) NIL (|has| |#4| (-365)))) (-4242 (($ $ (-1 |#4| |#4|) (-773)) NIL (|has| |#4| (-1052))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1052)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))))) (-2125 (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#4|) $) NIL) (((-865) $) NIL) (($ |#4|) NIL (|has| |#4| (-1104))) (($ (-549)) NIL (-3960 (-12 (|has| |#4| (-1041 (-549))) (|has| |#4| (-1104))) (|has| |#4| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#4| (-1041 (-410 (-549)))) (|has| |#4| (-1104))))) (-3530 (((-773)) NIL (|has| |#4| (-1052)) CONST)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#4| (-850)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) CONST)) (-3072 (($ $ (-1 |#4| |#4|) (-773)) NIL (|has| |#4| (-1052))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1052)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-3088 (((-112) $ $) NIL (-3960 (|has| |#4| (-795)) (|has| |#4| (-850))))) (-4381 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052))))) (($ $ (-922)) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))))) (* (($ |#2| $) 18) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-728))) (($ |#4| $) NIL (|has| |#4| (-728))) (($ $ $) NIL (-3960 (-12 (|has| |#4| (-233)) (|has| |#4| (-1052))) (-12 (|has| |#4| (-641 (-549))) (|has| |#4| (-1052))) (|has| |#4| (-728)) (-12 (|has| |#4| (-903 (-1180))) (|has| |#4| (-1052)))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-650 |#2|) (-650 |#3|)) (-922) (-1052) (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-650 |#2|)) (T -251)) +NIL +(-13 (-238 |#1| |#4|) (-650 |#2|) (-650 |#3|)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4139 (($ (-922)) NIL (|has| |#3| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#3| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#3| (-370)))) (-4055 (((-549) $) NIL (|has| |#3| (-850)))) (-4219 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1104))) (((-3 (-549) #1#) $) NIL (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104))))) (-3576 ((|#3| $) NIL (|has| |#3| (-1104))) (((-549) $) NIL (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104))))) (-2427 (((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 $) (-1269 $)) NIL (|has| |#3| (-1052))) (((-691 |#3|) (-691 $)) NIL (|has| |#3| (-1052))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))))) (-3890 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))))) (-3395 (($) NIL (|has| |#3| (-370)))) (-1684 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#3| $ (-549)) NIL)) (-3606 (((-112) $) NIL (|has| |#3| (-850)))) (-2124 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))))) (-3607 (((-112) $) NIL (|has| |#3| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3008 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-2128 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#3| |#3|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#3| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#3| (-370)))) (-3664 (((-1123) $) NIL)) (-4232 ((|#3| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#3|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-643 |#3|) (-643 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-2379 (((-643 |#3|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#3| $ (-549) |#3|) NIL) ((|#3| $ (-549)) 15)) (-4268 ((|#3| $ $) NIL (|has| |#3| (-1052)))) (-1569 (($ (-1269 |#3|)) NIL)) (-4343 (((-134)) NIL (|has| |#3| (-365)))) (-4242 (($ $ (-1 |#3| |#3|) (-773)) NIL (|has| |#3| (-1052))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))))) (-2125 (((-773) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425))) (((-773) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#3|) $) NIL) (((-865) $) NIL) (($ |#3|) NIL (|has| |#3| (-1104))) (($ (-549)) NIL (-3960 (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (|has| |#3| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104))))) (-3530 (((-773)) NIL (|has| |#3| (-1052)) CONST)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#3| (-850)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) CONST)) (-3072 (($ $ (-1 |#3| |#3|) (-773)) NIL (|has| |#3| (-1052))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1052))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3088 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-4381 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052))))) (($ $ (-922)) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))))) (* (($ |#2| $) 17) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-728))) (($ |#3| $) NIL (|has| |#3| (-728))) (($ $ $) NIL (-3960 (-12 (|has| |#3| (-233)) (|has| |#3| (-1052))) (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052))) (|has| |#3| (-728)) (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-650 |#2|)) (-773) (-1052) (-650 |#2|)) (T -252)) +NIL +(-13 (-238 |#1| |#3|) (-650 |#2|)) +((-1589 (((-643 (-773)) $) 56) (((-643 (-773)) $ |#3|) 59)) (-1623 (((-773) $) 58) (((-773) $ |#3|) 61)) (-1585 (($ $) 76)) (-3577 (((-3 |#2| #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 83)) (-4203 (((-773) $ |#3|) 43) (((-773) $) 38)) (-1624 (((-1 $ (-773)) |#3|) 15) (((-1 $ (-773)) $) 88)) (-1587 ((|#4| $) 69)) (-1588 (((-112) $) 67)) (-1586 (($ $) 75)) (-4199 (($ $ (-643 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-643 |#4|) (-643 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-643 |#4|) (-643 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-643 |#3|) (-643 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-643 |#3|) (-643 |#2|)) 100)) (-4242 (($ $ |#4|) NIL) (($ $ (-643 |#4|)) NIL) (($ $ |#4| (-773)) NIL) (($ $ (-643 |#4|) (-643 (-773))) NIL) (($ $) NIL) (($ $ (-773)) NIL) (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1590 (((-643 |#3|) $) 86)) (-4380 ((|#5| $) NIL) (((-773) $ |#4|) NIL) (((-643 (-773)) $ (-643 |#4|)) NIL) (((-773) $ |#3|) 49)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-410 (-549))) NIL) (($ $) NIL))) +(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4199 (|#1| |#1| (-643 |#3|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#3| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#3|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#3| |#1|)) (-15 -1624 ((-1 |#1| (-773)) |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1587 (|#4| |#1|)) (-15 -1588 ((-112) |#1|)) (-15 -1623 ((-773) |#1| |#3|)) (-15 -1589 ((-643 (-773)) |#1| |#3|)) (-15 -1623 ((-773) |#1|)) (-15 -1589 ((-643 (-773)) |#1|)) (-15 -4380 ((-773) |#1| |#3|)) (-15 -4203 ((-773) |#1|)) (-15 -4203 ((-773) |#1| |#3|)) (-15 -1590 ((-643 |#3|) |#1|)) (-15 -1624 ((-1 |#1| (-773)) |#3|)) (-15 -4378 (|#1| |#3|)) (-15 -3577 ((-3 |#3| #1="failed") |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -4380 ((-643 (-773)) |#1| (-643 |#4|))) (-15 -4380 ((-773) |#1| |#4|)) (-15 -4378 (|#1| |#4|)) (-15 -3577 ((-3 |#4| #1#) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#4| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4380 (|#5| |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4242 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -4242 (|#1| |#1| |#4| (-773))) (-15 -4242 (|#1| |#1| (-643 |#4|))) (-15 -4242 (|#1| |#1| |#4|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1052) (-852) (-267 |#3|) (-795)) (T -253)) +NIL +(-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4199 (|#1| |#1| (-643 |#3|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#3| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#3|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#3| |#1|)) (-15 -1624 ((-1 |#1| (-773)) |#1|)) (-15 -1585 (|#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -1587 (|#4| |#1|)) (-15 -1588 ((-112) |#1|)) (-15 -1623 ((-773) |#1| |#3|)) (-15 -1589 ((-643 (-773)) |#1| |#3|)) (-15 -1623 ((-773) |#1|)) (-15 -1589 ((-643 (-773)) |#1|)) (-15 -4380 ((-773) |#1| |#3|)) (-15 -4203 ((-773) |#1|)) (-15 -4203 ((-773) |#1| |#3|)) (-15 -1590 ((-643 |#3|) |#1|)) (-15 -1624 ((-1 |#1| (-773)) |#3|)) (-15 -4378 (|#1| |#3|)) (-15 -3577 ((-3 |#3| #1="failed") |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -4380 ((-643 (-773)) |#1| (-643 |#4|))) (-15 -4380 ((-773) |#1| |#4|)) (-15 -4378 (|#1| |#4|)) (-15 -3577 ((-3 |#4| #1#) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#4| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4380 (|#5| |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4242 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -4242 (|#1| |#1| |#4| (-773))) (-15 -4242 (|#1| |#1| (-643 |#4|))) (-15 -4242 (|#1| |#1| |#4|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1589 (((-643 (-773)) $) 216) (((-643 (-773)) $ |#2|) 214)) (-1623 (((-773) $) 215) (((-773) $ |#2|) 213)) (-3485 (((-643 |#3|) $) 112)) (-3487 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 89 (|has| |#1| (-560)))) (-2241 (($ $) 90 (|has| |#1| (-560)))) (-2239 (((-112) $) 92 (|has| |#1| (-560)))) (-3222 (((-773) $) 114) (((-773) $ (-643 |#3|)) 113)) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-913)))) (-4206 (($ $) 100 (|has| |#1| (-455)))) (-4401 (((-408 $) $) 99 (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-913)))) (-1585 (($ $) 209)) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 166) (((-3 (-410 (-549)) #2#) $) 163 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) 161 (|has| |#1| (-1041 (-549)))) (((-3 |#3| #2#) $) 138) (((-3 |#2| #2#) $) 223)) (-3576 ((|#1| $) 165) (((-410 (-549)) $) 164 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 162 (|has| |#1| (-1041 (-549)))) ((|#3| $) 139) ((|#2| $) 224)) (-4188 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-4391 (($ $) 156)) (-2427 (((-691 (-549)) (-691 $)) 136 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 135 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 134) (((-691 |#1|) (-691 $)) 133)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3221 (((-643 $) $) 111)) (-4155 (((-112) $) 98 (|has| |#1| (-913)))) (-1769 (($ $ |#1| |#4| $) 174)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 86 (-12 (|has| |#3| (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 85 (-12 (|has| |#3| (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ |#2|) 219) (((-773) $) 218)) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 171)) (-3488 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-3224 (((-643 $) $) 128)) (-4369 (((-112) $) 154)) (-3294 (($ |#1| |#4|) 155) (($ $ |#3| (-773)) 121) (($ $ (-643 |#3|) (-643 (-773))) 120)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) 122)) (-3223 ((|#4| $) 172) (((-773) $ |#3|) 124) (((-643 (-773)) $ (-643 |#3|)) 123)) (-1770 (($ (-1 |#4| |#4|) $) 173)) (-4390 (($ (-1 |#1| |#1|) $) 153)) (-1624 (((-1 $ (-773)) |#2|) 221) (((-1 $ (-773)) $) 208 (|has| |#1| (-233)))) (-3486 (((-3 |#3| #3="failed") $) 125)) (-3295 (($ $) 151)) (-3594 ((|#1| $) 150)) (-1587 ((|#3| $) 211)) (-2069 (($ (-643 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3663 (((-1162) $) 10)) (-1588 (((-112) $) 212)) (-3226 (((-3 (-643 $) #3#) $) 116)) (-3225 (((-3 (-643 $) #3#) $) 117)) (-3227 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-773))) #3#) $) 115)) (-1586 (($ $) 210)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 168)) (-1971 ((|#1| $) 169)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 101 (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-643 $) (-643 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-643 |#3|) (-643 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-643 |#3|) (-643 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-643 |#2|) (-643 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-643 |#2|) (-643 |#1|)) 204 (|has| |#1| (-233)))) (-4189 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-4242 (($ $ |#3|) 46) (($ $ (-643 |#3|)) 45) (($ $ |#3| (-773)) 44) (($ $ (-643 |#3|) (-643 (-773))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-773)) 238 (|has| |#1| (-233))) (($ $ (-1180)) 236 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 235 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 234 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 233 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1590 (((-643 |#2|) $) 220)) (-4380 ((|#4| $) 152) (((-773) $ |#3|) 132) (((-643 (-773)) $ (-643 |#3|)) 131) (((-773) $ |#2|) 217)) (-4402 (((-893 (-380)) $) 84 (-12 (|has| |#3| (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) 83 (-12 (|has| |#3| (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) 82 (-12 (|has| |#3| (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 106 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-410 (-549))) 80 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549)))))) (($ $) 87 (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) 170)) (-4109 ((|#1| $ |#4|) 157) (($ $ |#3| (-773)) 130) (($ $ (-643 |#3|) (-643 (-773))) 129)) (-3105 (((-3 $ #1#) $) 81 (-3960 (-3256 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 175 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 91 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ |#3|) 42) (($ $ (-643 |#3|)) 41) (($ $ |#3| (-773)) 40) (($ $ (-643 |#3|) (-643 (-773))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-773)) 237 (|has| |#1| (-233))) (($ $ (-1180)) 232 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 231 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 230 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 229 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 160 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-254 |#1| |#2| |#3| |#4|) (-140) (-1052) (-852) (-267 |t#2|) (-795)) (T -254)) +((-1624 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-1 *1 (-773))) (-4 *1 (-254 *4 *3 *5 *6)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-643 *4)))) (-4203 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-773)))) (-4380 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) (-1589 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-643 (-773))))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-773)))) (-1589 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-643 (-773))))) (-1623 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-112)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-795)) (-4 *2 (-267 *4)))) (-1586 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1052)) (-4 *3 (-852)) (-4 *4 (-267 *3)) (-4 *5 (-795)))) (-1585 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1052)) (-4 *3 (-852)) (-4 *4 (-267 *3)) (-4 *5 (-795)))) (-1624 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-1 *1 (-773))) (-4 *1 (-254 *3 *4 *5 *6))))) +(-13 (-953 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1041 |t#2|) (-10 -8 (-15 -1624 ((-1 $ (-773)) |t#2|)) (-15 -1590 ((-643 |t#2|) $)) (-15 -4203 ((-773) $ |t#2|)) (-15 -4203 ((-773) $)) (-15 -4380 ((-773) $ |t#2|)) (-15 -1589 ((-643 (-773)) $)) (-15 -1623 ((-773) $)) (-15 -1589 ((-643 (-773)) $ |t#2|)) (-15 -1623 ((-773) $ |t#2|)) (-15 -1588 ((-112) $)) (-15 -1587 (|t#3| $)) (-15 -1586 ($ $)) (-15 -1585 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-517 |t#2| |t#1|)) (-6 (-517 |t#2| $)) (-6 (-310 $)) (-15 -1624 ((-1 $ (-773)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 |#2|) . T) ((-618 |#3|) . T) ((-618 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-616 (-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-913)) (|has| |#1| (-455))) ((-517 |#2| |#1|) |has| |#1| (-233)) ((-517 |#2| $) |has| |#1| (-233)) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-560) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-728) . T) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-903 |#3|) . T) ((-889 (-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))) ((-953 |#1| |#4| |#3|) . T) ((-913) |has| |#1| (-913)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1041 |#2|) . T) ((-1041 |#3|) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) |has| |#1| (-913))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1596 ((|#1| $) 55)) (-3748 ((|#1| $) 45)) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-3403 (($ $) 61)) (-2442 (($ $) 49)) (-3750 ((|#1| |#1| $) 47)) (-3749 ((|#1| $) 46)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-4265 (((-773) $) 62)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-1594 ((|#1| |#1| $) 53)) (-1593 ((|#1| |#1| $) 52)) (-4039 (($ |#1| $) 41)) (-3003 (((-773) $) 56)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-3402 ((|#1| $) 63)) (-1592 ((|#1| $) 51)) (-1591 ((|#1| $) 50)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3405 ((|#1| |#1| $) 59)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3404 ((|#1| $) 60)) (-1597 (($) 58) (($ (-643 |#1|)) 57)) (-3747 (((-773) $) 44)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-1595 ((|#1| $) 54)) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-3401 ((|#1| $) 64)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-255 |#1|) (-140) (-1219)) (T -255)) -((-2709 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-2709 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-255 *3)))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1661 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-3940 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-3790 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(-13 (-1123 |t#1|) (-997 |t#1|) (-10 -8 (-15 -2709 ($)) (-15 -2709 ($ (-645 |t#1|))) (-15 -1337 ((-772) $)) (-15 -1760 (|t#1| $)) (-15 -3329 (|t#1| $)) (-15 -1661 (|t#1| |t#1| $)) (-15 -3940 (|t#1| |t#1| $)) (-15 -2252 (|t#1| $)) (-15 -1965 (|t#1| $)) (-15 -3790 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-997 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1123 |#1|) . T) ((-1219) . T)) -((-3767 (((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-1330 (((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381))) 173) (((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 171) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 176) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 172) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 164) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 163) (((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381))) 145) (((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264))) 143) (((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381))) 144) (((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 141)) (-4383 (((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381))) 175) (((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 174) (((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 178) (((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 177) (((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381))) 166) (((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264))) 165) (((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381))) 151) (((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264))) 150) (((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381))) 149) (((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 148) (((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381))) 113) (((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264))) 112) (((-1270) (-1 (-225) (-225)) (-1096 (-381))) 107) (((-1270) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264))) 105))) -(((-256) (-10 -7 (-15 -4383 ((-1270) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1270) (-1 (-225) (-225)) (-1096 (-381)))) (-15 -4383 ((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -4383 ((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -4383 ((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -4383 ((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -4383 ((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -4383 ((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -3767 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256)) -((-3767 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-1330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *2 (-1270)) (-5 *1 (-256)))) (-4383 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256))))) -(-10 -7 (-15 -4383 ((-1270) (-1 (-225) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1270) (-1 (-225) (-225)) (-1096 (-381)))) (-15 -4383 ((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1270) (-879 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -4383 ((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -4383 ((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-881 (-1 (-225) (-225))) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-1 (-945 (-225)) (-225)) (-1096 (-381)))) (-15 -4383 ((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -4383 ((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-381)) (-1096 (-381)))) (-15 -4383 ((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -1330 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-884 (-1 (-225) (-225) (-225))) (-1096 (-381)) (-1096 (-381)))) (-15 -3767 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-4383 (((-1270) (-295 |#2|) (-1179) (-1179) (-645 (-264))) 101))) -(((-257 |#1| |#2|) (-10 -7 (-15 -4383 ((-1270) (-295 |#2|) (-1179) (-1179) (-645 (-264))))) (-13 (-559) (-851) (-1040 (-567))) (-433 |#1|)) (T -257)) -((-4383 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1179)) (-5 *5 (-645 (-264))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1040 (-567)))) (-5 *2 (-1270)) (-5 *1 (-257 *6 *7))))) -(-10 -7 (-15 -4383 ((-1270) (-295 |#2|) (-1179) (-1179) (-645 (-264))))) -((-4219 (((-567) (-567)) 73)) (-2374 (((-567) (-567)) 74)) (-4285 (((-225) (-225)) 75)) (-2030 (((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225))) 72)) (-3813 (((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112)) 70))) -(((-258) (-10 -7 (-15 -3813 ((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112))) (-15 -2030 ((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -4219 ((-567) (-567))) (-15 -2374 ((-567) (-567))) (-15 -4285 ((-225) (-225))))) (T -258)) -((-4285 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-4219 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-2030 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) (-5 *2 (-1271)) (-5 *1 (-258)))) (-3813 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) (-5 *5 (-112)) (-5 *2 (-1271)) (-5 *1 (-258))))) -(-10 -7 (-15 -3813 ((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)) (-112))) (-15 -2030 ((-1271) (-1 (-169 (-225)) (-169 (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -4219 ((-567) (-567))) (-15 -2374 ((-567) (-567))) (-15 -4285 ((-225) (-225)))) -((-2504 (((-1094 (-381)) (-1094 (-317 |#1|))) 16))) -(((-259 |#1|) (-10 -7 (-15 -2504 ((-1094 (-381)) (-1094 (-317 |#1|))))) (-13 (-851) (-559) (-615 (-381)))) (T -259)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-1094 (-317 *4))) (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1094 (-381))) (-5 *1 (-259 *4))))) -(-10 -7 (-15 -2504 ((-1094 (-381)) (-1094 (-317 |#1|))))) -((-1330 (((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))) 75) (((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 74) (((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381))) 65) (((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 64) (((-1135 (-225)) (-881 |#1|) (-1094 (-381))) 56) (((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264))) 55)) (-4383 (((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381))) 78) (((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 77) (((-1271) |#1| (-1094 (-381)) (-1094 (-381))) 68) (((-1271) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 67) (((-1271) (-881 |#1|) (-1094 (-381))) 60) (((-1271) (-881 |#1|) (-1094 (-381)) (-645 (-264))) 59) (((-1270) (-879 |#1|) (-1094 (-381))) 47) (((-1270) (-879 |#1|) (-1094 (-381)) (-645 (-264))) 46) (((-1270) |#1| (-1094 (-381))) 38) (((-1270) |#1| (-1094 (-381)) (-645 (-264))) 36))) -(((-260 |#1|) (-10 -7 (-15 -4383 ((-1270) |#1| (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1270) |#1| (-1094 (-381)))) (-15 -4383 ((-1270) (-879 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1270) (-879 |#1|) (-1094 (-381)))) (-15 -4383 ((-1271) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-881 |#1|) (-1094 (-381)))) (-15 -1330 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)))) (-15 -4383 ((-1271) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -1330 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -4383 ((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))) (-15 -1330 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))))) (-13 (-615 (-539)) (-1102))) (T -260)) -((-1330 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) (-1330 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) (-4383 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) (-5 *1 (-260 *5)))) (-4383 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) (-5 *1 (-260 *6)))) (-1330 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-1330 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-4383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1271)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-4383 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-1330 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *5)))) (-1330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *6)))) (-4383 (*1 *2 *3 *4) (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) (-5 *1 (-260 *5)))) (-4383 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) (-5 *1 (-260 *6)))) (-4383 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1094 (-381))) (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *5)))) (-4383 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) (-5 *1 (-260 *6)))) (-4383 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) (-4383 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102)))))) -(-10 -7 (-15 -4383 ((-1270) |#1| (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1270) |#1| (-1094 (-381)))) (-15 -4383 ((-1270) (-879 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1270) (-879 |#1|) (-1094 (-381)))) (-15 -4383 ((-1271) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-881 |#1|) (-1094 (-381)))) (-15 -1330 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-881 |#1|) (-1094 (-381)))) (-15 -4383 ((-1271) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -1330 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) |#1| (-1094 (-381)) (-1094 (-381)))) (-15 -4383 ((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4383 ((-1271) (-884 |#1|) (-1094 (-381)) (-1094 (-381)))) (-15 -1330 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -1330 ((-1135 (-225)) (-884 |#1|) (-1094 (-381)) (-1094 (-381))))) -((-4383 (((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))) 23) (((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225))) 24) (((-1270) (-645 (-945 (-225))) (-645 (-264))) 16) (((-1270) (-645 (-945 (-225)))) 17) (((-1270) (-645 (-225)) (-645 (-225)) (-645 (-264))) 20) (((-1270) (-645 (-225)) (-645 (-225))) 21))) -(((-261) (-10 -7 (-15 -4383 ((-1270) (-645 (-225)) (-645 (-225)))) (-15 -4383 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -4383 ((-1270) (-645 (-945 (-225))))) (-15 -4383 ((-1270) (-645 (-945 (-225))) (-645 (-264)))) (-15 -4383 ((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -4383 ((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))) (T -261)) -((-4383 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-261)))) (-4383 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1271)) (-5 *1 (-261)))) (-4383 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-4383 (*1 *2 *3) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-4383 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-261)))) (-4383 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1270)) (-5 *1 (-261))))) -(-10 -7 (-15 -4383 ((-1270) (-645 (-225)) (-645 (-225)))) (-15 -4383 ((-1270) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -4383 ((-1270) (-645 (-945 (-225))))) (-15 -4383 ((-1270) (-645 (-945 (-225))) (-645 (-264)))) (-15 -4383 ((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -4383 ((-1271) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))))) -((-2381 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-1877 (((-923) (-645 (-264)) (-923)) 52)) (-3341 (((-923) (-645 (-264)) (-923)) 51)) (-3138 (((-645 (-381)) (-645 (-264)) (-645 (-381))) 68)) (-3639 (((-381) (-645 (-264)) (-381)) 57)) (-2596 (((-923) (-645 (-264)) (-923)) 53)) (-3083 (((-112) (-645 (-264)) (-112)) 27)) (-3275 (((-1161) (-645 (-264)) (-1161)) 19)) (-1897 (((-1161) (-645 (-264)) (-1161)) 26)) (-1416 (((-1135 (-225)) (-645 (-264))) 46)) (-1780 (((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381)))) 40)) (-1606 (((-875) (-645 (-264)) (-875)) 32)) (-1421 (((-875) (-645 (-264)) (-875)) 33)) (-4278 (((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225)))) 63)) (-1761 (((-112) (-645 (-264)) (-112)) 14)) (-2647 (((-112) (-645 (-264)) (-112)) 13))) -(((-262) (-10 -7 (-15 -2647 ((-112) (-645 (-264)) (-112))) (-15 -1761 ((-112) (-645 (-264)) (-112))) (-15 -2381 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3275 ((-1161) (-645 (-264)) (-1161))) (-15 -1897 ((-1161) (-645 (-264)) (-1161))) (-15 -3083 ((-112) (-645 (-264)) (-112))) (-15 -1606 ((-875) (-645 (-264)) (-875))) (-15 -1421 ((-875) (-645 (-264)) (-875))) (-15 -1780 ((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381))))) (-15 -3341 ((-923) (-645 (-264)) (-923))) (-15 -1877 ((-923) (-645 (-264)) (-923))) (-15 -1416 ((-1135 (-225)) (-645 (-264)))) (-15 -2596 ((-923) (-645 (-264)) (-923))) (-15 -3639 ((-381) (-645 (-264)) (-381))) (-15 -4278 ((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225))))) (-15 -3138 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))) (T -262)) -((-3138 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-4278 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3639 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2596 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1416 (*1 *2 *3) (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-262)))) (-1877 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3341 (*1 *2 *3 *2) (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1780 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1421 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1606 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3083 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1897 (*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3275 (*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2381 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2647 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) -(-10 -7 (-15 -2647 ((-112) (-645 (-264)) (-112))) (-15 -1761 ((-112) (-645 (-264)) (-112))) (-15 -2381 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3275 ((-1161) (-645 (-264)) (-1161))) (-15 -1897 ((-1161) (-645 (-264)) (-1161))) (-15 -3083 ((-112) (-645 (-264)) (-112))) (-15 -1606 ((-875) (-645 (-264)) (-875))) (-15 -1421 ((-875) (-645 (-264)) (-875))) (-15 -1780 ((-645 (-1096 (-381))) (-645 (-264)) (-645 (-1096 (-381))))) (-15 -3341 ((-923) (-645 (-264)) (-923))) (-15 -1877 ((-923) (-645 (-264)) (-923))) (-15 -1416 ((-1135 (-225)) (-645 (-264)))) (-15 -2596 ((-923) (-645 (-264)) (-923))) (-15 -3639 ((-381) (-645 (-264)) (-381))) (-15 -4278 ((-1 (-945 (-225)) (-945 (-225))) (-645 (-264)) (-1 (-945 (-225)) (-945 (-225))))) (-15 -3138 ((-645 (-381)) (-645 (-264)) (-645 (-381))))) -((-1566 (((-3 |#1| "failed") (-645 (-264)) (-1179)) 17))) -(((-263 |#1|) (-10 -7 (-15 -1566 ((-3 |#1| "failed") (-645 (-264)) (-1179)))) (-1219)) (T -263)) -((-1566 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *1 (-263 *2)) (-4 *2 (-1219))))) -(-10 -7 (-15 -1566 ((-3 |#1| "failed") (-645 (-264)) (-1179)))) -((-2487 (((-112) $ $) NIL)) (-2381 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-1877 (($ (-923)) 81)) (-3341 (($ (-923)) 80)) (-3414 (($ (-645 (-381))) 87)) (-3639 (($ (-381)) 66)) (-2596 (($ (-923)) 82)) (-3083 (($ (-112)) 33)) (-3275 (($ (-1161)) 28)) (-1897 (($ (-1161)) 29)) (-1416 (($ (-1135 (-225))) 76)) (-1780 (($ (-645 (-1096 (-381)))) 72)) (-2031 (($ (-645 (-1096 (-381)))) 68) (($ (-645 (-1096 (-410 (-567))))) 71)) (-3039 (($ (-381)) 38) (($ (-875)) 42)) (-2636 (((-112) (-645 $) (-1179)) 100)) (-1566 (((-3 (-52) "failed") (-645 $) (-1179)) 102)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2723 (($ (-381)) 43) (($ (-875)) 44)) (-3237 (($ (-1 (-945 (-225)) (-945 (-225)))) 65)) (-4278 (($ (-1 (-945 (-225)) (-945 (-225)))) 83)) (-3242 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-2504 (((-863) $) 93)) (-1754 (($ (-112)) 34) (($ (-645 (-1096 (-381)))) 60)) (-3858 (((-112) $ $) NIL)) (-2647 (($ (-112)) 35)) (-2968 (((-112) $ $) 97))) -(((-264) (-13 (-1102) (-10 -8 (-15 -2647 ($ (-112))) (-15 -1754 ($ (-112))) (-15 -2381 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3275 ($ (-1161))) (-15 -1897 ($ (-1161))) (-15 -3083 ($ (-112))) (-15 -1754 ($ (-645 (-1096 (-381))))) (-15 -3237 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3039 ($ (-381))) (-15 -3039 ($ (-875))) (-15 -2723 ($ (-381))) (-15 -2723 ($ (-875))) (-15 -3242 ($ (-1 (-225) (-225)))) (-15 -3242 ($ (-1 (-225) (-225) (-225)))) (-15 -3242 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3639 ($ (-381))) (-15 -2031 ($ (-645 (-1096 (-381))))) (-15 -2031 ($ (-645 (-1096 (-410 (-567)))))) (-15 -1780 ($ (-645 (-1096 (-381))))) (-15 -1416 ($ (-1135 (-225)))) (-15 -3341 ($ (-923))) (-15 -1877 ($ (-923))) (-15 -2596 ($ (-923))) (-15 -4278 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3414 ($ (-645 (-381)))) (-15 -1566 ((-3 (-52) "failed") (-645 $) (-1179))) (-15 -2636 ((-112) (-645 $) (-1179)))))) (T -264)) -((-2647 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-1754 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2381 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-3275 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-264)))) (-1897 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-264)))) (-3083 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-1754 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-2723 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2723 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-3639 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-2031 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-2031 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-410 (-567))))) (-5 *1 (-264)))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) (-1416 (*1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-264)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-1877 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) (-1566 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *2 (-52)) (-5 *1 (-264)))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *2 (-112)) (-5 *1 (-264))))) -(-13 (-1102) (-10 -8 (-15 -2647 ($ (-112))) (-15 -1754 ($ (-112))) (-15 -2381 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3275 ($ (-1161))) (-15 -1897 ($ (-1161))) (-15 -3083 ($ (-112))) (-15 -1754 ($ (-645 (-1096 (-381))))) (-15 -3237 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3039 ($ (-381))) (-15 -3039 ($ (-875))) (-15 -2723 ($ (-381))) (-15 -2723 ($ (-875))) (-15 -3242 ($ (-1 (-225) (-225)))) (-15 -3242 ($ (-1 (-225) (-225) (-225)))) (-15 -3242 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3639 ($ (-381))) (-15 -2031 ($ (-645 (-1096 (-381))))) (-15 -2031 ($ (-645 (-1096 (-410 (-567)))))) (-15 -1780 ($ (-645 (-1096 (-381))))) (-15 -1416 ($ (-1135 (-225)))) (-15 -3341 ($ (-923))) (-15 -1877 ($ (-923))) (-15 -2596 ($ (-923))) (-15 -4278 ($ (-1 (-945 (-225)) (-945 (-225))))) (-15 -3414 ($ (-645 (-381)))) (-15 -1566 ((-3 (-52) "failed") (-645 $) (-1179))) (-15 -2636 ((-112) (-645 $) (-1179))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3466 (((-645 (-772)) $) NIL) (((-645 (-772)) $ |#2|) NIL)) (-1895 (((-772) $) NIL) (((-772) $ |#2|) NIL)) (-3783 (((-645 |#3|) $) NIL)) (-3633 (((-1175 $) $ |#3|) NIL) (((-1175 |#1|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 |#3|)) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-1309 (($ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1127 |#1| |#2|) "failed") $) 23)) (-3094 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1127 |#1| |#2|) $) NIL)) (-2304 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-1978 (($ $ |#1| (-534 |#3|) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))))) (-3905 (((-772) $ |#2|) NIL) (((-772) $) 10)) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3772 (($ (-1175 |#1|) |#3|) NIL) (($ (-1175 $) |#3|) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ |#3|) NIL)) (-1562 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL)) (-2972 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3973 (((-1 $ (-772)) |#2|) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-2047 (((-3 |#3| "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-3459 ((|#3| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1812 (((-1161) $) NIL)) (-3773 (((-112) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| |#3|) (|:| -2618 (-772))) "failed") $) NIL)) (-1413 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-645 |#3|) (-645 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-2254 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3592 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4022 (((-645 |#2|) $) NIL)) (-3380 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL) (((-772) $ |#2|) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))))) (-1390 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1127 |#1| |#2|)) 32) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1040 (-1127 |#1| |#2|))) (-1051) (-851) (-267 |#2|)) (T -265)) -NIL -(-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1040 (-1127 |#1| |#2|))) -((-1895 (((-772) $) 37)) (-4275 (((-3 |#2| "failed") $) 22)) (-3094 ((|#2| $) 33)) (-3592 (($ $) 14) (($ $ (-772)) 18)) (-2504 (((-863) $) 32) (($ |#2|) 11)) (-2968 (((-112) $ $) 26)) (-2986 (((-112) $ $) 36))) -(((-266 |#1| |#2|) (-10 -8 (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1|)) (-15 -1895 ((-772) |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) (-267 |#2|) (-851)) (T -266)) -NIL -(-10 -8 (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1|)) (-15 -1895 ((-772) |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-1895 (((-772) $) 23)) (-2722 ((|#1| $) 24)) (-4275 (((-3 |#1| "failed") $) 28)) (-3094 ((|#1| $) 29)) (-3905 (((-772) $) 25)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-3973 (($ |#1| (-772)) 26)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3592 (($ $) 22) (($ $ (-772)) 21)) (-2504 (((-863) $) 12) (($ |#1|) 27)) (-3858 (((-112) $ $) 9)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19))) -(((-267 |#1|) (-140) (-851)) (T -267)) -((-2504 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-3973 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851))))) -(-13 (-851) (-1040 |t#1|) (-10 -8 (-15 -3973 ($ |t#1| (-772))) (-15 -3905 ((-772) $)) (-15 -2722 (|t#1| $)) (-15 -1895 ((-772) $)) (-15 -3592 ($ $)) (-15 -3592 ($ $ (-772))) (-15 -2504 ($ |t#1|)))) -(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-851) . T) ((-1040 |#1|) . T) ((-1102) . T)) -((-3783 (((-645 (-1179)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 54)) (-3055 (((-645 (-1179)) (-317 (-225)) (-772)) 96)) (-3620 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-4216 (((-317 (-225)) (-317 (-225))) 82)) (-3135 (((-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 39)) (-4304 (((-112) (-645 (-317 (-225)))) 106)) (-3566 (((-112) (-317 (-225))) 37)) (-1544 (((-645 (-1161)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))))) 134)) (-2299 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 110)) (-2594 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 108)) (-1596 (((-690 (-225)) (-645 (-317 (-225))) (-772)) 122)) (-3455 (((-112) (-317 (-225))) 32) (((-112) (-645 (-317 (-225)))) 107)) (-1939 (((-645 (-225)) (-645 (-844 (-225))) (-225)) 15)) (-1787 (((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 128)) (-2646 (((-1037) (-1179) (-1037)) 47))) -(((-268) (-10 -7 (-15 -1939 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -3135 ((-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -3620 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -4216 ((-317 (-225)) (-317 (-225)))) (-15 -4304 ((-112) (-645 (-317 (-225))))) (-15 -3455 ((-112) (-645 (-317 (-225))))) (-15 -3455 ((-112) (-317 (-225)))) (-15 -1596 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -2594 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -2299 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -3566 ((-112) (-317 (-225)))) (-15 -3783 ((-645 (-1179)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) (-15 -3055 ((-645 (-1179)) (-317 (-225)) (-772))) (-15 -2646 ((-1037) (-1179) (-1037))) (-15 -1787 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) (-15 -1544 ((-645 (-1161)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))))))) (T -268)) -((-1544 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))))) (-5 *2 (-645 (-1161))) (-5 *1 (-268)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-2646 (*1 *2 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1179)) (-5 *1 (-268)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1179))) (-5 *1 (-268)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) (-5 *2 (-645 (-1179))) (-5 *1 (-268)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-2594 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-268)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-4216 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-3620 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-268)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) (-5 *1 (-268))))) -(-10 -7 (-15 -1939 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -3135 ((-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -3620 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -4216 ((-317 (-225)) (-317 (-225)))) (-15 -4304 ((-112) (-645 (-317 (-225))))) (-15 -3455 ((-112) (-645 (-317 (-225))))) (-15 -3455 ((-112) (-317 (-225)))) (-15 -1596 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -2594 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -2299 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -3566 ((-112) (-317 (-225)))) (-15 -3783 ((-645 (-1179)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) (-15 -3055 ((-645 (-1179)) (-317 (-225)) (-772))) (-15 -2646 ((-1037) (-1179) (-1037))) (-15 -1787 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) (-15 -1544 ((-645 (-1161)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))))))) -((-2487 (((-112) $ $) NIL)) (-3478 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 56)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-269) (-840)) (T -269)) -NIL -(-840) -((-2487 (((-112) $ $) NIL)) (-3478 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 72) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 63)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 41) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 43)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-270) (-840)) (T -270)) -NIL -(-840) -((-2487 (((-112) $ $) NIL)) (-3478 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 90) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 85)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 52) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 65)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-271) (-840)) (T -271)) -NIL -(-840) -((-2487 (((-112) $ $) NIL)) (-3478 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 73)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 45) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-272) (-840)) (T -272)) -NIL -(-840) -((-2487 (((-112) $ $) NIL)) (-3478 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 65)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 31) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-273) (-840)) (T -273)) -NIL -(-840) -((-2487 (((-112) $ $) NIL)) (-3478 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 90)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 33) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-274) (-840)) (T -274)) -NIL -(-840) -((-2487 (((-112) $ $) NIL)) (-3478 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 95)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-275) (-840)) (T -275)) -NIL -(-840) -((-2487 (((-112) $ $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3175 (((-645 (-567)) $) 29)) (-3380 (((-772) $) 27)) (-2504 (((-863) $) 36) (($ (-645 (-567))) 23)) (-3858 (((-112) $ $) NIL)) (-1486 (($ (-772)) 33)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 9)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 17))) -(((-276) (-13 (-851) (-10 -8 (-15 -2504 ($ (-645 (-567)))) (-15 -3380 ((-772) $)) (-15 -3175 ((-645 (-567)) $)) (-15 -1486 ($ (-772)))))) (T -276)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-1486 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276))))) -(-13 (-851) (-10 -8 (-15 -2504 ($ (-645 (-567)))) (-15 -3380 ((-772) $)) (-15 -3175 ((-645 (-567)) $)) (-15 -1486 ($ (-772))))) -((-1406 ((|#2| |#2|) 77)) (-2545 ((|#2| |#2|) 65)) (-3512 (((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-1380 ((|#2| |#2|) 75)) (-2524 ((|#2| |#2|) 63)) (-1431 ((|#2| |#2|) 79)) (-2565 ((|#2| |#2|) 67)) (-4329 ((|#2|) 46)) (-3609 (((-114) (-114)) 100)) (-2734 ((|#2| |#2|) 61)) (-2880 (((-112) |#2|) 147)) (-3827 ((|#2| |#2|) 195)) (-1925 ((|#2| |#2|) 171)) (-2182 ((|#2|) 59)) (-1570 ((|#2|) 58)) (-3734 ((|#2| |#2|) 191)) (-2106 ((|#2| |#2|) 167)) (-3856 ((|#2| |#2|) 199)) (-4273 ((|#2| |#2|) 175)) (-2004 ((|#2| |#2|) 163)) (-1537 ((|#2| |#2|) 165)) (-2393 ((|#2| |#2|) 201)) (-4303 ((|#2| |#2|) 177)) (-3712 ((|#2| |#2|) 197)) (-1699 ((|#2| |#2|) 173)) (-4213 ((|#2| |#2|) 193)) (-2838 ((|#2| |#2|) 169)) (-1500 ((|#2| |#2|) 207)) (-3668 ((|#2| |#2|) 183)) (-2505 ((|#2| |#2|) 203)) (-2917 ((|#2| |#2|) 179)) (-3811 ((|#2| |#2|) 211)) (-1673 ((|#2| |#2|) 187)) (-4008 ((|#2| |#2|) 213)) (-2519 ((|#2| |#2|) 189)) (-1495 ((|#2| |#2|) 209)) (-4100 ((|#2| |#2|) 185)) (-2481 ((|#2| |#2|) 205)) (-4071 ((|#2| |#2|) 181)) (-4272 ((|#2| |#2|) 62)) (-1443 ((|#2| |#2|) 80)) (-2576 ((|#2| |#2|) 68)) (-1418 ((|#2| |#2|) 78)) (-2555 ((|#2| |#2|) 66)) (-1394 ((|#2| |#2|) 76)) (-2533 ((|#2| |#2|) 64)) (-3862 (((-112) (-114)) 98)) (-1481 ((|#2| |#2|) 83)) (-2610 ((|#2| |#2|) 71)) (-1456 ((|#2| |#2|) 81)) (-2588 ((|#2| |#2|) 69)) (-1505 ((|#2| |#2|) 85)) (-2632 ((|#2| |#2|) 73)) (-2090 ((|#2| |#2|) 86)) (-1367 ((|#2| |#2|) 74)) (-1492 ((|#2| |#2|) 84)) (-2621 ((|#2| |#2|) 72)) (-1468 ((|#2| |#2|) 82)) (-2599 ((|#2| |#2|) 70))) -(((-277 |#1| |#2|) (-10 -7 (-15 -4272 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2524 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -2545 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -2576 (|#2| |#2|)) (-15 -2588 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -2621 (|#2| |#2|)) (-15 -2632 (|#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -1380 (|#2| |#2|)) (-15 -1394 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (-15 -1443 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -1481 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -4329 (|#2|)) (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -1570 (|#2|)) (-15 -2182 (|#2|)) (-15 -1537 (|#2| |#2|)) (-15 -2004 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2838 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -4303 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -2393 (|#2| |#2|)) (-15 -2505 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -1500 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -3512 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2880 ((-112) |#2|))) (-559) (-13 (-433 |#1|) (-1004))) (T -277)) -((-2880 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-433 *4) (-1004))))) (-3512 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-433 *4) (-1004))) (-4 *4 (-559)) (-5 *1 (-277 *4 *2)))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1500 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2481 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2505 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2393 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3856 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4213 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3734 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4273 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1699 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1925 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2838 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2004 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2182 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-1570 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-3609 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-433 *3) (-1004))))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004))))) (-4329 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1481 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1443 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1394 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1380 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-1367 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2621 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2576 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2565 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2555 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2524 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004))))) (-4272 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004)))))) -(-10 -7 (-15 -4272 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2524 (|#2| |#2|)) (-15 -2533 (|#2| |#2|)) (-15 -2545 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -2576 (|#2| |#2|)) (-15 -2588 (|#2| |#2|)) (-15 -2599 (|#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -2621 (|#2| |#2|)) (-15 -2632 (|#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -1380 (|#2| |#2|)) (-15 -1394 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1431 (|#2| |#2|)) (-15 -1443 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -1481 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -1505 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -4329 (|#2|)) (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -1570 (|#2|)) (-15 -2182 (|#2|)) (-15 -1537 (|#2| |#2|)) (-15 -2004 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2838 (|#2| |#2|)) (-15 -1925 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -4303 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -2519 (|#2| |#2|)) (-15 -3734 (|#2| |#2|)) (-15 -4213 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -3856 (|#2| |#2|)) (-15 -2393 (|#2| |#2|)) (-15 -2505 (|#2| |#2|)) (-15 -2481 (|#2| |#2|)) (-15 -1500 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -3512 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2880 ((-112) |#2|))) -((-3005 (((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1179)) 153)) (-2340 ((|#2| (-410 (-567)) |#2|) 49)) (-3520 ((|#2| |#2| (-613 |#2|)) 146)) (-3306 (((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1179)) 145)) (-4331 ((|#2| |#2| (-1179)) 20) ((|#2| |#2|) 23)) (-1488 ((|#2| |#2| (-1179)) 159) ((|#2| |#2|) 157))) -(((-278 |#1| |#2|) (-10 -7 (-15 -1488 (|#2| |#2|)) (-15 -1488 (|#2| |#2| (-1179))) (-15 -3306 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1179))) (-15 -4331 (|#2| |#2|)) (-15 -4331 (|#2| |#2| (-1179))) (-15 -3005 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1179))) (-15 -3520 (|#2| |#2| (-613 |#2|))) (-15 -2340 (|#2| (-410 (-567)) |#2|))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -278)) -((-2340 (*1 *2 *3 *2) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-3520 (*1 *2 *2 *3) (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)))) (-3005 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1179)) (-4 *2 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *5 *2)))) (-4331 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-4331 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-3306 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) (|:| |vals| (-645 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-1488 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-1488 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))) -(-10 -7 (-15 -1488 (|#2| |#2|)) (-15 -1488 (|#2| |#2| (-1179))) (-15 -3306 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1179))) (-15 -4331 (|#2| |#2|)) (-15 -4331 (|#2| |#2| (-1179))) (-15 -3005 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1179))) (-15 -3520 (|#2| |#2| (-613 |#2|))) (-15 -2340 (|#2| (-410 (-567)) |#2|))) -((-1756 (((-3 |#3| "failed") |#3|) 120)) (-1406 ((|#3| |#3|) 142)) (-1878 (((-3 |#3| "failed") |#3|) 89)) (-2545 ((|#3| |#3|) 132)) (-2651 (((-3 |#3| "failed") |#3|) 65)) (-1380 ((|#3| |#3|) 140)) (-3332 (((-3 |#3| "failed") |#3|) 53)) (-2524 ((|#3| |#3|) 130)) (-4065 (((-3 |#3| "failed") |#3|) 122)) (-1431 ((|#3| |#3|) 144)) (-4157 (((-3 |#3| "failed") |#3|) 91)) (-2565 ((|#3| |#3|) 134)) (-2417 (((-3 |#3| "failed") |#3| (-772)) 41)) (-2216 (((-3 |#3| "failed") |#3|) 81)) (-2734 ((|#3| |#3|) 129)) (-4017 (((-3 |#3| "failed") |#3|) 51)) (-4272 ((|#3| |#3|) 128)) (-3883 (((-3 |#3| "failed") |#3|) 123)) (-1443 ((|#3| |#3|) 145)) (-3001 (((-3 |#3| "failed") |#3|) 92)) (-2576 ((|#3| |#3|) 135)) (-2375 (((-3 |#3| "failed") |#3|) 121)) (-1418 ((|#3| |#3|) 143)) (-2564 (((-3 |#3| "failed") |#3|) 90)) (-2555 ((|#3| |#3|) 133)) (-2124 (((-3 |#3| "failed") |#3|) 67)) (-1394 ((|#3| |#3|) 141)) (-2050 (((-3 |#3| "failed") |#3|) 55)) (-2533 ((|#3| |#3|) 131)) (-2327 (((-3 |#3| "failed") |#3|) 73)) (-1481 ((|#3| |#3|) 148)) (-2609 (((-3 |#3| "failed") |#3|) 114)) (-2610 ((|#3| |#3|) 154)) (-3199 (((-3 |#3| "failed") |#3|) 69)) (-1456 ((|#3| |#3|) 146)) (-2155 (((-3 |#3| "failed") |#3|) 57)) (-2588 ((|#3| |#3|) 136)) (-4087 (((-3 |#3| "failed") |#3|) 77)) (-1505 ((|#3| |#3|) 150)) (-2001 (((-3 |#3| "failed") |#3|) 61)) (-2632 ((|#3| |#3|) 138)) (-2120 (((-3 |#3| "failed") |#3|) 79)) (-2090 ((|#3| |#3|) 151)) (-2620 (((-3 |#3| "failed") |#3|) 63)) (-1367 ((|#3| |#3|) 139)) (-2774 (((-3 |#3| "failed") |#3|) 75)) (-1492 ((|#3| |#3|) 149)) (-3400 (((-3 |#3| "failed") |#3|) 117)) (-2621 ((|#3| |#3|) 155)) (-1660 (((-3 |#3| "failed") |#3|) 71)) (-1468 ((|#3| |#3|) 147)) (-2484 (((-3 |#3| "failed") |#3|) 59)) (-2599 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-410 (-567))) 47 (|has| |#1| (-365))))) -(((-279 |#1| |#2| |#3|) (-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -4272 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2524 (|#3| |#3|)) (-15 -2533 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2555 (|#3| |#3|)) (-15 -2565 (|#3| |#3|)) (-15 -2576 (|#3| |#3|)) (-15 -2588 (|#3| |#3|)) (-15 -2599 (|#3| |#3|)) (-15 -2610 (|#3| |#3|)) (-15 -2621 (|#3| |#3|)) (-15 -2632 (|#3| |#3|)) (-15 -1367 (|#3| |#3|)) (-15 -1380 (|#3| |#3|)) (-15 -1394 (|#3| |#3|)) (-15 -1406 (|#3| |#3|)) (-15 -1418 (|#3| |#3|)) (-15 -1431 (|#3| |#3|)) (-15 -1443 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1468 (|#3| |#3|)) (-15 -1481 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1505 (|#3| |#3|)) (-15 -2090 (|#3| |#3|)))) (-38 (-410 (-567))) (-1260 |#1|) (-1231 |#1| |#2|)) (T -279)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1260 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1231 *4 *5)))) (-4272 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2524 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2555 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2565 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2576 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2621 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1367 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1380 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1394 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1443 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1481 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4))))) -(-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -4272 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2524 (|#3| |#3|)) (-15 -2533 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2555 (|#3| |#3|)) (-15 -2565 (|#3| |#3|)) (-15 -2576 (|#3| |#3|)) (-15 -2588 (|#3| |#3|)) (-15 -2599 (|#3| |#3|)) (-15 -2610 (|#3| |#3|)) (-15 -2621 (|#3| |#3|)) (-15 -2632 (|#3| |#3|)) (-15 -1367 (|#3| |#3|)) (-15 -1380 (|#3| |#3|)) (-15 -1394 (|#3| |#3|)) (-15 -1406 (|#3| |#3|)) (-15 -1418 (|#3| |#3|)) (-15 -1431 (|#3| |#3|)) (-15 -1443 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1468 (|#3| |#3|)) (-15 -1481 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1505 (|#3| |#3|)) (-15 -2090 (|#3| |#3|)))) -((-1756 (((-3 |#3| "failed") |#3|) 70)) (-1406 ((|#3| |#3|) 137)) (-1878 (((-3 |#3| "failed") |#3|) 54)) (-2545 ((|#3| |#3|) 125)) (-2651 (((-3 |#3| "failed") |#3|) 66)) (-1380 ((|#3| |#3|) 135)) (-3332 (((-3 |#3| "failed") |#3|) 50)) (-2524 ((|#3| |#3|) 123)) (-4065 (((-3 |#3| "failed") |#3|) 74)) (-1431 ((|#3| |#3|) 139)) (-4157 (((-3 |#3| "failed") |#3|) 58)) (-2565 ((|#3| |#3|) 127)) (-2417 (((-3 |#3| "failed") |#3| (-772)) 38)) (-2216 (((-3 |#3| "failed") |#3|) 48)) (-2734 ((|#3| |#3|) 111)) (-4017 (((-3 |#3| "failed") |#3|) 46)) (-4272 ((|#3| |#3|) 122)) (-3883 (((-3 |#3| "failed") |#3|) 76)) (-1443 ((|#3| |#3|) 140)) (-3001 (((-3 |#3| "failed") |#3|) 60)) (-2576 ((|#3| |#3|) 128)) (-2375 (((-3 |#3| "failed") |#3|) 72)) (-1418 ((|#3| |#3|) 138)) (-2564 (((-3 |#3| "failed") |#3|) 56)) (-2555 ((|#3| |#3|) 126)) (-2124 (((-3 |#3| "failed") |#3|) 68)) (-1394 ((|#3| |#3|) 136)) (-2050 (((-3 |#3| "failed") |#3|) 52)) (-2533 ((|#3| |#3|) 124)) (-2327 (((-3 |#3| "failed") |#3|) 78)) (-1481 ((|#3| |#3|) 143)) (-2609 (((-3 |#3| "failed") |#3|) 62)) (-2610 ((|#3| |#3|) 131)) (-3199 (((-3 |#3| "failed") |#3|) 112)) (-1456 ((|#3| |#3|) 141)) (-2155 (((-3 |#3| "failed") |#3|) 100)) (-2588 ((|#3| |#3|) 129)) (-4087 (((-3 |#3| "failed") |#3|) 116)) (-1505 ((|#3| |#3|) 145)) (-2001 (((-3 |#3| "failed") |#3|) 107)) (-2632 ((|#3| |#3|) 133)) (-2120 (((-3 |#3| "failed") |#3|) 117)) (-2090 ((|#3| |#3|) 146)) (-2620 (((-3 |#3| "failed") |#3|) 109)) (-1367 ((|#3| |#3|) 134)) (-2774 (((-3 |#3| "failed") |#3|) 80)) (-1492 ((|#3| |#3|) 144)) (-3400 (((-3 |#3| "failed") |#3|) 64)) (-2621 ((|#3| |#3|) 132)) (-1660 (((-3 |#3| "failed") |#3|) 113)) (-1468 ((|#3| |#3|) 142)) (-2484 (((-3 |#3| "failed") |#3|) 103)) (-2599 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-410 (-567))) 44 (|has| |#1| (-365))))) -(((-280 |#1| |#2| |#3| |#4|) (-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -4272 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2524 (|#3| |#3|)) (-15 -2533 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2555 (|#3| |#3|)) (-15 -2565 (|#3| |#3|)) (-15 -2576 (|#3| |#3|)) (-15 -2588 (|#3| |#3|)) (-15 -2599 (|#3| |#3|)) (-15 -2610 (|#3| |#3|)) (-15 -2621 (|#3| |#3|)) (-15 -2632 (|#3| |#3|)) (-15 -1367 (|#3| |#3|)) (-15 -1380 (|#3| |#3|)) (-15 -1394 (|#3| |#3|)) (-15 -1406 (|#3| |#3|)) (-15 -1418 (|#3| |#3|)) (-15 -1431 (|#3| |#3|)) (-15 -1443 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1468 (|#3| |#3|)) (-15 -1481 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1505 (|#3| |#3|)) (-15 -2090 (|#3| |#3|)))) (-38 (-410 (-567))) (-1229 |#1|) (-1252 |#1| |#2|) (-985 |#2|)) (T -280)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1229 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1252 *4 *5)) (-4 *6 (-985 *5)))) (-4272 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2524 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2533 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2545 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2555 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2565 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2576 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2588 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2599 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2621 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1367 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1380 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1394 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1443 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1481 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-1505 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4))))) -(-13 (-985 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -4272 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2524 (|#3| |#3|)) (-15 -2533 (|#3| |#3|)) (-15 -2545 (|#3| |#3|)) (-15 -2555 (|#3| |#3|)) (-15 -2565 (|#3| |#3|)) (-15 -2576 (|#3| |#3|)) (-15 -2588 (|#3| |#3|)) (-15 -2599 (|#3| |#3|)) (-15 -2610 (|#3| |#3|)) (-15 -2621 (|#3| |#3|)) (-15 -2632 (|#3| |#3|)) (-15 -1367 (|#3| |#3|)) (-15 -1380 (|#3| |#3|)) (-15 -1394 (|#3| |#3|)) (-15 -1406 (|#3| |#3|)) (-15 -1418 (|#3| |#3|)) (-15 -1431 (|#3| |#3|)) (-15 -1443 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1468 (|#3| |#3|)) (-15 -1481 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1505 (|#3| |#3|)) (-15 -2090 (|#3| |#3|)))) -((-2464 (((-112) $) 20)) (-2072 (((-1184) $) 7)) (-3043 (((-3 (-509) "failed") $) 14)) (-2056 (((-3 (-645 $) "failed") $) NIL)) (-1706 (((-3 (-509) "failed") $) 21)) (-2764 (((-3 (-1106) "failed") $) 18)) (-2622 (((-112) $) 16)) (-2504 (((-863) $) NIL)) (-3422 (((-112) $) 9))) -(((-281) (-13 (-614 (-863)) (-10 -8 (-15 -2072 ((-1184) $)) (-15 -2622 ((-112) $)) (-15 -2764 ((-3 (-1106) "failed") $)) (-15 -2464 ((-112) $)) (-15 -1706 ((-3 (-509) "failed") $)) (-15 -3422 ((-112) $)) (-15 -3043 ((-3 (-509) "failed") $)) (-15 -2056 ((-3 (-645 $) "failed") $))))) (T -281)) -((-2072 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-281)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2764 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-1706 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3043 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-2056 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281))))) -(-13 (-614 (-863)) (-10 -8 (-15 -2072 ((-1184) $)) (-15 -2622 ((-112) $)) (-15 -2764 ((-3 (-1106) "failed") $)) (-15 -2464 ((-112) $)) (-15 -1706 ((-3 (-509) "failed") $)) (-15 -3422 ((-112) $)) (-15 -3043 ((-3 (-509) "failed") $)) (-15 -2056 ((-3 (-645 $) "failed") $)))) -((-1316 (($ (-1 (-112) |#2|) $) 24)) (-3470 (($ $) 38)) (-4197 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-1695 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3196 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4222 (($ |#2| $ (-567)) 20) (($ $ $ (-567)) 22)) (-4281 (($ $ (-567)) 11) (($ $ (-1236 (-567))) 14)) (-3416 (($ $ |#2|) 32) (($ $ $) NIL)) (-3644 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-645 $)) NIL))) -(((-282 |#1| |#2|) (-10 -8 (-15 -3196 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#2| |#1|)) (-15 -3196 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4197 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -4222 (|#1| |#1| |#1| (-567))) (-15 -4222 (|#1| |#2| |#1| (-567))) (-15 -4281 (|#1| |#1| (-1236 (-567)))) (-15 -4281 (|#1| |#1| (-567))) (-15 -3644 (|#1| (-645 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#2|)) (-15 -1695 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1316 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1695 (|#1| |#2| |#1|)) (-15 -3470 (|#1| |#1|))) (-283 |#2|) (-1219)) (T -282)) -NIL -(-10 -8 (-15 -3196 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#2| |#1|)) (-15 -3196 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4197 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -4222 (|#1| |#1| |#1| (-567))) (-15 -4222 (|#1| |#2| |#1| (-567))) (-15 -4281 (|#1| |#1| (-1236 (-567)))) (-15 -4281 (|#1| |#1| (-567))) (-15 -3644 (|#1| (-645 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#2|)) (-15 -1695 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1316 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1695 (|#1| |#2| |#1|)) (-15 -3470 (|#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-2105 (($ (-1 (-112) |#1|) $) 86)) (-1316 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3048 (($ $) 84 (|has| |#1| (-1102)))) (-3470 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1102)))) (-1695 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 52)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4223 (($ (-772) |#1|) 70)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-3196 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3636 (($ |#1| $ (-567)) 89) (($ $ $ (-567)) 88)) (-4222 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 43 (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2930 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-1664 (($ $ (-567)) 92) (($ $ (-1236 (-567))) 91)) (-4281 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 71)) (-3416 (($ $ |#1|) 94) (($ $ $) 93)) (-3644 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +((-1597 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-255 *3)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1594 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1593 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) (-2442 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) +(-13 (-1124 |t#1|) (-998 |t#1|) (-10 -8 (-15 -1597 ($)) (-15 -1597 ($ (-643 |t#1|))) (-15 -3003 ((-773) $)) (-15 -1596 (|t#1| $)) (-15 -1595 (|t#1| $)) (-15 -1594 (|t#1| |t#1| $)) (-15 -1593 (|t#1| |t#1| $)) (-15 -1592 (|t#1| $)) (-15 -1591 (|t#1| $)) (-15 -2442 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-998 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1124 |#1|) . T) ((-1219) . T)) +((-1598 (((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380))) 75) (((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262))) 74) (((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380))) 65) (((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262))) 64) (((-1136 (-225)) (-882 |#1|) (-1095 (-380))) 56) (((-1136 (-225)) (-882 |#1|) (-1095 (-380)) (-643 (-262))) 55)) (-1605 (((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380))) 78) (((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262))) 77) (((-1273) |#1| (-1095 (-380)) (-1095 (-380))) 68) (((-1273) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262))) 67) (((-1273) (-882 |#1|) (-1095 (-380))) 60) (((-1273) (-882 |#1|) (-1095 (-380)) (-643 (-262))) 59) (((-1272) (-880 |#1|) (-1095 (-380))) 47) (((-1272) (-880 |#1|) (-1095 (-380)) (-643 (-262))) 46) (((-1272) |#1| (-1095 (-380))) 38) (((-1272) |#1| (-1095 (-380)) (-643 (-262))) 36))) +(((-256 |#1|) (-10 -7 (-15 -1605 ((-1272) |#1| (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) |#1| (-1095 (-380)))) (-15 -1605 ((-1272) (-880 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-880 |#1|) (-1095 (-380)))) (-15 -1605 ((-1273) (-882 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-882 |#1|) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) (-882 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-882 |#1|) (-1095 (-380)))) (-15 -1605 ((-1273) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) |#1| (-1095 (-380)) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)))) (-15 -1605 ((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380))))) (-13 (-616 (-538)) (-1104))) (T -256)) +((-1598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *5)))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *6)))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *5)))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *6)))) (-1598 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1273)) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *5)))) (-1598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *6)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *5)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *6)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1095 (-380))) (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1272)) (-5 *1 (-256 *5)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1272)) (-5 *1 (-256 *6)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1272)) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104)))))) +(-10 -7 (-15 -1605 ((-1272) |#1| (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) |#1| (-1095 (-380)))) (-15 -1605 ((-1272) (-880 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-880 |#1|) (-1095 (-380)))) (-15 -1605 ((-1273) (-882 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-882 |#1|) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) (-882 |#1|) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-882 |#1|) (-1095 (-380)))) (-15 -1605 ((-1273) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) |#1| (-1095 (-380)) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) |#1| (-1095 (-380)) (-1095 (-380)))) (-15 -1605 ((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-885 |#1|) (-1095 (-380)) (-1095 (-380)))) (-15 -1598 ((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-885 |#1|) (-1095 (-380)) (-1095 (-380))))) +((-1599 (((-1 (-946 (-225)) (-225) (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-1598 (((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380))) 173) (((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 171) (((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380))) 176) (((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 172) (((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380))) 164) (((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 163) (((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380))) 145) (((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262))) 143) (((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380))) 144) (((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262))) 141)) (-1605 (((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380))) 175) (((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 174) (((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380))) 178) (((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 177) (((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380))) 166) (((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262))) 165) (((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380))) 151) (((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262))) 150) (((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380))) 149) (((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262))) 148) (((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380))) 113) (((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262))) 112) (((-1272) (-1 (-225) (-225)) (-1092 (-380))) 107) (((-1272) (-1 (-225) (-225)) (-1092 (-380)) (-643 (-262))) 105))) +(((-257) (-10 -7 (-15 -1605 ((-1272) (-1 (-225) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-1 (-225) (-225)) (-1092 (-380)))) (-15 -1605 ((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1605 ((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1605 ((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)))) (-15 -1599 ((-1 (-946 (-225)) (-225) (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -257)) +((-1599 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1272)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1272)) (-5 *1 (-257)))) (-1605 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-257))))) +(-10 -7 (-15 -1605 ((-1272) (-1 (-225) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-1 (-225) (-225)) (-1092 (-380)))) (-15 -1605 ((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1272) (-880 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1605 ((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-882 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-882 (-1 (-225) (-225))) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225)) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-380)) (-1092 (-380)))) (-15 -1605 ((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1605 ((-1273) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)))) (-15 -1598 ((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)) (-643 (-262)))) (-15 -1598 ((-1136 (-225)) (-885 (-1 (-225) (-225) (-225))) (-1092 (-380)) (-1092 (-380)))) (-15 -1599 ((-1 (-946 (-225)) (-225) (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-1605 (((-1272) (-294 |#2|) (-1180) (-1180) (-643 (-262))) 101))) +(((-258 |#1| |#2|) (-10 -7 (-15 -1605 ((-1272) (-294 |#2|) (-1180) (-1180) (-643 (-262))))) (-13 (-560) (-852) (-1041 (-549))) (-424 |#1|)) (T -258)) +((-1605 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1180)) (-5 *5 (-643 (-262))) (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-852) (-1041 (-549)))) (-5 *2 (-1272)) (-5 *1 (-258 *6 *7))))) +(-10 -7 (-15 -1605 ((-1272) (-294 |#2|) (-1180) (-1180) (-643 (-262))))) +((-1602 (((-549) (-549)) 73)) (-1603 (((-549) (-549)) 74)) (-1604 (((-225) (-225)) 75)) (-1601 (((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225))) 72)) (-1600 (((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)) (-112)) 70))) +(((-259) (-10 -7 (-15 -1600 ((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)) (-112))) (-15 -1601 ((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)))) (-15 -1602 ((-549) (-549))) (-15 -1603 ((-549) (-549))) (-15 -1604 ((-225) (-225))))) (T -259)) +((-1604 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-259)))) (-1603 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-259)))) (-1602 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-259)))) (-1601 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1092 (-225))) (-5 *2 (-1273)) (-5 *1 (-259)))) (-1600 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1092 (-225))) (-5 *5 (-112)) (-5 *2 (-1273)) (-5 *1 (-259))))) +(-10 -7 (-15 -1600 ((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)) (-112))) (-15 -1601 ((-1273) (-1 (-168 (-225)) (-168 (-225))) (-1092 (-225)) (-1092 (-225)))) (-15 -1602 ((-549) (-549))) (-15 -1603 ((-549) (-549))) (-15 -1604 ((-225) (-225)))) +((-4378 (((-1095 (-380)) (-1095 (-315 |#1|))) 16))) +(((-260 |#1|) (-10 -7 (-15 -4378 ((-1095 (-380)) (-1095 (-315 |#1|))))) (-13 (-852) (-560) (-616 (-380)))) (T -260)) +((-4378 (*1 *2 *3) (-12 (-5 *3 (-1095 (-315 *4))) (-4 *4 (-13 (-852) (-560) (-616 (-380)))) (-5 *2 (-1095 (-380))) (-5 *1 (-260 *4))))) +(-10 -7 (-15 -4378 ((-1095 (-380)) (-1095 (-315 |#1|))))) +((-1605 (((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)) (-643 (-262))) 23) (((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225))) 24) (((-1272) (-643 (-946 (-225))) (-643 (-262))) 16) (((-1272) (-643 (-946 (-225)))) 17) (((-1272) (-643 (-225)) (-643 (-225)) (-643 (-262))) 20) (((-1272) (-643 (-225)) (-643 (-225))) 21))) +(((-261) (-10 -7 (-15 -1605 ((-1272) (-643 (-225)) (-643 (-225)))) (-15 -1605 ((-1272) (-643 (-225)) (-643 (-225)) (-643 (-262)))) (-15 -1605 ((-1272) (-643 (-946 (-225))))) (-15 -1605 ((-1272) (-643 (-946 (-225))) (-643 (-262)))) (-15 -1605 ((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)))) (-15 -1605 ((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)) (-643 (-262)))))) (T -261)) +((-1605 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-643 (-225))) (-5 *4 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-261)))) (-1605 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1273)) (-5 *1 (-261)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-261)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *2 (-1272)) (-5 *1 (-261)))) (-1605 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-643 (-225))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-261)))) (-1605 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1272)) (-5 *1 (-261))))) +(-10 -7 (-15 -1605 ((-1272) (-643 (-225)) (-643 (-225)))) (-15 -1605 ((-1272) (-643 (-225)) (-643 (-225)) (-643 (-262)))) (-15 -1605 ((-1272) (-643 (-946 (-225))))) (-15 -1605 ((-1272) (-643 (-946 (-225))) (-643 (-262)))) (-15 -1605 ((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)))) (-15 -1605 ((-1273) (-643 (-225)) (-643 (-225)) (-643 (-225)) (-643 (-262))))) +((-2968 (((-112) $ $) NIL)) (-4313 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-1618 (($ (-922)) 81)) (-1617 (($ (-922)) 80)) (-1947 (($ (-643 (-380))) 87)) (-1621 (($ (-380)) 66)) (-1620 (($ (-922)) 82)) (-1614 (($ (-112)) 33)) (-4315 (($ (-1162)) 28)) (-1613 (($ (-1162)) 29)) (-1619 (($ (-1136 (-225))) 76)) (-2106 (($ (-643 (-1092 (-380)))) 72)) (-1607 (($ (-643 (-1092 (-380)))) 68) (($ (-643 (-1092 (-410 (-549))))) 71)) (-1610 (($ (-380)) 38) (($ (-876)) 42)) (-1606 (((-112) (-643 $) (-1180)) 100)) (-1622 (((-3 (-51) "failed") (-643 $) (-1180)) 102)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1609 (($ (-380)) 43) (($ (-876)) 44)) (-3644 (($ (-1 (-946 (-225)) (-946 (-225)))) 65)) (-2415 (($ (-1 (-946 (-225)) (-946 (-225)))) 83)) (-1608 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-4378 (((-865) $) 93)) (-1611 (($ (-112)) 34) (($ (-643 (-1092 (-380)))) 60)) (-3662 (((-112) $ $) NIL)) (-2101 (($ (-112)) 35)) (-3455 (((-112) $ $) 97))) +(((-262) (-13 (-1104) (-10 -8 (-15 -2101 ($ (-112))) (-15 -1611 ($ (-112))) (-15 -4313 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4315 ($ (-1162))) (-15 -1613 ($ (-1162))) (-15 -1614 ($ (-112))) (-15 -1611 ($ (-643 (-1092 (-380))))) (-15 -3644 ($ (-1 (-946 (-225)) (-946 (-225))))) (-15 -1610 ($ (-380))) (-15 -1610 ($ (-876))) (-15 -1609 ($ (-380))) (-15 -1609 ($ (-876))) (-15 -1608 ($ (-1 (-225) (-225)))) (-15 -1608 ($ (-1 (-225) (-225) (-225)))) (-15 -1608 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1621 ($ (-380))) (-15 -1607 ($ (-643 (-1092 (-380))))) (-15 -1607 ($ (-643 (-1092 (-410 (-549)))))) (-15 -2106 ($ (-643 (-1092 (-380))))) (-15 -1619 ($ (-1136 (-225)))) (-15 -1617 ($ (-922))) (-15 -1618 ($ (-922))) (-15 -1620 ($ (-922))) (-15 -2415 ($ (-1 (-946 (-225)) (-946 (-225))))) (-15 -1947 ($ (-643 (-380)))) (-15 -1622 ((-3 (-51) "failed") (-643 $) (-1180))) (-15 -1606 ((-112) (-643 $) (-1180)))))) (T -262)) +((-2101 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-262)))) (-4315 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-262)))) (-1613 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-262)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *1 (-262)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-262)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262)))) (-1609 (*1 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-262)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-262)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-262)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-262)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-410 (-549))))) (-5 *1 (-262)))) (-2106 (*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-262)))) (-1617 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) (-1620 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) (-2415 (*1 *1 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *1 (-262)))) (-1947 (*1 *1 *2) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-262)))) (-1622 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *2 (-51)) (-5 *1 (-262)))) (-1606 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *2 (-112)) (-5 *1 (-262))))) +(-13 (-1104) (-10 -8 (-15 -2101 ($ (-112))) (-15 -1611 ($ (-112))) (-15 -4313 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4315 ($ (-1162))) (-15 -1613 ($ (-1162))) (-15 -1614 ($ (-112))) (-15 -1611 ($ (-643 (-1092 (-380))))) (-15 -3644 ($ (-1 (-946 (-225)) (-946 (-225))))) (-15 -1610 ($ (-380))) (-15 -1610 ($ (-876))) (-15 -1609 ($ (-380))) (-15 -1609 ($ (-876))) (-15 -1608 ($ (-1 (-225) (-225)))) (-15 -1608 ($ (-1 (-225) (-225) (-225)))) (-15 -1608 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -1621 ($ (-380))) (-15 -1607 ($ (-643 (-1092 (-380))))) (-15 -1607 ($ (-643 (-1092 (-410 (-549)))))) (-15 -2106 ($ (-643 (-1092 (-380))))) (-15 -1619 ($ (-1136 (-225)))) (-15 -1617 ($ (-922))) (-15 -1618 ($ (-922))) (-15 -1620 ($ (-922))) (-15 -2415 ($ (-1 (-946 (-225)) (-946 (-225))))) (-15 -1947 ($ (-643 (-380)))) (-15 -1622 ((-3 (-51) "failed") (-643 $) (-1180))) (-15 -1606 ((-112) (-643 $) (-1180))))) +((-4313 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-643 (-262)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-1618 (((-922) (-643 (-262)) (-922)) 52)) (-1617 (((-922) (-643 (-262)) (-922)) 51)) (-4283 (((-643 (-380)) (-643 (-262)) (-643 (-380))) 68)) (-1621 (((-380) (-643 (-262)) (-380)) 57)) (-1620 (((-922) (-643 (-262)) (-922)) 53)) (-1614 (((-112) (-643 (-262)) (-112)) 27)) (-4315 (((-1162) (-643 (-262)) (-1162)) 19)) (-1613 (((-1162) (-643 (-262)) (-1162)) 26)) (-1619 (((-1136 (-225)) (-643 (-262))) 46)) (-2106 (((-643 (-1092 (-380))) (-643 (-262)) (-643 (-1092 (-380)))) 40)) (-1615 (((-876) (-643 (-262)) (-876)) 32)) (-1616 (((-876) (-643 (-262)) (-876)) 33)) (-2415 (((-1 (-946 (-225)) (-946 (-225))) (-643 (-262)) (-1 (-946 (-225)) (-946 (-225)))) 63)) (-1612 (((-112) (-643 (-262)) (-112)) 14)) (-2101 (((-112) (-643 (-262)) (-112)) 13))) +(((-263) (-10 -7 (-15 -2101 ((-112) (-643 (-262)) (-112))) (-15 -1612 ((-112) (-643 (-262)) (-112))) (-15 -4313 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-643 (-262)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4315 ((-1162) (-643 (-262)) (-1162))) (-15 -1613 ((-1162) (-643 (-262)) (-1162))) (-15 -1614 ((-112) (-643 (-262)) (-112))) (-15 -1615 ((-876) (-643 (-262)) (-876))) (-15 -1616 ((-876) (-643 (-262)) (-876))) (-15 -2106 ((-643 (-1092 (-380))) (-643 (-262)) (-643 (-1092 (-380))))) (-15 -1617 ((-922) (-643 (-262)) (-922))) (-15 -1618 ((-922) (-643 (-262)) (-922))) (-15 -1619 ((-1136 (-225)) (-643 (-262)))) (-15 -1620 ((-922) (-643 (-262)) (-922))) (-15 -1621 ((-380) (-643 (-262)) (-380))) (-15 -2415 ((-1 (-946 (-225)) (-946 (-225))) (-643 (-262)) (-1 (-946 (-225)) (-946 (-225))))) (-15 -4283 ((-643 (-380)) (-643 (-262)) (-643 (-380)))))) (T -263)) +((-4283 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-380))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-2415 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1621 (*1 *2 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1620 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-263)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1617 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-2106 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1616 (*1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1615 (*1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1614 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1613 (*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-4315 (*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-4313 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-1612 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) (-2101 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(-10 -7 (-15 -2101 ((-112) (-643 (-262)) (-112))) (-15 -1612 ((-112) (-643 (-262)) (-112))) (-15 -4313 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-643 (-262)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4315 ((-1162) (-643 (-262)) (-1162))) (-15 -1613 ((-1162) (-643 (-262)) (-1162))) (-15 -1614 ((-112) (-643 (-262)) (-112))) (-15 -1615 ((-876) (-643 (-262)) (-876))) (-15 -1616 ((-876) (-643 (-262)) (-876))) (-15 -2106 ((-643 (-1092 (-380))) (-643 (-262)) (-643 (-1092 (-380))))) (-15 -1617 ((-922) (-643 (-262)) (-922))) (-15 -1618 ((-922) (-643 (-262)) (-922))) (-15 -1619 ((-1136 (-225)) (-643 (-262)))) (-15 -1620 ((-922) (-643 (-262)) (-922))) (-15 -1621 ((-380) (-643 (-262)) (-380))) (-15 -2415 ((-1 (-946 (-225)) (-946 (-225))) (-643 (-262)) (-1 (-946 (-225)) (-946 (-225))))) (-15 -4283 ((-643 (-380)) (-643 (-262)) (-643 (-380))))) +((-1622 (((-3 |#1| "failed") (-643 (-262)) (-1180)) 17))) +(((-264 |#1|) (-10 -7 (-15 -1622 ((-3 |#1| "failed") (-643 (-262)) (-1180)))) (-1219)) (T -264)) +((-1622 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *1 (-264 *2)) (-4 *2 (-1219))))) +(-10 -7 (-15 -1622 ((-3 |#1| "failed") (-643 (-262)) (-1180)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1589 (((-643 (-773)) $) NIL) (((-643 (-773)) $ |#2|) NIL)) (-1623 (((-773) $) NIL) (((-773) $ |#2|) NIL)) (-3485 (((-643 |#3|) $) NIL)) (-3487 (((-1174 $) $ |#3|) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 |#3|)) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1585 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1128 |#1| |#2|) #2#) $) 23)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1128 |#1| |#2|) $) NIL)) (-4188 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 |#3|) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))))) (-4203 (((-773) $ |#2|) NIL) (((-773) $) 10)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#1|) |#3|) NIL) (($ (-1174 $) |#3|) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-773)) NIL) (($ $ (-643 |#3|) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) NIL)) (-3223 (((-534 |#3|) $) NIL) (((-773) $ |#3|) NIL) (((-643 (-773)) $ (-643 |#3|)) NIL)) (-1770 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1624 (((-1 $ (-773)) |#2|) NIL) (((-1 $ (-773)) $) NIL (|has| |#1| (-233)))) (-3486 (((-3 |#3| #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-1587 ((|#3| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-1588 (((-112) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-773))) #3#) $) NIL)) (-1586 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-643 |#3|) (-643 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-643 |#3|) (-643 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-643 |#2|) (-643 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-643 |#2|) (-643 |#1|)) NIL (|has| |#1| (-233)))) (-4189 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-4242 (($ $ |#3|) NIL) (($ $ (-643 |#3|)) NIL) (($ $ |#3| (-773)) NIL) (($ $ (-643 |#3|) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1590 (((-643 |#2|) $) NIL)) (-4380 (((-534 |#3|) $) NIL) (((-773) $ |#3|) NIL) (((-643 (-773)) $ (-643 |#3|)) NIL) (((-773) $ |#2|) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1128 |#1| |#2|)) 32) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-773)) NIL) (($ $ (-643 |#3|) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ |#3|) NIL) (($ $ (-643 |#3|)) NIL) (($ $ |#3| (-773)) NIL) (($ $ (-643 |#3|) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1041 (-1128 |#1| |#2|))) (-1052) (-852) (-267 |#2|)) (T -265)) +NIL +(-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1041 (-1128 |#1| |#2|))) +((-1623 (((-773) $) 37)) (-3577 (((-3 |#2| "failed") $) 22)) (-3576 ((|#2| $) 33)) (-4242 (($ $) 14) (($ $ (-773)) 18)) (-4378 (((-865) $) 32) (($ |#2|) 11)) (-3455 (((-112) $ $) 26)) (-3088 (((-112) $ $) 36))) +(((-266 |#1| |#2|) (-10 -8 (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -1623 ((-773) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| "failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-267 |#2|) (-852)) (T -266)) +NIL +(-10 -8 (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -1623 ((-773) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| "failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-1623 (((-773) $) 23)) (-4263 ((|#1| $) 24)) (-3577 (((-3 |#1| "failed") $) 28)) (-3576 ((|#1| $) 29)) (-4203 (((-773) $) 25)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-1624 (($ |#1| (-773)) 26)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4242 (($ $) 22) (($ $ (-773)) 21)) (-4378 (((-865) $) 12) (($ |#1|) 27)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19))) +(((-267 |#1|) (-140) (-852)) (T -267)) +((-4378 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) (-1624 (*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-267 *2)) (-4 *2 (-852)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-852)) (-5 *2 (-773)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-852)) (-5 *2 (-773)))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-267 *3)) (-4 *3 (-852))))) +(-13 (-852) (-1041 |t#1|) (-10 -8 (-15 -1624 ($ |t#1| (-773))) (-15 -4203 ((-773) $)) (-15 -4263 (|t#1| $)) (-15 -1623 ((-773) $)) (-15 -4242 ($ $)) (-15 -4242 ($ $ (-773))) (-15 -4378 ($ |t#1|)))) +(((-102) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-852) . T) ((-1041 |#1|) . T) ((-1104) . T)) +((-3485 (((-643 (-1180)) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 54)) (-4366 (((-643 (-1180)) (-315 (-225)) (-773)) 96)) (-1627 (((-3 (-315 (-225)) "failed") (-315 (-225))) 64)) (-1628 (((-315 (-225)) (-315 (-225))) 82)) (-1626 (((-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 39)) (-1629 (((-112) (-643 (-315 (-225)))) 106)) (-1633 (((-112) (-315 (-225))) 37)) (-1635 (((-643 (-1162)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) 134)) (-1632 (((-643 (-315 (-225))) (-643 (-315 (-225)))) 110)) (-1631 (((-643 (-315 (-225))) (-643 (-315 (-225)))) 108)) (-1630 (((-691 (-225)) (-643 (-315 (-225))) (-773)) 122)) (-3328 (((-112) (-315 (-225))) 32) (((-112) (-643 (-315 (-225)))) 107)) (-1625 (((-643 (-225)) (-643 (-844 (-225))) (-225)) 15)) (-1725 (((-380) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 128)) (-1634 (((-1038) (-1180) (-1038)) 47))) +(((-268) (-10 -7 (-15 -1625 ((-643 (-225)) (-643 (-844 (-225))) (-225))) (-15 -1626 ((-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -1627 ((-3 (-315 (-225)) "failed") (-315 (-225)))) (-15 -1628 ((-315 (-225)) (-315 (-225)))) (-15 -1629 ((-112) (-643 (-315 (-225))))) (-15 -3328 ((-112) (-643 (-315 (-225))))) (-15 -3328 ((-112) (-315 (-225)))) (-15 -1630 ((-691 (-225)) (-643 (-315 (-225))) (-773))) (-15 -1631 ((-643 (-315 (-225))) (-643 (-315 (-225))))) (-15 -1632 ((-643 (-315 (-225))) (-643 (-315 (-225))))) (-15 -1633 ((-112) (-315 (-225)))) (-15 -3485 ((-643 (-1180)) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -4366 ((-643 (-1180)) (-315 (-225)) (-773))) (-15 -1634 ((-1038) (-1180) (-1038))) (-15 -1725 ((-380) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -1635 ((-643 (-1162)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))))))) (T -268)) +((-1635 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) (-5 *2 (-643 (-1162))) (-5 *1 (-268)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *2 (-380)) (-5 *1 (-268)))) (-1634 (*1 *2 *3 *2) (-12 (-5 *2 (-1038)) (-5 *3 (-1180)) (-5 *1 (-268)))) (-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-773)) (-5 *2 (-643 (-1180))) (-5 *1 (-268)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *2 (-643 (-1180))) (-5 *1 (-268)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-643 (-315 (-225)))) (-5 *1 (-268)))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-643 (-315 (-225)))) (-5 *1 (-268)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *4 (-773)) (-5 *2 (-691 (-225))) (-5 *1 (-268)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1628 (*1 *2 *2) (-12 (-5 *2 (-315 (-225))) (-5 *1 (-268)))) (-1627 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-225))) (-5 *1 (-268)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (-5 *1 (-268)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-643 *4)) (-5 *1 (-268))))) +(-10 -7 (-15 -1625 ((-643 (-225)) (-643 (-844 (-225))) (-225))) (-15 -1626 ((-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -1627 ((-3 (-315 (-225)) "failed") (-315 (-225)))) (-15 -1628 ((-315 (-225)) (-315 (-225)))) (-15 -1629 ((-112) (-643 (-315 (-225))))) (-15 -3328 ((-112) (-643 (-315 (-225))))) (-15 -3328 ((-112) (-315 (-225)))) (-15 -1630 ((-691 (-225)) (-643 (-315 (-225))) (-773))) (-15 -1631 ((-643 (-315 (-225))) (-643 (-315 (-225))))) (-15 -1632 ((-643 (-315 (-225))) (-643 (-315 (-225))))) (-15 -1633 ((-112) (-315 (-225)))) (-15 -3485 ((-643 (-1180)) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -4366 ((-643 (-1180)) (-315 (-225)) (-773))) (-15 -1634 ((-1038) (-1180) (-1038))) (-15 -1725 ((-380) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -1635 ((-643 (-1162)) (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))))) +((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 56)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 32) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-269) (-841)) (T -269)) +NIL +(-841) +((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 72) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 63)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 41) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 43)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-270) (-841)) (T -270)) +NIL +(-841) +((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 90) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 85)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 52) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 65)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-271) (-841)) (T -271)) +NIL +(-841) +((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 73)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 45) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-272) (-841)) (T -272)) +NIL +(-841) +((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 65)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 31) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-273) (-841)) (T -273)) +NIL +(-841) +((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 90)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 33) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-274) (-841)) (T -274)) +NIL +(-841) +((-2968 (((-112) $ $) NIL)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 87)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 32) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-275) (-841)) (T -275)) +NIL +(-841) +((-2968 (((-112) $ $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1637 (((-643 (-549)) $) 29)) (-4380 (((-773) $) 27)) (-4378 (((-865) $) 36) (($ (-643 (-549))) 23)) (-3662 (((-112) $ $) NIL)) (-1636 (($ (-773)) 33)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 17))) +(((-276) (-13 (-852) (-10 -8 (-15 -4378 ($ (-643 (-549)))) (-15 -4380 ((-773) $)) (-15 -1637 ((-643 (-549)) $)) (-15 -1636 ($ (-773)))))) (T -276)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-276)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-276)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-276)))) (-1636 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-276))))) +(-13 (-852) (-10 -8 (-15 -4378 ($ (-643 (-549)))) (-15 -4380 ((-773) $)) (-15 -1637 ((-643 (-549)) $)) (-15 -1636 ($ (-773))))) +((-3915 ((|#2| |#2|) 77)) (-4071 ((|#2| |#2|) 65)) (-1666 (((-3 |#2| "failed") |#2| (-643 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3913 ((|#2| |#2|) 75)) (-4070 ((|#2| |#2|) 63)) (-3917 ((|#2| |#2|) 79)) (-4069 ((|#2| |#2|) 67)) (-4059 ((|#2|) 46)) (-3448 (((-113) (-113)) 100)) (-4374 ((|#2| |#2|) 61)) (-1667 (((-112) |#2|) 147)) (-1656 ((|#2| |#2|) 195)) (-1644 ((|#2| |#2|) 171)) (-1639 ((|#2|) 59)) (-1638 ((|#2|) 58)) (-1654 ((|#2| |#2|) 191)) (-1642 ((|#2| |#2|) 167)) (-1658 ((|#2| |#2|) 199)) (-1646 ((|#2| |#2|) 175)) (-1641 ((|#2| |#2|) 163)) (-1640 ((|#2| |#2|) 165)) (-1659 ((|#2| |#2|) 201)) (-1647 ((|#2| |#2|) 177)) (-1657 ((|#2| |#2|) 197)) (-1645 ((|#2| |#2|) 173)) (-1655 ((|#2| |#2|) 193)) (-1643 ((|#2| |#2|) 169)) (-1662 ((|#2| |#2|) 207)) (-1650 ((|#2| |#2|) 183)) (-1660 ((|#2| |#2|) 203)) (-1648 ((|#2| |#2|) 179)) (-1664 ((|#2| |#2|) 211)) (-1652 ((|#2| |#2|) 187)) (-1665 ((|#2| |#2|) 213)) (-1653 ((|#2| |#2|) 189)) (-1663 ((|#2| |#2|) 209)) (-1651 ((|#2| |#2|) 185)) (-1661 ((|#2| |#2|) 205)) (-1649 ((|#2| |#2|) 181)) (-4375 ((|#2| |#2|) 62)) (-3918 ((|#2| |#2|) 80)) (-4068 ((|#2| |#2|) 68)) (-3916 ((|#2| |#2|) 78)) (-4067 ((|#2| |#2|) 66)) (-3914 ((|#2| |#2|) 76)) (-4066 ((|#2| |#2|) 64)) (-2403 (((-112) (-113)) 98)) (-3921 ((|#2| |#2|) 83)) (-3909 ((|#2| |#2|) 71)) (-3919 ((|#2| |#2|) 81)) (-3907 ((|#2| |#2|) 69)) (-3923 ((|#2| |#2|) 85)) (-3911 ((|#2| |#2|) 73)) (-3924 ((|#2| |#2|) 86)) (-3912 ((|#2| |#2|) 74)) (-3922 ((|#2| |#2|) 84)) (-3910 ((|#2| |#2|) 72)) (-3920 ((|#2| |#2|) 82)) (-3908 ((|#2| |#2|) 70))) +(((-277 |#1| |#2|) (-10 -7 (-15 -4375 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3923 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -4059 (|#2|)) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1638 (|#2|)) (-15 -1639 (|#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -1666 ((-3 |#2| "failed") |#2| (-643 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1667 ((-112) |#2|))) (-560) (-13 (-424 |#1|) (-1005))) (T -277)) +((-1667 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-424 *4) (-1005))))) (-1666 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-643 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-424 *4) (-1005))) (-4 *4 (-560)) (-5 *1 (-277 *4 *2)))) (-1665 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1664 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1663 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1662 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1658 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1653 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1650 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1648 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1646 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1645 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1644 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1643 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1642 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1641 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-1639 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560)))) (-1638 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-424 *3) (-1005))))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-424 *4) (-1005))))) (-4059 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) (-4375 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(-10 -7 (-15 -4375 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (-15 -4070 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3923 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -4059 (|#2|)) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1638 (|#2|)) (-15 -1639 (|#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1641 (|#2| |#2|)) (-15 -1642 (|#2| |#2|)) (-15 -1643 (|#2| |#2|)) (-15 -1644 (|#2| |#2|)) (-15 -1645 (|#2| |#2|)) (-15 -1646 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1648 (|#2| |#2|)) (-15 -1649 (|#2| |#2|)) (-15 -1650 (|#2| |#2|)) (-15 -1651 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1653 (|#2| |#2|)) (-15 -1654 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -1658 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1662 (|#2| |#2|)) (-15 -1663 (|#2| |#2|)) (-15 -1664 (|#2| |#2|)) (-15 -1665 (|#2| |#2|)) (-15 -1666 ((-3 |#2| "failed") |#2| (-643 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1667 ((-112) |#2|))) +((-1670 (((-3 |#2| "failed") (-643 (-613 |#2|)) |#2| (-1180)) 153)) (-1672 ((|#2| (-410 (-549)) |#2|) 49)) (-1671 ((|#2| |#2| (-613 |#2|)) 146)) (-1668 (((-2 (|:| |func| |#2|) (|:| |kers| (-643 (-613 |#2|))) (|:| |vals| (-643 |#2|))) |#2| (-1180)) 145)) (-1669 ((|#2| |#2| (-1180)) 20) ((|#2| |#2|) 23)) (-2764 ((|#2| |#2| (-1180)) 159) ((|#2| |#2|) 157))) +(((-278 |#1| |#2|) (-10 -7 (-15 -2764 (|#2| |#2|)) (-15 -2764 (|#2| |#2| (-1180))) (-15 -1668 ((-2 (|:| |func| |#2|) (|:| |kers| (-643 (-613 |#2|))) (|:| |vals| (-643 |#2|))) |#2| (-1180))) (-15 -1669 (|#2| |#2|)) (-15 -1669 (|#2| |#2| (-1180))) (-15 -1670 ((-3 |#2| "failed") (-643 (-613 |#2|)) |#2| (-1180))) (-15 -1671 (|#2| |#2| (-613 |#2|))) (-15 -1672 (|#2| (-410 (-549)) |#2|))) (-13 (-560) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -278)) +((-1672 (*1 *2 *3 *2) (-12 (-5 *3 (-410 (-549))) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-1671 (*1 *2 *2 *3) (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2)))) (-1670 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-643 (-613 *2))) (-5 *4 (-1180)) (-4 *2 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *5 *2)))) (-1669 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-1669 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-1668 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-643 (-613 *3))) (|:| |vals| (-643 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2764 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) +(-10 -7 (-15 -2764 (|#2| |#2|)) (-15 -2764 (|#2| |#2| (-1180))) (-15 -1668 ((-2 (|:| |func| |#2|) (|:| |kers| (-643 (-613 |#2|))) (|:| |vals| (-643 |#2|))) |#2| (-1180))) (-15 -1669 (|#2| |#2|)) (-15 -1669 (|#2| |#2| (-1180))) (-15 -1670 ((-3 |#2| "failed") (-643 (-613 |#2|)) |#2| (-1180))) (-15 -1671 (|#2| |#2| (-613 |#2|))) (-15 -1672 (|#2| (-410 (-549)) |#2|))) +((-3376 (((-3 |#3| #1="failed") |#3|) 120)) (-3915 ((|#3| |#3|) 142)) (-3364 (((-3 |#3| #1#) |#3|) 89)) (-4071 ((|#3| |#3|) 132)) (-3374 (((-3 |#3| #1#) |#3|) 65)) (-3913 ((|#3| |#3|) 140)) (-3362 (((-3 |#3| #1#) |#3|) 53)) (-4070 ((|#3| |#3|) 130)) (-3378 (((-3 |#3| #1#) |#3|) 122)) (-3917 ((|#3| |#3|) 144)) (-3366 (((-3 |#3| #1#) |#3|) 91)) (-4069 ((|#3| |#3|) 134)) (-3359 (((-3 |#3| #1#) |#3| (-773)) 41)) (-3361 (((-3 |#3| #1#) |#3|) 81)) (-4374 ((|#3| |#3|) 129)) (-3360 (((-3 |#3| #1#) |#3|) 51)) (-4375 ((|#3| |#3|) 128)) (-3379 (((-3 |#3| #1#) |#3|) 123)) (-3918 ((|#3| |#3|) 145)) (-3367 (((-3 |#3| #1#) |#3|) 92)) (-4068 ((|#3| |#3|) 135)) (-3377 (((-3 |#3| #1#) |#3|) 121)) (-3916 ((|#3| |#3|) 143)) (-3365 (((-3 |#3| #1#) |#3|) 90)) (-4067 ((|#3| |#3|) 133)) (-3375 (((-3 |#3| #1#) |#3|) 67)) (-3914 ((|#3| |#3|) 141)) (-3363 (((-3 |#3| #1#) |#3|) 55)) (-4066 ((|#3| |#3|) 131)) (-3382 (((-3 |#3| #1#) |#3|) 73)) (-3921 ((|#3| |#3|) 148)) (-3370 (((-3 |#3| #1#) |#3|) 114)) (-3909 ((|#3| |#3|) 152)) (-3380 (((-3 |#3| #1#) |#3|) 69)) (-3919 ((|#3| |#3|) 146)) (-3368 (((-3 |#3| #1#) |#3|) 57)) (-3907 ((|#3| |#3|) 136)) (-3384 (((-3 |#3| #1#) |#3|) 77)) (-3923 ((|#3| |#3|) 150)) (-3372 (((-3 |#3| #1#) |#3|) 61)) (-3911 ((|#3| |#3|) 138)) (-3385 (((-3 |#3| #1#) |#3|) 79)) (-3924 ((|#3| |#3|) 151)) (-3373 (((-3 |#3| #1#) |#3|) 63)) (-3912 ((|#3| |#3|) 139)) (-3383 (((-3 |#3| #1#) |#3|) 75)) (-3922 ((|#3| |#3|) 149)) (-3371 (((-3 |#3| #1#) |#3|) 117)) (-3910 ((|#3| |#3|) 153)) (-3381 (((-3 |#3| #1#) |#3|) 71)) (-3920 ((|#3| |#3|) 147)) (-3369 (((-3 |#3| #1#) |#3|) 59)) (-3908 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-410 (-549))) 47 (|has| |#1| (-365))))) +(((-279 |#1| |#2| |#3|) (-13 (-986 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-549)))) |%noBranch|) (-15 -4375 (|#3| |#3|)) (-15 -4374 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) (-38 (-410 (-549))) (-1262 |#1|) (-1233 |#1| |#2|)) (T -279)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-549))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1262 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1233 *4 *5)))) (-4375 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1233 *3 *4))))) +(-13 (-986 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-549)))) |%noBranch|) (-15 -4375 (|#3| |#3|)) (-15 -4374 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) +((-3376 (((-3 |#3| #1="failed") |#3|) 70)) (-3915 ((|#3| |#3|) 137)) (-3364 (((-3 |#3| #1#) |#3|) 54)) (-4071 ((|#3| |#3|) 125)) (-3374 (((-3 |#3| #1#) |#3|) 66)) (-3913 ((|#3| |#3|) 135)) (-3362 (((-3 |#3| #1#) |#3|) 50)) (-4070 ((|#3| |#3|) 123)) (-3378 (((-3 |#3| #1#) |#3|) 74)) (-3917 ((|#3| |#3|) 139)) (-3366 (((-3 |#3| #1#) |#3|) 58)) (-4069 ((|#3| |#3|) 127)) (-3359 (((-3 |#3| #1#) |#3| (-773)) 38)) (-3361 (((-3 |#3| #1#) |#3|) 48)) (-4374 ((|#3| |#3|) 111)) (-3360 (((-3 |#3| #1#) |#3|) 46)) (-4375 ((|#3| |#3|) 122)) (-3379 (((-3 |#3| #1#) |#3|) 76)) (-3918 ((|#3| |#3|) 140)) (-3367 (((-3 |#3| #1#) |#3|) 60)) (-4068 ((|#3| |#3|) 128)) (-3377 (((-3 |#3| #1#) |#3|) 72)) (-3916 ((|#3| |#3|) 138)) (-3365 (((-3 |#3| #1#) |#3|) 56)) (-4067 ((|#3| |#3|) 126)) (-3375 (((-3 |#3| #1#) |#3|) 68)) (-3914 ((|#3| |#3|) 136)) (-3363 (((-3 |#3| #1#) |#3|) 52)) (-4066 ((|#3| |#3|) 124)) (-3382 (((-3 |#3| #1#) |#3|) 78)) (-3921 ((|#3| |#3|) 143)) (-3370 (((-3 |#3| #1#) |#3|) 62)) (-3909 ((|#3| |#3|) 131)) (-3380 (((-3 |#3| #1#) |#3|) 112)) (-3919 ((|#3| |#3|) 141)) (-3368 (((-3 |#3| #1#) |#3|) 100)) (-3907 ((|#3| |#3|) 129)) (-3384 (((-3 |#3| #1#) |#3|) 116)) (-3923 ((|#3| |#3|) 145)) (-3372 (((-3 |#3| #1#) |#3|) 107)) (-3911 ((|#3| |#3|) 133)) (-3385 (((-3 |#3| #1#) |#3|) 117)) (-3924 ((|#3| |#3|) 146)) (-3373 (((-3 |#3| #1#) |#3|) 109)) (-3912 ((|#3| |#3|) 134)) (-3383 (((-3 |#3| #1#) |#3|) 80)) (-3922 ((|#3| |#3|) 144)) (-3371 (((-3 |#3| #1#) |#3|) 64)) (-3910 ((|#3| |#3|) 132)) (-3381 (((-3 |#3| #1#) |#3|) 113)) (-3920 ((|#3| |#3|) 142)) (-3369 (((-3 |#3| #1#) |#3|) 103)) (-3908 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-410 (-549))) 44 (|has| |#1| (-365))))) +(((-280 |#1| |#2| |#3| |#4|) (-13 (-986 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-549)))) |%noBranch|) (-15 -4375 (|#3| |#3|)) (-15 -4374 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) (-38 (-410 (-549))) (-1231 |#1|) (-1254 |#1| |#2|) (-986 |#2|)) (T -280)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-549))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1231 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1254 *4 *5)) (-4 *6 (-986 *5)))) (-4375 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3923 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4))))) +(-13 (-986 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-549)))) |%noBranch|) (-15 -4375 (|#3| |#3|)) (-15 -4374 (|#3| |#3|)) (-15 -4070 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4071 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)) (-15 -3922 (|#3| |#3|)) (-15 -3923 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)))) +((-1675 (((-112) $) 20)) (-1677 (((-1185) $) 7)) (-4000 (((-3 (-509) "failed") $) 14)) (-3999 (((-3 (-643 $) "failed") $) NIL)) (-1674 (((-3 (-509) "failed") $) 21)) (-1676 (((-3 (-1106) "failed") $) 18)) (-4385 (((-112) $) 16)) (-4378 (((-865) $) NIL)) (-1673 (((-112) $) 9))) +(((-281) (-13 (-615 (-865)) (-10 -8 (-15 -1677 ((-1185) $)) (-15 -4385 ((-112) $)) (-15 -1676 ((-3 (-1106) "failed") $)) (-15 -1675 ((-112) $)) (-15 -1674 ((-3 (-509) "failed") $)) (-15 -1673 ((-112) $)) (-15 -4000 ((-3 (-509) "failed") $)) (-15 -3999 ((-3 (-643 $) "failed") $))))) (T -281)) +((-1677 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-281)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-1676 (*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-1674 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-4000 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-3999 (*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-281))) (-5 *1 (-281))))) +(-13 (-615 (-865)) (-10 -8 (-15 -1677 ((-1185) $)) (-15 -4385 ((-112) $)) (-15 -1676 ((-3 (-1106) "failed") $)) (-15 -1675 ((-112) $)) (-15 -1674 ((-3 (-509) "failed") $)) (-15 -1673 ((-112) $)) (-15 -4000 ((-3 (-509) "failed") $)) (-15 -3999 ((-3 (-643 $) "failed") $)))) +((-4142 (($ (-1 (-112) |#2|) $) 24)) (-1440 (($ $) 38)) (-3829 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3830 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3259 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2449 (($ |#2| $ (-549)) 20) (($ $ $ (-549)) 22)) (-2450 (($ $ (-549)) 11) (($ $ (-1236 (-549))) 14)) (-4222 (($ $ |#2|) 32) (($ $ $) NIL)) (-4233 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-643 $)) NIL))) +(((-282 |#1| |#2|) (-10 -8 (-15 -3259 (|#1| |#1| |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -3259 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4222 (|#1| |#1| |#2|)) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -3830 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4142 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3830 (|#1| |#2| |#1|)) (-15 -1440 (|#1| |#1|))) (-283 |#2|) (-1219)) (T -282)) +NIL +(-10 -8 (-15 -3259 (|#1| |#1| |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -3259 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4222 (|#1| |#1| |#2|)) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -3830 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4142 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3830 (|#1| |#2| |#1|)) (-15 -1440 (|#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) 86)) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2526 (($ $) 84 (|has| |#1| (-1104)))) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1104)))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-3259 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4039 (($ |#1| $ (-549)) 89) (($ $ $ (-549)) 88)) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-1679 (($ $ (-549)) 92) (($ $ (-1236 (-549))) 91)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4222 (($ $ |#1|) 94) (($ $ $) 93)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-283 |#1|) (-140) (-1219)) (T -283)) -((-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-3416 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-4197 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-3636 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-3636 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-3196 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-2105 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-4197 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))) (-3048 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))) (-3196 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-851))))) -(-13 (-652 |t#1|) (-10 -8 (-6 -4423) (-15 -3416 ($ $ |t#1|)) (-15 -3416 ($ $ $)) (-15 -1664 ($ $ (-567))) (-15 -1664 ($ $ (-1236 (-567)))) (-15 -4197 ($ (-1 (-112) |t#1|) $)) (-15 -3636 ($ |t#1| $ (-567))) (-15 -3636 ($ $ $ (-567))) (-15 -3196 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2105 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -4197 ($ |t#1| $)) (-15 -3048 ($ $))) |%noBranch|) (IF (|has| |t#1| (-851)) (-15 -3196 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) +((-4222 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-4039 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-283 *2)) (-4 *2 (-1219)))) (-4039 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-3259 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-1678 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) (-3829 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) (-2526 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) (-3259 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-852))))) +(-13 (-653 |t#1|) (-10 -8 (-6 -4426) (-15 -4222 ($ $ |t#1|)) (-15 -4222 ($ $ $)) (-15 -1679 ($ $ (-549))) (-15 -1679 ($ $ (-1236 (-549)))) (-15 -3829 ($ (-1 (-112) |t#1|) $)) (-15 -4039 ($ |t#1| $ (-549))) (-15 -4039 ($ $ $ (-549))) (-15 -3259 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1678 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -3829 ($ |t#1| $)) (-15 -2526 ($ $))) |%noBranch|) (IF (|has| |t#1| (-852)) (-15 -3259 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) ((** (($ $ $) 10))) (((-284 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-285)) (T -284)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2734 (($ $) 6)) (-4272 (($ $) 7)) (** (($ $ $) 8))) +((-4374 (($ $) 6)) (-4375 (($ $) 7)) (** (($ $ $) 8))) (((-285) (-140)) (T -285)) -((** (*1 *1 *1 *1) (-4 *1 (-285))) (-4272 (*1 *1 *1) (-4 *1 (-285))) (-2734 (*1 *1 *1) (-4 *1 (-285)))) -(-13 (-10 -8 (-15 -2734 ($ $)) (-15 -4272 ($ $)) (-15 ** ($ $ $)))) -((-1824 (((-645 (-1159 |#1|)) (-1159 |#1|) |#1|) 35)) (-3900 ((|#2| |#2| |#1|) 39)) (-4330 ((|#2| |#2| |#1|) 41)) (-1536 ((|#2| |#2| |#1|) 40))) -(((-286 |#1| |#2|) (-10 -7 (-15 -3900 (|#2| |#2| |#1|)) (-15 -1536 (|#2| |#2| |#1|)) (-15 -4330 (|#2| |#2| |#1|)) (-15 -1824 ((-645 (-1159 |#1|)) (-1159 |#1|) |#1|))) (-365) (-1260 |#1|)) (T -286)) -((-1824 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1159 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1159 *4)) (-4 *5 (-1260 *4)))) (-4330 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3)))) (-1536 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3)))) (-3900 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3))))) -(-10 -7 (-15 -3900 (|#2| |#2| |#1|)) (-15 -1536 (|#2| |#2| |#1|)) (-15 -4330 (|#2| |#2| |#1|)) (-15 -1824 ((-645 (-1159 |#1|)) (-1159 |#1|) |#1|))) -((-1882 ((|#2| $ |#1|) 6))) -(((-287 |#1| |#2|) (-140) (-1102) (-1219)) (T -287)) -((-1882 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -1882 (|t#2| $ |t#1|)))) -((-2036 ((|#3| $ |#2| |#3|) 12)) (-1970 ((|#3| $ |#2|) 10))) -(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -2036 (|#3| |#1| |#2| |#3|)) (-15 -1970 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1102) (-1219)) (T -288)) -NIL -(-10 -8 (-15 -2036 (|#3| |#1| |#2| |#3|)) (-15 -1970 (|#3| |#1| |#2|))) -((-3824 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4423)))) (-2036 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) 11)) (-1882 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-289 |#1| |#2|) (-140) (-1102) (-1219)) (T -289)) -((-1882 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) (-1970 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) (-3824 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) (-2036 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219))))) -(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -1882 (|t#2| $ |t#1| |t#2|)) (-15 -1970 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4423)) (PROGN (-15 -3824 (|t#2| $ |t#1| |t#2|)) (-15 -2036 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-285))) (-4375 (*1 *1 *1) (-4 *1 (-285))) (-4374 (*1 *1 *1) (-4 *1 (-285)))) +(-13 (-10 -8 (-15 -4374 ($ $)) (-15 -4375 ($ $)) (-15 ** ($ $ $)))) +((-1683 (((-643 (-1157 |#1|)) (-1157 |#1|) |#1|) 35)) (-1680 ((|#2| |#2| |#1|) 39)) (-1682 ((|#2| |#2| |#1|) 41)) (-1681 ((|#2| |#2| |#1|) 40))) +(((-286 |#1| |#2|) (-10 -7 (-15 -1680 (|#2| |#2| |#1|)) (-15 -1681 (|#2| |#2| |#1|)) (-15 -1682 (|#2| |#2| |#1|)) (-15 -1683 ((-643 (-1157 |#1|)) (-1157 |#1|) |#1|))) (-365) (-1262 |#1|)) (T -286)) +((-1683 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-643 (-1157 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1157 *4)) (-4 *5 (-1262 *4)))) (-1682 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3)))) (-1681 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3)))) (-1680 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3))))) +(-10 -7 (-15 -1680 (|#2| |#2| |#1|)) (-15 -1681 (|#2| |#2| |#1|)) (-15 -1682 (|#2| |#2| |#1|)) (-15 -1683 ((-643 (-1157 |#1|)) (-1157 |#1|) |#1|))) +((-4231 ((|#2| $ |#1|) 6))) +(((-287 |#1| |#2|) (-140) (-1104) (-1219)) (T -287)) +((-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219))))) +(-13 (-10 -8 (-15 -4231 (|t#2| $ |t#1|)))) +((-1684 ((|#3| $ |#2| |#3|) 12)) (-3517 ((|#3| $ |#2|) 10))) +(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -1684 (|#3| |#1| |#2| |#3|)) (-15 -3517 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1104) (-1219)) (T -288)) +NIL +(-10 -8 (-15 -1684 (|#3| |#1| |#2| |#3|)) (-15 -3517 (|#3| |#1| |#2|))) +((-4219 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4426)))) (-1684 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) 11)) (-4231 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-289 |#1| |#2|) (-140) (-1104) (-1219)) (T -289)) +((-4231 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) (-3517 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) (-1684 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219))))) +(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -4231 (|t#2| $ |t#1| |t#2|)) (-15 -3517 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4219 (|t#2| $ |t#1| |t#2|)) (-15 -1684 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-287 |#1| |#2|) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 37)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 44)) (-1987 (($ $) 41)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-2432 (($ $ $) 35)) (-2617 (($ |#2| |#3|) 18)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-4384 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4190 ((|#3| $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 19)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2957 (((-3 $ "failed") $ $) NIL)) (-2465 (((-772) $) 36)) (-1882 ((|#2| $ |#2|) 46)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 23)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) 31 T CONST)) (-1820 (($) 39 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40))) -(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -4190 (|#3| $)) (-15 -2504 (|#2| $)) (-15 -2617 ($ |#2| |#3|)) (-15 -2957 ((-3 $ "failed") $ $)) (-15 -1377 ((-3 $ "failed") $)) (-15 -1752 ($ $)) (-15 -1882 (|#2| $ |#2|)))) (-172) (-1245 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290)) -((-1377 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4190 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1245 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2504 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2617 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1245 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2957 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1752 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1882 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1245 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-308) (-10 -8 (-15 -4190 (|#3| $)) (-15 -2504 (|#2| $)) (-15 -2617 ($ |#2| |#3|)) (-15 -2957 ((-3 $ "failed") $ $)) (-15 -1377 ((-3 $ "failed") $)) (-15 -1752 ($ $)) (-15 -1882 (|#2| $ |#2|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 37)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 44)) (-2241 (($ $) 41)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) 35)) (-4274 (($ |#2| |#3|) 18)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 ((|#3| $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 19)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2565 (((-3 $ "failed") $ $) NIL)) (-1752 (((-773) $) 36)) (-4231 ((|#2| $ |#2|) 46)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 23)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 31 T CONST)) (-3067 (($) 39 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 40))) +(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -3014 (|#3| $)) (-15 -4378 (|#2| $)) (-15 -4274 ($ |#2| |#3|)) (-15 -2565 ((-3 $ "failed") $ $)) (-15 -3890 ((-3 $ "failed") $)) (-15 -2806 ($ $)) (-15 -4231 (|#2| $ |#2|)))) (-172) (-1245 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290)) +((-3890 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3014 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1245 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4378 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4274 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1245 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2565 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2806 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4231 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1245 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) +(-13 (-308) (-10 -8 (-15 -3014 (|#3| $)) (-15 -4378 (|#2| $)) (-15 -4274 ($ |#2| |#3|)) (-15 -2565 ((-3 $ "failed") $ $)) (-15 -3890 ((-3 $ "failed") $)) (-15 -2806 ($ $)) (-15 -4231 (|#2| $ |#2|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-291) (-140)) (T -291)) NIL -(-13 (-1051) (-111 $ $) (-10 -7 (-6 -4415))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-4269 (($ (-509) (-509) (-1106) $) 19)) (-1312 (($ (-509) (-645 (-967)) $) 23)) (-4238 (((-645 (-1087)) $) 10)) (-3272 (($) 25)) (-2860 (((-692 (-1106)) (-509) (-509) $) 18)) (-1803 (((-645 (-967)) (-509) $) 22)) (-2973 (($) 7)) (-1302 (($) 24)) (-2504 (((-863) $) 29)) (-3131 (($) 26))) -(((-292) (-13 (-614 (-863)) (-10 -8 (-15 -2973 ($)) (-15 -4238 ((-645 (-1087)) $)) (-15 -2860 ((-692 (-1106)) (-509) (-509) $)) (-15 -4269 ($ (-509) (-509) (-1106) $)) (-15 -1803 ((-645 (-967)) (-509) $)) (-15 -1312 ($ (-509) (-645 (-967)) $)) (-15 -1302 ($)) (-15 -3272 ($)) (-15 -3131 ($))))) (T -292)) -((-2973 (*1 *1) (-5 *1 (-292))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-645 (-1087))) (-5 *1 (-292)))) (-2860 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1106))) (-5 *1 (-292)))) (-4269 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292)))) (-1803 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-645 (-967))) (-5 *1 (-292)))) (-1312 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-292)))) (-1302 (*1 *1) (-5 *1 (-292))) (-3272 (*1 *1) (-5 *1 (-292))) (-3131 (*1 *1) (-5 *1 (-292)))) -(-13 (-614 (-863)) (-10 -8 (-15 -2973 ($)) (-15 -4238 ((-645 (-1087)) $)) (-15 -2860 ((-692 (-1106)) (-509) (-509) $)) (-15 -4269 ($ (-509) (-509) (-1106) $)) (-15 -1803 ((-645 (-967)) (-509) $)) (-15 -1312 ($ (-509) (-645 (-967)) $)) (-15 -1302 ($)) (-15 -3272 ($)) (-15 -3131 ($)))) -((-2297 (((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))) 105)) (-3605 (((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|)))) 100) (((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772)) 41)) (-1526 (((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))) 102)) (-1549 (((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|)))) 77)) (-4171 (((-645 (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (-690 (-410 (-954 |#1|)))) 76)) (-4019 (((-954 |#1|) (-690 (-410 (-954 |#1|)))) 57) (((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1179)) 58))) -(((-293 |#1|) (-10 -7 (-15 -4019 ((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1179))) (-15 -4019 ((-954 |#1|) (-690 (-410 (-954 |#1|))))) (-15 -4171 ((-645 (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (-690 (-410 (-954 |#1|))))) (-15 -1549 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))))) (-15 -3605 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772))) (-15 -3605 ((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|))))) (-15 -2297 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))) (-15 -1526 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))))) (-455)) (T -293)) -((-1526 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))) (-2297 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4)))))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-410 (-954 *5)) (-1168 (-1179) (-954 *5)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))) (-3605 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-410 (-954 *6)) (-1168 (-1179) (-954 *6)))) (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-954 *6)))))) (-1549 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-410 (-954 *5)) (-1168 (-1179) (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5)))))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-4 *4 (-455)) (-5 *2 (-645 (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4))))) (-5 *1 (-293 *4)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-5 *2 (-954 *4)) (-5 *1 (-293 *4)) (-4 *4 (-455)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-954 *5)))) (-5 *4 (-1179)) (-5 *2 (-954 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455))))) -(-10 -7 (-15 -4019 ((-954 |#1|) (-690 (-410 (-954 |#1|))) (-1179))) (-15 -4019 ((-954 |#1|) (-690 (-410 (-954 |#1|))))) (-15 -4171 ((-645 (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (-690 (-410 (-954 |#1|))))) (-15 -1549 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))))) (-15 -3605 ((-645 (-690 (-410 (-954 |#1|)))) (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|))) (-690 (-410 (-954 |#1|))) (-772) (-772))) (-15 -3605 ((-645 (-690 (-410 (-954 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|)))))) (-690 (-410 (-954 |#1|))))) (-15 -2297 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|))))) (-15 -1526 ((-645 (-2 (|:| |eigval| (-3 (-410 (-954 |#1|)) (-1168 (-1179) (-954 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-954 |#1|))))))) (-690 (-410 (-954 |#1|)))))) -((-4364 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14))) -(((-294 |#1| |#2|) (-10 -7 (-15 -4364 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1219) (-1219)) (T -294)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))) -(-10 -7 (-15 -4364 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2684 (((-112) $) NIL (|has| |#1| (-21)))) (-4151 (($ $) 12)) (-2932 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3072 (($ $ $) 95 (|has| |#1| (-303)))) (-3758 (($) NIL (-2836 (|has| |#1| (-21)) (|has| |#1| (-727))) CONST)) (-3433 (($ $) 51 (|has| |#1| (-21)))) (-3844 (((-3 $ "failed") $) 62 (|has| |#1| (-727)))) (-2141 ((|#1| $) 11)) (-1377 (((-3 $ "failed") $) 60 (|has| |#1| (-727)))) (-4384 (((-112) $) NIL (|has| |#1| (-727)))) (-4364 (($ (-1 |#1| |#1|) $) 14)) (-2128 ((|#1| $) 10)) (-2135 (($ $) 50 (|has| |#1| (-21)))) (-4051 (((-3 $ "failed") $) 61 (|has| |#1| (-727)))) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1752 (($ $) 64 (-2836 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3938 (((-645 $) $) 85 (|has| |#1| (-559)))) (-2913 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-1179) |#1|) 17 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 21 (|has| |#1| (-517 (-1179) |#1|)))) (-3382 (($ |#1| |#1|) 9)) (-2589 (((-134)) 90 (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) 87 (|has| |#1| (-902 (-1179))))) (-3307 (($ $ $) NIL (|has| |#1| (-476)))) (-4033 (($ $ $) NIL (|has| |#1| (-476)))) (-2504 (($ (-567)) NIL (|has| |#1| (-1051))) (((-112) $) 37 (|has| |#1| (-1102))) (((-863) $) 36 (|has| |#1| (-1102)))) (-2214 (((-772)) 67 (|has| |#1| (-1051)) CONST)) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1807 (($) 47 (|has| |#1| (-21)) CONST)) (-1820 (($) 57 (|has| |#1| (-727)) CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179))))) (-2968 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1102)))) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2836 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3054 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3045 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-567)) NIL (|has| |#1| (-476))) (($ $ (-772)) NIL (|has| |#1| (-727))) (($ $ (-923)) NIL (|has| |#1| (-1114)))) (* (($ $ |#1|) 55 (|has| |#1| (-1114))) (($ |#1| $) 54 (|has| |#1| (-1114))) (($ $ $) 53 (|has| |#1| (-1114))) (($ (-567) $) 70 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-25))))) -(((-295 |#1|) (-13 (-1219) (-10 -8 (-15 -2968 ($ |#1| |#1|)) (-15 -3382 ($ |#1| |#1|)) (-15 -4151 ($ $)) (-15 -2128 (|#1| $)) (-15 -2141 (|#1| $)) (-15 -4364 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1179) |#1|)) (-6 (-517 (-1179) |#1|)) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2913 ($ $ $)) (-15 -2913 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3045 ($ |#1| $)) (-15 -3045 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2135 ($ $)) (-15 -3433 ($ $)) (-15 -3054 ($ |#1| $)) (-15 -3054 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1114)) (PROGN (-6 (-1114)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -4051 ((-3 $ "failed") $)) (-15 -3844 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -4051 ((-3 $ "failed") $)) (-15 -3844 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3938 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-902 (-1179))) (-6 (-902 (-1179))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1276 |#1|)) (-15 -3064 ($ $ $)) (-15 -1752 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -3072 ($ $ $)) |%noBranch|))) (-1219)) (T -295)) -((-2968 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-3382 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-2128 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-2141 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-295 *3)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)) (-5 *1 (-295 *2)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1102)) (-4 *3 (-1219)) (-5 *1 (-295 *3)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-3433 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-3054 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-3054 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-4051 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1219)))) (-3844 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1219)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) (-4 *3 (-1219)))) (-3072 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1219)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1219)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1219)))) (-3064 (*1 *1 *1 *1) (-2836 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) (-1752 (*1 *1 *1) (-2836 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1219)))))) -(-13 (-1219) (-10 -8 (-15 -2968 ($ |#1| |#1|)) (-15 -3382 ($ |#1| |#1|)) (-15 -4151 ($ $)) (-15 -2128 (|#1| $)) (-15 -2141 (|#1| $)) (-15 -4364 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1179) |#1|)) (-6 (-517 (-1179) |#1|)) |%noBranch|) (IF (|has| |#1| (-1102)) (PROGN (-6 (-1102)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -2913 ($ $ $)) (-15 -2913 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3045 ($ |#1| $)) (-15 -3045 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2135 ($ $)) (-15 -3433 ($ $)) (-15 -3054 ($ |#1| $)) (-15 -3054 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1114)) (PROGN (-6 (-1114)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -4051 ((-3 $ "failed") $)) (-15 -3844 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -4051 ((-3 $ "failed") $)) (-15 -3844 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3938 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-902 (-1179))) (-6 (-902 (-1179))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1276 |#1|)) (-15 -3064 ($ $ $)) (-15 -1752 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -3072 ($ $ $)) |%noBranch|))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3095 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#2| $ |#1| |#2|) NIL)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 |#2| "failed") |#1| $) NIL)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) NIL)) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) NIL)) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 ((|#1| $) NIL (|has| |#1| (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 ((|#1| $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1512 (((-645 |#1|) $) NIL)) (-1560 (((-112) |#1| $) NIL)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3360 (((-645 |#1|) $) NIL)) (-2919 (((-112) |#1| $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3436 ((|#2| $) NIL (|has| |#1| (-851)))) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-296 |#1| |#2|) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) (-1102) (-1102)) (T -296)) -NIL -(-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) -((-3554 (((-313) (-1161) (-645 (-1161))) 17) (((-313) (-1161) (-1161)) 16) (((-313) (-645 (-1161))) 15) (((-313) (-1161)) 14))) -(((-297) (-10 -7 (-15 -3554 ((-313) (-1161))) (-15 -3554 ((-313) (-645 (-1161)))) (-15 -3554 ((-313) (-1161) (-1161))) (-15 -3554 ((-313) (-1161) (-645 (-1161)))))) (T -297)) -((-3554 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1161))) (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297)))) (-3554 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-313)) (-5 *1 (-297)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297))))) -(-10 -7 (-15 -3554 ((-313) (-1161))) (-15 -3554 ((-313) (-645 (-1161)))) (-15 -3554 ((-313) (-1161) (-1161))) (-15 -3554 ((-313) (-1161) (-645 (-1161))))) -((-4364 ((|#2| (-1 |#2| |#1|) (-1161) (-613 |#1|)) 18))) -(((-298 |#1| |#2|) (-10 -7 (-15 -4364 (|#2| (-1 |#2| |#1|) (-1161) (-613 |#1|)))) (-303) (-1219)) (T -298)) -((-4364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1161)) (-5 *5 (-613 *6)) (-4 *6 (-303)) (-4 *2 (-1219)) (-5 *1 (-298 *6 *2))))) -(-10 -7 (-15 -4364 (|#2| (-1 |#2| |#1|) (-1161) (-613 |#1|)))) -((-4364 ((|#2| (-1 |#2| |#1|) (-613 |#1|)) 17))) -(((-299 |#1| |#2|) (-10 -7 (-15 -4364 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) (-303) (-303)) (T -299)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2))))) -(-10 -7 (-15 -4364 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) -((-2113 (((-112) (-225)) 12))) -(((-300 |#1| |#2|) (-10 -7 (-15 -2113 ((-112) (-225)))) (-225) (-225)) (T -300)) -((-2113 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2113 ((-112) (-225)))) -((-2776 (((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225)))) 118)) (-4060 (((-1159 (-225)) (-1269 (-317 (-225))) (-645 (-1179)) (-1096 (-844 (-225)))) 135) (((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225)))) 72)) (-1707 (((-645 (-1161)) (-1159 (-225))) NIL)) (-1967 (((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225)))) 69)) (-2514 (((-645 (-225)) (-954 (-410 (-567))) (-1179) (-1096 (-844 (-225)))) 59)) (-2459 (((-645 (-1161)) (-645 (-225))) NIL)) (-1740 (((-225) (-1096 (-844 (-225)))) 29)) (-1907 (((-225) (-1096 (-844 (-225)))) 30)) (-3125 (((-112) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3990 (((-1161) (-225)) NIL))) -(((-301) (-10 -7 (-15 -1740 ((-225) (-1096 (-844 (-225))))) (-15 -1907 ((-225) (-1096 (-844 (-225))))) (-15 -3125 ((-112) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1967 ((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225))))) (-15 -2776 ((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -4060 ((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -4060 ((-1159 (-225)) (-1269 (-317 (-225))) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -2514 ((-645 (-225)) (-954 (-410 (-567))) (-1179) (-1096 (-844 (-225))))) (-15 -3990 ((-1161) (-225))) (-15 -2459 ((-645 (-1161)) (-645 (-225)))) (-15 -1707 ((-645 (-1161)) (-1159 (-225)))))) (T -301)) -((-1707 (*1 *2 *3) (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-301)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-301)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-301)))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *4 (-1179)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-4060 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *4 (-645 (-1179))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))) (-4060 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1179))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))) (-2776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1179))) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))) (-1967 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1179)) (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))) -(-10 -7 (-15 -1740 ((-225) (-1096 (-844 (-225))))) (-15 -1907 ((-225) (-1096 (-844 (-225))))) (-15 -3125 ((-112) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1967 ((-645 (-225)) (-317 (-225)) (-1179) (-1096 (-844 (-225))))) (-15 -2776 ((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -4060 ((-1159 (-225)) (-317 (-225)) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -4060 ((-1159 (-225)) (-1269 (-317 (-225))) (-645 (-1179)) (-1096 (-844 (-225))))) (-15 -2514 ((-645 (-225)) (-954 (-410 (-567))) (-1179) (-1096 (-844 (-225))))) (-15 -3990 ((-1161) (-225))) (-15 -2459 ((-645 (-1161)) (-645 (-225)))) (-15 -1707 ((-645 (-1161)) (-1159 (-225))))) -((-3526 (((-645 (-613 $)) $) 27)) (-3072 (($ $ (-295 $)) 78) (($ $ (-645 (-295 $))) 139) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-4275 (((-3 (-613 $) "failed") $) 127)) (-3094 (((-613 $) $) 126)) (-2998 (($ $) 17) (($ (-645 $)) 54)) (-2131 (((-645 (-114)) $) 35)) (-3609 (((-114) (-114)) 88)) (-3807 (((-112) $) 150)) (-4364 (($ (-1 $ $) (-613 $)) 86)) (-2126 (((-3 (-613 $) "failed") $) 94)) (-4369 (($ (-114) $) 59) (($ (-114) (-645 $)) 110)) (-2208 (((-112) $ (-114)) 132) (((-112) $ (-1179)) 131)) (-1337 (((-772) $) 44)) (-2769 (((-112) $ $) 57) (((-112) $ (-1179)) 49)) (-1359 (((-112) $) 148)) (-2913 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) 81) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) 67) (($ $ (-1179) (-1 $ $)) 72) (($ $ (-645 (-114)) (-645 (-1 $ $))) 80) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 82) (($ $ (-114) (-1 $ (-645 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1882 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-645 $)) 123)) (-1929 (($ $) 51) (($ $ $) 135)) (-2130 (($ $) 15) (($ (-645 $)) 53)) (-3862 (((-112) (-114)) 21))) -(((-302 |#1|) (-10 -8 (-15 -3807 ((-112) |#1|)) (-15 -1359 ((-112) |#1|)) (-15 -2913 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2913 (|#1| |#1| (-1179) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-1179) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| |#1|)))) (-15 -2769 ((-112) |#1| (-1179))) (-15 -2769 ((-112) |#1| |#1|)) (-15 -4364 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -4369 (|#1| (-114) (-645 |#1|))) (-15 -4369 (|#1| (-114) |#1|)) (-15 -2208 ((-112) |#1| (-1179))) (-15 -2208 ((-112) |#1| (-114))) (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -2131 ((-645 (-114)) |#1|)) (-15 -3526 ((-645 (-613 |#1|)) |#1|)) (-15 -2126 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1337 ((-772) |#1|)) (-15 -1929 (|#1| |#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -2998 (|#1| (-645 |#1|))) (-15 -2998 (|#1| |#1|)) (-15 -2130 (|#1| (-645 |#1|))) (-15 -2130 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3072 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3072 (|#1| |#1| (-295 |#1|))) (-15 -1882 (|#1| (-114) (-645 |#1|))) (-15 -1882 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2913 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4275 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3094 ((-613 |#1|) |#1|))) (-303)) (T -302)) -((-3609 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))) -(-10 -8 (-15 -3807 ((-112) |#1|)) (-15 -1359 ((-112) |#1|)) (-15 -2913 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2913 (|#1| |#1| (-1179) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-1179) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| |#1|)))) (-15 -2769 ((-112) |#1| (-1179))) (-15 -2769 ((-112) |#1| |#1|)) (-15 -4364 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -4369 (|#1| (-114) (-645 |#1|))) (-15 -4369 (|#1| (-114) |#1|)) (-15 -2208 ((-112) |#1| (-1179))) (-15 -2208 ((-112) |#1| (-114))) (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -2131 ((-645 (-114)) |#1|)) (-15 -3526 ((-645 (-613 |#1|)) |#1|)) (-15 -2126 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1337 ((-772) |#1|)) (-15 -1929 (|#1| |#1| |#1|)) (-15 -1929 (|#1| |#1|)) (-15 -2998 (|#1| (-645 |#1|))) (-15 -2998 (|#1| |#1|)) (-15 -2130 (|#1| (-645 |#1|))) (-15 -2130 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3072 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3072 (|#1| |#1| (-295 |#1|))) (-15 -1882 (|#1| (-114) (-645 |#1|))) (-15 -1882 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2913 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4275 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3094 ((-613 |#1|) |#1|))) -((-2487 (((-112) $ $) 7)) (-3526 (((-645 (-613 $)) $) 39)) (-3072 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-4275 (((-3 (-613 $) "failed") $) 64)) (-3094 (((-613 $) $) 65)) (-2998 (($ $) 46) (($ (-645 $)) 45)) (-2131 (((-645 (-114)) $) 38)) (-3609 (((-114) (-114)) 37)) (-3807 (((-112) $) 17 (|has| $ (-1040 (-567))))) (-1935 (((-1175 $) (-613 $)) 20 (|has| $ (-1051)))) (-4364 (($ (-1 $ $) (-613 $)) 31)) (-2126 (((-3 (-613 $) "failed") $) 41)) (-1812 (((-1161) $) 10)) (-3599 (((-645 (-613 $)) $) 40)) (-4369 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-2208 (((-112) $ (-114)) 35) (((-112) $ (-1179)) 34)) (-1337 (((-772) $) 42)) (-3479 (((-1122) $) 11)) (-2769 (((-112) $ $) 30) (((-112) $ (-1179)) 29)) (-1359 (((-112) $) 18 (|has| $ (-1040 (-567))))) (-2913 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1179)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1179) (-1 $ (-645 $))) 26) (($ $ (-1179) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1882 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-1929 (($ $) 44) (($ $ $) 43)) (-2783 (($ $) 19 (|has| $ (-1051)))) (-2504 (((-863) $) 12) (($ (-613 $)) 63)) (-2130 (($ $) 48) (($ (-645 $)) 47)) (-3862 (((-112) (-114)) 36)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-303) (-140)) (T -303)) -((-1882 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1882 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1882 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1882 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1882 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-2130 (*1 *1 *1) (-4 *1 (-303))) (-2130 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-2998 (*1 *1 *1) (-4 *1 (-303))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-1929 (*1 *1 *1) (-4 *1 (-303))) (-1929 (*1 *1 *1 *1) (-4 *1 (-303))) (-1337 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772)))) (-2126 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))) (-3609 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3862 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2208 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-2208 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1179)) (-5 *2 (-112)))) (-4369 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4369 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-4364 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303)))) (-2769 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-2769 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1179)) (-5 *2 (-112)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-1051)) (-4 *1 (-303)) (-5 *2 (-1175 *1)))) (-2783 (*1 *1 *1) (-12 (-4 *1 (-1051)) (-4 *1 (-303)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))) -(-13 (-1102) (-1040 (-613 $)) (-517 (-613 $) $) (-310 $) (-10 -8 (-15 -1882 ($ (-114) $)) (-15 -1882 ($ (-114) $ $)) (-15 -1882 ($ (-114) $ $ $)) (-15 -1882 ($ (-114) $ $ $ $)) (-15 -1882 ($ (-114) (-645 $))) (-15 -3072 ($ $ (-295 $))) (-15 -3072 ($ $ (-645 (-295 $)))) (-15 -3072 ($ $ (-645 (-613 $)) (-645 $))) (-15 -2130 ($ $)) (-15 -2130 ($ (-645 $))) (-15 -2998 ($ $)) (-15 -2998 ($ (-645 $))) (-15 -1929 ($ $)) (-15 -1929 ($ $ $)) (-15 -1337 ((-772) $)) (-15 -2126 ((-3 (-613 $) "failed") $)) (-15 -3599 ((-645 (-613 $)) $)) (-15 -3526 ((-645 (-613 $)) $)) (-15 -2131 ((-645 (-114)) $)) (-15 -3609 ((-114) (-114))) (-15 -3862 ((-112) (-114))) (-15 -2208 ((-112) $ (-114))) (-15 -2208 ((-112) $ (-1179))) (-15 -4369 ($ (-114) $)) (-15 -4369 ($ (-114) (-645 $))) (-15 -4364 ($ (-1 $ $) (-613 $))) (-15 -2769 ((-112) $ $)) (-15 -2769 ((-112) $ (-1179))) (-15 -2913 ($ $ (-645 (-1179)) (-645 (-1 $ $)))) (-15 -2913 ($ $ (-645 (-1179)) (-645 (-1 $ (-645 $))))) (-15 -2913 ($ $ (-1179) (-1 $ (-645 $)))) (-15 -2913 ($ $ (-1179) (-1 $ $))) (-15 -2913 ($ $ (-645 (-114)) (-645 (-1 $ $)))) (-15 -2913 ($ $ (-645 (-114)) (-645 (-1 $ (-645 $))))) (-15 -2913 ($ $ (-114) (-1 $ (-645 $)))) (-15 -2913 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1051)) (PROGN (-15 -1935 ((-1175 $) (-613 $))) (-15 -2783 ($ $))) |%noBranch|) (IF (|has| $ (-1040 (-567))) (PROGN (-15 -1359 ((-112) $)) (-15 -3807 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-617 #0=(-613 $)) . T) ((-614 (-863)) . T) ((-310 $) . T) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-1040 #0#) . T) ((-1102) . T)) -((-2666 (((-645 |#1|) (-645 |#1|)) 10))) -(((-304 |#1|) (-10 -7 (-15 -2666 ((-645 |#1|) (-645 |#1|)))) (-849)) (T -304)) -((-2666 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3))))) -(-10 -7 (-15 -2666 ((-645 |#1|) (-645 |#1|)))) -((-4364 (((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)) 17))) -(((-305 |#1| |#2|) (-10 -7 (-15 -4364 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) (-1051) (-1051)) (T -305)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6))))) -(-10 -7 (-15 -4364 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) -((-3257 (((-1269 (-317 (-381))) (-1269 (-317 (-225)))) 112)) (-2592 (((-1096 (-844 (-225))) (-1096 (-844 (-381)))) 45)) (-1707 (((-645 (-1161)) (-1159 (-225))) 94)) (-3518 (((-317 (-381)) (-954 (-225))) 55)) (-1851 (((-225) (-954 (-225))) 51)) (-1911 (((-1161) (-381)) 197)) (-1630 (((-844 (-225)) (-844 (-381))) 39)) (-1890 (((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1269 (-317 (-225)))) 165)) (-4133 (((-1037) (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) 209) (((-1037) (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))))) 207)) (-2434 (((-690 (-225)) (-645 (-225)) (-772)) 21)) (-2625 (((-1269 (-700)) (-645 (-225))) 101)) (-2459 (((-645 (-1161)) (-645 (-225))) 81)) (-4375 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-2113 (((-112) (-225) (-1096 (-844 (-225)))) 119)) (-3060 (((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-1740 (((-225) (-1096 (-844 (-225)))) 114)) (-1907 (((-225) (-1096 (-844 (-225)))) 115)) (-1577 (((-225) (-410 (-567))) 33)) (-3610 (((-1161) (-381)) 79)) (-1487 (((-225) (-381)) 24)) (-1787 (((-381) (-1269 (-317 (-225)))) 179)) (-3025 (((-317 (-225)) (-317 (-381))) 30)) (-3290 (((-410 (-567)) (-317 (-225))) 58)) (-4210 (((-317 (-410 (-567))) (-317 (-225))) 75)) (-1524 (((-317 (-381)) (-317 (-225))) 105)) (-2870 (((-225) (-317 (-225))) 59)) (-4360 (((-645 (-225)) (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) 70)) (-4098 (((-1096 (-844 (-225))) (-1096 (-844 (-225)))) 67)) (-3990 (((-1161) (-225)) 78)) (-3331 (((-700) (-225)) 97)) (-1962 (((-410 (-567)) (-225)) 60)) (-4168 (((-317 (-381)) (-225)) 54)) (-1322 (((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381))))) 48)) (-3644 (((-1037) (-645 (-1037))) 193) (((-1037) (-1037) (-1037)) 187)) (-2344 (((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) -(((-306) (-10 -7 (-15 -1487 ((-225) (-381))) (-15 -3025 ((-317 (-225)) (-317 (-381)))) (-15 -1630 ((-844 (-225)) (-844 (-381)))) (-15 -2592 ((-1096 (-844 (-225))) (-1096 (-844 (-381))))) (-15 -1322 ((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381)))))) (-15 -1962 ((-410 (-567)) (-225))) (-15 -3290 ((-410 (-567)) (-317 (-225)))) (-15 -2870 ((-225) (-317 (-225)))) (-15 -4375 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1787 ((-381) (-1269 (-317 (-225))))) (-15 -1890 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1269 (-317 (-225))))) (-15 -4210 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -4098 ((-1096 (-844 (-225))) (-1096 (-844 (-225))))) (-15 -4360 ((-645 (-225)) (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))))) (-15 -3331 ((-700) (-225))) (-15 -2625 ((-1269 (-700)) (-645 (-225)))) (-15 -1524 ((-317 (-381)) (-317 (-225)))) (-15 -3257 ((-1269 (-317 (-381))) (-1269 (-317 (-225))))) (-15 -2113 ((-112) (-225) (-1096 (-844 (-225))))) (-15 -3990 ((-1161) (-225))) (-15 -3610 ((-1161) (-381))) (-15 -2459 ((-645 (-1161)) (-645 (-225)))) (-15 -1707 ((-645 (-1161)) (-1159 (-225)))) (-15 -1740 ((-225) (-1096 (-844 (-225))))) (-15 -1907 ((-225) (-1096 (-844 (-225))))) (-15 -3644 ((-1037) (-1037) (-1037))) (-15 -3644 ((-1037) (-645 (-1037)))) (-15 -1911 ((-1161) (-381))) (-15 -4133 ((-1037) (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))))) (-15 -4133 ((-1037) (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))))) (-15 -2344 ((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3060 ((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3518 ((-317 (-381)) (-954 (-225)))) (-15 -1851 ((-225) (-954 (-225)))) (-15 -4168 ((-317 (-381)) (-225))) (-15 -1577 ((-225) (-410 (-567)))) (-15 -2434 ((-690 (-225)) (-645 (-225)) (-772))))) (T -306)) -((-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-306)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1161)) (-5 *1 (-306)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-645 (-1037))) (-5 *2 (-1037)) (-5 *1 (-306)))) (-3644 (*1 *2 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-306)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-306)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-306)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1161)) (-5 *1 (-306)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-306)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *4 (-1096 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-3257 (*1 *2 *3) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-1269 (-317 (-381)))) (-5 *1 (-306)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2625 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269 (-700))) (-5 *1 (-306)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))) (-4360 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-5 *2 (-645 (-225))) (-5 *1 (-306)))) (-4098 (*1 *2 *2) (-12 (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) (-5 *1 (-306)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) (-5 *1 (-306)))) (-1787 (*1 *2 *3) (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-4375 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-2870 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-645 (-1096 (-844 (-381))))) (-5 *2 (-645 (-1096 (-844 (-225))))) (-5 *1 (-306)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-1096 (-844 (-381)))) (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306)))) (-1630 (*1 *2 *3) (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) -(-10 -7 (-15 -1487 ((-225) (-381))) (-15 -3025 ((-317 (-225)) (-317 (-381)))) (-15 -1630 ((-844 (-225)) (-844 (-381)))) (-15 -2592 ((-1096 (-844 (-225))) (-1096 (-844 (-381))))) (-15 -1322 ((-645 (-1096 (-844 (-225)))) (-645 (-1096 (-844 (-381)))))) (-15 -1962 ((-410 (-567)) (-225))) (-15 -3290 ((-410 (-567)) (-317 (-225)))) (-15 -2870 ((-225) (-317 (-225)))) (-15 -4375 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -1787 ((-381) (-1269 (-317 (-225))))) (-15 -1890 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1269 (-317 (-225))))) (-15 -4210 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -4098 ((-1096 (-844 (-225))) (-1096 (-844 (-225))))) (-15 -4360 ((-645 (-225)) (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))))) (-15 -3331 ((-700) (-225))) (-15 -2625 ((-1269 (-700)) (-645 (-225)))) (-15 -1524 ((-317 (-381)) (-317 (-225)))) (-15 -3257 ((-1269 (-317 (-381))) (-1269 (-317 (-225))))) (-15 -2113 ((-112) (-225) (-1096 (-844 (-225))))) (-15 -3990 ((-1161) (-225))) (-15 -3610 ((-1161) (-381))) (-15 -2459 ((-645 (-1161)) (-645 (-225)))) (-15 -1707 ((-645 (-1161)) (-1159 (-225)))) (-15 -1740 ((-225) (-1096 (-844 (-225))))) (-15 -1907 ((-225) (-1096 (-844 (-225))))) (-15 -3644 ((-1037) (-1037) (-1037))) (-15 -3644 ((-1037) (-645 (-1037)))) (-15 -1911 ((-1161) (-381))) (-15 -4133 ((-1037) (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))))) (-15 -4133 ((-1037) (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))))) (-15 -2344 ((-1037) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3060 ((-1037) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3518 ((-317 (-381)) (-954 (-225)))) (-15 -1851 ((-225) (-954 (-225)))) (-15 -4168 ((-317 (-381)) (-225))) (-15 -1577 ((-225) (-410 (-567)))) (-15 -2434 ((-690 (-225)) (-645 (-225)) (-772)))) -((-4175 (((-112) $ $) 14)) (-2432 (($ $ $) 18)) (-2443 (($ $ $) 17)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 50)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 65)) (-1870 (($ $ $) 25) (($ (-645 $)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2478 (((-3 $ "failed") $ $) 21)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 53))) -(((-307 |#1|) (-10 -8 (-15 -1865 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -4266 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4266 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -4175 ((-112) |#1| |#1|)) (-15 -2897 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3393 ((-2 (|:| -1344 (-645 |#1|)) (|:| -2335 |#1|)) (-645 |#1|))) (-15 -1870 (|#1| (-645 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) -NIL -(-10 -8 (-15 -1865 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -4266 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4266 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -4175 ((-112) |#1| |#1|)) (-15 -2897 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3393 ((-2 (|:| -1344 (-645 |#1|)) (|:| -2335 |#1|)) (-645 |#1|))) (-15 -1870 (|#1| (-645 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-4175 (((-112) $ $) 65)) (-3758 (($) 18 T CONST)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-4384 (((-112) $) 35)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +(-13 (-1052) (-111 $ $) (-10 -7 (-6 -4418))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-1690 (($ (-509) (-509) (-1106) $) 19)) (-1688 (($ (-509) (-643 (-968)) $) 23)) (-1692 (((-643 (-1088)) $) 10)) (-1686 (($) 25)) (-1691 (((-693 (-1106)) (-509) (-509) $) 18)) (-1689 (((-643 (-968)) (-509) $) 22)) (-3996 (($) 7)) (-1687 (($) 24)) (-4378 (((-865) $) 29)) (-1685 (($) 26))) +(((-292) (-13 (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -1692 ((-643 (-1088)) $)) (-15 -1691 ((-693 (-1106)) (-509) (-509) $)) (-15 -1690 ($ (-509) (-509) (-1106) $)) (-15 -1689 ((-643 (-968)) (-509) $)) (-15 -1688 ($ (-509) (-643 (-968)) $)) (-15 -1687 ($)) (-15 -1686 ($)) (-15 -1685 ($))))) (T -292)) +((-3996 (*1 *1) (-5 *1 (-292))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-643 (-1088))) (-5 *1 (-292)))) (-1691 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-1106))) (-5 *1 (-292)))) (-1690 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292)))) (-1689 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-643 (-968))) (-5 *1 (-292)))) (-1688 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-968))) (-5 *1 (-292)))) (-1687 (*1 *1) (-5 *1 (-292))) (-1686 (*1 *1) (-5 *1 (-292))) (-1685 (*1 *1) (-5 *1 (-292)))) +(-13 (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -1692 ((-643 (-1088)) $)) (-15 -1691 ((-693 (-1106)) (-509) (-509) $)) (-15 -1690 ($ (-509) (-509) (-1106) $)) (-15 -1689 ((-643 (-968)) (-509) $)) (-15 -1688 ($ (-509) (-643 (-968)) $)) (-15 -1687 ($)) (-15 -1686 ($)) (-15 -1685 ($)))) +((-1696 (((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |geneigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|)))) 104)) (-1695 (((-643 (-691 (-410 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|)))))) (-691 (-410 (-949 |#1|)))) 99) (((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))) (-773) (-773)) 41)) (-1697 (((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|)))) 101)) (-1694 (((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|)))) 77)) (-1693 (((-643 (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (-691 (-410 (-949 |#1|)))) 76)) (-2770 (((-949 |#1|) (-691 (-410 (-949 |#1|)))) 57) (((-949 |#1|) (-691 (-410 (-949 |#1|))) (-1180)) 58))) +(((-293 |#1|) (-10 -7 (-15 -2770 ((-949 |#1|) (-691 (-410 (-949 |#1|))) (-1180))) (-15 -2770 ((-949 |#1|) (-691 (-410 (-949 |#1|))))) (-15 -1693 ((-643 (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (-691 (-410 (-949 |#1|))))) (-15 -1694 ((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))))) (-15 -1695 ((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))) (-773) (-773))) (-15 -1695 ((-643 (-691 (-410 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|)))))) (-691 (-410 (-949 |#1|))))) (-15 -1696 ((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |geneigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|))))) (-15 -1697 ((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|)))))) (-455)) (T -293)) +((-1697 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-643 (-2 (|:| |eigval| (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-691 (-410 (-949 *4)))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-643 (-2 (|:| |eigval| (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4)))) (|:| |geneigvec| (-643 (-691 (-410 (-949 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-691 (-410 (-949 *4)))))) (-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-410 (-949 *5)) (-1169 (-1180) (-949 *5)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 *4)))) (-4 *5 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-691 (-410 (-949 *5)))))) (-1695 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-410 (-949 *6)) (-1169 (-1180) (-949 *6)))) (-5 *5 (-773)) (-4 *6 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-691 (-410 (-949 *6)))))) (-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-410 (-949 *5)) (-1169 (-1180) (-949 *5)))) (-4 *5 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-691 (-410 (-949 *5)))))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 *4)))) (-4 *4 (-455)) (-5 *2 (-643 (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4))))) (-5 *1 (-293 *4)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 *4)))) (-5 *2 (-949 *4)) (-5 *1 (-293 *4)) (-4 *4 (-455)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-410 (-949 *5)))) (-5 *4 (-1180)) (-5 *2 (-949 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455))))) +(-10 -7 (-15 -2770 ((-949 |#1|) (-691 (-410 (-949 |#1|))) (-1180))) (-15 -2770 ((-949 |#1|) (-691 (-410 (-949 |#1|))))) (-15 -1693 ((-643 (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (-691 (-410 (-949 |#1|))))) (-15 -1694 ((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))))) (-15 -1695 ((-643 (-691 (-410 (-949 |#1|)))) (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|))) (-691 (-410 (-949 |#1|))) (-773) (-773))) (-15 -1695 ((-643 (-691 (-410 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|)))))) (-691 (-410 (-949 |#1|))))) (-15 -1696 ((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |geneigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|))))) (-15 -1697 ((-643 (-2 (|:| |eigval| (-3 (-410 (-949 |#1|)) (-1169 (-1180) (-949 |#1|)))) (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 |#1|))))))) (-691 (-410 (-949 |#1|)))))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3608 (((-112) $) NIL (|has| |#1| (-21)))) (-1703 (($ $) 12)) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1712 (($ $ $) 95 (|has| |#1| (-299)))) (-4156 (($) NIL (-3960 (|has| |#1| (-21)) (|has| |#1| (-728))) CONST)) (-1701 (($ $) 51 (|has| |#1| (-21)))) (-1699 (((-3 $ "failed") $) 62 (|has| |#1| (-728)))) (-3951 ((|#1| $) 11)) (-3890 (((-3 $ "failed") $) 60 (|has| |#1| (-728)))) (-2573 (((-112) $) NIL (|has| |#1| (-728)))) (-4390 (($ (-1 |#1| |#1|) $) 14)) (-3952 ((|#1| $) 10)) (-1702 (($ $) 50 (|has| |#1| (-21)))) (-1700 (((-3 $ "failed") $) 61 (|has| |#1| (-728)))) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2806 (($ $) 64 (-3960 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1698 (((-643 $) $) 85 (|has| |#1| (-560)))) (-4199 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-1180) |#1|) 17 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 21 (|has| |#1| (-517 (-1180) |#1|)))) (-3646 (($ |#1| |#1|) 9)) (-4343 (((-134)) 90 (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) 87 (|has| |#1| (-903 (-1180))))) (-3410 (($ $ $) NIL (|has| |#1| (-476)))) (-2756 (($ $ $) NIL (|has| |#1| (-476)))) (-4378 (($ (-549)) NIL (|has| |#1| (-1052))) (((-112) $) 37 (|has| |#1| (-1104))) (((-865) $) 36 (|has| |#1| (-1104)))) (-3530 (((-773)) 67 (|has| |#1| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3510 (($) 47 (|has| |#1| (-21)) CONST)) (-3067 (($) 57 (|has| |#1| (-728)) CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180))))) (-3455 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-3960 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-4269 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4271 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-549)) NIL (|has| |#1| (-476))) (($ $ (-773)) NIL (|has| |#1| (-728))) (($ $ (-922)) NIL (|has| |#1| (-1115)))) (* (($ $ |#1|) 55 (|has| |#1| (-1115))) (($ |#1| $) 54 (|has| |#1| (-1115))) (($ $ $) 53 (|has| |#1| (-1115))) (($ (-549) $) 70 (|has| |#1| (-21))) (($ (-773) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-25))))) +(((-294 |#1|) (-13 (-1219) (-10 -8 (-15 -3455 ($ |#1| |#1|)) (-15 -3646 ($ |#1| |#1|)) (-15 -1703 ($ $)) (-15 -3952 (|#1| $)) (-15 -3951 (|#1| $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1180) |#1|)) (-6 (-517 (-1180) |#1|)) |%noBranch|) (IF (|has| |#1| (-1104)) (PROGN (-6 (-1104)) (-6 (-615 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -4199 ($ $ $)) (-15 -4199 ($ $ (-643 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4271 ($ |#1| $)) (-15 -4271 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1702 ($ $)) (-15 -1701 ($ $)) (-15 -4269 ($ |#1| $)) (-15 -4269 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1115)) (PROGN (-6 (-1115)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-728)) (PROGN (-6 (-728)) (-15 -1700 ((-3 $ "failed") $)) (-15 -1699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -1700 ((-3 $ "failed") $)) (-15 -1699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-719 |#1|)) |%noBranch|) (IF (|has| |#1| (-560)) (-15 -1698 ((-643 $) $)) |%noBranch|) (IF (|has| |#1| (-903 (-1180))) (-6 (-903 (-1180))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1277 |#1|)) (-15 -4381 ($ $ $)) (-15 -2806 ($ $))) |%noBranch|) (IF (|has| |#1| (-299)) (-15 -1712 ($ $ $)) |%noBranch|))) (-1219)) (T -294)) +((-3455 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-3646 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-1703 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-3952 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-3951 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-294 *3)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1104)) (-4 *2 (-1219)) (-5 *1 (-294 *2)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-294 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1104)) (-4 *3 (-1219)) (-5 *1 (-294 *3)))) (-4271 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) (-4271 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) (-1702 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-4269 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-4269 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) (-1700 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-728)) (-4 *2 (-1219)))) (-1699 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-728)) (-4 *2 (-1219)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-643 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-560)) (-4 *3 (-1219)))) (-1712 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-299)) (-4 *2 (-1219)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1115)) (-4 *2 (-1219)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1115)) (-4 *2 (-1219)))) (-4381 (*1 *1 *1 *1) (-3960 (-12 (-5 *1 (-294 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) (-2806 (*1 *1 *1) (-3960 (-12 (-5 *1 (-294 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-476)) (-4 *2 (-1219)))))) +(-13 (-1219) (-10 -8 (-15 -3455 ($ |#1| |#1|)) (-15 -3646 ($ |#1| |#1|)) (-15 -1703 ($ $)) (-15 -3952 (|#1| $)) (-15 -3951 (|#1| $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1180) |#1|)) (-6 (-517 (-1180) |#1|)) |%noBranch|) (IF (|has| |#1| (-1104)) (PROGN (-6 (-1104)) (-6 (-615 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -4199 ($ $ $)) (-15 -4199 ($ $ (-643 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4271 ($ |#1| $)) (-15 -4271 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1702 ($ $)) (-15 -1701 ($ $)) (-15 -4269 ($ |#1| $)) (-15 -4269 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1115)) (PROGN (-6 (-1115)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-728)) (PROGN (-6 (-728)) (-15 -1700 ((-3 $ "failed") $)) (-15 -1699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -1700 ((-3 $ "failed") $)) (-15 -1699 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-719 |#1|)) |%noBranch|) (IF (|has| |#1| (-560)) (-15 -1698 ((-643 $) $)) |%noBranch|) (IF (|has| |#1| (-903 (-1180))) (-6 (-903 (-1180))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1277 |#1|)) (-15 -4381 ($ $ $)) (-15 -2806 ($ $))) |%noBranch|) (IF (|has| |#1| (-299)) (-15 -1712 ($ $ $)) |%noBranch|))) +((-4390 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14))) +(((-295 |#1| |#2|) (-10 -7 (-15 -4390 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1219) (-1219)) (T -295)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-294 *6)) (-5 *1 (-295 *5 *6))))) +(-10 -7 (-15 -4390 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) NIL)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-296 |#1| |#2|) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) (-1104) (-1104)) (T -296)) +NIL +(-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) +((-1704 (((-312) (-1162) (-643 (-1162))) 17) (((-312) (-1162) (-1162)) 16) (((-312) (-643 (-1162))) 15) (((-312) (-1162)) 14))) +(((-297) (-10 -7 (-15 -1704 ((-312) (-1162))) (-15 -1704 ((-312) (-643 (-1162)))) (-15 -1704 ((-312) (-1162) (-1162))) (-15 -1704 ((-312) (-1162) (-643 (-1162)))))) (T -297)) +((-1704 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-1162))) (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297)))) (-1704 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-312)) (-5 *1 (-297)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297))))) +(-10 -7 (-15 -1704 ((-312) (-1162))) (-15 -1704 ((-312) (-643 (-1162)))) (-15 -1704 ((-312) (-1162) (-1162))) (-15 -1704 ((-312) (-1162) (-643 (-1162))))) +((-1708 (((-643 (-613 $)) $) 27)) (-1712 (($ $ (-294 $)) 78) (($ $ (-643 (-294 $))) 139) (($ $ (-643 (-613 $)) (-643 $)) NIL)) (-3577 (((-3 (-613 $) "failed") $) 127)) (-3576 (((-613 $) $) 126)) (-2973 (($ $) 17) (($ (-643 $)) 54)) (-1707 (((-643 (-113)) $) 35)) (-3448 (((-113) (-113)) 88)) (-3076 (((-112) $) 150)) (-4390 (($ (-1 $ $) (-613 $)) 86)) (-1710 (((-3 (-613 $) "failed") $) 94)) (-2384 (($ (-113) $) 59) (($ (-113) (-643 $)) 110)) (-3035 (((-112) $ (-113)) 132) (((-112) $ (-1180)) 131)) (-3003 (((-773) $) 44)) (-1706 (((-112) $ $) 57) (((-112) $ (-1180)) 49)) (-3077 (((-112) $) 148)) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL) (($ $ (-643 (-294 $))) 137) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) 81) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) 67) (($ $ (-1180) (-1 $ $)) 72) (($ $ (-643 (-113)) (-643 (-1 $ $))) 80) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) 82) (($ $ (-113) (-1 $ (-643 $))) 68) (($ $ (-113) (-1 $ $)) 74)) (-4231 (($ (-113) $) 60) (($ (-113) $ $) 61) (($ (-113) $ $ $) 62) (($ (-113) $ $ $ $) 63) (($ (-113) (-643 $)) 123)) (-1711 (($ $) 51) (($ $ $) 135)) (-2990 (($ $) 15) (($ (-643 $)) 53)) (-2403 (((-112) (-113)) 21))) +(((-298 |#1|) (-10 -8 (-15 -3076 ((-112) |#1|)) (-15 -3077 ((-112) |#1|)) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| |#1|)))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| |#1|)))) (-15 -1706 ((-112) |#1| (-1180))) (-15 -1706 ((-112) |#1| |#1|)) (-15 -4390 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -2384 (|#1| (-113) (-643 |#1|))) (-15 -2384 (|#1| (-113) |#1|)) (-15 -3035 ((-112) |#1| (-1180))) (-15 -3035 ((-112) |#1| (-113))) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1707 ((-643 (-113)) |#1|)) (-15 -1708 ((-643 (-613 |#1|)) |#1|)) (-15 -1710 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3003 ((-773) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -2973 (|#1| (-643 |#1|))) (-15 -2973 (|#1| |#1|)) (-15 -2990 (|#1| (-643 |#1|))) (-15 -2990 (|#1| |#1|)) (-15 -1712 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -1712 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -1712 (|#1| |#1| (-294 |#1|))) (-15 -4231 (|#1| (-113) (-643 |#1|))) (-15 -4231 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3577 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3576 ((-613 |#1|) |#1|))) (-299)) (T -298)) +((-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-298 *3)) (-4 *3 (-299)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-298 *4)) (-4 *4 (-299))))) +(-10 -8 (-15 -3076 ((-112) |#1|)) (-15 -3077 ((-112) |#1|)) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| |#1|)))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| |#1|)))) (-15 -1706 ((-112) |#1| (-1180))) (-15 -1706 ((-112) |#1| |#1|)) (-15 -4390 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -2384 (|#1| (-113) (-643 |#1|))) (-15 -2384 (|#1| (-113) |#1|)) (-15 -3035 ((-112) |#1| (-1180))) (-15 -3035 ((-112) |#1| (-113))) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1707 ((-643 (-113)) |#1|)) (-15 -1708 ((-643 (-613 |#1|)) |#1|)) (-15 -1710 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3003 ((-773) |#1|)) (-15 -1711 (|#1| |#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -2973 (|#1| (-643 |#1|))) (-15 -2973 (|#1| |#1|)) (-15 -2990 (|#1| (-643 |#1|))) (-15 -2990 (|#1| |#1|)) (-15 -1712 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -1712 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -1712 (|#1| |#1| (-294 |#1|))) (-15 -4231 (|#1| (-113) (-643 |#1|))) (-15 -4231 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3577 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3576 ((-613 |#1|) |#1|))) +((-2968 (((-112) $ $) 7)) (-1708 (((-643 (-613 $)) $) 39)) (-1712 (($ $ (-294 $)) 51) (($ $ (-643 (-294 $))) 50) (($ $ (-643 (-613 $)) (-643 $)) 49)) (-3577 (((-3 (-613 $) "failed") $) 64)) (-3576 (((-613 $) $) 65)) (-2973 (($ $) 46) (($ (-643 $)) 45)) (-1707 (((-643 (-113)) $) 38)) (-3448 (((-113) (-113)) 37)) (-3076 (((-112) $) 17 (|has| $ (-1041 (-549))))) (-1705 (((-1174 $) (-613 $)) 20 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) 31)) (-1710 (((-3 (-613 $) "failed") $) 41)) (-3663 (((-1162) $) 10)) (-1709 (((-643 (-613 $)) $) 40)) (-2384 (($ (-113) $) 33) (($ (-113) (-643 $)) 32)) (-3035 (((-112) $ (-113)) 35) (((-112) $ (-1180)) 34)) (-3003 (((-773) $) 42)) (-3664 (((-1123) $) 11)) (-1706 (((-112) $ $) 30) (((-112) $ (-1180)) 29)) (-3077 (((-112) $) 18 (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) 62) (($ $ (-643 (-613 $)) (-643 $)) 61) (($ $ (-643 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-643 $) (-643 $)) 57) (($ $ (-643 (-1180)) (-643 (-1 $ $))) 28) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) 27) (($ $ (-1180) (-1 $ (-643 $))) 26) (($ $ (-1180) (-1 $ $)) 25) (($ $ (-643 (-113)) (-643 (-1 $ $))) 24) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) 23) (($ $ (-113) (-1 $ (-643 $))) 22) (($ $ (-113) (-1 $ $)) 21)) (-4231 (($ (-113) $) 56) (($ (-113) $ $) 55) (($ (-113) $ $ $) 54) (($ (-113) $ $ $ $) 53) (($ (-113) (-643 $)) 52)) (-1711 (($ $) 44) (($ $ $) 43)) (-3605 (($ $) 19 (|has| $ (-1052)))) (-4378 (((-865) $) 12) (($ (-613 $)) 63)) (-2990 (($ $) 48) (($ (-643 $)) 47)) (-2403 (((-112) (-113)) 36)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-299) (-140)) (T -299)) +((-4231 (*1 *1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-4231 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-4231 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-4231 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-4231 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 *1)) (-4 *1 (-299)))) (-1712 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-299)))) (-1712 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-294 *1))) (-4 *1 (-299)))) (-1712 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-613 *1))) (-5 *3 (-643 *1)) (-4 *1 (-299)))) (-2990 (*1 *1 *1) (-4 *1 (-299))) (-2990 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-299)))) (-2973 (*1 *1 *1) (-4 *1 (-299))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-299)))) (-1711 (*1 *1 *1) (-4 *1 (-299))) (-1711 (*1 *1 *1 *1) (-4 *1 (-299))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-773)))) (-1710 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-299)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-643 (-613 *1))) (-4 *1 (-299)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-643 (-613 *1))) (-4 *1 (-299)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-643 (-113))))) (-3448 (*1 *2 *2) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-2403 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3035 (*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-113)) (-5 *2 (-112)))) (-3035 (*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-1180)) (-5 *2 (-112)))) (-2384 (*1 *1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) (-2384 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 *1)) (-4 *1 (-299)))) (-4390 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-299)))) (-1706 (*1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-112)))) (-1706 (*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-1180)) (-5 *2 (-112)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-1 *1 *1))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1 *1 (-643 *1))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1 *1 *1)) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 (-1 *1 *1))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-643 *1))) (-4 *1 (-299)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-299)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-1052)) (-4 *1 (-299)) (-5 *2 (-1174 *1)))) (-3605 (*1 *1 *1) (-12 (-4 *1 (-1052)) (-4 *1 (-299)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1041 (-549))) (-4 *1 (-299)) (-5 *2 (-112)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-1041 (-549))) (-4 *1 (-299)) (-5 *2 (-112))))) +(-13 (-1104) (-1041 (-613 $)) (-517 (-613 $) $) (-310 $) (-10 -8 (-15 -4231 ($ (-113) $)) (-15 -4231 ($ (-113) $ $)) (-15 -4231 ($ (-113) $ $ $)) (-15 -4231 ($ (-113) $ $ $ $)) (-15 -4231 ($ (-113) (-643 $))) (-15 -1712 ($ $ (-294 $))) (-15 -1712 ($ $ (-643 (-294 $)))) (-15 -1712 ($ $ (-643 (-613 $)) (-643 $))) (-15 -2990 ($ $)) (-15 -2990 ($ (-643 $))) (-15 -2973 ($ $)) (-15 -2973 ($ (-643 $))) (-15 -1711 ($ $)) (-15 -1711 ($ $ $)) (-15 -3003 ((-773) $)) (-15 -1710 ((-3 (-613 $) "failed") $)) (-15 -1709 ((-643 (-613 $)) $)) (-15 -1708 ((-643 (-613 $)) $)) (-15 -1707 ((-643 (-113)) $)) (-15 -3448 ((-113) (-113))) (-15 -2403 ((-112) (-113))) (-15 -3035 ((-112) $ (-113))) (-15 -3035 ((-112) $ (-1180))) (-15 -2384 ($ (-113) $)) (-15 -2384 ($ (-113) (-643 $))) (-15 -4390 ($ (-1 $ $) (-613 $))) (-15 -1706 ((-112) $ $)) (-15 -1706 ((-112) $ (-1180))) (-15 -4199 ($ $ (-643 (-1180)) (-643 (-1 $ $)))) (-15 -4199 ($ $ (-643 (-1180)) (-643 (-1 $ (-643 $))))) (-15 -4199 ($ $ (-1180) (-1 $ (-643 $)))) (-15 -4199 ($ $ (-1180) (-1 $ $))) (-15 -4199 ($ $ (-643 (-113)) (-643 (-1 $ $)))) (-15 -4199 ($ $ (-643 (-113)) (-643 (-1 $ (-643 $))))) (-15 -4199 ($ $ (-113) (-1 $ (-643 $)))) (-15 -4199 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1052)) (PROGN (-15 -1705 ((-1174 $) (-613 $))) (-15 -3605 ($ $))) |%noBranch|) (IF (|has| $ (-1041 (-549))) (PROGN (-15 -3077 ((-112) $)) (-15 -3076 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-618 #1=(-613 $)) . T) ((-615 (-865)) . T) ((-310 $) . T) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-1041 #1#) . T) ((-1104) . T)) +((-4390 ((|#2| (-1 |#2| |#1|) (-1162) (-613 |#1|)) 18))) +(((-300 |#1| |#2|) (-10 -7 (-15 -4390 (|#2| (-1 |#2| |#1|) (-1162) (-613 |#1|)))) (-299) (-1219)) (T -300)) +((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1162)) (-5 *5 (-613 *6)) (-4 *6 (-299)) (-4 *2 (-1219)) (-5 *1 (-300 *6 *2))))) +(-10 -7 (-15 -4390 (|#2| (-1 |#2| |#1|) (-1162) (-613 |#1|)))) +((-4390 ((|#2| (-1 |#2| |#1|) (-613 |#1|)) 17))) +(((-301 |#1| |#2|) (-10 -7 (-15 -4390 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) (-299) (-299)) (T -301)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-299)) (-4 *2 (-299)) (-5 *1 (-301 *5 *2))))) +(-10 -7 (-15 -4390 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) +((-1715 (((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225)))) 118)) (-1716 (((-1157 (-225)) (-1269 (-315 (-225))) (-643 (-1180)) (-1092 (-844 (-225)))) 135) (((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225)))) 72)) (-1737 (((-643 (-1162)) (-1157 (-225))) NIL)) (-1714 (((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225)))) 69)) (-1717 (((-643 (-225)) (-949 (-410 (-549))) (-1180) (-1092 (-844 (-225)))) 59)) (-1736 (((-643 (-1162)) (-643 (-225))) NIL)) (-1738 (((-225) (-1092 (-844 (-225)))) 29)) (-1739 (((-225) (-1092 (-844 (-225)))) 30)) (-1713 (((-112) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-1734 (((-1162) (-225)) NIL))) +(((-302) (-10 -7 (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -1713 ((-112) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1714 ((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225))))) (-15 -1715 ((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-1269 (-315 (-225))) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1717 ((-643 (-225)) (-949 (-410 (-549))) (-1180) (-1092 (-844 (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))))) (T -302)) +((-1737 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-302)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-302)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-302)))) (-1717 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-302)))) (-1716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *4 (-643 (-1180))) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302)))) (-1716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-643 (-1180))) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302)))) (-1715 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-643 (-1180))) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302)))) (-1714 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-225))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-302)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-302)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-302)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-302))))) +(-10 -7 (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -1713 ((-112) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1714 ((-643 (-225)) (-315 (-225)) (-1180) (-1092 (-844 (-225))))) (-15 -1715 ((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-315 (-225)) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1716 ((-1157 (-225)) (-1269 (-315 (-225))) (-643 (-1180)) (-1092 (-844 (-225))))) (-15 -1717 ((-643 (-225)) (-949 (-410 (-549))) (-1180) (-1092 (-844 (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225))))) +((-2155 (((-112) (-225)) 12))) +(((-303 |#1| |#2|) (-10 -7 (-15 -2155 ((-112) (-225)))) (-225) (-225)) (T -303)) +((-2155 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-303 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2155 ((-112) (-225)))) +((-1733 (((-1269 (-315 (-380))) (-1269 (-315 (-225)))) 112)) (-1721 (((-1092 (-844 (-225))) (-1092 (-844 (-380)))) 45)) (-1737 (((-643 (-1162)) (-1157 (-225))) 94)) (-1744 (((-315 (-380)) (-949 (-225))) 55)) (-1745 (((-225) (-949 (-225))) 51)) (-1740 (((-1162) (-380)) 197)) (-1720 (((-844 (-225)) (-844 (-380))) 39)) (-1726 (((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1269 (-315 (-225)))) 165)) (-1741 (((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) 209) (((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) 207)) (-1748 (((-691 (-225)) (-643 (-225)) (-773)) 21)) (-1731 (((-1269 (-701)) (-643 (-225))) 101)) (-1736 (((-643 (-1162)) (-643 (-225))) 81)) (-3060 (((-3 (-315 (-225)) "failed") (-315 (-225))) 130)) (-2155 (((-112) (-225) (-1092 (-844 (-225)))) 119)) (-1743 (((-1038) (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))) 226)) (-1738 (((-225) (-1092 (-844 (-225)))) 114)) (-1739 (((-225) (-1092 (-844 (-225)))) 115)) (-1747 (((-225) (-410 (-549))) 33)) (-1735 (((-1162) (-380)) 79)) (-1718 (((-225) (-380)) 24)) (-1725 (((-380) (-1269 (-315 (-225)))) 179)) (-1719 (((-315 (-225)) (-315 (-380))) 30)) (-1723 (((-410 (-549)) (-315 (-225))) 58)) (-1727 (((-315 (-410 (-549))) (-315 (-225))) 75)) (-1732 (((-315 (-380)) (-315 (-225))) 105)) (-1724 (((-225) (-315 (-225))) 59)) (-1729 (((-643 (-225)) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) 70)) (-1728 (((-1092 (-844 (-225))) (-1092 (-844 (-225)))) 67)) (-1734 (((-1162) (-225)) 78)) (-1730 (((-701) (-225)) 97)) (-1722 (((-410 (-549)) (-225)) 60)) (-1746 (((-315 (-380)) (-225)) 54)) (-4402 (((-643 (-1092 (-844 (-225)))) (-643 (-1092 (-844 (-380))))) 48)) (-4233 (((-1038) (-643 (-1038))) 193) (((-1038) (-1038) (-1038)) 187)) (-1742 (((-1038) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) +(((-304) (-10 -7 (-15 -1718 ((-225) (-380))) (-15 -1719 ((-315 (-225)) (-315 (-380)))) (-15 -1720 ((-844 (-225)) (-844 (-380)))) (-15 -1721 ((-1092 (-844 (-225))) (-1092 (-844 (-380))))) (-15 -4402 ((-643 (-1092 (-844 (-225)))) (-643 (-1092 (-844 (-380)))))) (-15 -1722 ((-410 (-549)) (-225))) (-15 -1723 ((-410 (-549)) (-315 (-225)))) (-15 -1724 ((-225) (-315 (-225)))) (-15 -3060 ((-3 (-315 (-225)) "failed") (-315 (-225)))) (-15 -1725 ((-380) (-1269 (-315 (-225))))) (-15 -1726 ((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1269 (-315 (-225))))) (-15 -1727 ((-315 (-410 (-549))) (-315 (-225)))) (-15 -1728 ((-1092 (-844 (-225))) (-1092 (-844 (-225))))) (-15 -1729 ((-643 (-225)) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-15 -1730 ((-701) (-225))) (-15 -1731 ((-1269 (-701)) (-643 (-225)))) (-15 -1732 ((-315 (-380)) (-315 (-225)))) (-15 -1733 ((-1269 (-315 (-380))) (-1269 (-315 (-225))))) (-15 -2155 ((-112) (-225) (-1092 (-844 (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1735 ((-1162) (-380))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))) (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -4233 ((-1038) (-1038) (-1038))) (-15 -4233 ((-1038) (-643 (-1038)))) (-15 -1740 ((-1162) (-380))) (-15 -1741 ((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))))) (-15 -1741 ((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))))) (-15 -1742 ((-1038) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1743 ((-1038) (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))) (-15 -1744 ((-315 (-380)) (-949 (-225)))) (-15 -1745 ((-225) (-949 (-225)))) (-15 -1746 ((-315 (-380)) (-225))) (-15 -1747 ((-225) (-410 (-549)))) (-15 -1748 ((-691 (-225)) (-643 (-225)) (-773))))) (T -304)) +((-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-225))) (-5 *4 (-773)) (-5 *2 (-691 (-225))) (-5 *1 (-304)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-410 (-549))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-315 (-380))) (-5 *1 (-304)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-315 (-380))) (-5 *1 (-304)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1162)) (-5 *1 (-304)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-643 (-1038))) (-5 *2 (-1038)) (-5 *1 (-304)))) (-4233 (*1 *2 *2 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-304)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-304)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-304)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1162)) (-5 *1 (-304)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-304)))) (-2155 (*1 *2 *3 *4) (-12 (-5 *4 (-1092 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-304)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-1269 (-315 (-380)))) (-5 *1 (-304)))) (-1732 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-315 (-380))) (-5 *1 (-304)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1269 (-701))) (-5 *1 (-304)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-701)) (-5 *1 (-304)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *2 (-643 (-225))) (-5 *1 (-304)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-1092 (-844 (-225)))) (-5 *1 (-304)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-315 (-410 (-549)))) (-5 *1 (-304)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549)))) (-5 *1 (-304)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-380)) (-5 *1 (-304)))) (-3060 (*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-225))) (-5 *1 (-304)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-225)) (-5 *1 (-304)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-410 (-549))) (-5 *1 (-304)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-549))) (-5 *1 (-304)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-643 (-1092 (-844 (-380))))) (-5 *2 (-643 (-1092 (-844 (-225))))) (-5 *1 (-304)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-380)))) (-5 *2 (-1092 (-844 (-225)))) (-5 *1 (-304)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-844 (-380))) (-5 *2 (-844 (-225))) (-5 *1 (-304)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-315 (-380))) (-5 *2 (-315 (-225))) (-5 *1 (-304)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-225)) (-5 *1 (-304))))) +(-10 -7 (-15 -1718 ((-225) (-380))) (-15 -1719 ((-315 (-225)) (-315 (-380)))) (-15 -1720 ((-844 (-225)) (-844 (-380)))) (-15 -1721 ((-1092 (-844 (-225))) (-1092 (-844 (-380))))) (-15 -4402 ((-643 (-1092 (-844 (-225)))) (-643 (-1092 (-844 (-380)))))) (-15 -1722 ((-410 (-549)) (-225))) (-15 -1723 ((-410 (-549)) (-315 (-225)))) (-15 -1724 ((-225) (-315 (-225)))) (-15 -3060 ((-3 (-315 (-225)) "failed") (-315 (-225)))) (-15 -1725 ((-380) (-1269 (-315 (-225))))) (-15 -1726 ((-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549))) (-1269 (-315 (-225))))) (-15 -1727 ((-315 (-410 (-549))) (-315 (-225)))) (-15 -1728 ((-1092 (-844 (-225))) (-1092 (-844 (-225))))) (-15 -1729 ((-643 (-225)) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-15 -1730 ((-701) (-225))) (-15 -1731 ((-1269 (-701)) (-643 (-225)))) (-15 -1732 ((-315 (-380)) (-315 (-225)))) (-15 -1733 ((-1269 (-315 (-380))) (-1269 (-315 (-225))))) (-15 -2155 ((-112) (-225) (-1092 (-844 (-225))))) (-15 -1734 ((-1162) (-225))) (-15 -1735 ((-1162) (-380))) (-15 -1736 ((-643 (-1162)) (-643 (-225)))) (-15 -1737 ((-643 (-1162)) (-1157 (-225)))) (-15 -1738 ((-225) (-1092 (-844 (-225))))) (-15 -1739 ((-225) (-1092 (-844 (-225))))) (-15 -4233 ((-1038) (-1038) (-1038))) (-15 -4233 ((-1038) (-643 (-1038)))) (-15 -1740 ((-1162) (-380))) (-15 -1741 ((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))))) (-15 -1741 ((-1038) (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))))) (-15 -1742 ((-1038) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1743 ((-1038) (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))) (-15 -1744 ((-315 (-380)) (-949 (-225)))) (-15 -1745 ((-225) (-949 (-225)))) (-15 -1746 ((-315 (-380)) (-225))) (-15 -1747 ((-225) (-410 (-549)))) (-15 -1748 ((-691 (-225)) (-643 (-225)) (-773)))) +((-1749 (((-643 |#1|) (-643 |#1|)) 10))) +(((-305 |#1|) (-10 -7 (-15 -1749 ((-643 |#1|) (-643 |#1|)))) (-850)) (T -305)) +((-1749 (*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-850)) (-5 *1 (-305 *3))))) +(-10 -7 (-15 -1749 ((-643 |#1|) (-643 |#1|)))) +((-4390 (((-691 |#2|) (-1 |#2| |#1|) (-691 |#1|)) 17))) +(((-306 |#1| |#2|) (-10 -7 (-15 -4390 ((-691 |#2|) (-1 |#2| |#1|) (-691 |#1|)))) (-1052) (-1052)) (T -306)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-691 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-691 *6)) (-5 *1 (-306 *5 *6))))) +(-10 -7 (-15 -4390 ((-691 |#2|) (-1 |#2| |#1|) (-691 |#1|)))) +((-1753 (((-112) $ $) 14)) (-2964 (($ $ $) 18)) (-2963 (($ $ $) 17)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 50)) (-1750 (((-3 (-643 $) "failed") (-643 $) $) 65)) (-3564 (($ $ $) 25) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3889 (((-3 $ "failed") $ $) 21)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 53))) +(((-307 |#1|) (-10 -8 (-15 -1750 ((-3 (-643 |#1|) "failed") (-643 |#1|) |#1|)) (-15 -1751 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1751 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -1753 ((-112) |#1| |#1|)) (-15 -3143 ((-3 (-643 |#1|) "failed") (-643 |#1|) |#1|)) (-15 -3144 ((-2 (|:| -4386 (-643 |#1|)) (|:| -2572 |#1|)) (-643 |#1|))) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) +NIL +(-10 -8 (-15 -1750 ((-3 (-643 |#1|) "failed") (-643 |#1|) |#1|)) (-15 -1751 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1751 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2964 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -1753 ((-112) |#1| |#1|)) (-15 -3143 ((-3 (-643 |#1|) "failed") (-643 |#1|) |#1|)) (-15 -3144 ((-2 (|:| -4386 (-643 |#1|)) (|:| -2572 |#1|)) (-643 |#1|))) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) "failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-308) (-140)) (T -308)) -((-4175 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))) (-2401 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-308)))) (-2443 (*1 *1 *1 *1) (-4 *1 (-308))) (-2432 (*1 *1 *1 *1) (-4 *1 (-308))) (-4266 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) (-4 *1 (-308)))) (-4266 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-1865 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308))))) -(-13 (-922) (-10 -8 (-15 -4175 ((-112) $ $)) (-15 -2465 ((-772) $)) (-15 -2401 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -2443 ($ $ $)) (-15 -2432 ($ $ $)) (-15 -4266 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $)) (-15 -4266 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1865 ((-3 (-645 $) "failed") (-645 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2913 (($ $ (-645 |#2|) (-645 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-645 (-295 |#2|))) NIL))) -(((-309 |#1| |#2|) (-10 -8 (-15 -2913 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2913 (|#1| |#1| (-295 |#2|))) (-15 -2913 (|#1| |#1| |#2| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#2|) (-645 |#2|)))) (-310 |#2|) (-1102)) (T -309)) -NIL -(-10 -8 (-15 -2913 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2913 (|#1| |#1| (-295 |#2|))) (-15 -2913 (|#1| |#1| |#2| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#2|) (-645 |#2|)))) -((-2913 (($ $ (-645 |#1|) (-645 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-645 (-295 |#1|))) 10))) -(((-310 |#1|) (-140) (-1102)) (T -310)) -((-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1102)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1102))))) -(-13 (-517 |t#1| |t#1|) (-10 -8 (-15 -2913 ($ $ (-295 |t#1|))) (-15 -2913 ($ $ (-645 (-295 |t#1|)))))) +((-1753 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-773)))) (-3282 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-308)))) (-2963 (*1 *1 *1 *1) (-4 *1 (-308))) (-2964 (*1 *1 *1 *1) (-4 *1 (-308))) (-1751 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) (-4 *1 (-308)))) (-1751 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-1750 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-643 *1)) (-4 *1 (-308))))) +(-13 (-924) (-10 -8 (-15 -1753 ((-112) $ $)) (-15 -1752 ((-773) $)) (-15 -3282 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2963 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -1751 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $)) (-15 -1751 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1750 ((-3 (-643 $) "failed") (-643 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-4199 (($ $ (-643 |#2|) (-643 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-643 (-294 |#2|))) NIL))) +(((-309 |#1| |#2|) (-10 -8 (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|)))) (-310 |#2|) (-1104)) (T -309)) +NIL +(-10 -8 (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|)))) +((-4199 (($ $ (-643 |#1|) (-643 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-643 (-294 |#1|))) 10))) +(((-310 |#1|) (-140) (-1104)) (T -310)) +((-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1104)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-294 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1104))))) +(-13 (-517 |t#1| |t#1|) (-10 -8 (-15 -4199 ($ $ (-294 |t#1|))) (-15 -4199 ($ $ (-643 (-294 |t#1|)))))) (((-517 |#1| |#1|) . T)) -((-2913 ((|#1| (-1 |#1| (-567)) (-1181 (-410 (-567)))) 25))) -(((-311 |#1|) (-10 -7 (-15 -2913 (|#1| (-1 |#1| (-567)) (-1181 (-410 (-567)))))) (-38 (-410 (-567)))) (T -311)) -((-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1181 (-410 (-567)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567))))))) -(-10 -7 (-15 -2913 (|#1| (-1 |#1| (-567)) (-1181 (-410 (-567)))))) -((-2487 (((-112) $ $) NIL)) (-2411 (((-567) $) 12)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1378 (((-1137) $) 9)) (-2504 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-312) (-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)) (-15 -2411 ((-567) $))))) (T -312)) -((-1378 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-312)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312))))) -(-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)) (-15 -2411 ((-567) $)))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 7)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 9))) -(((-313) (-1102)) (T -313)) -NIL -(-1102) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 60)) (-4199 (((-1255 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-1255 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-1254 |#2| |#3| |#4|) "failed") $) 26)) (-3094 (((-1255 |#1| |#2| |#3| |#4|) $) NIL) (((-1179) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-567) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-567)))) (((-1254 |#2| |#3| |#4|) $) NIL)) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-1255 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1269 (-1255 |#1| |#2| |#3| |#4|)))) (-690 $) (-1269 $)) NIL) (((-690 (-1255 |#1| |#2| |#3| |#4|)) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-888 (-381))))) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL)) (-4294 (((-1255 |#1| |#2| |#3| |#4|) $) 22)) (-3104 (((-3 $ "failed") $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1154)))) (-2585 (((-112) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-1446 (($ $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-4364 (($ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) $) NIL)) (-2320 (((-3 (-844 |#2|) "failed") $) 80)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-308)))) (-1952 (((-1255 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 (-1255 |#1| |#2| |#3| |#4|)) (-645 (-1255 |#1| |#2| |#3| |#4|))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-310 (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-310 (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1255 |#1| |#2| |#3| |#4|))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-310 (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-295 (-1255 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-310 (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-1179)) (-645 (-1255 |#1| |#2| |#3| |#4|))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-517 (-1179) (-1255 |#1| |#2| |#3| |#4|)))) (($ $ (-1179) (-1255 |#1| |#2| |#3| |#4|)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-517 (-1179) (-1255 |#1| |#2| |#3| |#4|))))) (-2465 (((-772) $) NIL)) (-1882 (($ $ (-1255 |#1| |#2| |#3| |#4|)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-287 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1179)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|))) NIL)) (-2964 (($ $) NIL)) (-4306 (((-1255 |#1| |#2| |#3| |#4|) $) 19)) (-1322 (((-894 (-567)) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-615 (-539)))) (((-381) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1024))) (((-225) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1024)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1255 |#1| |#2| |#3| |#4|) (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-1255 |#1| |#2| |#3| |#4|)) 30) (($ (-1179)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-1040 (-1179)))) (($ (-1254 |#2| |#3| |#4|)) 37)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-1255 |#1| |#2| |#3| |#4|) (-911))) (|has| (-1255 |#1| |#2| |#3| |#4|) (-145))))) (-2214 (((-772)) NIL T CONST)) (-3471 (((-1255 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-548)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1368 (($ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-821)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1179)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-902 (-1179)))) (($ $ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|))) NIL)) (-3016 (((-112) $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-1255 |#1| |#2| |#3| |#4|) (-851)))) (-3064 (($ $ $) 35) (($ (-1255 |#1| |#2| |#3| |#4|) (-1255 |#1| |#2| |#3| |#4|)) 32)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-1255 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1255 |#1| |#2| |#3| |#4|)) NIL))) -(((-314 |#1| |#2| |#3| |#4|) (-13 (-994 (-1255 |#1| |#2| |#3| |#4|)) (-1040 (-1254 |#2| |#3| |#4|)) (-10 -8 (-15 -2320 ((-3 (-844 |#2|) "failed") $)) (-15 -2504 ($ (-1254 |#2| |#3| |#4|))))) (-13 (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1204) (-433 |#1|)) (-1179) |#2|) (T -314)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1254 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) (-14 *6 *4) (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) (-2320 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) (-14 *6 *4)))) -(-13 (-994 (-1255 |#1| |#2| |#3| |#4|)) (-1040 (-1254 |#2| |#3| |#4|)) (-10 -8 (-15 -2320 ((-3 (-844 |#2|) "failed") $)) (-15 -2504 ($ (-1254 |#2| |#3| |#4|))))) -((-4364 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13))) -(((-315 |#1| |#2|) (-10 -7 (-15 -4364 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1102) (-1102)) (T -315)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))) -(-10 -7 (-15 -4364 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) -((-3838 (((-52) |#2| (-295 |#2|) (-772)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-772)) 35) (((-52) |#2|) 33) (((-52) (-1179)) 26)) (-2686 (((-52) |#2| (-295 |#2|) (-410 (-567))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-410 (-567))) 58) (((-52) |#2|) 57) (((-52) (-1179)) 55)) (-1726 (((-52) |#2| (-295 |#2|) (-410 (-567))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-410 (-567))) 53) (((-52) |#2|) 52) (((-52) (-1179)) 50)) (-1709 (((-52) |#2| (-295 |#2|) (-567)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-567)) 46) (((-52) |#2|) 45) (((-52) (-1179)) 43))) -(((-316 |#1| |#2|) (-10 -7 (-15 -3838 ((-52) (-1179))) (-15 -3838 ((-52) |#2|)) (-15 -3838 ((-52) |#2| (-772))) (-15 -3838 ((-52) |#2| (-295 |#2|))) (-15 -3838 ((-52) |#2| (-295 |#2|) (-772))) (-15 -1709 ((-52) (-1179))) (-15 -1709 ((-52) |#2|)) (-15 -1709 ((-52) |#2| (-567))) (-15 -1709 ((-52) |#2| (-295 |#2|))) (-15 -1709 ((-52) |#2| (-295 |#2|) (-567))) (-15 -1726 ((-52) (-1179))) (-15 -1726 ((-52) |#2|)) (-15 -1726 ((-52) |#2| (-410 (-567)))) (-15 -1726 ((-52) |#2| (-295 |#2|))) (-15 -1726 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -2686 ((-52) (-1179))) (-15 -2686 ((-52) |#2|)) (-15 -2686 ((-52) |#2| (-410 (-567)))) (-15 -2686 ((-52) |#2| (-295 |#2|))) (-15 -2686 ((-52) |#2| (-295 |#2|) (-410 (-567))))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -316)) -((-2686 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2686 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2686 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) (-1726 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-1726 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 *5) (-640 *5))) (-5 *5 (-567)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1040 *4) (-640 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-1709 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-772)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4)))))) -(-10 -7 (-15 -3838 ((-52) (-1179))) (-15 -3838 ((-52) |#2|)) (-15 -3838 ((-52) |#2| (-772))) (-15 -3838 ((-52) |#2| (-295 |#2|))) (-15 -3838 ((-52) |#2| (-295 |#2|) (-772))) (-15 -1709 ((-52) (-1179))) (-15 -1709 ((-52) |#2|)) (-15 -1709 ((-52) |#2| (-567))) (-15 -1709 ((-52) |#2| (-295 |#2|))) (-15 -1709 ((-52) |#2| (-295 |#2|) (-567))) (-15 -1726 ((-52) (-1179))) (-15 -1726 ((-52) |#2|)) (-15 -1726 ((-52) |#2| (-410 (-567)))) (-15 -1726 ((-52) |#2| (-295 |#2|))) (-15 -1726 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -2686 ((-52) (-1179))) (-15 -2686 ((-52) |#2|)) (-15 -2686 ((-52) |#2| (-410 (-567)))) (-15 -2686 ((-52) |#2| (-295 |#2|))) (-15 -2686 ((-52) |#2| (-295 |#2|) (-410 (-567))))) -((-2487 (((-112) $ $) NIL)) (-2776 (((-645 $) $ (-1179)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1175 $) (-1179)) NIL (|has| |#1| (-559))) (((-645 $) (-1175 $)) NIL (|has| |#1| (-559))) (((-645 $) (-954 $)) NIL (|has| |#1| (-559)))) (-3236 (($ $ (-1179)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1175 $) (-1179)) NIL (|has| |#1| (-559))) (($ (-1175 $)) NIL (|has| |#1| (-559))) (($ (-954 $)) NIL (|has| |#1| (-559)))) (-2684 (((-112) $) 27 (-2836 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-3783 (((-645 (-1179)) $) 368)) (-3633 (((-410 (-1175 $)) $ (-613 $)) NIL (|has| |#1| (-559)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3526 (((-645 (-613 $)) $) NIL)) (-1406 (($ $) 171 (|has| |#1| (-559)))) (-2545 (($ $) 147 (|has| |#1| (-559)))) (-3550 (($ $ (-1094 $)) 232 (|has| |#1| (-559))) (($ $ (-1179)) 228 (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) NIL (-2836 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-3072 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) 386) (($ $ (-645 (-613 $)) (-645 $)) 430)) (-2701 (((-421 (-1175 $)) (-1175 $)) 308 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-3864 (($ $) NIL (|has| |#1| (-559)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-559)))) (-3671 (($ $) NIL (|has| |#1| (-559)))) (-4175 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1380 (($ $) 167 (|has| |#1| (-559)))) (-2524 (($ $) 143 (|has| |#1| (-559)))) (-3779 (($ $ (-567)) 73 (|has| |#1| (-559)))) (-1431 (($ $) 175 (|has| |#1| (-559)))) (-2565 (($ $) 151 (|has| |#1| (-559)))) (-3758 (($) NIL (-2836 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))) CONST)) (-2161 (((-645 $) $ (-1179)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1175 $) (-1179)) NIL (|has| |#1| (-559))) (((-645 $) (-1175 $)) NIL (|has| |#1| (-559))) (((-645 $) (-954 $)) NIL (|has| |#1| (-559)))) (-1617 (($ $ (-1179)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1175 $) (-1179)) 134 (|has| |#1| (-559))) (($ (-1175 $)) NIL (|has| |#1| (-559))) (($ (-954 $)) NIL (|has| |#1| (-559)))) (-4275 (((-3 (-613 $) "failed") $) 18) (((-3 (-1179) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-954 |#1|)) "failed") $) NIL (|has| |#1| (-559))) (((-3 (-954 |#1|) "failed") $) NIL (|has| |#1| (-1051))) (((-3 (-410 (-567)) "failed") $) 46 (-2836 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3094 (((-613 $) $) 12) (((-1179) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-954 |#1|)) $) NIL (|has| |#1| (-559))) (((-954 |#1|) $) NIL (|has| |#1| (-1051))) (((-410 (-567)) $) 319 (-2836 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2432 (($ $ $) NIL (|has| |#1| (-559)))) (-2690 (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 125 (|has| |#1| (-1051))) (((-690 |#1|) (-690 $)) 115 (|has| |#1| (-1051))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (-2617 (($ $) 96 (|has| |#1| (-559)))) (-1377 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (-2443 (($ $ $) NIL (|has| |#1| (-559)))) (-2822 (($ $ (-1094 $)) 236 (|has| |#1| (-559))) (($ $ (-1179)) 234 (|has| |#1| (-559)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-559)))) (-2946 (((-112) $) NIL (|has| |#1| (-559)))) (-2611 (($ $ $) 202 (|has| |#1| (-559)))) (-4329 (($) 137 (|has| |#1| (-559)))) (-4090 (($ $ $) 222 (|has| |#1| (-559)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 392 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 399 (|has| |#1| (-888 (-381))))) (-2998 (($ $) NIL) (($ (-645 $)) NIL)) (-2131 (((-645 (-114)) $) NIL)) (-3609 (((-114) (-114)) 276)) (-4384 (((-112) $) 25 (-2836 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (-3807 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1550 (($ $) 72 (|has| |#1| (-1051)))) (-4294 (((-1127 |#1| (-613 $)) $) 91 (|has| |#1| (-1051)))) (-3967 (((-112) $) 62 (|has| |#1| (-559)))) (-4203 (($ $ (-567)) NIL (|has| |#1| (-559)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-1935 (((-1175 $) (-613 $)) 277 (|has| $ (-1051)))) (-4364 (($ (-1 $ $) (-613 $)) 426)) (-2126 (((-3 (-613 $) "failed") $) NIL)) (-2734 (($ $) 141 (|has| |#1| (-559)))) (-4029 (($ $) 247 (|has| |#1| (-559)))) (-1831 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-1812 (((-1161) $) NIL)) (-3599 (((-645 (-613 $)) $) 49)) (-4369 (($ (-114) $) NIL) (($ (-114) (-645 $)) 431)) (-4056 (((-3 (-645 $) "failed") $) NIL (|has| |#1| (-1114)))) (-1415 (((-3 (-2 (|:| |val| $) (|:| -2618 (-567))) "failed") $) NIL (|has| |#1| (-1051)))) (-3655 (((-3 (-645 $) "failed") $) 436 (|has| |#1| (-25)))) (-3918 (((-3 (-2 (|:| -1344 (-567)) (|:| |var| (-613 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2873 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $) NIL (|has| |#1| (-1114))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-114)) NIL (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-1179)) NIL (|has| |#1| (-1051)))) (-2208 (((-112) $ (-114)) NIL) (((-112) $ (-1179)) 51)) (-1752 (($ $) NIL (-2836 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-1954 (($ $ (-1179)) 251 (|has| |#1| (-559))) (($ $ (-1094 $)) 253 (|has| |#1| (-559)))) (-1337 (((-772) $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) 43)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 301 (|has| |#1| (-559)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2769 (((-112) $ $) NIL) (((-112) $ (-1179)) NIL)) (-1379 (($ $ (-1179)) 226 (|has| |#1| (-559))) (($ $) 224 (|has| |#1| (-559)))) (-2256 (($ $) 218 (|has| |#1| (-559)))) (-2579 (((-421 (-1175 $)) (-1175 $)) 306 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-3661 (((-421 $) $) NIL (|has| |#1| (-559)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-559)))) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-4272 (($ $) 139 (|has| |#1| (-559)))) (-1359 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2913 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 425) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) 379) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1179)) NIL (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-615 (-539)))) (($ $) NIL (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1179)) 366 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1179)) 365 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $))) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $)))) NIL (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ (-645 $))) NIL (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ $)) NIL (|has| |#1| (-1051)))) (-2465 (((-772) $) NIL (|has| |#1| (-559)))) (-2480 (($ $) 239 (|has| |#1| (-559)))) (-1882 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-1929 (($ $) NIL) (($ $ $) NIL)) (-2511 (($ $) 249 (|has| |#1| (-559)))) (-3053 (($ $) 200 (|has| |#1| (-559)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-1051))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-1051))) (($ $ (-1179)) NIL (|has| |#1| (-1051)))) (-2964 (($ $) 74 (|has| |#1| (-559)))) (-4306 (((-1127 |#1| (-613 $)) $) 93 (|has| |#1| (-559)))) (-2783 (($ $) 317 (|has| $ (-1051)))) (-1443 (($ $) 177 (|has| |#1| (-559)))) (-2576 (($ $) 153 (|has| |#1| (-559)))) (-1418 (($ $) 173 (|has| |#1| (-559)))) (-2555 (($ $) 149 (|has| |#1| (-559)))) (-1394 (($ $) 169 (|has| |#1| (-559)))) (-2533 (($ $) 145 (|has| |#1| (-559)))) (-1322 (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (($ (-421 $)) NIL (|has| |#1| (-559))) (((-539) $) 363 (|has| |#1| (-615 (-539))))) (-3307 (($ $ $) NIL (|has| |#1| (-476)))) (-4033 (($ $ $) NIL (|has| |#1| (-476)))) (-2504 (((-863) $) 424) (($ (-613 $)) 415) (($ (-1179)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-559))) (($ (-48)) 312 (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) (($ (-1127 |#1| (-613 $))) 95 (|has| |#1| (-1051))) (($ (-410 |#1|)) NIL (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) NIL (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) NIL (|has| |#1| (-559))) (($ (-410 (-954 |#1|))) NIL (|has| |#1| (-559))) (($ (-954 |#1|)) NIL (|has| |#1| (-1051))) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-559)) (|has| |#1| (-1040 (-410 (-567)))))) (($ (-567)) 34 (-2836 (|has| |#1| (-1040 (-567))) (|has| |#1| (-1051))))) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL (|has| |#1| (-1051)) CONST)) (-2130 (($ $) NIL) (($ (-645 $)) NIL)) (-3040 (($ $ $) 220 (|has| |#1| (-559)))) (-2083 (($ $ $) 206 (|has| |#1| (-559)))) (-2551 (($ $ $) 210 (|has| |#1| (-559)))) (-3002 (($ $ $) 204 (|has| |#1| (-559)))) (-2907 (($ $ $) 208 (|has| |#1| (-559)))) (-3862 (((-112) (-114)) 10)) (-3858 (((-112) $ $) 86)) (-1481 (($ $) 183 (|has| |#1| (-559)))) (-2610 (($ $) 159 (|has| |#1| (-559)))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) 179 (|has| |#1| (-559)))) (-2588 (($ $) 155 (|has| |#1| (-559)))) (-1505 (($ $) 187 (|has| |#1| (-559)))) (-2632 (($ $) 163 (|has| |#1| (-559)))) (-1541 (($ (-1179) $) NIL) (($ (-1179) $ $) NIL) (($ (-1179) $ $ $) NIL) (($ (-1179) $ $ $ $) NIL) (($ (-1179) (-645 $)) NIL)) (-3877 (($ $) 214 (|has| |#1| (-559)))) (-2821 (($ $) 212 (|has| |#1| (-559)))) (-2090 (($ $) 189 (|has| |#1| (-559)))) (-1367 (($ $) 165 (|has| |#1| (-559)))) (-1492 (($ $) 185 (|has| |#1| (-559)))) (-2621 (($ $) 161 (|has| |#1| (-559)))) (-1468 (($ $) 181 (|has| |#1| (-559)))) (-2599 (($ $) 157 (|has| |#1| (-559)))) (-1368 (($ $) 192 (|has| |#1| (-559)))) (-1807 (($) 21 (-2836 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) CONST)) (-2087 (($ $) 243 (|has| |#1| (-559)))) (-1820 (($) 23 (-2836 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))) CONST)) (-1370 (($ $) 194 (|has| |#1| (-559))) (($ $ $) 196 (|has| |#1| (-559)))) (-4062 (($ $) 241 (|has| |#1| (-559)))) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-1051))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-1051))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-1051))) (($ $ (-1179)) NIL (|has| |#1| (-1051)))) (-4311 (($ $) 245 (|has| |#1| (-559)))) (-3291 (($ $ $) 198 (|has| |#1| (-559)))) (-2968 (((-112) $ $) 88)) (-3064 (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 106 (|has| |#1| (-559))) (($ $ $) 42 (-2836 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3054 (($ $ $) 40 (-2836 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ $) 29 (-2836 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (-3045 (($ $ $) 38 (-2836 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))))) (** (($ $ $) 64 (|has| |#1| (-559))) (($ $ (-410 (-567))) 314 (|has| |#1| (-559))) (($ $ (-567)) 80 (-2836 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 75 (-2836 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114)))) (($ $ (-923)) 84 (-2836 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114))))) (* (($ (-410 (-567)) $) NIL (|has| |#1| (-559))) (($ $ (-410 (-567))) NIL (|has| |#1| (-559))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2836 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) (|has| |#1| (-1114)))) (($ (-567) $) 32 (-2836 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ (-772) $) NIL (-2836 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))) (($ (-923) $) NIL (-2836 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))))))) -(((-317 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1204)) (-6 (-160)) (-6 (-630)) (-6 (-1141)) (-15 -2617 ($ $)) (-15 -3967 ((-112) $)) (-15 -3779 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -2579 ((-421 (-1175 $)) (-1175 $))) (-15 -2701 ((-421 (-1175 $)) (-1175 $)))) |%noBranch|) (IF (|has| |#1| (-1040 (-567))) (-6 (-1040 (-48))) |%noBranch|)) |%noBranch|))) (-1102)) (T -317)) -((-2617 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1102)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-2579 (*1 *2 *3) (-12 (-5 *2 (-421 (-1175 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1175 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))) (-2701 (*1 *2 *3) (-12 (-5 *2 (-421 (-1175 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1175 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102))))) -(-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1204)) (-6 (-160)) (-6 (-630)) (-6 (-1141)) (-15 -2617 ($ $)) (-15 -3967 ((-112) $)) (-15 -3779 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -2579 ((-421 (-1175 $)) (-1175 $))) (-15 -2701 ((-421 (-1175 $)) (-1175 $)))) |%noBranch|) (IF (|has| |#1| (-1040 (-567))) (-6 (-1040 (-48))) |%noBranch|)) |%noBranch|))) -((-3154 (((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 81) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 83) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 84) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86))) -(((-318 |#1| |#2|) (-10 -7 (-15 -3154 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -3154 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3154 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3154 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3154 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3154 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3154 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -3154 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -3154 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -3154 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-559) (-615 (-539))) (-433 |#1|)) (T -318)) -((-3154 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-3154 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3154 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3154 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-3154 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-3154 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3154 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-3154 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3154 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3154 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6))))) -(-10 -7 (-15 -3154 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -3154 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3154 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3154 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3154 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3154 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3154 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -3154 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -3154 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -3154 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) -((-2138 (((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1161)) 67) (((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567)) 68) (((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1161)) 64) (((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567)) 65)) (-4018 (((-1 (-225) (-225)) (-225)) 66))) -(((-319) (-10 -7 (-15 -4018 ((-1 (-225) (-225)) (-225))) (-15 -2138 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567))) (-15 -2138 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1161))) (-15 -2138 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567))) (-15 -2138 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1161))))) (T -319)) -((-2138 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1161)) (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) (-2138 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) (-2138 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *7 (-1161)) (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) (-2138 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) -(-10 -7 (-15 -4018 ((-1 (-225) (-225)) (-225))) (-15 -2138 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567))) (-15 -2138 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-1 (-225) (-225)) (-567) (-1161))) (-15 -2138 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567))) (-15 -2138 ((-1214 (-928)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-225) (-567) (-1161)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 26)) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3413 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3785 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 20)) (-1406 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1380 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-1431 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) 36)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3219 (((-112) $) NIL)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) 16)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-410 (-567))) NIL) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-3670 (($ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204)))))) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-1678 (($ $ (-410 (-567))) NIL)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4125 (((-410 (-567)) $) 17)) (-2195 (($ (-1254 |#1| |#2| |#3|)) 11)) (-2618 (((-1254 |#1| |#2| |#3|) $) 12)) (-4272 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3380 (((-410 (-567)) $) NIL)) (-1443 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 10)) (-2504 (((-863) $) 42) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4038 ((|#1| $ (-410 (-567))) 34)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3118 ((|#1| $) NIL)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 28)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 37)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-320 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-793) (-10 -8 (-15 -2195 ($ (-1254 |#1| |#2| |#3|))) (-15 -2618 ((-1254 |#1| |#2| |#3|) $)) (-15 -4125 ((-410 (-567)) $)))) (-365) (-1179) |#1|) (T -320)) -((-2195 (*1 *1 *2) (-12 (-5 *2 (-1254 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1179)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-1254 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1179)) (-14 *5 *3))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1179)) (-14 *5 *3)))) -(-13 (-1250 |#1|) (-793) (-10 -8 (-15 -2195 ($ (-1254 |#1| |#2| |#3|))) (-15 -2618 ((-1254 |#1| |#2| |#3|) $)) (-15 -4125 ((-410 (-567)) $)))) -((-4203 (((-2 (|:| -2618 (-772)) (|:| -1344 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772)) 35)) (-2734 (((-645 (-2 (|:| -1344 (-772)) (|:| |logand| |#1|))) (-421 |#1|)) 40))) -(((-321 |#1|) (-10 -7 (-15 -4203 ((-2 (|:| -2618 (-772)) (|:| -1344 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -2734 ((-645 (-2 (|:| -1344 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) (-559)) (T -321)) -((-2734 (*1 *2 *3) (-12 (-5 *3 (-421 *4)) (-4 *4 (-559)) (-5 *2 (-645 (-2 (|:| -1344 (-772)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *5) (|:| |radicand| (-645 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-772))))) -(-10 -7 (-15 -4203 ((-2 (|:| -2618 (-772)) (|:| -1344 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -2734 ((-645 (-2 (|:| -1344 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) -((-3783 (((-645 |#2|) (-1175 |#4|)) 44)) (-1714 ((|#3| (-567)) 47)) (-2081 (((-1175 |#4|) (-1175 |#3|)) 30)) (-1557 (((-1175 |#4|) (-1175 |#4|) (-567)) 66)) (-3649 (((-1175 |#3|) (-1175 |#4|)) 21)) (-3380 (((-645 (-772)) (-1175 |#4|) (-645 |#2|)) 41)) (-2760 (((-1175 |#3|) (-1175 |#4|) (-645 |#2|) (-645 |#3|)) 35))) -(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2760 ((-1175 |#3|) (-1175 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3380 ((-645 (-772)) (-1175 |#4|) (-645 |#2|))) (-15 -3783 ((-645 |#2|) (-1175 |#4|))) (-15 -3649 ((-1175 |#3|) (-1175 |#4|))) (-15 -2081 ((-1175 |#4|) (-1175 |#3|))) (-15 -1557 ((-1175 |#4|) (-1175 |#4|) (-567))) (-15 -1714 (|#3| (-567)))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|)) (T -322)) -((-1714 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1051)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-951 *2 *4 *5)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *7)) (-5 *3 (-567)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-1175 *6)) (-4 *6 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1175 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-1175 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-1175 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1175 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-645 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) (-4 *8 (-951 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1051)) (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) (-2760 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-1175 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) -(-10 -7 (-15 -2760 ((-1175 |#3|) (-1175 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3380 ((-645 (-772)) (-1175 |#4|) (-645 |#2|))) (-15 -3783 ((-645 |#2|) (-1175 |#4|))) (-15 -3649 ((-1175 |#3|) (-1175 |#4|))) (-15 -2081 ((-1175 |#4|) (-1175 |#3|))) (-15 -1557 ((-1175 |#4|) (-1175 |#4|) (-567))) (-15 -1714 (|#3| (-567)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 19)) (-3785 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 (-567)))) $) 21)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3404 (((-772) $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3102 ((|#1| $ (-567)) NIL)) (-1319 (((-567) $ (-567)) NIL)) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-3786 (($ (-1 |#1| |#1|) $) NIL)) (-4336 (($ (-1 (-567) (-567)) $) 11)) (-1812 (((-1161) $) NIL)) (-2114 (($ $ $) NIL (|has| (-567) (-793)))) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL) (($ |#1|) NIL)) (-4038 (((-567) |#1| $) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) 29 (|has| |#1| (-851)))) (-3054 (($ $) 12) (($ $ $) 28)) (-3045 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL) (($ (-567) |#1|) 27))) -(((-323 |#1|) (-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|))) (-1102)) (T -323)) -NIL -(-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3785 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 |#2|))) $) 28)) (-2932 (((-3 $ "failed") $ $) 20)) (-3404 (((-772) $) 29)) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#1| "failed") $) 33)) (-3094 ((|#1| $) 34)) (-3102 ((|#1| $ (-567)) 26)) (-1319 ((|#2| $ (-567)) 27)) (-3786 (($ (-1 |#1| |#1|) $) 23)) (-4336 (($ (-1 |#2| |#2|) $) 24)) (-1812 (((-1161) $) 10)) (-2114 (($ $ $) 22 (|has| |#2| (-793)))) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ |#1|) 32)) (-4038 ((|#2| |#1| $) 25)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3045 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ |#2| |#1|) 30))) -(((-324 |#1| |#2|) (-140) (-1102) (-131)) (T -324)) -((-3045 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-772)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 *4)))))) (-1319 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1102)) (-4 *2 (-131)))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1102)))) (-4038 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) (-4336 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)))) (-3786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)))) (-2114 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)) (-4 *3 (-793))))) -(-13 (-131) (-1040 |t#1|) (-10 -8 (-15 -3045 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3404 ((-772) $)) (-15 -3785 ((-645 (-2 (|:| |gen| |t#1|) (|:| -4272 |t#2|))) $)) (-15 -1319 (|t#2| $ (-567))) (-15 -3102 (|t#1| $ (-567))) (-15 -4038 (|t#2| |t#1| $)) (-15 -4336 ($ (-1 |t#2| |t#2|) $)) (-15 -3786 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-793)) (-15 -2114 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-1040 |#1|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3785 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 (-772)))) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3404 (((-772) $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3102 ((|#1| $ (-567)) NIL)) (-1319 (((-772) $ (-567)) NIL)) (-3786 (($ (-1 |#1| |#1|) $) NIL)) (-4336 (($ (-1 (-772) (-772)) $) NIL)) (-1812 (((-1161) $) NIL)) (-2114 (($ $ $) NIL (|has| (-772) (-793)))) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL) (($ |#1|) NIL)) (-4038 (((-772) |#1| $) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3045 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-772) |#1|) NIL))) -(((-325 |#1|) (-324 |#1| (-772)) (-1102)) (T -325)) -NIL -(-324 |#1| (-772)) -((-1873 (($ $) 72)) (-1978 (($ $ |#2| |#3| $) 14)) (-2972 (($ (-1 |#3| |#3|) $) 51)) (-1762 (((-112) $) 42)) (-1774 ((|#2| $) 44)) (-2478 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1390 ((|#2| $) 68)) (-1516 (((-645 |#2|) $) 56)) (-3852 (($ $ $ (-772)) 37)) (-3064 (($ $ |#2|) 60))) -(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -1873 (|#1| |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3852 (|#1| |#1| |#1| (-772))) (-15 -1978 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2972 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1516 ((-645 |#2|) |#1|)) (-15 -1774 (|#2| |#1|)) (-15 -1762 ((-112) |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3064 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1051) (-793)) (T -326)) -NIL -(-10 -8 (-15 -1873 (|#1| |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3852 (|#1| |#1| |#1| (-772))) (-15 -1978 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2972 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1516 ((-645 |#2|) |#1|)) (-15 -1774 (|#2| |#1|)) (-15 -1762 ((-112) |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3064 (|#1| |#1| |#2|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 98 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 95)) (-3094 (((-567) $) 99 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 97 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 96)) (-1833 (($ $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-1873 (($ $) 84 (|has| |#1| (-455)))) (-1978 (($ $ |#1| |#2| $) 88)) (-4384 (((-112) $) 35)) (-1921 (((-772) $) 91)) (-3615 (((-112) $) 74)) (-3764 (($ |#1| |#2|) 73)) (-1562 ((|#2| $) 90)) (-2972 (($ (-1 |#2| |#2|) $) 89)) (-4364 (($ (-1 |#1| |#1|) $) 75)) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-1762 (((-112) $) 94)) (-1774 ((|#1| $) 93)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-559)))) (-3380 ((|#2| $) 76)) (-1390 ((|#1| $) 85 (|has| |#1| (-455)))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59) (($ (-410 (-567))) 69 (-2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-1516 (((-645 |#1|) $) 92)) (-4038 ((|#1| $ |#2|) 71)) (-2318 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3852 (($ $ $ (-772)) 87 (|has| |#1| (-172)))) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-327 |#1| |#2|) (-140) (-1051) (-793)) (T -327)) -((-1762 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-112)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-645 *3)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-772)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-2972 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-1978 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) (-3852 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *3 (-172)))) (-2478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-559)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-1873 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *2 (-455))))) -(-13 (-47 |t#1| |t#2|) (-414 |t#1|) (-10 -8 (-15 -1762 ((-112) $)) (-15 -1774 (|t#1| $)) (-15 -1516 ((-645 |t#1|) $)) (-15 -1921 ((-772) $)) (-15 -1562 (|t#2| $)) (-15 -2972 ($ (-1 |t#2| |t#2|) $)) (-15 -1978 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3852 ($ $ $ (-772))) |%noBranch|) (IF (|has| |t#1| (-559)) (-15 -2478 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -1390 (|t#1| $)) (-15 -1873 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-414 |#1|) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-1382 (((-112) (-112)) NIL)) (-3824 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-2105 (($ (-1 (-112) |#1|) $) NIL)) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3048 (($ $) NIL (|has| |#1| (-1102)))) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4197 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3932 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2410 (($ $ (-567)) NIL)) (-2800 (((-772) $) NIL)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4223 (($ (-772) |#1|) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-3196 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3636 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-4222 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3684 (($ (-645 |#1|)) NIL)) (-3436 ((|#1| $) NIL (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1664 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) NIL)) (-3416 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3644 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3684 ($ (-645 |#1|))) (-15 -2800 ((-772) $)) (-15 -2410 ($ $ (-567))) (-15 -1382 ((-112) (-112))))) (-1219)) (T -328)) -((-3684 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-328 *3)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1219))))) -(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3684 ($ (-645 |#1|))) (-15 -2800 ((-772) $)) (-15 -2410 ($ $ (-567))) (-15 -1382 ((-112) (-112))))) -((-2784 (((-112) $) 50)) (-3261 (((-772)) 26)) (-3132 ((|#2| $) 54) (($ $ (-923)) 124)) (-3404 (((-772)) 125)) (-3431 (($ (-1269 |#2|)) 23)) (-3739 (((-112) $) 138)) (-2013 ((|#2| $) 56) (($ $ (-923)) 121)) (-3908 (((-1175 |#2|) $) NIL) (((-1175 $) $ (-923)) 112)) (-4066 (((-1175 |#2|) $) 98)) (-2710 (((-1175 |#2|) $) 94) (((-3 (-1175 |#2|) "failed") $ $) 91)) (-1951 (($ $ (-1175 |#2|)) 62)) (-1884 (((-834 (-923))) 33) (((-923)) 51)) (-2589 (((-134)) 30)) (-3380 (((-834 (-923)) $) 35) (((-923) $) 141)) (-4006 (($) 131)) (-3237 (((-1269 |#2|) $) NIL) (((-690 |#2|) (-1269 $)) 45)) (-2318 (($ $) NIL) (((-3 $ "failed") $) 101)) (-3392 (((-112) $) 48))) -(((-329 |#1| |#2|) (-10 -8 (-15 -2318 ((-3 |#1| "failed") |#1|)) (-15 -3404 ((-772))) (-15 -2318 (|#1| |#1|)) (-15 -2710 ((-3 (-1175 |#2|) "failed") |#1| |#1|)) (-15 -2710 ((-1175 |#2|) |#1|)) (-15 -4066 ((-1175 |#2|) |#1|)) (-15 -1951 (|#1| |#1| (-1175 |#2|))) (-15 -3739 ((-112) |#1|)) (-15 -4006 (|#1|)) (-15 -3132 (|#1| |#1| (-923))) (-15 -2013 (|#1| |#1| (-923))) (-15 -3908 ((-1175 |#1|) |#1| (-923))) (-15 -3132 (|#2| |#1|)) (-15 -2013 (|#2| |#1|)) (-15 -3380 ((-923) |#1|)) (-15 -1884 ((-923))) (-15 -3908 ((-1175 |#2|) |#1|)) (-15 -3431 (|#1| (-1269 |#2|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1|)) (-15 -3261 ((-772))) (-15 -1884 ((-834 (-923)))) (-15 -3380 ((-834 (-923)) |#1|)) (-15 -2784 ((-112) |#1|)) (-15 -3392 ((-112) |#1|)) (-15 -2589 ((-134)))) (-330 |#2|) (-365)) (T -329)) -((-2589 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1884 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-834 (-923))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3261 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-1884 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-923)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3404 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4))))) -(-10 -8 (-15 -2318 ((-3 |#1| "failed") |#1|)) (-15 -3404 ((-772))) (-15 -2318 (|#1| |#1|)) (-15 -2710 ((-3 (-1175 |#2|) "failed") |#1| |#1|)) (-15 -2710 ((-1175 |#2|) |#1|)) (-15 -4066 ((-1175 |#2|) |#1|)) (-15 -1951 (|#1| |#1| (-1175 |#2|))) (-15 -3739 ((-112) |#1|)) (-15 -4006 (|#1|)) (-15 -3132 (|#1| |#1| (-923))) (-15 -2013 (|#1| |#1| (-923))) (-15 -3908 ((-1175 |#1|) |#1| (-923))) (-15 -3132 (|#2| |#1|)) (-15 -2013 (|#2| |#1|)) (-15 -3380 ((-923) |#1|)) (-15 -1884 ((-923))) (-15 -3908 ((-1175 |#2|) |#1|)) (-15 -3431 (|#1| (-1269 |#2|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1|)) (-15 -3261 ((-772))) (-15 -1884 ((-834 (-923)))) (-15 -3380 ((-834 (-923)) |#1|)) (-15 -2784 ((-112) |#1|)) (-15 -3392 ((-112) |#1|)) (-15 -2589 ((-134)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2784 (((-112) $) 104)) (-3261 (((-772)) 100)) (-3132 ((|#1| $) 150) (($ $ (-923)) 147 (|has| |#1| (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) 132 (|has| |#1| (-370)))) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-4175 (((-112) $ $) 65)) (-3404 (((-772)) 122 (|has| |#1| (-370)))) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#1| "failed") $) 111)) (-3094 ((|#1| $) 112)) (-3431 (($ (-1269 |#1|)) 156)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2119 (($) 119 (|has| |#1| (-370)))) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-3882 (($) 134 (|has| |#1| (-370)))) (-1816 (((-112) $) 135 (|has| |#1| (-370)))) (-2559 (($ $ (-772)) 97 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2946 (((-112) $) 79)) (-3905 (((-923) $) 137 (|has| |#1| (-370))) (((-834 (-923)) $) 94 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4384 (((-112) $) 35)) (-2075 (($) 145 (|has| |#1| (-370)))) (-3739 (((-112) $) 144 (|has| |#1| (-370)))) (-2013 ((|#1| $) 151) (($ $ (-923)) 148 (|has| |#1| (-370)))) (-3104 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3908 (((-1175 |#1|) $) 155) (((-1175 $) $ (-923)) 149 (|has| |#1| (-370)))) (-2667 (((-923) $) 120 (|has| |#1| (-370)))) (-4066 (((-1175 |#1|) $) 141 (|has| |#1| (-370)))) (-2710 (((-1175 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-1951 (($ $ (-1175 |#1|)) 142 (|has| |#1| (-370)))) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-2221 (($) 124 (|has| |#1| (-370)) CONST)) (-2188 (($ (-923)) 121 (|has| |#1| (-370)))) (-3626 (((-112) $) 103)) (-3479 (((-1122) $) 11)) (-2335 (($) 143 (|has| |#1| (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 131 (|has| |#1| (-370)))) (-3661 (((-421 $) $) 82)) (-1884 (((-834 (-923))) 101) (((-923)) 153)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2943 (((-772) $) 136 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 95 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2589 (((-134)) 109)) (-3592 (($ $) 128 (|has| |#1| (-370))) (($ $ (-772)) 126 (|has| |#1| (-370)))) (-3380 (((-834 (-923)) $) 102) (((-923) $) 152)) (-2783 (((-1175 |#1|)) 154)) (-1876 (($) 133 (|has| |#1| (-370)))) (-4006 (($) 146 (|has| |#1| (-370)))) (-3237 (((-1269 |#1|) $) 158) (((-690 |#1|) (-1269 $)) 157)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 130 (|has| |#1| (-370)))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-2318 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-4374 (((-1269 $)) 160) (((-1269 $) (-923)) 159)) (-3269 (((-112) $ $) 45)) (-3392 (((-112) $) 105)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-1620 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2856 (($ $) 127 (|has| |#1| (-370))) (($ $ (-772)) 125 (|has| |#1| (-370)))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 73) (($ $ |#1|) 108)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-4199 ((|#1| (-1 |#1| (-549)) (-1182 (-410 (-549)))) 25))) +(((-311 |#1|) (-10 -7 (-15 -4199 (|#1| (-1 |#1| (-549)) (-1182 (-410 (-549)))))) (-38 (-410 (-549)))) (T -311)) +((-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-549))) (-5 *4 (-1182 (-410 (-549)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-549))))))) +(-10 -7 (-15 -4199 (|#1| (-1 |#1| (-549)) (-1182 (-410 (-549)))))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 7)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9))) +(((-312) (-1104)) (T -312)) +NIL +(-1104) +((-2968 (((-112) $ $) NIL)) (-3929 (((-549) $) 12)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 9)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-313) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3929 ((-549) $))))) (T -313)) +((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-313)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-313))))) +(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3929 ((-549) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 60)) (-3533 (((-1256 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1256 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-549)))) (((-3 (-1250 |#2| |#3| |#4|) #2#) $) 26)) (-3576 (((-1256 |#1| |#2| |#3| |#4|) $) NIL) (((-1180) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-549)))) (((-549) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-549)))) (((-1250 |#2| |#3| |#4|) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-1256 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1269 (-1256 |#1| |#2| |#3| |#4|)))) (-691 $) (-1269 $)) NIL) (((-691 (-1256 |#1| |#2| |#3| |#4|)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-1256 |#1| |#2| |#3| |#4|) $) 22)) (-3868 (((-3 $ "failed") $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1154)))) (-3607 (((-112) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-3260 (($ $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-4390 (($ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) $) NIL)) (-4215 (((-3 (-844 |#2|) "failed") $) 80)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-308)))) (-3534 (((-1256 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-1256 |#1| |#2| |#3| |#4|)) (-643 (-1256 |#1| |#2| |#3| |#4|))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-310 (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-310 (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1256 |#1| |#2| |#3| |#4|))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-310 (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-643 (-294 (-1256 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-310 (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-643 (-1180)) (-643 (-1256 |#1| |#2| |#3| |#4|))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-517 (-1180) (-1256 |#1| |#2| |#3| |#4|)))) (($ $ (-1180) (-1256 |#1| |#2| |#3| |#4|)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-517 (-1180) (-1256 |#1| |#2| |#3| |#4|))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-1256 |#1| |#2| |#3| |#4|)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-287 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-773)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1180)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) (-773)) NIL) (($ $ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-1256 |#1| |#2| |#3| |#4|) $) 19)) (-4402 (((-893 (-549)) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-616 (-538)))) (((-380) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1023))) (((-225) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3| |#4|) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-1256 |#1| |#2| |#3| |#4|)) 30) (($ (-1180)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-1041 (-1180)))) (($ (-1250 |#2| |#3| |#4|)) 37)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-1256 |#1| |#2| |#3| |#4|) (-913))) (|has| (-1256 |#1| |#2| |#3| |#4|) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-1256 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-773)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1180)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-903 (-1180)))) (($ $ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) (-773)) NIL) (($ $ (-1 (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-1256 |#1| |#2| |#3| |#4|) (-852)))) (-4381 (($ $ $) 35) (($ (-1256 |#1| |#2| |#3| |#4|) (-1256 |#1| |#2| |#3| |#4|)) 32)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-1256 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1256 |#1| |#2| |#3| |#4|)) NIL))) +(((-314 |#1| |#2| |#3| |#4|) (-13 (-994 (-1256 |#1| |#2| |#3| |#4|)) (-1041 (-1250 |#2| |#3| |#4|)) (-10 -8 (-15 -4215 ((-3 (-844 |#2|) "failed") $)) (-15 -4378 ($ (-1250 |#2| |#3| |#4|))))) (-13 (-1041 (-549)) (-641 (-549)) (-455)) (-13 (-27) (-1205) (-424 |#1|)) (-1180) |#2|) (T -314)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1250 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4) (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) (-4215 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4)))) +(-13 (-994 (-1256 |#1| |#2| |#3| |#4|)) (-1041 (-1250 |#2| |#3| |#4|)) (-10 -8 (-15 -4215 ((-3 (-844 |#2|) "failed") $)) (-15 -4378 ($ (-1250 |#2| |#3| |#4|))))) +((-2968 (((-112) $ $) NIL)) (-1715 (((-643 $) $ (-1180)) NIL (|has| |#1| (-560))) (((-643 $) $) NIL (|has| |#1| (-560))) (((-643 $) (-1174 $) (-1180)) NIL (|has| |#1| (-560))) (((-643 $) (-1174 $)) NIL (|has| |#1| (-560))) (((-643 $) (-949 $)) NIL (|has| |#1| (-560)))) (-1303 (($ $ (-1180)) NIL (|has| |#1| (-560))) (($ $) NIL (|has| |#1| (-560))) (($ (-1174 $) (-1180)) NIL (|has| |#1| (-560))) (($ (-1174 $)) NIL (|has| |#1| (-560))) (($ (-949 $)) NIL (|has| |#1| (-560)))) (-3608 (((-112) $) 27 (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (-3485 (((-643 (-1180)) $) 368)) (-3487 (((-410 (-1174 $)) $ (-613 $)) NIL (|has| |#1| (-560)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-1708 (((-643 (-613 $)) $) NIL)) (-3915 (($ $) 171 (|has| |#1| (-560)))) (-4071 (($ $) 147 (|has| |#1| (-560)))) (-1459 (($ $ (-1095 $)) 232 (|has| |#1| (-560))) (($ $ (-1180)) 228 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL (-3960 (|has| |#1| (-21)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) 386) (($ $ (-643 (-613 $)) (-643 $)) 430)) (-3110 (((-408 (-1174 $)) (-1174 $)) 308 (-12 (|has| |#1| (-455)) (|has| |#1| (-560))))) (-4206 (($ $) NIL (|has| |#1| (-560)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-560)))) (-3438 (($ $) NIL (|has| |#1| (-560)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3913 (($ $) 167 (|has| |#1| (-560)))) (-4070 (($ $) 143 (|has| |#1| (-560)))) (-1754 (($ $ (-549)) 73 (|has| |#1| (-560)))) (-3917 (($ $) 175 (|has| |#1| (-560)))) (-4069 (($ $) 151 (|has| |#1| (-560)))) (-4156 (($) NIL (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))) CONST)) (-1304 (((-643 $) $ (-1180)) NIL (|has| |#1| (-560))) (((-643 $) $) NIL (|has| |#1| (-560))) (((-643 $) (-1174 $) (-1180)) NIL (|has| |#1| (-560))) (((-643 $) (-1174 $)) NIL (|has| |#1| (-560))) (((-643 $) (-949 $)) NIL (|has| |#1| (-560)))) (-3603 (($ $ (-1180)) NIL (|has| |#1| (-560))) (($ $) NIL (|has| |#1| (-560))) (($ (-1174 $) (-1180)) 134 (|has| |#1| (-560))) (($ (-1174 $)) NIL (|has| |#1| (-560))) (($ (-949 $)) NIL (|has| |#1| (-560)))) (-3577 (((-3 (-613 $) #1="failed") $) 18) (((-3 (-1180) #1#) $) NIL) (((-3 |#1| #1#) $) 441) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) (((-3 (-549) #1#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-949 |#1|)) #1#) $) NIL (|has| |#1| (-560))) (((-3 (-949 |#1|) #1#) $) NIL (|has| |#1| (-1052))) (((-3 (-410 (-549)) #1#) $) 46 (-3960 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-3576 (((-613 $) $) 12) (((-1180) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-949 |#1|)) $) NIL (|has| |#1| (-560))) (((-949 |#1|) $) NIL (|has| |#1| (-1052))) (((-410 (-549)) $) 319 (-3960 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-2964 (($ $ $) NIL (|has| |#1| (-560)))) (-2427 (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 125 (|has| |#1| (-1052))) (((-691 |#1|) (-691 $)) 115 (|has| |#1| (-1052))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (-4274 (($ $) 96 (|has| |#1| (-560)))) (-3890 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))))) (-2963 (($ $ $) NIL (|has| |#1| (-560)))) (-4376 (($ $ (-1095 $)) 236 (|has| |#1| (-560))) (($ $ (-1180)) 234 (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-560)))) (-4155 (((-112) $) NIL (|has| |#1| (-560)))) (-3810 (($ $ $) 202 (|has| |#1| (-560)))) (-4059 (($) 137 (|has| |#1| (-560)))) (-1456 (($ $ $) 222 (|has| |#1| (-560)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 392 (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 399 (|has| |#1| (-889 (-380))))) (-2973 (($ $) NIL) (($ (-643 $)) NIL)) (-1707 (((-643 (-113)) $) NIL)) (-3448 (((-113) (-113)) 276)) (-2573 (((-112) $) 25 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))))) (-3076 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-3397 (($ $) 72 (|has| |#1| (-1052)))) (-3399 (((-1128 |#1| (-613 $)) $) 91 (|has| |#1| (-1052)))) (-1755 (((-112) $) 62 (|has| |#1| (-560)))) (-3412 (($ $ (-549)) NIL (|has| |#1| (-560)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-560)))) (-1705 (((-1174 $) (-613 $)) 277 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) 426)) (-1710 (((-3 (-613 $) "failed") $) NIL)) (-4374 (($ $) 141 (|has| |#1| (-560)))) (-2406 (($ $) 247 (|has| |#1| (-560)))) (-2069 (($ (-643 $)) NIL (|has| |#1| (-560))) (($ $ $) NIL (|has| |#1| (-560)))) (-3663 (((-1162) $) NIL)) (-1709 (((-643 (-613 $)) $) 49)) (-2384 (($ (-113) $) NIL) (($ (-113) (-643 $)) 431)) (-3226 (((-3 (-643 $) #3="failed") $) NIL (|has| |#1| (-1115)))) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) #3#) $) NIL (|has| |#1| (-1052)))) (-3225 (((-3 (-643 $) #3#) $) 436 (|has| |#1| (-25)))) (-1969 (((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) #3#) $) 440 (|has| |#1| (-25)))) (-3227 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $) NIL (|has| |#1| (-1115))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $ (-113)) NIL (|has| |#1| (-1052))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) #3#) $ (-1180)) NIL (|has| |#1| (-1052)))) (-3035 (((-112) $ (-113)) NIL) (((-112) $ (-1180)) 51)) (-2806 (($ $) NIL (-3960 (|has| |#1| (-476)) (|has| |#1| (-560))))) (-3235 (($ $ (-1180)) 251 (|has| |#1| (-560))) (($ $ (-1095 $)) 253 (|has| |#1| (-560)))) (-3003 (((-773) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 43)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 301 (|has| |#1| (-560)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-560))) (($ $ $) NIL (|has| |#1| (-560)))) (-1706 (((-112) $ $) NIL) (((-112) $ (-1180)) NIL)) (-1460 (($ $ (-1180)) 226 (|has| |#1| (-560))) (($ $) 224 (|has| |#1| (-560)))) (-1454 (($ $) 218 (|has| |#1| (-560)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 306 (-12 (|has| |#1| (-455)) (|has| |#1| (-560))))) (-4164 (((-408 $) $) NIL (|has| |#1| (-560)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-560))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-560)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-560)))) (-4375 (($ $) 139 (|has| |#1| (-560)))) (-3077 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) 425) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) 379) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1180)) NIL (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-616 (-538)))) (($ $) NIL (|has| |#1| (-616 (-538)))) (($ $ (-113) $ (-1180)) 366 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-113)) (-643 $) (-1180)) 365 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $))) NIL (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $)))) NIL (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ (-643 $))) NIL (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ $)) NIL (|has| |#1| (-1052)))) (-1752 (((-773) $) NIL (|has| |#1| (-560)))) (-2404 (($ $) 239 (|has| |#1| (-560)))) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-1711 (($ $) NIL) (($ $ $) NIL)) (-2405 (($ $) 249 (|has| |#1| (-560)))) (-3809 (($ $) 200 (|has| |#1| (-560)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-1052))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-1052))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-1052))) (($ $ (-1180)) NIL (|has| |#1| (-1052)))) (-3396 (($ $) 74 (|has| |#1| (-560)))) (-3398 (((-1128 |#1| (-613 $)) $) 93 (|has| |#1| (-560)))) (-3605 (($ $) 317 (|has| $ (-1052)))) (-3918 (($ $) 177 (|has| |#1| (-560)))) (-4068 (($ $) 153 (|has| |#1| (-560)))) (-3916 (($ $) 173 (|has| |#1| (-560)))) (-4067 (($ $) 149 (|has| |#1| (-560)))) (-3914 (($ $) 169 (|has| |#1| (-560)))) (-4066 (($ $) 145 (|has| |#1| (-560)))) (-4402 (((-893 (-549)) $) NIL (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| |#1| (-616 (-893 (-380))))) (($ (-408 $)) NIL (|has| |#1| (-560))) (((-538) $) 363 (|has| |#1| (-616 (-538))))) (-3410 (($ $ $) NIL (|has| |#1| (-476)))) (-2756 (($ $ $) NIL (|has| |#1| (-476)))) (-4378 (((-865) $) 424) (($ (-613 $)) 415) (($ (-1180)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-560))) (($ (-48)) 312 (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) (($ (-1128 |#1| (-613 $))) 95 (|has| |#1| (-1052))) (($ (-410 |#1|)) NIL (|has| |#1| (-560))) (($ (-949 (-410 |#1|))) NIL (|has| |#1| (-560))) (($ (-410 (-949 (-410 |#1|)))) NIL (|has| |#1| (-560))) (($ (-410 (-949 |#1|))) NIL (|has| |#1| (-560))) (($ (-949 |#1|)) NIL (|has| |#1| (-1052))) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-560)) (|has| |#1| (-1041 (-410 (-549)))))) (($ (-549)) 34 (-3960 (|has| |#1| (-1041 (-549))) (|has| |#1| (-1052))))) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL (|has| |#1| (-1052)) CONST)) (-2990 (($ $) NIL) (($ (-643 $)) NIL)) (-3505 (($ $ $) 220 (|has| |#1| (-560)))) (-3813 (($ $ $) 206 (|has| |#1| (-560)))) (-3815 (($ $ $) 210 (|has| |#1| (-560)))) (-3812 (($ $ $) 204 (|has| |#1| (-560)))) (-3814 (($ $ $) 208 (|has| |#1| (-560)))) (-2403 (((-112) (-113)) 10)) (-3662 (((-112) $ $) 86)) (-3921 (($ $) 183 (|has| |#1| (-560)))) (-3909 (($ $) 159 (|has| |#1| (-560)))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 179 (|has| |#1| (-560)))) (-3907 (($ $) 155 (|has| |#1| (-560)))) (-3923 (($ $) 187 (|has| |#1| (-560)))) (-3911 (($ $) 163 (|has| |#1| (-560)))) (-1970 (($ (-1180) $) NIL) (($ (-1180) $ $) NIL) (($ (-1180) $ $ $) NIL) (($ (-1180) $ $ $ $) NIL) (($ (-1180) (-643 $)) NIL)) (-3817 (($ $) 214 (|has| |#1| (-560)))) (-3816 (($ $) 212 (|has| |#1| (-560)))) (-3924 (($ $) 189 (|has| |#1| (-560)))) (-3912 (($ $) 165 (|has| |#1| (-560)))) (-3922 (($ $) 185 (|has| |#1| (-560)))) (-3910 (($ $) 161 (|has| |#1| (-560)))) (-3920 (($ $) 181 (|has| |#1| (-560)))) (-3908 (($ $) 157 (|has| |#1| (-560)))) (-3807 (($ $) 192 (|has| |#1| (-560)))) (-3510 (($) 21 (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) CONST)) (-2408 (($ $) 243 (|has| |#1| (-560)))) (-3067 (($) 23 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))) CONST)) (-3811 (($ $) 194 (|has| |#1| (-560))) (($ $ $) 196 (|has| |#1| (-560)))) (-2409 (($ $) 241 (|has| |#1| (-560)))) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-1052))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-1052))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-1052))) (($ $ (-1180)) NIL (|has| |#1| (-1052)))) (-2407 (($ $) 245 (|has| |#1| (-560)))) (-3808 (($ $ $) 198 (|has| |#1| (-560)))) (-3455 (((-112) $ $) 88)) (-4381 (($ (-1128 |#1| (-613 $)) (-1128 |#1| (-613 $))) 106 (|has| |#1| (-560))) (($ $ $) 42 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560))))) (-4269 (($ $ $) 40 (-3960 (|has| |#1| (-21)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (($ $) 29 (-3960 (|has| |#1| (-21)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (-4271 (($ $ $) 38 (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))))) (** (($ $ $) 64 (|has| |#1| (-560))) (($ $ (-410 (-549))) 314 (|has| |#1| (-560))) (($ $ (-549)) 80 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560)))) (($ $ (-773)) 75 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115)))) (($ $ (-922)) 84 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115))))) (* (($ (-410 (-549)) $) NIL (|has| |#1| (-560))) (($ $ (-410 (-549))) NIL (|has| |#1| (-560))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-3960 (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) (|has| |#1| (-1115)))) (($ (-549) $) 32 (-3960 (|has| |#1| (-21)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (($ (-773) $) NIL (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))) (($ (-922) $) NIL (-3960 (|has| |#1| (-25)) (-12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))))))) +(((-315 |#1|) (-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-560)) (PROGN (-6 (-29 |#1|)) (-6 (-1205)) (-6 (-160)) (-6 (-632)) (-6 (-1142)) (-15 -4274 ($ $)) (-15 -1755 ((-112) $)) (-15 -1754 ($ $ (-549))) (IF (|has| |#1| (-455)) (PROGN (-15 -3109 ((-408 (-1174 $)) (-1174 $))) (-15 -3110 ((-408 (-1174 $)) (-1174 $)))) |%noBranch|) (IF (|has| |#1| (-1041 (-549))) (-6 (-1041 (-48))) |%noBranch|)) |%noBranch|))) (-1104)) (T -315)) +((-4274 (*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-560)) (-4 *2 (-1104)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-560)) (-4 *3 (-1104)))) (-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-315 *3)) (-4 *3 (-560)) (-4 *3 (-1104)))) (-3109 (*1 *2 *3) (-12 (-5 *2 (-408 (-1174 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-455)) (-4 *4 (-560)) (-4 *4 (-1104)))) (-3110 (*1 *2 *3) (-12 (-5 *2 (-408 (-1174 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1174 *1)) (-4 *4 (-455)) (-4 *4 (-560)) (-4 *4 (-1104))))) +(-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-560)) (PROGN (-6 (-29 |#1|)) (-6 (-1205)) (-6 (-160)) (-6 (-632)) (-6 (-1142)) (-15 -4274 ($ $)) (-15 -1755 ((-112) $)) (-15 -1754 ($ $ (-549))) (IF (|has| |#1| (-455)) (PROGN (-15 -3109 ((-408 (-1174 $)) (-1174 $))) (-15 -3110 ((-408 (-1174 $)) (-1174 $)))) |%noBranch|) (IF (|has| |#1| (-1041 (-549))) (-6 (-1041 (-48))) |%noBranch|)) |%noBranch|))) +((-4390 (((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)) 13))) +(((-316 |#1| |#2|) (-10 -7 (-15 -4390 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) (-1104) (-1104)) (T -316)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-315 *6)) (-5 *1 (-316 *5 *6))))) +(-10 -7 (-15 -4390 ((-315 |#2|) (-1 |#2| |#1|) (-315 |#1|)))) +((-4161 (((-51) |#2| (-294 |#2|) (-773)) 40) (((-51) |#2| (-294 |#2|)) 32) (((-51) |#2| (-773)) 35) (((-51) |#2|) 33) (((-51) (-1180)) 26)) (-4250 (((-51) |#2| (-294 |#2|) (-410 (-549))) 59) (((-51) |#2| (-294 |#2|)) 56) (((-51) |#2| (-410 (-549))) 58) (((-51) |#2|) 57) (((-51) (-1180)) 55)) (-4213 (((-51) |#2| (-294 |#2|) (-410 (-549))) 54) (((-51) |#2| (-294 |#2|)) 51) (((-51) |#2| (-410 (-549))) 53) (((-51) |#2|) 52) (((-51) (-1180)) 50)) (-4210 (((-51) |#2| (-294 |#2|) (-549)) 47) (((-51) |#2| (-294 |#2|)) 44) (((-51) |#2| (-549)) 46) (((-51) |#2|) 45) (((-51) (-1180)) 43))) +(((-317 |#1| |#2|) (-10 -7 (-15 -4161 ((-51) (-1180))) (-15 -4161 ((-51) |#2|)) (-15 -4161 ((-51) |#2| (-773))) (-15 -4161 ((-51) |#2| (-294 |#2|))) (-15 -4161 ((-51) |#2| (-294 |#2|) (-773))) (-15 -4210 ((-51) (-1180))) (-15 -4210 ((-51) |#2|)) (-15 -4210 ((-51) |#2| (-549))) (-15 -4210 ((-51) |#2| (-294 |#2|))) (-15 -4210 ((-51) |#2| (-294 |#2|) (-549))) (-15 -4213 ((-51) (-1180))) (-15 -4213 ((-51) |#2|)) (-15 -4213 ((-51) |#2| (-410 (-549)))) (-15 -4213 ((-51) |#2| (-294 |#2|))) (-15 -4213 ((-51) |#2| (-294 |#2|) (-410 (-549)))) (-15 -4250 ((-51) (-1180))) (-15 -4250 ((-51) |#2|)) (-15 -4250 ((-51) |#2| (-410 (-549)))) (-15 -4250 ((-51) |#2| (-294 |#2|))) (-15 -4250 ((-51) |#2| (-294 |#2|) (-410 (-549))))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -317)) +((-4250 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-549))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-4250 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) (-4213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-4213 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)))) (-4213 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-549))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-4213 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) (-4210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 *5) (-641 *5))) (-5 *5 (-549)) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *5 (-13 (-455) (-1041 *4) (-641 *4))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-773)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4)))))) +(-10 -7 (-15 -4161 ((-51) (-1180))) (-15 -4161 ((-51) |#2|)) (-15 -4161 ((-51) |#2| (-773))) (-15 -4161 ((-51) |#2| (-294 |#2|))) (-15 -4161 ((-51) |#2| (-294 |#2|) (-773))) (-15 -4210 ((-51) (-1180))) (-15 -4210 ((-51) |#2|)) (-15 -4210 ((-51) |#2| (-549))) (-15 -4210 ((-51) |#2| (-294 |#2|))) (-15 -4210 ((-51) |#2| (-294 |#2|) (-549))) (-15 -4213 ((-51) (-1180))) (-15 -4213 ((-51) |#2|)) (-15 -4213 ((-51) |#2| (-410 (-549)))) (-15 -4213 ((-51) |#2| (-294 |#2|))) (-15 -4213 ((-51) |#2| (-294 |#2|) (-410 (-549)))) (-15 -4250 ((-51) (-1180))) (-15 -4250 ((-51) |#2|)) (-15 -4250 ((-51) |#2| (-410 (-549)))) (-15 -4250 ((-51) |#2| (-294 |#2|))) (-15 -4250 ((-51) |#2| (-294 |#2|) (-410 (-549))))) +((-1756 (((-51) |#2| (-113) (-294 |#2|) (-643 |#2|)) 89) (((-51) |#2| (-113) (-294 |#2|) (-294 |#2|)) 85) (((-51) |#2| (-113) (-294 |#2|) |#2|) 87) (((-51) (-294 |#2|) (-113) (-294 |#2|) |#2|) 88) (((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|))) 81) (((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 |#2|)) 83) (((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 |#2|)) 84) (((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|))) 82) (((-51) (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|)) 90) (((-51) (-294 |#2|) (-113) (-294 |#2|) (-294 |#2|)) 86))) +(((-318 |#1| |#2|) (-10 -7 (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) (-294 |#2|))) (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|)))) (-15 -1756 ((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|)))) (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) |#2|)) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) |#2|)) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) (-294 |#2|))) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) (-643 |#2|)))) (-13 (-560) (-616 (-538))) (-424 |#1|)) (T -318)) +((-1756 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-5 *6 (-643 *3)) (-4 *3 (-424 *7)) (-4 *7 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *7 *3)))) (-1756 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) (-1756 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) (-1756 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *5)))) (-1756 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-113))) (-5 *6 (-643 (-294 *8))) (-4 *8 (-424 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *7 *8)))) (-1756 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-643 *7)) (-5 *4 (-643 (-113))) (-5 *5 (-294 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *7)))) (-1756 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-643 (-294 *8))) (-5 *4 (-643 (-113))) (-5 *5 (-294 *8)) (-5 *6 (-643 *8)) (-4 *8 (-424 *7)) (-4 *7 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *7 *8)))) (-1756 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-643 (-294 *7))) (-5 *4 (-643 (-113))) (-5 *5 (-294 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *7)))) (-1756 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-113)) (-5 *5 (-643 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *7)))) (-1756 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) (-4 *5 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *6))))) +(-10 -7 (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) (-294 |#2|))) (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|)))) (-15 -1756 ((-51) (-643 (-294 |#2|)) (-643 (-113)) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 |#2|))) (-15 -1756 ((-51) (-643 |#2|) (-643 (-113)) (-294 |#2|) (-643 (-294 |#2|)))) (-15 -1756 ((-51) (-294 |#2|) (-113) (-294 |#2|) |#2|)) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) |#2|)) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) (-294 |#2|))) (-15 -1756 ((-51) |#2| (-113) (-294 |#2|) (-643 |#2|)))) +((-1758 (((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549) (-1162)) 67) (((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549)) 68) (((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549) (-1162)) 64) (((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549)) 65)) (-1757 (((-1 (-225) (-225)) (-225)) 66))) +(((-319) (-10 -7 (-15 -1757 ((-1 (-225) (-225)) (-225))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549) (-1162))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549) (-1162))))) (T -319)) +((-1758 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-225)) (-5 *7 (-549)) (-5 *8 (-1162)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) (-1758 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-225)) (-5 *7 (-549)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) (-1758 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-549)) (-5 *7 (-1162)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) (-1758 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-549)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) (-1757 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) +(-10 -7 (-15 -1757 ((-1 (-225) (-225)) (-225))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-1 (-225) (-225)) (-549) (-1162))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549))) (-15 -1758 ((-1215 (-930)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-225) (-549) (-1162)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 26)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) NIL) (($ $ (-410 (-549)) (-410 (-549))) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) 20)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) 36)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) NIL) (((-410 (-549)) $ (-410 (-549))) 16)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL) (($ $ (-410 (-549))) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) NIL) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-1759 (((-410 (-549)) $) 17)) (-3494 (($ (-1250 |#1| |#2| |#3|)) 11)) (-2564 (((-1250 |#1| |#2| |#3|) $) 12)) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) NIL) (($ $ $) NIL (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-4380 (((-410 (-549)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 10)) (-4378 (((-865) $) 42) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) 34)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) NIL)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 28)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 37)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-320 |#1| |#2| |#3|) (-13 (-1252 |#1|) (-794) (-10 -8 (-15 -3494 ($ (-1250 |#1| |#2| |#3|))) (-15 -2564 ((-1250 |#1| |#2| |#3|) $)) (-15 -1759 ((-410 (-549)) $)))) (-365) (-1180) |#1|) (T -320)) +((-3494 (*1 *1 *2) (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1180)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1180)) (-14 *5 *3))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1180)) (-14 *5 *3)))) +(-13 (-1252 |#1|) (-794) (-10 -8 (-15 -3494 ($ (-1250 |#1| |#2| |#3|))) (-15 -2564 ((-1250 |#1| |#2| |#3|) $)) (-15 -1759 ((-410 (-549)) $)))) +((-3412 (((-2 (|:| -2564 (-773)) (|:| -4386 |#1|) (|:| |radicand| (-643 |#1|))) (-408 |#1|) (-773)) 35)) (-4374 (((-643 (-2 (|:| -4386 (-773)) (|:| |logand| |#1|))) (-408 |#1|)) 40))) +(((-321 |#1|) (-10 -7 (-15 -3412 ((-2 (|:| -2564 (-773)) (|:| -4386 |#1|) (|:| |radicand| (-643 |#1|))) (-408 |#1|) (-773))) (-15 -4374 ((-643 (-2 (|:| -4386 (-773)) (|:| |logand| |#1|))) (-408 |#1|)))) (-560)) (T -321)) +((-4374 (*1 *2 *3) (-12 (-5 *3 (-408 *4)) (-4 *4 (-560)) (-5 *2 (-643 (-2 (|:| -4386 (-773)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-408 *5)) (-4 *5 (-560)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *5) (|:| |radicand| (-643 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-773))))) +(-10 -7 (-15 -3412 ((-2 (|:| -2564 (-773)) (|:| -4386 |#1|) (|:| |radicand| (-643 |#1|))) (-408 |#1|) (-773))) (-15 -4374 ((-643 (-2 (|:| -4386 (-773)) (|:| |logand| |#1|))) (-408 |#1|)))) +((-3485 (((-643 |#2|) (-1174 |#4|)) 44)) (-1764 ((|#3| (-549)) 47)) (-1762 (((-1174 |#4|) (-1174 |#3|)) 30)) (-1763 (((-1174 |#4|) (-1174 |#4|) (-549)) 66)) (-1761 (((-1174 |#3|) (-1174 |#4|)) 21)) (-4380 (((-643 (-773)) (-1174 |#4|) (-643 |#2|)) 41)) (-1760 (((-1174 |#3|) (-1174 |#4|) (-643 |#2|) (-643 |#3|)) 35))) +(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1760 ((-1174 |#3|) (-1174 |#4|) (-643 |#2|) (-643 |#3|))) (-15 -4380 ((-643 (-773)) (-1174 |#4|) (-643 |#2|))) (-15 -3485 ((-643 |#2|) (-1174 |#4|))) (-15 -1761 ((-1174 |#3|) (-1174 |#4|))) (-15 -1762 ((-1174 |#4|) (-1174 |#3|))) (-15 -1763 ((-1174 |#4|) (-1174 |#4|) (-549))) (-15 -1764 (|#3| (-549)))) (-795) (-852) (-1052) (-953 |#3| |#1| |#2|)) (T -322)) +((-1764 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1052)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-953 *2 *4 *5)))) (-1763 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *7)) (-5 *3 (-549)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-5 *1 (-322 *4 *5 *6 *7)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1174 *6)) (-4 *6 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-1174 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1174 *7)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-5 *2 (-1174 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-1174 *7)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-5 *2 (-643 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-4380 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *8)) (-5 *4 (-643 *6)) (-4 *6 (-852)) (-4 *8 (-953 *7 *5 *6)) (-4 *5 (-795)) (-4 *7 (-1052)) (-5 *2 (-643 (-773))) (-5 *1 (-322 *5 *6 *7 *8)))) (-1760 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-5 *5 (-643 *8)) (-4 *7 (-852)) (-4 *8 (-1052)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-5 *2 (-1174 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) +(-10 -7 (-15 -1760 ((-1174 |#3|) (-1174 |#4|) (-643 |#2|) (-643 |#3|))) (-15 -4380 ((-643 (-773)) (-1174 |#4|) (-643 |#2|))) (-15 -3485 ((-643 |#2|) (-1174 |#4|))) (-15 -1761 ((-1174 |#3|) (-1174 |#4|))) (-15 -1762 ((-1174 |#4|) (-1174 |#3|))) (-15 -1763 ((-1174 |#4|) (-1174 |#4|) (-549))) (-15 -1764 (|#3| (-549)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 19)) (-4205 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-549)))) $) 21)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-2444 ((|#1| $ (-549)) NIL)) (-1767 (((-549) $ (-549)) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2436 (($ (-1 |#1| |#1|) $) NIL)) (-1766 (($ (-1 (-549) (-549)) $) 11)) (-3663 (((-1162) $) NIL)) (-1765 (($ $ $) NIL (|has| (-549) (-794)))) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-4109 (((-549) |#1| $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) 29 (|has| |#1| (-852)))) (-4269 (($ $) 12) (($ $ $) 28)) (-4271 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL) (($ (-549) |#1|) 27))) +(((-323 |#1|) (-13 (-21) (-719 (-549)) (-324 |#1| (-549)) (-10 -7 (IF (|has| |#1| (-852)) (-6 (-852)) |%noBranch|))) (-1104)) (T -323)) +NIL +(-13 (-21) (-719 (-549)) (-324 |#1| (-549)) (-10 -7 (IF (|has| |#1| (-852)) (-6 (-852)) |%noBranch|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4205 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $) 28)) (-1407 (((-3 $ "failed") $ $) 20)) (-3540 (((-773) $) 29)) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| "failed") $) 33)) (-3576 ((|#1| $) 34)) (-2444 ((|#1| $ (-549)) 26)) (-1767 ((|#2| $ (-549)) 27)) (-2436 (($ (-1 |#1| |#1|) $) 23)) (-1766 (($ (-1 |#2| |#2|) $) 24)) (-3663 (((-1162) $) 10)) (-1765 (($ $ $) 22 (|has| |#2| (-794)))) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ |#1|) 32)) (-4109 ((|#2| |#1| $) 25)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ |#2| |#1|) 30))) +(((-324 |#1| |#2|) (-140) (-1104) (-131)) (T -324)) +((-4271 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-131)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)) (-5 *2 (-773)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)) (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))))) (-1767 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1104)) (-4 *2 (-131)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1104)))) (-4109 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-131)))) (-1766 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)))) (-1765 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-131)) (-4 *3 (-794))))) +(-13 (-131) (-1041 |t#1|) (-10 -8 (-15 -4271 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3540 ((-773) $)) (-15 -4205 ((-643 (-2 (|:| |gen| |t#1|) (|:| -4375 |t#2|))) $)) (-15 -1767 (|t#2| $ (-549))) (-15 -2444 (|t#1| $ (-549))) (-15 -4109 (|t#2| |t#1| $)) (-15 -1766 ($ (-1 |t#2| |t#2|) $)) (-15 -2436 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-794)) (-15 -1765 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-1041 |#1|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4205 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-773)))) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-2444 ((|#1| $ (-549)) NIL)) (-1767 (((-773) $ (-549)) NIL)) (-2436 (($ (-1 |#1| |#1|) $) NIL)) (-1766 (($ (-1 (-773) (-773)) $) NIL)) (-3663 (((-1162) $) NIL)) (-1765 (($ $ $) NIL (|has| (-773) (-794)))) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-4109 (((-773) |#1| $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-773) |#1|) NIL))) +(((-325 |#1|) (-324 |#1| (-773)) (-1104)) (T -325)) +NIL +(-324 |#1| (-773)) +((-3926 (($ $) 72)) (-1769 (($ $ |#2| |#3| $) 14)) (-1770 (($ (-1 |#3| |#3|) $) 51)) (-1972 (((-112) $) 42)) (-1971 ((|#2| $) 44)) (-3889 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3220 ((|#2| $) 68)) (-4249 (((-643 |#2|) $) 56)) (-1768 (($ $ $ (-773)) 37)) (-4381 (($ $ |#2|) 60))) +(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -3926 (|#1| |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1768 (|#1| |#1| |#1| (-773))) (-15 -1769 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1770 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4249 ((-643 |#2|) |#1|)) (-15 -1971 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4381 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1052) (-794)) (T -326)) +NIL +(-10 -8 (-15 -3926 (|#1| |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1768 (|#1| |#1| |#1| (-773))) (-15 -1769 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1770 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4249 ((-643 |#2|) |#1|)) (-15 -1971 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4381 (|#1| |#1| |#2|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 100 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 98 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 95)) (-3576 (((-549) $) 99 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 97 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 96)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 84 (|has| |#1| (-455)))) (-1769 (($ $ |#1| |#2| $) 88)) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 91)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| |#2|) 73)) (-3223 ((|#2| $) 90)) (-1770 (($ (-1 |#2| |#2|) $) 89)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 94)) (-1971 ((|#1| $) 93)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-560)))) (-4380 ((|#2| $) 76)) (-3220 ((|#1| $) 85 (|has| |#1| (-455)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59) (($ (-410 (-549))) 69 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))))) (-4249 (((-643 |#1|) $) 92)) (-4109 ((|#1| $ |#2|) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 87 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-327 |#1| |#2|) (-140) (-1052) (-794)) (T -327)) +((-1972 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-112)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-643 *3)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-773)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-1770 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) (-1769 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) (-1768 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *3 (-172)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-560)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)) (-4 *2 (-455)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-455))))) +(-13 (-47 |t#1| |t#2|) (-415 |t#1|) (-10 -8 (-15 -1972 ((-112) $)) (-15 -1971 (|t#1| $)) (-15 -4249 ((-643 |t#1|) $)) (-15 -2581 ((-773) $)) (-15 -3223 (|t#2| $)) (-15 -1770 ($ (-1 |t#2| |t#2|) $)) (-15 -1769 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -1768 ($ $ $ (-773))) |%noBranch|) (IF (|has| |t#1| (-560)) (-15 -3889 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -3220 (|t#1| $)) (-15 -3926 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-291) |has| |#1| (-560)) ((-415 |#1|) . T) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-2164 (((-112) (-112)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) NIL)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-2526 (($ $) NIL (|has| |#1| (-1104)))) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) NIL)) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2165 (($ $ (-549)) NIL)) (-2166 (((-773) $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4039 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2167 (($ (-643 |#1|)) NIL)) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-1679 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4222 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2167 ($ (-643 |#1|))) (-15 -2166 ((-773) $)) (-15 -2165 ($ $ (-549))) (-15 -2164 ((-112) (-112))))) (-1219)) (T -328)) +((-2167 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-328 *3)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1219))))) +(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2167 ($ (-643 |#1|))) (-15 -2166 ((-773) $)) (-15 -2165 ($ $ (-549))) (-15 -2164 ((-112) (-112))))) +((-4364 (((-112) $) 50)) (-4361 (((-773)) 26)) (-3754 ((|#2| $) 54) (($ $ (-922)) 124)) (-3540 (((-773)) 125)) (-1967 (($ (-1269 |#2|)) 23)) (-2189 (((-112) $) 138)) (-3536 ((|#2| $) 56) (($ $ (-922)) 121)) (-2192 (((-1174 |#2|) $) NIL) (((-1174 $) $ (-922)) 112)) (-1772 (((-1174 |#2|) $) 98)) (-1771 (((-1174 |#2|) $) 94) (((-3 (-1174 |#2|) "failed") $ $) 91)) (-1773 (($ $ (-1174 |#2|)) 62)) (-4362 (((-834 (-922))) 33) (((-922)) 51)) (-4343 (((-134)) 30)) (-4380 (((-834 (-922)) $) 35) (((-922) $) 141)) (-1774 (($) 131)) (-3644 (((-1269 |#2|) $) NIL) (((-691 |#2|) (-1269 $)) 45)) (-3105 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4365 (((-112) $) 48))) +(((-329 |#1| |#2|) (-10 -8 (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3540 ((-773))) (-15 -3105 (|#1| |#1|)) (-15 -1771 ((-3 (-1174 |#2|) "failed") |#1| |#1|)) (-15 -1771 ((-1174 |#2|) |#1|)) (-15 -1772 ((-1174 |#2|) |#1|)) (-15 -1773 (|#1| |#1| (-1174 |#2|))) (-15 -2189 ((-112) |#1|)) (-15 -1774 (|#1|)) (-15 -3754 (|#1| |#1| (-922))) (-15 -3536 (|#1| |#1| (-922))) (-15 -2192 ((-1174 |#1|) |#1| (-922))) (-15 -3754 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -4380 ((-922) |#1|)) (-15 -4362 ((-922))) (-15 -2192 ((-1174 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -4361 ((-773))) (-15 -4362 ((-834 (-922)))) (-15 -4380 ((-834 (-922)) |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -4365 ((-112) |#1|)) (-15 -4343 ((-134)))) (-330 |#2|) (-365)) (T -329)) +((-4343 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4362 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-834 (-922))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4361 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-4362 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-922)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3540 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4))))) +(-10 -8 (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3540 ((-773))) (-15 -3105 (|#1| |#1|)) (-15 -1771 ((-3 (-1174 |#2|) "failed") |#1| |#1|)) (-15 -1771 ((-1174 |#2|) |#1|)) (-15 -1772 ((-1174 |#2|) |#1|)) (-15 -1773 (|#1| |#1| (-1174 |#2|))) (-15 -2189 ((-112) |#1|)) (-15 -1774 (|#1|)) (-15 -3754 (|#1| |#1| (-922))) (-15 -3536 (|#1| |#1| (-922))) (-15 -2192 ((-1174 |#1|) |#1| (-922))) (-15 -3754 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -4380 ((-922) |#1|)) (-15 -4362 ((-922))) (-15 -2192 ((-1174 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -4361 ((-773))) (-15 -4362 ((-834 (-922)))) (-15 -4380 ((-834 (-922)) |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -4365 ((-112) |#1|)) (-15 -4343 ((-134)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-4364 (((-112) $) 104)) (-4361 (((-773)) 100)) (-3754 ((|#1| $) 150) (($ $ (-922)) 147 (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) 132 (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-3540 (((-773)) 122 (|has| |#1| (-370)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| "failed") $) 111)) (-3576 ((|#1| $) 112)) (-1967 (($ (-1269 |#1|)) 156)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-3395 (($) 119 (|has| |#1| (-370)))) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-3236 (($) 134 (|has| |#1| (-370)))) (-1848 (((-112) $) 135 (|has| |#1| (-370)))) (-1941 (($ $ (-773)) 97 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) 79)) (-4203 (((-922) $) 137 (|has| |#1| (-370))) (((-834 (-922)) $) 94 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) 35)) (-2191 (($) 145 (|has| |#1| (-370)))) (-2189 (((-112) $) 144 (|has| |#1| (-370)))) (-3536 ((|#1| $) 151) (($ $ (-922)) 148 (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2192 (((-1174 |#1|) $) 155) (((-1174 $) $ (-922)) 149 (|has| |#1| (-370)))) (-2188 (((-922) $) 120 (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) 141 (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) 142 (|has| |#1| (-370)))) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3869 (($) 124 (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) 121 (|has| |#1| (-370)))) (-4363 (((-112) $) 103)) (-3664 (((-1123) $) 11)) (-2572 (($) 143 (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 131 (|has| |#1| (-370)))) (-4164 (((-408 $) $) 82)) (-4362 (((-834 (-922))) 101) (((-922)) 153)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1942 (((-773) $) 136 (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) 95 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) 109)) (-4242 (($ $) 128 (|has| |#1| (-370))) (($ $ (-773)) 126 (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) 102) (((-922) $) 152)) (-3605 (((-1174 |#1|)) 154)) (-1842 (($) 133 (|has| |#1| (-370)))) (-1774 (($) 146 (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) 158) (((-691 |#1|) (-1269 $)) 157)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 130 (|has| |#1| (-370)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ |#1|) 110)) (-3105 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 160) (((-1269 $) (-922)) 159)) (-2240 (((-112) $ $) 45)) (-4365 (((-112) $) 105)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-4360 (($ $) 99 (|has| |#1| (-370))) (($ $ (-773)) 98 (|has| |#1| (-370)))) (-3072 (($ $) 127 (|has| |#1| (-370))) (($ $ (-773)) 125 (|has| |#1| (-370)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73) (($ $ |#1|) 108)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-330 |#1|) (-140) (-365)) (T -330)) -((-4374 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *3)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *4)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1269 *3)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1175 *3)))) (-2783 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1175 *3)))) (-1884 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-3908 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1175 *1)) (-4 *1 (-330 *4)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3132 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-4006 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2075 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-2335 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1951 (*1 *1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-4066 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1175 *3)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1175 *3)))) (-2710 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1175 *3))))) -(-13 (-1288 |t#1|) (-1040 |t#1|) (-10 -8 (-15 -4374 ((-1269 $))) (-15 -4374 ((-1269 $) (-923))) (-15 -3237 ((-1269 |t#1|) $)) (-15 -3237 ((-690 |t#1|) (-1269 $))) (-15 -3431 ($ (-1269 |t#1|))) (-15 -3908 ((-1175 |t#1|) $)) (-15 -2783 ((-1175 |t#1|))) (-15 -1884 ((-923))) (-15 -3380 ((-923) $)) (-15 -2013 (|t#1| $)) (-15 -3132 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -3908 ((-1175 $) $ (-923))) (-15 -2013 ($ $ (-923))) (-15 -3132 ($ $ (-923))) (-15 -4006 ($)) (-15 -2075 ($)) (-15 -3739 ((-112) $)) (-15 -2335 ($)) (-15 -1951 ($ $ (-1175 |t#1|))) (-15 -4066 ((-1175 |t#1|) $)) (-15 -2710 ((-1175 |t#1|) $)) (-15 -2710 ((-3 (-1175 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2836 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1288 |#1|) . T) ((-365) . T) ((-405) -2836 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-370)) ((-1223) . T) ((-1276 |#1|) . T)) -((-2487 (((-112) $ $) NIL)) (-4092 (($ (-1178) $) 104)) (-1772 (($) 93)) (-2558 (((-1122) (-1122)) 9)) (-1675 (($) 94)) (-4215 (($) 108) (($ (-317 (-700))) 116) (($ (-317 (-702))) 112) (($ (-317 (-695))) 120) (($ (-317 (-381))) 127) (($ (-317 (-567))) 123) (($ (-317 (-169 (-381)))) 131)) (-2719 (($ (-1178) $) 105)) (-2673 (($ (-645 (-863))) 95)) (-1879 (((-1274) $) 91)) (-3448 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1593 (($ (-1122)) 60)) (-3963 (((-1106) $) 32)) (-3227 (($ (-1094 (-954 (-567))) $) 101) (($ (-1094 (-954 (-567))) (-954 (-567)) $) 102)) (-3295 (($ (-1122)) 103)) (-4396 (($ (-1178) $) 133) (($ (-1178) $ $) 134)) (-3278 (($ (-1179) (-645 (-1179))) 92)) (-4146 (($ (-1161)) 98) (($ (-645 (-1161))) 96)) (-2504 (((-863) $) 136)) (-3179 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1179)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1178)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2319 (-112)) (|:| -2233 (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) (|:| |forBranch| (-2 (|:| -2031 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -3501 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -3501 $))) (|:| |commonBranch| (-2 (|:| -1646 (-1179)) (|:| |contents| (-645 (-1179))))) (|:| |printBranch| (-645 (-863)))) $) 51)) (-2306 (($ (-1161)) 205)) (-2454 (($ (-645 $)) 132)) (-3858 (((-112) $ $) NIL)) (-2204 (($ (-1179) (-1161)) 138) (($ (-1179) (-317 (-702))) 178) (($ (-1179) (-317 (-700))) 179) (($ (-1179) (-317 (-695))) 180) (($ (-1179) (-690 (-702))) 141) (($ (-1179) (-690 (-700))) 144) (($ (-1179) (-690 (-695))) 147) (($ (-1179) (-1269 (-702))) 150) (($ (-1179) (-1269 (-700))) 153) (($ (-1179) (-1269 (-695))) 156) (($ (-1179) (-690 (-317 (-702)))) 159) (($ (-1179) (-690 (-317 (-700)))) 162) (($ (-1179) (-690 (-317 (-695)))) 165) (($ (-1179) (-1269 (-317 (-702)))) 168) (($ (-1179) (-1269 (-317 (-700)))) 171) (($ (-1179) (-1269 (-317 (-695)))) 174) (($ (-1179) (-645 (-954 (-567))) (-317 (-702))) 175) (($ (-1179) (-645 (-954 (-567))) (-317 (-700))) 176) (($ (-1179) (-645 (-954 (-567))) (-317 (-695))) 177) (($ (-1179) (-317 (-567))) 202) (($ (-1179) (-317 (-381))) 203) (($ (-1179) (-317 (-169 (-381)))) 204) (($ (-1179) (-690 (-317 (-567)))) 183) (($ (-1179) (-690 (-317 (-381)))) 186) (($ (-1179) (-690 (-317 (-169 (-381))))) 189) (($ (-1179) (-1269 (-317 (-567)))) 192) (($ (-1179) (-1269 (-317 (-381)))) 195) (($ (-1179) (-1269 (-317 (-169 (-381))))) 198) (($ (-1179) (-645 (-954 (-567))) (-317 (-567))) 199) (($ (-1179) (-645 (-954 (-567))) (-317 (-381))) 200) (($ (-1179) (-645 (-954 (-567))) (-317 (-169 (-381)))) 201)) (-2968 (((-112) $ $) NIL))) -(((-331) (-13 (-1102) (-10 -8 (-15 -3227 ($ (-1094 (-954 (-567))) $)) (-15 -3227 ($ (-1094 (-954 (-567))) (-954 (-567)) $)) (-15 -4092 ($ (-1178) $)) (-15 -2719 ($ (-1178) $)) (-15 -1593 ($ (-1122))) (-15 -3295 ($ (-1122))) (-15 -4146 ($ (-1161))) (-15 -4146 ($ (-645 (-1161)))) (-15 -2306 ($ (-1161))) (-15 -4215 ($)) (-15 -4215 ($ (-317 (-700)))) (-15 -4215 ($ (-317 (-702)))) (-15 -4215 ($ (-317 (-695)))) (-15 -4215 ($ (-317 (-381)))) (-15 -4215 ($ (-317 (-567)))) (-15 -4215 ($ (-317 (-169 (-381))))) (-15 -4396 ($ (-1178) $)) (-15 -4396 ($ (-1178) $ $)) (-15 -2204 ($ (-1179) (-1161))) (-15 -2204 ($ (-1179) (-317 (-702)))) (-15 -2204 ($ (-1179) (-317 (-700)))) (-15 -2204 ($ (-1179) (-317 (-695)))) (-15 -2204 ($ (-1179) (-690 (-702)))) (-15 -2204 ($ (-1179) (-690 (-700)))) (-15 -2204 ($ (-1179) (-690 (-695)))) (-15 -2204 ($ (-1179) (-1269 (-702)))) (-15 -2204 ($ (-1179) (-1269 (-700)))) (-15 -2204 ($ (-1179) (-1269 (-695)))) (-15 -2204 ($ (-1179) (-690 (-317 (-702))))) (-15 -2204 ($ (-1179) (-690 (-317 (-700))))) (-15 -2204 ($ (-1179) (-690 (-317 (-695))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-702))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-700))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-695))))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-702)))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-700)))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-695)))) (-15 -2204 ($ (-1179) (-317 (-567)))) (-15 -2204 ($ (-1179) (-317 (-381)))) (-15 -2204 ($ (-1179) (-317 (-169 (-381))))) (-15 -2204 ($ (-1179) (-690 (-317 (-567))))) (-15 -2204 ($ (-1179) (-690 (-317 (-381))))) (-15 -2204 ($ (-1179) (-690 (-317 (-169 (-381)))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-567))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-381))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-169 (-381)))))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-567)))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-381)))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-169 (-381))))) (-15 -2454 ($ (-645 $))) (-15 -1772 ($)) (-15 -1675 ($)) (-15 -2673 ($ (-645 (-863)))) (-15 -3278 ($ (-1179) (-645 (-1179)))) (-15 -3448 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3179 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1179)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1178)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2319 (-112)) (|:| -2233 (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) (|:| |forBranch| (-2 (|:| -2031 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -3501 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -3501 $))) (|:| |commonBranch| (-2 (|:| -1646 (-1179)) (|:| |contents| (-645 (-1179))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -1879 ((-1274) $)) (-15 -3963 ((-1106) $)) (-15 -2558 ((-1122) (-1122)))))) (T -331)) -((-3227 (*1 *1 *2 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *1 (-331)))) (-3227 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *3 (-954 (-567))) (-5 *1 (-331)))) (-4092 (*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) (-2719 (*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))) (-3295 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-331)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-331)))) (-2306 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-331)))) (-4215 (*1 *1) (-5 *1 (-331))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-4396 (*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) (-4396 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1161)) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-702))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-700))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-695))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-702)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-700)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-695)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-702))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-700))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-695))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-567)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-381)))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-567))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-2204 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2454 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))) (-1772 (*1 *1) (-5 *1 (-331))) (-1675 (*1 *1) (-5 *1 (-331))) (-2673 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))) (-3278 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1179)) (-5 *1 (-331)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1179)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1178)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -2319 (-112)) (|:| -2233 (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) (|:| |blockBranch| (-645 (-331))) (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) (|:| |forBranch| (-2 (|:| -2031 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -3501 (-331)))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -3501 (-331)))) (|:| |commonBranch| (-2 (|:| -1646 (-1179)) (|:| |contents| (-645 (-1179))))) (|:| |printBranch| (-645 (-863))))) (-5 *1 (-331)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-331)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331))))) -(-13 (-1102) (-10 -8 (-15 -3227 ($ (-1094 (-954 (-567))) $)) (-15 -3227 ($ (-1094 (-954 (-567))) (-954 (-567)) $)) (-15 -4092 ($ (-1178) $)) (-15 -2719 ($ (-1178) $)) (-15 -1593 ($ (-1122))) (-15 -3295 ($ (-1122))) (-15 -4146 ($ (-1161))) (-15 -4146 ($ (-645 (-1161)))) (-15 -2306 ($ (-1161))) (-15 -4215 ($)) (-15 -4215 ($ (-317 (-700)))) (-15 -4215 ($ (-317 (-702)))) (-15 -4215 ($ (-317 (-695)))) (-15 -4215 ($ (-317 (-381)))) (-15 -4215 ($ (-317 (-567)))) (-15 -4215 ($ (-317 (-169 (-381))))) (-15 -4396 ($ (-1178) $)) (-15 -4396 ($ (-1178) $ $)) (-15 -2204 ($ (-1179) (-1161))) (-15 -2204 ($ (-1179) (-317 (-702)))) (-15 -2204 ($ (-1179) (-317 (-700)))) (-15 -2204 ($ (-1179) (-317 (-695)))) (-15 -2204 ($ (-1179) (-690 (-702)))) (-15 -2204 ($ (-1179) (-690 (-700)))) (-15 -2204 ($ (-1179) (-690 (-695)))) (-15 -2204 ($ (-1179) (-1269 (-702)))) (-15 -2204 ($ (-1179) (-1269 (-700)))) (-15 -2204 ($ (-1179) (-1269 (-695)))) (-15 -2204 ($ (-1179) (-690 (-317 (-702))))) (-15 -2204 ($ (-1179) (-690 (-317 (-700))))) (-15 -2204 ($ (-1179) (-690 (-317 (-695))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-702))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-700))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-695))))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-702)))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-700)))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-695)))) (-15 -2204 ($ (-1179) (-317 (-567)))) (-15 -2204 ($ (-1179) (-317 (-381)))) (-15 -2204 ($ (-1179) (-317 (-169 (-381))))) (-15 -2204 ($ (-1179) (-690 (-317 (-567))))) (-15 -2204 ($ (-1179) (-690 (-317 (-381))))) (-15 -2204 ($ (-1179) (-690 (-317 (-169 (-381)))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-567))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-381))))) (-15 -2204 ($ (-1179) (-1269 (-317 (-169 (-381)))))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-567)))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-381)))) (-15 -2204 ($ (-1179) (-645 (-954 (-567))) (-317 (-169 (-381))))) (-15 -2454 ($ (-645 $))) (-15 -1772 ($)) (-15 -1675 ($)) (-15 -2673 ($ (-645 (-863)))) (-15 -3278 ($ (-1179) (-645 (-1179)))) (-15 -3448 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3179 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1179)) (|:| |arrayIndex| (-645 (-954 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1178)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2319 (-112)) (|:| -2233 (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) (|:| |forBranch| (-2 (|:| -2031 (-1094 (-954 (-567)))) (|:| |span| (-954 (-567))) (|:| -3501 $))) (|:| |labelBranch| (-1122)) (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -3501 $))) (|:| |commonBranch| (-2 (|:| -1646 (-1179)) (|:| |contents| (-645 (-1179))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -1879 ((-1274) $)) (-15 -3963 ((-1106) $)) (-15 -2558 ((-1122) (-1122))))) -((-2487 (((-112) $ $) NIL)) (-2384 (((-112) $) 13)) (-2524 (($ |#1|) 10)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2533 (($ |#1|) 12)) (-2504 (((-863) $) 19)) (-3858 (((-112) $ $) NIL)) (-2928 ((|#1| $) 14)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 21))) -(((-332 |#1|) (-13 (-851) (-10 -8 (-15 -2524 ($ |#1|)) (-15 -2533 ($ |#1|)) (-15 -2384 ((-112) $)) (-15 -2928 (|#1| $)))) (-851)) (T -332)) -((-2524 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-2533 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-2384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))) (-2928 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))) -(-13 (-851) (-10 -8 (-15 -2524 ($ |#1|)) (-15 -2533 ($ |#1|)) (-15 -2384 ((-112) $)) (-15 -2928 (|#1| $)))) -((-2869 (((-331) (-1179) (-954 (-567))) 23)) (-3442 (((-331) (-1179) (-954 (-567))) 27)) (-2475 (((-331) (-1179) (-1094 (-954 (-567))) (-1094 (-954 (-567)))) 26) (((-331) (-1179) (-954 (-567)) (-954 (-567))) 24)) (-4204 (((-331) (-1179) (-954 (-567))) 31))) -(((-333) (-10 -7 (-15 -2869 ((-331) (-1179) (-954 (-567)))) (-15 -2475 ((-331) (-1179) (-954 (-567)) (-954 (-567)))) (-15 -2475 ((-331) (-1179) (-1094 (-954 (-567))) (-1094 (-954 (-567))))) (-15 -3442 ((-331) (-1179) (-954 (-567)))) (-15 -4204 ((-331) (-1179) (-954 (-567)))))) (T -333)) -((-4204 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2475 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-1094 (-954 (-567)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2475 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) (-5 *1 (-333))))) -(-10 -7 (-15 -2869 ((-331) (-1179) (-954 (-567)))) (-15 -2475 ((-331) (-1179) (-954 (-567)) (-954 (-567)))) (-15 -2475 ((-331) (-1179) (-1094 (-954 (-567))) (-1094 (-954 (-567))))) (-15 -3442 ((-331) (-1179) (-954 (-567)))) (-15 -4204 ((-331) (-1179) (-954 (-567))))) -((-2487 (((-112) $ $) NIL)) (-4367 (((-509) $) 20)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3763 (((-960 (-772)) $) 18)) (-3509 (((-250) $) 7)) (-2504 (((-863) $) 26)) (-1893 (((-960 (-183 (-139))) $) 16)) (-3858 (((-112) $ $) NIL)) (-4070 (((-645 (-874 (-1184) (-772))) $) 12)) (-2968 (((-112) $ $) 22))) -(((-334) (-13 (-1102) (-10 -8 (-15 -3509 ((-250) $)) (-15 -4070 ((-645 (-874 (-1184) (-772))) $)) (-15 -3763 ((-960 (-772)) $)) (-15 -1893 ((-960 (-183 (-139))) $)) (-15 -4367 ((-509) $))))) (T -334)) -((-3509 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1184) (-772)))) (-5 *1 (-334)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-960 (-772))) (-5 *1 (-334)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-960 (-183 (-139)))) (-5 *1 (-334)))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) -(-13 (-1102) (-10 -8 (-15 -3509 ((-250) $)) (-15 -4070 ((-645 (-874 (-1184) (-772))) $)) (-15 -3763 ((-960 (-772)) $)) (-15 -1893 ((-960 (-183 (-139))) $)) (-15 -4367 ((-509) $)))) -((-4364 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33))) -(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4364 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1245 |#5|) (-1245 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -335)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1245 *9)) (-4 *11 (-1245 (-410 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11))))) -(-10 -7 (-15 -4364 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) -((-4137 (((-112) $) 14))) -(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4137 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -336)) -NIL -(-10 -8 (-15 -4137 ((-112) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-2617 (($ $) 29)) (-4137 (((-112) $) 28)) (-1812 (((-1161) $) 10)) (-3728 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 35)) (-3479 (((-1122) $) 11)) (-2335 (((-3 |#4| "failed") $) 27)) (-1647 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-567)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2289 (((-2 (|:| -4188 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24))) -(((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1245 |t#1|) (-1245 (-410 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337)) -((-3728 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-416 *4 (-410 *4) *5 *6)))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-1647 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-1647 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-1647 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1245 *2)) (-4 *5 (-1245 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -4188 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) (-2617 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-2335 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) (-1647 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3728 ((-416 |t#2| (-410 |t#2|) |t#3| |t#4|) $)) (-15 -1647 ($ (-416 |t#2| (-410 |t#2|) |t#3| |t#4|))) (-15 -1647 ($ |t#4|)) (-15 -1647 ($ |t#1| |t#1|)) (-15 -1647 ($ |t#1| |t#1| (-567))) (-15 -2289 ((-2 (|:| -4188 (-416 |t#2| (-410 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2617 ($ $)) (-15 -4137 ((-112) $)) (-15 -2335 ((-3 |t#4| "failed") $)) (-15 -1647 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-2617 (($ $) 33)) (-4137 (((-112) $) NIL)) (-1812 (((-1161) $) NIL)) (-4103 (((-1269 |#4|) $) 135)) (-3728 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 31)) (-3479 (((-1122) $) NIL)) (-2335 (((-3 |#4| "failed") $) 36)) (-2885 (((-1269 |#4|) $) 127)) (-1647 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-567)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2289 (((-2 (|:| -4188 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2504 (((-863) $) 17)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 14 T CONST)) (-2968 (((-112) $ $) 20)) (-3054 (($ $) 27) (($ $ $) NIL)) (-3045 (($ $ $) 25)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 23))) -(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2885 ((-1269 |#4|) $)) (-15 -4103 ((-1269 |#4|) $)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -338)) -((-2885 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-4103 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) -(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2885 ((-1269 |#4|) $)) (-15 -4103 ((-1269 |#4|) $)))) -((-2913 (($ $ (-1179) |#2|) NIL) (($ $ (-645 (-1179)) (-645 |#2|)) 20) (($ $ (-645 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-1882 (($ $ |#2|) 11))) -(((-339 |#1| |#2|) (-10 -8 (-15 -1882 (|#1| |#1| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#2| |#2|)) (-15 -2913 (|#1| |#1| (-295 |#2|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 |#2|))) (-15 -2913 (|#1| |#1| (-1179) |#2|))) (-340 |#2|) (-1102)) (T -339)) -NIL -(-10 -8 (-15 -1882 (|#1| |#1| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#2| |#2|)) (-15 -2913 (|#1| |#1| (-295 |#2|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 |#2|))) (-15 -2913 (|#1| |#1| (-1179) |#2|))) -((-4364 (($ (-1 |#1| |#1|) $) 6)) (-2913 (($ $ (-1179) |#1|) 17 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 16 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-645 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-645 |#1|) (-645 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-1882 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|))))) -(((-340 |#1|) (-140) (-1102)) (T -340)) -((-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1102))))) -(-13 (-10 -8 (-15 -4364 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517 (-1179) |t#1|)) (-6 (-517 (-1179) |t#1|)) |%noBranch|))) -(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-1179)) $) NIL)) (-3901 (((-112)) 99) (((-112) (-112)) 100)) (-3526 (((-645 (-613 $)) $) NIL)) (-1406 (($ $) NIL)) (-2545 (($ $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3072 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3671 (($ $) NIL)) (-1380 (($ $) NIL)) (-2524 (($ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-613 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1179)) 105) (((-3 $ "failed") (-317 (-567))) 67 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-410 (-954 (-567)))) 73 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-954 (-567))) 68 (|has| |#3| (-1040 (-567)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1040 (-381)))) (((-3 $ "failed") (-410 (-954 (-381)))) 91 (|has| |#3| (-1040 (-381)))) (((-3 $ "failed") (-954 (-381))) 86 (|has| |#3| (-1040 (-381))))) (-3094 (((-613 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1179)) 106) (($ (-317 (-567))) 69 (|has| |#3| (-1040 (-567)))) (($ (-410 (-954 (-567)))) 74 (|has| |#3| (-1040 (-567)))) (($ (-954 (-567))) 70 (|has| |#3| (-1040 (-567)))) (($ (-317 (-381))) 98 (|has| |#3| (-1040 (-381)))) (($ (-410 (-954 (-381)))) 92 (|has| |#3| (-1040 (-381)))) (($ (-954 (-381))) 88 (|has| |#3| (-1040 (-381))))) (-1377 (((-3 $ "failed") $) NIL)) (-4329 (($) 10)) (-2998 (($ $) NIL) (($ (-645 $)) NIL)) (-2131 (((-645 (-114)) $) NIL)) (-3609 (((-114) (-114)) NIL)) (-4384 (((-112) $) NIL)) (-3807 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-1935 (((-1175 $) (-613 $)) NIL (|has| $ (-1051)))) (-4364 (($ (-1 $ $) (-613 $)) NIL)) (-2126 (((-3 (-613 $) "failed") $) NIL)) (-1329 (($ $) 102)) (-2734 (($ $) NIL)) (-1812 (((-1161) $) NIL)) (-3599 (((-645 (-613 $)) $) NIL)) (-4369 (($ (-114) $) 101) (($ (-114) (-645 $)) NIL)) (-2208 (((-112) $ (-114)) NIL) (((-112) $ (-1179)) NIL)) (-1337 (((-772) $) NIL)) (-3479 (((-1122) $) NIL)) (-2769 (((-112) $ $) NIL) (((-112) $ (-1179)) NIL)) (-4272 (($ $) NIL)) (-1359 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2913 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1882 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-1929 (($ $) NIL) (($ $ $) NIL)) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL)) (-2783 (($ $) NIL (|has| $ (-1051)))) (-1394 (($ $) NIL)) (-2533 (($ $) NIL)) (-2504 (((-863) $) NIL) (($ (-613 $)) NIL) (($ |#3|) NIL) (($ (-567)) NIL) (((-317 |#3|) $) 104)) (-2214 (((-772)) NIL T CONST)) (-2130 (($ $) NIL) (($ (-645 $)) NIL)) (-3862 (((-112) (-114)) NIL)) (-3858 (((-112) $ $) NIL)) (-2610 (($ $) NIL)) (-2588 (($ $) NIL)) (-2599 (($ $) NIL)) (-1368 (($ $) NIL)) (-1807 (($) 103 T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $ $) NIL) (($ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL))) -(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1040 |#3|) (-902 (-1179)) (-10 -8 (-15 -3094 ($ (-317 |#3|))) (-15 -4275 ((-3 $ "failed") (-317 |#3|))) (-15 -3094 ($ (-1179))) (-15 -4275 ((-3 $ "failed") (-1179))) (-15 -2504 ((-317 |#3|) $)) (IF (|has| |#3| (-1040 (-567))) (PROGN (-15 -3094 ($ (-317 (-567)))) (-15 -4275 ((-3 $ "failed") (-317 (-567)))) (-15 -3094 ($ (-410 (-954 (-567))))) (-15 -4275 ((-3 $ "failed") (-410 (-954 (-567))))) (-15 -3094 ($ (-954 (-567)))) (-15 -4275 ((-3 $ "failed") (-954 (-567))))) |%noBranch|) (IF (|has| |#3| (-1040 (-381))) (PROGN (-15 -3094 ($ (-317 (-381)))) (-15 -4275 ((-3 $ "failed") (-317 (-381)))) (-15 -3094 ($ (-410 (-954 (-381))))) (-15 -4275 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -3094 ($ (-954 (-381)))) (-15 -4275 ((-3 $ "failed") (-954 (-381))))) |%noBranch|) (-15 -1368 ($ $)) (-15 -3671 ($ $)) (-15 -4272 ($ $)) (-15 -2734 ($ $)) (-15 -1329 ($ $)) (-15 -2524 ($ $)) (-15 -2533 ($ $)) (-15 -2545 ($ $)) (-15 -2588 ($ $)) (-15 -2599 ($ $)) (-15 -2610 ($ $)) (-15 -1380 ($ $)) (-15 -1394 ($ $)) (-15 -1406 ($ $)) (-15 -4329 ($)) (-15 -3783 ((-645 (-1179)) $)) (-15 -3901 ((-112))) (-15 -3901 ((-112) (-112))))) (-645 (-1179)) (-645 (-1179)) (-390)) (T -341)) -((-3094 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-1368 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3671 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-4272 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2734 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-1329 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2524 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2533 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2545 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2588 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2599 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-2610 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-1380 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-1394 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-1406 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-4329 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) (-3901 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390))))) -(-13 (-303) (-38 |#3|) (-1040 |#3|) (-902 (-1179)) (-10 -8 (-15 -3094 ($ (-317 |#3|))) (-15 -4275 ((-3 $ "failed") (-317 |#3|))) (-15 -3094 ($ (-1179))) (-15 -4275 ((-3 $ "failed") (-1179))) (-15 -2504 ((-317 |#3|) $)) (IF (|has| |#3| (-1040 (-567))) (PROGN (-15 -3094 ($ (-317 (-567)))) (-15 -4275 ((-3 $ "failed") (-317 (-567)))) (-15 -3094 ($ (-410 (-954 (-567))))) (-15 -4275 ((-3 $ "failed") (-410 (-954 (-567))))) (-15 -3094 ($ (-954 (-567)))) (-15 -4275 ((-3 $ "failed") (-954 (-567))))) |%noBranch|) (IF (|has| |#3| (-1040 (-381))) (PROGN (-15 -3094 ($ (-317 (-381)))) (-15 -4275 ((-3 $ "failed") (-317 (-381)))) (-15 -3094 ($ (-410 (-954 (-381))))) (-15 -4275 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -3094 ($ (-954 (-381)))) (-15 -4275 ((-3 $ "failed") (-954 (-381))))) |%noBranch|) (-15 -1368 ($ $)) (-15 -3671 ($ $)) (-15 -4272 ($ $)) (-15 -2734 ($ $)) (-15 -1329 ($ $)) (-15 -2524 ($ $)) (-15 -2533 ($ $)) (-15 -2545 ($ $)) (-15 -2588 ($ $)) (-15 -2599 ($ $)) (-15 -2610 ($ $)) (-15 -1380 ($ $)) (-15 -1394 ($ $)) (-15 -1406 ($ $)) (-15 -4329 ($)) (-15 -3783 ((-645 (-1179)) $)) (-15 -3901 ((-112))) (-15 -3901 ((-112) (-112))))) -((-4364 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4364 (|#8| (-1 |#5| |#1|) |#4|))) (-1223) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-1223) (-1245 |#5|) (-1245 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -342)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1223)) (-4 *8 (-1223)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *9 (-1245 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1245 (-410 *9)))))) -(-10 -7 (-15 -4364 (|#8| (-1 |#5| |#1|) |#4|))) -((-2628 (((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) $) 40)) (-3431 (($ (-1269 (-410 |#3|)) (-1269 $)) NIL) (($ (-1269 (-410 |#3|))) NIL) (($ (-1269 |#3|) |#3|) 177)) (-3540 (((-1269 $) (-1269 $)) 161)) (-2687 (((-645 (-645 |#2|))) 130)) (-3658 (((-112) |#2| |#2|) 77)) (-1873 (($ $) 152)) (-2925 (((-772)) 33)) (-3754 (((-1269 $) (-1269 $)) 222)) (-1651 (((-645 (-954 |#2|)) (-1179)) 119)) (-3323 (((-112) $) 174)) (-2792 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-1597 (((-3 |#3| "failed")) 53)) (-2818 (((-772)) 188)) (-1882 ((|#2| $ |#2| |#2|) 144)) (-1985 (((-3 |#3| "failed")) 72)) (-3592 (($ $ (-1 (-410 |#3|) (-410 |#3|)) (-772)) NIL) (($ $ (-1 (-410 |#3|) (-410 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-1641 (((-1269 $) (-1269 $)) 167)) (-1846 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-4271 (((-112)) 35))) -(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2687 ((-645 (-645 |#2|)))) (-15 -1651 ((-645 (-954 |#2|)) (-1179))) (-15 -1846 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1597 ((-3 |#3| "failed"))) (-15 -1985 ((-3 |#3| "failed"))) (-15 -1882 (|#2| |#1| |#2| |#2|)) (-15 -1873 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2792 ((-112) |#1| |#3|)) (-15 -2792 ((-112) |#1| |#2|)) (-15 -3431 (|#1| (-1269 |#3|) |#3|)) (-15 -2628 ((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3540 ((-1269 |#1|) (-1269 |#1|))) (-15 -3754 ((-1269 |#1|) (-1269 |#1|))) (-15 -1641 ((-1269 |#1|) (-1269 |#1|))) (-15 -2792 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -3658 ((-112) |#2| |#2|)) (-15 -4271 ((-112))) (-15 -2818 ((-772))) (-15 -2925 ((-772))) (-15 -3592 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -3592 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3431 (|#1| (-1269 (-410 |#3|)))) (-15 -3431 (|#1| (-1269 (-410 |#3|)) (-1269 |#1|)))) (-344 |#2| |#3| |#4|) (-1223) (-1245 |#2|) (-1245 (-410 |#3|))) (T -343)) -((-2925 (*1 *2) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-2818 (*1 *2) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-4271 (*1 *2) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3658 (*1 *2 *3 *3) (-12 (-4 *3 (-1223)) (-4 *5 (-1245 *3)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-1985 (*1 *2) (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-1597 (*1 *2) (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *5 (-1223)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-645 (-954 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-2687 (*1 *2) (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))) -(-10 -8 (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2687 ((-645 (-645 |#2|)))) (-15 -1651 ((-645 (-954 |#2|)) (-1179))) (-15 -1846 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1597 ((-3 |#3| "failed"))) (-15 -1985 ((-3 |#3| "failed"))) (-15 -1882 (|#2| |#1| |#2| |#2|)) (-15 -1873 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2792 ((-112) |#1| |#3|)) (-15 -2792 ((-112) |#1| |#2|)) (-15 -3431 (|#1| (-1269 |#3|) |#3|)) (-15 -2628 ((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3540 ((-1269 |#1|) (-1269 |#1|))) (-15 -3754 ((-1269 |#1|) (-1269 |#1|))) (-15 -1641 ((-1269 |#1|) (-1269 |#1|))) (-15 -2792 ((-112) |#1|)) (-15 -3323 ((-112) |#1|)) (-15 -3658 ((-112) |#2| |#2|)) (-15 -4271 ((-112))) (-15 -2818 ((-772))) (-15 -2925 ((-772))) (-15 -3592 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -3592 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3431 (|#1| (-1269 (-410 |#3|)))) (-15 -3431 (|#1| (-1269 (-410 |#3|)) (-1269 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2628 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 204)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 102 (|has| (-410 |#2|) (-365)))) (-1987 (($ $) 103 (|has| (-410 |#2|) (-365)))) (-3342 (((-112) $) 105 (|has| (-410 |#2|) (-365)))) (-2706 (((-690 (-410 |#2|)) (-1269 $)) 53) (((-690 (-410 |#2|))) 68)) (-3132 (((-410 |#2|) $) 59)) (-2694 (((-1192 (-923) (-772)) (-567)) 155 (|has| (-410 |#2|) (-351)))) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 122 (|has| (-410 |#2|) (-365)))) (-1466 (((-421 $) $) 123 (|has| (-410 |#2|) (-365)))) (-4175 (((-112) $ $) 113 (|has| (-410 |#2|) (-365)))) (-3404 (((-772)) 96 (|has| (-410 |#2|) (-370)))) (-3742 (((-112)) 221)) (-2334 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 178 (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) 173)) (-3094 (((-567) $) 177 (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) 174)) (-3431 (($ (-1269 (-410 |#2|)) (-1269 $)) 55) (($ (-1269 (-410 |#2|))) 71) (($ (-1269 |#2|) |#2|) 203)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-410 |#2|) (-351)))) (-2432 (($ $ $) 117 (|has| (-410 |#2|) (-365)))) (-3815 (((-690 (-410 |#2|)) $ (-1269 $)) 60) (((-690 (-410 |#2|)) $) 66)) (-2690 (((-690 (-567)) (-690 $)) 172 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 171 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-690 $) (-1269 $)) 170) (((-690 (-410 |#2|)) (-690 $)) 169)) (-3540 (((-1269 $) (-1269 $)) 209)) (-2617 (($ |#3|) 166) (((-3 $ "failed") (-410 |#3|)) 163 (|has| (-410 |#2|) (-365)))) (-1377 (((-3 $ "failed") $) 37)) (-2687 (((-645 (-645 |#1|))) 190 (|has| |#1| (-370)))) (-3658 (((-112) |#1| |#1|) 225)) (-1471 (((-923)) 61)) (-2119 (($) 99 (|has| (-410 |#2|) (-370)))) (-2210 (((-112)) 218)) (-1936 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2443 (($ $ $) 116 (|has| (-410 |#2|) (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 111 (|has| (-410 |#2|) (-365)))) (-1873 (($ $) 196)) (-3882 (($) 157 (|has| (-410 |#2|) (-351)))) (-1816 (((-112) $) 158 (|has| (-410 |#2|) (-351)))) (-2559 (($ $ (-772)) 149 (|has| (-410 |#2|) (-351))) (($ $) 148 (|has| (-410 |#2|) (-351)))) (-2946 (((-112) $) 124 (|has| (-410 |#2|) (-365)))) (-3905 (((-923) $) 160 (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) 146 (|has| (-410 |#2|) (-351)))) (-4384 (((-112) $) 35)) (-2925 (((-772)) 228)) (-3754 (((-1269 $) (-1269 $)) 210)) (-2013 (((-410 |#2|) $) 58)) (-1651 (((-645 (-954 |#1|)) (-1179)) 191 (|has| |#1| (-365)))) (-3104 (((-3 $ "failed") $) 150 (|has| (-410 |#2|) (-351)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| (-410 |#2|) (-365)))) (-3908 ((|#3| $) 51 (|has| (-410 |#2|) (-365)))) (-2667 (((-923) $) 98 (|has| (-410 |#2|) (-370)))) (-2606 ((|#3| $) 164)) (-1831 (($ (-645 $)) 109 (|has| (-410 |#2|) (-365))) (($ $ $) 108 (|has| (-410 |#2|) (-365)))) (-1812 (((-1161) $) 10)) (-1373 (((-690 (-410 |#2|))) 205)) (-1422 (((-690 (-410 |#2|))) 207)) (-1752 (($ $) 125 (|has| (-410 |#2|) (-365)))) (-1984 (($ (-1269 |#2|) |#2|) 201)) (-3248 (((-690 (-410 |#2|))) 206)) (-2150 (((-690 (-410 |#2|))) 208)) (-4010 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-4323 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 202)) (-2115 (((-1269 $)) 214)) (-2171 (((-1269 $)) 215)) (-3323 (((-112) $) 213)) (-2792 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2221 (($) 151 (|has| (-410 |#2|) (-351)) CONST)) (-2188 (($ (-923)) 97 (|has| (-410 |#2|) (-370)))) (-1597 (((-3 |#2| "failed")) 193)) (-3479 (((-1122) $) 11)) (-2818 (((-772)) 227)) (-2335 (($) 168)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 110 (|has| (-410 |#2|) (-365)))) (-1870 (($ (-645 $)) 107 (|has| (-410 |#2|) (-365))) (($ $ $) 106 (|has| (-410 |#2|) (-365)))) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 154 (|has| (-410 |#2|) (-351)))) (-3661 (((-421 $) $) 121 (|has| (-410 |#2|) (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 118 (|has| (-410 |#2|) (-365)))) (-2478 (((-3 $ "failed") $ $) 101 (|has| (-410 |#2|) (-365)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| (-410 |#2|) (-365)))) (-2465 (((-772) $) 114 (|has| (-410 |#2|) (-365)))) (-1882 ((|#1| $ |#1| |#1|) 195)) (-1985 (((-3 |#2| "failed")) 194)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 115 (|has| (-410 |#2|) (-365)))) (-2254 (((-410 |#2|) (-1269 $)) 54) (((-410 |#2|)) 67)) (-2943 (((-772) $) 159 (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) 147 (|has| (-410 |#2|) (-351)))) (-3592 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 131 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 130 (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-645 (-1179)) (-645 (-772))) 138 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1750 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-1179) (-772)) 139 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1750 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1179))) 140 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1750 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-1179)) 141 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1750 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 143 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1750 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 145 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1750 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3089 (((-690 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) 162 (|has| (-410 |#2|) (-365)))) (-2783 ((|#3|) 167)) (-1876 (($) 156 (|has| (-410 |#2|) (-351)))) (-3237 (((-1269 (-410 |#2|)) $ (-1269 $)) 57) (((-690 (-410 |#2|)) (-1269 $) (-1269 $)) 56) (((-1269 (-410 |#2|)) $) 73) (((-690 (-410 |#2|)) (-1269 $)) 72)) (-1322 (((-1269 (-410 |#2|)) $) 70) (($ (-1269 (-410 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 153 (|has| (-410 |#2|) (-351)))) (-1641 (((-1269 $) (-1269 $)) 211)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 |#2|)) 44) (($ (-410 (-567))) 95 (-2836 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1040 (-410 (-567)))))) (($ $) 100 (|has| (-410 |#2|) (-365)))) (-2318 (($ $) 152 (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-410 |#2|) (-145)))) (-4019 ((|#3| $) 52)) (-2214 (((-772)) 32 T CONST)) (-4049 (((-112)) 224)) (-2463 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3858 (((-112) $ $) 9)) (-4374 (((-1269 $)) 74)) (-3269 (((-112) $ $) 104 (|has| (-410 |#2|) (-365)))) (-1846 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-4271 (((-112)) 226)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 133 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 132 (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1179)) (-645 (-772))) 134 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1750 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-1179) (-772)) 135 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1750 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1179))) 136 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1750 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-1179)) 137 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) (-1750 (|has| (-410 |#2|) (-902 (-1179))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 142 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1750 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 144 (-2836 (-1750 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1750 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 129 (|has| (-410 |#2|) (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 |#2|)) 46) (($ (-410 |#2|) $) 45) (($ (-410 (-567)) $) 128 (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) 127 (|has| (-410 |#2|) (-365))))) -(((-344 |#1| |#2| |#3|) (-140) (-1223) (-1245 |t#1|) (-1245 (-410 |t#2|))) (T -344)) -((-2925 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-772)))) (-2818 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-772)))) (-4271 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-3658 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-4049 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2463 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2463 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-3742 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2334 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2334 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-2210 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1936 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1936 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-2171 (*1 *2) (-12 (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) (-2115 (*1 *2) (-12 (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-3540 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-2150 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1422 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-3248 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1373 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1223)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))) (-1984 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1223)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))) (-2792 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-2792 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-1873 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))))) (-1882 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))))) (-1985 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1223)) (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))) (-1597 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1223)) (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))) (-1846 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1223)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *4 (-365)) (-5 *2 (-645 (-954 *4))))) (-2687 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3)))))) -(-13 (-725 (-410 |t#2|) |t#3|) (-10 -8 (-15 -2925 ((-772))) (-15 -2818 ((-772))) (-15 -4271 ((-112))) (-15 -3658 ((-112) |t#1| |t#1|)) (-15 -4049 ((-112))) (-15 -2463 ((-112) |t#1|)) (-15 -2463 ((-112) |t#2|)) (-15 -3742 ((-112))) (-15 -2334 ((-112) |t#1|)) (-15 -2334 ((-112) |t#2|)) (-15 -2210 ((-112))) (-15 -1936 ((-112) |t#1|)) (-15 -1936 ((-112) |t#2|)) (-15 -2171 ((-1269 $))) (-15 -2115 ((-1269 $))) (-15 -3323 ((-112) $)) (-15 -2792 ((-112) $)) (-15 -1641 ((-1269 $) (-1269 $))) (-15 -3754 ((-1269 $) (-1269 $))) (-15 -3540 ((-1269 $) (-1269 $))) (-15 -2150 ((-690 (-410 |t#2|)))) (-15 -1422 ((-690 (-410 |t#2|)))) (-15 -3248 ((-690 (-410 |t#2|)))) (-15 -1373 ((-690 (-410 |t#2|)))) (-15 -2628 ((-2 (|:| |num| (-1269 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3431 ($ (-1269 |t#2|) |t#2|)) (-15 -4323 ((-2 (|:| |num| (-1269 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1984 ($ (-1269 |t#2|) |t#2|)) (-15 -4010 ((-2 (|:| |num| (-690 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2792 ((-112) $ |t#1|)) (-15 -2792 ((-112) $ |t#2|)) (-15 -3592 ($ $ (-1 |t#2| |t#2|))) (-15 -1873 ($ $)) (-15 -1882 (|t#1| $ |t#1| |t#1|)) (-15 -1985 ((-3 |t#2| "failed"))) (-15 -1597 ((-3 |t#2| "failed"))) (-15 -1846 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -1651 ((-645 (-954 |t#1|)) (-1179))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -2687 ((-645 (-645 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-38 #1=(-410 |#2|)) . T) ((-38 $) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-145))) ((-147) |has| (-410 |#2|) (-147)) ((-617 #0#) -2836 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-617 #1#) . T) ((-617 (-567)) . T) ((-617 $) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#3|) . T) ((-231 #1#) |has| (-410 |#2|) (-365)) ((-233) -2836 (|has| (-410 |#2|) (-351)) (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365)))) ((-243) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-291) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-308) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-365) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-405) |has| (-410 |#2|) (-351)) ((-370) -2836 (|has| (-410 |#2|) (-370)) (|has| (-410 |#2|) (-351))) ((-351) |has| (-410 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-412 #1# |#3|) . T) ((-379 #1#) . T) ((-414 #1#) . T) ((-455) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-559) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #0#) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #1#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-641 #1#) . T) ((-641 $) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-640 #1#) . T) ((-640 (-567)) |has| (-410 |#2|) (-640 (-567))) ((-718 #0#) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-718 #1#) . T) ((-718 $) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-725 #1# |#3|) . T) ((-727) . T) ((-902 (-1179)) -12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179)))) ((-922) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1040 (-410 (-567))) |has| (-410 |#2|) (-1040 (-410 (-567)))) ((-1040 #1#) . T) ((-1040 (-567)) |has| (-410 |#2|) (-1040 (-567))) ((-1053 #0#) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1053 #1#) . T) ((-1053 $) . T) ((-1058 #0#) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1058 #1#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| (-410 |#2|) (-351)) ((-1223) -2836 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-912 |#1|) "failed") $) NIL)) (-3094 (((-912 |#1|) $) NIL)) (-3431 (($ (-1269 (-912 |#1|))) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-912 |#1|) (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) NIL (|has| (-912 |#1|) (-370)))) (-1816 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) NIL (|has| (-912 |#1|) (-370)))) (-3739 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2013 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 (-912 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2667 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-4066 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2710 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1175 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-1951 (($ $ (-1175 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-2188 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3626 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-2322 (((-960 (-1122))) NIL)) (-2335 (($) NIL (|has| (-912 |#1|) (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-2783 (((-1175 (-912 |#1|))) NIL)) (-1876 (($) NIL (|has| (-912 |#1|) (-370)))) (-4006 (($) NIL (|has| (-912 |#1|) (-370)))) (-3237 (((-1269 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-2318 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2856 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL))) -(((-345 |#1| |#2|) (-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2322 ((-960 (-1122)))))) (-923) (-923)) (T -345)) -((-2322 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-345 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923))))) -(-13 (-330 (-912 |#1|)) (-10 -7 (-15 -2322 ((-960 (-1122)))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 58)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) 56 (|has| |#1| (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL (|has| |#1| (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) 144)) (-3094 ((|#1| $) 115)) (-3431 (($ (-1269 |#1|)) 132)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) 126 (|has| |#1| (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) 162 (|has| |#1| (-370)))) (-1816 (((-112) $) 66 (|has| |#1| (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) 60 (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4384 (((-112) $) 62)) (-2075 (($) 164 (|has| |#1| (-370)))) (-3739 (((-112) $) NIL (|has| |#1| (-370)))) (-2013 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 |#1|) $) 119) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-2667 (((-923) $) 173 (|has| |#1| (-370)))) (-4066 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2710 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1951 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 180)) (-2221 (($) NIL (|has| |#1| (-370)) CONST)) (-2188 (($ (-923)) 98 (|has| |#1| (-370)))) (-3626 (((-112) $) 149)) (-3479 (((-1122) $) NIL)) (-2322 (((-960 (-1122))) 57)) (-2335 (($) 160 (|has| |#1| (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 121 (|has| |#1| (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) 92) (((-923)) 93)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) 163 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 156 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-2783 (((-1175 |#1|)) 124)) (-1876 (($) 161 (|has| |#1| (-370)))) (-4006 (($) 169 (|has| |#1| (-370)))) (-3237 (((-1269 |#1|) $) 77) (((-690 |#1|) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-2504 (((-863) $) 176) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 102)) (-2318 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2214 (((-772)) 157 T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) 146) (((-1269 $) (-923)) 100)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) 67 T CONST)) (-1820 (($) 105 T CONST)) (-1620 (($ $) 109 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2856 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2968 (((-112) $ $) 65)) (-3064 (($ $ $) 178) (($ $ |#1|) 179)) (-3054 (($ $) 159) (($ $ $) NIL)) (-3045 (($ $ $) 86)) (** (($ $ (-923)) 182) (($ $ (-772)) 183) (($ $ (-567)) 181)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 104) (($ $ $) 103) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177))) -(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2322 ((-960 (-1122)))))) (-351) (-1175 |#1|)) (T -346)) -((-2322 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1175 *3))))) -(-13 (-330 |#1|) (-10 -7 (-15 -2322 ((-960 (-1122)))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL (|has| |#1| (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3431 (($ (-1269 |#1|)) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| |#1| (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) NIL (|has| |#1| (-370)))) (-1816 (((-112) $) NIL (|has| |#1| (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) NIL (|has| |#1| (-370)))) (-3739 (((-112) $) NIL (|has| |#1| (-370)))) (-2013 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-2667 (((-923) $) NIL (|has| |#1| (-370)))) (-4066 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2710 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1951 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| |#1| (-370)) CONST)) (-2188 (($ (-923)) NIL (|has| |#1| (-370)))) (-3626 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-2322 (((-960 (-1122))) NIL)) (-2335 (($) NIL (|has| |#1| (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| |#1| (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-2783 (((-1175 |#1|)) NIL)) (-1876 (($) NIL (|has| |#1| (-370)))) (-4006 (($) NIL (|has| |#1| (-370)))) (-3237 (((-1269 |#1|) $) NIL) (((-690 |#1|) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-2318 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2856 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -2322 ((-960 (-1122)))))) (-351) (-923)) (T -347)) -((-2322 (*1 *2) (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923))))) -(-13 (-330 |#1|) (-10 -7 (-15 -2322 ((-960 (-1122)))))) -((-2102 (((-772) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122)))))) 61)) (-3681 (((-960 (-1122)) (-1175 |#1|)) 113)) (-2921 (((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) (-1175 |#1|)) 105)) (-1618 (((-690 |#1|) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122)))))) 115)) (-2020 (((-3 (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) "failed") (-923)) 13)) (-3081 (((-3 (-1175 |#1|) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122)))))) (-923)) 18))) -(((-348 |#1|) (-10 -7 (-15 -3681 ((-960 (-1122)) (-1175 |#1|))) (-15 -2921 ((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) (-1175 |#1|))) (-15 -1618 ((-690 |#1|) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (-15 -2102 ((-772) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (-15 -2020 ((-3 (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) "failed") (-923))) (-15 -3081 ((-3 (-1175 |#1|) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122)))))) (-923)))) (-351)) (T -348)) -((-3081 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-3 (-1175 *4) (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-2020 (*1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-5 *2 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) (-5 *1 (-348 *4)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-960 (-1122))) (-5 *1 (-348 *4))))) -(-10 -7 (-15 -3681 ((-960 (-1122)) (-1175 |#1|))) (-15 -2921 ((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) (-1175 |#1|))) (-15 -1618 ((-690 |#1|) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (-15 -2102 ((-772) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (-15 -2020 ((-3 (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) "failed") (-923))) (-15 -3081 ((-3 (-1175 |#1|) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122)))))) (-923)))) -((-2504 ((|#1| |#3|) 108) ((|#3| |#1|) 91))) -(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -2504 (|#3| |#1|)) (-15 -2504 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349)) -((-2504 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-2504 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4))))) -(-10 -7 (-15 -2504 (|#3| |#1|)) (-15 -2504 (|#1| |#3|))) -((-1816 (((-112) $) 60)) (-3905 (((-834 (-923)) $) 23) (((-923) $) 66)) (-3104 (((-3 $ "failed") $) 18)) (-2221 (($) 9)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 116)) (-2943 (((-3 (-772) "failed") $ $) 94) (((-772) $) 81)) (-3592 (($ $ (-772)) NIL) (($ $) 8)) (-1876 (($) 53)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 38)) (-2318 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-350 |#1|) (-10 -8 (-15 -3905 ((-923) |#1|)) (-15 -2943 ((-772) |#1|)) (-15 -1816 ((-112) |#1|)) (-15 -1876 (|#1|)) (-15 -3369 ((-3 (-1269 |#1|) "failed") (-690 |#1|))) (-15 -2318 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -2221 (|#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -2943 ((-3 (-772) "failed") |#1| |#1|)) (-15 -3905 ((-834 (-923)) |#1|)) (-15 -2318 ((-3 |#1| "failed") |#1|)) (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) (-351)) (T -350)) -NIL -(-10 -8 (-15 -3905 ((-923) |#1|)) (-15 -2943 ((-772) |#1|)) (-15 -1816 ((-112) |#1|)) (-15 -1876 (|#1|)) (-15 -3369 ((-3 (-1269 |#1|) "failed") (-690 |#1|))) (-15 -2318 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -2221 (|#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -2943 ((-3 (-772) "failed") |#1| |#1|)) (-15 -3905 ((-834 (-923)) |#1|)) (-15 -2318 ((-3 |#1| "failed") |#1|)) (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2694 (((-1192 (-923) (-772)) (-567)) 101)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-4175 (((-112) $ $) 65)) (-3404 (((-772)) 111)) (-3758 (($) 18 T CONST)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2119 (($) 114)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-3882 (($) 99)) (-1816 (((-112) $) 98)) (-2559 (($ $) 87) (($ $ (-772)) 86)) (-2946 (((-112) $) 79)) (-3905 (((-834 (-923)) $) 89) (((-923) $) 96)) (-4384 (((-112) $) 35)) (-3104 (((-3 $ "failed") $) 110)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2667 (((-923) $) 113)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-2221 (($) 109 T CONST)) (-2188 (($ (-923)) 112)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 102)) (-3661 (((-421 $) $) 82)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2943 (((-3 (-772) "failed") $ $) 88) (((-772) $) 97)) (-3592 (($ $ (-772)) 107) (($ $) 105)) (-1876 (($) 100)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 103)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2318 (((-3 $ "failed") $) 90) (($ $) 104)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-772)) 108) (($ $) 106)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 73)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) -(((-351) (-140)) (T -351)) -((-2318 (*1 *1 *1) (-4 *1 (-351))) (-3369 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1269 *1)))) (-3093 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))))) (-2694 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1192 (-923) (-772))))) (-1876 (*1 *1) (-4 *1 (-351))) (-3882 (*1 *1) (-4 *1 (-351))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-923)))) (-3730 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-405) (-370) (-1154) (-233) (-10 -8 (-15 -2318 ($ $)) (-15 -3369 ((-3 (-1269 $) "failed") (-690 $))) (-15 -3093 ((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567)))))) (-15 -2694 ((-1192 (-923) (-772)) (-567))) (-15 -1876 ($)) (-15 -3882 ($)) (-15 -1816 ((-112) $)) (-15 -2943 ((-772) $)) (-15 -3905 ((-923) $)) (-15 -3730 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) . T) ((-370) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) . T) ((-1223) . T)) -((-4112 (((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|) 55)) (-2171 (((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 53))) -(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -2171 ((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -4112 ((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $)))) (-1245 |#1|) (-412 |#1| |#2|)) (T -352)) -((-4112 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2171 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) -(-10 -7 (-15 -2171 ((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -4112 ((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-2102 (((-772)) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-912 |#1|) "failed") $) NIL)) (-3094 (((-912 |#1|) $) NIL)) (-3431 (($ (-1269 (-912 |#1|))) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-912 |#1|) (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) NIL (|has| (-912 |#1|) (-370)))) (-1816 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) NIL (|has| (-912 |#1|) (-370)))) (-3739 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2013 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 (-912 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2667 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-4066 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2710 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1175 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-1951 (($ $ (-1175 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-2188 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3626 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-3677 (((-1269 (-645 (-2 (|:| -2233 (-912 |#1|)) (|:| -2188 (-1122)))))) NIL)) (-2418 (((-690 (-912 |#1|))) NIL)) (-2335 (($) NIL (|has| (-912 |#1|) (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-2783 (((-1175 (-912 |#1|))) NIL)) (-1876 (($) NIL (|has| (-912 |#1|) (-370)))) (-4006 (($) NIL (|has| (-912 |#1|) (-370)))) (-3237 (((-1269 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-2318 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2856 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL))) -(((-353 |#1| |#2|) (-13 (-330 (-912 |#1|)) (-10 -7 (-15 -3677 ((-1269 (-645 (-2 (|:| -2233 (-912 |#1|)) (|:| -2188 (-1122))))))) (-15 -2418 ((-690 (-912 |#1|)))) (-15 -2102 ((-772))))) (-923) (-923)) (T -353)) -((-3677 (*1 *2) (-12 (-5 *2 (-1269 (-645 (-2 (|:| -2233 (-912 *3)) (|:| -2188 (-1122)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-2418 (*1 *2) (-12 (-5 *2 (-690 (-912 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-2102 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923))))) -(-13 (-330 (-912 |#1|)) (-10 -7 (-15 -3677 ((-1269 (-645 (-2 (|:| -2233 (-912 |#1|)) (|:| -2188 (-1122))))))) (-15 -2418 ((-690 (-912 |#1|)))) (-15 -2102 ((-772))))) -((-2487 (((-112) $ $) 76)) (-2684 (((-112) $) 90)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 ((|#1| $) 108) (($ $ (-923)) 106 (|has| |#1| (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) 177 (|has| |#1| (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-2102 (((-772)) 105)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) 193 (|has| |#1| (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) 130)) (-3094 ((|#1| $) 107)) (-3431 (($ (-1269 |#1|)) 74)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) 189 (|has| |#1| (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) 178 (|has| |#1| (-370)))) (-1816 (((-112) $) NIL (|has| |#1| (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) 116 (|has| |#1| (-370)))) (-3739 (((-112) $) 206 (|has| |#1| (-370)))) (-2013 ((|#1| $) 110) (($ $ (-923)) 109 (|has| |#1| (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 |#1|) $) 220) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-2667 (((-923) $) 154 (|has| |#1| (-370)))) (-4066 (((-1175 |#1|) $) 89 (|has| |#1| (-370)))) (-2710 (((-1175 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-1951 (($ $ (-1175 |#1|)) 85 (|has| |#1| (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 224)) (-2221 (($) NIL (|has| |#1| (-370)) CONST)) (-2188 (($ (-923)) 157 (|has| |#1| (-370)))) (-3626 (((-112) $) 126)) (-3479 (((-1122) $) NIL)) (-3677 (((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122)))))) 99)) (-2418 (((-690 |#1|)) 103)) (-2335 (($) 112 (|has| |#1| (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 180 (|has| |#1| (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) 181)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) 78)) (-2783 (((-1175 |#1|)) 182)) (-1876 (($) 153 (|has| |#1| (-370)))) (-4006 (($) NIL (|has| |#1| (-370)))) (-3237 (((-1269 |#1|) $) 124) (((-690 |#1|) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-2504 (((-863) $) 146) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 73)) (-2318 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2214 (((-772)) 187 T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) 203) (((-1269 $) (-923)) 119)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) 140 T CONST)) (-1820 (($) 44 T CONST)) (-1620 (($ $) 125 (|has| |#1| (-370))) (($ $ (-772)) 117 (|has| |#1| (-370)))) (-2856 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2968 (((-112) $ $) 214)) (-3064 (($ $ $) 122) (($ $ |#1|) 123)) (-3054 (($ $) 208) (($ $ $) 212)) (-3045 (($ $ $) 210)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 159)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 217) (($ $ $) 171) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) -(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3677 ((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (-15 -2418 ((-690 |#1|))) (-15 -2102 ((-772))))) (-351) (-3 (-1175 |#1|) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (T -354)) -((-3677 (*1 *2) (-12 (-5 *2 (-1269 (-645 (-2 (|:| -2233 *3) (|:| -2188 (-1122)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1175 *3) *2)))) (-2418 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1175 *3) (-1269 (-645 (-2 (|:| -2233 *3) (|:| -2188 (-1122))))))))) (-2102 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1175 *3) (-1269 (-645 (-2 (|:| -2233 *3) (|:| -2188 (-1122)))))))))) -(-13 (-330 |#1|) (-10 -7 (-15 -3677 ((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (-15 -2418 ((-690 |#1|))) (-15 -2102 ((-772))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-2102 (((-772)) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL (|has| |#1| (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3431 (($ (-1269 |#1|)) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| |#1| (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) NIL (|has| |#1| (-370)))) (-1816 (((-112) $) NIL (|has| |#1| (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) NIL (|has| |#1| (-370)))) (-3739 (((-112) $) NIL (|has| |#1| (-370)))) (-2013 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-2667 (((-923) $) NIL (|has| |#1| (-370)))) (-4066 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2710 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1951 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| |#1| (-370)) CONST)) (-2188 (($ (-923)) NIL (|has| |#1| (-370)))) (-3626 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-3677 (((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122)))))) NIL)) (-2418 (((-690 |#1|)) NIL)) (-2335 (($) NIL (|has| |#1| (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| |#1| (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-2783 (((-1175 |#1|)) NIL)) (-1876 (($) NIL (|has| |#1| (-370)))) (-4006 (($) NIL (|has| |#1| (-370)))) (-3237 (((-1269 |#1|) $) NIL) (((-690 |#1|) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-2318 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2856 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3677 ((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (-15 -2418 ((-690 |#1|))) (-15 -2102 ((-772))))) (-351) (-923)) (T -355)) -((-3677 (*1 *2) (-12 (-5 *2 (-1269 (-645 (-2 (|:| -2233 *3) (|:| -2188 (-1122)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))) (-2418 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923)))) (-2102 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923))))) -(-13 (-330 |#1|) (-10 -7 (-15 -3677 ((-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))))) (-15 -2418 ((-690 |#1|))) (-15 -2102 ((-772))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-912 |#1|) (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL (|has| (-912 |#1|) (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-912 |#1|) "failed") $) NIL)) (-3094 (((-912 |#1|) $) NIL)) (-3431 (($ (-1269 (-912 |#1|))) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-912 |#1|) (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-912 |#1|) (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) NIL (|has| (-912 |#1|) (-370)))) (-1816 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370)))) (($ $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| (-912 |#1|) (-370))) (((-834 (-923)) $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) NIL (|has| (-912 |#1|) (-370)))) (-3739 (((-112) $) NIL (|has| (-912 |#1|) (-370)))) (-2013 (((-912 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| (-912 |#1|) (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 (-912 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-2667 (((-923) $) NIL (|has| (-912 |#1|) (-370)))) (-4066 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370)))) (-2710 (((-1175 (-912 |#1|)) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-1175 (-912 |#1|)) "failed") $ $) NIL (|has| (-912 |#1|) (-370)))) (-1951 (($ $ (-1175 (-912 |#1|))) NIL (|has| (-912 |#1|) (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-912 |#1|) (-370)) CONST)) (-2188 (($ (-923)) NIL (|has| (-912 |#1|) (-370)))) (-3626 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-2335 (($) NIL (|has| (-912 |#1|) (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| (-912 |#1|) (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| (-912 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-2783 (((-1175 (-912 |#1|))) NIL)) (-1876 (($) NIL (|has| (-912 |#1|) (-370)))) (-4006 (($) NIL (|has| (-912 |#1|) (-370)))) (-3237 (((-1269 (-912 |#1|)) $) NIL) (((-690 (-912 |#1|)) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-912 |#1|) (-370)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-912 |#1|)) NIL)) (-2318 (($ $) NIL (|has| (-912 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| (-912 |#1|) (-145)) (|has| (-912 |#1|) (-370))))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2856 (($ $) NIL (|has| (-912 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-912 |#1|) (-370)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL) (($ $ (-912 |#1|)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-912 |#1|)) NIL) (($ (-912 |#1|) $) NIL))) -(((-356 |#1| |#2|) (-330 (-912 |#1|)) (-923) (-923)) (T -356)) -NIL -(-330 (-912 |#1|)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) 135 (|has| |#1| (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) 165 (|has| |#1| (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) 109)) (-3094 ((|#1| $) 106)) (-3431 (($ (-1269 |#1|)) 101)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) 98 (|has| |#1| (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) 51 (|has| |#1| (-370)))) (-1816 (((-112) $) NIL (|has| |#1| (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) 136 (|has| |#1| (-370)))) (-3739 (((-112) $) 90 (|has| |#1| (-370)))) (-2013 ((|#1| $) 47) (($ $ (-923)) 52 (|has| |#1| (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 |#1|) $) 79) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-2667 (((-923) $) 113 (|has| |#1| (-370)))) (-4066 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2710 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1951 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| |#1| (-370)) CONST)) (-2188 (($ (-923)) 111 (|has| |#1| (-370)))) (-3626 (((-112) $) 167)) (-3479 (((-1122) $) NIL)) (-2335 (($) 44 (|has| |#1| (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 130 (|has| |#1| (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) 164)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) 71)) (-2783 (((-1175 |#1|)) 104)) (-1876 (($) 141 (|has| |#1| (-370)))) (-4006 (($) NIL (|has| |#1| (-370)))) (-3237 (((-1269 |#1|) $) 66) (((-690 |#1|) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-2504 (((-863) $) 163) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 103)) (-2318 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2214 (((-772)) 169 T CONST)) (-3858 (((-112) $ $) 171)) (-4374 (((-1269 $)) 125) (((-1269 $) (-923)) 60)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) 127 T CONST)) (-1820 (($) 40 T CONST)) (-1620 (($ $) 82 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2856 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2968 (((-112) $ $) 123)) (-3064 (($ $ $) 115) (($ $ |#1|) 116)) (-3054 (($ $) 96) (($ $ $) 121)) (-3045 (($ $ $) 119)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55) (($ $ (-567)) 146)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 94) (($ $ $) 68) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) -(((-357 |#1| |#2|) (-330 |#1|) (-351) (-1175 |#1|)) (T -357)) +((-2190 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *3)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *4)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1269 *3)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-691 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) (-3605 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) (-4362 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-2192 (*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1174 *1)) (-4 *1 (-330 *4)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3754 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-1774 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2191 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-2572 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1773 (*1 *1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3)))) (-1771 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3))))) +(-13 (-1288 |t#1|) (-1041 |t#1|) (-10 -8 (-15 -2190 ((-1269 $))) (-15 -2190 ((-1269 $) (-922))) (-15 -3644 ((-1269 |t#1|) $)) (-15 -3644 ((-691 |t#1|) (-1269 $))) (-15 -1967 ($ (-1269 |t#1|))) (-15 -2192 ((-1174 |t#1|) $)) (-15 -3605 ((-1174 |t#1|))) (-15 -4362 ((-922))) (-15 -4380 ((-922) $)) (-15 -3536 (|t#1| $)) (-15 -3754 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-352)) (-15 -2192 ((-1174 $) $ (-922))) (-15 -3536 ($ $ (-922))) (-15 -3754 ($ $ (-922))) (-15 -1774 ($)) (-15 -2191 ($)) (-15 -2189 ((-112) $)) (-15 -2572 ($)) (-15 -1773 ($ $ (-1174 |t#1|))) (-15 -1772 ((-1174 |t#1|) $)) (-15 -1771 ((-1174 |t#1|) $)) (-15 -1771 ((-3 (-1174 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1288 |#1|) . T) ((-365) . T) ((-405) -3960 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-352) |has| |#1| (-370)) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 |#1|) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1041 |#1|) . T) ((-1054 #1#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-370)) ((-1224) . T) ((-1277 |#1|) . T)) +((-2968 (((-112) $ $) NIL)) (-1792 (($ (-1179) $) 100)) (-1783 (($) 89)) (-1775 (((-1123) (-1123)) 9)) (-1782 (($) 90)) (-1786 (($) 104) (($ (-315 (-701))) 112) (($ (-315 (-703))) 108) (($ (-315 (-696))) 116) (($ (-315 (-380))) 123) (($ (-315 (-549))) 119) (($ (-315 (-168 (-380)))) 127)) (-1791 (($ (-1179) $) 101)) (-1781 (($ (-643 (-865))) 91)) (-1777 (((-1275) $) 87)) (-1779 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1790 (($ (-1123)) 58)) (-1776 (((-1106) $) 30)) (-1793 (($ (-1095 (-949 (-549))) $) 97) (($ (-1095 (-949 (-549))) (-949 (-549)) $) 98)) (-1789 (($ (-1123)) 99)) (-1785 (($ (-1179) $) 129) (($ (-1179) $ $) 130)) (-1780 (($ (-1180) (-643 (-1180))) 88)) (-1788 (($ (-1162)) 94) (($ (-643 (-1162))) 92)) (-4378 (((-865) $) 132)) (-1778 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1179)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3827 (-112)) (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |blockBranch| (-643 $)) (|:| |commentBranch| (-643 (-1162))) (|:| |callBranch| (-1162)) (|:| |forBranch| (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) (|:| -3653 $))) (|:| |labelBranch| (-1123)) (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 $))) (|:| |commonBranch| (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) (|:| |printBranch| (-643 (-865)))) $) 50)) (-1787 (($ (-1162)) 202)) (-1784 (($ (-643 $)) 128)) (-3662 (((-112) $ $) NIL)) (-2986 (($ (-1180) (-1162)) 135) (($ (-1180) (-315 (-703))) 175) (($ (-1180) (-315 (-701))) 176) (($ (-1180) (-315 (-696))) 177) (($ (-1180) (-691 (-703))) 138) (($ (-1180) (-691 (-701))) 141) (($ (-1180) (-691 (-696))) 144) (($ (-1180) (-1269 (-703))) 147) (($ (-1180) (-1269 (-701))) 150) (($ (-1180) (-1269 (-696))) 153) (($ (-1180) (-691 (-315 (-703)))) 156) (($ (-1180) (-691 (-315 (-701)))) 159) (($ (-1180) (-691 (-315 (-696)))) 162) (($ (-1180) (-1269 (-315 (-703)))) 165) (($ (-1180) (-1269 (-315 (-701)))) 168) (($ (-1180) (-1269 (-315 (-696)))) 171) (($ (-1180) (-643 (-949 (-549))) (-315 (-703))) 172) (($ (-1180) (-643 (-949 (-549))) (-315 (-701))) 173) (($ (-1180) (-643 (-949 (-549))) (-315 (-696))) 174) (($ (-1180) (-315 (-549))) 199) (($ (-1180) (-315 (-380))) 200) (($ (-1180) (-315 (-168 (-380)))) 201) (($ (-1180) (-691 (-315 (-549)))) 180) (($ (-1180) (-691 (-315 (-380)))) 183) (($ (-1180) (-691 (-315 (-168 (-380))))) 186) (($ (-1180) (-1269 (-315 (-549)))) 189) (($ (-1180) (-1269 (-315 (-380)))) 192) (($ (-1180) (-1269 (-315 (-168 (-380))))) 195) (($ (-1180) (-643 (-949 (-549))) (-315 (-549))) 196) (($ (-1180) (-643 (-949 (-549))) (-315 (-380))) 197) (($ (-1180) (-643 (-949 (-549))) (-315 (-168 (-380)))) 198)) (-3455 (((-112) $ $) NIL))) +(((-331) (-13 (-1104) (-10 -8 (-15 -1793 ($ (-1095 (-949 (-549))) $)) (-15 -1793 ($ (-1095 (-949 (-549))) (-949 (-549)) $)) (-15 -1792 ($ (-1179) $)) (-15 -1791 ($ (-1179) $)) (-15 -1790 ($ (-1123))) (-15 -1789 ($ (-1123))) (-15 -1788 ($ (-1162))) (-15 -1788 ($ (-643 (-1162)))) (-15 -1787 ($ (-1162))) (-15 -1786 ($)) (-15 -1786 ($ (-315 (-701)))) (-15 -1786 ($ (-315 (-703)))) (-15 -1786 ($ (-315 (-696)))) (-15 -1786 ($ (-315 (-380)))) (-15 -1786 ($ (-315 (-549)))) (-15 -1786 ($ (-315 (-168 (-380))))) (-15 -1785 ($ (-1179) $)) (-15 -1785 ($ (-1179) $ $)) (-15 -2986 ($ (-1180) (-1162))) (-15 -2986 ($ (-1180) (-315 (-703)))) (-15 -2986 ($ (-1180) (-315 (-701)))) (-15 -2986 ($ (-1180) (-315 (-696)))) (-15 -2986 ($ (-1180) (-691 (-703)))) (-15 -2986 ($ (-1180) (-691 (-701)))) (-15 -2986 ($ (-1180) (-691 (-696)))) (-15 -2986 ($ (-1180) (-1269 (-703)))) (-15 -2986 ($ (-1180) (-1269 (-701)))) (-15 -2986 ($ (-1180) (-1269 (-696)))) (-15 -2986 ($ (-1180) (-691 (-315 (-703))))) (-15 -2986 ($ (-1180) (-691 (-315 (-701))))) (-15 -2986 ($ (-1180) (-691 (-315 (-696))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-703))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-701))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-696))))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-703)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-701)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-696)))) (-15 -2986 ($ (-1180) (-315 (-549)))) (-15 -2986 ($ (-1180) (-315 (-380)))) (-15 -2986 ($ (-1180) (-315 (-168 (-380))))) (-15 -2986 ($ (-1180) (-691 (-315 (-549))))) (-15 -2986 ($ (-1180) (-691 (-315 (-380))))) (-15 -2986 ($ (-1180) (-691 (-315 (-168 (-380)))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-549))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-380))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-168 (-380)))))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-549)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-380)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-168 (-380))))) (-15 -1784 ($ (-643 $))) (-15 -1783 ($)) (-15 -1782 ($)) (-15 -1781 ($ (-643 (-865)))) (-15 -1780 ($ (-1180) (-643 (-1180)))) (-15 -1779 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1778 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1179)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3827 (-112)) (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |blockBranch| (-643 $)) (|:| |commentBranch| (-643 (-1162))) (|:| |callBranch| (-1162)) (|:| |forBranch| (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) (|:| -3653 $))) (|:| |labelBranch| (-1123)) (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 $))) (|:| |commonBranch| (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) (|:| |printBranch| (-643 (-865)))) $)) (-15 -1777 ((-1275) $)) (-15 -1776 ((-1106) $)) (-15 -1775 ((-1123) (-1123)))))) (T -331)) +((-1793 (*1 *1 *2 *1) (-12 (-5 *2 (-1095 (-949 (-549)))) (-5 *1 (-331)))) (-1793 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1095 (-949 (-549)))) (-5 *3 (-949 (-549))) (-5 *1 (-331)))) (-1792 (*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) (-1791 (*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-331)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-331)))) (-1787 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-331)))) (-1786 (*1 *1) (-5 *1 (-331))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-701))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-703))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-696))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-5 *1 (-331)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-380)))) (-5 *1 (-331)))) (-1785 (*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1162)) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-703))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-701))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-696))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-703))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-701))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-696))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-703))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-701))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-696))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-703)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-701)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-696)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-703)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-701)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-696)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-703))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-701))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-696))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-549))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-380))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-168 (-380)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-549)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-380)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-168 (-380))))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-549)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-380)))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-168 (-380))))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-549))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-380))) (-5 *1 (-331)))) (-2986 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-168 (-380)))) (-5 *1 (-331)))) (-1784 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-5 *1 (-331)))) (-1783 (*1 *1) (-5 *1 (-331))) (-1782 (*1 *1) (-5 *1 (-331))) (-1781 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-331)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1180)) (-5 *1 (-331)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1179)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -3827 (-112)) (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |blockBranch| (-643 (-331))) (|:| |commentBranch| (-643 (-1162))) (|:| |callBranch| (-1162)) (|:| |forBranch| (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) (|:| -3653 (-331)))) (|:| |labelBranch| (-1123)) (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 (-331)))) (|:| |commonBranch| (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) (|:| |printBranch| (-643 (-865))))) (-5 *1 (-331)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-331)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331)))) (-1775 (*1 *2 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331))))) +(-13 (-1104) (-10 -8 (-15 -1793 ($ (-1095 (-949 (-549))) $)) (-15 -1793 ($ (-1095 (-949 (-549))) (-949 (-549)) $)) (-15 -1792 ($ (-1179) $)) (-15 -1791 ($ (-1179) $)) (-15 -1790 ($ (-1123))) (-15 -1789 ($ (-1123))) (-15 -1788 ($ (-1162))) (-15 -1788 ($ (-643 (-1162)))) (-15 -1787 ($ (-1162))) (-15 -1786 ($)) (-15 -1786 ($ (-315 (-701)))) (-15 -1786 ($ (-315 (-703)))) (-15 -1786 ($ (-315 (-696)))) (-15 -1786 ($ (-315 (-380)))) (-15 -1786 ($ (-315 (-549)))) (-15 -1786 ($ (-315 (-168 (-380))))) (-15 -1785 ($ (-1179) $)) (-15 -1785 ($ (-1179) $ $)) (-15 -2986 ($ (-1180) (-1162))) (-15 -2986 ($ (-1180) (-315 (-703)))) (-15 -2986 ($ (-1180) (-315 (-701)))) (-15 -2986 ($ (-1180) (-315 (-696)))) (-15 -2986 ($ (-1180) (-691 (-703)))) (-15 -2986 ($ (-1180) (-691 (-701)))) (-15 -2986 ($ (-1180) (-691 (-696)))) (-15 -2986 ($ (-1180) (-1269 (-703)))) (-15 -2986 ($ (-1180) (-1269 (-701)))) (-15 -2986 ($ (-1180) (-1269 (-696)))) (-15 -2986 ($ (-1180) (-691 (-315 (-703))))) (-15 -2986 ($ (-1180) (-691 (-315 (-701))))) (-15 -2986 ($ (-1180) (-691 (-315 (-696))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-703))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-701))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-696))))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-703)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-701)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-696)))) (-15 -2986 ($ (-1180) (-315 (-549)))) (-15 -2986 ($ (-1180) (-315 (-380)))) (-15 -2986 ($ (-1180) (-315 (-168 (-380))))) (-15 -2986 ($ (-1180) (-691 (-315 (-549))))) (-15 -2986 ($ (-1180) (-691 (-315 (-380))))) (-15 -2986 ($ (-1180) (-691 (-315 (-168 (-380)))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-549))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-380))))) (-15 -2986 ($ (-1180) (-1269 (-315 (-168 (-380)))))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-549)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-380)))) (-15 -2986 ($ (-1180) (-643 (-949 (-549))) (-315 (-168 (-380))))) (-15 -1784 ($ (-643 $))) (-15 -1783 ($)) (-15 -1782 ($)) (-15 -1781 ($ (-643 (-865)))) (-15 -1780 ($ (-1180) (-643 (-1180)))) (-15 -1779 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1778 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1179)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3827 (-112)) (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) (|:| |blockBranch| (-643 $)) (|:| |commentBranch| (-643 (-1162))) (|:| |callBranch| (-1162)) (|:| |forBranch| (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) (|:| -3653 $))) (|:| |labelBranch| (-1123)) (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 $))) (|:| |commonBranch| (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) (|:| |printBranch| (-643 (-865)))) $)) (-15 -1777 ((-1275) $)) (-15 -1776 ((-1106) $)) (-15 -1775 ((-1123) (-1123))))) +((-2968 (((-112) $ $) NIL)) (-1794 (((-112) $) 13)) (-4070 (($ |#1|) 10)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4066 (($ |#1|) 12)) (-4378 (((-865) $) 19)) (-3662 (((-112) $ $) NIL)) (-2385 ((|#1| $) 14)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 21))) +(((-332 |#1|) (-13 (-852) (-10 -8 (-15 -4070 ($ |#1|)) (-15 -4066 ($ |#1|)) (-15 -1794 ((-112) $)) (-15 -2385 (|#1| $)))) (-852)) (T -332)) +((-4070 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) (-4066 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-852)))) (-2385 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852))))) +(-13 (-852) (-10 -8 (-15 -4070 ($ |#1|)) (-15 -4066 ($ |#1|)) (-15 -1794 ((-112) $)) (-15 -2385 (|#1| $)))) +((-1795 (((-331) (-1180) (-949 (-549))) 23)) (-1796 (((-331) (-1180) (-949 (-549))) 27)) (-2479 (((-331) (-1180) (-1095 (-949 (-549))) (-1095 (-949 (-549)))) 26) (((-331) (-1180) (-949 (-549)) (-949 (-549))) 24)) (-1797 (((-331) (-1180) (-949 (-549))) 31))) +(((-333) (-10 -7 (-15 -1795 ((-331) (-1180) (-949 (-549)))) (-15 -2479 ((-331) (-1180) (-949 (-549)) (-949 (-549)))) (-15 -2479 ((-331) (-1180) (-1095 (-949 (-549))) (-1095 (-949 (-549))))) (-15 -1796 ((-331) (-1180) (-949 (-549)))) (-15 -1797 ((-331) (-1180) (-949 (-549)))))) (T -333)) +((-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1796 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2479 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-1095 (-949 (-549)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2479 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333))))) +(-10 -7 (-15 -1795 ((-331) (-1180) (-949 (-549)))) (-15 -2479 ((-331) (-1180) (-949 (-549)) (-949 (-549)))) (-15 -2479 ((-331) (-1180) (-1095 (-949 (-549))) (-1095 (-949 (-549))))) (-15 -1796 ((-331) (-1180) (-949 (-549)))) (-15 -1797 ((-331) (-1180) (-949 (-549))))) +((-2968 (((-112) $ $) NIL)) (-1798 (((-509) $) 20)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1799 (((-961 (-773)) $) 18)) (-1801 (((-250) $) 7)) (-4378 (((-865) $) 26)) (-2380 (((-961 (-184 (-139))) $) 16)) (-3662 (((-112) $ $) NIL)) (-1800 (((-643 (-875 (-1185) (-773))) $) 12)) (-3455 (((-112) $ $) 22))) +(((-334) (-13 (-1104) (-10 -8 (-15 -1801 ((-250) $)) (-15 -1800 ((-643 (-875 (-1185) (-773))) $)) (-15 -1799 ((-961 (-773)) $)) (-15 -2380 ((-961 (-184 (-139))) $)) (-15 -1798 ((-509) $))))) (T -334)) +((-1801 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-643 (-875 (-1185) (-773)))) (-5 *1 (-334)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-961 (-773))) (-5 *1 (-334)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-961 (-184 (-139)))) (-5 *1 (-334)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) +(-13 (-1104) (-10 -8 (-15 -1801 ((-250) $)) (-15 -1800 ((-643 (-875 (-1185) (-773))) $)) (-15 -1799 ((-961 (-773)) $)) (-15 -2380 ((-961 (-184 (-139))) $)) (-15 -1798 ((-509) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4274 (($ $) 33)) (-1804 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-1802 (((-1269 |#4|) $) 134)) (-2148 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 31)) (-3664 (((-1123) $) NIL)) (-2572 (((-3 |#4| "failed") $) 36)) (-1803 (((-1269 |#4|) $) 126)) (-1805 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-549)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3859 (((-2 (|:| -2487 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4378 (((-865) $) 17)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 14 T CONST)) (-3455 (((-112) $ $) 20)) (-4269 (($ $) 27) (($ $ $) NIL)) (-4271 (($ $ $) 25)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 23))) +(((-335 |#1| |#2| |#3| |#4|) (-13 (-338 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1803 ((-1269 |#4|) $)) (-15 -1802 ((-1269 |#4|) $)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -335)) +((-1803 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-1802 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) +(-13 (-338 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1803 ((-1269 |#4|) $)) (-15 -1802 ((-1269 |#4|) $)))) +((-4390 (((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)) 33))) +(((-336 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4390 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1245 |#5|) (-1245 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -336)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1245 *9)) (-4 *11 (-1245 (-410 *10))) (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-336 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11))))) +(-10 -7 (-15 -4390 ((-335 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-335 |#1| |#2| |#3| |#4|)))) +((-1804 (((-112) $) 14))) +(((-337 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1804 ((-112) |#1|))) (-338 |#2| |#3| |#4| |#5|) (-365) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -337)) +NIL +(-10 -8 (-15 -1804 ((-112) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4274 (($ $) 29)) (-1804 (((-112) $) 28)) (-3663 (((-1162) $) 10)) (-2148 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 35)) (-3664 (((-1123) $) 11)) (-2572 (((-3 |#4| "failed") $) 27)) (-1805 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-549)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3859 (((-2 (|:| -2487 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24))) +(((-338 |#1| |#2| |#3| |#4|) (-140) (-365) (-1245 |t#1|) (-1245 (-410 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -338)) +((-2148 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-416 *4 (-410 *4) *5 *6)))) (-1805 (*1 *1 *2) (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-338 *3 *4 *5 *6)))) (-1805 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *1 (-338 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-1805 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) (-4 *1 (-338 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-1805 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-549)) (-4 *2 (-365)) (-4 *4 (-1245 *2)) (-4 *5 (-1245 (-410 *4))) (-4 *1 (-338 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -2487 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) (-4274 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-2572 (*1 *2 *1) (|partial| -12 (-4 *1 (-338 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) (-1805 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-4 *1 (-338 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2148 ((-416 |t#2| (-410 |t#2|) |t#3| |t#4|) $)) (-15 -1805 ($ (-416 |t#2| (-410 |t#2|) |t#3| |t#4|))) (-15 -1805 ($ |t#4|)) (-15 -1805 ($ |t#1| |t#1|)) (-15 -1805 ($ |t#1| |t#1| (-549))) (-15 -3859 ((-2 (|:| -2487 (-416 |t#2| (-410 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4274 ($ $)) (-15 -1804 ((-112) $)) (-15 -2572 ((-3 |t#4| "failed") $)) (-15 -1805 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-1104) . T)) +((-4199 (($ $ (-1180) |#2|) NIL) (($ $ (-643 (-1180)) (-643 |#2|)) 20) (($ $ (-643 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-643 |#2|) (-643 |#2|)) NIL)) (-4231 (($ $ |#2|) 11))) +(((-339 |#1| |#2|) (-10 -8 (-15 -4231 (|#1| |#1| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 |#2|))) (-15 -4199 (|#1| |#1| (-1180) |#2|))) (-340 |#2|) (-1104)) (T -339)) +NIL +(-10 -8 (-15 -4231 (|#1| |#1| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 |#2|))) (-15 -4199 (|#1| |#1| (-1180) |#2|))) +((-4390 (($ (-1 |#1| |#1|) $) 6)) (-4199 (($ $ (-1180) |#1|) 17 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 16 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-643 (-294 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-643 |#1|) (-643 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-4231 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|))))) +(((-340 |#1|) (-140) (-1104)) (T -340)) +((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104))))) +(-13 (-10 -8 (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517 (-1180) |t#1|)) (-6 (-517 (-1180) |t#1|)) |%noBranch|))) +(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1180)) $) NIL)) (-1806 (((-112)) 96) (((-112) (-112)) 97)) (-1708 (((-643 (-613 $)) $) NIL)) (-3915 (($ $) NIL)) (-4071 (($ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL)) (-3438 (($ $) NIL)) (-3913 (($ $) NIL)) (-4070 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-613 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-315 |#3|)) 76) (((-3 $ "failed") (-1180)) 103) (((-3 $ "failed") (-315 (-549))) 64 (|has| |#3| (-1041 (-549)))) (((-3 $ "failed") (-410 (-949 (-549)))) 70 (|has| |#3| (-1041 (-549)))) (((-3 $ "failed") (-949 (-549))) 65 (|has| |#3| (-1041 (-549)))) (((-3 $ "failed") (-315 (-380))) 94 (|has| |#3| (-1041 (-380)))) (((-3 $ "failed") (-410 (-949 (-380)))) 88 (|has| |#3| (-1041 (-380)))) (((-3 $ "failed") (-949 (-380))) 83 (|has| |#3| (-1041 (-380))))) (-3576 (((-613 $) $) NIL) ((|#3| $) NIL) (($ (-315 |#3|)) 77) (($ (-1180)) 104) (($ (-315 (-549))) 66 (|has| |#3| (-1041 (-549)))) (($ (-410 (-949 (-549)))) 71 (|has| |#3| (-1041 (-549)))) (($ (-949 (-549))) 67 (|has| |#3| (-1041 (-549)))) (($ (-315 (-380))) 95 (|has| |#3| (-1041 (-380)))) (($ (-410 (-949 (-380)))) 89 (|has| |#3| (-1041 (-380)))) (($ (-949 (-380))) 85 (|has| |#3| (-1041 (-380))))) (-3890 (((-3 $ "failed") $) NIL)) (-4059 (($) 101)) (-2973 (($ $) NIL) (($ (-643 $)) NIL)) (-1707 (((-643 (-113)) $) NIL)) (-3448 (((-113) (-113)) NIL)) (-2573 (((-112) $) NIL)) (-3076 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-1705 (((-1174 $) (-613 $)) NIL (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) NIL)) (-1710 (((-3 (-613 $) "failed") $) NIL)) (-1910 (($ $) 99)) (-4374 (($ $) NIL)) (-3663 (((-1162) $) NIL)) (-1709 (((-643 (-613 $)) $) NIL)) (-2384 (($ (-113) $) 98) (($ (-113) (-643 $)) NIL)) (-3035 (((-112) $ (-113)) NIL) (((-112) $ (-1180)) NIL)) (-3003 (((-773) $) NIL)) (-3664 (((-1123) $) NIL)) (-1706 (((-112) $ $) NIL) (((-112) $ (-1180)) NIL)) (-4375 (($ $) NIL)) (-3077 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL)) (-3605 (($ $) NIL (|has| $ (-1052)))) (-3914 (($ $) NIL)) (-4066 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-613 $)) NIL) (($ |#3|) NIL) (($ (-549)) NIL) (((-315 |#3|) $) 102)) (-3530 (((-773)) NIL T CONST)) (-2990 (($ $) NIL) (($ (-643 $)) NIL)) (-2403 (((-112) (-113)) NIL)) (-3662 (((-112) $ $) NIL)) (-3909 (($ $) NIL)) (-3907 (($ $) NIL)) (-3908 (($ $) NIL)) (-3807 (($ $) NIL)) (-3510 (($) 100 T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL))) +(((-341 |#1| |#2| |#3|) (-13 (-299) (-38 |#3|) (-1041 |#3|) (-903 (-1180)) (-10 -8 (-15 -3576 ($ (-315 |#3|))) (-15 -3577 ((-3 $ "failed") (-315 |#3|))) (-15 -3576 ($ (-1180))) (-15 -3577 ((-3 $ "failed") (-1180))) (-15 -4378 ((-315 |#3|) $)) (IF (|has| |#3| (-1041 (-549))) (PROGN (-15 -3576 ($ (-315 (-549)))) (-15 -3577 ((-3 $ "failed") (-315 (-549)))) (-15 -3576 ($ (-410 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-549))))) (-15 -3576 ($ (-949 (-549)))) (-15 -3577 ((-3 $ "failed") (-949 (-549))))) |%noBranch|) (IF (|has| |#3| (-1041 (-380))) (PROGN (-15 -3576 ($ (-315 (-380)))) (-15 -3577 ((-3 $ "failed") (-315 (-380)))) (-15 -3576 ($ (-410 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-380))))) (-15 -3576 ($ (-949 (-380)))) (-15 -3577 ((-3 $ "failed") (-949 (-380))))) |%noBranch|) (-15 -3807 ($ $)) (-15 -3438 ($ $)) (-15 -4375 ($ $)) (-15 -4374 ($ $)) (-15 -1910 ($ $)) (-15 -4070 ($ $)) (-15 -4066 ($ $)) (-15 -4071 ($ $)) (-15 -3907 ($ $)) (-15 -3908 ($ $)) (-15 -3909 ($ $)) (-15 -3913 ($ $)) (-15 -3914 ($ $)) (-15 -3915 ($ $)) (-15 -4059 ($)) (-15 -3485 ((-643 (-1180)) $)) (-15 -1806 ((-112))) (-15 -1806 ((-112) (-112))))) (-643 (-1180)) (-643 (-1180)) (-390)) (T -341)) +((-3576 (*1 *1 *2) (-12 (-5 *2 (-315 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 *2)) (-14 *4 (-643 *2)) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 *2)) (-14 *4 (-643 *2)) (-4 *5 (-390)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-315 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-549)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-549)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-380)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-380)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3438 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4375 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-1910 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4070 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4066 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4071 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3907 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3908 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3913 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3914 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3915 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-4059 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) (-4 *4 (-390)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) (-1806 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390))))) +(-13 (-299) (-38 |#3|) (-1041 |#3|) (-903 (-1180)) (-10 -8 (-15 -3576 ($ (-315 |#3|))) (-15 -3577 ((-3 $ "failed") (-315 |#3|))) (-15 -3576 ($ (-1180))) (-15 -3577 ((-3 $ "failed") (-1180))) (-15 -4378 ((-315 |#3|) $)) (IF (|has| |#3| (-1041 (-549))) (PROGN (-15 -3576 ($ (-315 (-549)))) (-15 -3577 ((-3 $ "failed") (-315 (-549)))) (-15 -3576 ($ (-410 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-549))))) (-15 -3576 ($ (-949 (-549)))) (-15 -3577 ((-3 $ "failed") (-949 (-549))))) |%noBranch|) (IF (|has| |#3| (-1041 (-380))) (PROGN (-15 -3576 ($ (-315 (-380)))) (-15 -3577 ((-3 $ "failed") (-315 (-380)))) (-15 -3576 ($ (-410 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-380))))) (-15 -3576 ($ (-949 (-380)))) (-15 -3577 ((-3 $ "failed") (-949 (-380))))) |%noBranch|) (-15 -3807 ($ $)) (-15 -3438 ($ $)) (-15 -4375 ($ $)) (-15 -4374 ($ $)) (-15 -1910 ($ $)) (-15 -4070 ($ $)) (-15 -4066 ($ $)) (-15 -4071 ($ $)) (-15 -3907 ($ $)) (-15 -3908 ($ $)) (-15 -3909 ($ $)) (-15 -3913 ($ $)) (-15 -3914 ($ $)) (-15 -3915 ($ $)) (-15 -4059 ($)) (-15 -3485 ((-643 (-1180)) $)) (-15 -1806 ((-112))) (-15 -1806 ((-112) (-112))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-909 |#1|) (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| (-909 |#1|) (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-909 |#1|) "failed") $) NIL)) (-3576 (((-909 |#1|) $) NIL)) (-1967 (($ (-1269 (-909 |#1|))) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-909 |#1|) (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-909 |#1|) (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| (-909 |#1|) (-370)))) (-1848 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370)))) (($ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| (-909 |#1|) (-370))) (((-834 (-922)) $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| (-909 |#1|) (-370)))) (-2189 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-3536 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-909 |#1|) (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 (-909 |#1|)) $) NIL) (((-1174 $) $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-2188 (((-922) $) NIL (|has| (-909 |#1|) (-370)))) (-1772 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370)))) (-1771 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-1174 (-909 |#1|)) "failed") $ $) NIL (|has| (-909 |#1|) (-370)))) (-1773 (($ $ (-1174 (-909 |#1|))) NIL (|has| (-909 |#1|) (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-909 |#1|) (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL (|has| (-909 |#1|) (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-909 |#1|) (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 (-909 |#1|))) NIL)) (-1842 (($) NIL (|has| (-909 |#1|) (-370)))) (-1774 (($) NIL (|has| (-909 |#1|) (-370)))) (-3644 (((-1269 (-909 |#1|)) $) NIL) (((-691 (-909 |#1|)) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-909 |#1|) (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-909 |#1|)) NIL)) (-3105 (($ $) NIL (|has| (-909 |#1|) (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3072 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ (-909 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-909 |#1|)) NIL) (($ (-909 |#1|) $) NIL))) +(((-342 |#1| |#2|) (-330 (-909 |#1|)) (-922) (-922)) (T -342)) +NIL +(-330 (-909 |#1|)) +((-1815 (((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) $) 39)) (-1967 (($ (-1269 (-410 |#3|)) (-1269 $)) NIL) (($ (-1269 (-410 |#3|))) NIL) (($ (-1269 |#3|) |#3|) 177)) (-1820 (((-1269 $) (-1269 $)) 160)) (-1807 (((-643 (-643 |#2|))) 129)) (-1832 (((-112) |#2| |#2|) 76)) (-3926 (($ $) 151)) (-3801 (((-773)) 176)) (-1821 (((-1269 $) (-1269 $)) 222)) (-1808 (((-643 (-949 |#2|)) (-1180)) 118)) (-1824 (((-112) $) 173)) (-1823 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-1810 (((-3 |#3| "failed")) 52)) (-1834 (((-773)) 188)) (-4231 ((|#2| $ |#2| |#2|) 143)) (-1811 (((-3 |#3| "failed")) 71)) (-4242 (($ $ (-1 (-410 |#3|) (-410 |#3|)) (-773)) NIL) (($ $ (-1 (-410 |#3|) (-410 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-1822 (((-1269 $) (-1269 $)) 166)) (-1809 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1833 (((-112)) 34))) +(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -1807 ((-643 (-643 |#2|)))) (-15 -1808 ((-643 (-949 |#2|)) (-1180))) (-15 -1809 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1810 ((-3 |#3| "failed"))) (-15 -1811 ((-3 |#3| "failed"))) (-15 -4231 (|#2| |#1| |#2| |#2|)) (-15 -3926 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1823 ((-112) |#1| |#3|)) (-15 -1823 ((-112) |#1| |#2|)) (-15 -1967 (|#1| (-1269 |#3|) |#3|)) (-15 -1815 ((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1820 ((-1269 |#1|) (-1269 |#1|))) (-15 -1821 ((-1269 |#1|) (-1269 |#1|))) (-15 -1822 ((-1269 |#1|) (-1269 |#1|))) (-15 -1823 ((-112) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -1832 ((-112) |#2| |#2|)) (-15 -1833 ((-112))) (-15 -1834 ((-773))) (-15 -3801 ((-773))) (-15 -4242 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -4242 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-773))) (-15 -1967 (|#1| (-1269 (-410 |#3|)))) (-15 -1967 (|#1| (-1269 (-410 |#3|)) (-1269 |#1|)))) (-344 |#2| |#3| |#4|) (-1224) (-1245 |#2|) (-1245 (-410 |#3|))) (T -343)) +((-3801 (*1 *2) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-773)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1834 (*1 *2) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-773)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1833 (*1 *2) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1832 (*1 *2 *3 *3) (-12 (-4 *3 (-1224)) (-4 *5 (-1245 *3)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-1811 (*1 *2) (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-1810 (*1 *2) (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *5 (-1224)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-643 (-949 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-1807 (*1 *2) (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-643 (-643 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))) +(-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -1807 ((-643 (-643 |#2|)))) (-15 -1808 ((-643 (-949 |#2|)) (-1180))) (-15 -1809 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1810 ((-3 |#3| "failed"))) (-15 -1811 ((-3 |#3| "failed"))) (-15 -4231 (|#2| |#1| |#2| |#2|)) (-15 -3926 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1823 ((-112) |#1| |#3|)) (-15 -1823 ((-112) |#1| |#2|)) (-15 -1967 (|#1| (-1269 |#3|) |#3|)) (-15 -1815 ((-2 (|:| |num| (-1269 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1820 ((-1269 |#1|) (-1269 |#1|))) (-15 -1821 ((-1269 |#1|) (-1269 |#1|))) (-15 -1822 ((-1269 |#1|) (-1269 |#1|))) (-15 -1823 ((-112) |#1|)) (-15 -1824 ((-112) |#1|)) (-15 -1832 ((-112) |#2| |#2|)) (-15 -1833 ((-112))) (-15 -1834 ((-773))) (-15 -3801 ((-773))) (-15 -4242 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -4242 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-773))) (-15 -1967 (|#1| (-1269 (-410 |#3|)))) (-15 -1967 (|#1| (-1269 (-410 |#3|)) (-1269 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1815 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 204)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 102 (|has| (-410 |#2|) (-365)))) (-2241 (($ $) 103 (|has| (-410 |#2|) (-365)))) (-2239 (((-112) $) 105 (|has| (-410 |#2|) (-365)))) (-1957 (((-691 (-410 |#2|)) (-1269 $)) 53) (((-691 (-410 |#2|))) 68)) (-3754 (((-410 |#2|) $) 59)) (-1843 (((-1192 (-922) (-773)) (-549)) 155 (|has| (-410 |#2|) (-352)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 122 (|has| (-410 |#2|) (-365)))) (-4401 (((-408 $) $) 123 (|has| (-410 |#2|) (-365)))) (-1753 (((-112) $ $) 113 (|has| (-410 |#2|) (-365)))) (-3540 (((-773)) 96 (|has| (-410 |#2|) (-370)))) (-1829 (((-112)) 221)) (-1828 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 178 (|has| (-410 |#2|) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 176 (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-3 (-410 |#2|) #1#) $) 173)) (-3576 (((-549) $) 177 (|has| (-410 |#2|) (-1041 (-549)))) (((-410 (-549)) $) 175 (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-410 |#2|) $) 174)) (-1967 (($ (-1269 (-410 |#2|)) (-1269 $)) 55) (($ (-1269 (-410 |#2|))) 71) (($ (-1269 |#2|) |#2|) 203)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-410 |#2|) (-352)))) (-2964 (($ $ $) 117 (|has| (-410 |#2|) (-365)))) (-1956 (((-691 (-410 |#2|)) $ (-1269 $)) 60) (((-691 (-410 |#2|)) $) 66)) (-2427 (((-691 (-549)) (-691 $)) 172 (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 171 (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-691 $) (-1269 $)) 170) (((-691 (-410 |#2|)) (-691 $)) 169)) (-1820 (((-1269 $) (-1269 $)) 209)) (-4274 (($ |#3|) 166) (((-3 $ "failed") (-410 |#3|)) 163 (|has| (-410 |#2|) (-365)))) (-3890 (((-3 $ "failed") $) 37)) (-1807 (((-643 (-643 |#1|))) 190 (|has| |#1| (-370)))) (-1832 (((-112) |#1| |#1|) 225)) (-3513 (((-922)) 61)) (-3395 (($) 99 (|has| (-410 |#2|) (-370)))) (-1827 (((-112)) 218)) (-1826 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2963 (($ $ $) 116 (|has| (-410 |#2|) (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 111 (|has| (-410 |#2|) (-365)))) (-3926 (($ $) 196)) (-3236 (($) 157 (|has| (-410 |#2|) (-352)))) (-1848 (((-112) $) 158 (|has| (-410 |#2|) (-352)))) (-1941 (($ $ (-773)) 149 (|has| (-410 |#2|) (-352))) (($ $) 148 (|has| (-410 |#2|) (-352)))) (-4155 (((-112) $) 124 (|has| (-410 |#2|) (-365)))) (-4203 (((-922) $) 160 (|has| (-410 |#2|) (-352))) (((-834 (-922)) $) 146 (|has| (-410 |#2|) (-352)))) (-2573 (((-112) $) 35)) (-3801 (((-773)) 228)) (-1821 (((-1269 $) (-1269 $)) 210)) (-3536 (((-410 |#2|) $) 58)) (-1808 (((-643 (-949 |#1|)) (-1180)) 191 (|has| |#1| (-365)))) (-3868 (((-3 $ "failed") $) 150 (|has| (-410 |#2|) (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 120 (|has| (-410 |#2|) (-365)))) (-2192 ((|#3| $) 51 (|has| (-410 |#2|) (-365)))) (-2188 (((-922) $) 98 (|has| (-410 |#2|) (-370)))) (-3481 ((|#3| $) 164)) (-2069 (($ (-643 $)) 109 (|has| (-410 |#2|) (-365))) (($ $ $) 108 (|has| (-410 |#2|) (-365)))) (-3663 (((-1162) $) 10)) (-1816 (((-691 (-410 |#2|))) 205)) (-1818 (((-691 (-410 |#2|))) 207)) (-2806 (($ $) 125 (|has| (-410 |#2|) (-365)))) (-1813 (($ (-1269 |#2|) |#2|) 201)) (-1817 (((-691 (-410 |#2|))) 206)) (-1819 (((-691 (-410 |#2|))) 208)) (-1812 (((-2 (|:| |num| (-691 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1814 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 202)) (-1825 (((-1269 $)) 214)) (-4350 (((-1269 $)) 215)) (-1824 (((-112) $) 213)) (-1823 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-3869 (($) 151 (|has| (-410 |#2|) (-352)) CONST)) (-2563 (($ (-922)) 97 (|has| (-410 |#2|) (-370)))) (-1810 (((-3 |#2| "failed")) 193)) (-3664 (((-1123) $) 11)) (-1834 (((-773)) 227)) (-2572 (($) 168)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 110 (|has| (-410 |#2|) (-365)))) (-3564 (($ (-643 $)) 107 (|has| (-410 |#2|) (-365))) (($ $ $) 106 (|has| (-410 |#2|) (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 154 (|has| (-410 |#2|) (-352)))) (-4164 (((-408 $) $) 121 (|has| (-410 |#2|) (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 118 (|has| (-410 |#2|) (-365)))) (-3889 (((-3 $ "failed") $ $) 101 (|has| (-410 |#2|) (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 112 (|has| (-410 |#2|) (-365)))) (-1752 (((-773) $) 114 (|has| (-410 |#2|) (-365)))) (-4231 ((|#1| $ |#1| |#1|) 195)) (-1811 (((-3 |#2| "failed")) 194)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 115 (|has| (-410 |#2|) (-365)))) (-4189 (((-410 |#2|) (-1269 $)) 54) (((-410 |#2|)) 67)) (-1942 (((-773) $) 159 (|has| (-410 |#2|) (-352))) (((-3 (-773) "failed") $ $) 147 (|has| (-410 |#2|) (-352)))) (-4242 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) 131 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 130 (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-643 (-1180)) (-643 (-773))) 138 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-1180) (-773)) 139 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-643 (-1180))) 140 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-1180)) 141 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-773)) 143 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-3256 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) 145 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-3256 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-2571 (((-691 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) 162 (|has| (-410 |#2|) (-365)))) (-3605 ((|#3|) 167)) (-1842 (($) 156 (|has| (-410 |#2|) (-352)))) (-3644 (((-1269 (-410 |#2|)) $ (-1269 $)) 57) (((-691 (-410 |#2|)) (-1269 $) (-1269 $)) 56) (((-1269 (-410 |#2|)) $) 73) (((-691 (-410 |#2|)) (-1269 $)) 72)) (-4402 (((-1269 (-410 |#2|)) $) 70) (($ (-1269 (-410 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 153 (|has| (-410 |#2|) (-352)))) (-1822 (((-1269 $) (-1269 $)) 211)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 |#2|)) 44) (($ (-410 (-549))) 95 (-3960 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1041 (-410 (-549)))))) (($ $) 100 (|has| (-410 |#2|) (-365)))) (-3105 (($ $) 152 (|has| (-410 |#2|) (-352))) (((-3 $ "failed") $) 50 (|has| (-410 |#2|) (-145)))) (-2770 ((|#3| $) 52)) (-3530 (((-773)) 32 T CONST)) (-1831 (((-112)) 224)) (-1830 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 74)) (-2240 (((-112) $ $) 104 (|has| (-410 |#2|) (-365)))) (-1809 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1833 (((-112)) 226)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) 133 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 132 (|has| (-410 |#2|) (-365))) (($ $ (-643 (-1180)) (-643 (-773))) 134 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-1180) (-773)) 135 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-643 (-1180))) 136 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-1180)) 137 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) (-3256 (|has| (-410 |#2|) (-903 (-1180))) (|has| (-410 |#2|) (-365))))) (($ $ (-773)) 142 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-3256 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) 144 (-3960 (-3256 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-3256 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 129 (|has| (-410 |#2|) (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 126 (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 |#2|)) 46) (($ (-410 |#2|) $) 45) (($ (-410 (-549)) $) 128 (|has| (-410 |#2|) (-365))) (($ $ (-410 (-549))) 127 (|has| (-410 |#2|) (-365))))) +(((-344 |#1| |#2| |#3|) (-140) (-1224) (-1245 |t#1|) (-1245 (-410 |t#2|))) (T -344)) +((-3801 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-773)))) (-1834 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-773)))) (-1833 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1832 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1830 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1830 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1828 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1828 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-1827 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-4350 (*1 *2) (-12 (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) (-1825 (*1 *2) (-12 (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) (-1824 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-1819 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4))))) (-1818 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4))))) (-1817 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4))))) (-1816 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4))))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1224)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4))))) (-1813 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1224)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-2 (|:| |num| (-691 *5)) (|:| |den| *5))))) (-1823 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) (-1823 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1224)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))))) (-4231 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1224)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))))) (-1811 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1224)) (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))) (-1810 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1224)) (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3)))) (-1809 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1224)) (-4 *6 (-1245 (-410 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *4 (-365)) (-5 *2 (-643 (-949 *4))))) (-1807 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-643 (-643 *3)))))) +(-13 (-726 (-410 |t#2|) |t#3|) (-10 -8 (-15 -3801 ((-773))) (-15 -1834 ((-773))) (-15 -1833 ((-112))) (-15 -1832 ((-112) |t#1| |t#1|)) (-15 -1831 ((-112))) (-15 -1830 ((-112) |t#1|)) (-15 -1830 ((-112) |t#2|)) (-15 -1829 ((-112))) (-15 -1828 ((-112) |t#1|)) (-15 -1828 ((-112) |t#2|)) (-15 -1827 ((-112))) (-15 -1826 ((-112) |t#1|)) (-15 -1826 ((-112) |t#2|)) (-15 -4350 ((-1269 $))) (-15 -1825 ((-1269 $))) (-15 -1824 ((-112) $)) (-15 -1823 ((-112) $)) (-15 -1822 ((-1269 $) (-1269 $))) (-15 -1821 ((-1269 $) (-1269 $))) (-15 -1820 ((-1269 $) (-1269 $))) (-15 -1819 ((-691 (-410 |t#2|)))) (-15 -1818 ((-691 (-410 |t#2|)))) (-15 -1817 ((-691 (-410 |t#2|)))) (-15 -1816 ((-691 (-410 |t#2|)))) (-15 -1815 ((-2 (|:| |num| (-1269 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1967 ($ (-1269 |t#2|) |t#2|)) (-15 -1814 ((-2 (|:| |num| (-1269 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1813 ($ (-1269 |t#2|) |t#2|)) (-15 -1812 ((-2 (|:| |num| (-691 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1823 ((-112) $ |t#1|)) (-15 -1823 ((-112) $ |t#2|)) (-15 -4242 ($ $ (-1 |t#2| |t#2|))) (-15 -3926 ($ $)) (-15 -4231 (|t#1| $ |t#1| |t#1|)) (-15 -1811 ((-3 |t#2| "failed"))) (-15 -1810 ((-3 |t#2| "failed"))) (-15 -1809 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -1808 ((-643 (-949 |t#1|)) (-1180))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -1807 ((-643 (-643 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-38 #2=(-410 |#2|)) . T) ((-38 $) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-102) . T) ((-111 #1# #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-145))) ((-147) |has| (-410 |#2|) (-147)) ((-618 #1#) -3960 (|has| (-410 |#2|) (-1041 (-410 (-549)))) (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-618 #2#) . T) ((-618 (-549)) . T) ((-618 $) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-615 (-865)) . T) ((-172) . T) ((-616 |#3|) . T) ((-231 #2#) |has| (-410 |#2|) (-365)) ((-233) -3960 (|has| (-410 |#2|) (-352)) (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365)))) ((-243) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-291) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-308) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-365) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-405) |has| (-410 |#2|) (-352)) ((-370) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-370))) ((-352) |has| (-410 |#2|) (-352)) ((-372 #2# |#3|) . T) ((-413 #2# |#3|) . T) ((-379 #2#) . T) ((-415 #2#) . T) ((-455) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-560) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-648 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-648 #2#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-650 #2#) . T) ((-650 $) . T) ((-642 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-642 #2#) . T) ((-642 $) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-641 #2#) . T) ((-641 (-549)) |has| (-410 |#2|) (-641 (-549))) ((-719 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-719 #2#) . T) ((-719 $) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-726 #2# |#3|) . T) ((-728) . T) ((-903 (-1180)) -12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180)))) ((-924) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-1041 (-410 (-549))) |has| (-410 |#2|) (-1041 (-410 (-549)))) ((-1041 #2#) . T) ((-1041 (-549)) |has| (-410 |#2|) (-1041 (-549))) ((-1054 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-1054 #2#) . T) ((-1054 $) . T) ((-1059 #1#) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365))) ((-1059 #2#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| (-410 |#2|) (-352)) ((-1224) -3960 (|has| (-410 |#2|) (-352)) (|has| (-410 |#2|) (-365)))) +((-4390 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-345 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4390 (|#8| (-1 |#5| |#1|) |#4|))) (-1224) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-1224) (-1245 |#5|) (-1245 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -345)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1224)) (-4 *8 (-1224)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *9 (-1245 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-345 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1245 (-410 *9)))))) +(-10 -7 (-15 -4390 (|#8| (-1 |#5| |#1|) |#4|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-909 |#1|) (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| (-909 |#1|) (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-909 |#1|) "failed") $) NIL)) (-3576 (((-909 |#1|) $) NIL)) (-1967 (($ (-1269 (-909 |#1|))) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-909 |#1|) (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-909 |#1|) (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| (-909 |#1|) (-370)))) (-1848 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370)))) (($ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| (-909 |#1|) (-370))) (((-834 (-922)) $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| (-909 |#1|) (-370)))) (-2189 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-3536 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-909 |#1|) (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 (-909 |#1|)) $) NIL) (((-1174 $) $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-2188 (((-922) $) NIL (|has| (-909 |#1|) (-370)))) (-1772 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370)))) (-1771 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-1174 (-909 |#1|)) "failed") $ $) NIL (|has| (-909 |#1|) (-370)))) (-1773 (($ $ (-1174 (-909 |#1|))) NIL (|has| (-909 |#1|) (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-909 |#1|) (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-1835 (((-961 (-1123))) NIL)) (-2572 (($) NIL (|has| (-909 |#1|) (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-909 |#1|) (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 (-909 |#1|))) NIL)) (-1842 (($) NIL (|has| (-909 |#1|) (-370)))) (-1774 (($) NIL (|has| (-909 |#1|) (-370)))) (-3644 (((-1269 (-909 |#1|)) $) NIL) (((-691 (-909 |#1|)) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-909 |#1|) (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-909 |#1|)) NIL)) (-3105 (($ $) NIL (|has| (-909 |#1|) (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3072 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ (-909 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-909 |#1|)) NIL) (($ (-909 |#1|) $) NIL))) +(((-346 |#1| |#2|) (-13 (-330 (-909 |#1|)) (-10 -7 (-15 -1835 ((-961 (-1123)))))) (-922) (-922)) (T -346)) +((-1835 (*1 *2) (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-346 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922))))) +(-13 (-330 (-909 |#1|)) (-10 -7 (-15 -1835 ((-961 (-1123)))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 58)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) 56 (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) 142)) (-3576 ((|#1| $) 113)) (-1967 (($ (-1269 |#1|)) 130)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) 124 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) 160 (|has| |#1| (-370)))) (-1848 (((-112) $) 66 (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) 60 (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) 62)) (-2191 (($) 162 (|has| |#1| (-370)))) (-2189 (((-112) $) NIL (|has| |#1| (-370)))) (-3536 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) 117) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) 171 (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 178)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) 96 (|has| |#1| (-370)))) (-4363 (((-112) $) 147)) (-3664 (((-1123) $) NIL)) (-1835 (((-961 (-1123))) 57)) (-2572 (($) 158 (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 119 (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) 90) (((-922)) 91)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) 161 (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) 154 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 |#1|)) 122)) (-1842 (($) 159 (|has| |#1| (-370)))) (-1774 (($) 167 (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) 77) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) 174) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 100)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 155 T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 144) (((-1269 $) (-922)) 98)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) 67 T CONST)) (-3067 (($) 103 T CONST)) (-4360 (($ $) 107 (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) 65)) (-4381 (($ $ $) 176) (($ $ |#1|) 177)) (-4269 (($ $) 157) (($ $ $) NIL)) (-4271 (($ $ $) 86)) (** (($ $ (-922)) 180) (($ $ (-773)) 181) (($ $ (-549)) 179)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 102) (($ $ $) 101) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1835 ((-961 (-1123)))))) (-352) (-1174 |#1|)) (T -347)) +((-1835 (*1 *2) (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-347 *3 *4)) (-4 *3 (-352)) (-14 *4 (-1174 *3))))) +(-13 (-330 |#1|) (-10 -7 (-15 -1835 ((-961 (-1123)))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| |#1| (-370)))) (-2189 (((-112) $) NIL (|has| |#1| (-370)))) (-3536 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-1835 (((-961 (-1123))) NIL)) (-2572 (($) NIL (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 |#1|)) NIL)) (-1842 (($) NIL (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) NIL) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) NIL)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-348 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1835 ((-961 (-1123)))))) (-352) (-922)) (T -348)) +((-1835 (*1 *2) (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-348 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) +(-13 (-330 |#1|) (-10 -7 (-15 -1835 ((-961 (-1123)))))) +((-1845 (((-773) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) 61)) (-1836 (((-961 (-1123)) (-1174 |#1|)) 111)) (-1837 (((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) (-1174 |#1|)) 102)) (-1838 (((-691 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) 113)) (-1839 (((-3 (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) "failed") (-922)) 13)) (-1840 (((-3 (-1174 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) (-922)) 18))) +(((-349 |#1|) (-10 -7 (-15 -1836 ((-961 (-1123)) (-1174 |#1|))) (-15 -1837 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) (-1174 |#1|))) (-15 -1838 ((-691 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1845 ((-773) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1839 ((-3 (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) "failed") (-922))) (-15 -1840 ((-3 (-1174 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) (-922)))) (-352)) (T -349)) +((-1840 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-3 (-1174 *4) (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123))))))) (-5 *1 (-349 *4)) (-4 *4 (-352)))) (-1839 (*1 *2 *3) (|partial| -12 (-5 *3 (-922)) (-5 *2 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-5 *1 (-349 *4)) (-4 *4 (-352)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-4 *4 (-352)) (-5 *2 (-773)) (-5 *1 (-349 *4)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-4 *4 (-352)) (-5 *2 (-691 *4)) (-5 *1 (-349 *4)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-5 *1 (-349 *4)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-961 (-1123))) (-5 *1 (-349 *4))))) +(-10 -7 (-15 -1836 ((-961 (-1123)) (-1174 |#1|))) (-15 -1837 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) (-1174 |#1|))) (-15 -1838 ((-691 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1845 ((-773) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1839 ((-3 (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) "failed") (-922))) (-15 -1840 ((-3 (-1174 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) (-922)))) +((-4378 ((|#1| |#3|) 106) ((|#3| |#1|) 89))) +(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -4378 (|#3| |#1|)) (-15 -4378 (|#1| |#3|))) (-330 |#2|) (-352) (-330 |#2|)) (T -350)) +((-4378 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *2 (-330 *4)) (-5 *1 (-350 *2 *4 *3)) (-4 *3 (-330 *4)))) (-4378 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *2 (-330 *4)) (-5 *1 (-350 *3 *4 *2)) (-4 *3 (-330 *4))))) +(-10 -7 (-15 -4378 (|#3| |#1|)) (-15 -4378 (|#1| |#3|))) +((-1848 (((-112) $) 60)) (-4203 (((-834 (-922)) $) 23) (((-922) $) 66)) (-3868 (((-3 $ "failed") $) 18)) (-3869 (($) 9)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 116)) (-1942 (((-3 (-773) "failed") $ $) 94) (((-773) $) 81)) (-4242 (($ $ (-773)) NIL) (($ $) 8)) (-1842 (($) 53)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 38)) (-3105 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-351 |#1|) (-10 -8 (-15 -4203 ((-922) |#1|)) (-15 -1942 ((-773) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -1842 (|#1|)) (-15 -3106 ((-3 (-1269 |#1|) "failed") (-691 |#1|))) (-15 -3105 (|#1| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -1942 ((-3 (-773) "failed") |#1| |#1|)) (-15 -4203 ((-834 (-922)) |#1|)) (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) (-352)) (T -351)) +NIL +(-10 -8 (-15 -4203 ((-922) |#1|)) (-15 -1942 ((-773) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -1842 (|#1|)) (-15 -3106 ((-3 (-1269 |#1|) "failed") (-691 |#1|))) (-15 -3105 (|#1| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -1942 ((-3 (-773) "failed") |#1| |#1|)) (-15 -4203 ((-834 (-922)) |#1|)) (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1843 (((-1192 (-922) (-773)) (-549)) 101)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-3540 (((-773)) 111)) (-4156 (($) 18 T CONST)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-3395 (($) 114)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-3236 (($) 99)) (-1848 (((-112) $) 98)) (-1941 (($ $) 87) (($ $ (-773)) 86)) (-4155 (((-112) $) 79)) (-4203 (((-834 (-922)) $) 89) (((-922) $) 96)) (-2573 (((-112) $) 35)) (-3868 (((-3 $ "failed") $) 110)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2188 (((-922) $) 113)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3869 (($) 109 T CONST)) (-2563 (($ (-922)) 112)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 102)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1942 (((-3 (-773) "failed") $ $) 88) (((-773) $) 97)) (-4242 (($ $ (-773)) 107) (($ $) 105)) (-1842 (($) 100)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 103)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74)) (-3105 (((-3 $ "failed") $) 90) (($ $) 104)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-773)) 108) (($ $) 106)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) +(((-352) (-140)) (T -352)) +((-3105 (*1 *1 *1) (-4 *1 (-352))) (-3106 (*1 *2 *3) (|partial| -12 (-5 *3 (-691 *1)) (-4 *1 (-352)) (-5 *2 (-1269 *1)))) (-1844 (*1 *2) (-12 (-4 *1 (-352)) (-5 *2 (-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))))) (-1843 (*1 *2 *3) (-12 (-4 *1 (-352)) (-5 *3 (-549)) (-5 *2 (-1192 (-922) (-773))))) (-1842 (*1 *1) (-4 *1 (-352))) (-3236 (*1 *1) (-4 *1 (-352))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-112)))) (-1942 (*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-773)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-922)))) (-1841 (*1 *2) (-12 (-4 *1 (-352)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-405) (-370) (-1154) (-233) (-10 -8 (-15 -3105 ($ $)) (-15 -3106 ((-3 (-1269 $) "failed") (-691 $))) (-15 -1844 ((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549)))))) (-15 -1843 ((-1192 (-922) (-773)) (-549))) (-15 -1842 ($)) (-15 -3236 ($)) (-15 -1848 ((-112) $)) (-15 -1942 ((-773) $)) (-15 -4203 ((-922) $)) (-15 -1841 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) . T) ((-370) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) . T) ((-1224) . T)) +((-4351 (((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) |#1|) 55)) (-4350 (((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|)))) 53))) +(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $)))) (-1245 |#1|) (-413 |#1| |#2|)) (T -353)) +((-4351 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-353 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-4350 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-353 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) +(-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-909 |#1|) (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1845 (((-773)) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| (-909 |#1|) (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-909 |#1|) "failed") $) NIL)) (-3576 (((-909 |#1|) $) NIL)) (-1967 (($ (-1269 (-909 |#1|))) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-909 |#1|) (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-909 |#1|) (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| (-909 |#1|) (-370)))) (-1848 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370)))) (($ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| (-909 |#1|) (-370))) (((-834 (-922)) $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| (-909 |#1|) (-370)))) (-2189 (((-112) $) NIL (|has| (-909 |#1|) (-370)))) (-3536 (((-909 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-909 |#1|) (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 (-909 |#1|)) $) NIL) (((-1174 $) $ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-2188 (((-922) $) NIL (|has| (-909 |#1|) (-370)))) (-1772 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370)))) (-1771 (((-1174 (-909 |#1|)) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-1174 (-909 |#1|)) "failed") $ $) NIL (|has| (-909 |#1|) (-370)))) (-1773 (($ $ (-1174 (-909 |#1|))) NIL (|has| (-909 |#1|) (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-909 |#1|) (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| (-909 |#1|) (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-1847 (((-1269 (-643 (-2 (|:| -3826 (-909 |#1|)) (|:| -2563 (-1123)))))) NIL)) (-1846 (((-691 (-909 |#1|))) NIL)) (-2572 (($) NIL (|has| (-909 |#1|) (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-909 |#1|) (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| (-909 |#1|) (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 (-909 |#1|))) NIL)) (-1842 (($) NIL (|has| (-909 |#1|) (-370)))) (-1774 (($) NIL (|has| (-909 |#1|) (-370)))) (-3644 (((-1269 (-909 |#1|)) $) NIL) (((-691 (-909 |#1|)) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-909 |#1|) (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-909 |#1|)) NIL)) (-3105 (($ $) NIL (|has| (-909 |#1|) (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| (-909 |#1|) (-145)) (|has| (-909 |#1|) (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3072 (($ $) NIL (|has| (-909 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-909 |#1|) (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ (-909 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-909 |#1|)) NIL) (($ (-909 |#1|) $) NIL))) +(((-354 |#1| |#2|) (-13 (-330 (-909 |#1|)) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 (-909 |#1|)) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 (-909 |#1|)))) (-15 -1845 ((-773))))) (-922) (-922)) (T -354)) +((-1847 (*1 *2) (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 (-909 *3)) (|:| -2563 (-1123)))))) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-1846 (*1 *2) (-12 (-5 *2 (-691 (-909 *3))) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-1845 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922))))) +(-13 (-330 (-909 |#1|)) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 (-909 |#1|)) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 (-909 |#1|)))) (-15 -1845 ((-773))))) +((-2968 (((-112) $ $) 73)) (-3608 (((-112) $) 88)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) 106) (($ $ (-922)) 104 (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) 171 (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1845 (((-773)) 103)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) 188 (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) 128)) (-3576 ((|#1| $) 105)) (-1967 (($ (-1269 |#1|)) 71)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) 183 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) 172 (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) 114 (|has| |#1| (-370)))) (-2189 (((-112) $) 201 (|has| |#1| (-370)))) (-3536 ((|#1| $) 108) (($ $ (-922)) 107 (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) 215) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) 149 (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) 87 (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) 84 (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) 96 (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) 83 (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 219)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) 151 (|has| |#1| (-370)))) (-4363 (((-112) $) 124)) (-3664 (((-1123) $) NIL)) (-1847 (((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) 97)) (-1846 (((-691 |#1|)) 101)) (-2572 (($) 110 (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 174 (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) 175)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) 75)) (-3605 (((-1174 |#1|)) 176)) (-1842 (($) 148 (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) 122) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) 141) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 70)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 181 T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 198) (((-1269 $) (-922)) 117)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) 187 T CONST)) (-3067 (($) 162 T CONST)) (-4360 (($ $) 123 (|has| |#1| (-370))) (($ $ (-773)) 115 (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) 209)) (-4381 (($ $ $) 120) (($ $ |#1|) 121)) (-4269 (($ $) 203) (($ $ $) 207)) (-4271 (($ $ $) 205)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 154)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 212) (($ $ $) 165) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119))) +(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 |#1|))) (-15 -1845 ((-773))))) (-352) (-3 (-1174 |#1|) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (T -355)) +((-1847 (*1 *2) (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) (-14 *4 (-3 (-1174 *3) *2)))) (-1846 (*1 *2) (-12 (-5 *2 (-691 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) (-14 *4 (-3 (-1174 *3) (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123))))))))) (-1845 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) (-14 *4 (-3 (-1174 *3) (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))))))) +(-13 (-330 |#1|) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 |#1|))) (-15 -1845 ((-773))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1845 (((-773)) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| |#1| (-370)))) (-2189 (((-112) $) NIL (|has| |#1| (-370)))) (-3536 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-1847 (((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123)))))) NIL)) (-1846 (((-691 |#1|)) NIL)) (-2572 (($) NIL (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 |#1|)) NIL)) (-1842 (($) NIL (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) NIL) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) NIL)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-356 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 |#1|))) (-15 -1845 ((-773))))) (-352) (-922)) (T -356)) +((-1847 (*1 *2) (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922)))) (-1846 (*1 *2) (-12 (-5 *2 (-691 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922)))) (-1845 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) +(-13 (-330 |#1|) (-10 -7 (-15 -1847 ((-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))))) (-15 -1846 ((-691 |#1|))) (-15 -1845 ((-773))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) 132 (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) 158 (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) 106)) (-3576 ((|#1| $) 103)) (-1967 (($ (-1269 |#1|)) 98)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) 95 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) 51 (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) 133 (|has| |#1| (-370)))) (-2189 (((-112) $) 87 (|has| |#1| (-370)))) (-3536 ((|#1| $) 47) (($ $ (-922)) 52 (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) 78) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) 110 (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) 108 (|has| |#1| (-370)))) (-4363 (((-112) $) 160)) (-3664 (((-1123) $) NIL)) (-2572 (($) 44 (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 127 (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) 157)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) 70)) (-3605 (((-1174 |#1|)) 101)) (-1842 (($) 138 (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) 66) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) 156) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 100)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 162 T CONST)) (-3662 (((-112) $ $) 164)) (-2190 (((-1269 $)) 122) (((-1269 $) (-922)) 60)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) 124 T CONST)) (-3067 (($) 40 T CONST)) (-4360 (($ $) 81 (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) 120)) (-4381 (($ $ $) 112) (($ $ |#1|) 113)) (-4269 (($ $) 93) (($ $ $) 118)) (-4271 (($ $ $) 116)) (** (($ $ (-922)) NIL) (($ $ (-773)) 55) (($ $ (-549)) 141)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 91) (($ $ $) 68) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89))) +(((-357 |#1| |#2|) (-330 |#1|) (-352) (-1174 |#1|)) (T -357)) NIL (-330 |#1|) -((-2728 ((|#1| (-1175 |#2|)) 63))) -(((-358 |#1| |#2|) (-10 -7 (-15 -2728 (|#1| (-1175 |#2|)))) (-13 (-405) (-10 -7 (-15 -2504 (|#1| |#2|)) (-15 -2667 ((-923) |#1|)) (-15 -4374 ((-1269 |#1|) (-923))) (-15 -1620 (|#1| |#1|)))) (-351)) (T -358)) -((-2728 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-405) (-10 -7 (-15 -2504 (*2 *4)) (-15 -2667 ((-923) *2)) (-15 -4374 ((-1269 *2) (-923))) (-15 -1620 (*2 *2))))) (-5 *1 (-358 *2 *4))))) -(-10 -7 (-15 -2728 (|#1| (-1175 |#2|)))) -((-4122 (((-960 (-1175 |#1|)) (-1175 |#1|)) 53)) (-2119 (((-1175 |#1|) (-923) (-923)) 168) (((-1175 |#1|) (-923)) 164)) (-1816 (((-112) (-1175 |#1|)) 120)) (-3789 (((-923) (-923)) 98)) (-4246 (((-923) (-923)) 105)) (-3022 (((-923) (-923)) 96)) (-3739 (((-112) (-1175 |#1|)) 124)) (-2918 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 149)) (-2517 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 154)) (-2871 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 153)) (-1414 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 152)) (-3531 (((-3 (-1175 |#1|) "failed") (-1175 |#1|)) 144)) (-1906 (((-1175 |#1|) (-1175 |#1|)) 84)) (-4391 (((-1175 |#1|) (-923)) 159)) (-1730 (((-1175 |#1|) (-923)) 162)) (-2116 (((-1175 |#1|) (-923)) 161)) (-2732 (((-1175 |#1|) (-923)) 160)) (-1489 (((-1175 |#1|) (-923)) 157))) -(((-359 |#1|) (-10 -7 (-15 -1816 ((-112) (-1175 |#1|))) (-15 -3739 ((-112) (-1175 |#1|))) (-15 -3022 ((-923) (-923))) (-15 -3789 ((-923) (-923))) (-15 -4246 ((-923) (-923))) (-15 -1489 ((-1175 |#1|) (-923))) (-15 -4391 ((-1175 |#1|) (-923))) (-15 -2732 ((-1175 |#1|) (-923))) (-15 -2116 ((-1175 |#1|) (-923))) (-15 -1730 ((-1175 |#1|) (-923))) (-15 -3531 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2918 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1414 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2871 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2517 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2119 ((-1175 |#1|) (-923))) (-15 -2119 ((-1175 |#1|) (-923) (-923))) (-15 -1906 ((-1175 |#1|) (-1175 |#1|))) (-15 -4122 ((-960 (-1175 |#1|)) (-1175 |#1|)))) (-351)) (T -359)) -((-4122 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-960 (-1175 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1175 *4)))) (-1906 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2119 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2517 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2871 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1414 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2918 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3531 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-4246 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4))))) -(-10 -7 (-15 -1816 ((-112) (-1175 |#1|))) (-15 -3739 ((-112) (-1175 |#1|))) (-15 -3022 ((-923) (-923))) (-15 -3789 ((-923) (-923))) (-15 -4246 ((-923) (-923))) (-15 -1489 ((-1175 |#1|) (-923))) (-15 -4391 ((-1175 |#1|) (-923))) (-15 -2732 ((-1175 |#1|) (-923))) (-15 -2116 ((-1175 |#1|) (-923))) (-15 -1730 ((-1175 |#1|) (-923))) (-15 -3531 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2918 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -1414 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2871 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2517 ((-3 (-1175 |#1|) "failed") (-1175 |#1|))) (-15 -2119 ((-1175 |#1|) (-923))) (-15 -2119 ((-1175 |#1|) (-923) (-923))) (-15 -1906 ((-1175 |#1|) (-1175 |#1|))) (-15 -4122 ((-960 (-1175 |#1|)) (-1175 |#1|)))) -((-1621 (((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|) 38))) -(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -1621 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) (-351) (-1245 |#1|) (-1245 |#2|)) (T -360)) -((-1621 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))) -(-10 -7 (-15 -1621 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL (|has| |#1| (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3431 (($ (-1269 |#1|)) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| |#1| (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) NIL (|has| |#1| (-370)))) (-1816 (((-112) $) NIL (|has| |#1| (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| |#1| (-370))) (((-834 (-923)) $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) NIL (|has| |#1| (-370)))) (-3739 (((-112) $) NIL (|has| |#1| (-370)))) (-2013 ((|#1| $) NIL) (($ $ (-923)) NIL (|has| |#1| (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 |#1|) $) NIL) (((-1175 $) $ (-923)) NIL (|has| |#1| (-370)))) (-2667 (((-923) $) NIL (|has| |#1| (-370)))) (-4066 (((-1175 |#1|) $) NIL (|has| |#1| (-370)))) (-2710 (((-1175 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1175 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1951 (($ $ (-1175 |#1|)) NIL (|has| |#1| (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| |#1| (-370)) CONST)) (-2188 (($ (-923)) NIL (|has| |#1| (-370)))) (-3626 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-2335 (($) NIL (|has| |#1| (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| |#1| (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-2783 (((-1175 |#1|)) NIL)) (-1876 (($) NIL (|has| |#1| (-370)))) (-4006 (($) NIL (|has| |#1| (-370)))) (-3237 (((-1269 |#1|) $) NIL) (((-690 |#1|) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-2318 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2856 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-361 |#1| |#2|) (-330 |#1|) (-351) (-923)) (T -361)) +((-1863 (((-961 (-1174 |#1|)) (-1174 |#1|)) 51)) (-3395 (((-1174 |#1|) (-922) (-922)) 158) (((-1174 |#1|) (-922)) 154)) (-1848 (((-112) (-1174 |#1|)) 110)) (-1850 (((-922) (-922)) 88)) (-1851 (((-922) (-922)) 95)) (-1849 (((-922) (-922)) 86)) (-2189 (((-112) (-1174 |#1|)) 114)) (-1858 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 139)) (-1861 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 144)) (-1860 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 143)) (-1859 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 142)) (-1857 (((-3 (-1174 |#1|) "failed") (-1174 |#1|)) 134)) (-1862 (((-1174 |#1|) (-1174 |#1|)) 74)) (-1853 (((-1174 |#1|) (-922)) 149)) (-1856 (((-1174 |#1|) (-922)) 152)) (-1855 (((-1174 |#1|) (-922)) 151)) (-1854 (((-1174 |#1|) (-922)) 150)) (-1852 (((-1174 |#1|) (-922)) 147))) +(((-358 |#1|) (-10 -7 (-15 -1848 ((-112) (-1174 |#1|))) (-15 -2189 ((-112) (-1174 |#1|))) (-15 -1849 ((-922) (-922))) (-15 -1850 ((-922) (-922))) (-15 -1851 ((-922) (-922))) (-15 -1852 ((-1174 |#1|) (-922))) (-15 -1853 ((-1174 |#1|) (-922))) (-15 -1854 ((-1174 |#1|) (-922))) (-15 -1855 ((-1174 |#1|) (-922))) (-15 -1856 ((-1174 |#1|) (-922))) (-15 -1857 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1858 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1859 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1860 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1861 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3395 ((-1174 |#1|) (-922))) (-15 -3395 ((-1174 |#1|) (-922) (-922))) (-15 -1862 ((-1174 |#1|) (-1174 |#1|))) (-15 -1863 ((-961 (-1174 |#1|)) (-1174 |#1|)))) (-352)) (T -358)) +((-1863 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-961 (-1174 *4))) (-5 *1 (-358 *4)) (-5 *3 (-1174 *4)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1861 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1860 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1859 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1858 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1857 (*1 *2 *2) (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) (-1851 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352)))) (-1849 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-358 *4)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-358 *4))))) +(-10 -7 (-15 -1848 ((-112) (-1174 |#1|))) (-15 -2189 ((-112) (-1174 |#1|))) (-15 -1849 ((-922) (-922))) (-15 -1850 ((-922) (-922))) (-15 -1851 ((-922) (-922))) (-15 -1852 ((-1174 |#1|) (-922))) (-15 -1853 ((-1174 |#1|) (-922))) (-15 -1854 ((-1174 |#1|) (-922))) (-15 -1855 ((-1174 |#1|) (-922))) (-15 -1856 ((-1174 |#1|) (-922))) (-15 -1857 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1858 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1859 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1860 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -1861 ((-3 (-1174 |#1|) "failed") (-1174 |#1|))) (-15 -3395 ((-1174 |#1|) (-922))) (-15 -3395 ((-1174 |#1|) (-922) (-922))) (-15 -1862 ((-1174 |#1|) (-1174 |#1|))) (-15 -1863 ((-961 (-1174 |#1|)) (-1174 |#1|)))) +((-1864 ((|#1| (-1174 |#2|)) 61))) +(((-359 |#1| |#2|) (-10 -7 (-15 -1864 (|#1| (-1174 |#2|)))) (-13 (-405) (-10 -7 (-15 -4378 (|#1| |#2|)) (-15 -2188 ((-922) |#1|)) (-15 -2190 ((-1269 |#1|) (-922))) (-15 -4360 (|#1| |#1|)))) (-352)) (T -359)) +((-1864 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-4 *2 (-13 (-405) (-10 -7 (-15 -4378 (*2 *4)) (-15 -2188 ((-922) *2)) (-15 -2190 ((-1269 *2) (-922))) (-15 -4360 (*2 *2))))) (-5 *1 (-359 *2 *4))))) +(-10 -7 (-15 -1864 (|#1| (-1174 |#2|)))) +((-3107 (((-3 (-643 |#3|) "failed") (-643 |#3|) |#3|) 38))) +(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -3107 ((-3 (-643 |#3|) "failed") (-643 |#3|) |#3|))) (-352) (-1245 |#1|) (-1245 |#2|)) (T -360)) +((-3107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-352)) (-5 *1 (-360 *4 *5 *3))))) +(-10 -7 (-15 -3107 ((-3 (-643 |#3|) "failed") (-643 |#3|) |#3|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| |#1| (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| |#1| (-370)))) (-1848 (((-112) $) NIL (|has| |#1| (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| |#1| (-370)))) (-2189 (((-112) $) NIL (|has| |#1| (-370)))) (-3536 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 |#1|) $) NIL) (((-1174 $) $ (-922)) NIL (|has| |#1| (-370)))) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-1772 (((-1174 |#1|) $) NIL (|has| |#1| (-370)))) (-1771 (((-1174 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1174 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-1773 (($ $ (-1174 |#1|)) NIL (|has| |#1| (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL (|has| |#1| (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| |#1| (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 |#1|)) NIL)) (-1842 (($) NIL (|has| |#1| (-370)))) (-1774 (($) NIL (|has| |#1| (-370)))) (-3644 (((-1269 |#1|) $) NIL) (((-691 |#1|) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) NIL)) (-3105 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3072 (($ $) NIL (|has| |#1| (-370))) (($ $ (-773)) NIL (|has| |#1| (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-361 |#1| |#2|) (-330 |#1|) (-352) (-922)) (T -361)) NIL (-330 |#1|) -((-2947 (((-112) (-645 (-954 |#1|))) 41)) (-3546 (((-645 (-954 |#1|)) (-645 (-954 |#1|))) 53)) (-3974 (((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|))) 48))) -(((-362 |#1| |#2|) (-10 -7 (-15 -2947 ((-112) (-645 (-954 |#1|)))) (-15 -3974 ((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|)))) (-15 -3546 ((-645 (-954 |#1|)) (-645 (-954 |#1|))))) (-455) (-645 (-1179))) (T -362)) -((-3546 (*1 *2 *2) (-12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1179))))) (-3974 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1179))))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1179)))))) -(-10 -7 (-15 -2947 ((-112) (-645 (-954 |#1|)))) (-15 -3974 ((-3 (-645 (-954 |#1|)) "failed") (-645 (-954 |#1|)))) (-15 -3546 ((-645 (-954 |#1|)) (-645 (-954 |#1|))))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772) $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) 17)) (-3102 ((|#1| $ (-567)) NIL)) (-2889 (((-567) $ (-567)) NIL)) (-3786 (($ (-1 |#1| |#1|) $) 34)) (-2430 (($ (-1 (-567) (-567)) $) 26)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 28)) (-3479 (((-1122) $) NIL)) (-1444 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 (-567)))) $) 30)) (-3307 (($ $ $) NIL)) (-4033 (($ $ $) NIL)) (-2504 (((-863) $) 40) (($ |#1|) NIL)) (-3858 (((-112) $ $) NIL)) (-1820 (($) 11 T CONST)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ |#1| (-567)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-363 |#1|) (-13 (-476) (-1040 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -3404 ((-772) $)) (-15 -2889 ((-567) $ (-567))) (-15 -3102 (|#1| $ (-567))) (-15 -2430 ($ (-1 (-567) (-567)) $)) (-15 -3786 ($ (-1 |#1| |#1|) $)) (-15 -1444 ((-645 (-2 (|:| |gen| |#1|) (|:| -4272 (-567)))) $)))) (-1102)) (T -363)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-2889 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) (-2430 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) (-3786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-363 *3)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 (-567))))) (-5 *1 (-363 *3)) (-4 *3 (-1102))))) -(-13 (-476) (-1040 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -3404 ((-772) $)) (-15 -2889 ((-567) $ (-567))) (-15 -3102 (|#1| $ (-567))) (-15 -2430 ($ (-1 (-567) (-567)) $)) (-15 -3786 ($ (-1 |#1| |#1|) $)) (-15 -1444 ((-645 (-2 (|:| |gen| |#1|) (|:| -4272 (-567)))) $)))) -((-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 13)) (-1987 (($ $) 14)) (-1466 (((-421 $) $) 34)) (-2946 (((-112) $) 30)) (-1752 (($ $) 19)) (-1870 (($ $ $) 25) (($ (-645 $)) NIL)) (-3661 (((-421 $) $) 35)) (-2478 (((-3 $ "failed") $ $) 24)) (-2465 (((-772) $) 28)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 39)) (-3269 (((-112) $ $) 16)) (-3064 (($ $ $) 37))) -(((-364 |#1|) (-10 -8 (-15 -3064 (|#1| |#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -2946 ((-112) |#1|)) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -2401 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -2465 ((-772) |#1|)) (-15 -1870 (|#1| (-645 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -3269 ((-112) |#1| |#1|)) (-15 -1987 (|#1| |#1|)) (-15 -2054 ((-2 (|:| -3414 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) -NIL -(-10 -8 (-15 -3064 (|#1| |#1| |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -2946 ((-112) |#1|)) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -2401 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -2465 ((-772) |#1|)) (-15 -1870 (|#1| (-645 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -3269 ((-112) |#1| |#1|)) (-15 -1987 (|#1| |#1|)) (-15 -2054 ((-2 (|:| -3414 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-4175 (((-112) $ $) 65)) (-3758 (($) 18 T CONST)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-2946 (((-112) $) 79)) (-4384 (((-112) $) 35)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3661 (((-421 $) $) 82)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 73)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +((-2398 (((-112) (-643 (-949 |#1|))) 41)) (-2400 (((-643 (-949 |#1|)) (-643 (-949 |#1|))) 53)) (-2399 (((-3 (-643 (-949 |#1|)) "failed") (-643 (-949 |#1|))) 48))) +(((-362 |#1| |#2|) (-10 -7 (-15 -2398 ((-112) (-643 (-949 |#1|)))) (-15 -2399 ((-3 (-643 (-949 |#1|)) "failed") (-643 (-949 |#1|)))) (-15 -2400 ((-643 (-949 |#1|)) (-643 (-949 |#1|))))) (-455) (-643 (-1180))) (T -362)) +((-2400 (*1 *2 *2) (-12 (-5 *2 (-643 (-949 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-643 (-1180))))) (-2399 (*1 *2 *2) (|partial| -12 (-5 *2 (-643 (-949 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-643 (-1180))))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-455)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-643 (-1180)))))) +(-10 -7 (-15 -2398 ((-112) (-643 (-949 |#1|)))) (-15 -2399 ((-3 (-643 (-949 |#1|)) "failed") (-643 (-949 |#1|)))) (-15 -2400 ((-643 (-949 |#1|)) (-643 (-949 |#1|))))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) 17)) (-2444 ((|#1| $ (-549)) NIL)) (-2445 (((-549) $ (-549)) NIL)) (-2436 (($ (-1 |#1| |#1|) $) 34)) (-2437 (($ (-1 (-549) (-549)) $) 26)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 28)) (-3664 (((-1123) $) NIL)) (-1954 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-549)))) $) 30)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 40) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 11 T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL) (($ |#1| (-549)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-363 |#1|) (-13 (-476) (-1041 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-549))) (-15 -3540 ((-773) $)) (-15 -2445 ((-549) $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -2437 ($ (-1 (-549) (-549)) $)) (-15 -2436 ($ (-1 |#1| |#1|) $)) (-15 -1954 ((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-549)))) $)))) (-1104)) (T -363)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1104)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1104)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-363 *2)) (-4 *2 (-1104)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) (-2445 (*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-363 *2)) (-4 *2 (-1104)))) (-2437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-549) (-549))) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-363 *3)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 (-549))))) (-5 *1 (-363 *3)) (-4 *3 (-1104))))) +(-13 (-476) (-1041 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-549))) (-15 -3540 ((-773) $)) (-15 -2445 ((-549) $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -2437 ($ (-1 (-549) (-549)) $)) (-15 -2436 ($ (-1 |#1| |#1|) $)) (-15 -1954 ((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-549)))) $)))) +((-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 13)) (-2241 (($ $) 14)) (-4401 (((-408 $) $) 34)) (-4155 (((-112) $) 30)) (-2806 (($ $) 19)) (-3564 (($ $ $) 25) (($ (-643 $)) NIL)) (-4164 (((-408 $) $) 35)) (-3889 (((-3 $ "failed") $ $) 24)) (-1752 (((-773) $) 28)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 39)) (-2240 (((-112) $ $) 16)) (-4381 (($ $ $) 37))) +(((-364 |#1|) (-10 -8 (-15 -4381 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -1752 ((-773) |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|)) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364)) +NIL +(-10 -8 (-15 -4381 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -1752 ((-773) |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|)) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) (((-365) (-140)) (T -365)) -((-3064 (*1 *1 *1 *1) (-4 *1 (-365)))) -(-13 (-308) (-1223) (-243) (-10 -8 (-15 -3064 ($ $ $)) (-6 -4420) (-6 -4414))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T)) -((-2487 (((-112) $ $) 7)) (-2060 ((|#2| $ |#2|) 14)) (-3200 (($ $ (-1161)) 19)) (-4118 ((|#2| $) 15)) (-1692 (($ |#1|) 21) (($ |#1| (-1161)) 20)) (-1646 ((|#1| $) 17)) (-1812 (((-1161) $) 10)) (-2696 (((-1161) $) 16)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-4023 (($ $) 18)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-366 |#1| |#2|) (-140) (-1102) (-1102)) (T -366)) -((-1692 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-1692 (*1 *1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1102)) (-4 *4 (-1102)))) (-3200 (*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-4023 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-1161)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-2060 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) -(-13 (-1102) (-10 -8 (-15 -1692 ($ |t#1|)) (-15 -1692 ($ |t#1| (-1161))) (-15 -3200 ($ $ (-1161))) (-15 -4023 ($ $)) (-15 -1646 (|t#1| $)) (-15 -2696 ((-1161) $)) (-15 -4118 (|t#2| $)) (-15 -2060 (|t#2| $ |t#2|)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2060 ((|#1| $ |#1|) 31)) (-3200 (($ $ (-1161)) 23)) (-2149 (((-3 |#1| "failed") $) 30)) (-4118 ((|#1| $) 28)) (-1692 (($ (-391)) 22) (($ (-391) (-1161)) 21)) (-1646 (((-391) $) 25)) (-1812 (((-1161) $) NIL)) (-2696 (((-1161) $) 26)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 20)) (-4023 (($ $) 24)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 19))) -(((-367 |#1|) (-13 (-366 (-391) |#1|) (-10 -8 (-15 -2149 ((-3 |#1| "failed") $)))) (-1102)) (T -367)) -((-2149 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1102))))) -(-13 (-366 (-391) |#1|) (-10 -8 (-15 -2149 ((-3 |#1| "failed") $)))) -((-1998 (((-1269 (-690 |#2|)) (-1269 $)) 70)) (-1426 (((-690 |#2|) (-1269 $)) 141)) (-4114 ((|#2| $) 39)) (-4170 (((-690 |#2|) $ (-1269 $)) 144)) (-1511 (((-3 $ "failed") $) 91)) (-1607 ((|#2| $) 42)) (-1375 (((-1175 |#2|) $) 99)) (-2260 ((|#2| (-1269 $)) 124)) (-3542 (((-1175 |#2|) $) 34)) (-3134 (((-112)) 118)) (-3431 (($ (-1269 |#2|) (-1269 $)) 134)) (-1377 (((-3 $ "failed") $) 95)) (-3604 (((-112)) 112)) (-3703 (((-112)) 107)) (-3504 (((-112)) 61)) (-4221 (((-690 |#2|) (-1269 $)) 139)) (-2726 ((|#2| $) 38)) (-3969 (((-690 |#2|) $ (-1269 $)) 143)) (-3822 (((-3 $ "failed") $) 89)) (-2152 ((|#2| $) 41)) (-3485 (((-1175 |#2|) $) 98)) (-1741 ((|#2| (-1269 $)) 122)) (-3522 (((-1175 |#2|) $) 32)) (-1830 (((-112)) 117)) (-3403 (((-112)) 109)) (-2905 (((-112)) 59)) (-2541 (((-112)) 104)) (-2779 (((-112)) 119)) (-3237 (((-1269 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) 130)) (-2441 (((-112)) 115)) (-3477 (((-645 (-1269 |#2|))) 103)) (-3527 (((-112)) 116)) (-1959 (((-112)) 113)) (-3358 (((-112)) 54)) (-2035 (((-112)) 120))) -(((-368 |#1| |#2|) (-10 -8 (-15 -1375 ((-1175 |#2|) |#1|)) (-15 -3485 ((-1175 |#2|) |#1|)) (-15 -3477 ((-645 (-1269 |#2|)))) (-15 -1511 ((-3 |#1| "failed") |#1|)) (-15 -3822 ((-3 |#1| "failed") |#1|)) (-15 -1377 ((-3 |#1| "failed") |#1|)) (-15 -3703 ((-112))) (-15 -3403 ((-112))) (-15 -3604 ((-112))) (-15 -2905 ((-112))) (-15 -3504 ((-112))) (-15 -2541 ((-112))) (-15 -2035 ((-112))) (-15 -2779 ((-112))) (-15 -3134 ((-112))) (-15 -1830 ((-112))) (-15 -3358 ((-112))) (-15 -3527 ((-112))) (-15 -1959 ((-112))) (-15 -2441 ((-112))) (-15 -3542 ((-1175 |#2|) |#1|)) (-15 -3522 ((-1175 |#2|) |#1|)) (-15 -1426 ((-690 |#2|) (-1269 |#1|))) (-15 -4221 ((-690 |#2|) (-1269 |#1|))) (-15 -2260 (|#2| (-1269 |#1|))) (-15 -1741 (|#2| (-1269 |#1|))) (-15 -3431 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1607 (|#2| |#1|)) (-15 -2152 (|#2| |#1|)) (-15 -4114 (|#2| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -4170 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -3969 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -1998 ((-1269 (-690 |#2|)) (-1269 |#1|)))) (-369 |#2|) (-172)) (T -368)) -((-2441 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1959 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3527 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3358 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1830 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3134 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2779 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2035 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2541 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3504 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2905 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3604 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3403 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3703 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3477 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1269 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) -(-10 -8 (-15 -1375 ((-1175 |#2|) |#1|)) (-15 -3485 ((-1175 |#2|) |#1|)) (-15 -3477 ((-645 (-1269 |#2|)))) (-15 -1511 ((-3 |#1| "failed") |#1|)) (-15 -3822 ((-3 |#1| "failed") |#1|)) (-15 -1377 ((-3 |#1| "failed") |#1|)) (-15 -3703 ((-112))) (-15 -3403 ((-112))) (-15 -3604 ((-112))) (-15 -2905 ((-112))) (-15 -3504 ((-112))) (-15 -2541 ((-112))) (-15 -2035 ((-112))) (-15 -2779 ((-112))) (-15 -3134 ((-112))) (-15 -1830 ((-112))) (-15 -3358 ((-112))) (-15 -3527 ((-112))) (-15 -1959 ((-112))) (-15 -2441 ((-112))) (-15 -3542 ((-1175 |#2|) |#1|)) (-15 -3522 ((-1175 |#2|) |#1|)) (-15 -1426 ((-690 |#2|) (-1269 |#1|))) (-15 -4221 ((-690 |#2|) (-1269 |#1|))) (-15 -2260 (|#2| (-1269 |#1|))) (-15 -1741 (|#2| (-1269 |#1|))) (-15 -3431 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1607 (|#2| |#1|)) (-15 -2152 (|#2| |#1|)) (-15 -4114 (|#2| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -4170 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -3969 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -1998 ((-1269 (-690 |#2|)) (-1269 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3414 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) 20)) (-1998 (((-1269 (-690 |#1|)) (-1269 $)) 83)) (-1931 (((-1269 $)) 86)) (-3758 (($) 18 T CONST)) (-2670 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-3865 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1426 (((-690 |#1|) (-1269 $)) 70)) (-4114 ((|#1| $) 79)) (-4170 (((-690 |#1|) $ (-1269 $)) 81)) (-1511 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-3497 (($ $ (-923)) 31)) (-1607 ((|#1| $) 77)) (-1375 (((-1175 |#1|) $) 47 (|has| |#1| (-559)))) (-2260 ((|#1| (-1269 $)) 72)) (-3542 (((-1175 |#1|) $) 68)) (-3134 (((-112)) 62)) (-3431 (($ (-1269 |#1|) (-1269 $)) 74)) (-1377 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1471 (((-923)) 85)) (-1586 (((-112)) 59)) (-2258 (($ $ (-923)) 38)) (-3604 (((-112)) 55)) (-3703 (((-112)) 53)) (-3504 (((-112)) 57)) (-1478 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-3363 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-4221 (((-690 |#1|) (-1269 $)) 71)) (-2726 ((|#1| $) 80)) (-3969 (((-690 |#1|) $ (-1269 $)) 82)) (-3822 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-2310 (($ $ (-923)) 32)) (-2152 ((|#1| $) 78)) (-3485 (((-1175 |#1|) $) 48 (|has| |#1| (-559)))) (-1741 ((|#1| (-1269 $)) 73)) (-3522 (((-1175 |#1|) $) 69)) (-1830 (((-112)) 63)) (-1812 (((-1161) $) 10)) (-3403 (((-112)) 54)) (-2905 (((-112)) 56)) (-2541 (((-112)) 58)) (-3479 (((-1122) $) 11)) (-2779 (((-112)) 61)) (-3237 (((-1269 |#1|) $ (-1269 $)) 76) (((-690 |#1|) (-1269 $) (-1269 $)) 75)) (-3869 (((-645 (-954 |#1|)) (-1269 $)) 84)) (-4033 (($ $ $) 28)) (-2441 (((-112)) 67)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3477 (((-645 (-1269 |#1|))) 49 (|has| |#1| (-559)))) (-2862 (($ $ $ $) 29)) (-3527 (((-112)) 65)) (-1793 (($ $ $) 27)) (-1959 (((-112)) 66)) (-3358 (((-112)) 64)) (-2035 (((-112)) 60)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-4381 (*1 *1 *1 *1) (-4 *1 (-365)))) +(-13 (-308) (-1224) (-243) (-10 -8 (-15 -4381 ($ $ $)) (-6 -4423) (-6 -4417))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) +((-2968 (((-112) $ $) NIL)) (-1865 ((|#1| $ |#1|) 31)) (-1869 (($ $ (-1162)) 23)) (-4051 (((-3 |#1| "failed") $) 30)) (-1866 ((|#1| $) 28)) (-1870 (($ (-391)) 22) (($ (-391) (-1162)) 21)) (-3973 (((-391) $) 25)) (-3663 (((-1162) $) NIL)) (-1867 (((-1162) $) 26)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20)) (-1868 (($ $) 24)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 19))) +(((-366 |#1|) (-13 (-367 (-391) |#1|) (-10 -8 (-15 -4051 ((-3 |#1| "failed") $)))) (-1104)) (T -366)) +((-4051 (*1 *2 *1) (|partial| -12 (-5 *1 (-366 *2)) (-4 *2 (-1104))))) +(-13 (-367 (-391) |#1|) (-10 -8 (-15 -4051 ((-3 |#1| "failed") $)))) +((-2968 (((-112) $ $) 7)) (-1865 ((|#2| $ |#2|) 14)) (-1869 (($ $ (-1162)) 19)) (-1866 ((|#2| $) 15)) (-1870 (($ |#1|) 21) (($ |#1| (-1162)) 20)) (-3973 ((|#1| $) 17)) (-3663 (((-1162) $) 10)) (-1867 (((-1162) $) 16)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-1868 (($ $) 18)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-367 |#1| |#2|) (-140) (-1104) (-1104)) (T -367)) +((-1870 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-1870 (*1 *1 *2 *3) (-12 (-5 *3 (-1162)) (-4 *1 (-367 *2 *4)) (-4 *2 (-1104)) (-4 *4 (-1104)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-367 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-1868 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-1162)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-1865 (*1 *2 *1 *2) (-12 (-4 *1 (-367 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) +(-13 (-1104) (-10 -8 (-15 -1870 ($ |t#1|)) (-15 -1870 ($ |t#1| (-1162))) (-15 -1869 ($ $ (-1162))) (-15 -1868 ($ $)) (-15 -3973 (|t#1| $)) (-15 -1867 ((-1162) $)) (-15 -1866 (|t#2| $)) (-15 -1865 (|t#2| $ |t#2|)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-3643 (((-1269 (-691 |#2|)) (-1269 $)) 70)) (-1963 (((-691 |#2|) (-1269 $)) 141)) (-1895 ((|#2| $) 39)) (-1961 (((-691 |#2|) $ (-1269 $)) 144)) (-2567 (((-3 $ "failed") $) 91)) (-1893 ((|#2| $) 42)) (-1873 (((-1174 |#2|) $) 99)) (-1965 ((|#2| (-1269 $)) 124)) (-1891 (((-1174 |#2|) $) 34)) (-1885 (((-112)) 118)) (-1967 (($ (-1269 |#2|) (-1269 $)) 134)) (-3890 (((-3 $ "failed") $) 95)) (-1878 (((-112)) 112)) (-1876 (((-112)) 107)) (-1880 (((-112)) 61)) (-1964 (((-691 |#2|) (-1269 $)) 139)) (-1896 ((|#2| $) 38)) (-1962 (((-691 |#2|) $ (-1269 $)) 143)) (-2568 (((-3 $ "failed") $) 89)) (-1894 ((|#2| $) 41)) (-1874 (((-1174 |#2|) $) 98)) (-1966 ((|#2| (-1269 $)) 122)) (-1892 (((-1174 |#2|) $) 32)) (-1886 (((-112)) 117)) (-1877 (((-112)) 109)) (-1879 (((-112)) 59)) (-1881 (((-112)) 104)) (-1884 (((-112)) 119)) (-3644 (((-1269 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) 130)) (-1890 (((-112)) 115)) (-1875 (((-643 (-1269 |#2|))) 103)) (-1888 (((-112)) 116)) (-1889 (((-112)) 113)) (-1887 (((-112)) 54)) (-1883 (((-112)) 120))) +(((-368 |#1| |#2|) (-10 -8 (-15 -1873 ((-1174 |#2|) |#1|)) (-15 -1874 ((-1174 |#2|) |#1|)) (-15 -1875 ((-643 (-1269 |#2|)))) (-15 -2567 ((-3 |#1| "failed") |#1|)) (-15 -2568 ((-3 |#1| "failed") |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 -1876 ((-112))) (-15 -1877 ((-112))) (-15 -1878 ((-112))) (-15 -1879 ((-112))) (-15 -1880 ((-112))) (-15 -1881 ((-112))) (-15 -1883 ((-112))) (-15 -1884 ((-112))) (-15 -1885 ((-112))) (-15 -1886 ((-112))) (-15 -1887 ((-112))) (-15 -1888 ((-112))) (-15 -1889 ((-112))) (-15 -1890 ((-112))) (-15 -1891 ((-1174 |#2|) |#1|)) (-15 -1892 ((-1174 |#2|) |#1|)) (-15 -1963 ((-691 |#2|) (-1269 |#1|))) (-15 -1964 ((-691 |#2|) (-1269 |#1|))) (-15 -1965 (|#2| (-1269 |#1|))) (-15 -1966 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1893 (|#2| |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -1961 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -1962 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -3643 ((-1269 (-691 |#2|)) (-1269 |#1|)))) (-369 |#2|) (-172)) (T -368)) +((-1890 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1889 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1888 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1887 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1886 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1885 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1884 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1883 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1881 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1880 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1879 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1877 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1876 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1875 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-643 (-1269 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))) +(-10 -8 (-15 -1873 ((-1174 |#2|) |#1|)) (-15 -1874 ((-1174 |#2|) |#1|)) (-15 -1875 ((-643 (-1269 |#2|)))) (-15 -2567 ((-3 |#1| "failed") |#1|)) (-15 -2568 ((-3 |#1| "failed") |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 -1876 ((-112))) (-15 -1877 ((-112))) (-15 -1878 ((-112))) (-15 -1879 ((-112))) (-15 -1880 ((-112))) (-15 -1881 ((-112))) (-15 -1883 ((-112))) (-15 -1884 ((-112))) (-15 -1885 ((-112))) (-15 -1886 ((-112))) (-15 -1887 ((-112))) (-15 -1888 ((-112))) (-15 -1889 ((-112))) (-15 -1890 ((-112))) (-15 -1891 ((-1174 |#2|) |#1|)) (-15 -1892 ((-1174 |#2|) |#1|)) (-15 -1963 ((-691 |#2|) (-1269 |#1|))) (-15 -1964 ((-691 |#2|) (-1269 |#1|))) (-15 -1965 (|#2| (-1269 |#1|))) (-15 -1966 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1893 (|#2| |#1|)) (-15 -1894 (|#2| |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1896 (|#2| |#1|)) (-15 -1961 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -1962 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -3643 ((-1269 (-691 |#2|)) (-1269 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1947 (((-3 $ "failed")) 42 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-3643 (((-1269 (-691 |#1|)) (-1269 $)) 83)) (-1897 (((-1269 $)) 86)) (-4156 (($) 18 T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed")) 45 (|has| |#1| (-560)))) (-1871 (((-3 $ "failed")) 43 (|has| |#1| (-560)))) (-1963 (((-691 |#1|) (-1269 $)) 70)) (-1895 ((|#1| $) 79)) (-1961 (((-691 |#1|) $ (-1269 $)) 81)) (-2567 (((-3 $ "failed") $) 50 (|has| |#1| (-560)))) (-2570 (($ $ (-922)) 31)) (-1893 ((|#1| $) 77)) (-1873 (((-1174 |#1|) $) 47 (|has| |#1| (-560)))) (-1965 ((|#1| (-1269 $)) 72)) (-1891 (((-1174 |#1|) $) 68)) (-1885 (((-112)) 62)) (-1967 (($ (-1269 |#1|) (-1269 $)) 74)) (-3890 (((-3 $ "failed") $) 52 (|has| |#1| (-560)))) (-3513 (((-922)) 85)) (-1882 (((-112)) 59)) (-2594 (($ $ (-922)) 38)) (-1878 (((-112)) 55)) (-1876 (((-112)) 53)) (-1880 (((-112)) 57)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed")) 46 (|has| |#1| (-560)))) (-1872 (((-3 $ "failed")) 44 (|has| |#1| (-560)))) (-1964 (((-691 |#1|) (-1269 $)) 71)) (-1896 ((|#1| $) 80)) (-1962 (((-691 |#1|) $ (-1269 $)) 82)) (-2568 (((-3 $ "failed") $) 51 (|has| |#1| (-560)))) (-2569 (($ $ (-922)) 32)) (-1894 ((|#1| $) 78)) (-1874 (((-1174 |#1|) $) 48 (|has| |#1| (-560)))) (-1966 ((|#1| (-1269 $)) 73)) (-1892 (((-1174 |#1|) $) 69)) (-1886 (((-112)) 63)) (-3663 (((-1162) $) 10)) (-1877 (((-112)) 54)) (-1879 (((-112)) 56)) (-1881 (((-112)) 58)) (-3664 (((-1123) $) 11)) (-1884 (((-112)) 61)) (-3644 (((-1269 |#1|) $ (-1269 $)) 76) (((-691 |#1|) (-1269 $) (-1269 $)) 75)) (-2070 (((-643 (-949 |#1|)) (-1269 $)) 84)) (-2756 (($ $ $) 28)) (-1890 (((-112)) 67)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-1875 (((-643 (-1269 |#1|))) 49 (|has| |#1| (-560)))) (-2757 (($ $ $ $) 29)) (-1888 (((-112)) 65)) (-2755 (($ $ $) 27)) (-1889 (((-112)) 66)) (-1887 (((-112)) 64)) (-1883 (((-112)) 60)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-369 |#1|) (-140) (-172)) (T -369)) -((-1931 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-369 *3)))) (-1471 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-923)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 (-690 *4))))) (-3969 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-4170 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2152 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3237 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 *4)))) (-3237 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4221 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1175 *3)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1175 *3)))) (-2441 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1959 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3527 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3358 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1830 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3134 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2779 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2035 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1586 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2541 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3504 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2905 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3604 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3403 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3703 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1377 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-3822 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-1511 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-3477 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-645 (-1269 *3))))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1175 *3)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1175 *3)))) (-1478 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4374 (-645 *1)))) (-4 *1 (-369 *3)))) (-2670 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4374 (-645 *1)))) (-4 *1 (-369 *3)))) (-3363 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-3865 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-3414 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))) -(-13 (-745 |t#1|) (-10 -8 (-15 -1931 ((-1269 $))) (-15 -1471 ((-923))) (-15 -3869 ((-645 (-954 |t#1|)) (-1269 $))) (-15 -1998 ((-1269 (-690 |t#1|)) (-1269 $))) (-15 -3969 ((-690 |t#1|) $ (-1269 $))) (-15 -4170 ((-690 |t#1|) $ (-1269 $))) (-15 -2726 (|t#1| $)) (-15 -4114 (|t#1| $)) (-15 -2152 (|t#1| $)) (-15 -1607 (|t#1| $)) (-15 -3237 ((-1269 |t#1|) $ (-1269 $))) (-15 -3237 ((-690 |t#1|) (-1269 $) (-1269 $))) (-15 -3431 ($ (-1269 |t#1|) (-1269 $))) (-15 -1741 (|t#1| (-1269 $))) (-15 -2260 (|t#1| (-1269 $))) (-15 -4221 ((-690 |t#1|) (-1269 $))) (-15 -1426 ((-690 |t#1|) (-1269 $))) (-15 -3522 ((-1175 |t#1|) $)) (-15 -3542 ((-1175 |t#1|) $)) (-15 -2441 ((-112))) (-15 -1959 ((-112))) (-15 -3527 ((-112))) (-15 -3358 ((-112))) (-15 -1830 ((-112))) (-15 -3134 ((-112))) (-15 -2779 ((-112))) (-15 -2035 ((-112))) (-15 -1586 ((-112))) (-15 -2541 ((-112))) (-15 -3504 ((-112))) (-15 -2905 ((-112))) (-15 -3604 ((-112))) (-15 -3403 ((-112))) (-15 -3703 ((-112))) (IF (|has| |t#1| (-559)) (PROGN (-15 -1377 ((-3 $ "failed") $)) (-15 -3822 ((-3 $ "failed") $)) (-15 -1511 ((-3 $ "failed") $)) (-15 -3477 ((-645 (-1269 |t#1|)))) (-15 -3485 ((-1175 |t#1|) $)) (-15 -1375 ((-1175 |t#1|) $)) (-15 -1478 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed"))) (-15 -2670 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed"))) (-15 -3363 ((-3 $ "failed"))) (-15 -3865 ((-3 $ "failed"))) (-15 -3414 ((-3 $ "failed"))) (-6 -4419)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 7)) (-3404 (((-772)) 17)) (-2119 (($) 14)) (-2667 (((-923) $) 15)) (-1812 (((-1161) $) 10)) (-2188 (($ (-923)) 16)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) +((-1897 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-369 *3)))) (-3513 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-922)))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-643 (-949 *4))))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 (-691 *4))))) (-1962 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3644 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 *4)))) (-3644 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-1892 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3)))) (-1890 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1889 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1888 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1887 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1886 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1885 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1884 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1883 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1882 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1881 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1880 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1879 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1878 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1877 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1876 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3890 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) (-2568 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) (-2567 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) (-1875 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-643 (-1269 *3))))) (-1874 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-1174 *3)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-1174 *3)))) (-2085 (*1 *2) (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2190 (-643 *1)))) (-4 *1 (-369 *3)))) (-2084 (*1 *2) (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2190 (-643 *1)))) (-4 *1 (-369 *3)))) (-1872 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172)))) (-1871 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172)))) (-1947 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172))))) +(-13 (-746 |t#1|) (-10 -8 (-15 -1897 ((-1269 $))) (-15 -3513 ((-922))) (-15 -2070 ((-643 (-949 |t#1|)) (-1269 $))) (-15 -3643 ((-1269 (-691 |t#1|)) (-1269 $))) (-15 -1962 ((-691 |t#1|) $ (-1269 $))) (-15 -1961 ((-691 |t#1|) $ (-1269 $))) (-15 -1896 (|t#1| $)) (-15 -1895 (|t#1| $)) (-15 -1894 (|t#1| $)) (-15 -1893 (|t#1| $)) (-15 -3644 ((-1269 |t#1|) $ (-1269 $))) (-15 -3644 ((-691 |t#1|) (-1269 $) (-1269 $))) (-15 -1967 ($ (-1269 |t#1|) (-1269 $))) (-15 -1966 (|t#1| (-1269 $))) (-15 -1965 (|t#1| (-1269 $))) (-15 -1964 ((-691 |t#1|) (-1269 $))) (-15 -1963 ((-691 |t#1|) (-1269 $))) (-15 -1892 ((-1174 |t#1|) $)) (-15 -1891 ((-1174 |t#1|) $)) (-15 -1890 ((-112))) (-15 -1889 ((-112))) (-15 -1888 ((-112))) (-15 -1887 ((-112))) (-15 -1886 ((-112))) (-15 -1885 ((-112))) (-15 -1884 ((-112))) (-15 -1883 ((-112))) (-15 -1882 ((-112))) (-15 -1881 ((-112))) (-15 -1880 ((-112))) (-15 -1879 ((-112))) (-15 -1878 ((-112))) (-15 -1877 ((-112))) (-15 -1876 ((-112))) (IF (|has| |t#1| (-560)) (PROGN (-15 -3890 ((-3 $ "failed") $)) (-15 -2568 ((-3 $ "failed") $)) (-15 -2567 ((-3 $ "failed") $)) (-15 -1875 ((-643 (-1269 |t#1|)))) (-15 -1874 ((-1174 |t#1|) $)) (-15 -1873 ((-1174 |t#1|) $)) (-15 -2085 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2084 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -1872 ((-3 $ "failed"))) (-15 -1871 ((-3 $ "failed"))) (-15 -1947 ((-3 $ "failed"))) (-6 -4422)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-722) . T) ((-746 |#1|) . T) ((-763) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-3540 (((-773)) 17)) (-3395 (($) 14)) (-2188 (((-922) $) 15)) (-3663 (((-1162) $) 10)) (-2563 (($ (-922)) 16)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) (((-370) (-140)) (T -370)) -((-3404 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772)))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-370)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-923)))) (-2119 (*1 *1) (-4 *1 (-370)))) -(-13 (-1102) (-10 -8 (-15 -3404 ((-772))) (-15 -2188 ($ (-923))) (-15 -2667 ((-923) $)) (-15 -2119 ($)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2706 (((-690 |#2|) (-1269 $)) 47)) (-3431 (($ (-1269 |#2|) (-1269 $)) 41)) (-3815 (((-690 |#2|) $ (-1269 $)) 49)) (-2254 ((|#2| (-1269 $)) 13)) (-3237 (((-1269 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) 27))) -(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -2706 ((-690 |#2|) (-1269 |#1|))) (-15 -2254 (|#2| (-1269 |#1|))) (-15 -3431 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3815 ((-690 |#2|) |#1| (-1269 |#1|)))) (-372 |#2| |#3|) (-172) (-1245 |#2|)) (T -371)) -NIL -(-10 -8 (-15 -2706 ((-690 |#2|) (-1269 |#1|))) (-15 -2254 (|#2| (-1269 |#1|))) (-15 -3431 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3815 ((-690 |#2|) |#1| (-1269 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2706 (((-690 |#1|) (-1269 $)) 53)) (-3132 ((|#1| $) 59)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-3431 (($ (-1269 |#1|) (-1269 $)) 55)) (-3815 (((-690 |#1|) $ (-1269 $)) 60)) (-1377 (((-3 $ "failed") $) 37)) (-1471 (((-923)) 61)) (-4384 (((-112) $) 35)) (-2013 ((|#1| $) 58)) (-3908 ((|#2| $) 51 (|has| |#1| (-365)))) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2254 ((|#1| (-1269 $)) 54)) (-3237 (((-1269 |#1|) $ (-1269 $)) 57) (((-690 |#1|) (-1269 $) (-1269 $)) 56)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-2318 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-4019 ((|#2| $) 52)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3540 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-773)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-370)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-922)))) (-3395 (*1 *1) (-4 *1 (-370)))) +(-13 (-1104) (-10 -8 (-15 -3540 ((-773))) (-15 -2563 ($ (-922))) (-15 -2188 ((-922) $)) (-15 -3395 ($)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-1957 (((-691 |#2|) (-1269 $)) 47)) (-1967 (($ (-1269 |#2|) (-1269 $)) 41)) (-1956 (((-691 |#2|) $ (-1269 $)) 49)) (-4189 ((|#2| (-1269 $)) 13)) (-3644 (((-1269 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) 27))) +(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -1957 ((-691 |#2|) (-1269 |#1|))) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1956 ((-691 |#2|) |#1| (-1269 |#1|)))) (-372 |#2| |#3|) (-172) (-1245 |#2|)) (T -371)) +NIL +(-10 -8 (-15 -1957 ((-691 |#2|) (-1269 |#1|))) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1956 ((-691 |#2|) |#1| (-1269 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1957 (((-691 |#1|) (-1269 $)) 53)) (-3754 ((|#1| $) 59)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-1967 (($ (-1269 |#1|) (-1269 $)) 55)) (-1956 (((-691 |#1|) $ (-1269 $)) 60)) (-3890 (((-3 $ "failed") $) 37)) (-3513 (((-922)) 61)) (-2573 (((-112) $) 35)) (-3536 ((|#1| $) 58)) (-2192 ((|#2| $) 51 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4189 ((|#1| (-1269 $)) 54)) (-3644 (((-1269 |#1|) $ (-1269 $)) 57) (((-691 |#1|) (-1269 $) (-1269 $)) 56)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44)) (-3105 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2770 ((|#2| $) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-372 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -372)) -((-1471 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-923)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-3237 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *4)))) (-3237 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) (-3431 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1245 *4)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1245 *2)) (-4 *2 (-172)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) (-4019 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1245 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -1471 ((-923))) (-15 -3815 ((-690 |t#1|) $ (-1269 $))) (-15 -3132 (|t#1| $)) (-15 -2013 (|t#1| $)) (-15 -3237 ((-1269 |t#1|) $ (-1269 $))) (-15 -3237 ((-690 |t#1|) (-1269 $) (-1269 $))) (-15 -3431 ($ (-1269 |t#1|) (-1269 $))) (-15 -2254 (|t#1| (-1269 $))) (-15 -2706 ((-690 |t#1|) (-1269 $))) (-15 -4019 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -3908 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-4309 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2617 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4364 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2617 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4309 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1219) (-375 |#1|) (-1219) (-375 |#3|)) (T -373)) -((-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))) -(-10 -7 (-15 -4364 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2617 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4309 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2051 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2767 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2080 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3247 (($ $) 25)) (-3932 (((-567) (-1 (-112) |#2|) $) NIL) (((-567) |#2| $) 11) (((-567) |#2| $ (-567)) NIL)) (-1315 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-374 |#1| |#2|) (-10 -8 (-15 -2767 (|#1| |#1|)) (-15 -2767 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2051 ((-112) |#1|)) (-15 -2080 (|#1| |#1|)) (-15 -1315 (|#1| |#1| |#1|)) (-15 -3932 ((-567) |#2| |#1| (-567))) (-15 -3932 ((-567) |#2| |#1|)) (-15 -3932 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2051 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2080 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3247 (|#1| |#1|)) (-15 -1315 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1219)) (T -374)) -NIL -(-10 -8 (-15 -2767 (|#1| |#1|)) (-15 -2767 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2051 ((-112) |#1|)) (-15 -2080 (|#1| |#1|)) (-15 -1315 (|#1| |#1| |#1|)) (-15 -3932 ((-567) |#2| |#1| (-567))) (-15 -3932 ((-567) |#2| |#1|)) (-15 -3932 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2051 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2080 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3247 (|#1| |#1|)) (-15 -1315 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3790 (($ $) 91 (|has| $ (-6 -4423)))) (-3247 (($ $) 101)) (-3470 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 52)) (-3932 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4223 (($ (-772) |#1|) 70)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-2727 (($ $ $) 88 (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-1446 (($ $ $) 87 (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 43 (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2930 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-4281 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3161 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 71)) (-3644 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3006 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-375 |#1|) (-140) (-1219)) (T -375)) -((-1315 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) (-3247 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)))) (-2080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) (-2051 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-3932 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1219)) (-5 *2 (-567)))) (-3932 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-567)))) (-3932 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)))) (-1315 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))) (-2080 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-851)) (-5 *2 (-112)))) (-3161 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4423)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) (-3790 (*1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-375 *2)) (-4 *2 (-1219)))) (-2767 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4423)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) (-2767 (*1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851))))) -(-13 (-652 |t#1|) (-10 -8 (-6 -4422) (-15 -1315 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3247 ($ $)) (-15 -2080 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2051 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3932 ((-567) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -3932 ((-567) |t#1| $)) (-15 -3932 ((-567) |t#1| $ (-567)))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-6 (-851)) (-15 -1315 ($ $ $)) (-15 -2080 ($ $)) (-15 -2051 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4423)) (PROGN (-15 -3161 ($ $ $ (-567))) (-15 -3790 ($ $)) (-15 -2767 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-15 -2767 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1219) . T)) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3055 (((-645 |#1|) $) 37)) (-2003 (($ $ (-772)) 38)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-3917 (((-1293 |#1| |#2|) (-1293 |#1| |#2|) $) 41)) (-2247 (($ $) 39)) (-4040 (((-1293 |#1| |#2|) (-1293 |#1| |#2|) $) 42)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2913 (($ $ |#1| $) 36) (($ $ (-645 |#1|) (-645 $)) 35)) (-3380 (((-772) $) 43)) (-2516 (($ $ $) 34)) (-2504 (((-863) $) 12) (($ |#1|) 46) (((-1284 |#1| |#2|) $) 45) (((-1293 |#1| |#2|) $) 44)) (-1344 ((|#2| (-1293 |#1| |#2|) $) 47)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2832 (($ (-673 |#1|)) 40)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-376 |#1| |#2|) (-140) (-851) (-172)) (T -376)) -((-1344 (*1 *2 *3 *1) (-12 (-5 *3 (-1293 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) (-4 *2 (-172)))) (-2504 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2504 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1284 *3 *4)))) (-2504 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1293 *3 *4)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-772)))) (-4040 (*1 *2 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3917 (*1 *2 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-2247 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2003 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-645 *3)))) (-2913 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-851)) (-4 *5 (-172))))) -(-13 (-635 |t#2|) (-10 -8 (-15 -1344 (|t#2| (-1293 |t#1| |t#2|) $)) (-15 -2504 ($ |t#1|)) (-15 -2504 ((-1284 |t#1| |t#2|) $)) (-15 -2504 ((-1293 |t#1| |t#2|) $)) (-15 -3380 ((-772) $)) (-15 -4040 ((-1293 |t#1| |t#2|) (-1293 |t#1| |t#2|) $)) (-15 -3917 ((-1293 |t#1| |t#2|) (-1293 |t#1| |t#2|) $)) (-15 -2832 ($ (-673 |t#1|))) (-15 -2247 ($ $)) (-15 -2003 ($ $ (-772))) (-15 -3055 ((-645 |t#1|) $)) (-15 -2913 ($ $ |t#1| $)) (-15 -2913 ($ $ (-645 |t#1|) (-645 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-649 |#2|) . T) ((-635 |#2|) . T) ((-641 |#2|) . T) ((-718 |#2|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1102) . T)) -((-3606 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-2262 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3736 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) -(((-377 |#1| |#2|) (-10 -7 (-15 -2262 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3736 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3606 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1219) (-13 (-375 |#1|) (-10 -7 (-6 -4423)))) (T -377)) -((-3606 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))))) (-3736 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))))) (-2262 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423))))))) -(-10 -7 (-15 -2262 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3736 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3606 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2690 (((-690 |#2|) (-690 $)) NIL) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 22) (((-690 (-567)) (-690 $)) 14))) -(((-378 |#1| |#2|) (-10 -8 (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 |#2|) (-690 |#1|)))) (-379 |#2|) (-1051)) (T -378)) -NIL -(-10 -8 (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 |#2|) (-690 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-2690 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 39) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 47 (|has| |#1| (-640 (-567)))) (((-690 (-567)) (-690 $)) 46 (|has| |#1| (-640 (-567))))) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-379 |#1|) (-140) (-1051)) (T -379)) -NIL -(-13 (-640 |t#1|) (-10 -7 (IF (|has| |t#1| (-640 (-567))) (-6 (-640 (-567))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2561 (((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|) 51) (((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|) 50) (((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|) 47) (((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|) 41)) (-2380 (((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1179)) |#1|) 30) (((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|) 18))) -(((-380 |#1|) (-10 -7 (-15 -2561 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2561 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|)) (-15 -2561 ((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2561 ((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2380 ((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2380 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1179)) |#1|))) (-13 (-365) (-849))) (T -380)) -((-2380 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) (-5 *4 (-645 (-1179))) (-5 *2 (-645 (-645 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 (-169 (-567)))))) (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 (-169 (-567))))))) (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -2561 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2561 ((-645 (-645 (-295 (-954 (-169 |#1|))))) (-645 (-295 (-410 (-954 (-169 (-567)))))) |#1|)) (-15 -2561 ((-645 (-295 (-954 (-169 |#1|)))) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2561 ((-645 (-295 (-954 (-169 |#1|)))) (-295 (-410 (-954 (-169 (-567))))) |#1|)) (-15 -2380 ((-645 (-169 |#1|)) (-410 (-954 (-169 (-567)))) |#1|)) (-15 -2380 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-954 (-169 (-567))))) (-645 (-1179)) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 35)) (-4199 (((-567) $) 62)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-3413 (($ $) 144)) (-1406 (($ $) 107)) (-2545 (($ $) 94)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-3671 (($ $) 47)) (-4175 (((-112) $ $) NIL)) (-1380 (($ $) 105)) (-2524 (($ $) 88)) (-2777 (((-567) $) 81)) (-3075 (($ $ (-567)) 76)) (-1431 (($ $) NIL)) (-2565 (($ $) NIL)) (-3758 (($) NIL T CONST)) (-3517 (($ $) 146)) (-4275 (((-3 (-567) "failed") $) 242) (((-3 (-410 (-567)) "failed") $) 238)) (-3094 (((-567) $) 240) (((-410 (-567)) $) 236)) (-2432 (($ $ $) NIL)) (-2225 (((-567) $ $) 133)) (-1377 (((-3 $ "failed") $) 149)) (-3223 (((-410 (-567)) $ (-772)) 243) (((-410 (-567)) $ (-772) (-772)) 235)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3832 (((-923)) 96) (((-923) (-923)) 129 (|has| $ (-6 -4413)))) (-3635 (((-112) $) 138)) (-4329 (($) 41)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-2043 (((-1274) (-772)) 201)) (-1901 (((-1274)) 206) (((-1274) (-772)) 207)) (-2224 (((-1274)) 208) (((-1274) (-772)) 209)) (-1349 (((-1274)) 204) (((-1274) (-772)) 205)) (-3905 (((-567) $) 69)) (-4384 (((-112) $) 40)) (-4203 (($ $ (-567)) NIL)) (-1488 (($ $) 51)) (-2013 (($ $) NIL)) (-2585 (((-112) $) 37)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL) (($) NIL (-12 (-1736 (|has| $ (-6 -4405))) (-1736 (|has| $ (-6 -4413)))))) (-1446 (($ $ $) NIL) (($) 130 (-12 (-1736 (|has| $ (-6 -4405))) (-1736 (|has| $ (-6 -4413)))))) (-3036 (((-567) $) 17)) (-4126 (($) 115) (($ $) 121)) (-1329 (($) 120) (($ $) 122)) (-2734 (($ $) 110)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 151)) (-3912 (((-923) (-567)) 46 (|has| $ (-6 -4413)))) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) 60)) (-1952 (($ $) 143)) (-2627 (($ (-567) (-567)) 139) (($ (-567) (-567) (-923)) 140)) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2618 (((-567) $) 19)) (-2614 (($) 123)) (-4272 (($ $) 104)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2872 (((-923)) 131) (((-923) (-923)) 132 (|has| $ (-6 -4413)))) (-3592 (($ $ (-772)) NIL) (($ $) 150)) (-1339 (((-923) (-567)) 50 (|has| $ (-6 -4413)))) (-1443 (($ $) NIL)) (-2576 (($ $) NIL)) (-1418 (($ $) NIL)) (-2555 (($ $) NIL)) (-1394 (($ $) 106)) (-2533 (($ $) 93)) (-1322 (((-381) $) 229) (((-225) $) 230) (((-894 (-381)) $) NIL) (((-1161) $) 212) (((-539) $) 227) (($ (-225)) 234)) (-2504 (((-863) $) 216) (($ (-567)) 239) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 239) (($ (-410 (-567))) NIL) (((-225) $) 231)) (-2214 (((-772)) NIL T CONST)) (-3471 (($ $) 145)) (-3570 (((-923)) 61) (((-923) (-923)) 83 (|has| $ (-6 -4413)))) (-3858 (((-112) $ $) NIL)) (-3140 (((-923)) 134)) (-1481 (($ $) 113)) (-2610 (($ $) 49) (($ $ $) 59)) (-3269 (((-112) $ $) NIL)) (-1456 (($ $) 111)) (-2588 (($ $) 39)) (-1505 (($ $) NIL)) (-2632 (($ $) NIL)) (-2090 (($ $) NIL)) (-1367 (($ $) NIL)) (-1492 (($ $) NIL)) (-2621 (($ $) NIL)) (-1468 (($ $) 112)) (-2599 (($ $) 52)) (-1368 (($ $) 58)) (-1807 (($) 36 T CONST)) (-1820 (($) 43 T CONST)) (-2166 (((-1161) $) 27) (((-1161) $ (-112)) 29) (((-1274) (-823) $) 30) (((-1274) (-823) $ (-112)) 31)) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-3016 (((-112) $ $) 213)) (-2996 (((-112) $ $) 45)) (-2968 (((-112) $ $) 56)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 57)) (-3064 (($ $ $) 48) (($ $ (-567)) 42)) (-3054 (($ $) 38) (($ $ $) 53)) (-3045 (($ $ $) 75)) (** (($ $ (-923)) 86) (($ $ (-772)) NIL) (($ $ (-567)) 116) (($ $ (-410 (-567))) 162) (($ $ $) 153)) (* (($ (-923) $) 82) (($ (-772) $) NIL) (($ (-567) $) 87) (($ $ $) 74) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-381) (-13 (-407) (-233) (-615 (-1161)) (-829) (-614 (-225)) (-1204) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3064 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -1488 ($ $)) (-15 -2225 ((-567) $ $)) (-15 -3075 ($ $ (-567))) (-15 -3223 ((-410 (-567)) $ (-772))) (-15 -3223 ((-410 (-567)) $ (-772) (-772))) (-15 -4126 ($)) (-15 -1329 ($)) (-15 -2614 ($)) (-15 -2610 ($ $ $)) (-15 -4126 ($ $)) (-15 -1329 ($ $)) (-15 -2224 ((-1274))) (-15 -2224 ((-1274) (-772))) (-15 -1349 ((-1274))) (-15 -1349 ((-1274) (-772))) (-15 -1901 ((-1274))) (-15 -1901 ((-1274) (-772))) (-15 -2043 ((-1274) (-772))) (-6 -4413) (-6 -4405)))) (T -381)) -((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3064 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-1488 (*1 *1 *1) (-5 *1 (-381))) (-2225 (*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-3223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-4126 (*1 *1) (-5 *1 (-381))) (-1329 (*1 *1) (-5 *1 (-381))) (-2614 (*1 *1) (-5 *1 (-381))) (-2610 (*1 *1 *1 *1) (-5 *1 (-381))) (-4126 (*1 *1 *1) (-5 *1 (-381))) (-1329 (*1 *1 *1) (-5 *1 (-381))) (-2224 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))) (-2224 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) (-1349 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) (-1901 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381))))) -(-13 (-407) (-233) (-615 (-1161)) (-829) (-614 (-225)) (-1204) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3064 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -1488 ($ $)) (-15 -2225 ((-567) $ $)) (-15 -3075 ($ $ (-567))) (-15 -3223 ((-410 (-567)) $ (-772))) (-15 -3223 ((-410 (-567)) $ (-772) (-772))) (-15 -4126 ($)) (-15 -1329 ($)) (-15 -2614 ($)) (-15 -2610 ($ $ $)) (-15 -4126 ($ $)) (-15 -1329 ($ $)) (-15 -2224 ((-1274))) (-15 -2224 ((-1274) (-772))) (-15 -1349 ((-1274))) (-15 -1349 ((-1274) (-772))) (-15 -1901 ((-1274))) (-15 -1901 ((-1274) (-772))) (-15 -2043 ((-1274) (-772))) (-6 -4413) (-6 -4405))) -((-2510 (((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|) 46) (((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|) 45) (((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|) 42) (((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|) 36)) (-2679 (((-645 |#1|) (-410 (-954 (-567))) |#1|) 20) (((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1179)) |#1|) 30))) -(((-382 |#1|) (-10 -7 (-15 -2510 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|)) (-15 -2510 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|)) (-15 -2510 ((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|)) (-15 -2510 ((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|)) (-15 -2679 ((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1179)) |#1|)) (-15 -2679 ((-645 |#1|) (-410 (-954 (-567))) |#1|))) (-13 (-849) (-365))) (T -382)) -((-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2679 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *4 (-645 (-1179))) (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-849) (-365))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 (-567))))) (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 (-567)))))) (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365)))))) -(-10 -7 (-15 -2510 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-410 (-954 (-567)))) |#1|)) (-15 -2510 ((-645 (-645 (-295 (-954 |#1|)))) (-645 (-295 (-410 (-954 (-567))))) |#1|)) (-15 -2510 ((-645 (-295 (-954 |#1|))) (-410 (-954 (-567))) |#1|)) (-15 -2510 ((-645 (-295 (-954 |#1|))) (-295 (-410 (-954 (-567)))) |#1|)) (-15 -2679 ((-645 (-645 |#1|)) (-645 (-410 (-954 (-567)))) (-645 (-1179)) |#1|)) (-15 -2679 ((-645 |#1|) (-410 (-954 (-567))) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) 30)) (-3094 ((|#2| $) 32)) (-1833 (($ $) NIL)) (-1921 (((-772) $) 11)) (-2615 (((-645 $) $) 23)) (-3615 (((-112) $) NIL)) (-3245 (($ |#2| |#1|) 21)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3622 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1796 ((|#2| $) 18)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 51) (($ |#2|) 31)) (-1516 (((-645 |#1|) $) 20)) (-4038 ((|#1| $ |#2|) 55)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 33 T CONST)) (-1848 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1051) (-851)) (T -383)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851))))) -(-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#2| "failed") $) 49)) (-3094 ((|#2| $) 50)) (-1833 (($ $) 35)) (-1921 (((-772) $) 39)) (-2615 (((-645 $) $) 40)) (-3615 (((-112) $) 43)) (-3245 (($ |#2| |#1|) 44)) (-4364 (($ (-1 |#1| |#1|) $) 45)) (-3622 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1796 ((|#2| $) 38)) (-1809 ((|#1| $) 37)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ |#2|) 48)) (-1516 (((-645 |#1|) $) 41)) (-4038 ((|#1| $ |#2|) 46)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1848 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-384 |#1| |#2|) (-140) (-1051) (-1102)) (T -384)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))) (-4038 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)))) (-3245 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-112)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) (-2615 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-384 *3 *4)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-772)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1833 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102))))) -(-13 (-111 |t#1| |t#1|) (-1040 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4038 (|t#1| $ |t#2|)) (-15 -4364 ($ (-1 |t#1| |t#1|) $)) (-15 -3245 ($ |t#2| |t#1|)) (-15 -3615 ((-112) $)) (-15 -1848 ((-645 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1516 ((-645 |t#1|) $)) (-15 -2615 ((-645 $) $)) (-15 -1921 ((-772) $)) (-15 -1796 (|t#2| $)) (-15 -1809 (|t#1| $)) (-15 -3622 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1833 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-718 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-1040 |#2|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) -((-2229 (((-1274) $) 7)) (-2504 (((-863) $) 8) (($ (-690 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 11))) +((-3513 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-922)))) (-1956 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-3644 (*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *4)))) (-3644 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1245 *4)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1245 *2)) (-4 *2 (-172)))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) (-2770 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1245 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3513 ((-922))) (-15 -1956 ((-691 |t#1|) $ (-1269 $))) (-15 -3754 (|t#1| $)) (-15 -3536 (|t#1| $)) (-15 -3644 ((-1269 |t#1|) $ (-1269 $))) (-15 -3644 ((-691 |t#1|) (-1269 $) (-1269 $))) (-15 -1967 ($ (-1269 |t#1|) (-1269 $))) (-15 -4189 (|t#1| (-1269 $))) (-15 -1957 ((-691 |t#1|) (-1269 $))) (-15 -2770 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -2192 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-1900 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1898 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3310 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2443 (($ $) 25)) (-3843 (((-549) (-1 (-112) |#2|) $) NIL) (((-549) |#2| $) 11) (((-549) |#2| $ (-549)) NIL)) (-3941 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-373 |#1| |#2|) (-10 -8 (-15 -1898 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1900 ((-112) |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-374 |#2|) (-1219)) (T -373)) +NIL +(-10 -8 (-15 -1898 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1900 ((-112) |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -3941 (|#1| |#1| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-3843 (((-549) (-1 (-112) |#1|) $) 98) (((-549) |#1| $) 97 (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) 96 (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 84 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 86 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 83 (|has| |#1| (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-374 |#1|) (-140) (-1219)) (T -374)) +((-3941 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) (-2443 (*1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) (-1900 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-374 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-3843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-374 *4)) (-4 *4 (-1219)) (-5 *2 (-549)))) (-3843 (*1 *2 *3 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-549)))) (-3843 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-852)) (-5 *2 (-112)))) (-1899 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (|has| *1 (-6 -4426)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) (-2442 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-374 *2)) (-4 *2 (-1219)))) (-1898 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) (-1898 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852))))) +(-13 (-653 |t#1|) (-10 -8 (-6 -4425) (-15 -3941 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2443 ($ $)) (-15 -3310 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1900 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3843 ((-549) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -3843 ((-549) |t#1| $)) (-15 -3843 ((-549) |t#1| $ (-549)))) |%noBranch|) (IF (|has| |t#1| (-852)) (PROGN (-6 (-852)) (-15 -3941 ($ $ $)) (-15 -3310 ($ $)) (-15 -1900 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -1899 ($ $ $ (-549))) (-15 -2442 ($ $)) (-15 -1898 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-852)) (-15 -1898 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1219) . T)) +((-4273 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-4274 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4390 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-375 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4274 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1219) (-374 |#1|) (-1219) (-374 |#3|)) (T -375)) +((-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-4 *2 (-374 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-374 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-374 *5)) (-4 *6 (-374 *2)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *2 (-374 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-374 *5))))) +(-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4274 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4366 (((-643 |#1|) $) 37)) (-4379 (($ $ (-773)) 38)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4371 (((-1294 |#1| |#2|) (-1294 |#1| |#2|) $) 41)) (-4368 (($ $) 39)) (-4372 (((-1294 |#1| |#2|) (-1294 |#1| |#2|) $) 42)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4199 (($ $ |#1| $) 36) (($ $ (-643 |#1|) (-643 $)) 35)) (-4380 (((-773) $) 43)) (-3953 (($ $ $) 34)) (-4378 (((-865) $) 12) (($ |#1|) 46) (((-1285 |#1| |#2|) $) 45) (((-1294 |#1| |#2|) $) 44)) (-4386 ((|#2| (-1294 |#1| |#2|) $) 47)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-1901 (($ (-674 |#1|)) 40)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-376 |#1| |#2|) (-140) (-852) (-172)) (T -376)) +((-4386 (*1 *2 *3 *1) (-12 (-5 *3 (-1294 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-852)) (-4 *2 (-172)))) (-4378 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-1285 *3 *4)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-1294 *3 *4)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-773)))) (-4372 (*1 *2 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4371 (*1 *2 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-1901 (*1 *1 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-4368 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) (-4379 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-643 *3)))) (-4199 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-852)) (-4 *5 (-172))))) +(-13 (-637 |t#2|) (-10 -8 (-15 -4386 (|t#2| (-1294 |t#1| |t#2|) $)) (-15 -4378 ($ |t#1|)) (-15 -4378 ((-1285 |t#1| |t#2|) $)) (-15 -4378 ((-1294 |t#1| |t#2|) $)) (-15 -4380 ((-773) $)) (-15 -4372 ((-1294 |t#1| |t#2|) (-1294 |t#1| |t#2|) $)) (-15 -4371 ((-1294 |t#1| |t#2|) (-1294 |t#1| |t#2|) $)) (-15 -1901 ($ (-674 |t#1|))) (-15 -4368 ($ $)) (-15 -4379 ($ $ (-773))) (-15 -4366 ((-643 |t#1|) $)) (-15 -4199 ($ $ |t#1| $)) (-15 -4199 ($ $ (-643 |t#1|) (-643 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#2|) . T) ((-650 |#2|) . T) ((-637 |#2|) . T) ((-642 |#2|) . T) ((-719 |#2|) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1104) . T)) +((-1904 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-1902 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1903 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) +(((-377 |#1| |#2|) (-10 -7 (-15 -1902 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1903 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1904 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1219) (-13 (-374 |#1|) (-10 -7 (-6 -4426)))) (T -377)) +((-1904 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426)))))) (-1903 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426)))))) (-1902 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426))))))) +(-10 -7 (-15 -1902 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1903 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1904 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2427 (((-691 |#2|) (-691 $)) NIL) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 22) (((-691 (-549)) (-691 $)) 14))) +(((-378 |#1| |#2|) (-10 -8 (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 |#2|) (-691 |#1|)))) (-379 |#2|) (-1052)) (T -378)) +NIL +(-10 -8 (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 |#2|) (-691 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2427 (((-691 |#1|) (-691 $)) 40) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 39) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 47 (|has| |#1| (-641 (-549)))) (((-691 (-549)) (-691 $)) 46 (|has| |#1| (-641 (-549))))) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-379 |#1|) (-140) (-1052)) (T -379)) +NIL +(-13 (-641 |t#1|) (-10 -7 (IF (|has| |t#1| (-641 (-549))) (-6 (-641 (-549))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 35)) (-3533 (((-549) $) 62)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4202 (($ $) 142)) (-3915 (($ $) 105)) (-4071 (($ $) 93)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) 47)) (-1753 (((-112) $ $) NIL)) (-3913 (($ $) 103)) (-4070 (($ $) 87)) (-4055 (((-549) $) 80)) (-2762 (($ $ (-549)) 75)) (-3917 (($ $) NIL)) (-4069 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3531 (($ $) 144)) (-3577 (((-3 (-549) #1="failed") $) 239) (((-3 (-410 (-549)) #1#) $) 235)) (-3576 (((-549) $) 237) (((-410 (-549)) $) 233)) (-2964 (($ $ $) NIL)) (-1913 (((-549) $ $) 131)) (-3890 (((-3 $ "failed") $) 147)) (-1912 (((-410 (-549)) $ (-773)) 240) (((-410 (-549)) $ (-773) (-773)) 232)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2537 (((-922)) 127) (((-922) (-922)) 128 (|has| $ (-6 -4416)))) (-3606 (((-112) $) 136)) (-4059 (($) 41)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL)) (-1905 (((-1275) (-773)) 199)) (-1906 (((-1275)) 204) (((-1275) (-773)) 205)) (-1908 (((-1275)) 206) (((-1275) (-773)) 207)) (-1907 (((-1275)) 202) (((-1275) (-773)) 203)) (-4203 (((-549) $) 68)) (-2573 (((-112) $) 40)) (-3412 (($ $ (-549)) NIL)) (-2764 (($ $) 51)) (-3536 (($ $) NIL)) (-3607 (((-112) $) 37)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL) (($) NIL (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-3260 (($ $ $) NIL) (($) NIL (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-2538 (((-549) $) 17)) (-1911 (($) 113) (($ $) 119)) (-1910 (($) 118) (($ $) 120)) (-4374 (($ $) 108)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 149)) (-1944 (((-922) (-549)) 46 (|has| $ (-6 -4416)))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) 60)) (-3534 (($ $) 141)) (-3675 (($ (-549) (-549)) 137) (($ (-549) (-549) (-922)) 138)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2564 (((-549) $) 19)) (-1909 (($) 121)) (-4375 (($ $) 102)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3015 (((-922)) 129) (((-922) (-922)) 130 (|has| $ (-6 -4416)))) (-4242 (($ $ (-773)) NIL) (($ $) 148)) (-1943 (((-922) (-549)) 50 (|has| $ (-6 -4416)))) (-3918 (($ $) NIL)) (-4068 (($ $) NIL)) (-3916 (($ $) NIL)) (-4067 (($ $) NIL)) (-3914 (($ $) 104)) (-4066 (($ $) 92)) (-4402 (((-380) $) 224) (((-225) $) 226) (((-893 (-380)) $) NIL) (((-1162) $) 210) (((-538) $) 222) (($ (-225)) 231)) (-4378 (((-865) $) 214) (($ (-549)) 236) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-549)) 236) (($ (-410 (-549))) NIL) (((-225) $) 227)) (-3530 (((-773)) NIL T CONST)) (-3535 (($ $) 143)) (-1945 (((-922)) 61) (((-922) (-922)) 82 (|has| $ (-6 -4416)))) (-3662 (((-112) $ $) NIL)) (-3097 (((-922)) 132)) (-3921 (($ $) 111)) (-3909 (($ $) 49) (($ $ $) 59)) (-2240 (((-112) $ $) NIL)) (-3919 (($ $) 109)) (-3907 (($ $) 39)) (-3923 (($ $) NIL)) (-3911 (($ $) NIL)) (-3924 (($ $) NIL)) (-3912 (($ $) NIL)) (-3922 (($ $) NIL)) (-3910 (($ $) NIL)) (-3920 (($ $) 110)) (-3908 (($ $) 52)) (-3807 (($ $) 58)) (-3510 (($) 36 T CONST)) (-3067 (($) 43 T CONST)) (-2900 (((-1162) $) 27) (((-1162) $ (-112)) 29) (((-1275) (-825) $) 30) (((-1275) (-825) $ (-112)) 31)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-2966 (((-112) $ $) 211)) (-2967 (((-112) $ $) 45)) (-3455 (((-112) $ $) 56)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 57)) (-4381 (($ $ $) 48) (($ $ (-549)) 42)) (-4269 (($ $) 38) (($ $ $) 53)) (-4271 (($ $ $) 74)) (** (($ $ (-922)) 85) (($ $ (-773)) NIL) (($ $ (-549)) 114) (($ $ (-410 (-549))) 160) (($ $ $) 151)) (* (($ (-922) $) 81) (($ (-773) $) NIL) (($ (-549) $) 86) (($ $ $) 73) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) +(((-380) (-13 (-407) (-233) (-616 (-1162)) (-823) (-615 (-225)) (-1205) (-616 (-538)) (-620 (-225)) (-10 -8 (-15 -4381 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -2764 ($ $)) (-15 -1913 ((-549) $ $)) (-15 -2762 ($ $ (-549))) (-15 -1912 ((-410 (-549)) $ (-773))) (-15 -1912 ((-410 (-549)) $ (-773) (-773))) (-15 -1911 ($)) (-15 -1910 ($)) (-15 -1909 ($)) (-15 -3909 ($ $ $)) (-15 -1911 ($ $)) (-15 -1910 ($ $)) (-15 -1908 ((-1275))) (-15 -1908 ((-1275) (-773))) (-15 -1907 ((-1275))) (-15 -1907 ((-1275) (-773))) (-15 -1906 ((-1275))) (-15 -1906 ((-1275) (-773))) (-15 -1905 ((-1275) (-773))) (-6 -4416) (-6 -4408)))) (T -380)) +((** (*1 *1 *1 *1) (-5 *1 (-380))) (-4381 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) (-2764 (*1 *1 *1) (-5 *1 (-380))) (-1913 (*1 *2 *1 *1) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) (-2762 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) (-1912 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-380)))) (-1912 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-380)))) (-1911 (*1 *1) (-5 *1 (-380))) (-1910 (*1 *1) (-5 *1 (-380))) (-1909 (*1 *1) (-5 *1 (-380))) (-3909 (*1 *1 *1 *1) (-5 *1 (-380))) (-1911 (*1 *1 *1) (-5 *1 (-380))) (-1910 (*1 *1 *1) (-5 *1 (-380))) (-1908 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) (-1907 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) (-1906 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380))))) +(-13 (-407) (-233) (-616 (-1162)) (-823) (-615 (-225)) (-1205) (-616 (-538)) (-620 (-225)) (-10 -8 (-15 -4381 ($ $ (-549))) (-15 ** ($ $ $)) (-15 -2764 ($ $)) (-15 -1913 ((-549) $ $)) (-15 -2762 ($ $ (-549))) (-15 -1912 ((-410 (-549)) $ (-773))) (-15 -1912 ((-410 (-549)) $ (-773) (-773))) (-15 -1911 ($)) (-15 -1910 ($)) (-15 -1909 ($)) (-15 -3909 ($ $ $)) (-15 -1911 ($ $)) (-15 -1910 ($ $)) (-15 -1908 ((-1275))) (-15 -1908 ((-1275) (-773))) (-15 -1907 ((-1275))) (-15 -1907 ((-1275) (-773))) (-15 -1906 ((-1275))) (-15 -1906 ((-1275) (-773))) (-15 -1905 ((-1275) (-773))) (-6 -4416) (-6 -4408))) +((-1914 (((-643 (-294 (-949 (-168 |#1|)))) (-294 (-410 (-949 (-168 (-549))))) |#1|) 51) (((-643 (-294 (-949 (-168 |#1|)))) (-410 (-949 (-168 (-549)))) |#1|) 50) (((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-294 (-410 (-949 (-168 (-549)))))) |#1|) 47) (((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-410 (-949 (-168 (-549))))) |#1|) 41)) (-1915 (((-643 (-643 (-168 |#1|))) (-643 (-410 (-949 (-168 (-549))))) (-643 (-1180)) |#1|) 30) (((-643 (-168 |#1|)) (-410 (-949 (-168 (-549)))) |#1|) 18))) +(((-381 |#1|) (-10 -7 (-15 -1914 ((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-410 (-949 (-168 (-549))))) |#1|)) (-15 -1914 ((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-294 (-410 (-949 (-168 (-549)))))) |#1|)) (-15 -1914 ((-643 (-294 (-949 (-168 |#1|)))) (-410 (-949 (-168 (-549)))) |#1|)) (-15 -1914 ((-643 (-294 (-949 (-168 |#1|)))) (-294 (-410 (-949 (-168 (-549))))) |#1|)) (-15 -1915 ((-643 (-168 |#1|)) (-410 (-949 (-168 (-549)))) |#1|)) (-15 -1915 ((-643 (-643 (-168 |#1|))) (-643 (-410 (-949 (-168 (-549))))) (-643 (-1180)) |#1|))) (-13 (-365) (-850))) (T -381)) +((-1915 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-410 (-949 (-168 (-549)))))) (-5 *4 (-643 (-1180))) (-5 *2 (-643 (-643 (-168 *5)))) (-5 *1 (-381 *5)) (-4 *5 (-13 (-365) (-850))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-168 (-549))))) (-5 *2 (-643 (-168 *4))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-410 (-949 (-168 (-549)))))) (-5 *2 (-643 (-294 (-949 (-168 *4))))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-168 (-549))))) (-5 *2 (-643 (-294 (-949 (-168 *4))))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-294 (-410 (-949 (-168 (-549))))))) (-5 *2 (-643 (-643 (-294 (-949 (-168 *4)))))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 (-168 (-549)))))) (-5 *2 (-643 (-643 (-294 (-949 (-168 *4)))))) (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850)))))) +(-10 -7 (-15 -1914 ((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-410 (-949 (-168 (-549))))) |#1|)) (-15 -1914 ((-643 (-643 (-294 (-949 (-168 |#1|))))) (-643 (-294 (-410 (-949 (-168 (-549)))))) |#1|)) (-15 -1914 ((-643 (-294 (-949 (-168 |#1|)))) (-410 (-949 (-168 (-549)))) |#1|)) (-15 -1914 ((-643 (-294 (-949 (-168 |#1|)))) (-294 (-410 (-949 (-168 (-549))))) |#1|)) (-15 -1915 ((-643 (-168 |#1|)) (-410 (-949 (-168 (-549)))) |#1|)) (-15 -1915 ((-643 (-643 (-168 |#1|))) (-643 (-410 (-949 (-168 (-549))))) (-643 (-1180)) |#1|))) +((-4004 (((-643 (-294 (-949 |#1|))) (-294 (-410 (-949 (-549)))) |#1|) 46) (((-643 (-294 (-949 |#1|))) (-410 (-949 (-549))) |#1|) 45) (((-643 (-643 (-294 (-949 |#1|)))) (-643 (-294 (-410 (-949 (-549))))) |#1|) 42) (((-643 (-643 (-294 (-949 |#1|)))) (-643 (-410 (-949 (-549)))) |#1|) 36)) (-1916 (((-643 |#1|) (-410 (-949 (-549))) |#1|) 20) (((-643 (-643 |#1|)) (-643 (-410 (-949 (-549)))) (-643 (-1180)) |#1|) 30))) +(((-382 |#1|) (-10 -7 (-15 -4004 ((-643 (-643 (-294 (-949 |#1|)))) (-643 (-410 (-949 (-549)))) |#1|)) (-15 -4004 ((-643 (-643 (-294 (-949 |#1|)))) (-643 (-294 (-410 (-949 (-549))))) |#1|)) (-15 -4004 ((-643 (-294 (-949 |#1|))) (-410 (-949 (-549))) |#1|)) (-15 -4004 ((-643 (-294 (-949 |#1|))) (-294 (-410 (-949 (-549)))) |#1|)) (-15 -1916 ((-643 (-643 |#1|)) (-643 (-410 (-949 (-549)))) (-643 (-1180)) |#1|)) (-15 -1916 ((-643 |#1|) (-410 (-949 (-549))) |#1|))) (-13 (-850) (-365))) (T -382)) +((-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-549)))) (-5 *2 (-643 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) (-1916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-410 (-949 (-549))))) (-5 *4 (-643 (-1180))) (-5 *2 (-643 (-643 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-850) (-365))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-410 (-949 (-549))))) (-5 *2 (-643 (-294 (-949 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-549)))) (-5 *2 (-643 (-294 (-949 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-294 (-410 (-949 (-549)))))) (-5 *2 (-643 (-643 (-294 (-949 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 (-549))))) (-5 *2 (-643 (-643 (-294 (-949 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365)))))) +(-10 -7 (-15 -4004 ((-643 (-643 (-294 (-949 |#1|)))) (-643 (-410 (-949 (-549)))) |#1|)) (-15 -4004 ((-643 (-643 (-294 (-949 |#1|)))) (-643 (-294 (-410 (-949 (-549))))) |#1|)) (-15 -4004 ((-643 (-294 (-949 |#1|))) (-410 (-949 (-549))) |#1|)) (-15 -4004 ((-643 (-294 (-949 |#1|))) (-294 (-410 (-949 (-549)))) |#1|)) (-15 -1916 ((-643 (-643 |#1|)) (-643 (-410 (-949 (-549)))) (-643 (-1180)) |#1|)) (-15 -1916 ((-643 |#1|) (-410 (-949 (-549))) |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 33)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 12 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-383 |#1| |#2|) (-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-719 |#1|)) |%noBranch|))) (-1052) (-852)) (T -383)) +NIL +(-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-719 |#1|)) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| "failed") $) 30)) (-3576 ((|#2| $) 32)) (-4391 (($ $) NIL)) (-2581 (((-773) $) 11)) (-3224 (((-643 $) $) 23)) (-4369 (((-112) $) NIL)) (-4370 (($ |#2| |#1|) 21)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1917 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-3295 ((|#2| $) 18)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 51) (($ |#2|) 31)) (-4249 (((-643 |#1|) $) 20)) (-4109 ((|#1| $ |#2|) 55)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 33 T CONST)) (-3066 (((-643 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-384 |#1| |#2|) (-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1052) (-852)) (T -384)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-384 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-852))))) +(-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-691 (-701))) 14) (($ (-643 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 11))) (((-385) (-140)) (T -385)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) (-4 *1 (-385))))) -(-13 (-398) (-10 -8 (-15 -2504 ($ (-690 (-700)))) (-15 -2504 ($ (-645 (-331)))) (-15 -2504 ($ (-331))) (-15 -2504 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331)))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1219) . T)) -((-4275 (((-3 $ "failed") (-690 (-317 (-381)))) 21) (((-3 $ "failed") (-690 (-317 (-567)))) 19) (((-3 $ "failed") (-690 (-954 (-381)))) 17) (((-3 $ "failed") (-690 (-954 (-567)))) 15) (((-3 $ "failed") (-690 (-410 (-954 (-381))))) 13) (((-3 $ "failed") (-690 (-410 (-954 (-567))))) 11)) (-3094 (($ (-690 (-317 (-381)))) 22) (($ (-690 (-317 (-567)))) 20) (($ (-690 (-954 (-381)))) 18) (($ (-690 (-954 (-567)))) 16) (($ (-690 (-410 (-954 (-381))))) 14) (($ (-690 (-410 (-954 (-567))))) 12)) (-2229 (((-1274) $) 7)) (-2504 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 23))) -(((-386) (-140)) (T -386)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) (-4 *1 (-386)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386))))) -(-13 (-398) (-10 -8 (-15 -2504 ($ (-645 (-331)))) (-15 -2504 ($ (-331))) (-15 -2504 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331)))))) (-15 -3094 ($ (-690 (-317 (-381))))) (-15 -4275 ((-3 $ "failed") (-690 (-317 (-381))))) (-15 -3094 ($ (-690 (-317 (-567))))) (-15 -4275 ((-3 $ "failed") (-690 (-317 (-567))))) (-15 -3094 ($ (-690 (-954 (-381))))) (-15 -4275 ((-3 $ "failed") (-690 (-954 (-381))))) (-15 -3094 ($ (-690 (-954 (-567))))) (-15 -4275 ((-3 $ "failed") (-690 (-954 (-567))))) (-15 -3094 ($ (-690 (-410 (-954 (-381)))))) (-15 -4275 ((-3 $ "failed") (-690 (-410 (-954 (-381)))))) (-15 -3094 ($ (-690 (-410 (-954 (-567)))))) (-15 -4275 ((-3 $ "failed") (-690 (-410 (-954 (-567)))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1219) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-3764 (($ |#1| |#2|) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-4164 ((|#2| $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 34)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 12 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-387 |#1| |#2|) (-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|))) (-1051) (-851)) (T -387)) -NIL -(-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|))) -((-2487 (((-112) $ $) 7)) (-3404 (((-772) $) 34)) (-3758 (($) 19 T CONST)) (-3917 (((-3 $ "failed") $ $) 37)) (-4275 (((-3 |#1| "failed") $) 45)) (-3094 ((|#1| $) 46)) (-1377 (((-3 $ "failed") $) 16)) (-4180 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-4384 (((-112) $) 18)) (-3102 ((|#1| $ (-567)) 31)) (-2889 (((-772) $ (-567)) 32)) (-2727 (($ $ $) 28 (|has| |#1| (-851)))) (-1446 (($ $ $) 27 (|has| |#1| (-851)))) (-3786 (($ (-1 |#1| |#1|) $) 29)) (-2430 (($ (-1 (-772) (-772)) $) 30)) (-4040 (((-3 $ "failed") $ $) 38)) (-1812 (((-1161) $) 10)) (-1940 (($ $ $) 39)) (-3867 (($ $ $) 40)) (-3479 (((-1122) $) 11)) (-1444 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 (-772)))) $) 33)) (-2401 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-2504 (((-863) $) 12) (($ |#1|) 44)) (-3858 (((-112) $ $) 9)) (-1820 (($) 20 T CONST)) (-3016 (((-112) $ $) 25 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 24 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 26 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 23 (|has| |#1| (-851)))) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ |#1| (-772)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) -(((-388 |#1|) (-140) (-1102)) (T -388)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-1940 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-4040 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-3917 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2401 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1102)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-4180 (*1 *2 *1 *1) (-12 (-4 *3 (-1102)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 (-772))))))) (-2889 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1102)) (-5 *2 (-772)))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) (-2430 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1102)))) (-3786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1102))))) -(-13 (-727) (-1040 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-772))) (-15 -3867 ($ $ $)) (-15 -1940 ($ $ $)) (-15 -4040 ((-3 $ "failed") $ $)) (-15 -3917 ((-3 $ "failed") $ $)) (-15 -2401 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4180 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3404 ((-772) $)) (-15 -1444 ((-645 (-2 (|:| |gen| |t#1|) (|:| -4272 (-772)))) $)) (-15 -2889 ((-772) $ (-567))) (-15 -3102 (|t#1| $ (-567))) (-15 -2430 ($ (-1 (-772) (-772)) $)) (-15 -3786 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|))) -(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1040 |#1|) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772) $) 74)) (-3758 (($) NIL T CONST)) (-3917 (((-3 $ "failed") $ $) 77)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-4180 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-4384 (((-112) $) 17)) (-3102 ((|#1| $ (-567)) NIL)) (-2889 (((-772) $ (-567)) NIL)) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-3786 (($ (-1 |#1| |#1|) $) 40)) (-2430 (($ (-1 (-772) (-772)) $) 37)) (-4040 (((-3 $ "failed") $ $) 60)) (-1812 (((-1161) $) NIL)) (-1940 (($ $ $) 28)) (-3867 (($ $ $) 26)) (-3479 (((-1122) $) NIL)) (-1444 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 (-772)))) $) 34)) (-2401 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2504 (((-863) $) 24) (($ |#1|) NIL)) (-3858 (((-112) $ $) NIL)) (-1820 (($) 11 T CONST)) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) 84 (|has| |#1| (-851)))) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-389 |#1|) (-388 |#1|) (-1102)) (T -389)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-691 (-701))) (-4 *1 (-385)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-385)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-385))))) +(-13 (-399) (-10 -8 (-15 -4378 ($ (-691 (-701)))) (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))))) +(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#2| "failed") $) 49)) (-3576 ((|#2| $) 50)) (-4391 (($ $) 35)) (-2581 (((-773) $) 39)) (-3224 (((-643 $) $) 40)) (-4369 (((-112) $) 43)) (-4370 (($ |#2| |#1|) 44)) (-4390 (($ (-1 |#1| |#1|) $) 45)) (-1917 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-3295 ((|#2| $) 38)) (-3594 ((|#1| $) 37)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ |#2|) 48)) (-4249 (((-643 |#1|) $) 41)) (-4109 ((|#1| $ |#2|) 46)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3066 (((-643 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-386 |#1| |#2|) (-140) (-1052) (-1104)) (T -386)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1104)))) (-4109 (*1 *2 *1 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1052)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)))) (-4370 (*1 *1 *2 *3) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1104)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-112)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 *3)))) (-3224 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-386 *3 *4)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-773)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1104)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1052)))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1104))))) +(-13 (-111 |t#1| |t#1|) (-1041 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4109 (|t#1| $ |t#2|)) (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (-15 -4370 ($ |t#2| |t#1|)) (-15 -4369 ((-112) $)) (-15 -3066 ((-643 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4249 ((-643 |t#1|) $)) (-15 -3224 ((-643 $) $)) (-15 -2581 ((-773) $)) (-15 -3295 (|t#2| $)) (-15 -3594 (|t#1| $)) (-15 -1917 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4391 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-719 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 |#2|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-1041 |#2|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) +((-3577 (((-3 $ "failed") (-691 (-315 (-380)))) 21) (((-3 $ "failed") (-691 (-315 (-549)))) 19) (((-3 $ "failed") (-691 (-949 (-380)))) 17) (((-3 $ "failed") (-691 (-949 (-549)))) 15) (((-3 $ "failed") (-691 (-410 (-949 (-380))))) 13) (((-3 $ "failed") (-691 (-410 (-949 (-549))))) 11)) (-3576 (($ (-691 (-315 (-380)))) 22) (($ (-691 (-315 (-549)))) 20) (($ (-691 (-949 (-380)))) 18) (($ (-691 (-949 (-549)))) 16) (($ (-691 (-410 (-949 (-380))))) 14) (($ (-691 (-410 (-949 (-549))))) 12)) (-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-643 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 23))) +(((-387) (-140)) (T -387)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-387)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-387)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-315 (-380)))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-315 (-380)))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-315 (-549)))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-315 (-549)))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-949 (-380)))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-949 (-380)))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-949 (-549)))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-949 (-549)))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-410 (-949 (-380))))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-410 (-949 (-380))))) (-4 *1 (-387)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-691 (-410 (-949 (-549))))) (-4 *1 (-387)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-410 (-949 (-549))))) (-4 *1 (-387))))) +(-13 (-399) (-10 -8 (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -3576 ($ (-691 (-315 (-380))))) (-15 -3577 ((-3 $ "failed") (-691 (-315 (-380))))) (-15 -3576 ($ (-691 (-315 (-549))))) (-15 -3577 ((-3 $ "failed") (-691 (-315 (-549))))) (-15 -3576 ($ (-691 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-691 (-949 (-380))))) (-15 -3576 ($ (-691 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-691 (-949 (-549))))) (-15 -3576 ($ (-691 (-410 (-949 (-380)))))) (-15 -3577 ((-3 $ "failed") (-691 (-410 (-949 (-380)))))) (-15 -3576 ($ (-691 (-410 (-949 (-549)))))) (-15 -3577 ((-3 $ "failed") (-691 (-410 (-949 (-549)))))))) +(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) +((-2968 (((-112) $ $) 7)) (-3540 (((-773) $) 34)) (-4156 (($) 19 T CONST)) (-4371 (((-3 $ "failed") $ $) 37)) (-3577 (((-3 |#1| "failed") $) 45)) (-3576 ((|#1| $) 46)) (-3890 (((-3 $ "failed") $) 16)) (-1918 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2573 (((-112) $) 18)) (-2444 ((|#1| $ (-549)) 31)) (-2445 (((-773) $ (-549)) 32)) (-2934 (($ $ $) 28 (|has| |#1| (-852)))) (-3260 (($ $ $) 27 (|has| |#1| (-852)))) (-2436 (($ (-1 |#1| |#1|) $) 29)) (-2437 (($ (-1 (-773) (-773)) $) 30)) (-4372 (((-3 $ "failed") $ $) 38)) (-3663 (((-1162) $) 10)) (-1919 (($ $ $) 39)) (-1920 (($ $ $) 40)) (-3664 (((-1123) $) 11)) (-1954 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-773)))) $) 33)) (-3282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4378 (((-865) $) 12) (($ |#1|) 44)) (-3662 (((-112) $ $) 9)) (-3067 (($) 20 T CONST)) (-2966 (((-112) $ $) 25 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 24 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 26 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 23 (|has| |#1| (-852)))) (** (($ $ (-922)) 14) (($ $ (-773)) 17) (($ |#1| (-773)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +(((-388 |#1|) (-140) (-1104)) (T -388)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-1920 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-1919 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-4372 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-4371 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-3282 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1104)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-1918 (*1 *2 *1 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1104)) (-5 *2 (-773)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1104)) (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 (-773))))))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-388 *4)) (-4 *4 (-1104)) (-5 *2 (-773)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-388 *2)) (-4 *2 (-1104)))) (-2437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-773) (-773))) (-4 *1 (-388 *3)) (-4 *3 (-1104)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1104))))) +(-13 (-728) (-1041 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-773))) (-15 -1920 ($ $ $)) (-15 -1919 ($ $ $)) (-15 -4372 ((-3 $ "failed") $ $)) (-15 -4371 ((-3 $ "failed") $ $)) (-15 -3282 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1918 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3540 ((-773) $)) (-15 -1954 ((-643 (-2 (|:| |gen| |t#1|) (|:| -4375 (-773)))) $)) (-15 -2445 ((-773) $ (-549))) (-15 -2444 (|t#1| $ (-549))) (-15 -2437 ($ (-1 (-773) (-773)) $)) (-15 -2436 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|))) +(((-102) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-728) . T) ((-852) |has| |#1| (-852)) ((-1041 |#1|) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773) $) 74)) (-4156 (($) NIL T CONST)) (-4371 (((-3 $ #1="failed") $ $) 77)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-1918 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2573 (((-112) $) 17)) (-2444 ((|#1| $ (-549)) NIL)) (-2445 (((-773) $ (-549)) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2436 (($ (-1 |#1| |#1|) $) 40)) (-2437 (($ (-1 (-773) (-773)) $) 37)) (-4372 (((-3 $ #1#) $ $) 60)) (-3663 (((-1162) $) NIL)) (-1919 (($ $ $) 28)) (-1920 (($ $ $) 26)) (-3664 (((-1123) $) NIL)) (-1954 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-773)))) $) 34)) (-3282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70)) (-4378 (((-865) $) 24) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 11 T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) 84 (|has| |#1| (-852)))) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ |#1| (-773)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-389 |#1|) (-388 |#1|) (-1104)) (T -389)) NIL (-388 |#1|) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 53)) (-3094 (((-567) $) 54)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-2727 (($ $ $) 60)) (-1446 (($ $ $) 59)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ $) 48)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 52)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-3016 (((-112) $ $) 57)) (-2996 (((-112) $ $) 56)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 58)) (-2986 (((-112) $ $) 55)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) "failed") $) 53)) (-3576 (((-549) $) 54)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-2934 (($ $ $) 60)) (-3260 (($ $ $) 59)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-549)) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 57)) (-2967 (((-112) $ $) 56)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 58)) (-3088 (((-112) $ $) 55)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-390) (-140)) (T -390)) NIL -(-13 (-559) (-851) (-1040 (-567))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2981 (((-112) $) 25)) (-3699 (((-112) $) 22)) (-4223 (($ (-1161) (-1161) (-1161)) 26)) (-1646 (((-1161) $) 16)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2044 (($ (-1161) (-1161) (-1161)) 14)) (-3351 (((-1161) $) 17)) (-4288 (((-112) $) 18)) (-2251 (((-1161) $) 15)) (-2504 (((-863) $) 12) (($ (-1161)) 13) (((-1161) $) 9)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 7))) +(-13 (-560) (-852) (-1041 (-549))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-852) . T) ((-1041 (-549)) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-1921 (((-112) $) 25)) (-1922 (((-112) $) 22)) (-4046 (($ (-1162) (-1162) (-1162)) 26)) (-3973 (((-1162) $) 16)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1926 (($ (-1162) (-1162) (-1162)) 14)) (-1924 (((-1162) $) 17)) (-1923 (((-112) $) 18)) (-1925 (((-1162) $) 15)) (-4378 (((-865) $) 12) (($ (-1162)) 13) (((-1162) $) 9)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 7))) (((-391) (-392)) (T -391)) NIL (-392) -((-2487 (((-112) $ $) 7)) (-2981 (((-112) $) 17)) (-3699 (((-112) $) 18)) (-4223 (($ (-1161) (-1161) (-1161)) 16)) (-1646 (((-1161) $) 21)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2044 (($ (-1161) (-1161) (-1161)) 23)) (-3351 (((-1161) $) 20)) (-4288 (((-112) $) 19)) (-2251 (((-1161) $) 22)) (-2504 (((-863) $) 12) (($ (-1161)) 25) (((-1161) $) 24)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) +((-2968 (((-112) $ $) 7)) (-1921 (((-112) $) 17)) (-1922 (((-112) $) 18)) (-4046 (($ (-1162) (-1162) (-1162)) 16)) (-3973 (((-1162) $) 21)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-1926 (($ (-1162) (-1162) (-1162)) 23)) (-1924 (((-1162) $) 20)) (-1923 (((-112) $) 19)) (-1925 (((-1162) $) 22)) (-4378 (((-865) $) 12) (($ (-1162)) 25) (((-1162) $) 24)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) (((-392) (-140)) (T -392)) -((-2044 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-392)))) (-2251 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-4223 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-392))))) -(-13 (-1102) (-493 (-1161)) (-10 -8 (-15 -2044 ($ (-1161) (-1161) (-1161))) (-15 -2251 ((-1161) $)) (-15 -1646 ((-1161) $)) (-15 -3351 ((-1161) $)) (-15 -4288 ((-112) $)) (-15 -3699 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -4223 ($ (-1161) (-1161) (-1161))))) -(((-102) . T) ((-617 #0=(-1161)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2470 (((-863) $) 64)) (-3758 (($) NIL T CONST)) (-3497 (($ $ (-923)) NIL)) (-2258 (($ $ (-923)) NIL)) (-2310 (($ $ (-923)) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2335 (($ (-772)) 38)) (-2589 (((-772)) 18)) (-3426 (((-863) $) 66)) (-4033 (($ $ $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2862 (($ $ $ $) NIL)) (-1793 (($ $ $) NIL)) (-1807 (($) 24 T CONST)) (-2968 (((-112) $ $) 41)) (-3054 (($ $) 48) (($ $ $) 50)) (-3045 (($ $ $) 51)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-393 |#1| |#2| |#3|) (-13 (-745 |#3|) (-10 -8 (-15 -2589 ((-772))) (-15 -3426 ((-863) $)) (-15 -2470 ((-863) $)) (-15 -2335 ($ (-772))))) (-772) (-772) (-172)) (T -393)) -((-2589 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) -(-13 (-745 |#3|) (-10 -8 (-15 -2589 ((-772))) (-15 -3426 ((-863) $)) (-15 -2470 ((-863) $)) (-15 -2335 ($ (-772))))) -((-1843 (((-1161)) 12)) (-2010 (((-1149 (-1161))) 31)) (-2198 (((-1274) (-1161)) 28) (((-1274) (-391)) 27)) (-2211 (((-1274)) 29)) (-3803 (((-1149 (-1161))) 30))) -(((-394) (-10 -7 (-15 -3803 ((-1149 (-1161)))) (-15 -2010 ((-1149 (-1161)))) (-15 -2211 ((-1274))) (-15 -2198 ((-1274) (-391))) (-15 -2198 ((-1274) (-1161))) (-15 -1843 ((-1161))))) (T -394)) -((-1843 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-394)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-394)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1274)) (-5 *1 (-394)))) (-2211 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-394)))) (-2010 (*1 *2) (-12 (-5 *2 (-1149 (-1161))) (-5 *1 (-394)))) (-3803 (*1 *2) (-12 (-5 *2 (-1149 (-1161))) (-5 *1 (-394))))) -(-10 -7 (-15 -3803 ((-1149 (-1161)))) (-15 -2010 ((-1149 (-1161)))) (-15 -2211 ((-1274))) (-15 -2198 ((-1274) (-391))) (-15 -2198 ((-1274) (-1161))) (-15 -1843 ((-1161)))) -((-3905 (((-772) (-338 |#1| |#2| |#3| |#4|)) 19))) -(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3905 ((-772) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -395)) -((-3905 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7))))) -(-10 -7 (-15 -3905 ((-772) (-338 |#1| |#2| |#3| |#4|)))) -((-2504 (((-397) |#1|) 11))) -(((-396 |#1|) (-10 -7 (-15 -2504 ((-397) |#1|))) (-1102)) (T -396)) -((-2504 (*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1102))))) -(-10 -7 (-15 -2504 ((-397) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2045 (((-645 (-1161)) $ (-645 (-1161))) 43)) (-3902 (((-645 (-1161)) $ (-645 (-1161))) 44)) (-2901 (((-645 (-1161)) $ (-645 (-1161))) 45)) (-4342 (((-645 (-1161)) $) 40)) (-4223 (($) 30)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-4325 (((-645 (-1161)) $) 41)) (-4363 (((-645 (-1161)) $) 42)) (-4079 (((-1274) $ (-567)) 38) (((-1274) $) 39)) (-1322 (($ (-863) (-567)) 35)) (-2504 (((-863) $) 54) (($ (-863)) 32)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-397) (-13 (-1102) (-617 (-863)) (-10 -8 (-15 -1322 ($ (-863) (-567))) (-15 -4079 ((-1274) $ (-567))) (-15 -4079 ((-1274) $)) (-15 -4363 ((-645 (-1161)) $)) (-15 -4325 ((-645 (-1161)) $)) (-15 -4223 ($)) (-15 -4342 ((-645 (-1161)) $)) (-15 -2901 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -3902 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -2045 ((-645 (-1161)) $ (-645 (-1161))))))) (T -397)) -((-1322 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397)))) (-4079 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-397)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-397)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-4223 (*1 *1) (-5 *1 (-397))) (-4342 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-2901 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-3902 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) (-2045 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397))))) -(-13 (-1102) (-617 (-863)) (-10 -8 (-15 -1322 ($ (-863) (-567))) (-15 -4079 ((-1274) $ (-567))) (-15 -4079 ((-1274) $)) (-15 -4363 ((-645 (-1161)) $)) (-15 -4325 ((-645 (-1161)) $)) (-15 -4223 ($)) (-15 -4342 ((-645 (-1161)) $)) (-15 -2901 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -3902 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -2045 ((-645 (-1161)) $ (-645 (-1161)))))) -((-2229 (((-1274) $) 7)) (-2504 (((-863) $) 8))) -(((-398) (-140)) (T -398)) -((-2229 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1274))))) -(-13 (-1219) (-614 (-863)) (-10 -8 (-15 -2229 ((-1274) $)))) -(((-614 (-863)) . T) ((-1219) . T)) -((-4275 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-567))) 19) (((-3 $ "failed") (-954 (-381))) 17) (((-3 $ "failed") (-954 (-567))) 15) (((-3 $ "failed") (-410 (-954 (-381)))) 13) (((-3 $ "failed") (-410 (-954 (-567)))) 11)) (-3094 (($ (-317 (-381))) 22) (($ (-317 (-567))) 20) (($ (-954 (-381))) 18) (($ (-954 (-567))) 16) (($ (-410 (-954 (-381)))) 14) (($ (-410 (-954 (-567)))) 12)) (-2229 (((-1274) $) 7)) (-2504 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 23))) +((-1926 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-392)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162)))) (-1923 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-4046 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-392))))) +(-13 (-1104) (-493 (-1162)) (-10 -8 (-15 -1926 ($ (-1162) (-1162) (-1162))) (-15 -1925 ((-1162) $)) (-15 -3973 ((-1162) $)) (-15 -1924 ((-1162) $)) (-15 -1923 ((-112) $)) (-15 -1922 ((-112) $)) (-15 -1921 ((-112) $)) (-15 -4046 ($ (-1162) (-1162) (-1162))))) +(((-102) . T) ((-618 #1=(-1162)) . T) ((-615 (-865)) . T) ((-615 #1#) . T) ((-493 #1#) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1927 (((-865) $) 63)) (-4156 (($) NIL T CONST)) (-2570 (($ $ (-922)) NIL)) (-2594 (($ $ (-922)) NIL)) (-2569 (($ $ (-922)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($ (-773)) 38)) (-4343 (((-773)) 18)) (-1928 (((-865) $) 65)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2757 (($ $ $ $) NIL)) (-2755 (($ $ $) NIL)) (-3510 (($) 24 T CONST)) (-3455 (((-112) $ $) 41)) (-4269 (($ $) 48) (($ $ $) 50)) (-4271 (($ $ $) 51)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-393 |#1| |#2| |#3|) (-13 (-746 |#3|) (-10 -8 (-15 -4343 ((-773))) (-15 -1928 ((-865) $)) (-15 -1927 ((-865) $)) (-15 -2572 ($ (-773))))) (-773) (-773) (-172)) (T -393)) +((-4343 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773)) (-4 *5 (-172)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773)) (-4 *5 (-172)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) +(-13 (-746 |#3|) (-10 -8 (-15 -4343 ((-773))) (-15 -1928 ((-865) $)) (-15 -1927 ((-865) $)) (-15 -2572 ($ (-773))))) +((-1933 (((-1162)) 12)) (-1930 (((-1150 (-1162))) 30)) (-1932 (((-1275) (-1162)) 27) (((-1275) (-391)) 26)) (-1931 (((-1275)) 28)) (-1929 (((-1150 (-1162))) 29))) +(((-394) (-10 -7 (-15 -1929 ((-1150 (-1162)))) (-15 -1930 ((-1150 (-1162)))) (-15 -1931 ((-1275))) (-15 -1932 ((-1275) (-391))) (-15 -1932 ((-1275) (-1162))) (-15 -1933 ((-1162))))) (T -394)) +((-1933 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-394)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-394)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1275)) (-5 *1 (-394)))) (-1931 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-394)))) (-1930 (*1 *2) (-12 (-5 *2 (-1150 (-1162))) (-5 *1 (-394)))) (-1929 (*1 *2) (-12 (-5 *2 (-1150 (-1162))) (-5 *1 (-394))))) +(-10 -7 (-15 -1929 ((-1150 (-1162)))) (-15 -1930 ((-1150 (-1162)))) (-15 -1931 ((-1275))) (-15 -1932 ((-1275) (-391))) (-15 -1932 ((-1275) (-1162))) (-15 -1933 ((-1162)))) +((-4203 (((-773) (-335 |#1| |#2| |#3| |#4|)) 19))) +(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4203 ((-773) (-335 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -395)) +((-4203 (*1 *2 *3) (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-773)) (-5 *1 (-395 *4 *5 *6 *7))))) +(-10 -7 (-15 -4203 ((-773) (-335 |#1| |#2| |#3| |#4|)))) +((-2968 (((-112) $ $) NIL)) (-4042 (((-643 (-1162)) $ (-643 (-1162))) 42)) (-1934 (((-643 (-1162)) $ (-643 (-1162))) 43)) (-4044 (((-643 (-1162)) $ (-643 (-1162))) 44)) (-4045 (((-643 (-1162)) $) 39)) (-4046 (($) 30)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1935 (((-643 (-1162)) $) 40)) (-4048 (((-643 (-1162)) $) 41)) (-4049 (((-1275) $ (-549)) 37) (((-1275) $) 38)) (-4402 (($ (-865) (-549)) 35)) (-4378 (((-865) $) 49) (($ (-865)) 32)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-396) (-13 (-1104) (-618 (-865)) (-10 -8 (-15 -4402 ($ (-865) (-549))) (-15 -4049 ((-1275) $ (-549))) (-15 -4049 ((-1275) $)) (-15 -4048 ((-643 (-1162)) $)) (-15 -1935 ((-643 (-1162)) $)) (-15 -4046 ($)) (-15 -4045 ((-643 (-1162)) $)) (-15 -4044 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -1934 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4042 ((-643 (-1162)) $ (-643 (-1162))))))) (T -396)) +((-4402 (*1 *1 *2 *3) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-396)))) (-4049 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-396)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-396)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-4046 (*1 *1) (-5 *1 (-396))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-4044 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-1934 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) (-4042 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396))))) +(-13 (-1104) (-618 (-865)) (-10 -8 (-15 -4402 ($ (-865) (-549))) (-15 -4049 ((-1275) $ (-549))) (-15 -4049 ((-1275) $)) (-15 -4048 ((-643 (-1162)) $)) (-15 -1935 ((-643 (-1162)) $)) (-15 -4046 ($)) (-15 -4045 ((-643 (-1162)) $)) (-15 -4044 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -1934 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4042 ((-643 (-1162)) $ (-643 (-1162)))))) +((-4378 (((-396) |#1|) 11))) +(((-397 |#1|) (-10 -7 (-15 -4378 ((-396) |#1|))) (-1104)) (T -397)) +((-4378 (*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-397 *3)) (-4 *3 (-1104))))) +(-10 -7 (-15 -4378 ((-396) |#1|))) +((-1937 (((-643 (-1162)) (-643 (-1162))) 9)) (-3804 (((-1275) (-391)) 26)) (-1936 (((-1106) (-1180) (-643 (-1180)) (-1183) (-643 (-1180))) 59) (((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)) (-1180)) 34) (((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180))) 33))) +(((-398) (-10 -7 (-15 -1936 ((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)))) (-15 -1936 ((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)) (-1180))) (-15 -1936 ((-1106) (-1180) (-643 (-1180)) (-1183) (-643 (-1180)))) (-15 -3804 ((-1275) (-391))) (-15 -1937 ((-643 (-1162)) (-643 (-1162)))))) (T -398)) +((-1937 (*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-398)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1275)) (-5 *1 (-398)))) (-1936 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-643 (-1180))) (-5 *5 (-1183)) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398)))) (-1936 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-643 (-643 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-643 (-3 (|:| |array| (-643 *3)) (|:| |scalar| (-1180))))) (-5 *6 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398)))) (-1936 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-643 (-643 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-643 (-3 (|:| |array| (-643 *3)) (|:| |scalar| (-1180))))) (-5 *6 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398))))) +(-10 -7 (-15 -1936 ((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)))) (-15 -1936 ((-1106) (-1180) (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180)))) (-643 (-643 (-3 (|:| |array| (-643 (-1180))) (|:| |scalar| (-1180))))) (-643 (-1180)) (-1180))) (-15 -1936 ((-1106) (-1180) (-643 (-1180)) (-1183) (-643 (-1180)))) (-15 -3804 ((-1275) (-391))) (-15 -1937 ((-643 (-1162)) (-643 (-1162))))) +((-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8))) (((-399) (-140)) (T -399)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) (-4 *1 (-399)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399))))) -(-13 (-398) (-10 -8 (-15 -2504 ($ (-645 (-331)))) (-15 -2504 ($ (-331))) (-15 -2504 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331)))))) (-15 -3094 ($ (-317 (-381)))) (-15 -4275 ((-3 $ "failed") (-317 (-381)))) (-15 -3094 ($ (-317 (-567)))) (-15 -4275 ((-3 $ "failed") (-317 (-567)))) (-15 -3094 ($ (-954 (-381)))) (-15 -4275 ((-3 $ "failed") (-954 (-381)))) (-15 -3094 ($ (-954 (-567)))) (-15 -4275 ((-3 $ "failed") (-954 (-567)))) (-15 -3094 ($ (-410 (-954 (-381))))) (-15 -4275 ((-3 $ "failed") (-410 (-954 (-381))))) (-15 -3094 ($ (-410 (-954 (-567))))) (-15 -4275 ((-3 $ "failed") (-410 (-954 (-567))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1219) . T)) -((-3273 (((-645 (-1161)) (-645 (-1161))) 9)) (-2229 (((-1274) (-391)) 27)) (-3446 (((-1106) (-1179) (-645 (-1179)) (-1182) (-645 (-1179))) 60) (((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)) (-1179)) 35) (((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179))) 34))) -(((-400) (-10 -7 (-15 -3446 ((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)))) (-15 -3446 ((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)) (-1179))) (-15 -3446 ((-1106) (-1179) (-645 (-1179)) (-1182) (-645 (-1179)))) (-15 -2229 ((-1274) (-391))) (-15 -3273 ((-645 (-1161)) (-645 (-1161)))))) (T -400)) -((-3273 (*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-400)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1274)) (-5 *1 (-400)))) (-3446 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-645 (-1179))) (-5 *5 (-1182)) (-5 *3 (-1179)) (-5 *2 (-1106)) (-5 *1 (-400)))) (-3446 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1179))))) (-5 *6 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1106)) (-5 *1 (-400)))) (-3446 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1179))))) (-5 *6 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1106)) (-5 *1 (-400))))) -(-10 -7 (-15 -3446 ((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)))) (-15 -3446 ((-1106) (-1179) (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179)))) (-645 (-645 (-3 (|:| |array| (-645 (-1179))) (|:| |scalar| (-1179))))) (-645 (-1179)) (-1179))) (-15 -3446 ((-1106) (-1179) (-645 (-1179)) (-1182) (-645 (-1179)))) (-15 -2229 ((-1274) (-391))) (-15 -3273 ((-645 (-1161)) (-645 (-1161))))) -((-2229 (((-1274) $) 36)) (-2504 (((-863) $) 98) (($ (-331)) 100) (($ (-645 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 97) (($ (-317 (-702))) 53) (($ (-317 (-700))) 73) (($ (-317 (-695))) 86) (($ (-295 (-317 (-702)))) 68) (($ (-295 (-317 (-700)))) 81) (($ (-295 (-317 (-695)))) 94) (($ (-317 (-567))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-567)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139))) -(((-401 |#1| |#2| |#3| |#4|) (-13 (-398) (-10 -8 (-15 -2504 ($ (-331))) (-15 -2504 ($ (-645 (-331)))) (-15 -2504 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331)))))) (-15 -2504 ($ (-317 (-702)))) (-15 -2504 ($ (-317 (-700)))) (-15 -2504 ($ (-317 (-695)))) (-15 -2504 ($ (-295 (-317 (-702))))) (-15 -2504 ($ (-295 (-317 (-700))))) (-15 -2504 ($ (-295 (-317 (-695))))) (-15 -2504 ($ (-317 (-567)))) (-15 -2504 ($ (-317 (-381)))) (-15 -2504 ($ (-317 (-169 (-381))))) (-15 -2504 ($ (-295 (-317 (-567))))) (-15 -2504 ($ (-295 (-317 (-381))))) (-15 -2504 ($ (-295 (-317 (-169 (-381)))))))) (-1179) (-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-645 (-1179)) (-1183)) (T -401)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-14 *5 (-645 (-1179))) (-14 *6 (-1183))))) -(-13 (-398) (-10 -8 (-15 -2504 ($ (-331))) (-15 -2504 ($ (-645 (-331)))) (-15 -2504 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331)))))) (-15 -2504 ($ (-317 (-702)))) (-15 -2504 ($ (-317 (-700)))) (-15 -2504 ($ (-317 (-695)))) (-15 -2504 ($ (-295 (-317 (-702))))) (-15 -2504 ($ (-295 (-317 (-700))))) (-15 -2504 ($ (-295 (-317 (-695))))) (-15 -2504 ($ (-317 (-567)))) (-15 -2504 ($ (-317 (-381)))) (-15 -2504 ($ (-317 (-169 (-381))))) (-15 -2504 ($ (-295 (-317 (-567))))) (-15 -2504 ($ (-295 (-317 (-381))))) (-15 -2504 ($ (-295 (-317 (-169 (-381)))))))) -((-2487 (((-112) $ $) NIL)) (-2191 ((|#2| $) 38)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3310 (($ (-410 |#2|)) 95)) (-3845 (((-645 (-2 (|:| -2618 (-772)) (|:| -3118 |#2|) (|:| |num| |#2|))) $) 39)) (-3592 (($ $) 34) (($ $ (-772)) 36)) (-1322 (((-410 |#2|) $) 51)) (-2516 (($ (-645 (-2 (|:| -2618 (-772)) (|:| -3118 |#2|) (|:| |num| |#2|)))) 33)) (-2504 (((-863) $) 132)) (-3858 (((-112) $ $) NIL)) (-2856 (($ $) 35) (($ $ (-772)) 37)) (-2968 (((-112) $ $) NIL)) (-3045 (($ |#2| $) 41))) -(((-402 |#1| |#2|) (-13 (-1102) (-615 (-410 |#2|)) (-10 -8 (-15 -3045 ($ |#2| $)) (-15 -3310 ($ (-410 |#2|))) (-15 -2191 (|#2| $)) (-15 -3845 ((-645 (-2 (|:| -2618 (-772)) (|:| -3118 |#2|) (|:| |num| |#2|))) $)) (-15 -2516 ($ (-645 (-2 (|:| -2618 (-772)) (|:| -3118 |#2|) (|:| |num| |#2|))))) (-15 -3592 ($ $)) (-15 -2856 ($ $)) (-15 -3592 ($ $ (-772))) (-15 -2856 ($ $ (-772))))) (-13 (-365) (-147)) (-1245 |#1|)) (T -402)) -((-3045 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1245 *3)))) (-3310 (*1 *1 *2) (-12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-2191 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-3845 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-645 (-2 (|:| -2618 (-772)) (|:| -3118 *4) (|:| |num| *4)))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))) (-2516 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -2618 (-772)) (|:| -3118 *4) (|:| |num| *4)))) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-3592 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) (-2856 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3))))) -(-13 (-1102) (-615 (-410 |#2|)) (-10 -8 (-15 -3045 ($ |#2| $)) (-15 -3310 ($ (-410 |#2|))) (-15 -2191 (|#2| $)) (-15 -3845 ((-645 (-2 (|:| -2618 (-772)) (|:| -3118 |#2|) (|:| |num| |#2|))) $)) (-15 -2516 ($ (-645 (-2 (|:| -2618 (-772)) (|:| -3118 |#2|) (|:| |num| |#2|))))) (-15 -3592 ($ $)) (-15 -2856 ($ $)) (-15 -3592 ($ $ (-772))) (-15 -2856 ($ $ (-772))))) -((-2487 (((-112) $ $) 9 (-2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 16 (|has| |#1| (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 15 (|has| |#1| (-888 (-567))))) (-1812 (((-1161) $) 13 (-2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-3479 (((-1122) $) 12 (-2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-2504 (((-863) $) 11 (-2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-3858 (((-112) $ $) 14 (-2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))))) (-2968 (((-112) $ $) 10 (-2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381))))))) +((-3804 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1275))))) +(-13 (-1219) (-615 (-865)) (-10 -8 (-15 -3804 ((-1275) $)))) +(((-615 (-865)) . T) ((-1219) . T)) +((-3577 (((-3 $ "failed") (-315 (-380))) 21) (((-3 $ "failed") (-315 (-549))) 19) (((-3 $ "failed") (-949 (-380))) 17) (((-3 $ "failed") (-949 (-549))) 15) (((-3 $ "failed") (-410 (-949 (-380)))) 13) (((-3 $ "failed") (-410 (-949 (-549)))) 11)) (-3576 (($ (-315 (-380))) 22) (($ (-315 (-549))) 20) (($ (-949 (-380))) 18) (($ (-949 (-549))) 16) (($ (-410 (-949 (-380)))) 14) (($ (-410 (-949 (-549)))) 12)) (-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-643 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 23))) +(((-400) (-140)) (T -400)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-400)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-400)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-380))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-549))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-380))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-380))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-549))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-380)))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-380)))) (-4 *1 (-400)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-549)))) (-4 *1 (-400)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-549)))) (-4 *1 (-400))))) +(-13 (-399) (-10 -8 (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -3576 ($ (-315 (-380)))) (-15 -3577 ((-3 $ "failed") (-315 (-380)))) (-15 -3576 ($ (-315 (-549)))) (-15 -3577 ((-3 $ "failed") (-315 (-549)))) (-15 -3576 ($ (-949 (-380)))) (-15 -3577 ((-3 $ "failed") (-949 (-380)))) (-15 -3576 ($ (-949 (-549)))) (-15 -3577 ((-3 $ "failed") (-949 (-549)))) (-15 -3576 ($ (-410 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-380))))) (-15 -3576 ($ (-410 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-410 (-949 (-549))))))) +(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) +((-3804 (((-1275) $) 35)) (-4378 (((-865) $) 97) (($ (-331)) 99) (($ (-643 (-331))) 98) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 96) (($ (-315 (-703))) 52) (($ (-315 (-701))) 72) (($ (-315 (-696))) 85) (($ (-294 (-315 (-703)))) 67) (($ (-294 (-315 (-701)))) 80) (($ (-294 (-315 (-696)))) 93) (($ (-315 (-549))) 104) (($ (-315 (-380))) 117) (($ (-315 (-168 (-380)))) 130) (($ (-294 (-315 (-549)))) 112) (($ (-294 (-315 (-380)))) 125) (($ (-294 (-315 (-168 (-380))))) 138))) +(((-401 |#1| |#2| |#3| |#4|) (-13 (-399) (-10 -8 (-15 -4378 ($ (-331))) (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -4378 ($ (-315 (-703)))) (-15 -4378 ($ (-315 (-701)))) (-15 -4378 ($ (-315 (-696)))) (-15 -4378 ($ (-294 (-315 (-703))))) (-15 -4378 ($ (-294 (-315 (-701))))) (-15 -4378 ($ (-294 (-315 (-696))))) (-15 -4378 ($ (-315 (-549)))) (-15 -4378 ($ (-315 (-380)))) (-15 -4378 ($ (-315 (-168 (-380))))) (-15 -4378 ($ (-294 (-315 (-549))))) (-15 -4378 ($ (-294 (-315 (-380))))) (-15 -4378 ($ (-294 (-315 (-168 (-380)))))))) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 "void")) (-643 (-1180)) (-1184)) (T -401)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-703))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-701))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-696))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-703)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-701)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-696)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-380)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-549)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-380)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-294 (-315 (-168 (-380))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) (-14 *6 (-1184))))) +(-13 (-399) (-10 -8 (-15 -4378 ($ (-331))) (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -4378 ($ (-315 (-703)))) (-15 -4378 ($ (-315 (-701)))) (-15 -4378 ($ (-315 (-696)))) (-15 -4378 ($ (-294 (-315 (-703))))) (-15 -4378 ($ (-294 (-315 (-701))))) (-15 -4378 ($ (-294 (-315 (-696))))) (-15 -4378 ($ (-315 (-549)))) (-15 -4378 ($ (-315 (-380)))) (-15 -4378 ($ (-315 (-168 (-380))))) (-15 -4378 ($ (-294 (-315 (-549))))) (-15 -4378 ($ (-294 (-315 (-380))))) (-15 -4378 ($ (-294 (-315 (-168 (-380)))))))) +((-2968 (((-112) $ $) NIL)) (-1939 ((|#2| $) 38)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1940 (($ (-410 |#2|)) 95)) (-1938 (((-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))) $) 39)) (-4242 (($ $) 34) (($ $ (-773)) 36)) (-4402 (((-410 |#2|) $) 51)) (-3953 (($ (-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|)))) 33)) (-4378 (((-865) $) 132)) (-3662 (((-112) $ $) NIL)) (-3072 (($ $) 35) (($ $ (-773)) 37)) (-3455 (((-112) $ $) NIL)) (-4271 (($ |#2| $) 41))) +(((-402 |#1| |#2|) (-13 (-1104) (-616 (-410 |#2|)) (-10 -8 (-15 -4271 ($ |#2| $)) (-15 -1940 ($ (-410 |#2|))) (-15 -1939 (|#2| $)) (-15 -1938 ((-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))) $)) (-15 -3953 ($ (-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))))) (-15 -4242 ($ $)) (-15 -3072 ($ $)) (-15 -4242 ($ $ (-773))) (-15 -3072 ($ $ (-773))))) (-13 (-365) (-147)) (-1245 |#1|)) (T -402)) +((-4271 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1245 *3)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-1939 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-1938 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-643 (-2 (|:| -2564 (-773)) (|:| -4204 *4) (|:| |num| *4)))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -2564 (-773)) (|:| -4204 *4) (|:| |num| *4)))) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-4242 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) (-3072 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3))))) +(-13 (-1104) (-616 (-410 |#2|)) (-10 -8 (-15 -4271 ($ |#2| $)) (-15 -1940 ($ (-410 |#2|))) (-15 -1939 (|#2| $)) (-15 -1938 ((-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))) $)) (-15 -3953 ($ (-643 (-2 (|:| -2564 (-773)) (|:| -4204 |#2|) (|:| |num| |#2|))))) (-15 -4242 ($ $)) (-15 -3072 ($ $)) (-15 -4242 ($ $ (-773))) (-15 -3072 ($ $ (-773))))) +((-2968 (((-112) $ $) 9 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 16 (|has| |#1| (-889 (-380)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 15 (|has| |#1| (-889 (-549))))) (-3663 (((-1162) $) 13 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-3664 (((-1123) $) 12 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-4378 (((-865) $) 11 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-3662 (((-112) $ $) 14 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))))) (-3455 (((-112) $ $) 10 (-3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380))))))) (((-403 |#1|) (-140) (-1219)) (T -403)) NIL -(-13 (-1219) (-10 -7 (IF (|has| |t#1| (-888 (-567))) (-6 (-888 (-567))) |%noBranch|) (IF (|has| |t#1| (-888 (-381))) (-6 (-888 (-381))) |%noBranch|))) -(((-102) -2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-614 (-863)) -2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-1102) -2836 (|has| |#1| (-888 (-567))) (|has| |#1| (-888 (-381)))) ((-1219) . T)) -((-2559 (($ $) 10) (($ $ (-772)) 12))) -(((-404 |#1|) (-10 -8 (-15 -2559 (|#1| |#1| (-772))) (-15 -2559 (|#1| |#1|))) (-405)) (T -404)) +(-13 (-1219) (-10 -7 (IF (|has| |t#1| (-889 (-549))) (-6 (-889 (-549))) |%noBranch|) (IF (|has| |t#1| (-889 (-380))) (-6 (-889 (-380))) |%noBranch|))) +(((-102) -3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))) ((-615 (-865)) -3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-1104) -3960 (|has| |#1| (-889 (-549))) (|has| |#1| (-889 (-380)))) ((-1219) . T)) +((-1941 (($ $) 10) (($ $ (-773)) 12))) +(((-404 |#1|) (-10 -8 (-15 -1941 (|#1| |#1| (-773))) (-15 -1941 (|#1| |#1|))) (-405)) (T -404)) NIL -(-10 -8 (-15 -2559 (|#1| |#1| (-772))) (-15 -2559 (|#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-4175 (((-112) $ $) 65)) (-3758 (($) 18 T CONST)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-2559 (($ $) 87) (($ $ (-772)) 86)) (-2946 (((-112) $) 79)) (-3905 (((-834 (-923)) $) 89)) (-4384 (((-112) $) 35)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3661 (((-421 $) $) 82)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2943 (((-3 (-772) "failed") $ $) 88)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2318 (((-3 $ "failed") $) 90)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 73)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +(-10 -8 (-15 -1941 (|#1| |#1| (-773))) (-15 -1941 (|#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-1941 (($ $) 87) (($ $ (-773)) 86)) (-4155 (((-112) $) 79)) (-4203 (((-834 (-922)) $) 89)) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1942 (((-3 (-773) "failed") $ $) 88)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74)) (-3105 (((-3 $ "failed") $) 90)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) (((-405) (-140)) (T -405)) -((-3905 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-923))))) (-2943 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))) (-2559 (*1 *1 *1) (-4 *1 (-405))) (-2559 (*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772))))) -(-13 (-365) (-145) (-10 -8 (-15 -3905 ((-834 (-923)) $)) (-15 -2943 ((-3 (-772) "failed") $ $)) (-15 -2559 ($ $)) (-15 -2559 ($ $ (-772))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T)) -((-2627 (($ (-567) (-567)) 11) (($ (-567) (-567) (-923)) NIL)) (-2872 (((-923)) 20) (((-923) (-923)) NIL))) -(((-406 |#1|) (-10 -8 (-15 -2872 ((-923) (-923))) (-15 -2872 ((-923))) (-15 -2627 (|#1| (-567) (-567) (-923))) (-15 -2627 (|#1| (-567) (-567)))) (-407)) (T -406)) -((-2872 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407))))) -(-10 -8 (-15 -2872 ((-923) (-923))) (-15 -2872 ((-923))) (-15 -2627 (|#1| (-567) (-567) (-923))) (-15 -2627 (|#1| (-567) (-567)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-4199 (((-567) $) 97)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-3413 (($ $) 95)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-3671 (($ $) 105)) (-4175 (((-112) $ $) 65)) (-2777 (((-567) $) 122)) (-3758 (($) 18 T CONST)) (-3517 (($ $) 94)) (-4275 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-3094 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-2946 (((-112) $) 79)) (-3832 (((-923)) 138) (((-923) (-923)) 135 (|has| $ (-6 -4413)))) (-3635 (((-112) $) 120)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 101)) (-3905 (((-567) $) 144)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 104)) (-2013 (($ $) 100)) (-2585 (((-112) $) 121)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2727 (($ $ $) 119) (($) 132 (-12 (-1736 (|has| $ (-6 -4413))) (-1736 (|has| $ (-6 -4405)))))) (-1446 (($ $ $) 118) (($) 131 (-12 (-1736 (|has| $ (-6 -4413))) (-1736 (|has| $ (-6 -4405)))))) (-3036 (((-567) $) 141)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-3912 (((-923) (-567)) 134 (|has| $ (-6 -4413)))) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3989 (($ $) 96)) (-1952 (($ $) 98)) (-2627 (($ (-567) (-567)) 146) (($ (-567) (-567) (-923)) 145)) (-3661 (((-421 $) $) 82)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2618 (((-567) $) 142)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2872 (((-923)) 139) (((-923) (-923)) 136 (|has| $ (-6 -4413)))) (-1339 (((-923) (-567)) 133 (|has| $ (-6 -4413)))) (-1322 (((-381) $) 113) (((-225) $) 112) (((-894 (-381)) $) 102)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-2214 (((-772)) 32 T CONST)) (-3471 (($ $) 99)) (-3570 (((-923)) 140) (((-923) (-923)) 137 (|has| $ (-6 -4413)))) (-3858 (((-112) $ $) 9)) (-3140 (((-923)) 143)) (-3269 (((-112) $ $) 45)) (-1368 (($ $) 123)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-3016 (((-112) $ $) 116)) (-2996 (((-112) $ $) 115)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 117)) (-2986 (((-112) $ $) 114)) (-3064 (($ $ $) 73)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) +((-4203 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-922))))) (-1942 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-773)))) (-1941 (*1 *1 *1) (-4 *1 (-405))) (-1941 (*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-773))))) +(-13 (-365) (-145) (-10 -8 (-15 -4203 ((-834 (-922)) $)) (-15 -1942 ((-3 (-773) "failed") $ $)) (-15 -1941 ($ $)) (-15 -1941 ($ $ (-773))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) +((-3675 (($ (-549) (-549)) 11) (($ (-549) (-549) (-922)) NIL)) (-3015 (((-922)) 19) (((-922) (-922)) NIL))) +(((-406 |#1|) (-10 -8 (-15 -3015 ((-922) (-922))) (-15 -3015 ((-922))) (-15 -3675 (|#1| (-549) (-549) (-922))) (-15 -3675 (|#1| (-549) (-549)))) (-407)) (T -406)) +((-3015 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407))))) +(-10 -8 (-15 -3015 ((-922) (-922))) (-15 -3015 ((-922))) (-15 -3675 (|#1| (-549) (-549) (-922))) (-15 -3675 (|#1| (-549) (-549)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3533 (((-549) $) 97)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-4202 (($ $) 95)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3438 (($ $) 105)) (-1753 (((-112) $ $) 65)) (-4055 (((-549) $) 122)) (-4156 (($) 18 T CONST)) (-3531 (($ $) 94)) (-3577 (((-3 (-549) #1="failed") $) 110) (((-3 (-410 (-549)) #1#) $) 107)) (-3576 (((-549) $) 111) (((-410 (-549)) $) 108)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-2537 (((-922)) 138) (((-922) (-922)) 135 (|has| $ (-6 -4416)))) (-3606 (((-112) $) 120)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 101)) (-4203 (((-549) $) 144)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 104)) (-3536 (($ $) 100)) (-3607 (((-112) $) 121)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 58)) (-2934 (($ $ $) 119) (($) 132 (-12 (-3746 (|has| $ (-6 -4416))) (-3746 (|has| $ (-6 -4408)))))) (-3260 (($ $ $) 118) (($) 131 (-12 (-3746 (|has| $ (-6 -4416))) (-3746 (|has| $ (-6 -4408)))))) (-2538 (((-549) $) 141)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-1944 (((-922) (-549)) 134 (|has| $ (-6 -4416)))) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3532 (($ $) 96)) (-3534 (($ $) 98)) (-3675 (($ (-549) (-549)) 146) (($ (-549) (-549) (-922)) 145)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-2564 (((-549) $) 142)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-3015 (((-922)) 139) (((-922) (-922)) 136 (|has| $ (-6 -4416)))) (-1943 (((-922) (-549)) 133 (|has| $ (-6 -4416)))) (-4402 (((-380) $) 113) (((-225) $) 112) (((-893 (-380)) $) 102)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ (-549)) 109) (($ (-410 (-549))) 106)) (-3530 (((-773)) 32 T CONST)) (-3535 (($ $) 99)) (-1945 (((-922)) 140) (((-922) (-922)) 137 (|has| $ (-6 -4416)))) (-3662 (((-112) $ $) 9)) (-3097 (((-922)) 143)) (-2240 (((-112) $ $) 45)) (-3807 (($ $) 123)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 116)) (-2967 (((-112) $ $) 115)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 117)) (-3088 (((-112) $ $) 114)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77) (($ $ (-410 (-549))) 103)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) (((-407) (-140)) (T -407)) -((-2627 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407)))) (-2627 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-4 *1 (-407)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3140 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-2618 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3570 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-2872 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3832 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) (-2872 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4413)) (-4 *1 (-407)) (-5 *2 (-923)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4413)) (-4 *1 (-407)) (-5 *2 (-923)))) (-2727 (*1 *1) (-12 (-4 *1 (-407)) (-1736 (|has| *1 (-6 -4413))) (-1736 (|has| *1 (-6 -4405))))) (-1446 (*1 *1) (-12 (-4 *1 (-407)) (-1736 (|has| *1 (-6 -4413))) (-1736 (|has| *1 (-6 -4405)))))) -(-13 (-1062) (-10 -8 (-6 -3092) (-15 -2627 ($ (-567) (-567))) (-15 -2627 ($ (-567) (-567) (-923))) (-15 -3905 ((-567) $)) (-15 -3140 ((-923))) (-15 -2618 ((-567) $)) (-15 -3036 ((-567) $)) (-15 -3570 ((-923))) (-15 -2872 ((-923))) (-15 -3832 ((-923))) (IF (|has| $ (-6 -4413)) (PROGN (-15 -3570 ((-923) (-923))) (-15 -2872 ((-923) (-923))) (-15 -3832 ((-923) (-923))) (-15 -3912 ((-923) (-567))) (-15 -1339 ((-923) (-567)))) |%noBranch|) (IF (|has| $ (-6 -4405)) |%noBranch| (IF (|has| $ (-6 -4413)) |%noBranch| (PROGN (-15 -2727 ($)) (-15 -1446 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-894 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-888 (-381)) . T) ((-922) . T) ((-1004) . T) ((-1024) . T) ((-1062) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T)) -((-4364 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 20))) -(((-408 |#1| |#2|) (-10 -7 (-15 -4364 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-559) (-559)) (T -408)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6))))) -(-10 -7 (-15 -4364 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) -((-4364 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 13))) -(((-409 |#1| |#2|) (-10 -7 (-15 -4364 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-559) (-559)) (T -409)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6))))) -(-10 -7 (-15 -4364 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 13)) (-4199 ((|#1| $) 21 (|has| |#1| (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| |#1| (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) 17) (((-3 (-1179) "failed") $) NIL (|has| |#1| (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) 72 (|has| |#1| (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567))))) (-3094 ((|#1| $) 15) (((-1179) $) NIL (|has| |#1| (-1040 (-1179)))) (((-410 (-567)) $) 69 (|has| |#1| (-1040 (-567)))) (((-567) $) NIL (|has| |#1| (-1040 (-567))))) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) 51)) (-2119 (($) NIL (|has| |#1| (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) NIL (|has| |#1| (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#1| (-888 (-381))))) (-4384 (((-112) $) 57)) (-1550 (($ $) NIL)) (-4294 ((|#1| $) 73)) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-2585 (((-112) $) NIL (|has| |#1| (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| |#1| (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 100)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| |#1| (-308)))) (-1952 ((|#1| $) 28 (|has| |#1| (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) 148 (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) 141 (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|)))) (-2465 (((-772) $) NIL)) (-1882 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2964 (($ $) NIL)) (-4306 ((|#1| $) 75)) (-1322 (((-894 (-567)) $) NIL (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#1| (-615 (-894 (-381))))) (((-539) $) NIL (|has| |#1| (-615 (-539)))) (((-381) $) NIL (|has| |#1| (-1024))) (((-225) $) NIL (|has| |#1| (-1024)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 10) (($ (-1179)) NIL (|has| |#1| (-1040 (-1179))))) (-2318 (((-3 $ "failed") $) 102 (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) 103 T CONST)) (-3471 ((|#1| $) 26 (|has| |#1| (-548)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-821)))) (-1807 (($) 22 T CONST)) (-1820 (($) 8 T CONST)) (-2166 (((-1161) $) 44 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1161) $ (-112)) 45 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1274) (-823) $) 46 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1274) (-823) $ (-112)) 47 (-12 (|has| |#1| (-548)) (|has| |#1| (-829))))) (-2856 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) 66)) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) 24 (|has| |#1| (-851)))) (-3064 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3054 (($ $) 25) (($ $ $) 56)) (-3045 (($ $ $) 54)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 135)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 61) (($ $ $) 58) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-410 |#1|) (-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4420)) (-6 -4409) |%noBranch|) |%noBranch|) |%noBranch|))) (-559)) (T -410)) -NIL -(-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4420)) (-6 -4409) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2706 (((-690 |#2|) (-1269 $)) NIL) (((-690 |#2|)) 18)) (-3431 (($ (-1269 |#2|) (-1269 $)) NIL) (($ (-1269 |#2|)) 24)) (-3815 (((-690 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) $) 40)) (-3908 ((|#3| $) 73)) (-2254 ((|#2| (-1269 $)) NIL) ((|#2|) 20)) (-3237 (((-1269 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 22) (((-690 |#2|) (-1269 $)) 38)) (-1322 (((-1269 |#2|) $) 11) (($ (-1269 |#2|)) 13)) (-4019 ((|#3| $) 55))) -(((-411 |#1| |#2| |#3|) (-10 -8 (-15 -3815 ((-690 |#2|) |#1|)) (-15 -2254 (|#2|)) (-15 -2706 ((-690 |#2|))) (-15 -1322 (|#1| (-1269 |#2|))) (-15 -1322 ((-1269 |#2|) |#1|)) (-15 -3431 (|#1| (-1269 |#2|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1|)) (-15 -3908 (|#3| |#1|)) (-15 -4019 (|#3| |#1|)) (-15 -2706 ((-690 |#2|) (-1269 |#1|))) (-15 -2254 (|#2| (-1269 |#1|))) (-15 -3431 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3815 ((-690 |#2|) |#1| (-1269 |#1|)))) (-412 |#2| |#3|) (-172) (-1245 |#2|)) (T -411)) -((-2706 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) (-2254 (*1 *2) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) (-4 *3 (-412 *2 *4))))) -(-10 -8 (-15 -3815 ((-690 |#2|) |#1|)) (-15 -2254 (|#2|)) (-15 -2706 ((-690 |#2|))) (-15 -1322 (|#1| (-1269 |#2|))) (-15 -1322 ((-1269 |#2|) |#1|)) (-15 -3431 (|#1| (-1269 |#2|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1|)) (-15 -3908 (|#3| |#1|)) (-15 -4019 (|#3| |#1|)) (-15 -2706 ((-690 |#2|) (-1269 |#1|))) (-15 -2254 (|#2| (-1269 |#1|))) (-15 -3431 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -3815 ((-690 |#2|) |#1| (-1269 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2706 (((-690 |#1|) (-1269 $)) 53) (((-690 |#1|)) 68)) (-3132 ((|#1| $) 59)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-3431 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-3815 (((-690 |#1|) $ (-1269 $)) 60) (((-690 |#1|) $) 66)) (-1377 (((-3 $ "failed") $) 37)) (-1471 (((-923)) 61)) (-4384 (((-112) $) 35)) (-2013 ((|#1| $) 58)) (-3908 ((|#2| $) 51 (|has| |#1| (-365)))) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2254 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-3237 (((-1269 |#1|) $ (-1269 $)) 57) (((-690 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-690 |#1|) (-1269 $)) 72)) (-1322 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-2318 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-4019 ((|#2| $) 52)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-4374 (((-1269 $)) 74)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-412 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -412)) -((-4374 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *1)) (-4 *1 (-412 *3 *4)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1245 *3)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1245 *3)))) (-2706 (*1 *2) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-690 *3)))) (-2254 (*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-690 *3))))) -(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -4374 ((-1269 $))) (-15 -3237 ((-1269 |t#1|) $)) (-15 -3237 ((-690 |t#1|) (-1269 $))) (-15 -3431 ($ (-1269 |t#1|))) (-15 -1322 ((-1269 |t#1|) $)) (-15 -1322 ($ (-1269 |t#1|))) (-15 -2706 ((-690 |t#1|))) (-15 -2254 (|t#1|)) (-15 -3815 ((-690 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-372 |#1| |#2|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) 27) (((-3 (-567) "failed") $) 19)) (-3094 ((|#2| $) NIL) (((-410 (-567)) $) 24) (((-567) $) 14)) (-2504 (($ |#2|) NIL) (($ (-410 (-567))) 22) (($ (-567)) 11))) -(((-413 |#1| |#2|) (-10 -8 (-15 -2504 (|#1| (-567))) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#1| |#2|))) (-414 |#2|) (-1219)) (T -413)) -NIL -(-10 -8 (-15 -2504 (|#1| (-567))) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#1| |#2|))) -((-4275 (((-3 |#1| "failed") $) 9) (((-3 (-410 (-567)) "failed") $) 16 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 13 (|has| |#1| (-1040 (-567))))) (-3094 ((|#1| $) 8) (((-410 (-567)) $) 17 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 14 (|has| |#1| (-1040 (-567))))) (-2504 (($ |#1|) 6) (($ (-410 (-567))) 15 (|has| |#1| (-1040 (-410 (-567))))) (($ (-567)) 12 (|has| |#1| (-1040 (-567)))))) -(((-414 |#1|) (-140) (-1219)) (T -414)) -NIL -(-13 (-1040 |t#1|) (-10 -7 (IF (|has| |t#1| (-1040 (-567))) (-6 (-1040 (-567))) |%noBranch|) (IF (|has| |t#1| (-1040 (-410 (-567)))) (-6 (-1040 (-410 (-567)))) |%noBranch|))) -(((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 #1=(-567)) |has| |#1| (-1040 (-567))) ((-617 |#1|) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 #1#) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T)) -((-4364 (((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)) 35))) -(((-415 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4364 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) (-308) (-994 |#1|) (-1245 |#2|) (-13 (-412 |#2| |#3|) (-1040 |#2|)) (-308) (-994 |#5|) (-1245 |#6|) (-13 (-412 |#6| |#7|) (-1040 |#6|))) (T -415)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *7 (-1245 *6)) (-4 *8 (-13 (-412 *6 *7) (-1040 *6))) (-4 *9 (-308)) (-4 *10 (-994 *9)) (-4 *11 (-1245 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-412 *10 *11) (-1040 *10)))))) -(-10 -7 (-15 -4364 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) -((-2487 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-4052 ((|#4| (-772) (-1269 |#4|)) 60)) (-4384 (((-112) $) NIL)) (-4294 (((-1269 |#4|) $) 17)) (-2013 ((|#2| $) 55)) (-2881 (($ $) 163)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 108)) (-3728 (($ (-1269 |#4|)) 107)) (-3479 (((-1122) $) NIL)) (-4306 ((|#1| $) 18)) (-3307 (($ $ $) NIL)) (-4033 (($ $ $) NIL)) (-2504 (((-863) $) 153)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 |#4|) $) 146)) (-1820 (($) 11 T CONST)) (-2968 (((-112) $ $) 41)) (-3064 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 139)) (* (($ $ $) 135))) -(((-416 |#1| |#2| |#3| |#4|) (-13 (-476) (-10 -8 (-15 -3728 ($ (-1269 |#4|))) (-15 -4374 ((-1269 |#4|) $)) (-15 -2013 (|#2| $)) (-15 -4294 ((-1269 |#4|) $)) (-15 -4306 (|#1| $)) (-15 -2881 ($ $)) (-15 -4052 (|#4| (-772) (-1269 |#4|))))) (-308) (-994 |#1|) (-1245 |#2|) (-13 (-412 |#2| |#3|) (-1040 |#2|))) (T -416)) -((-3728 (*1 *1 *2) (-12 (-5 *2 (-1269 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6)))) (-4374 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) (-2013 (*1 *2 *1) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1040 *2))))) (-4294 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) (-4306 (*1 *2 *1) (-12 (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-4 *2 (-308)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) (-2881 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1269 *2)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *2 (-13 (-412 *6 *7) (-1040 *6))) (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1245 *6))))) -(-13 (-476) (-10 -8 (-15 -3728 ($ (-1269 |#4|))) (-15 -4374 ((-1269 |#4|) $)) (-15 -2013 (|#2| $)) (-15 -4294 ((-1269 |#4|) $)) (-15 -4306 (|#1| $)) (-15 -2881 ($ $)) (-15 -4052 (|#4| (-772) (-1269 |#4|))))) -((-2487 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-2013 ((|#2| $) 71)) (-4231 (($ (-1269 |#4|)) 27) (($ (-416 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1040 |#2|)))) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 37)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 |#4|) $) 28)) (-1820 (($) 25 T CONST)) (-2968 (((-112) $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ $ $) 82))) -(((-417 |#1| |#2| |#3| |#4| |#5|) (-13 (-727) (-10 -8 (-15 -4374 ((-1269 |#4|) $)) (-15 -2013 (|#2| $)) (-15 -4231 ($ (-1269 |#4|))) (IF (|has| |#4| (-1040 |#2|)) (-15 -4231 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-994 |#1|) (-1245 |#2|) (-412 |#2| |#3|) (-1269 |#4|)) (T -417)) -((-4374 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-4 *6 (-412 *4 *5)) (-14 *7 *2))) (-2013 (*1 *2 *1) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) (-14 *6 (-1269 *5)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-1269 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1040 *4)) (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *6 (-412 *4 *5)) (-14 *7 (-1269 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))))) -(-13 (-727) (-10 -8 (-15 -4374 ((-1269 |#4|) $)) (-15 -2013 (|#2| $)) (-15 -4231 ($ (-1269 |#4|))) (IF (|has| |#4| (-1040 |#2|)) (-15 -4231 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4364 ((|#3| (-1 |#4| |#2|) |#1|) 32))) -(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#3| (-1 |#4| |#2|) |#1|))) (-420 |#2|) (-172) (-420 |#4|) (-172)) (T -418)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5))))) -(-10 -7 (-15 -4364 (|#3| (-1 |#4| |#2|) |#1|))) -((-3414 (((-3 $ "failed")) 99)) (-1998 (((-1269 (-690 |#2|)) (-1269 $)) NIL) (((-1269 (-690 |#2|))) 104)) (-2670 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) 97)) (-3865 (((-3 $ "failed")) 96)) (-1426 (((-690 |#2|) (-1269 $)) NIL) (((-690 |#2|)) 115)) (-4170 (((-690 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) $) 123)) (-3657 (((-1175 (-954 |#2|))) 65)) (-2260 ((|#2| (-1269 $)) NIL) ((|#2|) 119)) (-3431 (($ (-1269 |#2|) (-1269 $)) NIL) (($ (-1269 |#2|)) 125)) (-1478 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) 95)) (-3363 (((-3 $ "failed")) 87)) (-4221 (((-690 |#2|) (-1269 $)) NIL) (((-690 |#2|)) 113)) (-3969 (((-690 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) $) 121)) (-2626 (((-1175 (-954 |#2|))) 64)) (-1741 ((|#2| (-1269 $)) NIL) ((|#2|) 117)) (-3237 (((-1269 |#2|) $ (-1269 $)) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 124) (((-690 |#2|) (-1269 $)) 133)) (-1322 (((-1269 |#2|) $) 109) (($ (-1269 |#2|)) 111)) (-3869 (((-645 (-954 |#2|)) (-1269 $)) NIL) (((-645 (-954 |#2|))) 107)) (-3384 (($ (-690 |#2|) $) 103))) -(((-419 |#1| |#2|) (-10 -8 (-15 -3384 (|#1| (-690 |#2|) |#1|)) (-15 -3657 ((-1175 (-954 |#2|)))) (-15 -2626 ((-1175 (-954 |#2|)))) (-15 -4170 ((-690 |#2|) |#1|)) (-15 -3969 ((-690 |#2|) |#1|)) (-15 -1426 ((-690 |#2|))) (-15 -4221 ((-690 |#2|))) (-15 -2260 (|#2|)) (-15 -1741 (|#2|)) (-15 -1322 (|#1| (-1269 |#2|))) (-15 -1322 ((-1269 |#2|) |#1|)) (-15 -3431 (|#1| (-1269 |#2|))) (-15 -3869 ((-645 (-954 |#2|)))) (-15 -1998 ((-1269 (-690 |#2|)))) (-15 -3237 ((-690 |#2|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1|)) (-15 -3414 ((-3 |#1| "failed"))) (-15 -3865 ((-3 |#1| "failed"))) (-15 -3363 ((-3 |#1| "failed"))) (-15 -2670 ((-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-645 |#1|))) "failed"))) (-15 -1478 ((-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-645 |#1|))) "failed"))) (-15 -1426 ((-690 |#2|) (-1269 |#1|))) (-15 -4221 ((-690 |#2|) (-1269 |#1|))) (-15 -2260 (|#2| (-1269 |#1|))) (-15 -1741 (|#2| (-1269 |#1|))) (-15 -3431 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -4170 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -3969 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -1998 ((-1269 (-690 |#2|)) (-1269 |#1|))) (-15 -3869 ((-645 (-954 |#2|)) (-1269 |#1|)))) (-420 |#2|) (-172)) (T -419)) -((-1998 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-3869 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1741 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-2260 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-4221 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1426 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2626 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1175 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-3657 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1175 (-954 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4))))) -(-10 -8 (-15 -3384 (|#1| (-690 |#2|) |#1|)) (-15 -3657 ((-1175 (-954 |#2|)))) (-15 -2626 ((-1175 (-954 |#2|)))) (-15 -4170 ((-690 |#2|) |#1|)) (-15 -3969 ((-690 |#2|) |#1|)) (-15 -1426 ((-690 |#2|))) (-15 -4221 ((-690 |#2|))) (-15 -2260 (|#2|)) (-15 -1741 (|#2|)) (-15 -1322 (|#1| (-1269 |#2|))) (-15 -1322 ((-1269 |#2|) |#1|)) (-15 -3431 (|#1| (-1269 |#2|))) (-15 -3869 ((-645 (-954 |#2|)))) (-15 -1998 ((-1269 (-690 |#2|)))) (-15 -3237 ((-690 |#2|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1|)) (-15 -3414 ((-3 |#1| "failed"))) (-15 -3865 ((-3 |#1| "failed"))) (-15 -3363 ((-3 |#1| "failed"))) (-15 -2670 ((-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-645 |#1|))) "failed"))) (-15 -1478 ((-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-645 |#1|))) "failed"))) (-15 -1426 ((-690 |#2|) (-1269 |#1|))) (-15 -4221 ((-690 |#2|) (-1269 |#1|))) (-15 -2260 (|#2| (-1269 |#1|))) (-15 -1741 (|#2| (-1269 |#1|))) (-15 -3431 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3237 ((-690 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3237 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -4170 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -3969 ((-690 |#2|) |#1| (-1269 |#1|))) (-15 -1998 ((-1269 (-690 |#2|)) (-1269 |#1|))) (-15 -3869 ((-645 (-954 |#2|)) (-1269 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3414 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) 20)) (-1998 (((-1269 (-690 |#1|)) (-1269 $)) 83) (((-1269 (-690 |#1|))) 105)) (-1931 (((-1269 $)) 86)) (-3758 (($) 18 T CONST)) (-2670 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-3865 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1426 (((-690 |#1|) (-1269 $)) 70) (((-690 |#1|)) 97)) (-4114 ((|#1| $) 79)) (-4170 (((-690 |#1|) $ (-1269 $)) 81) (((-690 |#1|) $) 95)) (-1511 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-3657 (((-1175 (-954 |#1|))) 93 (|has| |#1| (-365)))) (-3497 (($ $ (-923)) 31)) (-1607 ((|#1| $) 77)) (-1375 (((-1175 |#1|) $) 47 (|has| |#1| (-559)))) (-2260 ((|#1| (-1269 $)) 72) ((|#1|) 99)) (-3542 (((-1175 |#1|) $) 68)) (-3134 (((-112)) 62)) (-3431 (($ (-1269 |#1|) (-1269 $)) 74) (($ (-1269 |#1|)) 103)) (-1377 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-1471 (((-923)) 85)) (-1586 (((-112)) 59)) (-2258 (($ $ (-923)) 38)) (-3604 (((-112)) 55)) (-3703 (((-112)) 53)) (-3504 (((-112)) 57)) (-1478 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-3363 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-4221 (((-690 |#1|) (-1269 $)) 71) (((-690 |#1|)) 98)) (-2726 ((|#1| $) 80)) (-3969 (((-690 |#1|) $ (-1269 $)) 82) (((-690 |#1|) $) 96)) (-3822 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-2626 (((-1175 (-954 |#1|))) 94 (|has| |#1| (-365)))) (-2310 (($ $ (-923)) 32)) (-2152 ((|#1| $) 78)) (-3485 (((-1175 |#1|) $) 48 (|has| |#1| (-559)))) (-1741 ((|#1| (-1269 $)) 73) ((|#1|) 100)) (-3522 (((-1175 |#1|) $) 69)) (-1830 (((-112)) 63)) (-1812 (((-1161) $) 10)) (-3403 (((-112)) 54)) (-2905 (((-112)) 56)) (-2541 (((-112)) 58)) (-3479 (((-1122) $) 11)) (-2779 (((-112)) 61)) (-1882 ((|#1| $ (-567)) 106)) (-3237 (((-1269 |#1|) $ (-1269 $)) 76) (((-690 |#1|) (-1269 $) (-1269 $)) 75) (((-1269 |#1|) $) 108) (((-690 |#1|) (-1269 $)) 107)) (-1322 (((-1269 |#1|) $) 102) (($ (-1269 |#1|)) 101)) (-3869 (((-645 (-954 |#1|)) (-1269 $)) 84) (((-645 (-954 |#1|))) 104)) (-4033 (($ $ $) 28)) (-2441 (((-112)) 67)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-4374 (((-1269 $)) 109)) (-3477 (((-645 (-1269 |#1|))) 49 (|has| |#1| (-559)))) (-2862 (($ $ $ $) 29)) (-3527 (((-112)) 65)) (-3384 (($ (-690 |#1|) $) 92)) (-1793 (($ $ $) 27)) (-1959 (((-112)) 66)) (-3358 (((-112)) 64)) (-2035 (((-112)) 60)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-420 |#1|) (-140) (-172)) (T -420)) -((-4374 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-420 *3)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-1998 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 (-690 *3))))) (-3869 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-954 *3))))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-1741 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2260 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-4221 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-1426 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-2626 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1175 (-954 *3))))) (-3657 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1175 (-954 *3))))) (-3384 (*1 *1 *2 *1) (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172))))) -(-13 (-369 |t#1|) (-10 -8 (-15 -4374 ((-1269 $))) (-15 -3237 ((-1269 |t#1|) $)) (-15 -3237 ((-690 |t#1|) (-1269 $))) (-15 -1882 (|t#1| $ (-567))) (-15 -1998 ((-1269 (-690 |t#1|)))) (-15 -3869 ((-645 (-954 |t#1|)))) (-15 -3431 ($ (-1269 |t#1|))) (-15 -1322 ((-1269 |t#1|) $)) (-15 -1322 ($ (-1269 |t#1|))) (-15 -1741 (|t#1|)) (-15 -2260 (|t#1|)) (-15 -4221 ((-690 |t#1|))) (-15 -1426 ((-690 |t#1|))) (-15 -3969 ((-690 |t#1|) $)) (-15 -4170 ((-690 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2626 ((-1175 (-954 |t#1|)))) (-15 -3657 ((-1175 (-954 |t#1|))))) |%noBranch|) (-15 -3384 ($ (-690 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-369 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 60)) (-1411 (($ $) 78)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 191)) (-1987 (($ $) NIL)) (-3342 (((-112) $) 48)) (-3414 ((|#1| $) 16)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| |#1| (-1223)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-1223)))) (-3850 (($ |#1| (-567)) 42)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 148)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 74)) (-1377 (((-3 $ "failed") $) 164)) (-3810 (((-3 (-410 (-567)) "failed") $) 84 (|has| |#1| (-548)))) (-1527 (((-112) $) 80 (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) 91 (|has| |#1| (-548)))) (-3177 (($ |#1| (-567)) 44)) (-2946 (((-112) $) 213 (|has| |#1| (-1223)))) (-4384 (((-112) $) 62)) (-2267 (((-772) $) 51)) (-2949 (((-3 "nil" "sqfr" "irred" "prime") $ (-567)) 175)) (-3102 ((|#1| $ (-567)) 174)) (-1638 (((-567) $ (-567)) 173)) (-2167 (($ |#1| (-567)) 41)) (-4364 (($ (-1 |#1| |#1|) $) 183)) (-2218 (($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567))))) 79)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1812 (((-1161) $) NIL)) (-3317 (($ |#1| (-567)) 43)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 192 (|has| |#1| (-455)))) (-3333 (($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1444 (((-645 (-2 (|:| -3661 |#1|) (|:| -2618 (-567)))) $) 73)) (-4351 (((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $) 12)) (-3661 (((-421 $) $) NIL (|has| |#1| (-1223)))) (-2478 (((-3 $ "failed") $ $) 176)) (-2618 (((-567) $) 167)) (-4382 ((|#1| $) 75)) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 106 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) $) NIL (|has| |#1| (-517 (-1179) $))) (($ $ (-645 (-1179)) (-645 $)) 107 (|has| |#1| (-517 (-1179) $))) (($ $ (-645 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-645 $) (-645 $)) NIL (|has| |#1| (-310 $)))) (-1882 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-3592 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-1322 (((-539) $) 39 (|has| |#1| (-615 (-539)))) (((-381) $) 113 (|has| |#1| (-1024))) (((-225) $) 119 (|has| |#1| (-1024)))) (-2504 (((-863) $) 146) (($ (-567)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567)))))) (-2214 (((-772)) 67 T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) 53 T CONST)) (-1820 (($) 52 T CONST)) (-2856 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) 159)) (-3054 (($ $) 161) (($ $ $) NIL)) (-3045 (($ $ $) 180)) (** (($ $ (-923)) NIL) (($ $ (-772)) 125)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-421 |#1|) (-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -4382 (|#1| $)) (-15 -2618 ((-567) $)) (-15 -2218 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -4351 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -2167 ($ |#1| (-567))) (-15 -1444 ((-645 (-2 (|:| -3661 |#1|) (|:| -2618 (-567)))) $)) (-15 -3317 ($ |#1| (-567))) (-15 -1638 ((-567) $ (-567))) (-15 -3102 (|#1| $ (-567))) (-15 -2949 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -2267 ((-772) $)) (-15 -3177 ($ |#1| (-567))) (-15 -3850 ($ |#1| (-567))) (-15 -3333 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3414 (|#1| $)) (-15 -1411 ($ $)) (-15 -4364 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1223)) (-6 (-1223)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1179) $)) (-6 (-517 (-1179) $)) |%noBranch|))) (-559)) (T -421)) -((-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3)))) (-4382 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2218 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-567))))) (-4 *2 (-559)) (-5 *1 (-421 *2)))) (-4351 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2167 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -3661 *3) (|:| -2618 (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-3317 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1638 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *4)) (-4 *4 (-559)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-3177 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3850 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3333 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3414 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1411 (*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559))))) -(-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -4382 (|#1| $)) (-15 -2618 ((-567) $)) (-15 -2218 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -4351 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -2167 ($ |#1| (-567))) (-15 -1444 ((-645 (-2 (|:| -3661 |#1|) (|:| -2618 (-567)))) $)) (-15 -3317 ($ |#1| (-567))) (-15 -1638 ((-567) $ (-567))) (-15 -3102 (|#1| $ (-567))) (-15 -2949 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -2267 ((-772) $)) (-15 -3177 ($ |#1| (-567))) (-15 -3850 ($ |#1| (-567))) (-15 -3333 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3414 (|#1| $)) (-15 -1411 ($ $)) (-15 -4364 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |#1| (-1223)) (-6 (-1223)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1179) $)) (-6 (-517 (-1179) $)) |%noBranch|))) -((-2548 (((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|)) 28)) (-1728 (((-421 |#1|) (-421 |#1|) (-421 |#1|)) 17))) -(((-422 |#1|) (-10 -7 (-15 -2548 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -1728 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) (-559)) (T -422)) -((-1728 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))) (-2548 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) (-5 *1 (-422 *4))))) -(-10 -7 (-15 -2548 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -1728 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) -((-2356 ((|#2| |#2|) 183)) (-2355 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112)) 60))) -(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2355 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112))) (-15 -2356 (|#2| |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|)) (-1179) |#2|) (T -423)) -((-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1204) (-433 *3))) (-14 *4 (-1179)) (-14 *5 *2))) (-2355 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-14 *6 (-1179)) (-14 *7 *3)))) -(-10 -7 (-15 -2355 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112))) (-15 -2356 (|#2| |#2|))) -((-4364 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#4| (-1 |#3| |#1|) |#2|))) (-1051) (-433 |#1|) (-1051) (-433 |#3|)) (T -424)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5))))) -(-10 -7 (-15 -4364 (|#4| (-1 |#3| |#1|) |#2|))) -((-2356 ((|#2| |#2|) 106)) (-3573 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161)) 52)) (-3596 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161)) 171))) -(((-425 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3573 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161))) (-15 -3596 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161))) (-15 -2356 (|#2| |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|) (-10 -8 (-15 -2504 ($ |#3|)))) (-849) (-13 (-1247 |#2| |#3|) (-365) (-1204) (-10 -8 (-15 -3592 ($ $)) (-15 -3670 ($ $)))) (-985 |#4|) (-1179)) (T -425)) -((-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *2 (-13 (-27) (-1204) (-433 *3) (-10 -8 (-15 -2504 ($ *4))))) (-4 *4 (-849)) (-4 *5 (-13 (-1247 *2 *4) (-365) (-1204) (-10 -8 (-15 -3592 ($ $)) (-15 -3670 ($ $))))) (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-985 *5)) (-14 *7 (-1179)))) (-3596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1204) (-433 *6) (-10 -8 (-15 -2504 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1247 *3 *7) (-365) (-1204) (-10 -8 (-15 -3592 ($ $)) (-15 -3670 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1161)) (-4 *9 (-985 *8)) (-14 *10 (-1179)))) (-3573 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1204) (-433 *6) (-10 -8 (-15 -2504 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1247 *3 *7) (-365) (-1204) (-10 -8 (-15 -3592 ($ $)) (-15 -3670 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1161)) (-4 *9 (-985 *8)) (-14 *10 (-1179))))) -(-10 -7 (-15 -3573 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161))) (-15 -3596 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161))))) |#2| (-112) (-1161))) (-15 -2356 (|#2| |#2|))) -((-4309 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2617 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4364 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2617 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4309 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1102) (-428 |#1|) (-1102) (-428 |#3|)) (T -426)) -((-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1102)) (-4 *5 (-1102)) (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) (-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1102)) (-4 *2 (-1102)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5))))) -(-10 -7 (-15 -4364 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2617 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4309 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1738 (($) 52)) (-3855 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-1321 (($ $ $) 45)) (-3103 (((-112) $ $) 34)) (-3404 (((-772)) 56)) (-4191 (($ (-645 |#2|)) 23) (($) NIL)) (-2119 (($) 67)) (-2117 (((-112) $ $) 15)) (-2727 ((|#2| $) 78)) (-1446 ((|#2| $) 76)) (-2667 (((-923) $) 71)) (-3873 (($ $ $) 41)) (-2188 (($ (-923)) 61)) (-2828 (($ $ |#2|) NIL) (($ $ $) 44)) (-3486 (((-772) (-1 (-112) |#2|) $) NIL) (((-772) |#2| $) 31)) (-2516 (($ (-645 |#2|)) 27)) (-3925 (($ $) 54)) (-2504 (((-863) $) 39)) (-2091 (((-772) $) 24)) (-3719 (($ (-645 |#2|)) 22) (($) NIL)) (-2968 (((-112) $ $) 19))) -(((-427 |#1| |#2|) (-10 -8 (-15 -3404 ((-772))) (-15 -2188 (|#1| (-923))) (-15 -2667 ((-923) |#1|)) (-15 -2119 (|#1|)) (-15 -2727 (|#2| |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -1738 (|#1|)) (-15 -3925 (|#1| |#1|)) (-15 -2091 ((-772) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2117 ((-112) |#1| |#1|)) (-15 -3719 (|#1|)) (-15 -3719 (|#1| (-645 |#2|))) (-15 -4191 (|#1|)) (-15 -4191 (|#1| (-645 |#2|))) (-15 -3873 (|#1| |#1| |#1|)) (-15 -2828 (|#1| |#1| |#1|)) (-15 -2828 (|#1| |#1| |#2|)) (-15 -1321 (|#1| |#1| |#1|)) (-15 -3103 ((-112) |#1| |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3855 (|#1| |#1| |#2|)) (-15 -3855 (|#1| |#2| |#1|)) (-15 -2516 (|#1| (-645 |#2|))) (-15 -3486 ((-772) |#2| |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|))) (-428 |#2|) (-1102)) (T -427)) -((-3404 (*1 *2) (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4))))) -(-10 -8 (-15 -3404 ((-772))) (-15 -2188 (|#1| (-923))) (-15 -2667 ((-923) |#1|)) (-15 -2119 (|#1|)) (-15 -2727 (|#2| |#1|)) (-15 -1446 (|#2| |#1|)) (-15 -1738 (|#1|)) (-15 -3925 (|#1| |#1|)) (-15 -2091 ((-772) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2117 ((-112) |#1| |#1|)) (-15 -3719 (|#1|)) (-15 -3719 (|#1| (-645 |#2|))) (-15 -4191 (|#1|)) (-15 -4191 (|#1| (-645 |#2|))) (-15 -3873 (|#1| |#1| |#1|)) (-15 -2828 (|#1| |#1| |#1|)) (-15 -2828 (|#1| |#1| |#2|)) (-15 -1321 (|#1| |#1| |#1|)) (-15 -3103 ((-112) |#1| |#1|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -3855 (|#1| |#1| |#2|)) (-15 -3855 (|#1| |#2| |#1|)) (-15 -2516 (|#1| (-645 |#2|))) (-15 -3486 ((-772) |#2| |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|))) -((-2487 (((-112) $ $) 19)) (-1738 (($) 68 (|has| |#1| (-370)))) (-3855 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-1321 (($ $ $) 79)) (-3103 (((-112) $ $) 80)) (-1555 (((-112) $ (-772)) 8)) (-3404 (((-772)) 62 (|has| |#1| (-370)))) (-4191 (($ (-645 |#1|)) 75) (($) 74)) (-2105 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3470 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-1695 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-2119 (($) 65 (|has| |#1| (-370)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2117 (((-112) $ $) 71)) (-3753 (((-112) $ (-772)) 9)) (-2727 ((|#1| $) 66 (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1446 ((|#1| $) 67 (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-2667 (((-923) $) 64 (|has| |#1| (-370)))) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22)) (-3873 (($ $ $) 76)) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41)) (-2188 (($ (-923)) 63 (|has| |#1| (-370)))) (-3479 (((-1122) $) 21)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-2828 (($ $ |#1|) 78) (($ $ $) 77)) (-2730 (($) 50) (($ (-645 |#1|)) 49)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 51)) (-3925 (($ $) 69 (|has| |#1| (-370)))) (-2504 (((-863) $) 18)) (-2091 (((-772) $) 70)) (-3719 (($ (-645 |#1|)) 73) (($) 72)) (-3858 (((-112) $ $) 23)) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20)) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-428 |#1|) (-140) (-1102)) (T -428)) -((-2091 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-3925 (*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-370)))) (-1738 (*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1102)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851))))) -(-13 (-229 |t#1|) (-1100 |t#1|) (-10 -8 (-6 -4422) (-15 -2091 ((-772) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -3925 ($ $)) (-15 -1738 ($))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -1446 (|t#1| $)) (-15 -2727 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-370) |has| |#1| (-370)) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1100 |#1|) . T) ((-1102) . T) ((-1219) . T)) -((-2890 (((-588 |#2|) |#2| (-1179)) 36)) (-2865 (((-588 |#2|) |#2| (-1179)) 21)) (-3258 ((|#2| |#2| (-1179)) 26))) -(((-429 |#1| |#2|) (-10 -7 (-15 -2865 ((-588 |#2|) |#2| (-1179))) (-15 -2890 ((-588 |#2|) |#2| (-1179))) (-15 -3258 (|#2| |#2| (-1179)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-29 |#1|))) (T -429)) -((-3258 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1204) (-29 *4))))) (-2890 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1204) (-29 *5))))) (-2865 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1204) (-29 *5)))))) -(-10 -7 (-15 -2865 ((-588 |#2|) |#2| (-1179))) (-15 -2890 ((-588 |#2|) |#2| (-1179))) (-15 -3258 (|#2| |#2| (-1179)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-3726 (($ |#2| |#1|) 37)) (-3828 (($ |#2| |#1|) 35)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 10 T CONST)) (-1820 (($) 16 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 36)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-430 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4409)) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|) |%noBranch|) (-15 -2504 ($ |#1|)) (-15 -2504 ($ (-332 |#2|))) (-15 -3726 ($ |#2| |#1|)) (-15 -3828 ($ |#2| |#1|)))) (-13 (-172) (-38 (-410 (-567)))) (-13 (-851) (-21))) (T -430)) -((-2504 (*1 *1 *2) (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567))))) (-4 *3 (-13 (-851) (-21))))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21))) (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))))) (-3726 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))) (-3828 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4409)) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|) |%noBranch|) (-15 -2504 ($ |#1|)) (-15 -2504 ($ (-332 |#2|))) (-15 -3726 ($ |#2| |#1|)) (-15 -3828 ($ |#2| |#1|)))) -((-3670 (((-3 |#2| (-645 |#2|)) |#2| (-1179)) 115))) -(((-431 |#1| |#2|) (-10 -7 (-15 -3670 ((-3 |#2| (-645 |#2|)) |#2| (-1179)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-961) (-29 |#1|))) (T -431)) -((-3670 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1204) (-961) (-29 *5)))))) -(-10 -7 (-15 -3670 ((-3 |#2| (-645 |#2|)) |#2| (-1179)))) -((-3783 (((-645 (-1179)) $) 81)) (-3633 (((-410 (-1175 $)) $ (-613 $)) 314)) (-3072 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) 278)) (-4275 (((-3 (-613 $) "failed") $) NIL) (((-3 (-1179) "failed") $) 84) (((-3 (-567) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-410 (-954 |#2|)) "failed") $) 364) (((-3 (-954 |#2|) "failed") $) 276) (((-3 (-410 (-567)) "failed") $) NIL)) (-3094 (((-613 $) $) NIL) (((-1179) $) 28) (((-567) $) NIL) ((|#2| $) 272) (((-410 (-954 |#2|)) $) 346) (((-954 |#2|) $) 273) (((-410 (-567)) $) NIL)) (-3609 (((-114) (-114)) 47)) (-1550 (($ $) 99)) (-2126 (((-3 (-613 $) "failed") $) 269)) (-3599 (((-645 (-613 $)) $) 270)) (-4056 (((-3 (-645 $) "failed") $) 288)) (-1415 (((-3 (-2 (|:| |val| $) (|:| -2618 (-567))) "failed") $) 295)) (-3655 (((-3 (-645 $) "failed") $) 286)) (-3918 (((-3 (-2 (|:| -1344 (-567)) (|:| |var| (-613 $))) "failed") $) 305)) (-2873 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $) 292) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-1179)) 258)) (-1762 (((-112) $) 17)) (-1774 ((|#2| $) 19)) (-2913 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 277) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) 109) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1179)) 62) (($ $ (-645 (-1179))) 281) (($ $) 282) (($ $ (-114) $ (-1179)) 65) (($ $ (-645 (-114)) (-645 $) (-1179)) 72) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $))) 120) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 283) (($ $ (-1179) (-772) (-1 $ (-645 $))) 105) (($ $ (-1179) (-772) (-1 $ $)) 104)) (-1882 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) 119)) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) 279)) (-2964 (($ $) 325)) (-1322 (((-894 (-567)) $) 298) (((-894 (-381)) $) 302) (($ (-421 $)) 360) (((-539) $) NIL)) (-2504 (((-863) $) 280) (($ (-613 $)) 93) (($ (-1179)) 24) (($ |#2|) NIL) (($ (-1127 |#2| (-613 $))) NIL) (($ (-410 |#2|)) 330) (($ (-954 (-410 |#2|))) 369) (($ (-410 (-954 (-410 |#2|)))) 342) (($ (-410 (-954 |#2|))) 336) (($ $) NIL) (($ (-954 |#2|)) 218) (($ (-410 (-567))) 374) (($ (-567)) NIL)) (-2214 (((-772)) 88)) (-3862 (((-112) (-114)) 42)) (-1541 (($ (-1179) $) 31) (($ (-1179) $ $) 32) (($ (-1179) $ $ $) 33) (($ (-1179) $ $ $ $) 34) (($ (-1179) (-645 $)) 39)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL))) -(((-432 |#1| |#2|) (-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2504 (|#1| (-567))) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-410 (-567)))) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -2504 (|#1| (-954 |#2|))) (-15 -4275 ((-3 (-954 |#2|) "failed") |#1|)) (-15 -3094 ((-954 |#2|) |#1|)) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2504 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2504 (|#1| (-410 (-954 |#2|)))) (-15 -4275 ((-3 (-410 (-954 |#2|)) "failed") |#1|)) (-15 -3094 ((-410 (-954 |#2|)) |#1|)) (-15 -3633 ((-410 (-1175 |#1|)) |#1| (-613 |#1|))) (-15 -2504 (|#1| (-410 (-954 (-410 |#2|))))) (-15 -2504 (|#1| (-954 (-410 |#2|)))) (-15 -2504 (|#1| (-410 |#2|))) (-15 -2964 (|#1| |#1|)) (-15 -1322 (|#1| (-421 |#1|))) (-15 -2913 (|#1| |#1| (-1179) (-772) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-1179) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -1415 ((-3 (-2 (|:| |val| |#1|) (|:| -2618 (-567))) "failed") |#1|)) (-15 -2873 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2618 (-567))) "failed") |#1| (-1179))) (-15 -2873 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2618 (-567))) "failed") |#1| (-114))) (-15 -1550 (|#1| |#1|)) (-15 -2504 (|#1| (-1127 |#2| (-613 |#1|)))) (-15 -3918 ((-3 (-2 (|:| -1344 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3655 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2873 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2618 (-567))) "failed") |#1|)) (-15 -4056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1179))) (-15 -2913 (|#1| |#1| (-114) |#1| (-1179))) (-15 -2913 (|#1| |#1|)) (-15 -2913 (|#1| |#1| (-645 (-1179)))) (-15 -2913 (|#1| |#1| (-1179))) (-15 -1541 (|#1| (-1179) (-645 |#1|))) (-15 -1541 (|#1| (-1179) |#1| |#1| |#1| |#1|)) (-15 -1541 (|#1| (-1179) |#1| |#1| |#1|)) (-15 -1541 (|#1| (-1179) |#1| |#1|)) (-15 -1541 (|#1| (-1179) |#1|)) (-15 -3783 ((-645 (-1179)) |#1|)) (-15 -1774 (|#2| |#1|)) (-15 -1762 ((-112) |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -2504 (|#1| (-1179))) (-15 -4275 ((-3 (-1179) "failed") |#1|)) (-15 -3094 ((-1179) |#1|)) (-15 -2913 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2913 (|#1| |#1| (-1179) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-1179) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| |#1|)))) (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -3599 ((-645 (-613 |#1|)) |#1|)) (-15 -2126 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3072 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3072 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3072 (|#1| |#1| (-295 |#1|))) (-15 -1882 (|#1| (-114) (-645 |#1|))) (-15 -1882 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2913 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -2504 (|#1| (-613 |#1|))) (-15 -4275 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3094 ((-613 |#1|) |#1|)) (-15 -2504 ((-863) |#1|))) (-433 |#2|) (-1102)) (T -432)) -((-3609 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1102)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-2214 (*1 *2) (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4))))) -(-10 -8 (-15 * (|#1| (-923) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2504 (|#1| (-567))) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-410 (-567)))) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -2504 (|#1| (-954 |#2|))) (-15 -4275 ((-3 (-954 |#2|) "failed") |#1|)) (-15 -3094 ((-954 |#2|) |#1|)) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2504 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -2504 (|#1| (-410 (-954 |#2|)))) (-15 -4275 ((-3 (-410 (-954 |#2|)) "failed") |#1|)) (-15 -3094 ((-410 (-954 |#2|)) |#1|)) (-15 -3633 ((-410 (-1175 |#1|)) |#1| (-613 |#1|))) (-15 -2504 (|#1| (-410 (-954 (-410 |#2|))))) (-15 -2504 (|#1| (-954 (-410 |#2|)))) (-15 -2504 (|#1| (-410 |#2|))) (-15 -2964 (|#1| |#1|)) (-15 -1322 (|#1| (-421 |#1|))) (-15 -2913 (|#1| |#1| (-1179) (-772) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-1179) (-772) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -1415 ((-3 (-2 (|:| |val| |#1|) (|:| -2618 (-567))) "failed") |#1|)) (-15 -2873 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2618 (-567))) "failed") |#1| (-1179))) (-15 -2873 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2618 (-567))) "failed") |#1| (-114))) (-15 -1550 (|#1| |#1|)) (-15 -2504 (|#1| (-1127 |#2| (-613 |#1|)))) (-15 -3918 ((-3 (-2 (|:| -1344 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3655 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2873 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2618 (-567))) "failed") |#1|)) (-15 -4056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1179))) (-15 -2913 (|#1| |#1| (-114) |#1| (-1179))) (-15 -2913 (|#1| |#1|)) (-15 -2913 (|#1| |#1| (-645 (-1179)))) (-15 -2913 (|#1| |#1| (-1179))) (-15 -1541 (|#1| (-1179) (-645 |#1|))) (-15 -1541 (|#1| (-1179) |#1| |#1| |#1| |#1|)) (-15 -1541 (|#1| (-1179) |#1| |#1| |#1|)) (-15 -1541 (|#1| (-1179) |#1| |#1|)) (-15 -1541 (|#1| (-1179) |#1|)) (-15 -3783 ((-645 (-1179)) |#1|)) (-15 -1774 (|#2| |#1|)) (-15 -1762 ((-112) |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -2504 (|#1| (-1179))) (-15 -4275 ((-3 (-1179) "failed") |#1|)) (-15 -3094 ((-1179) |#1|)) (-15 -2913 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -2913 (|#1| |#1| (-1179) (-1 |#1| |#1|))) (-15 -2913 (|#1| |#1| (-1179) (-1 |#1| (-645 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2913 (|#1| |#1| (-645 (-1179)) (-645 (-1 |#1| |#1|)))) (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -3599 ((-645 (-613 |#1|)) |#1|)) (-15 -2126 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3072 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3072 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3072 (|#1| |#1| (-295 |#1|))) (-15 -1882 (|#1| (-114) (-645 |#1|))) (-15 -1882 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1| |#1|)) (-15 -1882 (|#1| (-114) |#1|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2913 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -2913 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -2504 (|#1| (-613 |#1|))) (-15 -4275 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3094 ((-613 |#1|) |#1|)) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 116 (|has| |#1| (-25)))) (-3783 (((-645 (-1179)) $) 203)) (-3633 (((-410 (-1175 $)) $ (-613 $)) 171 (|has| |#1| (-559)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 143 (|has| |#1| (-559)))) (-1987 (($ $) 144 (|has| |#1| (-559)))) (-3342 (((-112) $) 146 (|has| |#1| (-559)))) (-3526 (((-645 (-613 $)) $) 39)) (-2932 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3072 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3864 (($ $) 163 (|has| |#1| (-559)))) (-1466 (((-421 $) $) 164 (|has| |#1| (-559)))) (-4175 (((-112) $ $) 154 (|has| |#1| (-559)))) (-3758 (($) 104 (-2836 (|has| |#1| (-1114)) (|has| |#1| (-25))) CONST)) (-4275 (((-3 (-613 $) "failed") $) 64) (((-3 (-1179) "failed") $) 216) (((-3 (-567) "failed") $) 210 (|has| |#1| (-1040 (-567)))) (((-3 |#1| "failed") $) 207) (((-3 (-410 (-954 |#1|)) "failed") $) 169 (|has| |#1| (-559))) (((-3 (-954 |#1|) "failed") $) 123 (|has| |#1| (-1051))) (((-3 (-410 (-567)) "failed") $) 98 (-2836 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-3094 (((-613 $) $) 65) (((-1179) $) 217) (((-567) $) 209 (|has| |#1| (-1040 (-567)))) ((|#1| $) 208) (((-410 (-954 |#1|)) $) 170 (|has| |#1| (-559))) (((-954 |#1|) $) 124 (|has| |#1| (-1051))) (((-410 (-567)) $) 99 (-2836 (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567))))))) (-2432 (($ $ $) 158 (|has| |#1| (-559)))) (-2690 (((-690 (-567)) (-690 $)) 137 (-1750 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 136 (-1750 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 135 (|has| |#1| (-1051))) (((-690 |#1|) (-690 $)) 134 (|has| |#1| (-1051)))) (-1377 (((-3 $ "failed") $) 106 (|has| |#1| (-1114)))) (-2443 (($ $ $) 157 (|has| |#1| (-559)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 152 (|has| |#1| (-559)))) (-2946 (((-112) $) 165 (|has| |#1| (-559)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 212 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 211 (|has| |#1| (-888 (-381))))) (-2998 (($ $) 46) (($ (-645 $)) 45)) (-2131 (((-645 (-114)) $) 38)) (-3609 (((-114) (-114)) 37)) (-4384 (((-112) $) 105 (|has| |#1| (-1114)))) (-3807 (((-112) $) 17 (|has| $ (-1040 (-567))))) (-1550 (($ $) 186 (|has| |#1| (-1051)))) (-4294 (((-1127 |#1| (-613 $)) $) 187 (|has| |#1| (-1051)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 161 (|has| |#1| (-559)))) (-1935 (((-1175 $) (-613 $)) 20 (|has| $ (-1051)))) (-4364 (($ (-1 $ $) (-613 $)) 31)) (-2126 (((-3 (-613 $) "failed") $) 41)) (-1831 (($ (-645 $)) 150 (|has| |#1| (-559))) (($ $ $) 149 (|has| |#1| (-559)))) (-1812 (((-1161) $) 10)) (-3599 (((-645 (-613 $)) $) 40)) (-4369 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-4056 (((-3 (-645 $) "failed") $) 192 (|has| |#1| (-1114)))) (-1415 (((-3 (-2 (|:| |val| $) (|:| -2618 (-567))) "failed") $) 183 (|has| |#1| (-1051)))) (-3655 (((-3 (-645 $) "failed") $) 190 (|has| |#1| (-25)))) (-3918 (((-3 (-2 (|:| -1344 (-567)) (|:| |var| (-613 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2873 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $) 191 (|has| |#1| (-1114))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-114)) 185 (|has| |#1| (-1051))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-1179)) 184 (|has| |#1| (-1051)))) (-2208 (((-112) $ (-114)) 35) (((-112) $ (-1179)) 34)) (-1752 (($ $) 108 (-2836 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-1337 (((-772) $) 42)) (-3479 (((-1122) $) 11)) (-1762 (((-112) $) 205)) (-1774 ((|#1| $) 204)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 151 (|has| |#1| (-559)))) (-1870 (($ (-645 $)) 148 (|has| |#1| (-559))) (($ $ $) 147 (|has| |#1| (-559)))) (-2769 (((-112) $ $) 30) (((-112) $ (-1179)) 29)) (-3661 (((-421 $) $) 162 (|has| |#1| (-559)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 159 (|has| |#1| (-559)))) (-2478 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 153 (|has| |#1| (-559)))) (-1359 (((-112) $) 18 (|has| $ (-1040 (-567))))) (-2913 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1179)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1179) (-1 $ (-645 $))) 26) (($ $ (-1179) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1179)) 197 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179))) 196 (|has| |#1| (-615 (-539)))) (($ $) 195 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1179)) 194 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1179)) 193 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $))) 182 (|has| |#1| (-1051))) (($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 181 (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ (-645 $))) 180 (|has| |#1| (-1051))) (($ $ (-1179) (-772) (-1 $ $)) 179 (|has| |#1| (-1051)))) (-2465 (((-772) $) 155 (|has| |#1| (-559)))) (-1882 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 156 (|has| |#1| (-559)))) (-1929 (($ $) 44) (($ $ $) 43)) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) 128 (|has| |#1| (-1051))) (($ $ (-1179) (-772)) 127 (|has| |#1| (-1051))) (($ $ (-645 (-1179))) 126 (|has| |#1| (-1051))) (($ $ (-1179)) 125 (|has| |#1| (-1051)))) (-2964 (($ $) 176 (|has| |#1| (-559)))) (-4306 (((-1127 |#1| (-613 $)) $) 177 (|has| |#1| (-559)))) (-2783 (($ $) 19 (|has| $ (-1051)))) (-1322 (((-894 (-567)) $) 214 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 213 (|has| |#1| (-615 (-894 (-381))))) (($ (-421 $)) 178 (|has| |#1| (-559))) (((-539) $) 100 (|has| |#1| (-615 (-539))))) (-3307 (($ $ $) 111 (|has| |#1| (-476)))) (-4033 (($ $ $) 112 (|has| |#1| (-476)))) (-2504 (((-863) $) 12) (($ (-613 $)) 63) (($ (-1179)) 215) (($ |#1|) 206) (($ (-1127 |#1| (-613 $))) 188 (|has| |#1| (-1051))) (($ (-410 |#1|)) 174 (|has| |#1| (-559))) (($ (-954 (-410 |#1|))) 173 (|has| |#1| (-559))) (($ (-410 (-954 (-410 |#1|)))) 172 (|has| |#1| (-559))) (($ (-410 (-954 |#1|))) 168 (|has| |#1| (-559))) (($ $) 141 (|has| |#1| (-559))) (($ (-954 |#1|)) 122 (|has| |#1| (-1051))) (($ (-410 (-567))) 97 (-2836 (|has| |#1| (-559)) (-12 (|has| |#1| (-1040 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1040 (-410 (-567)))))) (($ (-567)) 96 (-2836 (|has| |#1| (-1051)) (|has| |#1| (-1040 (-567)))))) (-2318 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2214 (((-772)) 133 (|has| |#1| (-1051)) CONST)) (-2130 (($ $) 48) (($ (-645 $)) 47)) (-3862 (((-112) (-114)) 36)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 145 (|has| |#1| (-559)))) (-1541 (($ (-1179) $) 202) (($ (-1179) $ $) 201) (($ (-1179) $ $ $) 200) (($ (-1179) $ $ $ $) 199) (($ (-1179) (-645 $)) 198)) (-1807 (($) 115 (|has| |#1| (-25)) CONST)) (-1820 (($) 103 (|has| |#1| (-1114)) CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) 132 (|has| |#1| (-1051))) (($ $ (-1179) (-772)) 131 (|has| |#1| (-1051))) (($ $ (-645 (-1179))) 130 (|has| |#1| (-1051))) (($ $ (-1179)) 129 (|has| |#1| (-1051)))) (-2968 (((-112) $ $) 6)) (-3064 (($ (-1127 |#1| (-613 $)) (-1127 |#1| (-613 $))) 175 (|has| |#1| (-559))) (($ $ $) 109 (-2836 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3054 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3045 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-567)) 110 (-2836 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 107 (|has| |#1| (-1114))) (($ $ (-923)) 102 (|has| |#1| (-1114)))) (* (($ (-410 (-567)) $) 167 (|has| |#1| (-559))) (($ $ (-410 (-567))) 166 (|has| |#1| (-559))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-567) $) 119 (|has| |#1| (-21))) (($ (-772) $) 117 (|has| |#1| (-25))) (($ (-923) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1114))))) -(((-433 |#1|) (-140) (-1102)) (T -433)) -((-1762 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-1179))))) (-1541 (*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-1541 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-1541 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-1541 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) (-1541 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1179))) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-615 (-539))))) (-2913 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-615 (-539))))) (-2913 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1179)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-615 (-539))))) (-2913 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1179)) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-615 (-539))))) (-4056 (*1 *2 *1) (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-2873 (*1 *2 *1) (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2618 (-567)))) (-4 *1 (-433 *3)))) (-3655 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-3918 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| -1344 (-567)) (|:| |var| (-613 *1)))) (-4 *1 (-433 *3)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-1051)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-4294 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-1550 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-1051)))) (-2873 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2618 (-567)))) (-4 *1 (-433 *4)))) (-2873 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1179)) (-4 *4 (-1051)) (-4 *4 (-1102)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2618 (-567)))) (-4 *1 (-433 *4)))) (-1415 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-2 (|:| |val| *1) (|:| -2618 (-567)))) (-4 *1 (-433 *3)))) (-2913 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2913 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2913 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-2913 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559)) (-4 *3 (-1102)))) (-4306 (*1 *2 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-2964 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-559)))) (-3064 (*1 *1 *2 *2) (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1102)) (-4 *1 (-433 *3)))) (-3633 (*1 *2 *1 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) (-4 *4 (-559)) (-5 *2 (-410 (-1175 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-4 *3 (-1114))))) -(-13 (-303) (-1040 (-1179)) (-886 |t#1|) (-403 |t#1|) (-414 |t#1|) (-10 -8 (-15 -1762 ((-112) $)) (-15 -1774 (|t#1| $)) (-15 -3783 ((-645 (-1179)) $)) (-15 -1541 ($ (-1179) $)) (-15 -1541 ($ (-1179) $ $)) (-15 -1541 ($ (-1179) $ $ $)) (-15 -1541 ($ (-1179) $ $ $ $)) (-15 -1541 ($ (-1179) (-645 $))) (IF (|has| |t#1| (-615 (-539))) (PROGN (-6 (-615 (-539))) (-15 -2913 ($ $ (-1179))) (-15 -2913 ($ $ (-645 (-1179)))) (-15 -2913 ($ $)) (-15 -2913 ($ $ (-114) $ (-1179))) (-15 -2913 ($ $ (-645 (-114)) (-645 $) (-1179)))) |%noBranch|) (IF (|has| |t#1| (-1114)) (PROGN (-6 (-727)) (-15 ** ($ $ (-772))) (-15 -4056 ((-3 (-645 $) "failed") $)) (-15 -2873 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-476)) (-6 (-476)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3655 ((-3 (-645 $) "failed") $)) (-15 -3918 ((-3 (-2 (|:| -1344 (-567)) (|:| |var| (-613 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-6 (-1051)) (-6 (-1040 (-954 |t#1|))) (-6 (-902 (-1179))) (-6 (-379 |t#1|)) (-15 -2504 ($ (-1127 |t#1| (-613 $)))) (-15 -4294 ((-1127 |t#1| (-613 $)) $)) (-15 -1550 ($ $)) (-15 -2873 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-114))) (-15 -2873 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2618 (-567))) "failed") $ (-1179))) (-15 -1415 ((-3 (-2 (|:| |val| $) (|:| -2618 (-567))) "failed") $)) (-15 -2913 ($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ $)))) (-15 -2913 ($ $ (-645 (-1179)) (-645 (-772)) (-645 (-1 $ (-645 $))))) (-15 -2913 ($ $ (-1179) (-772) (-1 $ (-645 $)))) (-15 -2913 ($ $ (-1179) (-772) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-365)) (-6 (-1040 (-410 (-954 |t#1|)))) (-15 -1322 ($ (-421 $))) (-15 -4306 ((-1127 |t#1| (-613 $)) $)) (-15 -2964 ($ $)) (-15 -3064 ($ (-1127 |t#1| (-613 $)) (-1127 |t#1| (-613 $)))) (-15 -2504 ($ (-410 |t#1|))) (-15 -2504 ($ (-954 (-410 |t#1|)))) (-15 -2504 ($ (-410 (-954 (-410 |t#1|))))) (-15 -3633 ((-410 (-1175 $)) $ (-613 $))) (IF (|has| |t#1| (-1040 (-567))) (-6 (-1040 (-410 (-567)))) |%noBranch|)) |%noBranch|))) -(((-21) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-410 (-567))) |has| |#1| (-559)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-559)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-559)) ((-131) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-559))) ((-617 #1=(-410 (-954 |#1|))) |has| |#1| (-559)) ((-617 (-567)) -2836 (|has| |#1| (-1051)) (|has| |#1| (-1040 (-567))) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-617 #2=(-613 $)) . T) ((-617 #3=(-954 |#1|)) |has| |#1| (-1051)) ((-617 #4=(-1179)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) |has| |#1| (-559)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-243) |has| |#1| (-559)) ((-291) |has| |#1| (-559)) ((-308) |has| |#1| (-559)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-559)) ((-379 |#1|) |has| |#1| (-1051)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) |has| |#1| (-559)) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-559)) ((-647 (-567)) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-649 #0#) |has| |#1| (-559)) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-641 #0#) |has| |#1| (-559)) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1051))) ((-640 |#1|) |has| |#1| (-1051)) ((-718 #0#) |has| |#1| (-559)) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) -2836 (|has| |#1| (-1114)) (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-902 (-1179)) |has| |#1| (-1051)) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-922) |has| |#1| (-559)) ((-1040 (-410 (-567))) -2836 (|has| |#1| (-1040 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1040 (-567))))) ((-1040 #1#) |has| |#1| (-559)) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 #3#) |has| |#1| (-1051)) ((-1040 #4#) . T) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-559)) ((-1053 |#1|) |has| |#1| (-172)) ((-1053 $) |has| |#1| (-559)) ((-1058 #0#) |has| |#1| (-559)) ((-1058 |#1|) |has| |#1| (-172)) ((-1058 $) |has| |#1| (-559)) ((-1051) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1060) -2836 (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1114) -2836 (|has| |#1| (-1114)) (|has| |#1| (-1051)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1102) . T) ((-1219) . T) ((-1223) |has| |#1| (-559))) -((-2611 ((|#2| |#2| |#2|) 31)) (-3609 (((-114) (-114)) 43)) (-1424 ((|#2| |#2|) 63)) (-3745 ((|#2| |#2|) 66)) (-3053 ((|#2| |#2|) 30)) (-2083 ((|#2| |#2| |#2|) 33)) (-2551 ((|#2| |#2| |#2|) 35)) (-3002 ((|#2| |#2| |#2|) 32)) (-2907 ((|#2| |#2| |#2|) 34)) (-3862 (((-112) (-114)) 41)) (-3877 ((|#2| |#2|) 37)) (-2821 ((|#2| |#2|) 36)) (-1368 ((|#2| |#2|) 25)) (-1370 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3291 ((|#2| |#2| |#2|) 29))) -(((-434 |#1| |#2|) (-10 -7 (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -1368 (|#2| |#2|)) (-15 -1370 (|#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -3291 (|#2| |#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -2611 (|#2| |#2| |#2|)) (-15 -3002 (|#2| |#2| |#2|)) (-15 -2083 (|#2| |#2| |#2|)) (-15 -2907 (|#2| |#2| |#2|)) (-15 -2551 (|#2| |#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -1424 (|#2| |#2|))) (-559) (-433 |#1|)) (T -434)) -((-1424 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3877 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2821 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2551 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2907 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2083 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3002 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2611 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3053 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3291 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1370 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3609 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4)) (-4 *4 (-433 *3)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4))))) -(-10 -7 (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -1368 (|#2| |#2|)) (-15 -1370 (|#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -3291 (|#2| |#2| |#2|)) (-15 -3053 (|#2| |#2|)) (-15 -2611 (|#2| |#2| |#2|)) (-15 -3002 (|#2| |#2| |#2|)) (-15 -2083 (|#2| |#2| |#2|)) (-15 -2907 (|#2| |#2| |#2|)) (-15 -2551 (|#2| |#2| |#2|)) (-15 -2821 (|#2| |#2|)) (-15 -3877 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -1424 (|#2| |#2|))) -((-3882 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-645 |#2|)) 68))) -(((-435 |#1| |#2|) (-10 -7 (-15 -3882 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3882 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-559) (-147)) (-433 |#1|)) (T -435)) -((-3882 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1175 *3)) (|:| |pol2| (-1175 *3)) (|:| |prim| (-1175 *3)))) (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1175 *5))) (|:| |prim| (-1175 *5)))) (-5 *1 (-435 *4 *5))))) -(-10 -7 (-15 -3882 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1175 |#2|))) (|:| |prim| (-1175 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3882 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1175 |#2|)) (|:| |pol2| (-1175 |#2|)) (|:| |prim| (-1175 |#2|))) |#2| |#2|)) |%noBranch|)) -((-4077 (((-1274)) 19)) (-3038 (((-1175 (-410 (-567))) |#2| (-613 |#2|)) 41) (((-410 (-567)) |#2|) 25))) -(((-436 |#1| |#2|) (-10 -7 (-15 -3038 ((-410 (-567)) |#2|)) (-15 -3038 ((-1175 (-410 (-567))) |#2| (-613 |#2|))) (-15 -4077 ((-1274)))) (-13 (-559) (-1040 (-567))) (-433 |#1|)) (T -436)) -((-4077 (*1 *2) (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1274)) (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))) (-3038 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-436 *5 *3)))) (-3038 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4))))) -(-10 -7 (-15 -3038 ((-410 (-567)) |#2|)) (-15 -3038 ((-1175 (-410 (-567))) |#2| (-613 |#2|))) (-15 -4077 ((-1274)))) -((-1503 (((-112) $) 32)) (-2317 (((-112) $) 34)) (-3243 (((-112) $) 35)) (-2351 (((-112) $) 38)) (-3296 (((-112) $) 33)) (-3409 (((-112) $) 37)) (-2504 (((-863) $) 20) (($ (-1161)) 31) (($ (-1179)) 26) (((-1179) $) 24) (((-1106) $) 23)) (-4035 (((-112) $) 36)) (-2968 (((-112) $ $) 17))) -(((-437) (-13 (-614 (-863)) (-10 -8 (-15 -2504 ($ (-1161))) (-15 -2504 ($ (-1179))) (-15 -2504 ((-1179) $)) (-15 -2504 ((-1106) $)) (-15 -1503 ((-112) $)) (-15 -3296 ((-112) $)) (-15 -3243 ((-112) $)) (-15 -3409 ((-112) $)) (-15 -2351 ((-112) $)) (-15 -4035 ((-112) $)) (-15 -2317 ((-112) $)) (-15 -2968 ((-112) $ $))))) (T -437)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-437)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-437)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-437)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2968 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(-13 (-614 (-863)) (-10 -8 (-15 -2504 ($ (-1161))) (-15 -2504 ($ (-1179))) (-15 -2504 ((-1179) $)) (-15 -2504 ((-1106) $)) (-15 -1503 ((-112) $)) (-15 -3296 ((-112) $)) (-15 -3243 ((-112) $)) (-15 -3409 ((-112) $)) (-15 -2351 ((-112) $)) (-15 -4035 ((-112) $)) (-15 -2317 ((-112) $)) (-15 -2968 ((-112) $ $)))) -((-1351 (((-3 (-421 (-1175 (-410 (-567)))) "failed") |#3|) 72)) (-2423 (((-421 |#3|) |#3|) 34)) (-3472 (((-3 (-421 (-1175 (-48))) "failed") |#3|) 46 (|has| |#2| (-1040 (-48))))) (-2982 (((-3 (|:| |overq| (-1175 (-410 (-567)))) (|:| |overan| (-1175 (-48))) (|:| -2595 (-112))) |#3|) 37))) -(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-421 |#3|) |#3|)) (-15 -1351 ((-3 (-421 (-1175 (-410 (-567)))) "failed") |#3|)) (-15 -2982 ((-3 (|:| |overq| (-1175 (-410 (-567)))) (|:| |overan| (-1175 (-48))) (|:| -2595 (-112))) |#3|)) (IF (|has| |#2| (-1040 (-48))) (-15 -3472 ((-3 (-421 (-1175 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-559) (-1040 (-567))) (-433 |#1|) (-1245 |#2|)) (T -438)) -((-3472 (*1 *2 *3) (|partial| -12 (-4 *5 (-1040 (-48))) (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1175 (-48)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-2982 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1175 (-410 (-567)))) (|:| |overan| (-1175 (-48))) (|:| -2595 (-112)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1175 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-2423 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -2423 ((-421 |#3|) |#3|)) (-15 -1351 ((-3 (-421 (-1175 (-410 (-567)))) "failed") |#3|)) (-15 -2982 ((-3 (|:| |overq| (-1175 (-410 (-567)))) (|:| |overan| (-1175 (-48))) (|:| -2595 (-112))) |#3|)) (IF (|has| |#2| (-1040 (-48))) (-15 -3472 ((-3 (-421 (-1175 (-48))) "failed") |#3|)) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-2060 (((-1161) $ (-1161)) NIL)) (-3200 (($ $ (-1161)) NIL)) (-4118 (((-1161) $) NIL)) (-1609 (((-391) (-391) (-391)) 17) (((-391) (-391)) 15)) (-1692 (($ (-391)) NIL) (($ (-391) (-1161)) NIL)) (-1646 (((-391) $) NIL)) (-1812 (((-1161) $) NIL)) (-2696 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1937 (((-1274) (-1161)) 9)) (-2549 (((-1274) (-1161)) 10)) (-3280 (((-1274)) 11)) (-2504 (((-863) $) NIL)) (-4023 (($ $) 39)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-439) (-13 (-366 (-391) (-1161)) (-10 -7 (-15 -1609 ((-391) (-391) (-391))) (-15 -1609 ((-391) (-391))) (-15 -1937 ((-1274) (-1161))) (-15 -2549 ((-1274) (-1161))) (-15 -3280 ((-1274)))))) (T -439)) -((-1609 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-439)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-439)))) (-3280 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-439))))) -(-13 (-366 (-391) (-1161)) (-10 -7 (-15 -1609 ((-391) (-391) (-391))) (-15 -1609 ((-391) (-391))) (-15 -1937 ((-1274) (-1161))) (-15 -2549 ((-1274) (-1161))) (-15 -3280 ((-1274))))) -((-2487 (((-112) $ $) NIL)) (-3945 (((-3 (|:| |fst| (-437)) (|:| -2603 "void")) $) 11)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3545 (($) 35)) (-1669 (($) 41)) (-3585 (($) 37)) (-3555 (($) 39)) (-2675 (($) 36)) (-2237 (($) 38)) (-2230 (($) 40)) (-2823 (((-112) $) 8)) (-3513 (((-645 (-954 (-567))) $) 19)) (-2516 (($ (-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-645 (-1179)) (-112)) 29) (($ (-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-645 (-954 (-567))) (-112)) 30)) (-2504 (((-863) $) 24) (($ (-437)) 32)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-440) (-13 (-1102) (-10 -8 (-15 -2504 ($ (-437))) (-15 -3945 ((-3 (|:| |fst| (-437)) (|:| -2603 "void")) $)) (-15 -3513 ((-645 (-954 (-567))) $)) (-15 -2823 ((-112) $)) (-15 -2516 ($ (-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-645 (-1179)) (-112))) (-15 -2516 ($ (-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-645 (-954 (-567))) (-112))) (-15 -3545 ($)) (-15 -2675 ($)) (-15 -3585 ($)) (-15 -1669 ($)) (-15 -2237 ($)) (-15 -3555 ($)) (-15 -2230 ($))))) (T -440)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *1 (-440)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-645 (-954 (-567)))) (-5 *1 (-440)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-2516 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *3 (-645 (-1179))) (-5 *4 (-112)) (-5 *1 (-440)))) (-2516 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) (-3545 (*1 *1) (-5 *1 (-440))) (-2675 (*1 *1) (-5 *1 (-440))) (-3585 (*1 *1) (-5 *1 (-440))) (-1669 (*1 *1) (-5 *1 (-440))) (-2237 (*1 *1) (-5 *1 (-440))) (-3555 (*1 *1) (-5 *1 (-440))) (-2230 (*1 *1) (-5 *1 (-440)))) -(-13 (-1102) (-10 -8 (-15 -2504 ($ (-437))) (-15 -3945 ((-3 (|:| |fst| (-437)) (|:| -2603 "void")) $)) (-15 -3513 ((-645 (-954 (-567))) $)) (-15 -2823 ((-112) $)) (-15 -2516 ($ (-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-645 (-1179)) (-112))) (-15 -2516 ($ (-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-645 (-954 (-567))) (-112))) (-15 -3545 ($)) (-15 -2675 ($)) (-15 -3585 ($)) (-15 -1669 ($)) (-15 -2237 ($)) (-15 -3555 ($)) (-15 -2230 ($)))) -((-2487 (((-112) $ $) NIL)) (-1646 (((-1179) $) 8)) (-1812 (((-1161) $) 17)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 11)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 14))) -(((-441 |#1|) (-13 (-1102) (-10 -8 (-15 -1646 ((-1179) $)))) (-1179)) (T -441)) -((-1646 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-441 *3)) (-14 *3 *2)))) -(-13 (-1102) (-10 -8 (-15 -1646 ((-1179) $)))) -((-2487 (((-112) $ $) NIL)) (-4261 (((-1120) $) 7)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 13)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 9))) -(((-442) (-13 (-1102) (-10 -8 (-15 -4261 ((-1120) $))))) (T -442)) -((-4261 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-442))))) -(-13 (-1102) (-10 -8 (-15 -4261 ((-1120) $)))) -((-2229 (((-1274) $) 7)) (-2504 (((-863) $) 8) (($ (-1269 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 11))) +((-3675 (*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-407)))) (-3675 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-922)) (-4 *1 (-407)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) (-3097 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-2564 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) (-1945 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-3015 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-2537 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-549)) (|has| *1 (-6 -4416)) (-4 *1 (-407)) (-5 *2 (-922)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-549)) (|has| *1 (-6 -4416)) (-4 *1 (-407)) (-5 *2 (-922)))) (-2934 (*1 *1) (-12 (-4 *1 (-407)) (-3746 (|has| *1 (-6 -4416))) (-3746 (|has| *1 (-6 -4408))))) (-3260 (*1 *1) (-12 (-4 *1 (-407)) (-3746 (|has| *1 (-6 -4416))) (-3746 (|has| *1 (-6 -4408)))))) +(-13 (-1063) (-10 -8 (-6 -4201) (-15 -3675 ($ (-549) (-549))) (-15 -3675 ($ (-549) (-549) (-922))) (-15 -4203 ((-549) $)) (-15 -3097 ((-922))) (-15 -2564 ((-549) $)) (-15 -2538 ((-549) $)) (-15 -1945 ((-922))) (-15 -3015 ((-922))) (-15 -2537 ((-922))) (IF (|has| $ (-6 -4416)) (PROGN (-15 -1945 ((-922) (-922))) (-15 -3015 ((-922) (-922))) (-15 -2537 ((-922) (-922))) (-15 -1944 ((-922) (-549))) (-15 -1943 ((-922) (-549)))) |%noBranch|) (IF (|has| $ (-6 -4408)) |%noBranch| (IF (|has| $ (-6 -4416)) |%noBranch| (PROGN (-15 -2934 ($)) (-15 -3260 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-616 (-225)) . T) ((-616 (-380)) . T) ((-616 (-893 (-380))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-850) . T) ((-852) . T) ((-889 (-380)) . T) ((-924) . T) ((-1005) . T) ((-1023) . T) ((-1063) . T) ((-1041 (-410 (-549))) . T) ((-1041 (-549)) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 60)) (-1946 (($ $) 78)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 191)) (-2241 (($ $) NIL)) (-2239 (((-112) $) 48)) (-1947 ((|#1| $) 16)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-1224)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-1224)))) (-1949 (($ |#1| (-549)) 42)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 148)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 74)) (-3890 (((-3 $ "failed") $) 164)) (-3425 (((-3 (-410 (-549)) "failed") $) 84 (|has| |#1| (-548)))) (-3424 (((-112) $) 80 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 91 (|has| |#1| (-548)))) (-1950 (($ |#1| (-549)) 44)) (-4155 (((-112) $) 213 (|has| |#1| (-1224)))) (-2573 (((-112) $) 62)) (-2012 (((-773) $) 51)) (-1951 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-549)) 175)) (-2444 ((|#1| $ (-549)) 174)) (-1952 (((-549) $ (-549)) 173)) (-1955 (($ |#1| (-549)) 41)) (-4390 (($ (-1 |#1| |#1|) $) 183)) (-2009 (($ |#1| (-643 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-549))))) 79)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-1953 (($ |#1| (-549)) 43)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) 192 (|has| |#1| (-455)))) (-1948 (($ |#1| (-549) (-3 #2# #3# #4# #5#)) 40)) (-1954 (((-643 (-2 (|:| -4164 |#1|) (|:| -2564 (-549)))) $) 73)) (-2131 (((-643 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $) 12)) (-4164 (((-408 $) $) NIL (|has| |#1| (-1224)))) (-3889 (((-3 $ "failed") $ $) 176)) (-2564 (((-549) $) 167)) (-4395 ((|#1| $) 75)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 106 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) $) NIL (|has| |#1| (-517 (-1180) $))) (($ $ (-643 (-1180)) (-643 $)) 107 (|has| |#1| (-517 (-1180) $))) (($ $ (-643 (-294 $))) 103 (|has| |#1| (-310 $))) (($ $ (-294 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-643 $) (-643 $)) NIL (|has| |#1| (-310 $)))) (-4231 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-4242 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-4402 (((-538) $) 39 (|has| |#1| (-616 (-538)))) (((-380) $) 113 (|has| |#1| (-1023))) (((-225) $) 119 (|has| |#1| (-1023)))) (-4378 (((-865) $) 146) (($ (-549)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549)))))) (-3530 (((-773)) 67 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 53 T CONST)) (-3067 (($) 52 T CONST)) (-3072 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) 159)) (-4269 (($ $) 161) (($ $ $) NIL)) (-4271 (($ $ $) 180)) (** (($ $ (-922)) NIL) (($ $ (-773)) 125)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-408 |#1|) (-13 (-560) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-415 |#1|) (-10 -8 (-15 -4395 (|#1| $)) (-15 -2564 ((-549) $)) (-15 -2009 ($ |#1| (-643 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))))) (-15 -2131 ((-643 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $)) (-15 -1955 ($ |#1| (-549))) (-15 -1954 ((-643 (-2 (|:| -4164 |#1|) (|:| -2564 (-549)))) $)) (-15 -1953 ($ |#1| (-549))) (-15 -1952 ((-549) $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -1951 ((-3 #1# #2# #3# #4#) $ (-549))) (-15 -2012 ((-773) $)) (-15 -1950 ($ |#1| (-549))) (-15 -1949 ($ |#1| (-549))) (-15 -1948 ($ |#1| (-549) (-3 #1# #2# #3# #4#))) (-15 -1947 (|#1| $)) (-15 -1946 ($ $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-1224)) (-6 (-1224)) |%noBranch|) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1180) $)) (-6 (-517 (-1180) $)) |%noBranch|))) (-560)) (T -408)) +((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-560)) (-5 *1 (-408 *3)))) (-4395 (*1 *2 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-2009 (*1 *1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-549))))) (-4 *2 (-560)) (-5 *1 (-408 *2)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-549))))) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| -4164 *3) (|:| -2564 (-549))))) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1952 (*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1951 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-408 *4)) (-4 *4 (-560)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) (-1950 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1949 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1948 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1947 (*1 *2 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-1946 (*1 *1 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560))))) +(-13 (-560) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-415 |#1|) (-10 -8 (-15 -4395 (|#1| $)) (-15 -2564 ((-549) $)) (-15 -2009 ($ |#1| (-643 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))))) (-15 -2131 ((-643 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-549)))) $)) (-15 -1955 ($ |#1| (-549))) (-15 -1954 ((-643 (-2 (|:| -4164 |#1|) (|:| -2564 (-549)))) $)) (-15 -1953 ($ |#1| (-549))) (-15 -1952 ((-549) $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -1951 ((-3 #1# #2# #3# #4#) $ (-549))) (-15 -2012 ((-773) $)) (-15 -1950 ($ |#1| (-549))) (-15 -1949 ($ |#1| (-549))) (-15 -1948 ($ |#1| (-549) (-3 #1# #2# #3# #4#))) (-15 -1947 (|#1| $)) (-15 -1946 ($ $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-1224)) (-6 (-1224)) |%noBranch|) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1180) $)) (-6 (-517 (-1180) $)) |%noBranch|))) +((-4390 (((-408 |#2|) (-1 |#2| |#1|) (-408 |#1|)) 20))) +(((-409 |#1| |#2|) (-10 -7 (-15 -4390 ((-408 |#2|) (-1 |#2| |#1|) (-408 |#1|)))) (-560) (-560)) (T -409)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-408 *5)) (-4 *5 (-560)) (-4 *6 (-560)) (-5 *2 (-408 *6)) (-5 *1 (-409 *5 *6))))) +(-10 -7 (-15 -4390 ((-408 |#2|) (-1 |#2| |#1|) (-408 |#1|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 13)) (-3533 ((|#1| $) 21 (|has| |#1| (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| |#1| (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) 17) (((-3 (-1180) #2#) $) NIL (|has| |#1| (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) 72 (|has| |#1| (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549))))) (-3576 ((|#1| $) 15) (((-1180) $) NIL (|has| |#1| (-1041 (-1180)))) (((-410 (-549)) $) 69 (|has| |#1| (-1041 (-549)))) (((-549) $) NIL (|has| |#1| (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) 51)) (-3395 (($) NIL (|has| |#1| (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| |#1| (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| |#1| (-889 (-380))))) (-2573 (((-112) $) 57)) (-3397 (($ $) NIL)) (-3399 ((|#1| $) 73)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3607 (((-112) $) NIL (|has| |#1| (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 100)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| |#1| (-308)))) (-3534 ((|#1| $) 28 (|has| |#1| (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 148 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 141 (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|)))) (-1752 (((-773) $) NIL)) (-4231 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3396 (($ $) NIL)) (-3398 ((|#1| $) 75)) (-4402 (((-893 (-549)) $) NIL (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| |#1| (-616 (-893 (-380))))) (((-538) $) NIL (|has| |#1| (-616 (-538)))) (((-380) $) NIL (|has| |#1| (-1023))) (((-225) $) NIL (|has| |#1| (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 10) (($ (-1180)) NIL (|has| |#1| (-1041 (-1180))))) (-3105 (((-3 $ #1#) $) 102 (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 103 T CONST)) (-3535 ((|#1| $) 26 (|has| |#1| (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-822)))) (-3510 (($) 22 T CONST)) (-3067 (($) 8 T CONST)) (-2900 (((-1162) $) 44 (-12 (|has| |#1| (-548)) (|has| |#1| (-823)))) (((-1162) $ (-112)) 45 (-12 (|has| |#1| (-548)) (|has| |#1| (-823)))) (((-1275) (-825) $) 46 (-12 (|has| |#1| (-548)) (|has| |#1| (-823)))) (((-1275) (-825) $ (-112)) 47 (-12 (|has| |#1| (-548)) (|has| |#1| (-823))))) (-3072 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) 66)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) 24 (|has| |#1| (-852)))) (-4381 (($ $ $) 136) (($ |#1| |#1|) 53)) (-4269 (($ $) 25) (($ $ $) 56)) (-4271 (($ $ $) 54)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 135)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 61) (($ $ $) 58) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-410 |#1|) (-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4423)) (-6 -4412) |%noBranch|) |%noBranch|) |%noBranch|))) (-560)) (T -410)) +NIL +(-13 (-994 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4423)) (-6 -4412) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4390 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 13))) +(((-411 |#1| |#2|) (-10 -7 (-15 -4390 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-560) (-560)) (T -411)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-560)) (-4 *6 (-560)) (-5 *2 (-410 *6)) (-5 *1 (-411 *5 *6))))) +(-10 -7 (-15 -4390 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) +((-1957 (((-691 |#2|) (-1269 $)) NIL) (((-691 |#2|)) 18)) (-1967 (($ (-1269 |#2|) (-1269 $)) NIL) (($ (-1269 |#2|)) 24)) (-1956 (((-691 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) $) 40)) (-2192 ((|#3| $) 73)) (-4189 ((|#2| (-1269 $)) NIL) ((|#2|) 20)) (-3644 (((-1269 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 22) (((-691 |#2|) (-1269 $)) 38)) (-4402 (((-1269 |#2|) $) 11) (($ (-1269 |#2|)) 13)) (-2770 ((|#3| $) 55))) +(((-412 |#1| |#2| |#3|) (-10 -8 (-15 -1956 ((-691 |#2|) |#1|)) (-15 -4189 (|#2|)) (-15 -1957 ((-691 |#2|))) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -2192 (|#3| |#1|)) (-15 -2770 (|#3| |#1|)) (-15 -1957 ((-691 |#2|) (-1269 |#1|))) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1956 ((-691 |#2|) |#1| (-1269 |#1|)))) (-413 |#2| |#3|) (-172) (-1245 |#2|)) (T -412)) +((-1957 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)) (-5 *1 (-412 *3 *4 *5)) (-4 *3 (-413 *4 *5)))) (-4189 (*1 *2) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-172)) (-5 *1 (-412 *3 *2 *4)) (-4 *3 (-413 *2 *4))))) +(-10 -8 (-15 -1956 ((-691 |#2|) |#1|)) (-15 -4189 (|#2|)) (-15 -1957 ((-691 |#2|))) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -2192 (|#3| |#1|)) (-15 -2770 (|#3| |#1|)) (-15 -1957 ((-691 |#2|) (-1269 |#1|))) (-15 -4189 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1956 ((-691 |#2|) |#1| (-1269 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1957 (((-691 |#1|) (-1269 $)) 53) (((-691 |#1|)) 68)) (-3754 ((|#1| $) 59)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-1967 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-1956 (((-691 |#1|) $ (-1269 $)) 60) (((-691 |#1|) $) 66)) (-3890 (((-3 $ "failed") $) 37)) (-3513 (((-922)) 61)) (-2573 (((-112) $) 35)) (-3536 ((|#1| $) 58)) (-2192 ((|#2| $) 51 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4189 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-3644 (((-1269 |#1|) $ (-1269 $)) 57) (((-691 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-691 |#1|) (-1269 $)) 72)) (-4402 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44)) (-3105 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2770 ((|#2| $) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 74)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-413 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -413)) +((-2190 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *1)) (-4 *1 (-413 *3 *4)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-413 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-413 *3 *4)) (-4 *4 (-1245 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-413 *3 *4)) (-4 *4 (-1245 *3)))) (-1957 (*1 *2) (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-691 *3)))) (-4189 (*1 *2) (-12 (-4 *1 (-413 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-691 *3))))) +(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2190 ((-1269 $))) (-15 -3644 ((-1269 |t#1|) $)) (-15 -3644 ((-691 |t#1|) (-1269 $))) (-15 -1967 ($ (-1269 |t#1|))) (-15 -4402 ((-1269 |t#1|) $)) (-15 -4402 ($ (-1269 |t#1|))) (-15 -1957 ((-691 |t#1|))) (-15 -4189 (|t#1|)) (-15 -1956 ((-691 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-372 |#1| |#2|) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-3577 (((-3 |#2| #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) 27) (((-3 (-549) #1#) $) 19)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) 24) (((-549) $) 14)) (-4378 (($ |#2|) NIL) (($ (-410 (-549))) 22) (($ (-549)) 11))) +(((-414 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| (-549))) (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|))) (-415 |#2|) (-1219)) (T -414)) +NIL +(-10 -8 (-15 -4378 (|#1| (-549))) (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|))) +((-3577 (((-3 |#1| #1="failed") $) 9) (((-3 (-410 (-549)) #1#) $) 16 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #1#) $) 13 (|has| |#1| (-1041 (-549))))) (-3576 ((|#1| $) 8) (((-410 (-549)) $) 17 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 14 (|has| |#1| (-1041 (-549))))) (-4378 (($ |#1|) 6) (($ (-410 (-549))) 15 (|has| |#1| (-1041 (-410 (-549))))) (($ (-549)) 12 (|has| |#1| (-1041 (-549)))))) +(((-415 |#1|) (-140) (-1219)) (T -415)) +NIL +(-13 (-1041 |t#1|) (-10 -7 (IF (|has| |t#1| (-1041 (-549))) (-6 (-1041 (-549))) |%noBranch|) (IF (|has| |t#1| (-1041 (-410 (-549)))) (-6 (-1041 (-410 (-549)))) |%noBranch|))) +(((-618 #1=(-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-618 #2=(-549)) |has| |#1| (-1041 (-549))) ((-618 |#1|) . T) ((-1041 #1#) |has| |#1| (-1041 (-410 (-549)))) ((-1041 #2#) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T)) +((-2968 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-1958 ((|#4| (-773) (-1269 |#4|)) 58)) (-2573 (((-112) $) NIL)) (-3399 (((-1269 |#4|) $) 15)) (-3536 ((|#2| $) 53)) (-1959 (($ $) 161)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 106)) (-2148 (($ (-1269 |#4|)) 105)) (-3664 (((-1123) $) NIL)) (-3398 ((|#1| $) 16)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 151)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 |#4|) $) 144)) (-3067 (($) 11 T CONST)) (-3455 (((-112) $ $) 39)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 137)) (* (($ $ $) 133))) +(((-416 |#1| |#2| |#3| |#4|) (-13 (-476) (-10 -8 (-15 -2148 ($ (-1269 |#4|))) (-15 -2190 ((-1269 |#4|) $)) (-15 -3536 (|#2| $)) (-15 -3399 ((-1269 |#4|) $)) (-15 -3398 (|#1| $)) (-15 -1959 ($ $)) (-15 -1958 (|#4| (-773) (-1269 |#4|))))) (-308) (-994 |#1|) (-1245 |#2|) (-13 (-413 |#2| |#3|) (-1041 |#2|))) (T -416)) +((-2148 (*1 *1 *2) (-12 (-5 *2 (-1269 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2190 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))))) (-3536 (*1 *2 *1) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-413 *2 *4) (-1041 *2))))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-4 *2 (-308)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-413 *3 *4) (-1041 *3))))) (-1959 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-413 *3 *4) (-1041 *3))))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-1269 *2)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *2 (-13 (-413 *6 *7) (-1041 *6))) (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1245 *6))))) +(-13 (-476) (-10 -8 (-15 -2148 ($ (-1269 |#4|))) (-15 -2190 ((-1269 |#4|) $)) (-15 -3536 (|#2| $)) (-15 -3399 ((-1269 |#4|) $)) (-15 -3398 (|#1| $)) (-15 -1959 ($ $)) (-15 -1958 (|#4| (-773) (-1269 |#4|))))) +((-4390 (((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)) 35))) +(((-417 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4390 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) (-308) (-994 |#1|) (-1245 |#2|) (-13 (-413 |#2| |#3|) (-1041 |#2|)) (-308) (-994 |#5|) (-1245 |#6|) (-13 (-413 |#6| |#7|) (-1041 |#6|))) (T -417)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-994 *5)) (-4 *7 (-1245 *6)) (-4 *8 (-13 (-413 *6 *7) (-1041 *6))) (-4 *9 (-308)) (-4 *10 (-994 *9)) (-4 *11 (-1245 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-413 *10 *11) (-1041 *10)))))) +(-10 -7 (-15 -4390 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) +((-2968 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-3536 ((|#2| $) 71)) (-1960 (($ (-1269 |#4|)) 27) (($ (-416 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1041 |#2|)))) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 37)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 |#4|) $) 28)) (-3067 (($) 25 T CONST)) (-3455 (((-112) $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ $ $) 82))) +(((-418 |#1| |#2| |#3| |#4| |#5|) (-13 (-728) (-10 -8 (-15 -2190 ((-1269 |#4|) $)) (-15 -3536 (|#2| $)) (-15 -1960 ($ (-1269 |#4|))) (IF (|has| |#4| (-1041 |#2|)) (-15 -1960 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-994 |#1|) (-1245 |#2|) (-413 |#2| |#3|) (-1269 |#4|)) (T -418)) +((-2190 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) (-5 *1 (-418 *3 *4 *5 *6 *7)) (-4 *6 (-413 *4 *5)) (-14 *7 *2))) (-3536 (*1 *2 *1) (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-418 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-413 *2 *4)) (-14 *6 (-1269 *5)))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-1269 *6)) (-4 *6 (-413 *4 *5)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-418 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1041 *4)) (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *6 (-413 *4 *5)) (-14 *7 (-1269 *6)) (-5 *1 (-418 *3 *4 *5 *6 *7))))) +(-13 (-728) (-10 -8 (-15 -2190 ((-1269 |#4|) $)) (-15 -3536 (|#2| $)) (-15 -1960 ($ (-1269 |#4|))) (IF (|has| |#4| (-1041 |#2|)) (-15 -1960 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4390 ((|#3| (-1 |#4| |#2|) |#1|) 32))) +(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) (-421 |#2|) (-172) (-421 |#4|) (-172)) (T -419)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-421 *6)) (-5 *1 (-419 *4 *5 *2 *6)) (-4 *4 (-421 *5))))) +(-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) +((-1947 (((-3 $ #1="failed")) 99)) (-3643 (((-1269 (-691 |#2|)) (-1269 $)) NIL) (((-1269 (-691 |#2|))) 104)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) 97)) (-1871 (((-3 $ #1#)) 96)) (-1963 (((-691 |#2|) (-1269 $)) NIL) (((-691 |#2|)) 115)) (-1961 (((-691 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) $) 123)) (-2078 (((-1174 (-949 |#2|))) 65)) (-1965 ((|#2| (-1269 $)) NIL) ((|#2|) 119)) (-1967 (($ (-1269 |#2|) (-1269 $)) NIL) (($ (-1269 |#2|)) 125)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) 95)) (-1872 (((-3 $ #1#)) 87)) (-1964 (((-691 |#2|) (-1269 $)) NIL) (((-691 |#2|)) 113)) (-1962 (((-691 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) $) 121)) (-2082 (((-1174 (-949 |#2|))) 64)) (-1966 ((|#2| (-1269 $)) NIL) ((|#2|) 117)) (-3644 (((-1269 |#2|) $ (-1269 $)) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $) 124) (((-691 |#2|) (-1269 $)) 133)) (-4402 (((-1269 |#2|) $) 109) (($ (-1269 |#2|)) 111)) (-2070 (((-643 (-949 |#2|)) (-1269 $)) NIL) (((-643 (-949 |#2|))) 107)) (-2948 (($ (-691 |#2|) $) 103))) +(((-420 |#1| |#2|) (-10 -8 (-15 -2948 (|#1| (-691 |#2|) |#1|)) (-15 -2078 ((-1174 (-949 |#2|)))) (-15 -2082 ((-1174 (-949 |#2|)))) (-15 -1961 ((-691 |#2|) |#1|)) (-15 -1962 ((-691 |#2|) |#1|)) (-15 -1963 ((-691 |#2|))) (-15 -1964 ((-691 |#2|))) (-15 -1965 (|#2|)) (-15 -1966 (|#2|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -2070 ((-643 (-949 |#2|)))) (-15 -3643 ((-1269 (-691 |#2|)))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -1947 ((-3 |#1| #1="failed"))) (-15 -1871 ((-3 |#1| #1#))) (-15 -1872 ((-3 |#1| #1#))) (-15 -2084 ((-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) #1#))) (-15 -2085 ((-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) #1#))) (-15 -1963 ((-691 |#2|) (-1269 |#1|))) (-15 -1964 ((-691 |#2|) (-1269 |#1|))) (-15 -1965 (|#2| (-1269 |#1|))) (-15 -1966 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1961 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -1962 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -3643 ((-1269 (-691 |#2|)) (-1269 |#1|))) (-15 -2070 ((-643 (-949 |#2|)) (-1269 |#1|)))) (-421 |#2|) (-172)) (T -420)) +((-3643 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-2070 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-643 (-949 *4))) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-1966 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-420 *3 *2)) (-4 *3 (-421 *2)))) (-1965 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-420 *3 *2)) (-4 *3 (-421 *2)))) (-1964 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-691 *4)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-1963 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-691 *4)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-2082 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-949 *4))) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) (-2078 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-949 *4))) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4))))) +(-10 -8 (-15 -2948 (|#1| (-691 |#2|) |#1|)) (-15 -2078 ((-1174 (-949 |#2|)))) (-15 -2082 ((-1174 (-949 |#2|)))) (-15 -1961 ((-691 |#2|) |#1|)) (-15 -1962 ((-691 |#2|) |#1|)) (-15 -1963 ((-691 |#2|))) (-15 -1964 ((-691 |#2|))) (-15 -1965 (|#2|)) (-15 -1966 (|#2|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -1967 (|#1| (-1269 |#2|))) (-15 -2070 ((-643 (-949 |#2|)))) (-15 -3643 ((-1269 (-691 |#2|)))) (-15 -3644 ((-691 |#2|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1|)) (-15 -1947 ((-3 |#1| #1="failed"))) (-15 -1871 ((-3 |#1| #1#))) (-15 -1872 ((-3 |#1| #1#))) (-15 -2084 ((-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) #1#))) (-15 -2085 ((-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) #1#))) (-15 -1963 ((-691 |#2|) (-1269 |#1|))) (-15 -1964 ((-691 |#2|) (-1269 |#1|))) (-15 -1965 (|#2| (-1269 |#1|))) (-15 -1966 (|#2| (-1269 |#1|))) (-15 -1967 (|#1| (-1269 |#2|) (-1269 |#1|))) (-15 -3644 ((-691 |#2|) (-1269 |#1|) (-1269 |#1|))) (-15 -3644 ((-1269 |#2|) |#1| (-1269 |#1|))) (-15 -1961 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -1962 ((-691 |#2|) |#1| (-1269 |#1|))) (-15 -3643 ((-1269 (-691 |#2|)) (-1269 |#1|))) (-15 -2070 ((-643 (-949 |#2|)) (-1269 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1947 (((-3 $ #1="failed")) 42 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-3643 (((-1269 (-691 |#1|)) (-1269 $)) 83) (((-1269 (-691 |#1|))) 105)) (-1897 (((-1269 $)) 86)) (-4156 (($) 18 T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) 45 (|has| |#1| (-560)))) (-1871 (((-3 $ #1#)) 43 (|has| |#1| (-560)))) (-1963 (((-691 |#1|) (-1269 $)) 70) (((-691 |#1|)) 97)) (-1895 ((|#1| $) 79)) (-1961 (((-691 |#1|) $ (-1269 $)) 81) (((-691 |#1|) $) 95)) (-2567 (((-3 $ #1#) $) 50 (|has| |#1| (-560)))) (-2078 (((-1174 (-949 |#1|))) 93 (|has| |#1| (-365)))) (-2570 (($ $ (-922)) 31)) (-1893 ((|#1| $) 77)) (-1873 (((-1174 |#1|) $) 47 (|has| |#1| (-560)))) (-1965 ((|#1| (-1269 $)) 72) ((|#1|) 99)) (-1891 (((-1174 |#1|) $) 68)) (-1885 (((-112)) 62)) (-1967 (($ (-1269 |#1|) (-1269 $)) 74) (($ (-1269 |#1|)) 103)) (-3890 (((-3 $ #1#) $) 52 (|has| |#1| (-560)))) (-3513 (((-922)) 85)) (-1882 (((-112)) 59)) (-2594 (($ $ (-922)) 38)) (-1878 (((-112)) 55)) (-1876 (((-112)) 53)) (-1880 (((-112)) 57)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) 46 (|has| |#1| (-560)))) (-1872 (((-3 $ #1#)) 44 (|has| |#1| (-560)))) (-1964 (((-691 |#1|) (-1269 $)) 71) (((-691 |#1|)) 98)) (-1896 ((|#1| $) 80)) (-1962 (((-691 |#1|) $ (-1269 $)) 82) (((-691 |#1|) $) 96)) (-2568 (((-3 $ #1#) $) 51 (|has| |#1| (-560)))) (-2082 (((-1174 (-949 |#1|))) 94 (|has| |#1| (-365)))) (-2569 (($ $ (-922)) 32)) (-1894 ((|#1| $) 78)) (-1874 (((-1174 |#1|) $) 48 (|has| |#1| (-560)))) (-1966 ((|#1| (-1269 $)) 73) ((|#1|) 100)) (-1892 (((-1174 |#1|) $) 69)) (-1886 (((-112)) 63)) (-3663 (((-1162) $) 10)) (-1877 (((-112)) 54)) (-1879 (((-112)) 56)) (-1881 (((-112)) 58)) (-3664 (((-1123) $) 11)) (-1884 (((-112)) 61)) (-4231 ((|#1| $ (-549)) 106)) (-3644 (((-1269 |#1|) $ (-1269 $)) 76) (((-691 |#1|) (-1269 $) (-1269 $)) 75) (((-1269 |#1|) $) 108) (((-691 |#1|) (-1269 $)) 107)) (-4402 (((-1269 |#1|) $) 102) (($ (-1269 |#1|)) 101)) (-2070 (((-643 (-949 |#1|)) (-1269 $)) 84) (((-643 (-949 |#1|))) 104)) (-2756 (($ $ $) 28)) (-1890 (((-112)) 67)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 109)) (-1875 (((-643 (-1269 |#1|))) 49 (|has| |#1| (-560)))) (-2757 (($ $ $ $) 29)) (-1888 (((-112)) 65)) (-2948 (($ (-691 |#1|) $) 92)) (-2755 (($ $ $) 27)) (-1889 (((-112)) 66)) (-1887 (((-112)) 64)) (-1883 (((-112)) 60)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-421 |#1|) (-140) (-172)) (T -421)) +((-2190 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-421 *3)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-421 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-421 *2)) (-4 *2 (-172)))) (-3643 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 (-691 *3))))) (-2070 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-643 (-949 *3))))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-421 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-421 *3)))) (-1966 (*1 *2) (-12 (-4 *1 (-421 *2)) (-4 *2 (-172)))) (-1965 (*1 *2) (-12 (-4 *1 (-421 *2)) (-4 *2 (-172)))) (-1964 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3)))) (-1963 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3)))) (-2082 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1174 (-949 *3))))) (-2078 (*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1174 (-949 *3))))) (-2948 (*1 *1 *2 *1) (-12 (-5 *2 (-691 *3)) (-4 *1 (-421 *3)) (-4 *3 (-172))))) +(-13 (-369 |t#1|) (-10 -8 (-15 -2190 ((-1269 $))) (-15 -3644 ((-1269 |t#1|) $)) (-15 -3644 ((-691 |t#1|) (-1269 $))) (-15 -4231 (|t#1| $ (-549))) (-15 -3643 ((-1269 (-691 |t#1|)))) (-15 -2070 ((-643 (-949 |t#1|)))) (-15 -1967 ($ (-1269 |t#1|))) (-15 -4402 ((-1269 |t#1|) $)) (-15 -4402 ($ (-1269 |t#1|))) (-15 -1966 (|t#1|)) (-15 -1965 (|t#1|)) (-15 -1964 ((-691 |t#1|))) (-15 -1963 ((-691 |t#1|))) (-15 -1962 ((-691 |t#1|) $)) (-15 -1961 ((-691 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2082 ((-1174 (-949 |t#1|)))) (-15 -2078 ((-1174 (-949 |t#1|))))) |%noBranch|) (-15 -2948 ($ (-691 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-369 |#1|) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-722) . T) ((-746 |#1|) . T) ((-763) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) +((-3538 (((-408 |#1|) (-408 |#1|) (-1 (-408 |#1|) |#1|)) 28)) (-1968 (((-408 |#1|) (-408 |#1|) (-408 |#1|)) 17))) +(((-422 |#1|) (-10 -7 (-15 -3538 ((-408 |#1|) (-408 |#1|) (-1 (-408 |#1|) |#1|))) (-15 -1968 ((-408 |#1|) (-408 |#1|) (-408 |#1|)))) (-560)) (T -422)) +((-1968 (*1 *2 *2 *2) (-12 (-5 *2 (-408 *3)) (-4 *3 (-560)) (-5 *1 (-422 *3)))) (-3538 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-408 *4) *4)) (-4 *4 (-560)) (-5 *2 (-408 *4)) (-5 *1 (-422 *4))))) +(-10 -7 (-15 -3538 ((-408 |#1|) (-408 |#1|) (-1 (-408 |#1|) |#1|))) (-15 -1968 ((-408 |#1|) (-408 |#1|) (-408 |#1|)))) +((-3485 (((-643 (-1180)) $) 81)) (-3487 (((-410 (-1174 $)) $ (-613 $)) 314)) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-643 (-613 $)) (-643 $)) 278)) (-3577 (((-3 (-613 $) #1="failed") $) NIL) (((-3 (-1180) #1#) $) 84) (((-3 (-549) #1#) $) NIL) (((-3 |#2| #1#) $) 274) (((-3 (-410 (-949 |#2|)) #1#) $) 364) (((-3 (-949 |#2|) #1#) $) 276) (((-3 (-410 (-549)) #1#) $) NIL)) (-3576 (((-613 $) $) NIL) (((-1180) $) 28) (((-549) $) NIL) ((|#2| $) 272) (((-410 (-949 |#2|)) $) 346) (((-949 |#2|) $) 273) (((-410 (-549)) $) NIL)) (-3448 (((-113) (-113)) 47)) (-3397 (($ $) 99)) (-1710 (((-3 (-613 $) "failed") $) 269)) (-1709 (((-643 (-613 $)) $) 270)) (-3226 (((-3 (-643 $) "failed") $) 288)) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) "failed") $) 295)) (-3225 (((-3 (-643 $) "failed") $) 286)) (-1969 (((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) "failed") $) 305)) (-3227 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $) 292) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-113)) 256) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-1180)) 258)) (-1972 (((-112) $) 17)) (-1971 ((|#2| $) 19)) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) 277) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) 109) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1180)) 62) (($ $ (-643 (-1180))) 281) (($ $) 282) (($ $ (-113) $ (-1180)) 65) (($ $ (-643 (-113)) (-643 $) (-1180)) 72) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $))) 120) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $)))) 283) (($ $ (-1180) (-773) (-1 $ (-643 $))) 105) (($ $ (-1180) (-773) (-1 $ $)) 104)) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) 119)) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) 279)) (-3396 (($ $) 325)) (-4402 (((-893 (-549)) $) 298) (((-893 (-380)) $) 302) (($ (-408 $)) 360) (((-538) $) NIL)) (-4378 (((-865) $) 280) (($ (-613 $)) 93) (($ (-1180)) 24) (($ |#2|) NIL) (($ (-1128 |#2| (-613 $))) NIL) (($ (-410 |#2|)) 330) (($ (-949 (-410 |#2|))) 369) (($ (-410 (-949 (-410 |#2|)))) 342) (($ (-410 (-949 |#2|))) 336) (($ $) NIL) (($ (-949 |#2|)) 218) (($ (-410 (-549))) 374) (($ (-549)) NIL)) (-3530 (((-773)) 88)) (-2403 (((-112) (-113)) 42)) (-1970 (($ (-1180) $) 31) (($ (-1180) $ $) 32) (($ (-1180) $ $ $) 33) (($ (-1180) $ $ $ $) 34) (($ (-1180) (-643 $)) 39)) (* (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL))) +(((-423 |#1| |#2|) (-10 -8 (-15 * (|#1| (-922) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4378 (|#1| (-549))) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-410 (-549)) #1="failed") |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4378 (|#1| (-949 |#2|))) (-15 -3577 ((-3 (-949 |#2|) #1#) |#1|)) (-15 -3576 ((-949 |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4378 (|#1| (-410 (-949 |#2|)))) (-15 -3577 ((-3 (-410 (-949 |#2|)) #1#) |#1|)) (-15 -3576 ((-410 (-949 |#2|)) |#1|)) (-15 -3487 ((-410 (-1174 |#1|)) |#1| (-613 |#1|))) (-15 -4378 (|#1| (-410 (-949 (-410 |#2|))))) (-15 -4378 (|#1| (-949 (-410 |#2|)))) (-15 -4378 (|#1| (-410 |#2|))) (-15 -3396 (|#1| |#1|)) (-15 -4402 (|#1| (-408 |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-773) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-773) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-773)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-773)) (-643 (-1 |#1| |#1|)))) (-15 -3228 ((-3 (-2 (|:| |val| |#1|) (|:| -2564 (-549))) "failed") |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1| (-1180))) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1| (-113))) (-15 -3397 (|#1| |#1|)) (-15 -4378 (|#1| (-1128 |#2| (-613 |#1|)))) (-15 -1969 ((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3225 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1|)) (-15 -3226 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 |#1|) (-1180))) (-15 -4199 (|#1| |#1| (-113) |#1| (-1180))) (-15 -4199 (|#1| |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1180)))) (-15 -4199 (|#1| |#1| (-1180))) (-15 -1970 (|#1| (-1180) (-643 |#1|))) (-15 -1970 (|#1| (-1180) |#1| |#1| |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1| |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1|)) (-15 -3485 ((-643 (-1180)) |#1|)) (-15 -1971 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4378 (|#1| (-1180))) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| |#1|)))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| |#1|)))) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1709 ((-643 (-613 |#1|)) |#1|)) (-15 -1710 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1712 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -1712 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -1712 (|#1| |#1| (-294 |#1|))) (-15 -4231 (|#1| (-113) (-643 |#1|))) (-15 -4231 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4378 (|#1| (-613 |#1|))) (-15 -3577 ((-3 (-613 |#1|) #1#) |#1|)) (-15 -3576 ((-613 |#1|) |#1|)) (-15 -4378 ((-865) |#1|))) (-424 |#2|) (-1104)) (T -423)) +((-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-1104)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) (-3530 (*1 *2) (-12 (-4 *4 (-1104)) (-5 *2 (-773)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4))))) +(-10 -8 (-15 * (|#1| (-922) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4378 (|#1| (-549))) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-410 (-549)) #1="failed") |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4378 (|#1| (-949 |#2|))) (-15 -3577 ((-3 (-949 |#2|) #1#) |#1|)) (-15 -3576 ((-949 |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4378 (|#1| (-410 (-949 |#2|)))) (-15 -3577 ((-3 (-410 (-949 |#2|)) #1#) |#1|)) (-15 -3576 ((-410 (-949 |#2|)) |#1|)) (-15 -3487 ((-410 (-1174 |#1|)) |#1| (-613 |#1|))) (-15 -4378 (|#1| (-410 (-949 (-410 |#2|))))) (-15 -4378 (|#1| (-949 (-410 |#2|)))) (-15 -4378 (|#1| (-410 |#2|))) (-15 -3396 (|#1| |#1|)) (-15 -4402 (|#1| (-408 |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-773) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-773) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-773)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-773)) (-643 (-1 |#1| |#1|)))) (-15 -3228 ((-3 (-2 (|:| |val| |#1|) (|:| -2564 (-549))) "failed") |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1| (-1180))) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1| (-113))) (-15 -3397 (|#1| |#1|)) (-15 -4378 (|#1| (-1128 |#2| (-613 |#1|)))) (-15 -1969 ((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -3225 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -2564 (-549))) "failed") |#1|)) (-15 -3226 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 |#1|) (-1180))) (-15 -4199 (|#1| |#1| (-113) |#1| (-1180))) (-15 -4199 (|#1| |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1180)))) (-15 -4199 (|#1| |#1| (-1180))) (-15 -1970 (|#1| (-1180) (-643 |#1|))) (-15 -1970 (|#1| (-1180) |#1| |#1| |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1| |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1| |#1|)) (-15 -1970 (|#1| (-1180) |#1|)) (-15 -3485 ((-643 (-1180)) |#1|)) (-15 -1971 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4378 (|#1| (-1180))) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-113) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-113)) (-643 (-1 |#1| |#1|)))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| |#1|))) (-15 -4199 (|#1| |#1| (-1180) (-1 |#1| (-643 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| (-643 |#1|))))) (-15 -4199 (|#1| |#1| (-643 (-1180)) (-643 (-1 |#1| |#1|)))) (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -1709 ((-643 (-613 |#1|)) |#1|)) (-15 -1710 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1712 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -1712 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -1712 (|#1| |#1| (-294 |#1|))) (-15 -4231 (|#1| (-113) (-643 |#1|))) (-15 -4231 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1| |#1|)) (-15 -4231 (|#1| (-113) |#1|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4199 (|#1| |#1| (-643 (-613 |#1|)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4378 (|#1| (-613 |#1|))) (-15 -3577 ((-3 (-613 |#1|) #1#) |#1|)) (-15 -3576 ((-613 |#1|) |#1|)) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 116 (|has| |#1| (-25)))) (-3485 (((-643 (-1180)) $) 203)) (-3487 (((-410 (-1174 $)) $ (-613 $)) 171 (|has| |#1| (-560)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 143 (|has| |#1| (-560)))) (-2241 (($ $) 144 (|has| |#1| (-560)))) (-2239 (((-112) $) 146 (|has| |#1| (-560)))) (-1708 (((-643 (-613 $)) $) 39)) (-1407 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1712 (($ $ (-294 $)) 51) (($ $ (-643 (-294 $))) 50) (($ $ (-643 (-613 $)) (-643 $)) 49)) (-4206 (($ $) 163 (|has| |#1| (-560)))) (-4401 (((-408 $) $) 164 (|has| |#1| (-560)))) (-1753 (((-112) $ $) 154 (|has| |#1| (-560)))) (-4156 (($) 104 (-3960 (|has| |#1| (-1115)) (|has| |#1| (-25))) CONST)) (-3577 (((-3 (-613 $) #1="failed") $) 64) (((-3 (-1180) #1#) $) 216) (((-3 (-549) #1#) $) 210 (|has| |#1| (-1041 (-549)))) (((-3 |#1| #1#) $) 207) (((-3 (-410 (-949 |#1|)) #1#) $) 169 (|has| |#1| (-560))) (((-3 (-949 |#1|) #1#) $) 123 (|has| |#1| (-1052))) (((-3 (-410 (-549)) #1#) $) 98 (-3960 (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549))))))) (-3576 (((-613 $) $) 65) (((-1180) $) 217) (((-549) $) 209 (|has| |#1| (-1041 (-549)))) ((|#1| $) 208) (((-410 (-949 |#1|)) $) 170 (|has| |#1| (-560))) (((-949 |#1|) $) 124 (|has| |#1| (-1052))) (((-410 (-549)) $) 99 (-3960 (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549))))))) (-2964 (($ $ $) 158 (|has| |#1| (-560)))) (-2427 (((-691 (-549)) (-691 $)) 137 (-3256 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 136 (-3256 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 135 (|has| |#1| (-1052))) (((-691 |#1|) (-691 $)) 134 (|has| |#1| (-1052)))) (-3890 (((-3 $ "failed") $) 106 (|has| |#1| (-1115)))) (-2963 (($ $ $) 157 (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 152 (|has| |#1| (-560)))) (-4155 (((-112) $) 165 (|has| |#1| (-560)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 212 (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 211 (|has| |#1| (-889 (-380))))) (-2973 (($ $) 46) (($ (-643 $)) 45)) (-1707 (((-643 (-113)) $) 38)) (-3448 (((-113) (-113)) 37)) (-2573 (((-112) $) 105 (|has| |#1| (-1115)))) (-3076 (((-112) $) 17 (|has| $ (-1041 (-549))))) (-3397 (($ $) 186 (|has| |#1| (-1052)))) (-3399 (((-1128 |#1| (-613 $)) $) 187 (|has| |#1| (-1052)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 161 (|has| |#1| (-560)))) (-1705 (((-1174 $) (-613 $)) 20 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) 31)) (-1710 (((-3 (-613 $) "failed") $) 41)) (-2069 (($ (-643 $)) 150 (|has| |#1| (-560))) (($ $ $) 149 (|has| |#1| (-560)))) (-3663 (((-1162) $) 10)) (-1709 (((-643 (-613 $)) $) 40)) (-2384 (($ (-113) $) 33) (($ (-113) (-643 $)) 32)) (-3226 (((-3 (-643 $) "failed") $) 192 (|has| |#1| (-1115)))) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) "failed") $) 183 (|has| |#1| (-1052)))) (-3225 (((-3 (-643 $) "failed") $) 190 (|has| |#1| (-25)))) (-1969 (((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3227 (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $) 191 (|has| |#1| (-1115))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-113)) 185 (|has| |#1| (-1052))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-1180)) 184 (|has| |#1| (-1052)))) (-3035 (((-112) $ (-113)) 35) (((-112) $ (-1180)) 34)) (-2806 (($ $) 108 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560))))) (-3003 (((-773) $) 42)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 205)) (-1971 ((|#1| $) 204)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 151 (|has| |#1| (-560)))) (-3564 (($ (-643 $)) 148 (|has| |#1| (-560))) (($ $ $) 147 (|has| |#1| (-560)))) (-1706 (((-112) $ $) 30) (((-112) $ (-1180)) 29)) (-4164 (((-408 $) $) 162 (|has| |#1| (-560)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 160 (|has| |#1| (-560))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 159 (|has| |#1| (-560)))) (-3889 (((-3 $ "failed") $ $) 142 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 153 (|has| |#1| (-560)))) (-3077 (((-112) $) 18 (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) 62) (($ $ (-643 (-613 $)) (-643 $)) 61) (($ $ (-643 (-294 $))) 60) (($ $ (-294 $)) 59) (($ $ $ $) 58) (($ $ (-643 $) (-643 $)) 57) (($ $ (-643 (-1180)) (-643 (-1 $ $))) 28) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) 27) (($ $ (-1180) (-1 $ (-643 $))) 26) (($ $ (-1180) (-1 $ $)) 25) (($ $ (-643 (-113)) (-643 (-1 $ $))) 24) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) 23) (($ $ (-113) (-1 $ (-643 $))) 22) (($ $ (-113) (-1 $ $)) 21) (($ $ (-1180)) 197 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180))) 196 (|has| |#1| (-616 (-538)))) (($ $) 195 (|has| |#1| (-616 (-538)))) (($ $ (-113) $ (-1180)) 194 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-113)) (-643 $) (-1180)) 193 (|has| |#1| (-616 (-538)))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $))) 182 (|has| |#1| (-1052))) (($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $)))) 181 (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ (-643 $))) 180 (|has| |#1| (-1052))) (($ $ (-1180) (-773) (-1 $ $)) 179 (|has| |#1| (-1052)))) (-1752 (((-773) $) 155 (|has| |#1| (-560)))) (-4231 (($ (-113) $) 56) (($ (-113) $ $) 55) (($ (-113) $ $ $) 54) (($ (-113) $ $ $ $) 53) (($ (-113) (-643 $)) 52)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 156 (|has| |#1| (-560)))) (-1711 (($ $) 44) (($ $ $) 43)) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 128 (|has| |#1| (-1052))) (($ $ (-1180) (-773)) 127 (|has| |#1| (-1052))) (($ $ (-643 (-1180))) 126 (|has| |#1| (-1052))) (($ $ (-1180)) 125 (|has| |#1| (-1052)))) (-3396 (($ $) 176 (|has| |#1| (-560)))) (-3398 (((-1128 |#1| (-613 $)) $) 177 (|has| |#1| (-560)))) (-3605 (($ $) 19 (|has| $ (-1052)))) (-4402 (((-893 (-549)) $) 214 (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) 213 (|has| |#1| (-616 (-893 (-380))))) (($ (-408 $)) 178 (|has| |#1| (-560))) (((-538) $) 100 (|has| |#1| (-616 (-538))))) (-3410 (($ $ $) 111 (|has| |#1| (-476)))) (-2756 (($ $ $) 112 (|has| |#1| (-476)))) (-4378 (((-865) $) 12) (($ (-613 $)) 63) (($ (-1180)) 215) (($ |#1|) 206) (($ (-1128 |#1| (-613 $))) 188 (|has| |#1| (-1052))) (($ (-410 |#1|)) 174 (|has| |#1| (-560))) (($ (-949 (-410 |#1|))) 173 (|has| |#1| (-560))) (($ (-410 (-949 (-410 |#1|)))) 172 (|has| |#1| (-560))) (($ (-410 (-949 |#1|))) 168 (|has| |#1| (-560))) (($ $) 141 (|has| |#1| (-560))) (($ (-949 |#1|)) 122 (|has| |#1| (-1052))) (($ (-410 (-549))) 97 (-3960 (|has| |#1| (-560)) (-12 (|has| |#1| (-1041 (-549))) (|has| |#1| (-560))) (|has| |#1| (-1041 (-410 (-549)))))) (($ (-549)) 96 (-3960 (|has| |#1| (-1052)) (|has| |#1| (-1041 (-549)))))) (-3105 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-3530 (((-773)) 133 (|has| |#1| (-1052)) CONST)) (-2990 (($ $) 48) (($ (-643 $)) 47)) (-2403 (((-112) (-113)) 36)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 145 (|has| |#1| (-560)))) (-1970 (($ (-1180) $) 202) (($ (-1180) $ $) 201) (($ (-1180) $ $ $) 200) (($ (-1180) $ $ $ $) 199) (($ (-1180) (-643 $)) 198)) (-3510 (($) 115 (|has| |#1| (-25)) CONST)) (-3067 (($) 103 (|has| |#1| (-1115)) CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 132 (|has| |#1| (-1052))) (($ $ (-1180) (-773)) 131 (|has| |#1| (-1052))) (($ $ (-643 (-1180))) 130 (|has| |#1| (-1052))) (($ $ (-1180)) 129 (|has| |#1| (-1052)))) (-3455 (((-112) $ $) 6)) (-4381 (($ (-1128 |#1| (-613 $)) (-1128 |#1| (-613 $))) 175 (|has| |#1| (-560))) (($ $ $) 109 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560))))) (-4269 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-4271 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-549)) 110 (-3960 (|has| |#1| (-476)) (|has| |#1| (-560)))) (($ $ (-773)) 107 (|has| |#1| (-1115))) (($ $ (-922)) 102 (|has| |#1| (-1115)))) (* (($ (-410 (-549)) $) 167 (|has| |#1| (-560))) (($ $ (-410 (-549))) 166 (|has| |#1| (-560))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-549) $) 119 (|has| |#1| (-21))) (($ (-773) $) 117 (|has| |#1| (-25))) (($ (-922) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1115))))) +(((-424 |#1|) (-140) (-1104)) (T -424)) +((-1972 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-5 *2 (-643 (-1180))))) (-1970 (*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) (-1970 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) (-1970 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) (-1970 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) (-1970 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-643 *1)) (-4 *1 (-424 *4)) (-4 *4 (-1104)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-4 *3 (-616 (-538))))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1180))) (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-4 *3 (-616 (-538))))) (-4199 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-616 (-538))))) (-4199 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1180)) (-4 *1 (-424 *4)) (-4 *4 (-1104)) (-4 *4 (-616 (-538))))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 *1)) (-5 *4 (-1180)) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-616 (-538))))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-1115)) (-4 *3 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-424 *3)))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *3 (-1115)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *3)))) (-3225 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-424 *3)))) (-1969 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| -4386 (-549)) (|:| |var| (-613 *1)))) (-4 *1 (-424 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1128 *3 (-613 *1))) (-4 *3 (-1052)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *3 (-1104)) (-5 *2 (-1128 *3 (-613 *1))) (-4 *1 (-424 *3)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-1052)))) (-3227 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1052)) (-4 *4 (-1104)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *4)))) (-3227 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1180)) (-4 *4 (-1052)) (-4 *4 (-1104)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *4)))) (-3228 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1104)) (-5 *2 (-2 (|:| |val| *1) (|:| -2564 (-549)))) (-4 *1 (-424 *3)))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-773))) (-5 *4 (-643 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-773))) (-5 *4 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *4 (-1 *1 (-643 *1))) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) (-4199 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *4 (-1 *1 *1)) (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-408 *1)) (-4 *1 (-424 *3)) (-4 *3 (-560)) (-4 *3 (-1104)))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1104)) (-5 *2 (-1128 *3 (-613 *1))) (-4 *1 (-424 *3)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-560)))) (-4381 (*1 *1 *2 *2) (-12 (-5 *2 (-1128 *3 (-613 *1))) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-949 (-410 *3))) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-410 *3)))) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) (-3487 (*1 *2 *1 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-424 *4)) (-4 *4 (-1104)) (-4 *4 (-560)) (-5 *2 (-410 (-1174 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-4 *3 (-1115))))) +(-13 (-299) (-1041 (-1180)) (-887 |t#1|) (-403 |t#1|) (-415 |t#1|) (-10 -8 (-15 -1972 ((-112) $)) (-15 -1971 (|t#1| $)) (-15 -3485 ((-643 (-1180)) $)) (-15 -1970 ($ (-1180) $)) (-15 -1970 ($ (-1180) $ $)) (-15 -1970 ($ (-1180) $ $ $)) (-15 -1970 ($ (-1180) $ $ $ $)) (-15 -1970 ($ (-1180) (-643 $))) (IF (|has| |t#1| (-616 (-538))) (PROGN (-6 (-616 (-538))) (-15 -4199 ($ $ (-1180))) (-15 -4199 ($ $ (-643 (-1180)))) (-15 -4199 ($ $)) (-15 -4199 ($ $ (-113) $ (-1180))) (-15 -4199 ($ $ (-643 (-113)) (-643 $) (-1180)))) |%noBranch|) (IF (|has| |t#1| (-1115)) (PROGN (-6 (-728)) (-15 ** ($ $ (-773))) (-15 -3226 ((-3 (-643 $) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-476)) (-6 (-476)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3225 ((-3 (-643 $) "failed") $)) (-15 -1969 ((-3 (-2 (|:| -4386 (-549)) (|:| |var| (-613 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-6 (-1052)) (-6 (-1041 (-949 |t#1|))) (-6 (-903 (-1180))) (-6 (-379 |t#1|)) (-15 -4378 ($ (-1128 |t#1| (-613 $)))) (-15 -3399 ((-1128 |t#1| (-613 $)) $)) (-15 -3397 ($ $)) (-15 -3227 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-113))) (-15 -3227 ((-3 (-2 (|:| |var| (-613 $)) (|:| -2564 (-549))) "failed") $ (-1180))) (-15 -3228 ((-3 (-2 (|:| |val| $) (|:| -2564 (-549))) "failed") $)) (-15 -4199 ($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ $)))) (-15 -4199 ($ $ (-643 (-1180)) (-643 (-773)) (-643 (-1 $ (-643 $))))) (-15 -4199 ($ $ (-1180) (-773) (-1 $ (-643 $)))) (-15 -4199 ($ $ (-1180) (-773) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-6 (-365)) (-6 (-1041 (-410 (-949 |t#1|)))) (-15 -4402 ($ (-408 $))) (-15 -3398 ((-1128 |t#1| (-613 $)) $)) (-15 -3396 ($ $)) (-15 -4381 ($ (-1128 |t#1| (-613 $)) (-1128 |t#1| (-613 $)))) (-15 -4378 ($ (-410 |t#1|))) (-15 -4378 ($ (-949 (-410 |t#1|)))) (-15 -4378 ($ (-410 (-949 (-410 |t#1|))))) (-15 -3487 ((-410 (-1174 $)) $ (-613 $))) (IF (|has| |t#1| (-1041 (-549))) (-6 (-1041 (-410 (-549)))) |%noBranch|)) |%noBranch|))) +(((-21) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-410 (-549))) |has| |#1| (-560)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-560)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-560)) ((-131) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-560))) ((-618 #2=(-410 (-949 |#1|))) |has| |#1| (-560)) ((-618 (-549)) -3960 (|has| |#1| (-1052)) (|has| |#1| (-1041 (-549))) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-618 #3=(-613 $)) . T) ((-618 #4=(-949 |#1|)) |has| |#1| (-1052)) ((-618 #5=(-1180)) . T) ((-618 |#1|) . T) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) |has| |#1| (-560)) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549)))) ((-243) |has| |#1| (-560)) ((-291) |has| |#1| (-560)) ((-308) |has| |#1| (-560)) ((-310 $) . T) ((-299) . T) ((-365) |has| |#1| (-560)) ((-379 |#1|) |has| |#1| (-1052)) ((-403 |#1|) . T) ((-415 |#1|) . T) ((-455) |has| |#1| (-560)) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-560)) ((-648 (-549)) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-650 #1#) |has| |#1| (-560)) ((-650 |#1|) |has| |#1| (-172)) ((-650 $) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-642 #1#) |has| |#1| (-560)) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-641 (-549)) -12 (|has| |#1| (-641 (-549))) (|has| |#1| (-1052))) ((-641 |#1|) |has| |#1| (-1052)) ((-719 #1#) |has| |#1| (-560)) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) -3960 (|has| |#1| (-1115)) (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-903 (-1180)) |has| |#1| (-1052)) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-887 |#1|) . T) ((-924) |has| |#1| (-560)) ((-1041 (-410 (-549))) -3960 (|has| |#1| (-1041 (-410 (-549)))) (-12 (|has| |#1| (-560)) (|has| |#1| (-1041 (-549))))) ((-1041 #2#) |has| |#1| (-560)) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 #3#) . T) ((-1041 #4#) |has| |#1| (-1052)) ((-1041 #5#) . T) ((-1041 |#1|) . T) ((-1054 #1#) |has| |#1| (-560)) ((-1054 |#1|) |has| |#1| (-172)) ((-1054 $) |has| |#1| (-560)) ((-1059 #1#) |has| |#1| (-560)) ((-1059 |#1|) |has| |#1| (-172)) ((-1059 $) |has| |#1| (-560)) ((-1052) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1060) -3960 (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1115) -3960 (|has| |#1| (-1115)) (|has| |#1| (-1052)) (|has| |#1| (-560)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1104) . T) ((-1219) . T) ((-1224) |has| |#1| (-560))) +((-4390 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|))) (-1052) (-424 |#1|) (-1052) (-424 |#3|)) (T -425)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-424 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-424 *5))))) +(-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|))) +((-1976 ((|#2| |#2|) 183)) (-1973 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112)) 60))) +(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1973 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112))) (-15 -1976 (|#2| |#2|))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|)) (-1180) |#2|) (T -426)) +((-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-426 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1205) (-424 *3))) (-14 *4 (-1180)) (-14 *5 *2))) (-1973 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) (-5 *1 (-426 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-14 *6 (-1180)) (-14 *7 *3)))) +(-10 -7 (-15 -1973 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112))) (-15 -1976 (|#2| |#2|))) +((-1976 ((|#2| |#2|) 106)) (-1974 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162)) 52)) (-1975 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162)) 170))) +(((-427 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1974 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162))) (-15 -1975 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162))) (-15 -1976 (|#2| |#2|))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|) (-10 -8 (-15 -4378 ($ |#3|)))) (-850) (-13 (-1248 |#2| |#3|) (-365) (-1205) (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $)))) (-986 |#4|) (-1180)) (T -427)) +((-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-4 *2 (-13 (-27) (-1205) (-424 *3) (-10 -8 (-15 -4378 ($ *4))))) (-4 *4 (-850)) (-4 *5 (-13 (-1248 *2 *4) (-365) (-1205) (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-986 *5)) (-14 *7 (-1180)))) (-1975 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-4 *3 (-13 (-27) (-1205) (-424 *6) (-10 -8 (-15 -4378 ($ *7))))) (-4 *7 (-850)) (-4 *8 (-13 (-1248 *3 *7) (-365) (-1205) (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1162)) (-4 *9 (-986 *8)) (-14 *10 (-1180)))) (-1974 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-4 *3 (-13 (-27) (-1205) (-424 *6) (-10 -8 (-15 -4378 ($ *7))))) (-4 *7 (-850)) (-4 *8 (-13 (-1248 *3 *7) (-365) (-1205) (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1162)) (-4 *9 (-986 *8)) (-14 *10 (-1180))))) +(-10 -7 (-15 -1974 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162))) (-15 -1975 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162))))) |#2| (-112) (-1162))) (-15 -1976 (|#2| |#2|))) +((-1977 (($) 52)) (-3654 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3656 (($ $ $) 45)) (-3655 (((-112) $ $) 34)) (-3540 (((-773)) 56)) (-3659 (($ (-643 |#2|)) 23) (($) NIL)) (-3395 (($) 67)) (-3661 (((-112) $ $) 15)) (-2934 ((|#2| $) 78)) (-3260 ((|#2| $) 76)) (-2188 (((-922) $) 71)) (-3658 (($ $ $) 41)) (-2563 (($ (-922)) 61)) (-3657 (($ $ |#2|) NIL) (($ $ $) 44)) (-2125 (((-773) (-1 (-112) |#2|) $) NIL) (((-773) |#2| $) 31)) (-3953 (($ (-643 |#2|)) 27)) (-1978 (($ $) 54)) (-4378 (((-865) $) 39)) (-1979 (((-773) $) 24)) (-3660 (($ (-643 |#2|)) 22) (($) NIL)) (-3455 (((-112) $ $) 19))) +(((-428 |#1| |#2|) (-10 -8 (-15 -3540 ((-773))) (-15 -2563 (|#1| (-922))) (-15 -2188 ((-922) |#1|)) (-15 -3395 (|#1|)) (-15 -2934 (|#2| |#1|)) (-15 -3260 (|#2| |#1|)) (-15 -1977 (|#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1979 ((-773) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3661 ((-112) |#1| |#1|)) (-15 -3660 (|#1|)) (-15 -3660 (|#1| (-643 |#2|))) (-15 -3659 (|#1|)) (-15 -3659 (|#1| (-643 |#2|))) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3655 ((-112) |#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#2| |#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|))) (-429 |#2|) (-1104)) (T -428)) +((-3540 (*1 *2) (-12 (-4 *4 (-1104)) (-5 *2 (-773)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) +(-10 -8 (-15 -3540 ((-773))) (-15 -2563 (|#1| (-922))) (-15 -2188 ((-922) |#1|)) (-15 -3395 (|#1|)) (-15 -2934 (|#2| |#1|)) (-15 -3260 (|#2| |#1|)) (-15 -1977 (|#1|)) (-15 -1978 (|#1| |#1|)) (-15 -1979 ((-773) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3661 ((-112) |#1| |#1|)) (-15 -3660 (|#1|)) (-15 -3660 (|#1| (-643 |#2|))) (-15 -3659 (|#1|)) (-15 -3659 (|#1| (-643 |#2|))) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3655 ((-112) |#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#2| |#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -2125 ((-773) |#2| |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|))) +((-2968 (((-112) $ $) 19)) (-1977 (($) 68 (|has| |#1| (-370)))) (-3654 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3656 (($ $ $) 79)) (-3655 (((-112) $ $) 80)) (-1309 (((-112) $ (-773)) 8)) (-3540 (((-773)) 62 (|has| |#1| (-370)))) (-3659 (($ (-643 |#1|)) 75) (($) 74)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-3395 (($) 65 (|has| |#1| (-370)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 71)) (-4151 (((-112) $ (-773)) 9)) (-2934 ((|#1| $) 66 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3260 ((|#1| $) 67 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-2188 (((-922) $) 64 (|has| |#1| (-370)))) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22)) (-3658 (($ $ $) 76)) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-2563 (($ (-922)) 63 (|has| |#1| (-370)))) (-3664 (((-1123) $) 21)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3657 (($ $ |#1|) 78) (($ $ $) 77)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-1978 (($ $) 69 (|has| |#1| (-370)))) (-4378 (((-865) $) 18)) (-1979 (((-773) $) 70)) (-3660 (($ (-643 |#1|)) 73) (($) 72)) (-3662 (((-112) $ $) 23)) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-429 |#1|) (-140) (-1104)) (T -429)) +((-1979 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-1104)) (-5 *2 (-773)))) (-1978 (*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-370)))) (-1977 (*1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-370)) (-4 *2 (-1104)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-852)))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-852))))) +(-13 (-229 |t#1|) (-1102 |t#1|) (-10 -8 (-6 -4425) (-15 -1979 ((-773) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -1978 ($ $)) (-15 -1977 ($))) |%noBranch|) (IF (|has| |t#1| (-852)) (PROGN (-15 -3260 (|t#1| $)) (-15 -2934 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-370) |has| |#1| (-370)) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1102 |#1|) . T) ((-1104) . T) ((-1219) . T)) +((-4273 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4274 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4390 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4274 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1104) (-429 |#1|) (-1104) (-429 |#3|)) (T -430)) +((-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-4 *2 (-429 *5)) (-5 *1 (-430 *6 *4 *5 *2)) (-4 *4 (-429 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-430 *5 *4 *2 *6)) (-4 *4 (-429 *5)) (-4 *6 (-429 *2)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-429 *6)) (-5 *1 (-430 *5 *4 *6 *2)) (-4 *4 (-429 *5))))) +(-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4274 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4273 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1980 (((-586 |#2|) |#2| (-1180)) 36)) (-2283 (((-586 |#2|) |#2| (-1180)) 21)) (-2328 ((|#2| |#2| (-1180)) 26))) +(((-431 |#1| |#2|) (-10 -7 (-15 -2283 ((-586 |#2|) |#2| (-1180))) (-15 -1980 ((-586 |#2|) |#2| (-1180))) (-15 -2328 (|#2| |#2| (-1180)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-29 |#1|))) (T -431)) +((-2328 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1205) (-29 *4))))) (-1980 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1205) (-29 *5))))) (-2283 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1205) (-29 *5)))))) +(-10 -7 (-15 -2283 ((-586 |#2|) |#2| (-1180))) (-15 -1980 ((-586 |#2|) |#2| (-1180))) (-15 -2328 (|#2| |#2| (-1180)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-1982 (($ |#2| |#1|) 37)) (-1981 (($ |#2| |#1|) 35)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 10 T CONST)) (-3067 (($) 16 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 36)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-432 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4412)) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|) |%noBranch|) (-15 -4378 ($ |#1|)) (-15 -4378 ($ (-332 |#2|))) (-15 -1982 ($ |#2| |#1|)) (-15 -1981 ($ |#2| |#1|)))) (-13 (-172) (-38 (-410 (-549)))) (-13 (-852) (-21))) (T -432)) +((-4378 (*1 *1 *2) (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-549))))) (-4 *3 (-13 (-852) (-21))))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-852) (-21))) (-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))))) (-1982 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))) (-4 *2 (-13 (-852) (-21))))) (-1981 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))) (-4 *2 (-13 (-852) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4412)) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|) |%noBranch|) (-15 -4378 ($ |#1|)) (-15 -4378 ($ (-332 |#2|))) (-15 -1982 ($ |#2| |#1|)) (-15 -1981 ($ |#2| |#1|)))) +((-4244 (((-3 |#2| (-643 |#2|)) |#2| (-1180)) 115))) +(((-433 |#1| |#2|) (-10 -7 (-15 -4244 ((-3 |#2| (-643 |#2|)) |#2| (-1180)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-963) (-29 |#1|))) (T -433)) +((-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 *3 (-643 *3))) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1205) (-963) (-29 *5)))))) +(-10 -7 (-15 -4244 ((-3 |#2| (-643 |#2|)) |#2| (-1180)))) +((-3810 ((|#2| |#2| |#2|) 31)) (-3448 (((-113) (-113)) 43)) (-1984 ((|#2| |#2|) 63)) (-1983 ((|#2| |#2|) 66)) (-3809 ((|#2| |#2|) 30)) (-3813 ((|#2| |#2| |#2|) 33)) (-3815 ((|#2| |#2| |#2|) 35)) (-3812 ((|#2| |#2| |#2|) 32)) (-3814 ((|#2| |#2| |#2|) 34)) (-2403 (((-112) (-113)) 41)) (-3817 ((|#2| |#2|) 37)) (-3816 ((|#2| |#2|) 36)) (-3807 ((|#2| |#2|) 25)) (-3811 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3808 ((|#2| |#2| |#2|) 29))) +(((-434 |#1| |#2|) (-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -3807 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3811 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2| |#2|)) (-15 -3812 (|#2| |#2| |#2|)) (-15 -3813 (|#2| |#2| |#2|)) (-15 -3814 (|#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -1984 (|#2| |#2|))) (-560) (-424 |#1|)) (T -434)) +((-1984 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-1983 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3817 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3816 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3815 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3814 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3813 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3812 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3810 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3811 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-434 *3 *4)) (-4 *4 (-424 *3)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *5 (-424 *4))))) +(-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -3807 (|#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3811 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3810 (|#2| |#2| |#2|)) (-15 -3812 (|#2| |#2| |#2|)) (-15 -3813 (|#2| |#2| |#2|)) (-15 -3814 (|#2| |#2| |#2|)) (-15 -3815 (|#2| |#2| |#2|)) (-15 -3816 (|#2| |#2|)) (-15 -3817 (|#2| |#2|)) (-15 -1983 (|#2| |#2|)) (-15 -1984 (|#2| |#2|))) +((-3236 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-643 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-643 |#2|)) 68))) +(((-435 |#1| |#2|) (-10 -7 (-15 -3236 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-643 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-643 |#2|))) (IF (|has| |#2| (-27)) (-15 -3236 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-560) (-147)) (-424 |#1|)) (T -435)) +((-3236 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-560) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1174 *3)) (|:| |pol2| (-1174 *3)) (|:| |prim| (-1174 *3)))) (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-643 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-560) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-643 (-1174 *5))) (|:| |prim| (-1174 *5)))) (-5 *1 (-435 *4 *5))))) +(-10 -7 (-15 -3236 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-643 (-1174 |#2|))) (|:| |prim| (-1174 |#2|))) (-643 |#2|))) (IF (|has| |#2| (-27)) (-15 -3236 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1174 |#2|)) (|:| |pol2| (-1174 |#2|)) (|:| |prim| (-1174 |#2|))) |#2| |#2|)) |%noBranch|)) +((-1986 (((-1275)) 18)) (-1985 (((-1174 (-410 (-549))) |#2| (-613 |#2|)) 40) (((-410 (-549)) |#2|) 24))) +(((-436 |#1| |#2|) (-10 -7 (-15 -1985 ((-410 (-549)) |#2|)) (-15 -1985 ((-1174 (-410 (-549))) |#2| (-613 |#2|))) (-15 -1986 ((-1275)))) (-13 (-560) (-1041 (-549))) (-424 |#1|)) (T -436)) +((-1986 (*1 *2) (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *2 (-1275)) (-5 *1 (-436 *3 *4)) (-4 *4 (-424 *3)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-424 *5)) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-436 *5 *3)))) (-1985 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-436 *4 *3)) (-4 *3 (-424 *4))))) +(-10 -7 (-15 -1985 ((-410 (-549)) |#2|)) (-15 -1985 ((-1174 (-410 (-549))) |#2| (-613 |#2|))) (-15 -1986 ((-1275)))) +((-4077 (((-112) $) 32)) (-1987 (((-112) $) 34)) (-3680 (((-112) $) 35)) (-1989 (((-112) $) 38)) (-1991 (((-112) $) 33)) (-1990 (((-112) $) 37)) (-4378 (((-865) $) 20) (($ (-1162)) 31) (($ (-1180)) 26) (((-1180) $) 24) (((-1106) $) 23)) (-1988 (((-112) $) 36)) (-3455 (((-112) $ $) 17))) +(((-437) (-13 (-615 (-865)) (-10 -8 (-15 -4378 ($ (-1162))) (-15 -4378 ($ (-1180))) (-15 -4378 ((-1180) $)) (-15 -4378 ((-1106) $)) (-15 -4077 ((-112) $)) (-15 -1991 ((-112) $)) (-15 -3680 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -1988 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -3455 ((-112) $ $))))) (T -437)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-437)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-437)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-437)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) (-4077 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3455 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(-13 (-615 (-865)) (-10 -8 (-15 -4378 ($ (-1162))) (-15 -4378 ($ (-1180))) (-15 -4378 ((-1180) $)) (-15 -4378 ((-1106) $)) (-15 -4077 ((-112) $)) (-15 -1991 ((-112) $)) (-15 -3680 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -1989 ((-112) $)) (-15 -1988 ((-112) $)) (-15 -1987 ((-112) $)) (-15 -3455 ((-112) $ $)))) +((-1993 (((-3 (-408 (-1174 (-410 (-549)))) "failed") |#3|) 72)) (-1992 (((-408 |#3|) |#3|) 34)) (-1995 (((-3 (-408 (-1174 (-48))) "failed") |#3|) 46 (|has| |#2| (-1041 (-48))))) (-1994 (((-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) (|:| -3041 (-112))) |#3|) 37))) +(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1992 ((-408 |#3|) |#3|)) (-15 -1993 ((-3 (-408 (-1174 (-410 (-549)))) "failed") |#3|)) (-15 -1994 ((-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) (|:| -3041 (-112))) |#3|)) (IF (|has| |#2| (-1041 (-48))) (-15 -1995 ((-3 (-408 (-1174 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-560) (-1041 (-549))) (-424 |#1|) (-1245 |#2|)) (T -438)) +((-1995 (*1 *2 *3) (|partial| -12 (-4 *5 (-1041 (-48))) (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-408 (-1174 (-48)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) (|:| -3041 (-112)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-1993 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-408 (-1174 (-410 (-549))))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-1992 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-408 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) +(-10 -7 (-15 -1992 ((-408 |#3|) |#3|)) (-15 -1993 ((-3 (-408 (-1174 (-410 (-549)))) "failed") |#3|)) (-15 -1994 ((-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) (|:| -3041 (-112))) |#3|)) (IF (|has| |#2| (-1041 (-48))) (-15 -1995 ((-3 (-408 (-1174 (-48))) "failed") |#3|)) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-2004 (((-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $) 11)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2002 (($) 35)) (-1999 (($) 41)) (-2000 (($) 37)) (-1997 (($) 39)) (-2001 (($) 36)) (-1998 (($) 38)) (-1996 (($) 40)) (-2003 (((-112) $) 8)) (-2752 (((-643 (-949 (-549))) $) 19)) (-3953 (($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-1180)) (-112)) 29) (($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-949 (-549))) (-112)) 30)) (-4378 (((-865) $) 24) (($ (-437)) 32)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-439) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-437))) (-15 -2004 ((-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $)) (-15 -2752 ((-643 (-949 (-549))) $)) (-15 -2003 ((-112) $)) (-15 -3953 ($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-1180)) (-112))) (-15 -3953 ($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-949 (-549))) (-112))) (-15 -2002 ($)) (-15 -2001 ($)) (-15 -2000 ($)) (-15 -1999 ($)) (-15 -1998 ($)) (-15 -1997 ($)) (-15 -1996 ($))))) (T -439)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-439)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) (-5 *1 (-439)))) (-2752 (*1 *2 *1) (-12 (-5 *2 (-643 (-949 (-549)))) (-5 *1 (-439)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *3 (-643 (-1180))) (-5 *4 (-112)) (-5 *1 (-439)))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-112)) (-5 *1 (-439)))) (-2002 (*1 *1) (-5 *1 (-439))) (-2001 (*1 *1) (-5 *1 (-439))) (-2000 (*1 *1) (-5 *1 (-439))) (-1999 (*1 *1) (-5 *1 (-439))) (-1998 (*1 *1) (-5 *1 (-439))) (-1997 (*1 *1) (-5 *1 (-439))) (-1996 (*1 *1) (-5 *1 (-439)))) +(-13 (-1104) (-10 -8 (-15 -4378 ($ (-437))) (-15 -2004 ((-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $)) (-15 -2752 ((-643 (-949 (-549))) $)) (-15 -2003 ((-112) $)) (-15 -3953 ($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-1180)) (-112))) (-15 -3953 ($ (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-643 (-949 (-549))) (-112))) (-15 -2002 ($)) (-15 -2001 ($)) (-15 -2000 ($)) (-15 -1999 ($)) (-15 -1998 ($)) (-15 -1997 ($)) (-15 -1996 ($)))) +((-2968 (((-112) $ $) NIL)) (-1865 (((-1162) $ (-1162)) NIL)) (-1869 (($ $ (-1162)) NIL)) (-1866 (((-1162) $) NIL)) (-2008 (((-391) (-391) (-391)) 17) (((-391) (-391)) 15)) (-1870 (($ (-391)) NIL) (($ (-391) (-1162)) NIL)) (-3973 (((-391) $) NIL)) (-3663 (((-1162) $) NIL)) (-1867 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2007 (((-1275) (-1162)) 9)) (-2006 (((-1275) (-1162)) 10)) (-2005 (((-1275)) 11)) (-4378 (((-865) $) NIL)) (-1868 (($ $) 39)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-440) (-13 (-367 (-391) (-1162)) (-10 -7 (-15 -2008 ((-391) (-391) (-391))) (-15 -2008 ((-391) (-391))) (-15 -2007 ((-1275) (-1162))) (-15 -2006 ((-1275) (-1162))) (-15 -2005 ((-1275)))))) (T -440)) +((-2008 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-440)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-440)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-440)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-440)))) (-2005 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-440))))) +(-13 (-367 (-391) (-1162)) (-10 -7 (-15 -2008 ((-391) (-391) (-391))) (-15 -2008 ((-391) (-391))) (-15 -2007 ((-1275) (-1162))) (-15 -2006 ((-1275) (-1162))) (-15 -2005 ((-1275))))) +((-2968 (((-112) $ $) NIL)) (-3973 (((-1180) $) 8)) (-3663 (((-1162) $) 17)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 11)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 14))) +(((-441 |#1|) (-13 (-1104) (-10 -8 (-15 -3973 ((-1180) $)))) (-1180)) (T -441)) +((-3973 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-441 *3)) (-14 *3 *2)))) +(-13 (-1104) (-10 -8 (-15 -3973 ((-1180) $)))) +((-2968 (((-112) $ $) NIL)) (-3740 (((-1118) $) 7)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 13)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9))) +(((-442) (-13 (-1104) (-10 -8 (-15 -3740 ((-1118) $))))) (T -442)) +((-3740 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-442))))) +(-13 (-1104) (-10 -8 (-15 -3740 ((-1118) $)))) +((-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-1269 (-701))) 14) (($ (-643 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 11))) (((-443) (-140)) (T -443)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-700))) (-4 *1 (-443)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) (-4 *1 (-443))))) -(-13 (-398) (-10 -8 (-15 -2504 ($ (-1269 (-700)))) (-15 -2504 ($ (-645 (-331)))) (-15 -2504 ($ (-331))) (-15 -2504 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331)))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1219) . T)) -((-4275 (((-3 $ "failed") (-1269 (-317 (-381)))) 21) (((-3 $ "failed") (-1269 (-317 (-567)))) 19) (((-3 $ "failed") (-1269 (-954 (-381)))) 17) (((-3 $ "failed") (-1269 (-954 (-567)))) 15) (((-3 $ "failed") (-1269 (-410 (-954 (-381))))) 13) (((-3 $ "failed") (-1269 (-410 (-954 (-567))))) 11)) (-3094 (($ (-1269 (-317 (-381)))) 22) (($ (-1269 (-317 (-567)))) 20) (($ (-1269 (-954 (-381)))) 18) (($ (-1269 (-954 (-567)))) 16) (($ (-1269 (-410 (-954 (-381))))) 14) (($ (-1269 (-410 (-954 (-567))))) 12)) (-2229 (((-1274) $) 7)) (-2504 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) 23))) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-701))) (-4 *1 (-443)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-443)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-443))))) +(-13 (-399) (-10 -8 (-15 -4378 ($ (-1269 (-701)))) (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))))) +(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) +((-3577 (((-3 $ "failed") (-1269 (-315 (-380)))) 21) (((-3 $ "failed") (-1269 (-315 (-549)))) 19) (((-3 $ "failed") (-1269 (-949 (-380)))) 17) (((-3 $ "failed") (-1269 (-949 (-549)))) 15) (((-3 $ "failed") (-1269 (-410 (-949 (-380))))) 13) (((-3 $ "failed") (-1269 (-410 (-949 (-549))))) 11)) (-3576 (($ (-1269 (-315 (-380)))) 22) (($ (-1269 (-315 (-549)))) 20) (($ (-1269 (-949 (-380)))) 18) (($ (-1269 (-949 (-549)))) 16) (($ (-1269 (-410 (-949 (-380))))) 14) (($ (-1269 (-410 (-949 (-549))))) 12)) (-3804 (((-1275) $) 7)) (-4378 (((-865) $) 8) (($ (-643 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) 23))) (((-444) (-140)) (T -444)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) (-4 *1 (-444)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1269 (-317 (-381)))) (-4 *1 (-444)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-317 (-381)))) (-4 *1 (-444)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1269 (-317 (-567)))) (-4 *1 (-444)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-317 (-567)))) (-4 *1 (-444)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1269 (-954 (-381)))) (-4 *1 (-444)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-954 (-381)))) (-4 *1 (-444)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1269 (-954 (-567)))) (-4 *1 (-444)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-954 (-567)))) (-4 *1 (-444)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 (-381))))) (-4 *1 (-444)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-410 (-954 (-381))))) (-4 *1 (-444)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 (-567))))) (-4 *1 (-444)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-410 (-954 (-567))))) (-4 *1 (-444))))) -(-13 (-398) (-10 -8 (-15 -2504 ($ (-645 (-331)))) (-15 -2504 ($ (-331))) (-15 -2504 ($ (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331)))))) (-15 -3094 ($ (-1269 (-317 (-381))))) (-15 -4275 ((-3 $ "failed") (-1269 (-317 (-381))))) (-15 -3094 ($ (-1269 (-317 (-567))))) (-15 -4275 ((-3 $ "failed") (-1269 (-317 (-567))))) (-15 -3094 ($ (-1269 (-954 (-381))))) (-15 -4275 ((-3 $ "failed") (-1269 (-954 (-381))))) (-15 -3094 ($ (-1269 (-954 (-567))))) (-15 -4275 ((-3 $ "failed") (-1269 (-954 (-567))))) (-15 -3094 ($ (-1269 (-410 (-954 (-381)))))) (-15 -4275 ((-3 $ "failed") (-1269 (-410 (-954 (-381)))))) (-15 -3094 ($ (-1269 (-410 (-954 (-567)))))) (-15 -4275 ((-3 $ "failed") (-1269 (-410 (-954 (-567)))))))) -(((-614 (-863)) . T) ((-398) . T) ((-1219) . T)) -((-2111 (((-112)) 18)) (-1352 (((-112) (-112)) 19)) (-4119 (((-112)) 14)) (-3780 (((-112) (-112)) 15)) (-4058 (((-112)) 16)) (-3061 (((-112) (-112)) 17)) (-2085 (((-923) (-923)) 22) (((-923)) 21)) (-2267 (((-772) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567))))) 52)) (-1687 (((-923) (-923)) 24) (((-923)) 23)) (-2103 (((-2 (|:| -2070 (-567)) (|:| -1444 (-645 |#1|))) |#1|) 97)) (-2218 (((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567))))))) 178)) (-3443 (((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112)) 211)) (-3761 (((-421 |#1|) |#1| (-772) (-772)) 226) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 223) (((-421 |#1|) |#1| (-645 (-772))) 225) (((-421 |#1|) |#1| (-772)) 224) (((-421 |#1|) |#1|) 222)) (-3221 (((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112)) 228) (((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772)) 229) (((-3 |#1| "failed") (-923) |#1| (-645 (-772))) 231) (((-3 |#1| "failed") (-923) |#1| (-772)) 230) (((-3 |#1| "failed") (-923) |#1|) 232)) (-3661 (((-421 |#1|) |#1| (-772) (-772)) 221) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 217) (((-421 |#1|) |#1| (-645 (-772))) 219) (((-421 |#1|) |#1| (-772)) 218) (((-421 |#1|) |#1|) 216)) (-4373 (((-112) |#1|) 44)) (-2398 (((-738 (-772)) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567))))) 102)) (-1457 (((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)) 215))) -(((-445 |#1|) (-10 -7 (-15 -2218 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))))) (-15 -2398 ((-738 (-772)) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))))) (-15 -1687 ((-923))) (-15 -1687 ((-923) (-923))) (-15 -2085 ((-923))) (-15 -2085 ((-923) (-923))) (-15 -2267 ((-772) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))))) (-15 -2103 ((-2 (|:| -2070 (-567)) (|:| -1444 (-645 |#1|))) |#1|)) (-15 -2111 ((-112))) (-15 -1352 ((-112) (-112))) (-15 -4119 ((-112))) (-15 -3780 ((-112) (-112))) (-15 -4373 ((-112) |#1|)) (-15 -4058 ((-112))) (-15 -3061 ((-112) (-112))) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -3661 ((-421 |#1|) |#1| (-772))) (-15 -3661 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -3661 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -3661 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3761 ((-421 |#1|) |#1|)) (-15 -3761 ((-421 |#1|) |#1| (-772))) (-15 -3761 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -3761 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -3761 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3221 ((-3 |#1| "failed") (-923) |#1|)) (-15 -3221 ((-3 |#1| "failed") (-923) |#1| (-772))) (-15 -3221 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)))) (-15 -3221 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772))) (-15 -3221 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112))) (-15 -3443 ((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112))) (-15 -1457 ((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)))) (-1245 (-567))) (T -445)) -((-1457 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1104 (-772))) (-5 *6 (-772)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| *3) (|:| -3451 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| *3) (|:| -3451 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3221 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3221 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3221 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3221 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-923)) (-5 *4 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3221 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-923)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) (-3761 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3761 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3761 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3761 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3761 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3661 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3661 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3661 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3061 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-4058 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-4373 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-3780 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-4119 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2111 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2103 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2070 (-567)) (|:| -1444 (-645 *3)))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -3661 *4) (|:| -3380 (-567))))) (-4 *4 (-1245 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2085 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-1687 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -3661 *4) (|:| -3380 (-567))))) (-4 *4 (-1245 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| *4) (|:| -3451 (-567))))))) (-4 *4 (-1245 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4))))) -(-10 -7 (-15 -2218 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))))) (-15 -2398 ((-738 (-772)) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))))) (-15 -1687 ((-923))) (-15 -1687 ((-923) (-923))) (-15 -2085 ((-923))) (-15 -2085 ((-923) (-923))) (-15 -2267 ((-772) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))))) (-15 -2103 ((-2 (|:| -2070 (-567)) (|:| -1444 (-645 |#1|))) |#1|)) (-15 -2111 ((-112))) (-15 -1352 ((-112) (-112))) (-15 -4119 ((-112))) (-15 -3780 ((-112) (-112))) (-15 -4373 ((-112) |#1|)) (-15 -4058 ((-112))) (-15 -3061 ((-112) (-112))) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -3661 ((-421 |#1|) |#1| (-772))) (-15 -3661 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -3661 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -3661 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3761 ((-421 |#1|) |#1|)) (-15 -3761 ((-421 |#1|) |#1| (-772))) (-15 -3761 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -3761 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -3761 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3221 ((-3 |#1| "failed") (-923) |#1|)) (-15 -3221 ((-3 |#1| "failed") (-923) |#1| (-772))) (-15 -3221 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)))) (-15 -3221 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772))) (-15 -3221 ((-3 |#1| "failed") (-923) |#1| (-645 (-772)) (-772) (-112))) (-15 -3443 ((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112))) (-15 -1457 ((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112) (-1104 (-772)) (-772)))) -((-4140 (((-567) |#2|) 52) (((-567) |#2| (-772)) 51)) (-1955 (((-567) |#2|) 67)) (-3090 ((|#3| |#2|) 26)) (-2013 ((|#3| |#2| (-923)) 15)) (-3613 ((|#3| |#2|) 16)) (-2473 ((|#3| |#2|) 9)) (-1337 ((|#3| |#2|) 10)) (-3896 ((|#3| |#2| (-923)) 74) ((|#3| |#2|) 34)) (-3423 (((-567) |#2|) 69))) -(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -3423 ((-567) |#2|)) (-15 -3896 (|#3| |#2|)) (-15 -3896 (|#3| |#2| (-923))) (-15 -1955 ((-567) |#2|)) (-15 -4140 ((-567) |#2| (-772))) (-15 -4140 ((-567) |#2|)) (-15 -2013 (|#3| |#2| (-923))) (-15 -3090 (|#3| |#2|)) (-15 -2473 (|#3| |#2|)) (-15 -1337 (|#3| |#2|)) (-15 -3613 (|#3| |#2|))) (-1051) (-1245 |#1|) (-13 (-407) (-1040 |#1|) (-365) (-1204) (-285))) (T -446)) -((-3613 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-1337 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-3090 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2013 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))))) (-4140 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1245 *5)) (-4 *6 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))))) (-1955 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))))) -(-10 -7 (-15 -3423 ((-567) |#2|)) (-15 -3896 (|#3| |#2|)) (-15 -3896 (|#3| |#2| (-923))) (-15 -1955 ((-567) |#2|)) (-15 -4140 ((-567) |#2| (-772))) (-15 -4140 ((-567) |#2|)) (-15 -2013 (|#3| |#2| (-923))) (-15 -3090 (|#3| |#2|)) (-15 -2473 (|#3| |#2|)) (-15 -1337 (|#3| |#2|)) (-15 -3613 (|#3| |#2|))) -((-1439 ((|#2| (-1269 |#1|)) 45)) (-1708 ((|#2| |#2| |#1|) 61)) (-3770 ((|#2| |#2| |#1|) 53)) (-3247 ((|#2| |#2|) 49)) (-2847 (((-112) |#2|) 36)) (-2782 (((-645 |#2|) (-923) (-421 |#2|)) 24)) (-3221 ((|#2| (-923) (-421 |#2|)) 28)) (-2398 (((-738 (-772)) (-421 |#2|)) 33))) -(((-447 |#1| |#2|) (-10 -7 (-15 -2847 ((-112) |#2|)) (-15 -1439 (|#2| (-1269 |#1|))) (-15 -3247 (|#2| |#2|)) (-15 -3770 (|#2| |#2| |#1|)) (-15 -1708 (|#2| |#2| |#1|)) (-15 -2398 ((-738 (-772)) (-421 |#2|))) (-15 -3221 (|#2| (-923) (-421 |#2|))) (-15 -2782 ((-645 |#2|) (-923) (-421 |#2|)))) (-1051) (-1245 |#1|)) (T -447)) -((-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-421 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-1051)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))) (-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-421 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-447 *5 *2)) (-4 *5 (-1051)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1051)) (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))) (-1708 (*1 *2 *2 *3) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-3770 (*1 *2 *2 *3) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-3247 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-1051)) (-4 *2 (-1245 *4)) (-5 *1 (-447 *4 *2)))) (-2847 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -2847 ((-112) |#2|)) (-15 -1439 (|#2| (-1269 |#1|))) (-15 -3247 (|#2| |#2|)) (-15 -3770 (|#2| |#2| |#1|)) (-15 -1708 (|#2| |#2| |#1|)) (-15 -2398 ((-738 (-772)) (-421 |#2|))) (-15 -3221 (|#2| (-923) (-421 |#2|))) (-15 -2782 ((-645 |#2|) (-923) (-421 |#2|)))) -((-2084 (((-772)) 59)) (-2844 (((-772)) 29 (|has| |#1| (-407))) (((-772) (-772)) 28 (|has| |#1| (-407)))) (-3137 (((-567) |#1|) 25 (|has| |#1| (-407)))) (-1817 (((-567) |#1|) 27 (|has| |#1| (-407)))) (-3107 (((-772)) 58) (((-772) (-772)) 57)) (-3978 ((|#1| (-772) (-567)) 37)) (-3714 (((-1274)) 61))) -(((-448 |#1|) (-10 -7 (-15 -3978 (|#1| (-772) (-567))) (-15 -3107 ((-772) (-772))) (-15 -3107 ((-772))) (-15 -2084 ((-772))) (-15 -3714 ((-1274))) (IF (|has| |#1| (-407)) (PROGN (-15 -1817 ((-567) |#1|)) (-15 -3137 ((-567) |#1|)) (-15 -2844 ((-772) (-772))) (-15 -2844 ((-772)))) |%noBranch|)) (-1051)) (T -448)) -((-2844 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-2844 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-1817 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) (-3714 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-2084 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-3107 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) (-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1051))))) -(-10 -7 (-15 -3978 (|#1| (-772) (-567))) (-15 -3107 ((-772) (-772))) (-15 -3107 ((-772))) (-15 -2084 ((-772))) (-15 -3714 ((-1274))) (IF (|has| |#1| (-407)) (PROGN (-15 -1817 ((-567) |#1|)) (-15 -3137 ((-567) |#1|)) (-15 -2844 ((-772) (-772))) (-15 -2844 ((-772)))) |%noBranch|)) -((-1513 (((-645 (-567)) (-567)) 76)) (-2946 (((-112) (-169 (-567))) 82)) (-3661 (((-421 (-169 (-567))) (-169 (-567))) 75))) -(((-449) (-10 -7 (-15 -3661 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1513 ((-645 (-567)) (-567))) (-15 -2946 ((-112) (-169 (-567)))))) (T -449)) -((-2946 (*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) (-1513 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))) (-3661 (*1 *2 *3) (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449)) (-5 *3 (-169 (-567)))))) -(-10 -7 (-15 -3661 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -1513 ((-645 (-567)) (-567))) (-15 -2946 ((-112) (-169 (-567))))) -((-2852 ((|#4| |#4| (-645 |#4|)) 82)) (-2733 (((-645 |#4|) (-645 |#4|) (-1161) (-1161)) 22) (((-645 |#4|) (-645 |#4|) (-1161)) 21) (((-645 |#4|) (-645 |#4|)) 13))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2852 (|#4| |#4| (-645 |#4|))) (-15 -2733 ((-645 |#4|) (-645 |#4|))) (-15 -2733 ((-645 |#4|) (-645 |#4|) (-1161))) (-15 -2733 ((-645 |#4|) (-645 |#4|) (-1161) (-1161)))) (-308) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -450)) -((-2733 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2733 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2733 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2))))) -(-10 -7 (-15 -2852 (|#4| |#4| (-645 |#4|))) (-15 -2733 ((-645 |#4|) (-645 |#4|))) (-15 -2733 ((-645 |#4|) (-645 |#4|) (-1161))) (-15 -2733 ((-645 |#4|) (-645 |#4|) (-1161) (-1161)))) -((-2409 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 91) (((-645 (-645 |#4|)) (-645 |#4|)) 90) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112)) 84) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|)) 85)) (-2328 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 55) (((-645 (-645 |#4|)) (-645 |#4|)) 77))) -(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2328 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -2328 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -2409 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -2409 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -2409 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -2409 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) (-13 (-308) (-147)) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -451)) -((-2409 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-2409 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2409 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-2409 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-2328 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) -(-10 -7 (-15 -2328 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -2328 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -2409 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -2409 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -2409 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -2409 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) -((-1559 (((-772) |#4|) 12)) (-2239 (((-645 (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|)))) 39)) (-1659 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-2819 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-2303 ((|#4| |#4| (-645 |#4|)) 56)) (-1838 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|)) 98)) (-2148 (((-1274) |#4|) 61)) (-2794 (((-1274) (-645 |#4|)) 71)) (-4299 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567)) 68)) (-3180 (((-1274) (-567)) 113)) (-1826 (((-645 |#4|) (-645 |#4|)) 105)) (-1346 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|)) |#4| (-772)) 31)) (-1353 (((-567) |#4|) 110)) (-3338 ((|#4| |#4|) 37)) (-1668 (((-645 |#4|) (-645 |#4|) (-567) (-567)) 76)) (-2420 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567)) 126)) (-2534 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3750 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-2808 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-1366 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2282 (((-112) |#2| |#2|) 77)) (-3958 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-4239 (((-112) |#2| |#2| |#2| |#2|) 82)) (-2605 ((|#4| |#4| (-645 |#4|)) 99))) -(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2605 (|#4| |#4| (-645 |#4|))) (-15 -2303 (|#4| |#4| (-645 |#4|))) (-15 -1668 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -3750 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2282 ((-112) |#2| |#2|)) (-15 -4239 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3958 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1366 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2808 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1838 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -3338 (|#4| |#4|)) (-15 -2239 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|))))) (-15 -2819 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1659 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1826 ((-645 |#4|) (-645 |#4|))) (-15 -1353 ((-567) |#4|)) (-15 -2148 ((-1274) |#4|)) (-15 -4299 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -2420 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -2794 ((-1274) (-645 |#4|))) (-15 -3180 ((-1274) (-567))) (-15 -2534 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1346 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|)) |#4| (-772))) (-15 -1559 ((-772) |#4|))) (-455) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -452)) -((-1559 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -1916 *4))) (-5 *5 (-772)) (-4 *4 (-951 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-452 *6 *7 *8 *4)))) (-2534 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2420 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-4299 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-2148 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-1353 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-1659 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-794)) (-4 *2 (-951 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) (-4 *4 (-455)) (-4 *6 (-851)))) (-2239 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -1916 *3)))) (-5 *4 (-772)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-1838 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-452 *5 *6 *7 *3)))) (-2808 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-794)) (-4 *6 (-951 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *4 *3 *5 *6)))) (-1366 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3958 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-794)) (-4 *3 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *3)))) (-4239 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))) (-2282 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-1668 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2303 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))) (-2605 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) -(-10 -7 (-15 -2605 (|#4| |#4| (-645 |#4|))) (-15 -2303 (|#4| |#4| (-645 |#4|))) (-15 -1668 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -3750 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2282 ((-112) |#2| |#2|)) (-15 -4239 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3958 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1366 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2808 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1838 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -3338 (|#4| |#4|)) (-15 -2239 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|))))) (-15 -2819 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1659 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1826 ((-645 |#4|) (-645 |#4|))) (-15 -1353 ((-567) |#4|)) (-15 -2148 ((-1274) |#4|)) (-15 -4299 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -2420 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -2794 ((-1274) (-645 |#4|))) (-15 -3180 ((-1274) (-567))) (-15 -2534 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1346 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -1916 |#4|)) |#4| (-772))) (-15 -1559 ((-772) |#4|))) -((-3033 ((|#4| |#4| (-645 |#4|)) 20 (|has| |#1| (-365)))) (-3546 (((-645 |#4|) (-645 |#4|) (-1161) (-1161)) 46) (((-645 |#4|) (-645 |#4|) (-1161)) 45) (((-645 |#4|) (-645 |#4|)) 34))) -(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3546 ((-645 |#4|) (-645 |#4|))) (-15 -3546 ((-645 |#4|) (-645 |#4|) (-1161))) (-15 -3546 ((-645 |#4|) (-645 |#4|) (-1161) (-1161))) (IF (|has| |#1| (-365)) (-15 -3033 (|#4| |#4| (-645 |#4|))) |%noBranch|)) (-455) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -453)) -((-3033 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *2)))) (-3546 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3546 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3546 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6))))) -(-10 -7 (-15 -3546 ((-645 |#4|) (-645 |#4|))) (-15 -3546 ((-645 |#4|) (-645 |#4|) (-1161))) (-15 -3546 ((-645 |#4|) (-645 |#4|) (-1161) (-1161))) (IF (|has| |#1| (-365)) (-15 -3033 (|#4| |#4| (-645 |#4|))) |%noBranch|)) -((-1831 (($ $ $) 14) (($ (-645 $)) 21)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 46)) (-1870 (($ $ $) NIL) (($ (-645 $)) 22))) -(((-454 |#1|) (-10 -8 (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1831 (|#1| (-645 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-645 |#1|))) (-15 -1870 (|#1| |#1| |#1|))) (-455)) (T -454)) -NIL -(-10 -8 (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1831 (|#1| (-645 |#1|))) (-15 -1831 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-645 |#1|))) (-15 -1870 (|#1| |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-2478 (((-3 $ "failed") $ $) 48)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-444)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-315 (-380)))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-315 (-380)))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-315 (-549)))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-315 (-549)))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-949 (-380)))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-949 (-380)))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-949 (-549)))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-949 (-549)))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 (-380))))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-410 (-949 (-380))))) (-4 *1 (-444)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 (-549))))) (-4 *1 (-444)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-410 (-949 (-549))))) (-4 *1 (-444))))) +(-13 (-399) (-10 -8 (-15 -4378 ($ (-643 (-331)))) (-15 -4378 ($ (-331))) (-15 -4378 ($ (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331)))))) (-15 -3576 ($ (-1269 (-315 (-380))))) (-15 -3577 ((-3 $ "failed") (-1269 (-315 (-380))))) (-15 -3576 ($ (-1269 (-315 (-549))))) (-15 -3577 ((-3 $ "failed") (-1269 (-315 (-549))))) (-15 -3576 ($ (-1269 (-949 (-380))))) (-15 -3577 ((-3 $ "failed") (-1269 (-949 (-380))))) (-15 -3576 ($ (-1269 (-949 (-549))))) (-15 -3577 ((-3 $ "failed") (-1269 (-949 (-549))))) (-15 -3576 ($ (-1269 (-410 (-949 (-380)))))) (-15 -3577 ((-3 $ "failed") (-1269 (-410 (-949 (-380)))))) (-15 -3576 ($ (-1269 (-410 (-949 (-549)))))) (-15 -3577 ((-3 $ "failed") (-1269 (-410 (-949 (-549)))))))) +(((-615 (-865)) . T) ((-399) . T) ((-1219) . T)) +((-2014 (((-112)) 18)) (-2015 (((-112) (-112)) 19)) (-2016 (((-112)) 14)) (-2017 (((-112) (-112)) 15)) (-2019 (((-112)) 16)) (-2020 (((-112) (-112)) 17)) (-2011 (((-922) (-922)) 22) (((-922)) 21)) (-2012 (((-773) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549))))) 52)) (-2010 (((-922) (-922)) 24) (((-922)) 23)) (-2013 (((-2 (|:| -2978 (-549)) (|:| -1954 (-643 |#1|))) |#1|) 97)) (-2009 (((-408 |#1|) (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549))))))) 178)) (-4166 (((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112)) 211)) (-4165 (((-408 |#1|) |#1| (-773) (-773)) 226) (((-408 |#1|) |#1| (-643 (-773)) (-773)) 223) (((-408 |#1|) |#1| (-643 (-773))) 225) (((-408 |#1|) |#1| (-773)) 224) (((-408 |#1|) |#1|) 222)) (-2031 (((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773) (-112)) 228) (((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773)) 229) (((-3 |#1| "failed") (-922) |#1| (-643 (-773))) 231) (((-3 |#1| "failed") (-922) |#1| (-773)) 230) (((-3 |#1| "failed") (-922) |#1|) 232)) (-4164 (((-408 |#1|) |#1| (-773) (-773)) 221) (((-408 |#1|) |#1| (-643 (-773)) (-773)) 217) (((-408 |#1|) |#1| (-643 (-773))) 219) (((-408 |#1|) |#1| (-773)) 218) (((-408 |#1|) |#1|) 216)) (-2018 (((-112) |#1|) 44)) (-2030 (((-738 (-773)) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549))))) 102)) (-2021 (((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112) (-1100 (-773)) (-773)) 215))) +(((-445 |#1|) (-10 -7 (-15 -2009 ((-408 |#1|) (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))))) (-15 -2030 ((-738 (-773)) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))))) (-15 -2010 ((-922))) (-15 -2010 ((-922) (-922))) (-15 -2011 ((-922))) (-15 -2011 ((-922) (-922))) (-15 -2012 ((-773) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))))) (-15 -2013 ((-2 (|:| -2978 (-549)) (|:| -1954 (-643 |#1|))) |#1|)) (-15 -2014 ((-112))) (-15 -2015 ((-112) (-112))) (-15 -2016 ((-112))) (-15 -2017 ((-112) (-112))) (-15 -2018 ((-112) |#1|)) (-15 -2019 ((-112))) (-15 -2020 ((-112) (-112))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4164 ((-408 |#1|) |#1| (-773))) (-15 -4164 ((-408 |#1|) |#1| (-643 (-773)))) (-15 -4164 ((-408 |#1|) |#1| (-643 (-773)) (-773))) (-15 -4164 ((-408 |#1|) |#1| (-773) (-773))) (-15 -4165 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1| (-773))) (-15 -4165 ((-408 |#1|) |#1| (-643 (-773)))) (-15 -4165 ((-408 |#1|) |#1| (-643 (-773)) (-773))) (-15 -4165 ((-408 |#1|) |#1| (-773) (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1|)) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773) (-112))) (-15 -4166 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112))) (-15 -2021 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112) (-1100 (-773)) (-773)))) (-1245 (-549))) (T -445)) +((-2021 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1100 (-773))) (-5 *6 (-773)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2031 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-2031 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-2031 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-2031 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-773)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-2031 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-922)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) (-4165 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-773))) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-773))) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2019 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2018 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2016 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2014 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2013 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2978 (-549)) (|:| -1954 (-643 *3)))) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -4164 *4) (|:| -4380 (-549))))) (-4 *4 (-1245 (-549))) (-5 *2 (-773)) (-5 *1 (-445 *4)))) (-2011 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2011 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2010 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -4164 *4) (|:| -4380 (-549))))) (-4 *4 (-1245 (-549))) (-5 *2 (-738 (-773))) (-5 *1 (-445 *4)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| *4) (|:| -2558 (-549))))))) (-4 *4 (-1245 (-549))) (-5 *2 (-408 *4)) (-5 *1 (-445 *4))))) +(-10 -7 (-15 -2009 ((-408 |#1|) (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))))) (-15 -2030 ((-738 (-773)) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))))) (-15 -2010 ((-922))) (-15 -2010 ((-922) (-922))) (-15 -2011 ((-922))) (-15 -2011 ((-922) (-922))) (-15 -2012 ((-773) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))))) (-15 -2013 ((-2 (|:| -2978 (-549)) (|:| -1954 (-643 |#1|))) |#1|)) (-15 -2014 ((-112))) (-15 -2015 ((-112) (-112))) (-15 -2016 ((-112))) (-15 -2017 ((-112) (-112))) (-15 -2018 ((-112) |#1|)) (-15 -2019 ((-112))) (-15 -2020 ((-112) (-112))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4164 ((-408 |#1|) |#1| (-773))) (-15 -4164 ((-408 |#1|) |#1| (-643 (-773)))) (-15 -4164 ((-408 |#1|) |#1| (-643 (-773)) (-773))) (-15 -4164 ((-408 |#1|) |#1| (-773) (-773))) (-15 -4165 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1| (-773))) (-15 -4165 ((-408 |#1|) |#1| (-643 (-773)))) (-15 -4165 ((-408 |#1|) |#1| (-643 (-773)) (-773))) (-15 -4165 ((-408 |#1|) |#1| (-773) (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1|)) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773))) (-15 -2031 ((-3 |#1| "failed") (-922) |#1| (-643 (-773)) (-773) (-112))) (-15 -4166 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112))) (-15 -2021 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112) (-1100 (-773)) (-773)))) +((-2025 (((-549) |#2|) 52) (((-549) |#2| (-773)) 51)) (-2024 (((-549) |#2|) 67)) (-2026 ((|#3| |#2|) 26)) (-3536 ((|#3| |#2| (-922)) 15)) (-4265 ((|#3| |#2|) 16)) (-2027 ((|#3| |#2|) 9)) (-3003 ((|#3| |#2|) 10)) (-2023 ((|#3| |#2| (-922)) 74) ((|#3| |#2|) 34)) (-2022 (((-549) |#2|) 69))) +(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -2022 ((-549) |#2|)) (-15 -2023 (|#3| |#2|)) (-15 -2023 (|#3| |#2| (-922))) (-15 -2024 ((-549) |#2|)) (-15 -2025 ((-549) |#2| (-773))) (-15 -2025 ((-549) |#2|)) (-15 -3536 (|#3| |#2| (-922))) (-15 -2026 (|#3| |#2|)) (-15 -2027 (|#3| |#2|)) (-15 -3003 (|#3| |#2|)) (-15 -4265 (|#3| |#2|))) (-1052) (-1245 |#1|) (-13 (-407) (-1041 |#1|) (-365) (-1205) (-285))) (T -446)) +((-4265 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-3003 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2027 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *2 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) (-2025 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))))) (-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1245 *5)) (-4 *6 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))))) (-2024 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *2 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) (-2023 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) (-2022 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285)))))) +(-10 -7 (-15 -2022 ((-549) |#2|)) (-15 -2023 (|#3| |#2|)) (-15 -2023 (|#3| |#2| (-922))) (-15 -2024 ((-549) |#2|)) (-15 -2025 ((-549) |#2| (-773))) (-15 -2025 ((-549) |#2|)) (-15 -3536 (|#3| |#2| (-922))) (-15 -2026 (|#3| |#2|)) (-15 -2027 (|#3| |#2|)) (-15 -3003 (|#3| |#2|)) (-15 -4265 (|#3| |#2|))) +((-3778 ((|#2| (-1269 |#1|)) 45)) (-2029 ((|#2| |#2| |#1|) 61)) (-2028 ((|#2| |#2| |#1|) 53)) (-2443 ((|#2| |#2|) 49)) (-3593 (((-112) |#2|) 36)) (-2032 (((-643 |#2|) (-922) (-408 |#2|)) 24)) (-2031 ((|#2| (-922) (-408 |#2|)) 28)) (-2030 (((-738 (-773)) (-408 |#2|)) 33))) +(((-447 |#1| |#2|) (-10 -7 (-15 -3593 ((-112) |#2|)) (-15 -3778 (|#2| (-1269 |#1|))) (-15 -2443 (|#2| |#2|)) (-15 -2028 (|#2| |#2| |#1|)) (-15 -2029 (|#2| |#2| |#1|)) (-15 -2030 ((-738 (-773)) (-408 |#2|))) (-15 -2031 (|#2| (-922) (-408 |#2|))) (-15 -2032 ((-643 |#2|) (-922) (-408 |#2|)))) (-1052) (-1245 |#1|)) (T -447)) +((-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-408 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-1052)) (-5 *2 (-643 *6)) (-5 *1 (-447 *5 *6)))) (-2031 (*1 *2 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-408 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-447 *5 *2)) (-4 *5 (-1052)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-408 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1052)) (-5 *2 (-738 (-773))) (-5 *1 (-447 *4 *5)))) (-2029 (*1 *2 *2 *3) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-2028 (*1 *2 *2 *3) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-2443 (*1 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-1052)) (-4 *2 (-1245 *4)) (-5 *1 (-447 *4 *2)))) (-3593 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -3593 ((-112) |#2|)) (-15 -3778 (|#2| (-1269 |#1|))) (-15 -2443 (|#2| |#2|)) (-15 -2028 (|#2| |#2| |#1|)) (-15 -2029 (|#2| |#2| |#1|)) (-15 -2030 ((-738 (-773)) (-408 |#2|))) (-15 -2031 (|#2| (-922) (-408 |#2|))) (-15 -2032 ((-643 |#2|) (-922) (-408 |#2|)))) +((-2035 (((-773)) 59)) (-2039 (((-773)) 29 (|has| |#1| (-407))) (((-773) (-773)) 28 (|has| |#1| (-407)))) (-2038 (((-549) |#1|) 25 (|has| |#1| (-407)))) (-2037 (((-549) |#1|) 27 (|has| |#1| (-407)))) (-2034 (((-773)) 58) (((-773) (-773)) 57)) (-2033 ((|#1| (-773) (-549)) 37)) (-2036 (((-1275)) 61))) +(((-448 |#1|) (-10 -7 (-15 -2033 (|#1| (-773) (-549))) (-15 -2034 ((-773) (-773))) (-15 -2034 ((-773))) (-15 -2035 ((-773))) (-15 -2036 ((-1275))) (IF (|has| |#1| (-407)) (PROGN (-15 -2037 ((-549) |#1|)) (-15 -2038 ((-549) |#1|)) (-15 -2039 ((-773) (-773))) (-15 -2039 ((-773)))) |%noBranch|)) (-1052)) (T -448)) +((-2039 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) (-2038 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) (-2037 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) (-2036 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) (-2035 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) (-2034 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) (-2034 (*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-549)) (-5 *1 (-448 *2)) (-4 *2 (-1052))))) +(-10 -7 (-15 -2033 (|#1| (-773) (-549))) (-15 -2034 ((-773) (-773))) (-15 -2034 ((-773))) (-15 -2035 ((-773))) (-15 -2036 ((-1275))) (IF (|has| |#1| (-407)) (PROGN (-15 -2037 ((-549) |#1|)) (-15 -2038 ((-549) |#1|)) (-15 -2039 ((-773) (-773))) (-15 -2039 ((-773)))) |%noBranch|)) +((-2040 (((-643 (-549)) (-549)) 76)) (-4155 (((-112) (-168 (-549))) 82)) (-4164 (((-408 (-168 (-549))) (-168 (-549))) 75))) +(((-449) (-10 -7 (-15 -4164 ((-408 (-168 (-549))) (-168 (-549)))) (-15 -2040 ((-643 (-549)) (-549))) (-15 -4155 ((-112) (-168 (-549)))))) (T -449)) +((-4155 (*1 *2 *3) (-12 (-5 *3 (-168 (-549))) (-5 *2 (-112)) (-5 *1 (-449)))) (-2040 (*1 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-449)) (-5 *3 (-549)))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 (-168 (-549)))) (-5 *1 (-449)) (-5 *3 (-168 (-549)))))) +(-10 -7 (-15 -4164 ((-408 (-168 (-549))) (-168 (-549)))) (-15 -2040 ((-643 (-549)) (-549))) (-15 -4155 ((-112) (-168 (-549))))) +((-3347 ((|#4| |#4| (-643 |#4|)) 20 (|has| |#1| (-365)))) (-2400 (((-643 |#4|) (-643 |#4|) (-1162) (-1162)) 46) (((-643 |#4|) (-643 |#4|) (-1162)) 45) (((-643 |#4|) (-643 |#4|)) 34))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2400 ((-643 |#4|) (-643 |#4|))) (-15 -2400 ((-643 |#4|) (-643 |#4|) (-1162))) (-15 -2400 ((-643 |#4|) (-643 |#4|) (-1162) (-1162))) (IF (|has| |#1| (-365)) (-15 -3347 (|#4| |#4| (-643 |#4|))) |%noBranch|)) (-455) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -450)) +((-3347 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *2)))) (-2400 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2400 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *7)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-450 *3 *4 *5 *6))))) +(-10 -7 (-15 -2400 ((-643 |#4|) (-643 |#4|))) (-15 -2400 ((-643 |#4|) (-643 |#4|) (-1162))) (-15 -2400 ((-643 |#4|) (-643 |#4|) (-1162) (-1162))) (IF (|has| |#1| (-365)) (-15 -3347 (|#4| |#4| (-643 |#4|))) |%noBranch|)) +((-2041 ((|#4| |#4| (-643 |#4|)) 82)) (-2042 (((-643 |#4|) (-643 |#4|) (-1162) (-1162)) 22) (((-643 |#4|) (-643 |#4|) (-1162)) 21) (((-643 |#4|) (-643 |#4|)) 13))) +(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2041 (|#4| |#4| (-643 |#4|))) (-15 -2042 ((-643 |#4|) (-643 |#4|))) (-15 -2042 ((-643 |#4|) (-643 |#4|) (-1162))) (-15 -2042 ((-643 |#4|) (-643 |#4|) (-1162) (-1162)))) (-308) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -451)) +((-2042 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2042 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-451 *3 *4 *5 *6)))) (-2041 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *2))))) +(-10 -7 (-15 -2041 (|#4| |#4| (-643 |#4|))) (-15 -2042 ((-643 |#4|) (-643 |#4|))) (-15 -2042 ((-643 |#4|) (-643 |#4|) (-1162))) (-15 -2042 ((-643 |#4|) (-643 |#4|) (-1162) (-1162)))) +((-2044 (((-643 (-643 |#4|)) (-643 |#4|) (-112)) 89) (((-643 (-643 |#4|)) (-643 |#4|)) 88) (((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|) (-112)) 82) (((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|)) 83)) (-2043 (((-643 (-643 |#4|)) (-643 |#4|) (-112)) 55) (((-643 (-643 |#4|)) (-643 |#4|)) 77))) +(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2043 ((-643 (-643 |#4|)) (-643 |#4|))) (-15 -2043 ((-643 (-643 |#4|)) (-643 |#4|) (-112))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|) (-112))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-112)))) (-13 (-308) (-147)) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -452)) +((-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) (-5 *3 (-643 *8)))) (-2044 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-2044 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) (-5 *3 (-643 *8)))) (-2044 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) (-5 *3 (-643 *8)))) (-2043 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) +(-10 -7 (-15 -2043 ((-643 (-643 |#4|)) (-643 |#4|))) (-15 -2043 ((-643 (-643 |#4|)) (-643 |#4|) (-112))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-643 |#4|) (-112))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|))) (-15 -2044 ((-643 (-643 |#4|)) (-643 |#4|) (-112)))) +((-2068 (((-773) |#4|) 12)) (-2056 (((-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))) |#4| (-773) (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|)))) 39)) (-2058 (((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2057 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2046 ((|#4| |#4| (-643 |#4|)) 54)) (-2054 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-643 |#4|)) 96)) (-2061 (((-1275) |#4|) 59)) (-2064 (((-1275) (-643 |#4|)) 69)) (-2062 (((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549)) 66)) (-2065 (((-1275) (-549)) 112)) (-2059 (((-643 |#4|) (-643 |#4|)) 104)) (-2067 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|)) |#4| (-773)) 31)) (-2060 (((-549) |#4|) 109)) (-2055 ((|#4| |#4|) 37)) (-2047 (((-643 |#4|) (-643 |#4|) (-549) (-549)) 74)) (-2063 (((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549)) 125)) (-2066 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2048 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2053 (((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2052 (((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2049 (((-112) |#2| |#2|) 75)) (-2051 (((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2050 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2045 ((|#4| |#4| (-643 |#4|)) 97))) +(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2045 (|#4| |#4| (-643 |#4|))) (-15 -2046 (|#4| |#4| (-643 |#4|))) (-15 -2047 ((-643 |#4|) (-643 |#4|) (-549) (-549))) (-15 -2048 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2049 ((-112) |#2| |#2|)) (-15 -2050 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2051 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2052 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2053 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2054 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-643 |#4|))) (-15 -2055 (|#4| |#4|)) (-15 -2056 ((-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))) |#4| (-773) (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))))) (-15 -2057 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2058 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2059 ((-643 |#4|) (-643 |#4|))) (-15 -2060 ((-549) |#4|)) (-15 -2061 ((-1275) |#4|)) (-15 -2062 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549))) (-15 -2063 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549))) (-15 -2064 ((-1275) (-643 |#4|))) (-15 -2065 ((-1275) (-549))) (-15 -2066 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2067 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|)) |#4| (-773))) (-15 -2068 ((-773) |#4|))) (-455) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -453)) +((-2068 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-773)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-773)) (|:| -2182 *4))) (-5 *5 (-773)) (-4 *4 (-953 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-453 *6 *7 *8 *4)))) (-2066 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-795)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2063 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-773)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-795)) (-4 *4 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-852)) (-5 *1 (-453 *5 *6 *7 *4)))) (-2062 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-773)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-795)) (-4 *4 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-852)) (-5 *1 (-453 *5 *6 *7 *4)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2060 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-549)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *6)))) (-2058 (*1 *2 *2 *2) (-12 (-5 *2 (-643 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-773)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-795)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *6)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-795)) (-4 *2 (-953 *4 *5 *6)) (-5 *1 (-453 *4 *5 *6 *2)) (-4 *4 (-455)) (-4 *6 (-852)))) (-2056 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 *3)))) (-5 *4 (-773)) (-4 *3 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-453 *5 *6 *7 *3)))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-953 *3 *4 *5)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-453 *5 *6 *7 *3)))) (-2053 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-773)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-795)) (-4 *6 (-953 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-852)) (-5 *1 (-453 *4 *3 *5 *6)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-643 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-773)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-795)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *6)))) (-2051 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-795)) (-4 *3 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *3)))) (-2050 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-453 *4 *3 *5 *6)) (-4 *6 (-953 *4 *3 *5)))) (-2049 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-453 *4 *3 *5 *6)) (-4 *6 (-953 *4 *3 *5)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-795)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2047 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-549)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2046 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *2)))) (-2045 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *2))))) +(-10 -7 (-15 -2045 (|#4| |#4| (-643 |#4|))) (-15 -2046 (|#4| |#4| (-643 |#4|))) (-15 -2047 ((-643 |#4|) (-643 |#4|) (-549) (-549))) (-15 -2048 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2049 ((-112) |#2| |#2|)) (-15 -2050 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2051 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2052 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2053 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2054 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-643 |#4|))) (-15 -2055 (|#4| |#4|)) (-15 -2056 ((-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))) |#4| (-773) (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|))))) (-15 -2057 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2058 ((-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-643 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2059 ((-643 |#4|) (-643 |#4|))) (-15 -2060 ((-549) |#4|)) (-15 -2061 ((-1275) |#4|)) (-15 -2062 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549))) (-15 -2063 ((-549) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-549) (-549) (-549) (-549))) (-15 -2064 ((-1275) (-643 |#4|))) (-15 -2065 ((-1275) (-549))) (-15 -2066 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2067 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-773)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-773)) (|:| -2182 |#4|)) |#4| (-773))) (-15 -2068 ((-773) |#4|))) +((-2069 (($ $ $) 14) (($ (-643 $)) 21)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 46)) (-3564 (($ $ $) NIL) (($ (-643 $)) 22))) +(((-454 |#1|) (-10 -8 (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2069 (|#1| (-643 |#1|))) (-15 -2069 (|#1| |#1| |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|))) (-455)) (T -454)) +NIL +(-10 -8 (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -2069 (|#1| (-643 |#1|))) (-15 -2069 (|#1| |#1| |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -3564 (|#1| |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-455) (-140)) (T -455)) -((-1870 (*1 *1 *1 *1) (-4 *1 (-455))) (-1870 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-1831 (*1 *1 *1 *1) (-4 *1 (-455))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-3857 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-455))))) -(-13 (-559) (-10 -8 (-15 -1870 ($ $ $)) (-15 -1870 ($ (-645 $))) (-15 -1831 ($ $ $)) (-15 -1831 ($ (-645 $))) (-15 -3857 ((-1175 $) (-1175 $) (-1175 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3414 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-1998 (((-1269 (-690 (-410 (-954 |#1|)))) (-1269 $)) NIL) (((-1269 (-690 (-410 (-954 |#1|))))) NIL)) (-1931 (((-1269 $)) NIL)) (-3758 (($) NIL T CONST)) (-2670 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL)) (-3865 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1426 (((-690 (-410 (-954 |#1|))) (-1269 $)) NIL) (((-690 (-410 (-954 |#1|)))) NIL)) (-4114 (((-410 (-954 |#1|)) $) NIL)) (-4170 (((-690 (-410 (-954 |#1|))) $ (-1269 $)) NIL) (((-690 (-410 (-954 |#1|))) $) NIL)) (-1511 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-3657 (((-1175 (-954 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-365))) (((-1175 (-410 (-954 |#1|)))) 94 (|has| |#1| (-559)))) (-3497 (($ $ (-923)) NIL)) (-1607 (((-410 (-954 |#1|)) $) NIL)) (-1375 (((-1175 (-410 (-954 |#1|))) $) 92 (|has| (-410 (-954 |#1|)) (-559)))) (-2260 (((-410 (-954 |#1|)) (-1269 $)) NIL) (((-410 (-954 |#1|))) NIL)) (-3542 (((-1175 (-410 (-954 |#1|))) $) NIL)) (-3134 (((-112)) NIL)) (-3431 (($ (-1269 (-410 (-954 |#1|))) (-1269 $)) 118) (($ (-1269 (-410 (-954 |#1|)))) NIL)) (-1377 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-1471 (((-923)) NIL)) (-1586 (((-112)) NIL)) (-2258 (($ $ (-923)) NIL)) (-3604 (((-112)) NIL)) (-3703 (((-112)) NIL)) (-3504 (((-112)) NIL)) (-1478 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL)) (-3363 (((-3 $ "failed")) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-4221 (((-690 (-410 (-954 |#1|))) (-1269 $)) NIL) (((-690 (-410 (-954 |#1|)))) NIL)) (-2726 (((-410 (-954 |#1|)) $) NIL)) (-3969 (((-690 (-410 (-954 |#1|))) $ (-1269 $)) NIL) (((-690 (-410 (-954 |#1|))) $) NIL)) (-3822 (((-3 $ "failed") $) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2626 (((-1175 (-954 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-365))) (((-1175 (-410 (-954 |#1|)))) 93 (|has| |#1| (-559)))) (-2310 (($ $ (-923)) NIL)) (-2152 (((-410 (-954 |#1|)) $) NIL)) (-3485 (((-1175 (-410 (-954 |#1|))) $) 87 (|has| (-410 (-954 |#1|)) (-559)))) (-1741 (((-410 (-954 |#1|)) (-1269 $)) NIL) (((-410 (-954 |#1|))) NIL)) (-3522 (((-1175 (-410 (-954 |#1|))) $) NIL)) (-1830 (((-112)) NIL)) (-1812 (((-1161) $) NIL)) (-3403 (((-112)) NIL)) (-2905 (((-112)) NIL)) (-2541 (((-112)) NIL)) (-3479 (((-1122) $) NIL)) (-1483 (((-410 (-954 |#1|)) $ $) 78 (|has| |#1| (-559)))) (-2416 (((-410 (-954 |#1|)) $) 104 (|has| |#1| (-559)))) (-4352 (((-410 (-954 |#1|)) $) 108 (|has| |#1| (-559)))) (-3701 (((-1175 (-410 (-954 |#1|))) $) 98 (|has| |#1| (-559)))) (-2697 (((-410 (-954 |#1|))) 79 (|has| |#1| (-559)))) (-2238 (((-410 (-954 |#1|)) $ $) 71 (|has| |#1| (-559)))) (-3618 (((-410 (-954 |#1|)) $) 103 (|has| |#1| (-559)))) (-1504 (((-410 (-954 |#1|)) $) 107 (|has| |#1| (-559)))) (-4036 (((-1175 (-410 (-954 |#1|))) $) 97 (|has| |#1| (-559)))) (-3325 (((-410 (-954 |#1|))) 75 (|has| |#1| (-559)))) (-2486 (($) 114) (($ (-1179)) 122) (($ (-1269 (-1179))) 121) (($ (-1269 $)) 109) (($ (-1179) (-1269 $)) 120) (($ (-1269 (-1179)) (-1269 $)) 119)) (-2779 (((-112)) NIL)) (-1882 (((-410 (-954 |#1|)) $ (-567)) NIL)) (-3237 (((-1269 (-410 (-954 |#1|))) $ (-1269 $)) 111) (((-690 (-410 (-954 |#1|))) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 (-954 |#1|))) $) 45) (((-690 (-410 (-954 |#1|))) (-1269 $)) NIL)) (-1322 (((-1269 (-410 (-954 |#1|))) $) NIL) (($ (-1269 (-410 (-954 |#1|)))) 42)) (-3869 (((-645 (-954 (-410 (-954 |#1|)))) (-1269 $)) NIL) (((-645 (-954 (-410 (-954 |#1|))))) NIL) (((-645 (-954 |#1|)) (-1269 $)) 112 (|has| |#1| (-559))) (((-645 (-954 |#1|))) 113 (|has| |#1| (-559)))) (-4033 (($ $ $) NIL)) (-2441 (((-112)) NIL)) (-2504 (((-863) $) NIL) (($ (-1269 (-410 (-954 |#1|)))) NIL)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) 67)) (-3477 (((-645 (-1269 (-410 (-954 |#1|))))) NIL (|has| (-410 (-954 |#1|)) (-559)))) (-2862 (($ $ $ $) NIL)) (-3527 (((-112)) NIL)) (-3384 (($ (-690 (-410 (-954 |#1|))) $) NIL)) (-1793 (($ $ $) NIL)) (-1959 (((-112)) NIL)) (-3358 (((-112)) NIL)) (-2035 (((-112)) NIL)) (-1807 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) 110)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 63) (($ $ (-410 (-954 |#1|))) NIL) (($ (-410 (-954 |#1|)) $) NIL) (($ (-1144 |#2| (-410 (-954 |#1|))) $) NIL))) -(((-456 |#1| |#2| |#3| |#4|) (-13 (-420 (-410 (-954 |#1|))) (-649 (-1144 |#2| (-410 (-954 |#1|)))) (-10 -8 (-15 -2504 ($ (-1269 (-410 (-954 |#1|))))) (-15 -1478 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed"))) (-15 -2670 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed"))) (-15 -2486 ($)) (-15 -2486 ($ (-1179))) (-15 -2486 ($ (-1269 (-1179)))) (-15 -2486 ($ (-1269 $))) (-15 -2486 ($ (-1179) (-1269 $))) (-15 -2486 ($ (-1269 (-1179)) (-1269 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -2626 ((-1175 (-410 (-954 |#1|))))) (-15 -4036 ((-1175 (-410 (-954 |#1|))) $)) (-15 -3618 ((-410 (-954 |#1|)) $)) (-15 -1504 ((-410 (-954 |#1|)) $)) (-15 -3657 ((-1175 (-410 (-954 |#1|))))) (-15 -3701 ((-1175 (-410 (-954 |#1|))) $)) (-15 -2416 ((-410 (-954 |#1|)) $)) (-15 -4352 ((-410 (-954 |#1|)) $)) (-15 -2238 ((-410 (-954 |#1|)) $ $)) (-15 -3325 ((-410 (-954 |#1|)))) (-15 -1483 ((-410 (-954 |#1|)) $ $)) (-15 -2697 ((-410 (-954 |#1|)))) (-15 -3869 ((-645 (-954 |#1|)) (-1269 $))) (-15 -3869 ((-645 (-954 |#1|))))) |%noBranch|))) (-172) (-923) (-645 (-1179)) (-1269 (-690 |#1|))) (T -456)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 *3)))) (-4 *3 (-172)) (-14 *6 (-1269 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))))) (-1478 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -4374 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2670 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -4374 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2486 (*1 *1) (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-923)) (-14 *4 (-645 (-1179))) (-14 *5 (-1269 (-690 *2))))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 *2)) (-14 *6 (-1269 (-690 *3))))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-1269 (-1179))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-1269 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2486 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 *2)) (-14 *7 (-1269 (-690 *4))))) (-2486 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 (-1179))) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 (-1179))) (-14 *7 (-1269 (-690 *4))))) (-2626 (*1 *2) (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3657 (*1 *2) (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2416 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2238 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3325 (*1 *2) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-1483 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-2697 (*1 *2) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-954 *4))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) (-14 *5 (-923)) (-14 *6 (-645 (-1179))) (-14 *7 (-1269 (-690 *4))))) (-3869 (*1 *2) (-12 (-5 *2 (-645 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(-13 (-420 (-410 (-954 |#1|))) (-649 (-1144 |#2| (-410 (-954 |#1|)))) (-10 -8 (-15 -2504 ($ (-1269 (-410 (-954 |#1|))))) (-15 -1478 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed"))) (-15 -2670 ((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed"))) (-15 -2486 ($)) (-15 -2486 ($ (-1179))) (-15 -2486 ($ (-1269 (-1179)))) (-15 -2486 ($ (-1269 $))) (-15 -2486 ($ (-1179) (-1269 $))) (-15 -2486 ($ (-1269 (-1179)) (-1269 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -2626 ((-1175 (-410 (-954 |#1|))))) (-15 -4036 ((-1175 (-410 (-954 |#1|))) $)) (-15 -3618 ((-410 (-954 |#1|)) $)) (-15 -1504 ((-410 (-954 |#1|)) $)) (-15 -3657 ((-1175 (-410 (-954 |#1|))))) (-15 -3701 ((-1175 (-410 (-954 |#1|))) $)) (-15 -2416 ((-410 (-954 |#1|)) $)) (-15 -4352 ((-410 (-954 |#1|)) $)) (-15 -2238 ((-410 (-954 |#1|)) $ $)) (-15 -3325 ((-410 (-954 |#1|)))) (-15 -1483 ((-410 (-954 |#1|)) $ $)) (-15 -2697 ((-410 (-954 |#1|)))) (-15 -3869 ((-645 (-954 |#1|)) (-1269 $))) (-15 -3869 ((-645 (-954 |#1|))))) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 18)) (-3783 (((-645 (-865 |#1|)) $) 92)) (-3633 (((-1175 $) $ (-865 |#1|)) 55) (((-1175 |#2|) $) 143)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1987 (($ $) NIL (|has| |#2| (-559)))) (-3342 (((-112) $) NIL (|has| |#2| (-559)))) (-3153 (((-772) $) 27) (((-772) $ (-645 (-865 |#1|))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3864 (($ $) NIL (|has| |#2| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) 53) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-3094 ((|#2| $) 51) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2304 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-4230 (($ $ (-645 (-567))) 98)) (-1833 (($ $) 85)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#2| (-911)))) (-1978 (($ $ |#2| |#3| $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) 68)) (-3772 (($ (-1175 |#2|) (-865 |#1|)) 148) (($ (-1175 $) (-865 |#1|)) 61)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) 71)) (-3764 (($ |#2| |#3|) 38) (($ $ (-865 |#1|) (-772)) 40) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-865 |#1|)) NIL)) (-1562 ((|#3| $) NIL) (((-772) $ (-865 |#1|)) 59) (((-645 (-772)) $ (-645 (-865 |#1|))) 66)) (-2972 (($ (-1 |#3| |#3|) $) NIL)) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-2047 (((-3 (-865 |#1|) "failed") $) 48)) (-1796 (($ $) NIL)) (-1809 ((|#2| $) 50)) (-1831 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1812 (((-1161) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -2618 (-772))) "failed") $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) 49)) (-1774 ((|#2| $) 141)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) 154 (|has| |#2| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) 105) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) 111) (($ $ (-865 |#1|) $) 103) (($ $ (-645 (-865 |#1|)) (-645 $)) 129)) (-2254 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-3592 (($ $ (-865 |#1|)) 62) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3380 ((|#3| $) 84) (((-772) $ (-865 |#1|)) 45) (((-645 (-772)) $ (-645 (-865 |#1|))) 65)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1390 ((|#2| $) 150 (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-2504 (((-863) $) 179) (($ (-567)) NIL) (($ |#2|) 104) (($ (-865 |#1|)) 42) (($ (-410 (-567))) NIL (-2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ |#3|) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1807 (($) 22 T CONST)) (-1820 (($) 31 T CONST)) (-2856 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 136)) (** (($ $ (-923)) NIL) (($ $ (-772)) 134)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) 80) (($ $ |#2|) NIL))) -(((-457 |#1| |#2| |#3|) (-13 (-951 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -4230 ($ $ (-645 (-567)))))) (-645 (-1179)) (-1051) (-238 (-2498 |#1|) (-772))) (T -457)) -((-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1179))) (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-238 (-2498 *3) (-772)))))) -(-13 (-951 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -4230 ($ $ (-645 (-567)))))) -((-3557 (((-112) |#1| (-645 |#2|)) 94)) (-2471 (((-3 (-1269 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|)) 103)) (-1611 (((-3 (-645 |#2|) "failed") |#2| |#1| (-1269 (-645 |#2|))) 105)) (-3461 ((|#2| |#2| |#1|) 35)) (-2300 (((-772) |#2| (-645 |#2|)) 26))) -(((-458 |#1| |#2|) (-10 -7 (-15 -3461 (|#2| |#2| |#1|)) (-15 -2300 ((-772) |#2| (-645 |#2|))) (-15 -2471 ((-3 (-1269 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -1611 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1269 (-645 |#2|)))) (-15 -3557 ((-112) |#1| (-645 |#2|)))) (-308) (-1245 |#1|)) (T -458)) -((-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-1245 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))) (-1611 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1269 (-645 *3))) (-4 *4 (-308)) (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1245 *4)))) (-2471 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1245 *4)) (-5 *2 (-1269 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))) (-2300 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-308)) (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))) (-3461 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1245 *3))))) -(-10 -7 (-15 -3461 (|#2| |#2| |#1|)) (-15 -2300 ((-772) |#2| (-645 |#2|))) (-15 -2471 ((-3 (-1269 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -1611 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1269 (-645 |#2|)))) (-15 -3557 ((-112) |#1| (-645 |#2|)))) -((-3661 (((-421 |#5|) |#5|) 24))) -(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3661 ((-421 |#5|) |#5|))) (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179))))) (-794) (-559) (-559) (-951 |#4| |#2| |#1|)) (T -459)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179)))))) (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559)) (-4 *3 (-951 *7 *5 *4))))) -(-10 -7 (-15 -3661 ((-421 |#5|) |#5|))) -((-1805 ((|#3|) 40)) (-3857 (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 36))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3857 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -1805 (|#3|))) (-794) (-851) (-911) (-951 |#3| |#1| |#2|)) (T -460)) -((-1805 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3857 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-911)) (-5 *1 (-460 *3 *4 *5 *6))))) -(-10 -7 (-15 -3857 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -1805 (|#3|))) -((-3661 (((-421 (-1175 |#1|)) (-1175 |#1|)) 43))) -(((-461 |#1|) (-10 -7 (-15 -3661 ((-421 (-1175 |#1|)) (-1175 |#1|)))) (-308)) (T -461)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1175 *4))) (-5 *1 (-461 *4)) (-5 *3 (-1175 *4))))) -(-10 -7 (-15 -3661 ((-421 (-1175 |#1|)) (-1175 |#1|)))) -((-3838 (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-772))) 44) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-772))) 43) (((-52) |#2| (-1179) (-295 |#2|)) 36) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 29)) (-2686 (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))) 88) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))) 87) (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567))) 86) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567))) 85) (((-52) |#2| (-1179) (-295 |#2|)) 80) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 79)) (-1726 (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))) 74) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))) 72)) (-1709 (((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567))) 51) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567))) 50))) -(((-462 |#1| |#2|) (-10 -7 (-15 -3838 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -3838 ((-52) |#2| (-1179) (-295 |#2|))) (-15 -3838 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-772)))) (-15 -3838 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-772)))) (-15 -1709 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567)))) (-15 -1709 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567)))) (-15 -1726 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -1726 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -2686 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2686 ((-52) |#2| (-1179) (-295 |#2|))) (-15 -2686 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567)))) (-15 -2686 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567)))) (-15 -2686 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -2686 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -462)) -((-2686 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *8))) (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-2686 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1236 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-2686 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2686 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-567))) (-4 *7 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2686 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-2686 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))) (-1726 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *8))) (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-1726 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1236 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-1709 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-567))) (-4 *7 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-3838 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-772))) (-4 *3 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-772))) (-4 *7 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-3838 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6))))) -(-10 -7 (-15 -3838 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -3838 ((-52) |#2| (-1179) (-295 |#2|))) (-15 -3838 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-772)))) (-15 -3838 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-772)))) (-15 -1709 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567)))) (-15 -1709 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567)))) (-15 -1726 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -1726 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -2686 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2686 ((-52) |#2| (-1179) (-295 |#2|))) (-15 -2686 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1236 (-567)))) (-15 -2686 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-567)))) (-15 -2686 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567)))) (-15 -2686 ((-52) |#2| (-1179) (-295 |#2|) (-1236 (-410 (-567))) (-410 (-567))))) -((-3461 ((|#2| |#2| |#1|) 15)) (-1862 (((-645 |#2|) |#2| (-645 |#2|) |#1| (-923)) 82)) (-4185 (((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923)) 72))) -(((-463 |#1| |#2|) (-10 -7 (-15 -4185 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923))) (-15 -1862 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-923))) (-15 -3461 (|#2| |#2| |#1|))) (-308) (-1245 |#1|)) (T -463)) -((-3461 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1245 *3)))) (-1862 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-645 *3)) (-5 *5 (-923)) (-4 *3 (-1245 *4)) (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))) (-4185 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-923)) (-4 *5 (-308)) (-4 *3 (-1245 *5)) (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3))))) -(-10 -7 (-15 -4185 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-923))) (-15 -1862 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-923))) (-15 -3461 (|#2| |#2| |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 28)) (-1771 (($ |#3|) 25)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1833 (($ $) 32)) (-2122 (($ |#2| |#4| $) 33)) (-3764 (($ |#2| (-714 |#3| |#4| |#5|)) 24)) (-1796 (((-714 |#3| |#4| |#5|) $) 15)) (-1303 ((|#3| $) 19)) (-2637 ((|#4| $) 17)) (-1809 ((|#2| $) 29)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-2323 (($ |#2| |#3| |#4|) 26)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 36 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 34)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-464 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -1809 (|#2| $)) (-15 -1796 ((-714 |#3| |#4| |#5|) $)) (-15 -2637 (|#4| $)) (-15 -1303 (|#3| $)) (-15 -1833 ($ $)) (-15 -3764 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -1771 ($ |#3|)) (-15 -2323 ($ |#2| |#3| |#4|)) (-15 -2122 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-645 (-1179)) (-172) (-851) (-238 (-2498 |#1|) (-772)) (-1 (-112) (-2 (|:| -2188 |#3|) (|:| -2618 |#4|)) (-2 (|:| -2188 |#3|) (|:| -2618 |#4|))) (-951 |#2| |#4| (-865 |#1|))) (T -464)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-4 *6 (-238 (-2498 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *6)) (-2 (|:| -2188 *5) (|:| -2618 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851)) (-4 *2 (-951 *4 *6 (-865 *3))))) (-1809 (*1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *5 (-238 (-2498 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -2188 *4) (|:| -2618 *5)) (-2 (|:| -2188 *4) (|:| -2618 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-951 *2 *5 (-865 *3))))) (-1796 (*1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-4 *6 (-238 (-2498 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *6)) (-2 (|:| -2188 *5) (|:| -2618 *6)))) (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-851)) (-4 *8 (-951 *4 *6 (-865 *3))))) (-2637 (*1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *2)) (-2 (|:| -2188 *5) (|:| -2618 *2)))) (-4 *2 (-238 (-2498 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) (-4 *5 (-851)) (-4 *7 (-951 *4 *2 (-865 *3))))) (-1303 (*1 *2 *1) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-4 *5 (-238 (-2498 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -2188 *2) (|:| -2618 *5)) (-2 (|:| -2188 *2) (|:| -2618 *5)))) (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *7 (-951 *4 *5 (-865 *3))))) (-1833 (*1 *1 *1) (-12 (-14 *2 (-645 (-1179))) (-4 *3 (-172)) (-4 *5 (-238 (-2498 *2) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -2188 *4) (|:| -2618 *5)) (-2 (|:| -2188 *4) (|:| -2618 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-951 *3 *5 (-865 *2))))) (-3764 (*1 *1 *2 *3) (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851)) (-4 *6 (-238 (-2498 *4) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *6)) (-2 (|:| -2188 *5) (|:| -2618 *6)))) (-14 *4 (-645 (-1179))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-951 *2 *6 (-865 *4))))) (-1771 (*1 *1 *2) (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) (-4 *5 (-238 (-2498 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -2188 *2) (|:| -2618 *5)) (-2 (|:| -2188 *2) (|:| -2618 *5)))) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) (-4 *7 (-951 *4 *5 (-865 *3))))) (-2323 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-645 (-1179))) (-4 *2 (-172)) (-4 *4 (-238 (-2498 *5) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -2188 *3) (|:| -2618 *4)) (-2 (|:| -2188 *3) (|:| -2618 *4)))) (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) (-4 *7 (-951 *2 *4 (-865 *5))))) (-2122 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-645 (-1179))) (-4 *2 (-172)) (-4 *3 (-238 (-2498 *4) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *3)) (-2 (|:| -2188 *5) (|:| -2618 *3)))) (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) (-4 *7 (-951 *2 *3 (-865 *4)))))) -(-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -1809 (|#2| $)) (-15 -1796 ((-714 |#3| |#4| |#5|) $)) (-15 -2637 (|#4| $)) (-15 -1303 (|#3| $)) (-15 -1833 ($ $)) (-15 -3764 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -1771 ($ |#3|)) (-15 -2323 ($ |#2| |#3| |#4|)) (-15 -2122 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2569 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2569 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|) (-13 (-1040 (-410 (-567))) (-365) (-10 -8 (-15 -2504 ($ |#4|)) (-15 -4294 (|#4| $)) (-15 -4306 (|#4| $))))) (T -465)) -((-2569 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) (-4 *6 (-559)) (-4 *7 (-951 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1040 (-410 (-567))) (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $)))))))) -(-10 -7 (-15 -2569 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2487 (((-112) $ $) NIL)) (-3783 (((-645 |#3|) $) 41)) (-2643 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| |#1| (-559)))) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-1316 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3731 (((-112) $) NIL (|has| |#1| (-559)))) (-4301 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4089 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3937 (((-112) $) NIL (|has| |#1| (-559)))) (-2160 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) 49)) (-3094 (($ (-645 |#4|)) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-1695 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422)))) (-3468 (((-645 |#4|) $) 18 (|has| $ (-6 -4422)))) (-3066 ((|#3| $) 47)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#4|) $) 14 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-2021 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 21)) (-3870 (((-645 |#3|) $) NIL)) (-2415 (((-112) |#3| $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3479 (((-1122) $) NIL)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1430 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 39)) (-2973 (($) 17)) (-3486 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) 16)) (-1322 (((-539) $) NIL (|has| |#4| (-615 (-539)))) (($ (-645 |#4|)) 51)) (-2516 (($ (-645 |#4|)) 13)) (-1582 (($ $ |#3|) NIL)) (-2746 (($ $ |#3|) NIL)) (-3975 (($ $ |#3|) NIL)) (-2504 (((-863) $) 38) (((-645 |#4|) $) 50)) (-3858 (((-112) $ $) NIL)) (-3450 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 30)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-466 |#1| |#2| |#3| |#4|) (-13 (-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1322 ($ (-645 |#4|))) (-6 -4422) (-6 -4423))) (-1051) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -466)) -((-1322 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6))))) -(-13 (-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1322 ($ (-645 |#4|))) (-6 -4422) (-6 -4423))) -((-1807 (($) 11)) (-1820 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1820 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1807 (|#1|))) (-468 |#2| |#3|) (-172) (-23)) (T -467)) -NIL -(-10 -8 (-15 -1820 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1807 (|#1|))) -((-2487 (((-112) $ $) 7)) (-4275 (((-3 |#1| "failed") $) 27)) (-3094 ((|#1| $) 28)) (-2822 (($ $ $) 24)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3380 ((|#2| $) 20)) (-2504 (((-863) $) 12) (($ |#1|) 26)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 25 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 16) (($ $ $) 14)) (-3045 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-3564 (*1 *1 *1 *1) (-4 *1 (-455))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-455)))) (-2069 (*1 *1 *1 *1) (-4 *1 (-455))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-455)))) (-3111 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-455))))) +(-13 (-560) (-10 -8 (-15 -3564 ($ $ $)) (-15 -3564 ($ (-643 $))) (-15 -2069 ($ $ $)) (-15 -2069 ($ (-643 $))) (-15 -3111 ((-1174 $) (-1174 $) (-1174 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 (-410 (-949 |#1|)))) (-1269 $)) NIL) (((-1269 (-691 (-410 (-949 |#1|))))) NIL)) (-1897 (((-1269 $)) NIL)) (-4156 (($) NIL T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed")) NIL)) (-1871 (((-3 $ #1#)) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-1963 (((-691 (-410 (-949 |#1|))) (-1269 $)) NIL) (((-691 (-410 (-949 |#1|)))) NIL)) (-1895 (((-410 (-949 |#1|)) $) NIL)) (-1961 (((-691 (-410 (-949 |#1|))) $ (-1269 $)) NIL) (((-691 (-410 (-949 |#1|))) $) NIL)) (-2567 (((-3 $ #1#) $) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-2078 (((-1174 (-949 (-410 (-949 |#1|))))) NIL (|has| (-410 (-949 |#1|)) (-365))) (((-1174 (-410 (-949 |#1|)))) 92 (|has| |#1| (-560)))) (-2570 (($ $ (-922)) NIL)) (-1893 (((-410 (-949 |#1|)) $) NIL)) (-1873 (((-1174 (-410 (-949 |#1|))) $) 90 (|has| (-410 (-949 |#1|)) (-560)))) (-1965 (((-410 (-949 |#1|)) (-1269 $)) NIL) (((-410 (-949 |#1|))) NIL)) (-1891 (((-1174 (-410 (-949 |#1|))) $) NIL)) (-1885 (((-112)) NIL)) (-1967 (($ (-1269 (-410 (-949 |#1|))) (-1269 $)) 116) (($ (-1269 (-410 (-949 |#1|)))) NIL)) (-3890 (((-3 $ #1#) $) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-3513 (((-922)) NIL)) (-1882 (((-112)) NIL)) (-2594 (($ $ (-922)) NIL)) (-1878 (((-112)) NIL)) (-1876 (((-112)) NIL)) (-1880 (((-112)) NIL)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed")) NIL)) (-1872 (((-3 $ #1#)) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-1964 (((-691 (-410 (-949 |#1|))) (-1269 $)) NIL) (((-691 (-410 (-949 |#1|)))) NIL)) (-1896 (((-410 (-949 |#1|)) $) NIL)) (-1962 (((-691 (-410 (-949 |#1|))) $ (-1269 $)) NIL) (((-691 (-410 (-949 |#1|))) $) NIL)) (-2568 (((-3 $ #1#) $) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-2082 (((-1174 (-949 (-410 (-949 |#1|))))) NIL (|has| (-410 (-949 |#1|)) (-365))) (((-1174 (-410 (-949 |#1|)))) 91 (|has| |#1| (-560)))) (-2569 (($ $ (-922)) NIL)) (-1894 (((-410 (-949 |#1|)) $) NIL)) (-1874 (((-1174 (-410 (-949 |#1|))) $) 87 (|has| (-410 (-949 |#1|)) (-560)))) (-1966 (((-410 (-949 |#1|)) (-1269 $)) NIL) (((-410 (-949 |#1|))) NIL)) (-1892 (((-1174 (-410 (-949 |#1|))) $) NIL)) (-1886 (((-112)) NIL)) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) NIL)) (-1879 (((-112)) NIL)) (-1881 (((-112)) NIL)) (-3664 (((-1123) $) NIL)) (-2072 (((-410 (-949 |#1|)) $ $) 78 (|has| |#1| (-560)))) (-2076 (((-410 (-949 |#1|)) $) 102 (|has| |#1| (-560)))) (-2075 (((-410 (-949 |#1|)) $) 106 (|has| |#1| (-560)))) (-2077 (((-1174 (-410 (-949 |#1|))) $) 96 (|has| |#1| (-560)))) (-2071 (((-410 (-949 |#1|))) 79 (|has| |#1| (-560)))) (-2074 (((-410 (-949 |#1|)) $ $) 71 (|has| |#1| (-560)))) (-2080 (((-410 (-949 |#1|)) $) 101 (|has| |#1| (-560)))) (-2079 (((-410 (-949 |#1|)) $) 105 (|has| |#1| (-560)))) (-2081 (((-1174 (-410 (-949 |#1|))) $) 95 (|has| |#1| (-560)))) (-2073 (((-410 (-949 |#1|))) 75 (|has| |#1| (-560)))) (-2083 (($) 112) (($ (-1180)) 120) (($ (-1269 (-1180))) 119) (($ (-1269 $)) 107) (($ (-1180) (-1269 $)) 118) (($ (-1269 (-1180)) (-1269 $)) 117)) (-1884 (((-112)) NIL)) (-4231 (((-410 (-949 |#1|)) $ (-549)) NIL)) (-3644 (((-1269 (-410 (-949 |#1|))) $ (-1269 $)) 109) (((-691 (-410 (-949 |#1|))) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 (-949 |#1|))) $) 45) (((-691 (-410 (-949 |#1|))) (-1269 $)) NIL)) (-4402 (((-1269 (-410 (-949 |#1|))) $) NIL) (($ (-1269 (-410 (-949 |#1|)))) 42)) (-2070 (((-643 (-949 (-410 (-949 |#1|)))) (-1269 $)) NIL) (((-643 (-949 (-410 (-949 |#1|))))) NIL) (((-643 (-949 |#1|)) (-1269 $)) 110 (|has| |#1| (-560))) (((-643 (-949 |#1|))) 111 (|has| |#1| (-560)))) (-2756 (($ $ $) NIL)) (-1890 (((-112)) NIL)) (-4378 (((-865) $) NIL) (($ (-1269 (-410 (-949 |#1|)))) NIL)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 67)) (-1875 (((-643 (-1269 (-410 (-949 |#1|))))) NIL (|has| (-410 (-949 |#1|)) (-560)))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) NIL)) (-2948 (($ (-691 (-410 (-949 |#1|))) $) NIL)) (-2755 (($ $ $) NIL)) (-1889 (((-112)) NIL)) (-1887 (((-112)) NIL)) (-1883 (((-112)) NIL)) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) 108)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 63) (($ $ (-410 (-949 |#1|))) NIL) (($ (-410 (-949 |#1|)) $) NIL) (($ (-1145 |#2| (-410 (-949 |#1|))) $) NIL))) +(((-456 |#1| |#2| |#3| |#4|) (-13 (-421 (-410 (-949 |#1|))) (-650 (-1145 |#2| (-410 (-949 |#1|)))) (-10 -8 (-15 -4378 ($ (-1269 (-410 (-949 |#1|))))) (-15 -2085 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2084 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2083 ($)) (-15 -2083 ($ (-1180))) (-15 -2083 ($ (-1269 (-1180)))) (-15 -2083 ($ (-1269 $))) (-15 -2083 ($ (-1180) (-1269 $))) (-15 -2083 ($ (-1269 (-1180)) (-1269 $))) (IF (|has| |#1| (-560)) (PROGN (-15 -2082 ((-1174 (-410 (-949 |#1|))))) (-15 -2081 ((-1174 (-410 (-949 |#1|))) $)) (-15 -2080 ((-410 (-949 |#1|)) $)) (-15 -2079 ((-410 (-949 |#1|)) $)) (-15 -2078 ((-1174 (-410 (-949 |#1|))))) (-15 -2077 ((-1174 (-410 (-949 |#1|))) $)) (-15 -2076 ((-410 (-949 |#1|)) $)) (-15 -2075 ((-410 (-949 |#1|)) $)) (-15 -2074 ((-410 (-949 |#1|)) $ $)) (-15 -2073 ((-410 (-949 |#1|)))) (-15 -2072 ((-410 (-949 |#1|)) $ $)) (-15 -2071 ((-410 (-949 |#1|)))) (-15 -2070 ((-643 (-949 |#1|)) (-1269 $))) (-15 -2070 ((-643 (-949 |#1|))))) |%noBranch|))) (-172) (-922) (-643 (-1180)) (-1269 (-691 |#1|))) (T -456)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 *3)))) (-4 *3 (-172)) (-14 *6 (-1269 (-691 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))))) (-2085 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2190 (-643 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2084 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2190 (-643 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2083 (*1 *1) (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-922)) (-14 *4 (-643 (-1180))) (-14 *5 (-1269 (-691 *2))))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 *2)) (-14 *6 (-1269 (-691 *3))))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-1269 (-1180))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-1269 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2083 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-643 *2)) (-14 *7 (-1269 (-691 *4))))) (-2083 (*1 *1 *2 *3) (-12 (-5 *2 (-1269 (-1180))) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-643 (-1180))) (-14 *7 (-1269 (-691 *4))))) (-2082 (*1 *2) (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2078 (*1 *2) (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2074 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2073 (*1 *2) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2072 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2071 (*1 *2) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) (-2070 (*1 *2 *3) (-12 (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *2 (-643 (-949 *4))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-560)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-643 (-1180))) (-14 *7 (-1269 (-691 *4))))) (-2070 (*1 *2) (-12 (-5 *2 (-643 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3)))))) +(-13 (-421 (-410 (-949 |#1|))) (-650 (-1145 |#2| (-410 (-949 |#1|)))) (-10 -8 (-15 -4378 ($ (-1269 (-410 (-949 |#1|))))) (-15 -2085 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2084 ((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) "failed"))) (-15 -2083 ($)) (-15 -2083 ($ (-1180))) (-15 -2083 ($ (-1269 (-1180)))) (-15 -2083 ($ (-1269 $))) (-15 -2083 ($ (-1180) (-1269 $))) (-15 -2083 ($ (-1269 (-1180)) (-1269 $))) (IF (|has| |#1| (-560)) (PROGN (-15 -2082 ((-1174 (-410 (-949 |#1|))))) (-15 -2081 ((-1174 (-410 (-949 |#1|))) $)) (-15 -2080 ((-410 (-949 |#1|)) $)) (-15 -2079 ((-410 (-949 |#1|)) $)) (-15 -2078 ((-1174 (-410 (-949 |#1|))))) (-15 -2077 ((-1174 (-410 (-949 |#1|))) $)) (-15 -2076 ((-410 (-949 |#1|)) $)) (-15 -2075 ((-410 (-949 |#1|)) $)) (-15 -2074 ((-410 (-949 |#1|)) $ $)) (-15 -2073 ((-410 (-949 |#1|)))) (-15 -2072 ((-410 (-949 |#1|)) $ $)) (-15 -2071 ((-410 (-949 |#1|)))) (-15 -2070 ((-643 (-949 |#1|)) (-1269 $))) (-15 -2070 ((-643 (-949 |#1|))))) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 18)) (-3485 (((-643 (-866 |#1|)) $) 90)) (-3487 (((-1174 $) $ (-866 |#1|)) 55) (((-1174 |#2|) $) 140)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) 27) (((-773) $ (-643 (-866 |#1|))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) 53) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-866 |#1|) #2#) $) NIL)) (-3576 ((|#2| $) 51) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-866 |#1|) $) NIL)) (-4188 (($ $ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-2115 (($ $ (-643 (-549))) 96)) (-4391 (($ $) 83)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| |#3| $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) 68)) (-3488 (($ (-1174 |#2|) (-866 |#1|)) 145) (($ (-1174 $) (-866 |#1|)) 61)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) 71)) (-3294 (($ |#2| |#3|) 38) (($ $ (-866 |#1|) (-773)) 40) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-866 |#1|)) NIL)) (-3223 ((|#3| $) NIL) (((-773) $ (-866 |#1|)) 59) (((-643 (-773)) $ (-643 (-866 |#1|))) 66)) (-1770 (($ (-1 |#3| |#3|) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-3486 (((-3 (-866 |#1|) #3="failed") $) 48)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) 50)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-866 |#1|)) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 49)) (-1971 ((|#2| $) 138)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) 151 (|has| |#2| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-866 |#1|) |#2|) 103) (($ $ (-643 (-866 |#1|)) (-643 |#2|)) 109) (($ $ (-866 |#1|) $) 101) (($ $ (-643 (-866 |#1|)) (-643 $)) 127)) (-4189 (($ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-866 |#1|)) 62) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4380 ((|#3| $) 82) (((-773) $ (-866 |#1|)) 45) (((-643 (-773)) $ (-643 (-866 |#1|))) 65)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-866 |#1|) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) 147 (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) 175) (($ (-549)) NIL) (($ |#2|) 102) (($ (-866 |#1|)) 42) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#2| (-560)))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ |#3|) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) 22 T CONST)) (-3067 (($) 31 T CONST)) (-3072 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) 79 (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 133)) (** (($ $ (-922)) NIL) (($ $ (-773)) 131)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 39) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) 78) (($ $ |#2|) NIL))) +(((-457 |#1| |#2| |#3|) (-13 (-953 |#2| |#3| (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) (-643 (-1180)) (-1052) (-238 (-4389 |#1|) (-773))) (T -457)) +((-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-14 *3 (-643 (-1180))) (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-238 (-4389 *3) (-773)))))) +(-13 (-953 |#2| |#3| (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) +((-2089 (((-112) |#1| (-643 |#2|)) 93)) (-2087 (((-3 (-1269 (-643 |#2|)) "failed") (-773) |#1| (-643 |#2|)) 102)) (-2088 (((-3 (-643 |#2|) "failed") |#2| |#1| (-1269 (-643 |#2|))) 104)) (-2215 ((|#2| |#2| |#1|) 35)) (-2086 (((-773) |#2| (-643 |#2|)) 26))) +(((-458 |#1| |#2|) (-10 -7 (-15 -2215 (|#2| |#2| |#1|)) (-15 -2086 ((-773) |#2| (-643 |#2|))) (-15 -2087 ((-3 (-1269 (-643 |#2|)) "failed") (-773) |#1| (-643 |#2|))) (-15 -2088 ((-3 (-643 |#2|) "failed") |#2| |#1| (-1269 (-643 |#2|)))) (-15 -2089 ((-112) |#1| (-643 |#2|)))) (-308) (-1245 |#1|)) (T -458)) +((-2089 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *5)) (-4 *5 (-1245 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))) (-2088 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1269 (-643 *3))) (-4 *4 (-308)) (-5 *2 (-643 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1245 *4)))) (-2087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-773)) (-4 *4 (-308)) (-4 *6 (-1245 *4)) (-5 *2 (-1269 (-643 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-643 *6)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-308)) (-5 *2 (-773)) (-5 *1 (-458 *5 *3)))) (-2215 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1245 *3))))) +(-10 -7 (-15 -2215 (|#2| |#2| |#1|)) (-15 -2086 ((-773) |#2| (-643 |#2|))) (-15 -2087 ((-3 (-1269 (-643 |#2|)) "failed") (-773) |#1| (-643 |#2|))) (-15 -2088 ((-3 (-643 |#2|) "failed") |#2| |#1| (-1269 (-643 |#2|)))) (-15 -2089 ((-112) |#1| (-643 |#2|)))) +((-4164 (((-408 |#5|) |#5|) 24))) +(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4164 ((-408 |#5|) |#5|))) (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180))))) (-795) (-560) (-560) (-953 |#4| |#2| |#1|)) (T -459)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) (-4 *5 (-795)) (-4 *7 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-560)) (-4 *3 (-953 *7 *5 *4))))) +(-10 -7 (-15 -4164 ((-408 |#5|) |#5|))) +((-3103 ((|#3|) 38)) (-3111 (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 34))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3111 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3103 (|#3|))) (-795) (-852) (-913) (-953 |#3| |#1| |#2|)) (T -460)) +((-3103 (*1 *2) (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-913)) (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-953 *2 *3 *4)))) (-3111 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-913)) (-5 *1 (-460 *3 *4 *5 *6))))) +(-10 -7 (-15 -3111 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3103 (|#3|))) +((-4164 (((-408 (-1174 |#1|)) (-1174 |#1|)) 43))) +(((-461 |#1|) (-10 -7 (-15 -4164 ((-408 (-1174 |#1|)) (-1174 |#1|)))) (-308)) (T -461)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-408 (-1174 *4))) (-5 *1 (-461 *4)) (-5 *3 (-1174 *4))))) +(-10 -7 (-15 -4164 ((-408 (-1174 |#1|)) (-1174 |#1|)))) +((-4161 (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-773))) 44) (((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-773))) 43) (((-51) |#2| (-1180) (-294 |#2|)) 36) (((-51) (-1 |#2| (-549)) (-294 |#2|)) 29)) (-4250 (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))) 88) (((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))) 87) (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549))) 86) (((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549))) 85) (((-51) |#2| (-1180) (-294 |#2|)) 80) (((-51) (-1 |#2| (-549)) (-294 |#2|)) 79)) (-4213 (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))) 74) (((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))) 72)) (-4210 (((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549))) 51) (((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549))) 50))) +(((-462 |#1| |#2|) (-10 -7 (-15 -4161 ((-51) (-1 |#2| (-549)) (-294 |#2|))) (-15 -4161 ((-51) |#2| (-1180) (-294 |#2|))) (-15 -4161 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-773)))) (-15 -4161 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-773)))) (-15 -4210 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549)))) (-15 -4210 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549)))) (-15 -4213 ((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4213 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4250 ((-51) (-1 |#2| (-549)) (-294 |#2|))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|))) (-15 -4250 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549)))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549)))) (-15 -4250 ((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))))) (-13 (-560) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -462)) +((-4250 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-410 (-549)))) (-5 *7 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *8))) (-4 *8 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *8 *3)))) (-4250 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-549)))) (-5 *4 (-294 *8)) (-5 *5 (-1236 (-410 (-549)))) (-5 *6 (-410 (-549))) (-4 *8 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *8)))) (-4250 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *3)))) (-4250 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-549))) (-4 *7 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *7)))) (-4250 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *3)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *5 *6)))) (-4213 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-410 (-549)))) (-5 *7 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *8))) (-4 *8 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *8 *3)))) (-4213 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-549)))) (-5 *4 (-294 *8)) (-5 *5 (-1236 (-410 (-549)))) (-5 *6 (-410 (-549))) (-4 *8 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *8)))) (-4210 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *3)))) (-4210 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-549))) (-4 *7 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *7)))) (-4161 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-773))) (-4 *3 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *7 *3)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-773))) (-4 *7 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *7)))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *6 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) (-5 *1 (-462 *5 *6))))) +(-10 -7 (-15 -4161 ((-51) (-1 |#2| (-549)) (-294 |#2|))) (-15 -4161 ((-51) |#2| (-1180) (-294 |#2|))) (-15 -4161 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-773)))) (-15 -4161 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-773)))) (-15 -4210 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549)))) (-15 -4210 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549)))) (-15 -4213 ((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4213 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4250 ((-51) (-1 |#2| (-549)) (-294 |#2|))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|))) (-15 -4250 ((-51) (-1 |#2| (-549)) (-294 |#2|) (-1236 (-549)))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-549)))) (-15 -4250 ((-51) (-1 |#2| (-410 (-549))) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549)))) (-15 -4250 ((-51) |#2| (-1180) (-294 |#2|) (-1236 (-410 (-549))) (-410 (-549))))) +((-2215 ((|#2| |#2| |#1|) 15)) (-2091 (((-643 |#2|) |#2| (-643 |#2|) |#1| (-922)) 82)) (-2090 (((-2 (|:| |plist| (-643 |#2|)) (|:| |modulo| |#1|)) |#2| (-643 |#2|) |#1| (-922)) 72))) +(((-463 |#1| |#2|) (-10 -7 (-15 -2090 ((-2 (|:| |plist| (-643 |#2|)) (|:| |modulo| |#1|)) |#2| (-643 |#2|) |#1| (-922))) (-15 -2091 ((-643 |#2|) |#2| (-643 |#2|) |#1| (-922))) (-15 -2215 (|#2| |#2| |#1|))) (-308) (-1245 |#1|)) (T -463)) +((-2215 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1245 *3)))) (-2091 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-643 *3)) (-5 *5 (-922)) (-4 *3 (-1245 *4)) (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))) (-2090 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-922)) (-4 *5 (-308)) (-4 *3 (-1245 *5)) (-5 *2 (-2 (|:| |plist| (-643 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) (-5 *4 (-643 *3))))) +(-10 -7 (-15 -2090 ((-2 (|:| |plist| (-643 |#2|)) (|:| |modulo| |#1|)) |#2| (-643 |#2|) |#1| (-922))) (-15 -2091 ((-643 |#2|) |#2| (-643 |#2|) |#1| (-922))) (-15 -2215 (|#2| |#2| |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 28)) (-4139 (($ |#3|) 25)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) 32)) (-2092 (($ |#2| |#4| $) 33)) (-3294 (($ |#2| (-715 |#3| |#4| |#5|)) 24)) (-3295 (((-715 |#3| |#4| |#5|) $) 15)) (-2094 ((|#3| $) 19)) (-2095 ((|#4| $) 17)) (-3594 ((|#2| $) 29)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-2093 (($ |#2| |#3| |#4|) 26)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 36 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 34)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-464 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-719 |#6|) (-719 |#2|) (-10 -8 (-15 -3594 (|#2| $)) (-15 -3295 ((-715 |#3| |#4| |#5|) $)) (-15 -2095 (|#4| $)) (-15 -2094 (|#3| $)) (-15 -4391 ($ $)) (-15 -3294 ($ |#2| (-715 |#3| |#4| |#5|))) (-15 -4139 ($ |#3|)) (-15 -2093 ($ |#2| |#3| |#4|)) (-15 -2092 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-643 (-1180)) (-172) (-852) (-238 (-4389 |#1|) (-773)) (-1 (-112) (-2 (|:| -2563 |#3|) (|:| -2564 |#4|)) (-2 (|:| -2563 |#3|) (|:| -2564 |#4|))) (-953 |#2| |#4| (-866 |#1|))) (T -464)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *6 (-238 (-4389 *3) (-773))) (-14 *7 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) (-2 (|:| -2563 *5) (|:| -2564 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-852)) (-4 *2 (-953 *4 *6 (-866 *3))))) (-3594 (*1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *5 (-238 (-4389 *3) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *4) (|:| -2564 *5)) (-2 (|:| -2563 *4) (|:| -2564 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-852)) (-4 *7 (-953 *2 *5 (-866 *3))))) (-3295 (*1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *6 (-238 (-4389 *3) (-773))) (-14 *7 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) (-2 (|:| -2563 *5) (|:| -2564 *6)))) (-5 *2 (-715 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-852)) (-4 *8 (-953 *4 *6 (-866 *3))))) (-2095 (*1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *2)) (-2 (|:| -2563 *5) (|:| -2564 *2)))) (-4 *2 (-238 (-4389 *3) (-773))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) (-4 *5 (-852)) (-4 *7 (-953 *4 *2 (-866 *3))))) (-2094 (*1 *2 *1) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *5 (-238 (-4389 *3) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *5)) (-2 (|:| -2563 *2) (|:| -2564 *5)))) (-4 *2 (-852)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *7 (-953 *4 *5 (-866 *3))))) (-4391 (*1 *1 *1) (-12 (-14 *2 (-643 (-1180))) (-4 *3 (-172)) (-4 *5 (-238 (-4389 *2) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *4) (|:| -2564 *5)) (-2 (|:| -2563 *4) (|:| -2564 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-852)) (-4 *7 (-953 *3 *5 (-866 *2))))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-715 *5 *6 *7)) (-4 *5 (-852)) (-4 *6 (-238 (-4389 *4) (-773))) (-14 *7 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) (-2 (|:| -2563 *5) (|:| -2564 *6)))) (-14 *4 (-643 (-1180))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-953 *2 *6 (-866 *4))))) (-4139 (*1 *1 *2) (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *5 (-238 (-4389 *3) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *5)) (-2 (|:| -2563 *2) (|:| -2564 *5)))) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-852)) (-4 *7 (-953 *4 *5 (-866 *3))))) (-2093 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-643 (-1180))) (-4 *2 (-172)) (-4 *4 (-238 (-4389 *5) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *3) (|:| -2564 *4)) (-2 (|:| -2563 *3) (|:| -2564 *4)))) (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-852)) (-4 *7 (-953 *2 *4 (-866 *5))))) (-2092 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-643 (-1180))) (-4 *2 (-172)) (-4 *3 (-238 (-4389 *4) (-773))) (-14 *6 (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *3)) (-2 (|:| -2563 *5) (|:| -2564 *3)))) (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-852)) (-4 *7 (-953 *2 *3 (-866 *4)))))) +(-13 (-719 |#6|) (-719 |#2|) (-10 -8 (-15 -3594 (|#2| $)) (-15 -3295 ((-715 |#3| |#4| |#5|) $)) (-15 -2095 (|#4| $)) (-15 -2094 (|#3| $)) (-15 -4391 ($ $)) (-15 -3294 ($ |#2| (-715 |#3| |#4| |#5|))) (-15 -4139 ($ |#3|)) (-15 -2093 ($ |#2| |#3| |#4|)) (-15 -2092 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2096 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2096 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-795) (-852) (-560) (-953 |#3| |#1| |#2|) (-13 (-1041 (-410 (-549))) (-365) (-10 -8 (-15 -4378 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -465)) +((-2096 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-852)) (-4 *5 (-795)) (-4 *6 (-560)) (-4 *7 (-953 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1041 (-410 (-549))) (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) +(-10 -7 (-15 -2096 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2968 (((-112) $ $) NIL)) (-3485 (((-643 |#3|) $) 41)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) NIL (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-3301 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 49)) (-3576 (($ (-643 |#4|)) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425)))) (-2124 (((-643 |#4|) $) 18 (|has| $ (-6 -4425)))) (-3600 ((|#3| $) 47)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 14 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2128 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 21)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-3664 (((-1123) $) NIL)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 39)) (-3996 (($) 17)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) 16)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538)))) (($ (-643 |#4|)) 51)) (-3953 (($ (-643 |#4|)) 13)) (-3311 (($ $ |#3|) NIL)) (-3313 (($ $ |#3|) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) 38) (((-643 |#4|) $) 50)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 30)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-466 |#1| |#2| |#3| |#4|) (-13 (-979 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4402 ($ (-643 |#4|))) (-6 -4425) (-6 -4426))) (-1052) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -466)) +((-4402 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-466 *3 *4 *5 *6))))) +(-13 (-979 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4402 ($ (-643 |#4|))) (-6 -4425) (-6 -4426))) +((-3510 (($) 11)) (-3067 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -3067 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3510 (|#1|))) (-468 |#2| |#3|) (-172) (-23)) (T -467)) +NIL +(-10 -8 (-15 -3067 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3510 (|#1|))) +((-2968 (((-112) $ $) 7)) (-3577 (((-3 |#1| "failed") $) 27)) (-3576 ((|#1| $) 28)) (-4376 (($ $ $) 24)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4380 ((|#2| $) 20)) (-4378 (((-865) $) 12) (($ |#1|) 26)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 25 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 16) (($ $ $) 14)) (-4271 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-468 |#1| |#2|) (-140) (-172) (-23)) (T -468)) -((-1820 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2822 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-473 |t#1| |t#2|) (-1040 |t#1|) (-10 -8 (-15 (-1820) ($) -3562) (-15 -2822 ($ $ $)))) -(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-473 |#1| |#2|) . T) ((-1040 |#1|) . T) ((-1102) . T)) -((-2892 (((-1269 (-1269 (-567))) (-1269 (-1269 (-567))) (-923)) 29)) (-4334 (((-1269 (-1269 (-567))) (-923)) 24))) -(((-469) (-10 -7 (-15 -2892 ((-1269 (-1269 (-567))) (-1269 (-1269 (-567))) (-923))) (-15 -4334 ((-1269 (-1269 (-567))) (-923))))) (T -469)) -((-4334 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 (-1269 (-567)))) (-5 *1 (-469)))) (-2892 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 (-1269 (-567)))) (-5 *3 (-923)) (-5 *1 (-469))))) -(-10 -7 (-15 -2892 ((-1269 (-1269 (-567))) (-1269 (-1269 (-567))) (-923))) (-15 -4334 ((-1269 (-1269 (-567))) (-923)))) -((-4081 (((-567) (-567)) 32) (((-567)) 24)) (-3537 (((-567) (-567)) 28) (((-567)) 20)) (-2469 (((-567) (-567)) 30) (((-567)) 22)) (-2283 (((-112) (-112)) 14) (((-112)) 12)) (-3919 (((-112) (-112)) 13) (((-112)) 11)) (-2647 (((-112) (-112)) 26) (((-112)) 17))) -(((-470) (-10 -7 (-15 -3919 ((-112))) (-15 -2283 ((-112))) (-15 -3919 ((-112) (-112))) (-15 -2283 ((-112) (-112))) (-15 -2647 ((-112))) (-15 -2469 ((-567))) (-15 -3537 ((-567))) (-15 -4081 ((-567))) (-15 -2647 ((-112) (-112))) (-15 -2469 ((-567) (-567))) (-15 -3537 ((-567) (-567))) (-15 -4081 ((-567) (-567))))) (T -470)) -((-4081 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3537 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-2647 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-4081 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3537 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-2469 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-2647 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2283 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2283 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3919 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(-10 -7 (-15 -3919 ((-112))) (-15 -2283 ((-112))) (-15 -3919 ((-112) (-112))) (-15 -2283 ((-112) (-112))) (-15 -2647 ((-112))) (-15 -2469 ((-567))) (-15 -3537 ((-567))) (-15 -4081 ((-567))) (-15 -2647 ((-112) (-112))) (-15 -2469 ((-567) (-567))) (-15 -3537 ((-567) (-567))) (-15 -4081 ((-567) (-567)))) -((-2487 (((-112) $ $) NIL)) (-3138 (((-645 (-381)) $) 34) (((-645 (-381)) $ (-645 (-381))) 146)) (-1780 (((-645 (-1096 (-381))) $) 16) (((-645 (-1096 (-381))) $ (-645 (-1096 (-381)))) 142)) (-1666 (((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875))) 58)) (-3683 (((-645 (-645 (-945 (-225)))) $) 137)) (-2657 (((-1274) $ (-945 (-225)) (-875)) 163)) (-3128 (($ $) 136) (($ (-645 (-645 (-945 (-225))))) 149) (($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923))) 148) (($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264))) 150)) (-1812 (((-1161) $) NIL)) (-2025 (((-567) $) 110)) (-3479 (((-1122) $) NIL)) (-1918 (($) 147)) (-2207 (((-645 (-225)) (-645 (-645 (-945 (-225))))) 89)) (-1545 (((-1274) $ (-645 (-945 (-225))) (-875) (-875) (-923)) 155) (((-1274) $ (-945 (-225))) 157) (((-1274) $ (-945 (-225)) (-875) (-875) (-923)) 156)) (-2504 (((-863) $) 169) (($ (-645 (-645 (-945 (-225))))) 164)) (-3858 (((-112) $ $) NIL)) (-1997 (((-1274) $ (-945 (-225))) 162)) (-2968 (((-112) $ $) NIL))) -(((-471) (-13 (-1102) (-10 -8 (-15 -1918 ($)) (-15 -3128 ($ $)) (-15 -3128 ($ (-645 (-645 (-945 (-225)))))) (-15 -3128 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)))) (-15 -3128 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264)))) (-15 -3683 ((-645 (-645 (-945 (-225)))) $)) (-15 -2025 ((-567) $)) (-15 -1780 ((-645 (-1096 (-381))) $)) (-15 -1780 ((-645 (-1096 (-381))) $ (-645 (-1096 (-381))))) (-15 -3138 ((-645 (-381)) $)) (-15 -3138 ((-645 (-381)) $ (-645 (-381)))) (-15 -1545 ((-1274) $ (-645 (-945 (-225))) (-875) (-875) (-923))) (-15 -1545 ((-1274) $ (-945 (-225)))) (-15 -1545 ((-1274) $ (-945 (-225)) (-875) (-875) (-923))) (-15 -1997 ((-1274) $ (-945 (-225)))) (-15 -2657 ((-1274) $ (-945 (-225)) (-875))) (-15 -2504 ($ (-645 (-645 (-945 (-225)))))) (-15 -2504 ((-863) $)) (-15 -1666 ((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875)))) (-15 -2207 ((-645 (-225)) (-645 (-645 (-945 (-225))))))))) (T -471)) -((-2504 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471)))) (-1918 (*1 *1) (-5 *1 (-471))) (-3128 (*1 *1 *1) (-5 *1 (-471))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-3128 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-923))) (-5 *1 (-471)))) (-3128 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-923))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) (-1780 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-3138 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1545 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *2 (-1274)) (-5 *1 (-471)))) (-1545 (*1 *2 *1 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-471)))) (-1545 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *2 (-1274)) (-5 *1 (-471)))) (-1997 (*1 *2 *1 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-471)))) (-2657 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-471)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) (-1666 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) (-5 *1 (-471)))) (-2207 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-225))) (-5 *1 (-471))))) -(-13 (-1102) (-10 -8 (-15 -1918 ($)) (-15 -3128 ($ $)) (-15 -3128 ($ (-645 (-645 (-945 (-225)))))) (-15 -3128 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)))) (-15 -3128 ($ (-645 (-645 (-945 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-923)) (-645 (-264)))) (-15 -3683 ((-645 (-645 (-945 (-225)))) $)) (-15 -2025 ((-567) $)) (-15 -1780 ((-645 (-1096 (-381))) $)) (-15 -1780 ((-645 (-1096 (-381))) $ (-645 (-1096 (-381))))) (-15 -3138 ((-645 (-381)) $)) (-15 -3138 ((-645 (-381)) $ (-645 (-381)))) (-15 -1545 ((-1274) $ (-645 (-945 (-225))) (-875) (-875) (-923))) (-15 -1545 ((-1274) $ (-945 (-225)))) (-15 -1545 ((-1274) $ (-945 (-225)) (-875) (-875) (-923))) (-15 -1997 ((-1274) $ (-945 (-225)))) (-15 -2657 ((-1274) $ (-945 (-225)) (-875))) (-15 -2504 ($ (-645 (-645 (-945 (-225)))))) (-15 -2504 ((-863) $)) (-15 -1666 ((-645 (-645 (-945 (-225)))) (-645 (-645 (-945 (-225)))) (-645 (-875)))) (-15 -2207 ((-645 (-225)) (-645 (-645 (-945 (-225)))))))) -((-3054 (($ $) NIL) (($ $ $) 11))) -(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|))) (-473 |#2| |#3|) (-172) (-23)) (T -472)) -NIL -(-10 -8 (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3380 ((|#2| $) 20)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 16) (($ $ $) 14)) (-3045 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-3067 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4376 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-473 |t#1| |t#2|) (-1041 |t#1|) (-10 -8 (-15 (-3067) ($) -4384) (-15 -4376 ($ $ $)))) +(((-102) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-473 |#1| |#2|) . T) ((-1041 |#1|) . T) ((-1104) . T)) +((-2097 (((-1269 (-1269 (-549))) (-1269 (-1269 (-549))) (-922)) 28)) (-2098 (((-1269 (-1269 (-549))) (-922)) 23))) +(((-469) (-10 -7 (-15 -2097 ((-1269 (-1269 (-549))) (-1269 (-1269 (-549))) (-922))) (-15 -2098 ((-1269 (-1269 (-549))) (-922))))) (T -469)) +((-2098 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 (-1269 (-549)))) (-5 *1 (-469)))) (-2097 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 (-1269 (-549)))) (-5 *3 (-922)) (-5 *1 (-469))))) +(-10 -7 (-15 -2097 ((-1269 (-1269 (-549))) (-1269 (-1269 (-549))) (-922))) (-15 -2098 ((-1269 (-1269 (-549))) (-922)))) +((-3173 (((-549) (-549)) 32) (((-549)) 24)) (-3177 (((-549) (-549)) 28) (((-549)) 20)) (-3175 (((-549) (-549)) 30) (((-549)) 22)) (-2100 (((-112) (-112)) 14) (((-112)) 12)) (-2099 (((-112) (-112)) 13) (((-112)) 11)) (-2101 (((-112) (-112)) 26) (((-112)) 17))) +(((-470) (-10 -7 (-15 -2099 ((-112))) (-15 -2100 ((-112))) (-15 -2099 ((-112) (-112))) (-15 -2100 ((-112) (-112))) (-15 -2101 ((-112))) (-15 -3175 ((-549))) (-15 -3177 ((-549))) (-15 -3173 ((-549))) (-15 -2101 ((-112) (-112))) (-15 -3175 ((-549) (-549))) (-15 -3177 ((-549) (-549))) (-15 -3173 ((-549) (-549))))) (T -470)) +((-3173 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3173 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-3177 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-3175 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) (-2101 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2100 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2099 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) +(-10 -7 (-15 -2099 ((-112))) (-15 -2100 ((-112))) (-15 -2099 ((-112) (-112))) (-15 -2100 ((-112) (-112))) (-15 -2101 ((-112))) (-15 -3175 ((-549))) (-15 -3177 ((-549))) (-15 -3173 ((-549))) (-15 -2101 ((-112) (-112))) (-15 -3175 ((-549) (-549))) (-15 -3177 ((-549) (-549))) (-15 -3173 ((-549) (-549)))) +((-2968 (((-112) $ $) NIL)) (-4283 (((-643 (-380)) $) 34) (((-643 (-380)) $ (-643 (-380))) 146)) (-2106 (((-643 (-1092 (-380))) $) 16) (((-643 (-1092 (-380))) $ (-643 (-1092 (-380)))) 142)) (-2103 (((-643 (-643 (-946 (-225)))) (-643 (-643 (-946 (-225)))) (-643 (-876))) 58)) (-2107 (((-643 (-643 (-946 (-225)))) $) 137)) (-4138 (((-1275) $ (-946 (-225)) (-876)) 163)) (-2108 (($ $) 136) (($ (-643 (-643 (-946 (-225))))) 149) (($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922))) 148) (($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)) (-643 (-262))) 150)) (-3663 (((-1162) $) NIL)) (-4292 (((-549) $) 110)) (-3664 (((-1123) $) NIL)) (-2109 (($) 147)) (-2102 (((-643 (-225)) (-643 (-643 (-946 (-225))))) 89)) (-2105 (((-1275) $ (-643 (-946 (-225))) (-876) (-876) (-922)) 155) (((-1275) $ (-946 (-225))) 157) (((-1275) $ (-946 (-225)) (-876) (-876) (-922)) 156)) (-4378 (((-865) $) 169) (($ (-643 (-643 (-946 (-225))))) 164)) (-3662 (((-112) $ $) NIL)) (-2104 (((-1275) $ (-946 (-225))) 162)) (-3455 (((-112) $ $) NIL))) +(((-471) (-13 (-1104) (-10 -8 (-15 -2109 ($)) (-15 -2108 ($ $)) (-15 -2108 ($ (-643 (-643 (-946 (-225)))))) (-15 -2108 ($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)))) (-15 -2108 ($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)) (-643 (-262)))) (-15 -2107 ((-643 (-643 (-946 (-225)))) $)) (-15 -4292 ((-549) $)) (-15 -2106 ((-643 (-1092 (-380))) $)) (-15 -2106 ((-643 (-1092 (-380))) $ (-643 (-1092 (-380))))) (-15 -4283 ((-643 (-380)) $)) (-15 -4283 ((-643 (-380)) $ (-643 (-380)))) (-15 -2105 ((-1275) $ (-643 (-946 (-225))) (-876) (-876) (-922))) (-15 -2105 ((-1275) $ (-946 (-225)))) (-15 -2105 ((-1275) $ (-946 (-225)) (-876) (-876) (-922))) (-15 -2104 ((-1275) $ (-946 (-225)))) (-15 -4138 ((-1275) $ (-946 (-225)) (-876))) (-15 -4378 ($ (-643 (-643 (-946 (-225)))))) (-15 -4378 ((-865) $)) (-15 -2103 ((-643 (-643 (-946 (-225)))) (-643 (-643 (-946 (-225)))) (-643 (-876)))) (-15 -2102 ((-643 (-225)) (-643 (-643 (-946 (-225))))))))) (T -471)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-471)))) (-2109 (*1 *1) (-5 *1 (-471))) (-2108 (*1 *1 *1) (-5 *1 (-471))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) (-2108 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) (-5 *4 (-643 (-922))) (-5 *1 (-471)))) (-2108 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) (-5 *4 (-643 (-922))) (-5 *5 (-643 (-262))) (-5 *1 (-471)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-471)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-471)))) (-2106 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-471)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-471)))) (-4283 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-471)))) (-2105 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *2 (-1275)) (-5 *1 (-471)))) (-2105 (*1 *2 *1 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-471)))) (-2105 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-946 (-225))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *2 (-1275)) (-5 *1 (-471)))) (-2104 (*1 *2 *1 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-471)))) (-4138 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-946 (-225))) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-471)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) (-5 *1 (-471)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-643 (-225))) (-5 *1 (-471))))) +(-13 (-1104) (-10 -8 (-15 -2109 ($)) (-15 -2108 ($ $)) (-15 -2108 ($ (-643 (-643 (-946 (-225)))))) (-15 -2108 ($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)))) (-15 -2108 ($ (-643 (-643 (-946 (-225)))) (-643 (-876)) (-643 (-876)) (-643 (-922)) (-643 (-262)))) (-15 -2107 ((-643 (-643 (-946 (-225)))) $)) (-15 -4292 ((-549) $)) (-15 -2106 ((-643 (-1092 (-380))) $)) (-15 -2106 ((-643 (-1092 (-380))) $ (-643 (-1092 (-380))))) (-15 -4283 ((-643 (-380)) $)) (-15 -4283 ((-643 (-380)) $ (-643 (-380)))) (-15 -2105 ((-1275) $ (-643 (-946 (-225))) (-876) (-876) (-922))) (-15 -2105 ((-1275) $ (-946 (-225)))) (-15 -2105 ((-1275) $ (-946 (-225)) (-876) (-876) (-922))) (-15 -2104 ((-1275) $ (-946 (-225)))) (-15 -4138 ((-1275) $ (-946 (-225)) (-876))) (-15 -4378 ($ (-643 (-643 (-946 (-225)))))) (-15 -4378 ((-865) $)) (-15 -2103 ((-643 (-643 (-946 (-225)))) (-643 (-643 (-946 (-225)))) (-643 (-876)))) (-15 -2102 ((-643 (-225)) (-643 (-643 (-946 (-225)))))))) +((-4269 (($ $) NIL) (($ $ $) 11))) +(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|))) (-473 |#2| |#3|) (-172) (-23)) (T -472)) +NIL +(-10 -8 (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4380 ((|#2| $) 20)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 16) (($ $ $) 14)) (-4271 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-473 |#1| |#2|) (-140) (-172) (-23)) (T -473)) -((-3380 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-1807 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3054 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-1102) (-10 -8 (-15 -3380 (|t#2| $)) (-15 (-1807) ($) -3562) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3054 ($ $)) (-15 -3045 ($ $ $)) (-15 -3054 ($ $ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-1734 (((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|))) 137)) (-2068 (((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 134)) (-3630 (((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 86))) -(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -2068 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -1734 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3630 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) (-645 (-1179)) (-455) (-455)) (T -474)) -((-3630 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-2 (|:| |dpolys| (-645 (-247 *5 *6))) (|:| |coords| (-645 (-567))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))) (-1734 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) (-4 *6 (-455)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) -(-10 -7 (-15 -2068 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -1734 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3630 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) -((-1377 (((-3 $ "failed") $) 11)) (-3307 (($ $ $) 23)) (-4033 (($ $ $) 24)) (-3064 (($ $ $) 9)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 22))) -(((-475 |#1|) (-10 -8 (-15 -4033 (|#1| |#1| |#1|)) (-15 -3307 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3064 (|#1| |#1| |#1|)) (-15 -1377 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) (-476)) (T -475)) -NIL -(-10 -8 (-15 -4033 (|#1| |#1| |#1|)) (-15 -3307 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3064 (|#1| |#1| |#1|)) (-15 -1377 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) -((-2487 (((-112) $ $) 7)) (-3758 (($) 19 T CONST)) (-1377 (((-3 $ "failed") $) 16)) (-4384 (((-112) $) 18)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 25)) (-3479 (((-1122) $) 11)) (-3307 (($ $ $) 22)) (-4033 (($ $ $) 21)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1820 (($) 20 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15))) +((-4380 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-3510 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4269 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-1104) (-10 -8 (-15 -4380 (|t#2| $)) (-15 (-3510) ($) -4384) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4269 ($ $)) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2111 (((-3 (-643 (-484 |#1| |#2|)) "failed") (-643 (-484 |#1| |#2|)) (-643 (-866 |#1|))) 134)) (-2110 (((-643 (-643 (-247 |#1| |#2|))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|))) 131)) (-2112 (((-2 (|:| |dpolys| (-643 (-247 |#1| |#2|))) (|:| |coords| (-643 (-549)))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|))) 86))) +(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -2110 ((-643 (-643 (-247 |#1| |#2|))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|)))) (-15 -2111 ((-3 (-643 (-484 |#1| |#2|)) "failed") (-643 (-484 |#1| |#2|)) (-643 (-866 |#1|)))) (-15 -2112 ((-2 (|:| |dpolys| (-643 (-247 |#1| |#2|))) (|:| |coords| (-643 (-549)))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|))))) (-643 (-1180)) (-455) (-455)) (T -474)) +((-2112 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-866 *5))) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) (-5 *2 (-2 (|:| |dpolys| (-643 (-247 *5 *6))) (|:| |coords| (-643 (-549))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-643 (-247 *5 *6))) (-4 *7 (-455)))) (-2111 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-484 *4 *5))) (-5 *3 (-643 (-866 *4))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) (-4 *6 (-455)))) (-2110 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-866 *5))) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) (-5 *2 (-643 (-643 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-643 (-247 *5 *6))) (-4 *7 (-455))))) +(-10 -7 (-15 -2110 ((-643 (-643 (-247 |#1| |#2|))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|)))) (-15 -2111 ((-3 (-643 (-484 |#1| |#2|)) "failed") (-643 (-484 |#1| |#2|)) (-643 (-866 |#1|)))) (-15 -2112 ((-2 (|:| |dpolys| (-643 (-247 |#1| |#2|))) (|:| |coords| (-643 (-549)))) (-643 (-247 |#1| |#2|)) (-643 (-866 |#1|))))) +((-3890 (((-3 $ "failed") $) 11)) (-3410 (($ $ $) 23)) (-2756 (($ $ $) 24)) (-4381 (($ $ $) 9)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 22))) +(((-475 |#1|) (-10 -8 (-15 -2756 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -4381 (|#1| |#1| |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922)))) (-476)) (T -475)) +NIL +(-10 -8 (-15 -2756 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -4381 (|#1| |#1| |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922)))) +((-2968 (((-112) $ $) 7)) (-4156 (($) 19 T CONST)) (-3890 (((-3 $ "failed") $) 16)) (-2573 (((-112) $) 18)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 25)) (-3664 (((-1123) $) 11)) (-3410 (($ $ $) 22)) (-2756 (($ $ $) 21)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 20 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 24)) (** (($ $ (-922)) 14) (($ $ (-773)) 17) (($ $ (-549)) 23)) (* (($ $ $) 15))) (((-476) (-140)) (T -476)) -((-1752 (*1 *1 *1) (-4 *1 (-476))) (-3064 (*1 *1 *1 *1) (-4 *1 (-476))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567)))) (-3307 (*1 *1 *1 *1) (-4 *1 (-476))) (-4033 (*1 *1 *1 *1) (-4 *1 (-476)))) -(-13 (-727) (-10 -8 (-15 -1752 ($ $)) (-15 -3064 ($ $ $)) (-15 ** ($ $ (-567))) (-6 -4419) (-15 -3307 ($ $ $)) (-15 -4033 ($ $ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 18)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3413 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3785 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-1406 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1380 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-1431 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3219 (((-112) $) NIL)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-410 (-567))) NIL) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) 25)) (-2734 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-3670 (($ $) 29 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 35 (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 30 (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-1678 (($ $ (-410 (-567))) NIL)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4272 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) 28 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1265 |#2|)) 16)) (-3380 (((-410 (-567)) $) NIL)) (-1443 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1265 |#2|)) NIL) (($ (-1254 |#1| |#2| |#3|)) 9) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4038 ((|#1| $ (-410 (-567))) NIL)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3118 ((|#1| $) 21)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) 27)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-477 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -2504 ($ (-1265 |#2|))) (-15 -2504 ($ (-1254 |#1| |#2| |#3|))) (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -477)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1254 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) -(-13 (-1250 |#1|) (-10 -8 (-15 -2504 ($ (-1265 |#2|))) (-15 -2504 ($ (-1254 |#1| |#2| |#3|))) (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3095 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#2| $ |#1| |#2|) 18)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 |#2| "failed") |#1| $) 19)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 16)) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) NIL)) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 ((|#1| $) NIL (|has| |#1| (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 ((|#1| $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1512 (((-645 |#1|) $) NIL)) (-1560 (((-112) |#1| $) NIL)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3360 (((-645 |#1|) $) NIL)) (-2919 (((-112) |#1| $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3436 ((|#2| $) NIL (|has| |#1| (-851)))) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-478 |#1| |#2| |#3| |#4|) (-1195 |#1| |#2|) (-1102) (-1102) (-1195 |#1| |#2|) |#2|) (T -478)) -NIL -(-1195 |#1| |#2|) -((-2487 (((-112) $ $) NIL)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3148 (((-645 $) (-645 |#4|)) NIL)) (-3783 (((-645 |#3|) $) NIL)) (-2643 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2688 ((|#4| |#4| $) NIL)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-1316 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3758 (($) NIL T CONST)) (-3731 (((-112) $) 29 (|has| |#1| (-559)))) (-4301 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4089 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3937 (((-112) $) NIL (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2160 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) NIL)) (-3094 (($ (-645 |#4|)) NIL)) (-3447 (((-3 $ "failed") $) 45)) (-2903 ((|#4| |#4| $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-1695 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1861 ((|#4| |#4| $) NIL)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) NIL)) (-3468 (((-645 |#4|) $) 18 (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3066 ((|#3| $) 38)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#4|) $) 19 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-2021 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 23)) (-3870 (((-645 |#3|) $) NIL)) (-2415 (((-112) |#3| $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-1725 (((-3 |#4| "failed") $) 42)) (-2290 (((-645 |#4|) $) NIL)) (-1737 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2763 ((|#4| |#4| $) NIL)) (-4009 (((-112) $ $) NIL)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3893 ((|#4| |#4| $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-3 |#4| "failed") $) 40)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2806 (((-3 $ "failed") $ |#4|) 58)) (-1678 (($ $ |#4|) NIL)) (-1430 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 17)) (-2973 (($) 14)) (-3380 (((-772) $) NIL)) (-3486 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) 13)) (-1322 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 22)) (-1582 (($ $ |#3|) 52)) (-2746 (($ $ |#3|) 54)) (-2012 (($ $) NIL)) (-3975 (($ $ |#3|) NIL)) (-2504 (((-863) $) 35) (((-645 |#4|) $) 46)) (-3312 (((-772) $) NIL (|has| |#3| (-370)))) (-3858 (((-112) $ $) NIL)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3450 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) NIL)) (-3392 (((-112) |#3| $) NIL)) (-2968 (((-112) $ $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-479 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2| |#3| |#4|) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -479)) -NIL -(-1212 |#1| |#2| |#3| |#4|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-3094 (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-4329 (($) 17)) (-4384 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-1322 (((-381) $) 21) (((-225) $) 24) (((-410 (-1175 (-567))) $) 18) (((-539) $) 53)) (-2504 (((-863) $) 51) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (((-225) $) 23) (((-381) $) 20)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) 37 T CONST)) (-1820 (($) 8 T CONST)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-480) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))) (-1024) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1175 (-567)))) (-615 (-539)) (-10 -8 (-15 -4329 ($))))) (T -480)) -((-4329 (*1 *1) (-5 *1 (-480)))) -(-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))) (-1024) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1175 (-567)))) (-615 (-539)) (-10 -8 (-15 -4329 ($)))) -((-2487 (((-112) $ $) NIL)) (-2141 (((-1137) $) 11)) (-2128 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-481) (-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1137) $))))) (T -481)) -((-2128 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481))))) -(-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1137) $)))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3095 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#2| $ |#1| |#2|) 16)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 |#2| "failed") |#1| $) 20)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 18)) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) NIL)) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 ((|#1| $) NIL (|has| |#1| (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 ((|#1| $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1512 (((-645 |#1|) $) 13)) (-1560 (((-112) |#1| $) NIL)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3360 (((-645 |#1|) $) NIL)) (-2919 (((-112) |#1| $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3436 ((|#2| $) NIL (|has| |#1| (-851)))) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 19)) (-1882 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 11 (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2498 (((-772) $) 15 (|has| $ (-6 -4422))))) -(((-482 |#1| |#2| |#3|) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) (-1102) (-1102) (-1161)) (T -482)) -NIL -(-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) -((-2501 (((-567) (-567) (-567)) 19)) (-2941 (((-112) (-567) (-567) (-567) (-567)) 28)) (-2378 (((-1269 (-645 (-567))) (-772) (-772)) 44))) -(((-483) (-10 -7 (-15 -2501 ((-567) (-567) (-567))) (-15 -2941 ((-112) (-567) (-567) (-567) (-567))) (-15 -2378 ((-1269 (-645 (-567))) (-772) (-772))))) (T -483)) -((-2378 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1269 (-645 (-567)))) (-5 *1 (-483)))) (-2941 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))) (-2501 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483))))) -(-10 -7 (-15 -2501 ((-567) (-567) (-567))) (-15 -2941 ((-112) (-567) (-567) (-567) (-567))) (-15 -2378 ((-1269 (-645 (-567))) (-772) (-772)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-865 |#1|)) $) NIL)) (-3633 (((-1175 $) $ (-865 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1987 (($ $) NIL (|has| |#2| (-559)))) (-3342 (((-112) $) NIL (|has| |#2| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3864 (($ $) NIL (|has| |#2| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-3094 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2304 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-4230 (($ $ (-645 (-567))) NIL)) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#2| (-911)))) (-1978 (($ $ |#2| (-485 (-2498 |#1|) (-772)) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3772 (($ (-1175 |#2|) (-865 |#1|)) NIL) (($ (-1175 $) (-865 |#1|)) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#2| (-485 (-2498 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-865 |#1|)) NIL)) (-1562 (((-485 (-2498 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-2972 (($ (-1 (-485 (-2498 |#1|) (-772)) (-485 (-2498 |#1|) (-772))) $) NIL)) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-2047 (((-3 (-865 |#1|) "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#2| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1812 (((-1161) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -2618 (-772))) "failed") $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#2| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-2254 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-3592 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3380 (((-485 (-2498 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1390 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ (-485 (-2498 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-484 |#1| |#2|) (-13 (-951 |#2| (-485 (-2498 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -4230 ($ $ (-645 (-567)))))) (-645 (-1179)) (-1051)) (T -484)) -((-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) (-14 *3 (-645 (-1179))) (-4 *4 (-1051))))) -(-13 (-951 |#2| (-485 (-2498 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -4230 ($ $ (-645 (-567)))))) -((-2487 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2684 (((-112) $) NIL (|has| |#2| (-131)))) (-1771 (($ (-923)) NIL (|has| |#2| (-1051)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1992 (($ $ $) NIL (|has| |#2| (-794)))) (-2932 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1555 (((-112) $ (-772)) NIL)) (-3404 (((-772)) NIL (|has| |#2| (-370)))) (-2777 (((-567) $) NIL (|has| |#2| (-849)))) (-3824 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1102)))) (-3094 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) NIL (|has| |#2| (-1102)))) (-2690 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-1377 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-2119 (($) NIL (|has| |#2| (-370)))) (-2036 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ (-567)) 15)) (-3635 (((-112) $) NIL (|has| |#2| (-849)))) (-3468 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4384 (((-112) $) NIL (|has| |#2| (-727)))) (-2585 (((-112) $) NIL (|has| |#2| (-849)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-4200 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2021 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-2667 (((-923) $) NIL (|has| |#2| (-370)))) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#2| (-1102)))) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-2188 (($ (-923)) NIL (|has| |#2| (-370)))) (-3479 (((-1122) $) NIL (|has| |#2| (-1102)))) (-3436 ((|#2| $) NIL (|has| (-567) (-851)))) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-1336 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-3700 (($ (-1269 |#2|)) NIL)) (-2589 (((-134)) NIL (|has| |#2| (-365)))) (-3592 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3486 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-1269 |#2|) $) NIL) (($ (-567)) NIL (-2836 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) NIL (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2214 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-3858 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3450 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-1368 (($ $) NIL (|has| |#2| (-849)))) (-1807 (($) NIL (|has| |#2| (-131)) CONST)) (-1820 (($) NIL (|has| |#2| (-727)) CONST)) (-2856 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3016 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2996 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2968 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3006 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2986 (((-112) $ $) 21 (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3045 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-485 |#1| |#2|) (-238 |#1| |#2|) (-772) (-794)) (T -485)) +((-2806 (*1 *1 *1) (-4 *1 (-476))) (-4381 (*1 *1 *1 *1) (-4 *1 (-476))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-549)))) (-3410 (*1 *1 *1 *1) (-4 *1 (-476))) (-2756 (*1 *1 *1 *1) (-4 *1 (-476)))) +(-13 (-728) (-10 -8 (-15 -2806 ($ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ (-549))) (-6 -4422) (-15 -3410 ($ $ $)) (-15 -2756 ($ $ $)))) +(((-102) . T) ((-615 (-865)) . T) ((-728) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 18)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) NIL) (($ $ (-410 (-549)) (-410 (-549))) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) NIL) (((-410 (-549)) $ (-410 (-549))) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL) (($ $ (-410 (-549))) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) NIL) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 25)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 29 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 35 (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 30 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) NIL) (($ $ $) NIL (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 28 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $ (-1266 |#2|)) 16)) (-4380 (((-410 (-549)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1266 |#2|)) NIL) (($ (-1250 |#1| |#2| |#3|)) 9) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 21)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) 27)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-477 |#1| |#2| |#3|) (-13 (-1252 |#1|) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4378 ($ (-1250 |#1| |#2| |#3|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -477)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) +(-13 (-1252 |#1|) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4378 ($ (-1250 |#1| |#2| |#3|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) 18)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) 19)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) 16)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-478 |#1| |#2| |#3| |#4|) (-1196 |#1| |#2|) (-1104) (-1104) (-1196 |#1| |#2|) |#2|) (T -478)) +NIL +(-1196 |#1| |#2|) +((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) NIL)) (-4114 (((-643 $) (-643 |#4|)) NIL)) (-3485 (((-643 |#3|) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) 29 (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3301 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) NIL)) (-3576 (($ (-643 |#4|)) NIL)) (-4230 (((-3 $ #1#) $) 45)) (-4117 ((|#4| |#4| $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4115 ((|#4| |#4| $) NIL)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) NIL)) (-2124 (((-643 |#4|) $) 18 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3600 ((|#3| $) 38)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 19 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2128 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 23)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-4229 (((-3 |#4| #1#) $) 42)) (-4129 (((-643 |#4|) $) NIL)) (-4123 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-4131 (((-112) $ $) NIL)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4119 ((|#4| |#4| $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 |#4| #1#) $) 40)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4111 (((-3 $ #1#) $ |#4|) 58)) (-4200 (($ $ |#4|) NIL)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 14)) (-4380 (((-773) $) NIL)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) 13)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-3313 (($ $ |#3|) 54)) (-4116 (($ $) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) 35) (((-643 |#4|) $) 46)) (-4110 (((-773) $) NIL (|has| |#3| (-370)))) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) NIL)) (-4365 (((-112) |#3| $) NIL)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-479 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2| |#3| |#4|) (-560) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -479)) +NIL +(-1214 |#1| |#2| |#3| |#4|) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-4059 (($) 17)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4402 (((-380) $) 21) (((-225) $) 24) (((-410 (-1174 (-549))) $) 18) (((-538) $) 53)) (-4378 (((-865) $) 51) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (((-225) $) 23) (((-380) $) 20)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 37 T CONST)) (-3067 (($) 8 T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) +(((-480) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))) (-1023) (-615 (-225)) (-615 (-380)) (-616 (-410 (-1174 (-549)))) (-616 (-538)) (-10 -8 (-15 -4059 ($))))) (T -480)) +((-4059 (*1 *1) (-5 *1 (-480)))) +(-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))) (-1023) (-615 (-225)) (-615 (-380)) (-616 (-410 (-1174 (-549)))) (-616 (-538)) (-10 -8 (-15 -4059 ($)))) +((-2968 (((-112) $ $) NIL)) (-3951 (((-1138) $) 11)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-481) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $))))) (T -481)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-481)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-481))))) +(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $)))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) 16)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) 20)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) 18)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) 13)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 19)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 11 (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) 15 (|has| $ (-6 -4425))))) +(((-482 |#1| |#2| |#3|) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) (-1104) (-1104) (-1162)) (T -482)) +NIL +(-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) +((-2113 (((-549) (-549) (-549)) 19)) (-2114 (((-112) (-549) (-549) (-549) (-549)) 28)) (-3880 (((-1269 (-643 (-549))) (-773) (-773)) 44))) +(((-483) (-10 -7 (-15 -2113 ((-549) (-549) (-549))) (-15 -2114 ((-112) (-549) (-549) (-549) (-549))) (-15 -3880 ((-1269 (-643 (-549))) (-773) (-773))))) (T -483)) +((-3880 (*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1269 (-643 (-549)))) (-5 *1 (-483)))) (-2114 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-483)))) (-2113 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-483))))) +(-10 -7 (-15 -2113 ((-549) (-549) (-549))) (-15 -2114 ((-112) (-549) (-549) (-549) (-549))) (-15 -3880 ((-1269 (-643 (-549))) (-773) (-773)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-866 |#1|)) $) NIL)) (-3487 (((-1174 $) $ (-866 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-866 |#1|))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-866 |#1|) #2#) $) NIL)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-866 |#1|) $) NIL)) (-4188 (($ $ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-2115 (($ $ (-643 (-549))) NIL)) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| (-485 (-4389 |#1|) (-773)) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#2|) (-866 |#1|)) NIL) (($ (-1174 $) (-866 |#1|)) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#2| (-485 (-4389 |#1|) (-773))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-866 |#1|)) NIL)) (-3223 (((-485 (-4389 |#1|) (-773)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-1770 (($ (-1 (-485 (-4389 |#1|) (-773)) (-485 (-4389 |#1|) (-773))) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-3486 (((-3 (-866 |#1|) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-866 |#1|)) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#2| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-866 |#1|) |#2|) NIL) (($ $ (-643 (-866 |#1|)) (-643 |#2|)) NIL) (($ $ (-866 |#1|) $) NIL) (($ $ (-643 (-866 |#1|)) (-643 $)) NIL)) (-4189 (($ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4380 (((-485 (-4389 |#1|) (-773)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-866 |#1|) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-866 |#1|)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#2| (-560)))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-485 (-4389 |#1|) (-773))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-484 |#1| |#2|) (-13 (-953 |#2| (-485 (-4389 |#1|) (-773)) (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) (-643 (-1180)) (-1052)) (T -484)) +((-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-484 *3 *4)) (-14 *3 (-643 (-1180))) (-4 *4 (-1052))))) +(-13 (-953 |#2| (-485 (-4389 |#1|) (-773)) (-866 |#1|)) (-10 -8 (-15 -2115 ($ $ (-643 (-549)))))) +((-2968 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3608 (((-112) $) NIL (|has| |#2| (-131)))) (-4139 (($ (-922)) NIL (|has| |#2| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#2| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#2| (-370)))) (-4055 (((-549) $) NIL (|has| |#2| (-850)))) (-4219 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1104)))) (-3576 (((-549) $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) ((|#2| $) NIL (|has| |#2| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL (|has| |#2| (-1052))) (((-691 |#2|) (-691 $)) NIL (|has| |#2| (-1052)))) (-3890 (((-3 $ "failed") $) NIL (|has| |#2| (-728)))) (-3395 (($) NIL (|has| |#2| (-370)))) (-1684 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ (-549)) 15)) (-3606 (((-112) $) NIL (|has| |#2| (-850)))) (-2124 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (|has| |#2| (-728)))) (-3607 (((-112) $) NIL (|has| |#2| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#2| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#2| (-1104)))) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#2| (-370)))) (-3664 (((-1123) $) NIL (|has| |#2| (-1104)))) (-4232 ((|#2| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL)) (-4268 ((|#2| $ $) NIL (|has| |#2| (-1052)))) (-1569 (($ (-1269 |#2|)) NIL)) (-4343 (((-134)) NIL (|has| |#2| (-365)))) (-4242 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#2|) $) NIL) (($ (-549)) NIL (-3960 (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (($ |#2|) NIL (|has| |#2| (-1104))) (((-865) $) NIL (|has| |#2| (-615 (-865))))) (-3530 (((-773)) NIL (|has| |#2| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#2| (-850)))) (-3510 (($) NIL (|has| |#2| (-131)) CONST)) (-3067 (($) NIL (|has| |#2| (-728)) CONST)) (-3072 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3455 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3087 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3088 (((-112) $ $) 21 (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $ $) NIL (|has| |#2| (-1052))) (($ $) NIL (|has| |#2| (-1052)))) (-4271 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-773)) NIL (|has| |#2| (-728))) (($ $ (-922)) NIL (|has| |#2| (-728)))) (* (($ (-549) $) NIL (|has| |#2| (-1052))) (($ $ $) NIL (|has| |#2| (-728))) (($ $ |#2|) NIL (|has| |#2| (-728))) (($ |#2| $) NIL (|has| |#2| (-728))) (($ (-773) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-485 |#1| |#2|) (-238 |#1| |#2|) (-773) (-795)) (T -485)) NIL (-238 |#1| |#2|) -((-2487 (((-112) $ $) NIL)) (-2389 (((-645 (-877)) $) 15)) (-1646 (((-509) $) 13)) (-1812 (((-1161) $) NIL)) (-3821 (($ (-509) (-645 (-877))) 11)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 22) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-486) (-13 (-1085) (-10 -8 (-15 -3821 ($ (-509) (-645 (-877)))) (-15 -1646 ((-509) $)) (-15 -2389 ((-645 (-877)) $))))) (T -486)) -((-3821 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-877))) (-5 *1 (-486)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-645 (-877))) (-5 *1 (-486))))) -(-13 (-1085) (-10 -8 (-15 -3821 ($ (-509) (-645 (-877)))) (-15 -1646 ((-509) $)) (-15 -2389 ((-645 (-877)) $)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) NIL)) (-3758 (($) NIL T CONST)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-3196 (($ $ $) 50)) (-1315 (($ $ $) 49)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1446 ((|#1| $) 40)) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3018 ((|#1| $) 41)) (-3636 (($ |#1| $) 18)) (-3825 (($ (-645 |#1|)) 19)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1713 ((|#1| $) 34)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 11)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 47)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) 29 (|has| $ (-6 -4422))))) -(((-487 |#1|) (-13 (-970 |#1|) (-10 -8 (-15 -3825 ($ (-645 |#1|))))) (-851)) (T -487)) -((-3825 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3))))) -(-13 (-970 |#1|) (-10 -8 (-15 -3825 ($ (-645 |#1|))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-2617 (($ $) 72)) (-4137 (((-112) $) NIL)) (-1812 (((-1161) $) NIL)) (-3728 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 45)) (-3479 (((-1122) $) NIL)) (-2335 (((-3 |#4| "failed") $) 118)) (-1647 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-567)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-2289 (((-2 (|:| -4188 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2504 (((-863) $) 111)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 32 T CONST)) (-2968 (((-112) $ $) 122)) (-3054 (($ $) 78) (($ $ $) NIL)) (-3045 (($ $ $) 73)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 79))) -(((-488 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -488)) -NIL -(-337 |#1| |#2| |#3| |#4|) -((-1614 (((-567) (-645 (-567))) 55)) (-1662 ((|#1| (-645 |#1|)) 97)) (-3352 (((-645 |#1|) (-645 |#1|)) 98)) (-1653 (((-645 |#1|) (-645 |#1|)) 100)) (-1870 ((|#1| (-645 |#1|)) 99)) (-1390 (((-645 (-567)) (-645 |#1|)) 58))) -(((-489 |#1|) (-10 -7 (-15 -1870 (|#1| (-645 |#1|))) (-15 -1662 (|#1| (-645 |#1|))) (-15 -1653 ((-645 |#1|) (-645 |#1|))) (-15 -3352 ((-645 |#1|) (-645 |#1|))) (-15 -1390 ((-645 (-567)) (-645 |#1|))) (-15 -1614 ((-567) (-645 (-567))))) (-1245 (-567))) (T -489)) -((-1614 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) (-4 *4 (-1245 *2)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1245 (-567))) (-5 *2 (-645 (-567))) (-5 *1 (-489 *4)))) (-3352 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1245 (-567))) (-5 *1 (-489 *3)))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1245 (-567))) (-5 *1 (-489 *3)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-567))))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-567)))))) -(-10 -7 (-15 -1870 (|#1| (-645 |#1|))) (-15 -1662 (|#1| (-645 |#1|))) (-15 -1653 ((-645 |#1|) (-645 |#1|))) (-15 -3352 ((-645 |#1|) (-645 |#1|))) (-15 -1390 ((-645 (-567)) (-645 |#1|))) (-15 -1614 ((-567) (-645 (-567))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 (((-567) $) NIL (|has| (-567) (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| (-567) (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-567) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1040 (-567))))) (-3094 (((-567) $) NIL) (((-1179) $) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-567) (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) NIL (|has| (-567) (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL)) (-4294 (((-567) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| (-567) (-1154)))) (-2585 (((-112) $) NIL (|has| (-567) (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| (-567) (-851)))) (-4364 (($ (-1 (-567) (-567)) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-567) (-1154)) CONST)) (-2421 (($ (-410 (-567))) 9)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-1952 (((-567) $) NIL (|has| (-567) (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1179)) (-645 (-567))) NIL (|has| (-567) (-517 (-1179) (-567)))) (($ $ (-1179) (-567)) NIL (|has| (-567) (-517 (-1179) (-567))))) (-2465 (((-772) $) NIL)) (-1882 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2964 (($ $) NIL)) (-4306 (((-567) $) NIL)) (-1322 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1179)) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL) (((-1006 16) $) 10)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-2214 (((-772)) NIL T CONST)) (-3471 (((-567) $) NIL (|has| (-567) (-548)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1368 (($ $) NIL (|has| (-567) (-821)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3016 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3064 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL))) -(((-490) (-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 16)) (-10 -8 (-15 -3989 ((-410 (-567)) $)) (-15 -2421 ($ (-410 (-567))))))) (T -490)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) (-2421 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))) -(-13 (-994 (-567)) (-614 (-410 (-567))) (-614 (-1006 16)) (-10 -8 (-15 -3989 ((-410 (-567)) $)) (-15 -2421 ($ (-410 (-567)))))) -((-4200 (((-645 |#2|) $) 29)) (-2203 (((-112) |#2| $) 34)) (-1430 (((-112) (-1 (-112) |#2|) $) 24)) (-2913 (($ $ (-645 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-3486 (((-772) (-1 (-112) |#2|) $) 28) (((-772) |#2| $) 32)) (-2504 (((-863) $) 43)) (-3450 (((-112) (-1 (-112) |#2|) $) 23)) (-2968 (((-112) $ $) 37)) (-2498 (((-772) $) 18))) -(((-491 |#1| |#2|) (-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2913 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#2| |#2|)) (-15 -2913 (|#1| |#1| (-295 |#2|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2203 ((-112) |#2| |#1|)) (-15 -3486 ((-772) |#2| |#1|)) (-15 -4200 ((-645 |#2|) |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2498 ((-772) |#1|))) (-492 |#2|) (-1219)) (T -491)) -NIL -(-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2913 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#2| |#2|)) (-15 -2913 (|#1| |#1| (-295 |#2|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2203 ((-112) |#2| |#1|)) (-15 -3486 ((-772) |#2| |#1|)) (-15 -4200 ((-645 |#2|) |#1|)) (-15 -3486 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2498 ((-772) |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-3758 (($) 7 T CONST)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) +((-2968 (((-112) $ $) NIL)) (-2116 (((-643 (-878)) $) 15)) (-3973 (((-509) $) 13)) (-3663 (((-1162) $) NIL)) (-2117 (($ (-509) (-643 (-878))) 11)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 22) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-486) (-13 (-1086) (-10 -8 (-15 -2117 ($ (-509) (-643 (-878)))) (-15 -3973 ((-509) $)) (-15 -2116 ((-643 (-878)) $))))) (T -486)) +((-2117 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-878))) (-5 *1 (-486)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-643 (-878))) (-5 *1 (-486))))) +(-13 (-1086) (-10 -8 (-15 -2117 ($ (-509) (-643 (-878)))) (-15 -3973 ((-509) $)) (-15 -2116 ((-643 (-878)) $)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3259 (($ $ $) 50)) (-3941 (($ $ $) 49)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3260 ((|#1| $) 40)) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) 41)) (-4039 (($ |#1| $) 18)) (-2118 (($ (-643 |#1|)) 19)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1370 ((|#1| $) 34)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 11)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 47)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) 29 (|has| $ (-6 -4425))))) +(((-487 |#1|) (-13 (-971 |#1|) (-10 -8 (-15 -2118 ($ (-643 |#1|))))) (-852)) (T -487)) +((-2118 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-487 *3))))) +(-13 (-971 |#1|) (-10 -8 (-15 -2118 ($ (-643 |#1|))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4274 (($ $) 71)) (-1804 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-2148 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 45)) (-3664 (((-1123) $) NIL)) (-2572 (((-3 |#4| "failed") $) 117)) (-1805 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-549)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3859 (((-2 (|:| -2487 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4378 (((-865) $) 110)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 32 T CONST)) (-3455 (((-112) $ $) 121)) (-4269 (($ $) 77) (($ $ $) NIL)) (-4271 (($ $ $) 72)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 78))) +(((-488 |#1| |#2| |#3| |#4|) (-338 |#1| |#2| |#3| |#4|) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -488)) +NIL +(-338 |#1| |#2| |#3| |#4|) +((-2122 (((-549) (-643 (-549))) 55)) (-2119 ((|#1| (-643 |#1|)) 96)) (-2121 (((-643 |#1|) (-643 |#1|)) 97)) (-2120 (((-643 |#1|) (-643 |#1|)) 99)) (-3564 ((|#1| (-643 |#1|)) 98)) (-3220 (((-643 (-549)) (-643 |#1|)) 58))) +(((-489 |#1|) (-10 -7 (-15 -3564 (|#1| (-643 |#1|))) (-15 -2119 (|#1| (-643 |#1|))) (-15 -2120 ((-643 |#1|) (-643 |#1|))) (-15 -2121 ((-643 |#1|) (-643 |#1|))) (-15 -3220 ((-643 (-549)) (-643 |#1|))) (-15 -2122 ((-549) (-643 (-549))))) (-1245 (-549))) (T -489)) +((-2122 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-549)) (-5 *1 (-489 *4)) (-4 *4 (-1245 *2)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1245 (-549))) (-5 *2 (-643 (-549))) (-5 *1 (-489 *4)))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1245 (-549))) (-5 *1 (-489 *3)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1245 (-549))) (-5 *1 (-489 *3)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-549))))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-549)))))) +(-10 -7 (-15 -3564 (|#1| (-643 |#1|))) (-15 -2119 (|#1| (-643 |#1|))) (-15 -2120 ((-643 |#1|) (-643 |#1|))) (-15 -2121 ((-643 |#1|) (-643 |#1|))) (-15 -3220 ((-643 (-549)) (-643 |#1|))) (-15 -2122 ((-549) (-643 (-549))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-549) $) NIL (|has| (-549) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-549) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-549) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-549) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-549) (-1041 (-549))))) (-3576 (((-549) $) NIL) (((-1180) $) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-549) (-1041 (-549)))) (((-549) $) NIL (|has| (-549) (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-549) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-549) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-549) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-549) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-549) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-549) (-1154)))) (-3607 (((-112) $) NIL (|has| (-549) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-549) (-852)))) (-4390 (($ (-1 (-549) (-549)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-549) (-1154)) CONST)) (-2123 (($ (-410 (-549))) 9)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-549) (-308))) (((-410 (-549)) $) NIL)) (-3534 (((-549) $) NIL (|has| (-549) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-549)) (-643 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-310 (-549)))) (($ $ (-294 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-294 (-549)))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-1180)) (-643 (-549))) NIL (|has| (-549) (-517 (-1180) (-549)))) (($ $ (-1180) (-549)) NIL (|has| (-549) (-517 (-1180) (-549))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-549)) NIL (|has| (-549) (-287 (-549) (-549))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-549) $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| (-549) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-549) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-549) (-616 (-538)))) (((-380) $) NIL (|has| (-549) (-1023))) (((-225) $) NIL (|has| (-549) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-549) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 8) (($ (-549)) NIL) (($ (-1180)) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL) (((-1007 16) $) 10)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-549) (-913))) (|has| (-549) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-549) $) NIL (|has| (-549) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-549) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-549) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-549) (-852)))) (-4381 (($ $ $) NIL) (($ (-549) (-549)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-549) $) NIL) (($ $ (-549)) NIL))) +(((-490) (-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 16)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -2123 ($ (-410 (-549))))))) (T -490)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-490)))) (-2123 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-490))))) +(-13 (-994 (-549)) (-615 (-410 (-549))) (-615 (-1007 16)) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -2123 ($ (-410 (-549)))))) +((-3008 (((-643 |#2|) $) 29)) (-3666 (((-112) |#2| $) 34)) (-2126 (((-112) (-1 (-112) |#2|) $) 24)) (-4199 (($ $ (-643 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-643 |#2|) (-643 |#2|)) NIL)) (-2125 (((-773) (-1 (-112) |#2|) $) 28) (((-773) |#2| $) 32)) (-4378 (((-865) $) 43)) (-2127 (((-112) (-1 (-112) |#2|) $) 23)) (-3455 (((-112) $ $) 37)) (-4389 (((-773) $) 18))) +(((-491 |#1| |#2|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -3666 ((-112) |#2| |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -3008 ((-643 |#2|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|))) (-492 |#2|) (-1219)) (T -491)) +NIL +(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#2| |#2|)) (-15 -4199 (|#1| |#1| (-294 |#2|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#2|)))) (-15 -3666 ((-112) |#2| |#1|)) (-15 -2125 ((-773) |#2| |#1|)) (-15 -3008 ((-643 |#2|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#2|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) (((-492 |#1|) (-140) (-1219)) (T -492)) -((-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) (-2021 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4423)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) (-3450 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-1430 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-3486 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-772)))) (-3468 (*1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-5 *2 (-645 *3)))) (-4200 (*1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-5 *2 (-645 *3)))) (-3486 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-772)))) (-2203 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |t#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |t#1| (-1102)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4364 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4423)) (-15 -2021 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4422)) (PROGN (-15 -3450 ((-112) (-1 (-112) |t#1|) $)) (-15 -1430 ((-112) (-1 (-112) |t#1|) $)) (-15 -3486 ((-772) (-1 (-112) |t#1|) $)) (-15 -3468 ((-645 |t#1|) $)) (-15 -4200 ((-645 |t#1|) $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -3486 ((-772) |t#1| $)) (-15 -2203 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-2504 ((|#1| $) 6) (($ |#1|) 9))) +((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) (-2128 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) (-2127 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-2126 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-2125 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) (-4 *4 (-1219)) (-5 *2 (-773)))) (-2124 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-5 *2 (-643 *3)))) (-3008 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-5 *2 (-643 *3)))) (-2125 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-773)))) (-3666 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) (IF (|has| |t#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |t#1| (-1104)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4426)) (-15 -2128 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4425)) (PROGN (-15 -2127 ((-112) (-1 (-112) |t#1|) $)) (-15 -2126 ((-112) (-1 (-112) |t#1|) $)) (-15 -2125 ((-773) (-1 (-112) |t#1|) $)) (-15 -2124 ((-643 |t#1|) $)) (-15 -3008 ((-643 |t#1|) $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -2125 ((-773) |t#1| $)) (-15 -3666 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-4378 ((|#1| $) 6) (($ |#1|) 9))) (((-493 |#1|) (-140) (-1219)) (T -493)) NIL -(-13 (-614 |t#1|) (-617 |t#1|)) -(((-617 |#1|) . T) ((-614 |#1|) . T)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3720 (($ (-1161)) 8)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 15) (((-1161) $) 12)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 11))) -(((-494) (-13 (-1102) (-614 (-1161)) (-10 -8 (-15 -3720 ($ (-1161)))))) (T -494)) -((-3720 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-494))))) -(-13 (-1102) (-614 (-1161)) (-10 -8 (-15 -3720 ($ (-1161))))) -((-1406 (($ $) 15)) (-1380 (($ $) 24)) (-1431 (($ $) 12)) (-1443 (($ $) 10)) (-1418 (($ $) 17)) (-1394 (($ $) 22))) -(((-495 |#1|) (-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -1380 (|#1| |#1|)) (-15 -1406 (|#1| |#1|))) (-496)) (T -495)) -NIL -(-10 -8 (-15 -1394 (|#1| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -1380 (|#1| |#1|)) (-15 -1406 (|#1| |#1|))) -((-1406 (($ $) 11)) (-1380 (($ $) 10)) (-1431 (($ $) 9)) (-1443 (($ $) 8)) (-1418 (($ $) 7)) (-1394 (($ $) 6))) +(-13 (-615 |t#1|) (-618 |t#1|)) +(((-618 |#1|) . T) ((-615 |#1|) . T)) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2129 (($ (-1162)) 8)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (((-1162) $) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 11))) +(((-494) (-13 (-1104) (-615 (-1162)) (-10 -8 (-15 -2129 ($ (-1162)))))) (T -494)) +((-2129 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-494))))) +(-13 (-1104) (-615 (-1162)) (-10 -8 (-15 -2129 ($ (-1162))))) +((-3915 (($ $) 15)) (-3913 (($ $) 24)) (-3917 (($ $) 12)) (-3918 (($ $) 10)) (-3916 (($ $) 17)) (-3914 (($ $) 22))) +(((-495 |#1|) (-10 -8 (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|))) (-496)) (T -495)) +NIL +(-10 -8 (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|))) +((-3915 (($ $) 11)) (-3913 (($ $) 10)) (-3917 (($ $) 9)) (-3918 (($ $) 8)) (-3916 (($ $) 7)) (-3914 (($ $) 6))) (((-496) (-140)) (T -496)) -((-1406 (*1 *1 *1) (-4 *1 (-496))) (-1380 (*1 *1 *1) (-4 *1 (-496))) (-1431 (*1 *1 *1) (-4 *1 (-496))) (-1443 (*1 *1 *1) (-4 *1 (-496))) (-1418 (*1 *1 *1) (-4 *1 (-496))) (-1394 (*1 *1 *1) (-4 *1 (-496)))) -(-13 (-10 -8 (-15 -1394 ($ $)) (-15 -1418 ($ $)) (-15 -1443 ($ $)) (-15 -1431 ($ $)) (-15 -1380 ($ $)) (-15 -1406 ($ $)))) -((-3661 (((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)) 54))) -(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) (-365) (-1245 |#1|) (-13 (-365) (-147) (-725 |#1| |#2|)) (-1245 |#3|)) (T -497)) -((-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1245 *7))))) -(-10 -7 (-15 -3661 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) -((-2487 (((-112) $ $) NIL)) (-2776 (((-645 $) (-1175 $) (-1179)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-954 $)) NIL)) (-3236 (($ (-1175 $) (-1179)) NIL) (($ (-1175 $)) NIL) (($ (-954 $)) NIL)) (-2684 (((-112) $) 39)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-3173 (((-112) $ $) 73)) (-3526 (((-645 (-613 $)) $) 50)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3072 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-3671 (($ $) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-2161 (((-645 $) (-1175 $) (-1179)) NIL) (((-645 $) (-1175 $)) NIL) (((-645 $) (-954 $)) NIL)) (-1617 (($ (-1175 $) (-1179)) NIL) (($ (-1175 $)) NIL) (($ (-954 $)) NIL)) (-4275 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-3094 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) 55)) (-2432 (($ $ $) NIL)) (-2690 (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2434 (-690 (-410 (-567)))) (|:| |vec| (-1269 (-410 (-567))))) (-690 $) (-1269 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-2617 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-2998 (($ $) NIL) (($ (-645 $)) NIL)) (-2131 (((-645 (-114)) $) NIL)) (-3609 (((-114) (-114)) NIL)) (-4384 (((-112) $) 42)) (-3807 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-4294 (((-1127 (-567) (-613 $)) $) 37)) (-4203 (($ $ (-567)) NIL)) (-2013 (((-1175 $) (-1175 $) (-613 $)) 87) (((-1175 $) (-1175 $) (-645 (-613 $))) 62) (($ $ (-613 $)) 76) (($ $ (-645 (-613 $))) 77)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1935 (((-1175 $) (-613 $)) 74 (|has| $ (-1051)))) (-4364 (($ (-1 $ $) (-613 $)) NIL)) (-2126 (((-3 (-613 $) "failed") $) NIL)) (-1831 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3599 (((-645 (-613 $)) $) NIL)) (-4369 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-2208 (((-112) $ (-114)) NIL) (((-112) $ (-1179)) NIL)) (-1752 (($ $) NIL)) (-1337 (((-772) $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2769 (((-112) $ $) NIL) (((-112) $ (-1179)) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1359 (((-112) $) NIL (|has| $ (-1040 (-567))))) (-2913 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1179)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1179) (-1 $ (-645 $))) NIL) (($ $ (-1179) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2465 (((-772) $) NIL)) (-1882 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-1929 (($ $) NIL) (($ $ $) NIL)) (-3592 (($ $ (-772)) NIL) (($ $) 36)) (-4306 (((-1127 (-567) (-613 $)) $) 20)) (-2783 (($ $) NIL (|has| $ (-1051)))) (-1322 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-2504 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1127 (-567) (-613 $))) 21)) (-2214 (((-772)) NIL T CONST)) (-2130 (($ $) NIL) (($ (-645 $)) NIL)) (-3862 (((-112) (-114)) 93)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) 10 T CONST)) (-1820 (($) 22 T CONST)) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) 24)) (-3064 (($ $ $) 44)) (-3054 (($ $ $) NIL) (($ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) 48) (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) 27) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-923) $) NIL))) -(((-498) (-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -2504 ($ (-1127 (-567) (-613 $)))) (-15 -4294 ((-1127 (-567) (-613 $)) $)) (-15 -4306 ((-1127 (-567) (-613 $)) $)) (-15 -2617 ($ $)) (-15 -3173 ((-112) $ $)) (-15 -2013 ((-1175 $) (-1175 $) (-613 $))) (-15 -2013 ((-1175 $) (-1175 $) (-645 (-613 $)))) (-15 -2013 ($ $ (-613 $))) (-15 -2013 ($ $ (-645 (-613 $))))))) (T -498)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-2617 (*1 *1 *1) (-5 *1 (-498))) (-3173 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 (-498))) (-5 *3 (-645 (-613 (-498)))) (-5 *1 (-498)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498))))) -(-13 (-303) (-27) (-1040 (-567)) (-1040 (-410 (-567))) (-640 (-567)) (-1024) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -2504 ($ (-1127 (-567) (-613 $)))) (-15 -4294 ((-1127 (-567) (-613 $)) $)) (-15 -4306 ((-1127 (-567) (-613 $)) $)) (-15 -2617 ($ $)) (-15 -3173 ((-112) $ $)) (-15 -2013 ((-1175 $) (-1175 $) (-613 $))) (-15 -2013 ((-1175 $) (-1175 $) (-645 (-613 $)))) (-15 -2013 ($ $ (-613 $))) (-15 -2013 ($ $ (-645 (-613 $)))))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) |#1|) 47 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 41)) (-3932 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4223 (($ (-772) |#1|) 21)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) 17 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) 44 (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) NIL (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) 15 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 19)) (-1882 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 46) (($ $ (-1236 (-567))) NIL)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 24)) (-3644 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2498 (((-772) $) 11 (|has| $ (-6 -4422))))) -(((-499 |#1| |#2|) (-19 |#1|) (-1219) (-567)) (T -499)) +((-3915 (*1 *1 *1) (-4 *1 (-496))) (-3913 (*1 *1 *1) (-4 *1 (-496))) (-3917 (*1 *1 *1) (-4 *1 (-496))) (-3918 (*1 *1 *1) (-4 *1 (-496))) (-3916 (*1 *1 *1) (-4 *1 (-496))) (-3914 (*1 *1 *1) (-4 *1 (-496)))) +(-13 (-10 -8 (-15 -3914 ($ $)) (-15 -3916 ($ $)) (-15 -3918 ($ $)) (-15 -3917 ($ $)) (-15 -3913 ($ $)) (-15 -3915 ($ $)))) +((-4164 (((-408 |#4|) |#4| (-1 (-408 |#2|) |#2|)) 54))) +(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4| (-1 (-408 |#2|) |#2|)))) (-365) (-1245 |#1|) (-13 (-365) (-147) (-726 |#1| |#2|)) (-1245 |#3|)) (T -497)) +((-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-726 *5 *6))) (-5 *2 (-408 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1245 *7))))) +(-10 -7 (-15 -4164 ((-408 |#4|) |#4| (-1 (-408 |#2|) |#2|)))) +((-2968 (((-112) $ $) NIL)) (-1715 (((-643 $) (-1174 $) (-1180)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-949 $)) NIL)) (-1303 (($ (-1174 $) (-1180)) NIL) (($ (-1174 $)) NIL) (($ (-949 $)) NIL)) (-3608 (((-112) $) 39)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2130 (((-112) $ $) 73)) (-1708 (((-643 (-613 $)) $) 50)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1712 (($ $ (-294 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-1304 (((-643 $) (-1174 $) (-1180)) NIL) (((-643 $) (-1174 $)) NIL) (((-643 $) (-949 $)) NIL)) (-3603 (($ (-1174 $) (-1180)) NIL) (($ (-1174 $)) NIL) (($ (-949 $)) NIL)) (-3577 (((-3 (-613 $) #1="failed") $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 (-410 (-549)) #1#) $) NIL)) (-3576 (((-613 $) $) NIL) (((-549) $) NIL) (((-410 (-549)) $) 55)) (-2964 (($ $ $) NIL)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-410 (-549)))) (|:| |vec| (-1269 (-410 (-549))))) (-691 $) (-1269 $)) NIL) (((-691 (-410 (-549))) (-691 $)) NIL)) (-4274 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2973 (($ $) NIL) (($ (-643 $)) NIL)) (-1707 (((-643 (-113)) $) NIL)) (-3448 (((-113) (-113)) NIL)) (-2573 (((-112) $) 42)) (-3076 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-3399 (((-1128 (-549) (-613 $)) $) 37)) (-3412 (($ $ (-549)) NIL)) (-3536 (((-1174 $) (-1174 $) (-613 $)) 87) (((-1174 $) (-1174 $) (-643 (-613 $))) 62) (($ $ (-613 $)) 76) (($ $ (-643 (-613 $))) 77)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-1705 (((-1174 $) (-613 $)) 74 (|has| $ (-1052)))) (-4390 (($ (-1 $ $) (-613 $)) NIL)) (-1710 (((-3 (-613 $) "failed") $) NIL)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-1709 (((-643 (-613 $)) $) NIL)) (-2384 (($ (-113) $) NIL) (($ (-113) (-643 $)) NIL)) (-3035 (((-112) $ (-113)) NIL) (((-112) $ (-1180)) NIL)) (-2806 (($ $) NIL)) (-3003 (((-773) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-1706 (((-112) $ $) NIL) (((-112) $ (-1180)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL (|has| $ (-1041 (-549))))) (-4199 (($ $ (-613 $) $) NIL) (($ $ (-643 (-613 $)) (-643 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-1180)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-1180) (-1 $ (-643 $))) NIL) (($ $ (-1180) (-1 $ $)) NIL) (($ $ (-643 (-113)) (-643 (-1 $ $))) NIL) (($ $ (-643 (-113)) (-643 (-1 $ (-643 $)))) NIL) (($ $ (-113) (-1 $ (-643 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1752 (((-773) $) NIL)) (-4231 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-643 $)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1711 (($ $) NIL) (($ $ $) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) 36)) (-3398 (((-1128 (-549) (-613 $)) $) 20)) (-3605 (($ $) NIL (|has| $ (-1052)))) (-4402 (((-380) $) 101) (((-225) $) 109) (((-168 (-380)) $) 117)) (-4378 (((-865) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-549))) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-1128 (-549) (-613 $))) 21)) (-3530 (((-773)) NIL T CONST)) (-2990 (($ $) NIL) (($ (-643 $)) NIL)) (-2403 (((-112) (-113)) 93)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 10 T CONST)) (-3067 (($) 22 T CONST)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) 24)) (-4381 (($ $ $) 44)) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-410 (-549))) NIL) (($ $ (-549)) 48) (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ $ $) 27) (($ (-549) $) NIL) (($ (-773) $) NIL) (($ (-922) $) NIL))) +(((-498) (-13 (-299) (-27) (-1041 (-549)) (-1041 (-410 (-549))) (-641 (-549)) (-1023) (-641 (-410 (-549))) (-147) (-616 (-168 (-380))) (-233) (-10 -8 (-15 -4378 ($ (-1128 (-549) (-613 $)))) (-15 -3399 ((-1128 (-549) (-613 $)) $)) (-15 -3398 ((-1128 (-549) (-613 $)) $)) (-15 -4274 ($ $)) (-15 -2130 ((-112) $ $)) (-15 -3536 ((-1174 $) (-1174 $) (-613 $))) (-15 -3536 ((-1174 $) (-1174 $) (-643 (-613 $)))) (-15 -3536 ($ $ (-613 $))) (-15 -3536 ($ $ (-643 (-613 $))))))) (T -498)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) (-4274 (*1 *1 *1) (-5 *1 (-498))) (-2130 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-643 (-613 (-498)))) (-5 *1 (-498)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-613 (-498)))) (-5 *1 (-498))))) +(-13 (-299) (-27) (-1041 (-549)) (-1041 (-410 (-549))) (-641 (-549)) (-1023) (-641 (-410 (-549))) (-147) (-616 (-168 (-380))) (-233) (-10 -8 (-15 -4378 ($ (-1128 (-549) (-613 $)))) (-15 -3399 ((-1128 (-549) (-613 $)) $)) (-15 -3398 ((-1128 (-549) (-613 $)) $)) (-15 -4274 ($ $)) (-15 -2130 ((-112) $ $)) (-15 -3536 ((-1174 $) (-1174 $) (-613 $))) (-15 -3536 ((-1174 $) (-1174 $) (-643 (-613 $)))) (-15 -3536 ($ $ (-613 $))) (-15 -3536 ($ $ (-643 (-613 $)))))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) 47 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 42 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 41)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 21)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 17 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) 44 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) 15 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 19)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 46) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 24)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 11 (|has| $ (-6 -4425))))) +(((-499 |#1| |#2|) (-19 |#1|) (-1219) (-549)) (T -499)) NIL (-19 |#1|) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) (-567) |#1|) NIL)) (-2391 (($ $ (-567) (-499 |#1| |#3|)) NIL)) (-3523 (($ $ (-567) (-499 |#1| |#2|)) NIL)) (-3758 (($) NIL T CONST)) (-4134 (((-499 |#1| |#3|) $ (-567)) NIL)) (-2036 ((|#1| $ (-567) (-567) |#1|) NIL)) (-1970 ((|#1| $ (-567) (-567)) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-4371 (((-772) $) NIL)) (-4223 (($ (-772) (-772) |#1|) NIL)) (-4385 (((-772) $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-3181 (((-567) $) NIL)) (-2631 (((-567) $) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4244 (((-567) $) NIL)) (-3802 (((-567) $) NIL)) (-2021 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2930 (($ $ |#1|) NIL)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2900 (((-499 |#1| |#2|) $ (-567)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-500 |#1| |#2| |#3|) (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) (-1219) (-567) (-567)) (T -500)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL)) (-1345 (($ $ (-549) (-499 |#1| |#3|)) NIL)) (-1344 (($ $ (-549) (-499 |#1| |#2|)) NIL)) (-4156 (($) NIL T CONST)) (-3516 (((-499 |#1| |#3|) $ (-549)) NIL)) (-1684 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3519 (((-773) $) NIL)) (-4046 (($ (-773) (-773) |#1|) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 (((-499 |#1| |#2|) $ (-549)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-500 |#1| |#2| |#3|) (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) (-1219) (-549) (-549)) (T -500)) NIL (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) -((-4202 (((-645 (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772)) 33)) (-4351 (((-645 (-1175 |#1|)) |#1| (-772) (-772) (-772)) 43)) (-4401 (((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)) 111))) -(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -4351 ((-645 (-1175 |#1|)) |#1| (-772) (-772) (-772))) (-15 -4202 ((-645 (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -4401 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) (-351) (-1245 |#1|) (-1245 |#2|)) (T -501)) -((-4401 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-2 (|:| -4374 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7))))) (-5 *5 (-772)) (-4 *8 (-1245 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -4374 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7)))) (-5 *1 (-501 *6 *7 *8)))) (-4202 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -4374 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6))))) (-5 *1 (-501 *5 *6 *7)) (-5 *3 (-2 (|:| -4374 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6)))) (-4 *7 (-1245 *6)))) (-4351 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1245 *3)) (-5 *2 (-645 (-1175 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1245 *5))))) -(-10 -7 (-15 -4351 ((-645 (-1175 |#1|)) |#1| (-772) (-772) (-772))) (-15 -4202 ((-645 (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -4401 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) -((-1510 (((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 74)) (-3389 ((|#1| (-690 |#1|) |#1| (-772)) 27)) (-3672 (((-772) (-772) (-772)) 36)) (-2005 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 54)) (-3533 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 62) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 59)) (-1388 ((|#1| (-690 |#1|) (-690 |#1|) |#1| (-567)) 31)) (-2274 ((|#1| (-690 |#1|)) 18))) -(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2274 (|#1| (-690 |#1|))) (-15 -3389 (|#1| (-690 |#1|) |#1| (-772))) (-15 -1388 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -3672 ((-772) (-772) (-772))) (-15 -3533 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3533 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2005 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1510 ((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $)))) (-1245 |#1|) (-412 |#1| |#2|)) (T -502)) -((-1510 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2005 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3533 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3533 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3672 (*1 *2 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-1388 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-3389 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-690 *2)) (-4 *4 (-1245 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4))))) -(-10 -7 (-15 -2274 (|#1| (-690 |#1|))) (-15 -3389 (|#1| (-690 |#1|) |#1| (-772))) (-15 -1388 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -3672 ((-772) (-772) (-772))) (-15 -3533 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3533 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2005 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1510 ((-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -4374 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) -((-2487 (((-112) $ $) NIL)) (-2509 (($ $) NIL)) (-1779 (($ $ $) 40)) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2767 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4423)))) (-2080 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3824 (((-112) $ (-1236 (-567)) (-112)) NIL (|has| $ (-6 -4423))) (((-112) $ (-567) (-112)) 42 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-1695 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2617 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2036 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4423)))) (-1970 (((-112) $ (-567)) NIL)) (-3932 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1102))) (((-567) (-112) $) NIL (|has| (-112) (-1102))) (((-567) (-1 (-112) (-112)) $) NIL)) (-3468 (((-645 (-112)) $) NIL (|has| $ (-6 -4422)))) (-1763 (($ $ $) 38)) (-1736 (($ $) NIL)) (-2815 (($ $ $) NIL)) (-4223 (($ (-772) (-112)) 27)) (-1837 (($ $ $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) 8 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL)) (-1315 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-4200 (((-645 (-112)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL)) (-2021 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-4222 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-112) $) NIL (|has| (-567) (-851)))) (-2989 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2930 (($ $ (-112)) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102))))) (-1804 (((-645 (-112)) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 28)) (-1882 (($ $ (-1236 (-567))) NIL) (((-112) $ (-567)) 22) (((-112) $ (-567) (-112)) NIL)) (-4281 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3486 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-112) (-1102)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) 29)) (-1322 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-2516 (($ (-645 (-112))) NIL)) (-3644 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2504 (((-863) $) 26)) (-3858 (((-112) $ $) NIL)) (-3450 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4422)))) (-1750 (($ $ $) 36)) (-2552 (($ $ $) NIL)) (-3429 (($ $ $) 45)) (-3441 (($ $) 43)) (-3419 (($ $ $) 44)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 30)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 31)) (-2542 (($ $ $) NIL)) (-2498 (((-772) $) 13 (|has| $ (-6 -4422))))) -(((-503 |#1|) (-13 (-123) (-10 -8 (-15 -3441 ($ $)) (-15 -3429 ($ $ $)) (-15 -3419 ($ $ $)))) (-567)) (T -503)) -((-3441 (*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-3429 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-3419 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))) -(-13 (-123) (-10 -8 (-15 -3441 ($ $)) (-15 -3429 ($ $ $)) (-15 -3419 ($ $ $)))) -((-2136 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|)) 35)) (-2395 (((-1175 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1175 |#4|)) 22)) (-3139 (((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1175 |#4|))) 49)) (-2926 (((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|) 58))) -(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2395 (|#2| (-1 |#1| |#4|) (-1175 |#4|))) (-15 -2395 ((-1175 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2136 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|))) (-15 -3139 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1175 |#4|)))) (-15 -2926 ((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|))) (-1051) (-1245 |#1|) (-1245 |#2|) (-1051)) (T -504)) -((-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *6 (-1245 *5)) (-5 *2 (-1175 (-1175 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1245 *6)))) (-3139 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-690 (-1175 *8))) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-1245 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1245 *6)))) (-2136 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2)))) (-2395 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *4 (-1245 *5)) (-5 *2 (-1175 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1245 *4)))) (-2395 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2))))) -(-10 -7 (-15 -2395 (|#2| (-1 |#1| |#4|) (-1175 |#4|))) (-15 -2395 ((-1175 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2136 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1175 |#4|))) (-15 -3139 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1175 |#4|)))) (-15 -2926 ((-1175 (-1175 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2487 (((-112) $ $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3841 (((-1274) $) 25)) (-1882 (((-1161) $ (-1179)) 30)) (-4079 (((-1274) $) 17)) (-2504 (((-863) $) 27) (($ (-1161)) 26)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 11)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9))) -(((-505) (-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $)) (-15 -2504 ($ (-1161)))))) (T -505)) -((-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1161)) (-5 *1 (-505)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-505)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-505)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-505))))) -(-13 (-851) (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) (-15 -3841 ((-1274) $)) (-15 -2504 ($ (-1161))))) -((-2985 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3228 ((|#1| |#4|) 10)) (-2448 ((|#3| |#4|) 17))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3228 (|#1| |#4|)) (-15 -2448 (|#3| |#4|)) (-15 -2985 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-559) (-994 |#1|) (-375 |#1|) (-375 |#2|)) (T -506)) -((-2985 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-4 *2 (-375 *4)) (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-3228 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))) -(-10 -7 (-15 -3228 (|#1| |#4|)) (-15 -2448 (|#3| |#4|)) (-15 -2985 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2487 (((-112) $ $) NIL)) (-3201 (((-112) $ (-645 |#3|)) 126) (((-112) $) 127)) (-2684 (((-112) $) 178)) (-3863 (($ $ |#4|) 117) (($ $ |#4| (-645 |#3|)) 121)) (-1683 (((-1168 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|)) 171 (|has| |#3| (-615 (-1179))))) (-3693 (($ $ $) 105) (($ $ |#4|) 103)) (-4384 (((-112) $) 177)) (-2975 (($ $) 131)) (-1812 (((-1161) $) NIL)) (-3873 (($ $ $) 97) (($ (-645 $)) 99)) (-2820 (((-112) |#4| $) 129)) (-2113 (((-112) $ $) 82)) (-3728 (($ (-645 |#4|)) 104)) (-3479 (((-1122) $) NIL)) (-1854 (($ (-645 |#4|)) 175)) (-2895 (((-112) $) 176)) (-3546 (($ $) 85)) (-2532 (((-645 |#4|) $) 73)) (-3035 (((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|)) NIL)) (-3070 (((-112) |#4| $) 89)) (-2589 (((-567) $ (-645 |#3|)) 133) (((-567) $) 134)) (-2504 (((-863) $) 174) (($ (-645 |#4|)) 100)) (-3858 (((-112) $ $) NIL)) (-1608 (($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $))) NIL)) (-2968 (((-112) $ $) 84)) (-3045 (($ $ $) 107)) (** (($ $ (-772)) 115)) (* (($ $ $) 113))) -(((-507 |#1| |#2| |#3| |#4|) (-13 (-1102) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3045 ($ $ $)) (-15 -4384 ((-112) $)) (-15 -2684 ((-112) $)) (-15 -3070 ((-112) |#4| $)) (-15 -2113 ((-112) $ $)) (-15 -2820 ((-112) |#4| $)) (-15 -3201 ((-112) $ (-645 |#3|))) (-15 -3201 ((-112) $)) (-15 -3873 ($ $ $)) (-15 -3873 ($ (-645 $))) (-15 -3693 ($ $ $)) (-15 -3693 ($ $ |#4|)) (-15 -3546 ($ $)) (-15 -3035 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -1608 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -2589 ((-567) $ (-645 |#3|))) (-15 -2589 ((-567) $)) (-15 -2975 ($ $)) (-15 -3728 ($ (-645 |#4|))) (-15 -1854 ($ (-645 |#4|))) (-15 -2895 ((-112) $)) (-15 -2532 ((-645 |#4|) $)) (-15 -2504 ($ (-645 |#4|))) (-15 -3863 ($ $ |#4|)) (-15 -3863 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1179))) (-15 -1683 ((-1168 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|))) |%noBranch|))) (-365) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -507)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-4384 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2684 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3070 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-2113 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2820 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6)))) (-3201 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-3201 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3873 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-3693 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3693 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3546 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3035 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) (|:| |genIdeal| (-507 *4 *5 *6 *7)))) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) (|:| |genIdeal| (-507 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2589 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) (-2589 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2975 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2895 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2532 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-3863 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) (-3863 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-951 *4 *5 *6)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *6 (-615 (-1179))) (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1168 (-645 (-954 *4)) (-645 (-295 (-954 *4))))) (-5 *1 (-507 *4 *5 *6 *7))))) -(-13 (-1102) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3045 ($ $ $)) (-15 -4384 ((-112) $)) (-15 -2684 ((-112) $)) (-15 -3070 ((-112) |#4| $)) (-15 -2113 ((-112) $ $)) (-15 -2820 ((-112) |#4| $)) (-15 -3201 ((-112) $ (-645 |#3|))) (-15 -3201 ((-112) $)) (-15 -3873 ($ $ $)) (-15 -3873 ($ (-645 $))) (-15 -3693 ($ $ $)) (-15 -3693 ($ $ |#4|)) (-15 -3546 ($ $)) (-15 -3035 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -1608 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -2589 ((-567) $ (-645 |#3|))) (-15 -2589 ((-567) $)) (-15 -2975 ($ $)) (-15 -3728 ($ (-645 |#4|))) (-15 -1854 ($ (-645 |#4|))) (-15 -2895 ((-112) $)) (-15 -2532 ((-645 |#4|) $)) (-15 -2504 ($ (-645 |#4|))) (-15 -3863 ($ $ |#4|)) (-15 -3863 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1179))) (-15 -1683 ((-1168 (-645 (-954 |#1|)) (-645 (-295 (-954 |#1|)))) (-645 |#4|))) |%noBranch|))) -((-2639 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 176)) (-2882 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 177)) (-3378 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 129)) (-2946 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) NIL)) (-2449 (((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 179)) (-4064 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))) 195))) -(((-508 |#1| |#2|) (-10 -7 (-15 -2639 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2882 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2946 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3378 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2449 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4064 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) (-645 (-1179)) (-772)) (T -508)) -((-4064 (*1 *2 *2 *3) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *1 (-508 *4 *5)))) (-2449 (*1 *2 *3) (-12 (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-645 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567)))))) (-5 *1 (-508 *4 *5)) (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1179))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5))))) -(-10 -7 (-15 -2639 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2882 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2946 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3378 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -2449 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4064 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2649 (($) 6)) (-2504 (((-863) $) 12) (((-1179) $) 10)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 8))) -(((-509) (-13 (-1102) (-614 (-1179)) (-10 -8 (-15 -2649 ($))))) (T -509)) -((-2649 (*1 *1) (-5 *1 (-509)))) -(-13 (-1102) (-614 (-1179)) (-10 -8 (-15 -2649 ($)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-3764 (($ |#1| |#2|) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-4164 ((|#2| $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 12 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) 11) (($ $ $) 35)) (-3045 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21))) -(((-510 |#1| |#2|) (-13 (-21) (-512 |#1| |#2|)) (-21) (-851)) (T -510)) +((-2132 (((-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-773) (-773)) 33)) (-2131 (((-643 (-1174 |#1|)) |#1| (-773) (-773) (-773)) 43)) (-2260 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-643 |#3|) (-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-773)) 110))) +(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -2131 ((-643 (-1174 |#1|)) |#1| (-773) (-773) (-773))) (-15 -2132 ((-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-773) (-773))) (-15 -2260 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-643 |#3|) (-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-773)))) (-352) (-1245 |#1|) (-1245 |#2|)) (T -501)) +((-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-2 (|:| -2190 (-691 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-691 *7))))) (-5 *5 (-773)) (-4 *8 (-1245 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-352)) (-5 *2 (-2 (|:| -2190 (-691 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-691 *7)))) (-5 *1 (-501 *6 *7 *8)))) (-2132 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-773)) (-4 *5 (-352)) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-2 (|:| -2190 (-691 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-691 *6))))) (-5 *1 (-501 *5 *6 *7)) (-5 *3 (-2 (|:| -2190 (-691 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-691 *6)))) (-4 *7 (-1245 *6)))) (-2131 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-773)) (-4 *3 (-352)) (-4 *5 (-1245 *3)) (-5 *2 (-643 (-1174 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1245 *5))))) +(-10 -7 (-15 -2131 ((-643 (-1174 |#1|)) |#1| (-773) (-773) (-773))) (-15 -2132 ((-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-773) (-773))) (-15 -2260 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) (-643 |#3|) (-643 (-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) (-773)))) +((-2138 (((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|)))) 74)) (-2133 ((|#1| (-691 |#1|) |#1| (-773)) 27)) (-2135 (((-773) (-773) (-773)) 36)) (-2137 (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 54)) (-2136 (((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|) 62) (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 59)) (-2134 ((|#1| (-691 |#1|) (-691 |#1|) |#1| (-549)) 31)) (-3753 ((|#1| (-691 |#1|)) 18))) +(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -3753 (|#1| (-691 |#1|))) (-15 -2133 (|#1| (-691 |#1|) |#1| (-773))) (-15 -2134 (|#1| (-691 |#1|) (-691 |#1|) |#1| (-549))) (-15 -2135 ((-773) (-773) (-773))) (-15 -2136 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2136 ((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|)) (-15 -2137 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2138 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|)))))) (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $)))) (-1245 |#1|) (-413 |#1| |#2|)) (T -502)) +((-2138 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2137 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2136 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2136 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2135 (*1 *2 *2 *2) (-12 (-5 *2 (-773)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) (-2134 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-691 *2)) (-5 *4 (-549)) (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-413 *2 *5)))) (-2133 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-691 *2)) (-5 *4 (-773)) (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-413 *2 *5)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-691 *2)) (-4 *4 (-1245 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-413 *2 *4))))) +(-10 -7 (-15 -3753 (|#1| (-691 |#1|))) (-15 -2133 (|#1| (-691 |#1|) |#1| (-773))) (-15 -2134 (|#1| (-691 |#1|) (-691 |#1|) |#1| (-549))) (-15 -2135 ((-773) (-773) (-773))) (-15 -2136 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2136 ((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|)) (-15 -2137 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2138 ((-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|))) (-2 (|:| -2190 (-691 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-691 |#1|)))))) +((-2968 (((-112) $ $) NIL)) (-2458 (($ $) NIL)) (-3745 (($ $ $) 40)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| (-112) (-852))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-112) (-852)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4426)))) (-3310 (($ $) NIL (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-112) $ (-1236 (-549)) (-112)) NIL (|has| $ (-6 -4426))) (((-112) $ (-549) (-112)) 42 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-3830 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-4274 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-1684 (((-112) $ (-549) (-112)) NIL (|has| $ (-6 -4426)))) (-3517 (((-112) $ (-549)) NIL)) (-3843 (((-549) (-112) $ (-549)) NIL (|has| (-112) (-1104))) (((-549) (-112) $) NIL (|has| (-112) (-1104))) (((-549) (-1 (-112) (-112)) $) NIL)) (-2124 (((-643 (-112)) $) NIL (|has| $ (-6 -4425)))) (-3255 (($ $ $) 38)) (-3746 (($ $) NIL)) (-1395 (($ $ $) NIL)) (-4046 (($ (-773) (-112)) 27)) (-1396 (($ $ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 8 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL)) (-3941 (($ $ $) NIL (|has| (-112) (-852))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3008 (((-643 (-112)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL)) (-2128 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ (-112) $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-112) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2373 (($ $ (-112)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-112)) (-643 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104)))) (($ $ (-643 (-294 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104))))) (-2379 (((-643 (-112)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 28)) (-4231 (($ $ (-1236 (-549))) NIL) (((-112) $ (-549)) 22) (((-112) $ (-549) (-112)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2125 (((-773) (-112) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-112) (-1104)))) (((-773) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) 29)) (-4402 (((-538) $) NIL (|has| (-112) (-616 (-538))))) (-3953 (($ (-643 (-112))) NIL)) (-4233 (($ (-643 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4378 (((-865) $) 26)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4425)))) (-3256 (($ $ $) 36)) (-2456 (($ $ $) NIL)) (-3742 (($ $ $) 45)) (-3744 (($ $) 43)) (-3743 (($ $ $) 44)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 30)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 31)) (-2457 (($ $ $) NIL)) (-4389 (((-773) $) 13 (|has| $ (-6 -4425))))) +(((-503 |#1|) (-13 (-123) (-10 -8 (-15 -3744 ($ $)) (-15 -3742 ($ $ $)) (-15 -3743 ($ $ $)))) (-549)) (T -503)) +((-3744 (*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) (-3742 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) (-3743 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549))))) +(-13 (-123) (-10 -8 (-15 -3744 ($ $)) (-15 -3742 ($ $ $)) (-15 -3743 ($ $ $)))) +((-2140 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|)) 35)) (-2139 (((-1174 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1174 |#4|)) 22)) (-2141 (((-3 (-691 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-691 (-1174 |#4|))) 49)) (-2142 (((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|) 58))) +(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2139 (|#2| (-1 |#1| |#4|) (-1174 |#4|))) (-15 -2139 ((-1174 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2140 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|))) (-15 -2141 ((-3 (-691 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-691 (-1174 |#4|)))) (-15 -2142 ((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|))) (-1052) (-1245 |#1|) (-1245 |#2|) (-1052)) (T -504)) +((-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *6 (-1245 *5)) (-5 *2 (-1174 (-1174 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1245 *6)))) (-2141 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-691 (-1174 *8))) (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-1245 *5)) (-5 *2 (-691 *6)) (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1245 *6)))) (-2140 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *4 (-1245 *5)) (-5 *2 (-1174 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1245 *4)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2))))) +(-10 -7 (-15 -2139 (|#2| (-1 |#1| |#4|) (-1174 |#4|))) (-15 -2139 ((-1174 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2140 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1174 |#4|))) (-15 -2141 ((-3 (-691 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-691 (-1174 |#4|)))) (-15 -2142 ((-1174 (-1174 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2968 (((-112) $ $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2143 (((-1275) $) 25)) (-4231 (((-1162) $ (-1180)) 30)) (-4049 (((-1275) $) 17)) (-4378 (((-865) $) 27) (($ (-1162)) 26)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 11)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 9))) +(((-505) (-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $)) (-15 -4378 ($ (-1162)))))) (T -505)) +((-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1162)) (-5 *1 (-505)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-505)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-505)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-505))))) +(-13 (-852) (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) (-15 -2143 ((-1275) $)) (-15 -4378 ($ (-1162))))) +((-4173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4171 ((|#1| |#4|) 10)) (-4172 ((|#3| |#4|) 17))) +(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4171 (|#1| |#4|)) (-15 -4172 (|#3| |#4|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-560) (-994 |#1|) (-374 |#1|) (-374 |#2|)) (T -506)) +((-4173 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-374 *4)) (-4 *3 (-374 *5)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-4 *2 (-374 *4)) (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-374 *5)))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-506 *2 *4 *5 *3)) (-4 *5 (-374 *2)) (-4 *3 (-374 *4))))) +(-10 -7 (-15 -4171 (|#1| |#4|)) (-15 -4172 (|#3| |#4|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2968 (((-112) $ $) NIL)) (-2153 (((-112) $ (-643 |#3|)) 124) (((-112) $) 125)) (-3608 (((-112) $) 176)) (-2145 (($ $ |#4|) 115) (($ $ |#4| (-643 |#3|)) 119)) (-2144 (((-1169 (-643 (-949 |#1|)) (-643 (-294 (-949 |#1|)))) (-643 |#4|)) 169 (|has| |#3| (-616 (-1180))))) (-2152 (($ $ $) 105) (($ $ |#4|) 103)) (-2573 (((-112) $) 175)) (-2149 (($ $) 129)) (-3663 (((-1162) $) NIL)) (-3658 (($ $ $) 97) (($ (-643 $)) 99)) (-2154 (((-112) |#4| $) 127)) (-2155 (((-112) $ $) 82)) (-2148 (($ (-643 |#4|)) 104)) (-3664 (((-1123) $) NIL)) (-2147 (($ (-643 |#4|)) 173)) (-2146 (((-112) $) 174)) (-2400 (($ $) 85)) (-3098 (((-643 |#4|) $) 73)) (-2151 (((-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)) $ (-643 |#3|)) NIL)) (-2156 (((-112) |#4| $) 89)) (-4343 (((-549) $ (-643 |#3|)) 131) (((-549) $) 132)) (-4378 (((-865) $) 172) (($ (-643 |#4|)) 100)) (-3662 (((-112) $ $) NIL)) (-2150 (($ (-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $))) NIL)) (-3455 (((-112) $ $) 84)) (-4271 (($ $ $) 107)) (** (($ $ (-773)) 113)) (* (($ $ $) 111))) +(((-507 |#1| |#2| |#3| |#4|) (-13 (-1104) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-773))) (-15 -4271 ($ $ $)) (-15 -2573 ((-112) $)) (-15 -3608 ((-112) $)) (-15 -2156 ((-112) |#4| $)) (-15 -2155 ((-112) $ $)) (-15 -2154 ((-112) |#4| $)) (-15 -2153 ((-112) $ (-643 |#3|))) (-15 -2153 ((-112) $)) (-15 -3658 ($ $ $)) (-15 -3658 ($ (-643 $))) (-15 -2152 ($ $ $)) (-15 -2152 ($ $ |#4|)) (-15 -2400 ($ $)) (-15 -2151 ((-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)) $ (-643 |#3|))) (-15 -2150 ($ (-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)))) (-15 -4343 ((-549) $ (-643 |#3|))) (-15 -4343 ((-549) $)) (-15 -2149 ($ $)) (-15 -2148 ($ (-643 |#4|))) (-15 -2147 ($ (-643 |#4|))) (-15 -2146 ((-112) $)) (-15 -3098 ((-643 |#4|) $)) (-15 -4378 ($ (-643 |#4|))) (-15 -2145 ($ $ |#4|)) (-15 -2145 ($ $ |#4| (-643 |#3|))) (IF (|has| |#3| (-616 (-1180))) (-15 -2144 ((-1169 (-643 (-949 |#1|)) (-643 (-294 (-949 |#1|)))) (-643 |#4|))) |%noBranch|))) (-365) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -507)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-2573 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-3608 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-2156 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2155 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-2154 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-643 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-2152 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-2152 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-953 *3 *4 *5)))) (-2400 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-2151 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |mval| (-691 *4)) (|:| |invmval| (-691 *4)) (|:| |genIdeal| (-507 *4 *5 *6 *7)))) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-691 *3)) (|:| |invmval| (-691 *3)) (|:| |genIdeal| (-507 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-4343 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) (-5 *2 (-549)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) (-4343 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-549)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-2149 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2147 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2146 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-3098 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *6)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2145 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-953 *3 *4 *5)))) (-2145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-953 *4 *5 *6)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *6 (-616 (-1180))) (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1169 (-643 (-949 *4)) (-643 (-294 (-949 *4))))) (-5 *1 (-507 *4 *5 *6 *7))))) +(-13 (-1104) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-773))) (-15 -4271 ($ $ $)) (-15 -2573 ((-112) $)) (-15 -3608 ((-112) $)) (-15 -2156 ((-112) |#4| $)) (-15 -2155 ((-112) $ $)) (-15 -2154 ((-112) |#4| $)) (-15 -2153 ((-112) $ (-643 |#3|))) (-15 -2153 ((-112) $)) (-15 -3658 ($ $ $)) (-15 -3658 ($ (-643 $))) (-15 -2152 ($ $ $)) (-15 -2152 ($ $ |#4|)) (-15 -2400 ($ $)) (-15 -2151 ((-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)) $ (-643 |#3|))) (-15 -2150 ($ (-2 (|:| |mval| (-691 |#1|)) (|:| |invmval| (-691 |#1|)) (|:| |genIdeal| $)))) (-15 -4343 ((-549) $ (-643 |#3|))) (-15 -4343 ((-549) $)) (-15 -2149 ($ $)) (-15 -2148 ($ (-643 |#4|))) (-15 -2147 ($ (-643 |#4|))) (-15 -2146 ((-112) $)) (-15 -3098 ((-643 |#4|) $)) (-15 -4378 ($ (-643 |#4|))) (-15 -2145 ($ $ |#4|)) (-15 -2145 ($ $ |#4| (-643 |#3|))) (IF (|has| |#3| (-616 (-1180))) (-15 -2144 ((-1169 (-643 (-949 |#1|)) (-643 (-294 (-949 |#1|)))) (-643 |#4|))) |%noBranch|))) +((-2157 (((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) 176)) (-2158 (((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) 177)) (-2159 (((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) 129)) (-4155 (((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) NIL)) (-2160 (((-643 (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) 179)) (-2161 (((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-643 (-866 |#1|))) 195))) +(((-508 |#1| |#2|) (-10 -7 (-15 -2157 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2158 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -4155 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2159 ((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2160 ((-643 (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2161 ((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-643 (-866 |#1|))))) (-643 (-1180)) (-773)) (T -508)) +((-2161 (*1 *2 *2 *3) (-12 (-5 *2 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) (-5 *3 (-643 (-866 *4))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *1 (-508 *4 *5)))) (-2160 (*1 *2 *3) (-12 (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-643 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549)))))) (-5 *1 (-508 *4 *5)) (-5 *3 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-507 (-410 (-549)) (-239 *4 (-773)) (-866 *3) (-247 *3 (-410 (-549))))) (-14 *3 (-643 (-1180))) (-14 *4 (-773)) (-5 *1 (-508 *3 *4)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5))))) +(-10 -7 (-15 -2157 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2158 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -4155 ((-112) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2159 ((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2160 ((-643 (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549))))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))))) (-15 -2161 ((-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-507 (-410 (-549)) (-239 |#2| (-773)) (-866 |#1|) (-247 |#1| (-410 (-549)))) (-643 (-866 |#1|))))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2162 (($) 6)) (-4378 (((-865) $) 12) (((-1180) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 8))) +(((-509) (-13 (-1104) (-615 (-1180)) (-10 -8 (-15 -2162 ($))))) (T -509)) +((-2162 (*1 *1) (-5 *1 (-509)))) +(-13 (-1104) (-615 (-1180)) (-10 -8 (-15 -2162 ($)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 12 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) 11) (($ $ $) 35)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 21))) +(((-510 |#1| |#2|) (-13 (-21) (-512 |#1| |#2|)) (-21) (-852)) (T -510)) NIL (-13 (-21) (-512 |#1| |#2|)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 13)) (-3758 (($) NIL T CONST)) (-1833 (($ $) 41)) (-3764 (($ |#1| |#2|) 38)) (-4364 (($ (-1 |#1| |#1|) $) 40)) (-4164 ((|#2| $) NIL)) (-1809 ((|#1| $) 42)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 10 T CONST)) (-2968 (((-112) $ $) NIL)) (-3045 (($ $ $) 26)) (* (($ (-923) $) NIL) (($ (-772) $) 36))) -(((-511 |#1| |#2|) (-13 (-23) (-512 |#1| |#2|)) (-23) (-851)) (T -511)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 13)) (-4156 (($) NIL T CONST)) (-4391 (($ $) 41)) (-3294 (($ |#1| |#2|) 38)) (-4390 (($ (-1 |#1| |#1|) $) 40)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) 42)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 10 T CONST)) (-3455 (((-112) $ $) NIL)) (-4271 (($ $ $) 26)) (* (($ (-922) $) NIL) (($ (-773) $) 36))) +(((-511 |#1| |#2|) (-13 (-23) (-512 |#1| |#2|)) (-23) (-852)) (T -511)) NIL (-13 (-23) (-512 |#1| |#2|)) -((-2487 (((-112) $ $) 7)) (-1833 (($ $) 14)) (-3764 (($ |#1| |#2|) 17)) (-4364 (($ (-1 |#1| |#1|) $) 18)) (-4164 ((|#2| $) 15)) (-1809 ((|#1| $) 16)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-512 |#1| |#2|) (-140) (-1102) (-851)) (T -512)) -((-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-851)))) (-3764 (*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1102)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-851)))) (-1833 (*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851))))) -(-13 (-1102) (-10 -8 (-15 -4364 ($ (-1 |t#1| |t#1|) $)) (-15 -3764 ($ |t#1| |t#2|)) (-15 -1809 (|t#1| $)) (-15 -4164 (|t#2| $)) (-15 -1833 ($ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-3764 (($ |#1| |#2|) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-4164 ((|#2| $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 22)) (-3045 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL))) -(((-513 |#1| |#2|) (-13 (-793) (-512 |#1| |#2|)) (-793) (-851)) (T -513)) -NIL -(-13 (-793) (-512 |#1| |#2|)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-1992 (($ $ $) 23)) (-2932 (((-3 $ "failed") $ $) 19)) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-3764 (($ |#1| |#2|) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-4164 ((|#2| $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3045 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL))) -(((-514 |#1| |#2|) (-13 (-794) (-512 |#1| |#2|)) (-794) (-851)) (T -514)) +((-2968 (((-112) $ $) 7)) (-4391 (($ $) 14)) (-3294 (($ |#1| |#2|) 17)) (-4390 (($ (-1 |#1| |#1|) $) 18)) (-2163 ((|#2| $) 15)) (-3594 ((|#1| $) 16)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-512 |#1| |#2|) (-140) (-1104) (-852)) (T -512)) +((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-852)))) (-3294 (*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-852)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-852)) (-4 *2 (-1104)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-852)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-852))))) +(-13 (-1104) (-10 -8 (-15 -4390 ($ (-1 |t#1| |t#1|) $)) (-15 -3294 ($ |t#1| |t#2|)) (-15 -3594 (|t#1| $)) (-15 -2163 (|t#2| $)) (-15 -4391 ($ $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-4391 (($ $) 32)) (-3294 (($ |#1| |#2|) 28)) (-4390 (($ (-1 |#1| |#1|) $) 30)) (-2163 ((|#2| $) 34)) (-3594 ((|#1| $) 33)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 27)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 20))) +(((-513 |#1| |#2|) (-512 |#1| |#2|) (-1104) (-852)) (T -513)) +NIL +(-512 |#1| |#2|) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 22)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL))) +(((-514 |#1| |#2|) (-13 (-794) (-512 |#1| |#2|)) (-794) (-852)) (T -514)) NIL (-13 (-794) (-512 |#1| |#2|)) -((-2487 (((-112) $ $) NIL)) (-1833 (($ $) 32)) (-3764 (($ |#1| |#2|) 28)) (-4364 (($ (-1 |#1| |#1|) $) 30)) (-4164 ((|#2| $) 34)) (-1809 ((|#1| $) 33)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 27)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 20))) -(((-515 |#1| |#2|) (-512 |#1| |#2|) (-1102) (-851)) (T -515)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2805 (($ $ $) 23)) (-1407 (((-3 $ "failed") $ $) 19)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2163 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL))) +(((-515 |#1| |#2|) (-13 (-795) (-512 |#1| |#2|)) (-795) (-852)) (T -515)) NIL -(-512 |#1| |#2|) -((-2913 (($ $ (-645 |#2|) (-645 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-516 |#1| |#2| |#3|) (-10 -8 (-15 -2913 (|#1| |#1| |#2| |#3|)) (-15 -2913 (|#1| |#1| (-645 |#2|) (-645 |#3|)))) (-517 |#2| |#3|) (-1102) (-1219)) (T -516)) +(-13 (-795) (-512 |#1| |#2|)) +((-4199 (($ $ (-643 |#2|) (-643 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-516 |#1| |#2| |#3|) (-10 -8 (-15 -4199 (|#1| |#1| |#2| |#3|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#3|)))) (-517 |#2| |#3|) (-1104) (-1219)) (T -516)) NIL -(-10 -8 (-15 -2913 (|#1| |#1| |#2| |#3|)) (-15 -2913 (|#1| |#1| (-645 |#2|) (-645 |#3|)))) -((-2913 (($ $ (-645 |#1|) (-645 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-517 |#1| |#2|) (-140) (-1102) (-1219)) (T -517)) -((-2913 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1219)))) (-2913 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1219))))) -(-13 (-10 -8 (-15 -2913 ($ $ |t#1| |t#2|)) (-15 -2913 ($ $ (-645 |t#1|) (-645 |t#2|))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 17)) (-3785 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 |#2|))) $) 19)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3404 (((-772) $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3102 ((|#1| $ (-567)) 24)) (-1319 ((|#2| $ (-567)) 22)) (-3786 (($ (-1 |#1| |#1|) $) 48)) (-4336 (($ (-1 |#2| |#2|) $) 45)) (-1812 (((-1161) $) NIL)) (-2114 (($ $ $) 55 (|has| |#2| (-793)))) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 44) (($ |#1|) NIL)) (-4038 ((|#2| |#1| $) 51)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 11 T CONST)) (-2968 (((-112) $ $) 30)) (-3045 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-923) $) NIL) (($ (-772) $) 37) (($ |#2| |#1|) 32))) -(((-518 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1102) (-131) |#2|) (T -518)) +(-10 -8 (-15 -4199 (|#1| |#1| |#2| |#3|)) (-15 -4199 (|#1| |#1| (-643 |#2|) (-643 |#3|)))) +((-4199 (($ $ (-643 |#1|) (-643 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-517 |#1| |#2|) (-140) (-1104) (-1219)) (T -517)) +((-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1219)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1219))))) +(-13 (-10 -8 (-15 -4199 ($ $ |t#1| |t#2|)) (-15 -4199 ($ $ (-643 |t#1|) (-643 |t#2|))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 17)) (-4205 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $) 19)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-2444 ((|#1| $ (-549)) 24)) (-1767 ((|#2| $ (-549)) 22)) (-2436 (($ (-1 |#1| |#1|) $) 48)) (-1766 (($ (-1 |#2| |#2|) $) 45)) (-3663 (((-1162) $) NIL)) (-1765 (($ $ $) 55 (|has| |#2| (-794)))) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 44) (($ |#1|) NIL)) (-4109 ((|#2| |#1| $) 51)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 11 T CONST)) (-3455 (((-112) $ $) 30)) (-4271 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-922) $) NIL) (($ (-773) $) 37) (($ |#2| |#1|) 32))) +(((-518 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1104) (-131) |#2|) (T -518)) NIL (-324 |#1| |#2|) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-1382 (((-112) (-112)) 32)) (-3824 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-2105 (($ (-1 (-112) |#1|) $) 80)) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3048 (($ $) 84 (|has| |#1| (-1102)))) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4197 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) 67)) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3932 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2410 (($ $ (-567)) 19)) (-2800 (((-772) $) 13)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4223 (($ (-772) |#1|) 31)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) 29 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-3196 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) 28 (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3636 (($ $ $ (-567)) 76) (($ |#1| $ (-567)) 60)) (-4222 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3684 (($ (-645 |#1|)) 43)) (-3436 ((|#1| $) NIL (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) 24 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 63)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 21)) (-1882 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 56) (($ $ (-1236 (-567))) NIL)) (-1664 (($ $ (-1236 (-567))) 74) (($ $ (-567)) 68)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) 64 (|has| $ (-6 -4423)))) (-3846 (($ $) 54)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) NIL)) (-3416 (($ $ $) 65) (($ $ |#1|) 62)) (-3644 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2498 (((-772) $) 22 (|has| $ (-6 -4422))))) -(((-519 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3684 ($ (-645 |#1|))) (-15 -2800 ((-772) $)) (-15 -2410 ($ $ (-567))) (-15 -1382 ((-112) (-112))))) (-1219) (-567)) (T -519)) -((-3684 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-519 *3 *4)) (-14 *4 (-567)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-567)))) (-2410 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 *2))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-567))))) -(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -3684 ($ (-645 |#1|))) (-15 -2800 ((-772) $)) (-15 -2410 ($ $ (-567))) (-15 -1382 ((-112) (-112))))) -((-2487 (((-112) $ $) NIL)) (-2281 (((-1137) $) 11)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3044 (((-1137) $) 13)) (-2388 (((-1137) $) 9)) (-2504 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-520) (-13 (-1085) (-10 -8 (-15 -2388 ((-1137) $)) (-15 -2281 ((-1137) $)) (-15 -3044 ((-1137) $))))) (T -520)) -((-2388 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520))))) -(-13 (-1085) (-10 -8 (-15 -2388 ((-1137) $)) (-15 -2281 ((-1137) $)) (-15 -3044 ((-1137) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 (((-584 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-584 |#1|) (-370)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL (|has| (-584 |#1|) (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-584 |#1|) "failed") $) NIL)) (-3094 (((-584 |#1|) $) NIL)) (-3431 (($ (-1269 (-584 |#1|))) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-584 |#1|) (-370)))) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-584 |#1|) (-370)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) NIL (|has| (-584 |#1|) (-370)))) (-1816 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-2559 (($ $ (-772)) NIL (-2836 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370)))) (($ $) NIL (-2836 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-2946 (((-112) $) NIL)) (-3905 (((-923) $) NIL (|has| (-584 |#1|) (-370))) (((-834 (-923)) $) NIL (-2836 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4384 (((-112) $) NIL)) (-2075 (($) NIL (|has| (-584 |#1|) (-370)))) (-3739 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-2013 (((-584 |#1|) $) NIL) (($ $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3104 (((-3 $ "failed") $) NIL (|has| (-584 |#1|) (-370)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 (-584 |#1|)) $) NIL) (((-1175 $) $ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-2667 (((-923) $) NIL (|has| (-584 |#1|) (-370)))) (-4066 (((-1175 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370)))) (-2710 (((-1175 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-1175 (-584 |#1|)) "failed") $ $) NIL (|has| (-584 |#1|) (-370)))) (-1951 (($ $ (-1175 (-584 |#1|))) NIL (|has| (-584 |#1|) (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-584 |#1|) (-370)) CONST)) (-2188 (($ (-923)) NIL (|has| (-584 |#1|) (-370)))) (-3626 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-2335 (($) NIL (|has| (-584 |#1|) (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| (-584 |#1|) (-370)))) (-3661 (((-421 $) $) NIL)) (-1884 (((-834 (-923))) NIL) (((-923)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-772) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2836 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-2589 (((-134)) NIL)) (-3592 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-3380 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-2783 (((-1175 (-584 |#1|))) NIL)) (-1876 (($) NIL (|has| (-584 |#1|) (-370)))) (-4006 (($) NIL (|has| (-584 |#1|) (-370)))) (-3237 (((-1269 (-584 |#1|)) $) NIL) (((-690 (-584 |#1|)) (-1269 $)) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-584 |#1|) (-370)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-584 |#1|)) NIL)) (-2318 (($ $) NIL (|has| (-584 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2836 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL) (((-1269 $) (-923)) NIL)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-1620 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2856 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL) (($ $ (-584 |#1|)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-584 |#1|)) NIL) (($ (-584 |#1|) $) NIL))) -(((-521 |#1| |#2|) (-330 (-584 |#1|)) (-923) (-923)) (T -521)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-2164 (((-112) (-112)) 32)) (-4219 ((|#1| $ (-549) |#1|) 42 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) 80)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-2526 (($ $) 84 (|has| |#1| (-1104)))) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) 67)) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2165 (($ $ (-549)) 19)) (-2166 (((-773) $) 13)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 31)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 29 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) 28 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4039 (($ $ $ (-549)) 76) (($ |#1| $ (-549)) 60)) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2167 (($ (-643 |#1|)) 43)) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) 24 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 63)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 21)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 56) (($ $ (-1236 (-549))) NIL)) (-1679 (($ $ (-1236 (-549))) 74) (($ $ (-549)) 68)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) 64 (|has| $ (-6 -4426)))) (-3824 (($ $) 54)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4222 (($ $ $) 65) (($ $ |#1|) 62)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 22 (|has| $ (-6 -4425))))) +(((-519 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2167 ($ (-643 |#1|))) (-15 -2166 ((-773) $)) (-15 -2165 ($ $ (-549))) (-15 -2164 ((-112) (-112))))) (-1219) (-549)) (T -519)) +((-2167 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-519 *3 *4)) (-14 *4 (-549)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-549)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 *2))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-549))))) +(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2167 ($ (-643 |#1|))) (-15 -2166 ((-773) $)) (-15 -2165 ($ $ (-549))) (-15 -2164 ((-112) (-112))))) +((-2968 (((-112) $ $) NIL)) (-2169 (((-1138) $) 11)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2168 (((-1138) $) 13)) (-4354 (((-1138) $) 9)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-520) (-13 (-1086) (-10 -8 (-15 -4354 ((-1138) $)) (-15 -2169 ((-1138) $)) (-15 -2168 ((-1138) $))))) (T -520)) +((-4354 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520))))) +(-13 (-1086) (-10 -8 (-15 -4354 ((-1138) $)) (-15 -2169 ((-1138) $)) (-15 -2168 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (((-584 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-584 |#1|) (-370)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL (|has| (-584 |#1|) (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-584 |#1|) "failed") $) NIL)) (-3576 (((-584 |#1|) $) NIL)) (-1967 (($ (-1269 (-584 |#1|))) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-584 |#1|) (-370)))) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-584 |#1|) (-370)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL (|has| (-584 |#1|) (-370)))) (-1848 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-1941 (($ $ (-773)) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370)))) (($ $) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4155 (((-112) $) NIL)) (-4203 (((-922) $) NIL (|has| (-584 |#1|) (-370))) (((-834 (-922)) $) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| (-584 |#1|) (-370)))) (-2189 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-3536 (((-584 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-584 |#1|) (-370)))) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 (-584 |#1|)) $) NIL) (((-1174 $) $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-2188 (((-922) $) NIL (|has| (-584 |#1|) (-370)))) (-1772 (((-1174 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370)))) (-1771 (((-1174 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-1174 (-584 |#1|)) "failed") $ $) NIL (|has| (-584 |#1|) (-370)))) (-1773 (($ $ (-1174 (-584 |#1|))) NIL (|has| (-584 |#1|) (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-584 |#1|) (-370)) CONST)) (-2563 (($ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL (|has| (-584 |#1|) (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-584 |#1|) (-370)))) (-4164 (((-408 $) $) NIL)) (-4362 (((-834 (-922))) NIL) (((-922)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-773) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-773) "failed") $ $) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-4343 (((-134)) NIL)) (-4242 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-584 |#1|) (-370)))) (-4380 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3605 (((-1174 (-584 |#1|))) NIL)) (-1842 (($) NIL (|has| (-584 |#1|) (-370)))) (-1774 (($) NIL (|has| (-584 |#1|) (-370)))) (-3644 (((-1269 (-584 |#1|)) $) NIL) (((-691 (-584 |#1|)) (-1269 $)) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-584 |#1|) (-370)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-584 |#1|)) NIL)) (-3105 (($ $) NIL (|has| (-584 |#1|) (-370))) (((-3 $ "failed") $) NIL (-3960 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL) (((-1269 $) (-922)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-584 |#1|) (-370)))) (-3072 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-773)) NIL (|has| (-584 |#1|) (-370)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL) (($ $ (-584 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-584 |#1|)) NIL) (($ (-584 |#1|) $) NIL))) +(((-521 |#1| |#2|) (-330 (-584 |#1|)) (-922) (-922)) (T -521)) NIL (-330 (-584 |#1|)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) (-567) |#1|) 51)) (-2391 (($ $ (-567) |#4|) NIL)) (-3523 (($ $ (-567) |#5|) NIL)) (-3758 (($) NIL T CONST)) (-4134 ((|#4| $ (-567)) NIL)) (-2036 ((|#1| $ (-567) (-567) |#1|) 50)) (-1970 ((|#1| $ (-567) (-567)) 45)) (-3468 (((-645 |#1|) $) NIL)) (-4371 (((-772) $) 33)) (-4223 (($ (-772) (-772) |#1|) 30)) (-4385 (((-772) $) 38)) (-3753 (((-112) $ (-772)) NIL)) (-3181 (((-567) $) 31)) (-2631 (((-567) $) 32)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4244 (((-567) $) 37)) (-3802 (((-567) $) 39)) (-2021 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) 55 (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2930 (($ $ |#1|) NIL)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 14)) (-2973 (($) 16)) (-1882 ((|#1| $ (-567) (-567)) 48) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2900 ((|#5| $ (-567)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-522 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1219) (-567) (-567) (-375 |#1|) (-375 |#1|)) (T -522)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) 51)) (-1345 (($ $ (-549) |#4|) NIL)) (-1344 (($ $ (-549) |#5|) NIL)) (-4156 (($) NIL T CONST)) (-3516 ((|#4| $ (-549)) NIL)) (-1684 ((|#1| $ (-549) (-549) |#1|) 50)) (-3517 ((|#1| $ (-549) (-549)) 45)) (-2124 (((-643 |#1|) $) NIL)) (-3519 (((-773) $) 33)) (-4046 (($ (-773) (-773) |#1|) 30)) (-3518 (((-773) $) 38)) (-4151 (((-112) $ (-773)) NIL)) (-3523 (((-549) $) 31)) (-3521 (((-549) $) 32)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) 37)) (-3520 (((-549) $) 39)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) 55 (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 14)) (-3996 (($) 16)) (-4231 ((|#1| $ (-549) (-549)) 48) ((|#1| $ (-549) (-549) |#1|) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 ((|#5| $ (-549)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-522 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1219) (-549) (-549) (-374 |#1|) (-374 |#1|)) (T -522)) NIL (-57 |#1| |#4| |#5|) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) NIL)) (-2587 ((|#1| $) NIL)) (-1493 (($ $) NIL)) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) 73 (|has| $ (-6 -4423)))) (-2051 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2767 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4423)))) (-2080 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4234 (($ $ $) 23 (|has| $ (-6 -4423)))) (-2718 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-1588 ((|#1| $ |#1|) 21 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4423))) (($ $ "rest" $) 24 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-2105 (($ (-1 (-112) |#1|) $) NIL)) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2574 ((|#1| $) NIL)) (-3758 (($) NIL T CONST)) (-3790 (($ $) 28 (|has| $ (-6 -4423)))) (-3247 (($ $) 29)) (-3447 (($ $) 18) (($ $ (-772)) 35)) (-3048 (($ $) 66 (|has| |#1| (-1102)))) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4197 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-1695 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3689 (((-112) $) NIL)) (-3932 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-3468 (((-645 |#1|) $) 27 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4223 (($ (-772) |#1|) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) 31 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-3196 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-1315 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3316 (($ |#1|) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) NIL)) (-1812 (((-1161) $) 62 (|has| |#1| (-1102)))) (-1725 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-3636 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-4222 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) 13) (($ $ (-772)) NIL)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-3268 (((-112) $) NIL)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 12)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) 17)) (-2973 (($) 16)) (-1882 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1236 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL)) (-2721 (((-567) $ $) NIL)) (-1664 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-4281 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3625 (((-112) $) 39)) (-4121 (($ $) NIL)) (-3277 (($ $) NIL (|has| $ (-6 -4423)))) (-3880 (((-772) $) NIL)) (-1908 (($ $) 44)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) 40)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 26)) (-3416 (($ $ $) 65) (($ $ |#1|) NIL)) (-3644 (($ $ $) NIL) (($ |#1| $) 10) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-2504 (((-863) $) 54 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) 58 (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2498 (((-772) $) 9 (|has| $ (-6 -4422))))) -(((-523 |#1| |#2|) (-667 |#1|) (-1219) (-567)) (T -523)) -NIL -(-667 |#1|) -((-2367 ((|#4| |#4|) 37)) (-1471 (((-772) |#4|) 45)) (-3301 (((-772) |#4|) 46)) (-3010 (((-645 |#3|) |#4|) 56 (|has| |#3| (-6 -4423)))) (-1656 (((-3 |#4| "failed") |#4|) 70)) (-3929 ((|#4| |#4|) 62)) (-2593 ((|#1| |#4|) 61))) -(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2367 (|#4| |#4|)) (-15 -1471 ((-772) |#4|)) (-15 -3301 ((-772) |#4|)) (IF (|has| |#3| (-6 -4423)) (-15 -3010 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -2593 (|#1| |#4|)) (-15 -3929 (|#4| |#4|)) (-15 -1656 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -524)) -((-1656 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2593 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-3010 (*1 *2 *3) (-12 (|has| *6 (-6 -4423)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3301 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -2367 (|#4| |#4|)) (-15 -1471 ((-772) |#4|)) (-15 -3301 ((-772) |#4|)) (IF (|has| |#3| (-6 -4423)) (-15 -3010 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -2593 (|#1| |#4|)) (-15 -3929 (|#4| |#4|)) (-15 -1656 ((-3 |#4| "failed") |#4|))) -((-2367 ((|#8| |#4|) 20)) (-3010 (((-645 |#3|) |#4|) 29 (|has| |#7| (-6 -4423)))) (-1656 (((-3 |#8| "failed") |#4|) 23))) -(((-525 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2367 (|#8| |#4|)) (-15 -1656 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4423)) (-15 -3010 ((-645 |#3|) |#4|)) |%noBranch|)) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-994 |#1|) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -525)) -((-3010 (*1 *2 *3) (-12 (|has| *9 (-6 -4423)) (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) (-4 *10 (-688 *7 *8 *9)))) (-1656 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))) -(-10 -7 (-15 -2367 (|#8| |#4|)) (-15 -1656 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4423)) (-15 -3010 ((-645 |#3|) |#4|)) |%noBranch|)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3398 (($ (-772) (-772)) NIL)) (-3158 (($ $ $) NIL)) (-3017 (($ (-603 |#1| |#3|)) NIL) (($ $) NIL)) (-3740 (((-112) $) NIL)) (-2017 (($ $ (-567) (-567)) 21)) (-2302 (($ $ (-567) (-567)) NIL)) (-4088 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-1395 (($ $) NIL)) (-2995 (((-112) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3876 (($ $ (-567) (-567) $) NIL)) (-3824 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2391 (($ $ (-567) (-603 |#1| |#3|)) NIL)) (-3523 (($ $ (-567) (-603 |#1| |#2|)) NIL)) (-3923 (($ (-772) |#1|) NIL)) (-3758 (($) NIL T CONST)) (-2367 (($ $) 30 (|has| |#1| (-308)))) (-4134 (((-603 |#1| |#3|) $ (-567)) NIL)) (-1471 (((-772) $) 33 (|has| |#1| (-559)))) (-2036 ((|#1| $ (-567) (-567) |#1|) NIL)) (-1970 ((|#1| $ (-567) (-567)) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-3301 (((-772) $) 35 (|has| |#1| (-559)))) (-3010 (((-645 (-603 |#1| |#2|)) $) 38 (|has| |#1| (-559)))) (-4371 (((-772) $) NIL)) (-4223 (($ (-772) (-772) |#1|) NIL)) (-4385 (((-772) $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2241 ((|#1| $) 28 (|has| |#1| (-6 (-4424 "*"))))) (-3181 (((-567) $) 10)) (-2631 (((-567) $) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4244 (((-567) $) 13)) (-3802 (((-567) $) NIL)) (-2446 (($ (-645 (-645 |#1|))) NIL)) (-2021 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3298 (((-645 (-645 |#1|)) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1656 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-2833 (($ $ $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2930 (($ $ |#1|) NIL)) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-4217 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-2698 (((-112) $) NIL)) (-2593 ((|#1| $) 26 (|has| |#1| (-6 (-4424 "*"))))) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2900 (((-603 |#1| |#2|) $ (-567)) NIL)) (-2504 (($ (-603 |#1| |#2|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3343 (((-112) $) NIL)) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $ $) NIL) (($ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-603 |#1| |#2|) $ (-603 |#1| |#2|)) NIL) (((-603 |#1| |#3|) (-603 |#1| |#3|) $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-526 |#1| |#2| |#3|) (-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) (-1051) (-567) (-567)) (T -526)) -NIL -(-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-2461 (((-645 (-1218)) $) 13)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL) (($ (-645 (-1218))) 11)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-527) (-13 (-1085) (-10 -8 (-15 -2504 ($ (-645 (-1218)))) (-15 -2461 ((-645 (-1218)) $))))) (T -527)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-527)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-527))))) -(-13 (-1085) (-10 -8 (-15 -2504 ($ (-645 (-1218)))) (-15 -2461 ((-645 (-1218)) $)))) -((-2487 (((-112) $ $) NIL)) (-3300 (((-1137) $) 14)) (-1812 (((-1161) $) NIL)) (-3594 (((-509) $) 11)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 21) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-528) (-13 (-1085) (-10 -8 (-15 -3594 ((-509) $)) (-15 -3300 ((-1137) $))))) (T -528)) -((-3594 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-528))))) -(-13 (-1085) (-10 -8 (-15 -3594 ((-509) $)) (-15 -3300 ((-1137) $)))) -((-2184 (((-692 (-1227)) $) 15)) (-3383 (((-692 (-1225)) $) 39)) (-2011 (((-692 (-1224)) $) 30)) (-1693 (((-692 (-552)) $) 12)) (-1867 (((-692 (-550)) $) 43)) (-3415 (((-692 (-549)) $) 34)) (-4267 (((-772) $ (-128)) 55))) -(((-529 |#1|) (-10 -8 (-15 -4267 ((-772) |#1| (-128))) (-15 -3383 ((-692 (-1225)) |#1|)) (-15 -1867 ((-692 (-550)) |#1|)) (-15 -2011 ((-692 (-1224)) |#1|)) (-15 -3415 ((-692 (-549)) |#1|)) (-15 -2184 ((-692 (-1227)) |#1|)) (-15 -1693 ((-692 (-552)) |#1|))) (-530)) (T -529)) -NIL -(-10 -8 (-15 -4267 ((-772) |#1| (-128))) (-15 -3383 ((-692 (-1225)) |#1|)) (-15 -1867 ((-692 (-550)) |#1|)) (-15 -2011 ((-692 (-1224)) |#1|)) (-15 -3415 ((-692 (-549)) |#1|)) (-15 -2184 ((-692 (-1227)) |#1|)) (-15 -1693 ((-692 (-552)) |#1|))) -((-2184 (((-692 (-1227)) $) 12)) (-3383 (((-692 (-1225)) $) 8)) (-2011 (((-692 (-1224)) $) 10)) (-1693 (((-692 (-552)) $) 13)) (-1867 (((-692 (-550)) $) 9)) (-3415 (((-692 (-549)) $) 11)) (-4267 (((-772) $ (-128)) 7)) (-4350 (((-692 (-129)) $) 14)) (-4023 (($ $) 6))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-4226 ((|#1| $) NIL)) (-4228 (($ $) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 73 (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| |#1| (-852))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4426)))) (-3310 (($ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) 23 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 21 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) NIL)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4227 ((|#1| $) NIL)) (-4156 (($) NIL T CONST)) (-2442 (($ $) 28 (|has| $ (-6 -4426)))) (-2443 (($ $) 29)) (-4230 (($ $) 18) (($ $ (-773)) 35)) (-2526 (($ $) 66 (|has| |#1| (-1104)))) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) NIL)) (-3830 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-3843 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104))) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2124 (((-643 |#1|) $) 27 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 31 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3941 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3965 (($ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) 62 (|has| |#1| (-1104)))) (-4229 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-4039 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) 13) (($ $ (-773)) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-3867 (((-112) $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 12)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 16)) (-4231 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1236 (-549))) NIL) ((|#1| $ (-549)) NIL) ((|#1| $ (-549) |#1|) NIL)) (-3430 (((-549) $ $) NIL)) (-1679 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-4065 (((-112) $) 39)) (-4223 (($ $) NIL)) (-4221 (($ $) NIL (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) 44)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) 40)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 26)) (-4222 (($ $ $) 65) (($ $ |#1|) NIL)) (-4233 (($ $ $) NIL) (($ |#1| $) 10) (($ (-643 $)) NIL) (($ $ |#1|) NIL)) (-4378 (((-865) $) 54 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) 58 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 9 (|has| $ (-6 -4425))))) +(((-523 |#1| |#2|) (-668 |#1|) (-1219) (-549)) (T -523)) +NIL +(-668 |#1|) +((-3514 ((|#4| |#4|) 37)) (-3513 (((-773) |#4|) 45)) (-3512 (((-773) |#4|) 46)) (-3511 (((-643 |#3|) |#4|) 56 (|has| |#3| (-6 -4426)))) (-4021 (((-3 |#4| "failed") |#4|) 70)) (-2170 ((|#4| |#4|) 62)) (-3752 ((|#1| |#4|) 61))) +(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3514 (|#4| |#4|)) (-15 -3513 ((-773) |#4|)) (-15 -3512 ((-773) |#4|)) (IF (|has| |#3| (-6 -4426)) (-15 -3511 ((-643 |#3|) |#4|)) |%noBranch|) (-15 -3752 (|#1| |#4|)) (-15 -2170 (|#4| |#4|)) (-15 -4021 ((-3 |#4| "failed") |#4|))) (-365) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|)) (T -524)) +((-4021 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2170 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-365)) (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-3511 (*1 *2 *3) (-12 (|has| *6 (-6 -4426)) (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-643 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3512 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3514 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(-10 -7 (-15 -3514 (|#4| |#4|)) (-15 -3513 ((-773) |#4|)) (-15 -3512 ((-773) |#4|)) (IF (|has| |#3| (-6 -4426)) (-15 -3511 ((-643 |#3|) |#4|)) |%noBranch|) (-15 -3752 (|#1| |#4|)) (-15 -2170 (|#4| |#4|)) (-15 -4021 ((-3 |#4| "failed") |#4|))) +((-3514 ((|#8| |#4|) 20)) (-3511 (((-643 |#3|) |#4|) 29 (|has| |#7| (-6 -4426)))) (-4021 (((-3 |#8| "failed") |#4|) 23))) +(((-525 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3514 (|#8| |#4|)) (-15 -4021 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4426)) (-15 -3511 ((-643 |#3|) |#4|)) |%noBranch|)) (-560) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|) (-994 |#1|) (-374 |#5|) (-374 |#5|) (-688 |#5| |#6| |#7|)) (T -525)) +((-3511 (*1 *2 *3) (-12 (|has| *9 (-6 -4426)) (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-4 *7 (-994 *4)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7)) (-5 *2 (-643 *6)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) (-4 *10 (-688 *7 *8 *9)))) (-4021 (*1 *2 *3) (|partial| -12 (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7))))) +(-10 -7 (-15 -3514 (|#8| |#4|)) (-15 -4021 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4426)) (-15 -3511 ((-643 |#3|) |#4|)) |%noBranch|)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773) (-773)) NIL)) (-2501 (($ $ $) NIL)) (-3838 (($ (-604 |#1| |#3|)) NIL) (($ $) NIL)) (-3525 (((-112) $) NIL)) (-2500 (($ $ (-549) (-549)) 21)) (-2499 (($ $ (-549) (-549)) NIL)) (-2498 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-2503 (($ $) NIL)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-2497 (($ $ (-549) (-549) $) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549)) $) NIL)) (-1345 (($ $ (-549) (-604 |#1| |#3|)) NIL)) (-1344 (($ $ (-549) (-604 |#1| |#2|)) NIL)) (-3757 (($ (-773) |#1|) NIL)) (-4156 (($) NIL T CONST)) (-3514 (($ $) 30 (|has| |#1| (-308)))) (-3516 (((-604 |#1| |#3|) $ (-549)) NIL)) (-3513 (((-773) $) 33 (|has| |#1| (-560)))) (-1684 ((|#1| $ (-549) (-549) |#1|) NIL)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3512 (((-773) $) 35 (|has| |#1| (-560)))) (-3511 (((-643 (-604 |#1| |#2|)) $) 38 (|has| |#1| (-560)))) (-3519 (((-773) $) NIL)) (-4046 (($ (-773) (-773) |#1|) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#1| $) 28 (|has| |#1| (-6 (-4427 #1="*"))))) (-3523 (((-549) $) 10)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) 13)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#1|))) NIL)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4025 (((-643 (-643 |#1|)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4021 (((-3 $ #2="failed") $) 42 (|has| |#1| (-365)))) (-2502 (($ $ $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-3889 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-560)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549))) NIL)) (-3756 (($ (-643 |#1|)) NIL) (($ (-643 $)) NIL)) (-3526 (((-112) $) NIL)) (-3752 ((|#1| $) 26 (|has| |#1| (-6 (-4427 #1#))))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3515 (((-604 |#1| |#2|) $ (-549)) NIL)) (-4378 (($ (-604 |#1| |#2|)) NIL) (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-604 |#1| |#2|) $ (-604 |#1| |#2|)) NIL) (((-604 |#1| |#3|) (-604 |#1| |#3|) $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-526 |#1| |#2| |#3|) (-688 |#1| (-604 |#1| |#3|) (-604 |#1| |#2|)) (-1052) (-549) (-549)) (T -526)) +NIL +(-688 |#1| (-604 |#1| |#3|) (-604 |#1| |#2|)) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2171 (((-643 (-1220)) $) 13)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL) (($ (-643 (-1220))) 11)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-527) (-13 (-1086) (-10 -8 (-15 -4378 ($ (-643 (-1220)))) (-15 -2171 ((-643 (-1220)) $))))) (T -527)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-527)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-527))))) +(-13 (-1086) (-10 -8 (-15 -4378 ($ (-643 (-1220)))) (-15 -2171 ((-643 (-1220)) $)))) +((-2968 (((-112) $ $) NIL)) (-2172 (((-1138) $) 14)) (-3663 (((-1162) $) NIL)) (-3873 (((-509) $) 11)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 21) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-528) (-13 (-1086) (-10 -8 (-15 -3873 ((-509) $)) (-15 -2172 ((-1138) $))))) (T -528)) +((-3873 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-528))))) +(-13 (-1086) (-10 -8 (-15 -3873 ((-509) $)) (-15 -2172 ((-1138) $)))) +((-2178 (((-693 (-1228)) $) 15)) (-2174 (((-693 (-1226)) $) 38)) (-2176 (((-693 (-1225)) $) 29)) (-2179 (((-693 (-553)) $) 12)) (-2175 (((-693 (-551)) $) 42)) (-2177 (((-693 (-550)) $) 33)) (-2173 (((-773) $ (-129)) 54))) +(((-529 |#1|) (-10 -8 (-15 -2173 ((-773) |#1| (-129))) (-15 -2174 ((-693 (-1226)) |#1|)) (-15 -2175 ((-693 (-551)) |#1|)) (-15 -2176 ((-693 (-1225)) |#1|)) (-15 -2177 ((-693 (-550)) |#1|)) (-15 -2178 ((-693 (-1228)) |#1|)) (-15 -2179 ((-693 (-553)) |#1|))) (-530)) (T -529)) +NIL +(-10 -8 (-15 -2173 ((-773) |#1| (-129))) (-15 -2174 ((-693 (-1226)) |#1|)) (-15 -2175 ((-693 (-551)) |#1|)) (-15 -2176 ((-693 (-1225)) |#1|)) (-15 -2177 ((-693 (-550)) |#1|)) (-15 -2178 ((-693 (-1228)) |#1|)) (-15 -2179 ((-693 (-553)) |#1|))) +((-2178 (((-693 (-1228)) $) 12)) (-2174 (((-693 (-1226)) $) 8)) (-2176 (((-693 (-1225)) $) 10)) (-2179 (((-693 (-553)) $) 13)) (-2175 (((-693 (-551)) $) 9)) (-2177 (((-693 (-550)) $) 11)) (-2173 (((-773) $ (-129)) 7)) (-2180 (((-693 (-128)) $) 14)) (-1868 (($ $) 6))) (((-530) (-140)) (T -530)) -((-4350 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1227))))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224))))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1225))))) (-4267 (*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772))))) -(-13 (-173) (-10 -8 (-15 -4350 ((-692 (-129)) $)) (-15 -1693 ((-692 (-552)) $)) (-15 -2184 ((-692 (-1227)) $)) (-15 -3415 ((-692 (-549)) $)) (-15 -2011 ((-692 (-1224)) $)) (-15 -1867 ((-692 (-550)) $)) (-15 -3383 ((-692 (-1225)) $)) (-15 -4267 ((-772) $ (-128))))) +((-2180 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-128))))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-553))))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1228))))) (-2177 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-550))))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1225))))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-551))))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1226))))) (-2173 (*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-129)) (-5 *2 (-773))))) +(-13 (-173) (-10 -8 (-15 -2180 ((-693 (-128)) $)) (-15 -2179 ((-693 (-553)) $)) (-15 -2178 ((-693 (-1228)) $)) (-15 -2177 ((-693 (-550)) $)) (-15 -2176 ((-693 (-1225)) $)) (-15 -2175 ((-693 (-551)) $)) (-15 -2174 ((-693 (-1226)) $)) (-15 -2173 ((-773) $ (-129))))) (((-173) . T)) -((-2270 (((-1175 |#1|) (-772)) 115)) (-3132 (((-1269 |#1|) (-1269 |#1|) (-923)) 108)) (-2597 (((-1274) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) |#1|) 124)) (-3444 (((-1269 |#1|) (-1269 |#1|) (-772)) 53)) (-2119 (((-1269 |#1|) (-923)) 110)) (-3775 (((-1269 |#1|) (-1269 |#1|) (-567)) 30)) (-1916 (((-1175 |#1|) (-1269 |#1|)) 116)) (-2075 (((-1269 |#1|) (-923)) 137)) (-3739 (((-112) (-1269 |#1|)) 120)) (-2013 (((-1269 |#1|) (-1269 |#1|) (-923)) 100)) (-3908 (((-1175 |#1|) (-1269 |#1|)) 131)) (-2667 (((-923) (-1269 |#1|)) 96)) (-1752 (((-1269 |#1|) (-1269 |#1|)) 38)) (-2188 (((-1269 |#1|) (-923) (-923)) 140)) (-2840 (((-1269 |#1|) (-1269 |#1|) (-1122) (-1122)) 29)) (-1304 (((-1269 |#1|) (-1269 |#1|) (-772) (-1122)) 54)) (-4374 (((-1269 (-1269 |#1|)) (-923)) 136)) (-3064 (((-1269 |#1|) (-1269 |#1|) (-1269 |#1|)) 121)) (** (((-1269 |#1|) (-1269 |#1|) (-567)) 67)) (* (((-1269 |#1|) (-1269 |#1|) (-1269 |#1|)) 31))) -(((-531 |#1|) (-10 -7 (-15 -2597 ((-1274) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) |#1|)) (-15 -2119 ((-1269 |#1|) (-923))) (-15 -2188 ((-1269 |#1|) (-923) (-923))) (-15 -1916 ((-1175 |#1|) (-1269 |#1|))) (-15 -2270 ((-1175 |#1|) (-772))) (-15 -1304 ((-1269 |#1|) (-1269 |#1|) (-772) (-1122))) (-15 -3444 ((-1269 |#1|) (-1269 |#1|) (-772))) (-15 -2840 ((-1269 |#1|) (-1269 |#1|) (-1122) (-1122))) (-15 -3775 ((-1269 |#1|) (-1269 |#1|) (-567))) (-15 ** ((-1269 |#1|) (-1269 |#1|) (-567))) (-15 * ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -3064 ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -2013 ((-1269 |#1|) (-1269 |#1|) (-923))) (-15 -3132 ((-1269 |#1|) (-1269 |#1|) (-923))) (-15 -1752 ((-1269 |#1|) (-1269 |#1|))) (-15 -2667 ((-923) (-1269 |#1|))) (-15 -3739 ((-112) (-1269 |#1|))) (-15 -4374 ((-1269 (-1269 |#1|)) (-923))) (-15 -2075 ((-1269 |#1|) (-923))) (-15 -3908 ((-1175 |#1|) (-1269 |#1|)))) (-351)) (T -531)) -((-3908 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-1175 *4)) (-5 *1 (-531 *4)))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-4374 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 (-1269 *4))) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-531 *4)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-923)) (-5 *1 (-531 *4)))) (-1752 (*1 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (-3132 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-923)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3064 (*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3775 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2840 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1122)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3444 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-1304 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1269 *5)) (-5 *3 (-772)) (-5 *4 (-1122)) (-4 *5 (-351)) (-5 *1 (-531 *5)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1175 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-1175 *4)) (-5 *1 (-531 *4)))) (-2188 (*1 *2 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2597 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) (-4 *4 (-351)) (-5 *2 (-1274)) (-5 *1 (-531 *4))))) -(-10 -7 (-15 -2597 ((-1274) (-1269 (-645 (-2 (|:| -2233 |#1|) (|:| -2188 (-1122))))) |#1|)) (-15 -2119 ((-1269 |#1|) (-923))) (-15 -2188 ((-1269 |#1|) (-923) (-923))) (-15 -1916 ((-1175 |#1|) (-1269 |#1|))) (-15 -2270 ((-1175 |#1|) (-772))) (-15 -1304 ((-1269 |#1|) (-1269 |#1|) (-772) (-1122))) (-15 -3444 ((-1269 |#1|) (-1269 |#1|) (-772))) (-15 -2840 ((-1269 |#1|) (-1269 |#1|) (-1122) (-1122))) (-15 -3775 ((-1269 |#1|) (-1269 |#1|) (-567))) (-15 ** ((-1269 |#1|) (-1269 |#1|) (-567))) (-15 * ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -3064 ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -2013 ((-1269 |#1|) (-1269 |#1|) (-923))) (-15 -3132 ((-1269 |#1|) (-1269 |#1|) (-923))) (-15 -1752 ((-1269 |#1|) (-1269 |#1|))) (-15 -2667 ((-923) (-1269 |#1|))) (-15 -3739 ((-112) (-1269 |#1|))) (-15 -4374 ((-1269 (-1269 |#1|)) (-923))) (-15 -2075 ((-1269 |#1|) (-923))) (-15 -3908 ((-1175 |#1|) (-1269 |#1|)))) -((-2184 (((-692 (-1227)) $) NIL)) (-3383 (((-692 (-1225)) $) NIL)) (-2011 (((-692 (-1224)) $) NIL)) (-1693 (((-692 (-552)) $) NIL)) (-1867 (((-692 (-550)) $) NIL)) (-3415 (((-692 (-549)) $) NIL)) (-4267 (((-772) $ (-128)) NIL)) (-4350 (((-692 (-129)) $) 26)) (-2236 (((-1122) $ (-1122)) 31)) (-3932 (((-1122) $) 30)) (-3142 (((-112) $) 20)) (-2788 (($ (-391)) 14) (($ (-1161)) 16)) (-1518 (((-112) $) 27)) (-2504 (((-863) $) 34)) (-4023 (($ $) 28))) -(((-532) (-13 (-530) (-614 (-863)) (-10 -8 (-15 -2788 ($ (-391))) (-15 -2788 ($ (-1161))) (-15 -1518 ((-112) $)) (-15 -3142 ((-112) $)) (-15 -3932 ((-1122) $)) (-15 -2236 ((-1122) $ (-1122)))))) (T -532)) -((-2788 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))) (-2788 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-532)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))) (-2236 (*1 *2 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-532))))) -(-13 (-530) (-614 (-863)) (-10 -8 (-15 -2788 ($ (-391))) (-15 -2788 ($ (-1161))) (-15 -1518 ((-112) $)) (-15 -3142 ((-112) $)) (-15 -3932 ((-1122) $)) (-15 -2236 ((-1122) $ (-1122))))) -((-2399 (((-1 |#1| |#1|) |#1|) 11)) (-1898 (((-1 |#1| |#1|)) 10))) -(((-533 |#1|) (-10 -7 (-15 -1898 ((-1 |#1| |#1|))) (-15 -2399 ((-1 |#1| |#1|) |#1|))) (-13 (-727) (-25))) (T -533)) -((-2399 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))) (-1898 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25)))))) -(-10 -7 (-15 -1898 ((-1 |#1| |#1|))) (-15 -2399 ((-1 |#1| |#1|) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-1992 (($ $ $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-3764 (($ (-772) |#1|) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-4364 (($ (-1 (-772) (-772)) $) NIL)) (-4164 ((|#1| $) NIL)) (-1809 (((-772) $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 27)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3045 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL))) -(((-534 |#1|) (-13 (-794) (-512 (-772) |#1|)) (-851)) (T -534)) -NIL -(-13 (-794) (-512 (-772) |#1|)) -((-4165 (((-645 |#2|) (-1175 |#1|) |#3|) 98)) (-4345 (((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1175 |#1|)) (-1175 |#1|))) 114)) (-2292 (((-1175 |#1|) (-690 |#1|)) 110))) -(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2292 ((-1175 |#1|) (-690 |#1|))) (-15 -4165 ((-645 |#2|) (-1175 |#1|) |#3|)) (-15 -4345 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1175 |#1|)) (-1175 |#1|))))) (-365) (-365) (-13 (-365) (-849))) (T -535)) -((-4345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1175 *6)) (-1175 *6))) (-4 *6 (-365)) (-5 *2 (-645 (-2 (|:| |outval| *7) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1175 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849)))))) -(-10 -7 (-15 -2292 ((-1175 |#1|) (-690 |#1|))) (-15 -4165 ((-645 |#2|) (-1175 |#1|) |#3|)) (-15 -4345 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1175 |#1|)) (-1175 |#1|))))) -((-3532 (((-692 (-1227)) $ (-1227)) NIL)) (-2787 (((-692 (-552)) $ (-552)) NIL)) (-1465 (((-772) $ (-128)) 41)) (-2980 (((-692 (-129)) $ (-129)) 42)) (-2184 (((-692 (-1227)) $) NIL)) (-3383 (((-692 (-1225)) $) NIL)) (-2011 (((-692 (-1224)) $) NIL)) (-1693 (((-692 (-552)) $) NIL)) (-1867 (((-692 (-550)) $) NIL)) (-3415 (((-692 (-549)) $) NIL)) (-4267 (((-772) $ (-128)) 37)) (-4350 (((-692 (-129)) $) 39)) (-1453 (((-112) $) 29)) (-1956 (((-692 $) (-582) (-956)) 19) (((-692 $) (-494) (-956)) 26)) (-2504 (((-863) $) 49)) (-4023 (($ $) 43))) -(((-536) (-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -1956 ((-692 $) (-494) (-956)))))) (T -536)) -((-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-494)) (-5 *4 (-956)) (-5 *2 (-692 (-536))) (-5 *1 (-536))))) -(-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -1956 ((-692 $) (-494) (-956))))) -((-2007 (((-844 (-567))) 12)) (-2019 (((-844 (-567))) 14)) (-4339 (((-834 (-567))) 9))) -(((-537) (-10 -7 (-15 -4339 ((-834 (-567)))) (-15 -2007 ((-844 (-567)))) (-15 -2019 ((-844 (-567)))))) (T -537)) -((-2019 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-2007 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-4339 (*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537))))) -(-10 -7 (-15 -4339 ((-834 (-567)))) (-15 -2007 ((-844 (-567)))) (-15 -2019 ((-844 (-567))))) -((-3628 (((-539) (-1179)) 15)) (-2963 ((|#1| (-539)) 20))) -(((-538 |#1|) (-10 -7 (-15 -3628 ((-539) (-1179))) (-15 -2963 (|#1| (-539)))) (-1219)) (T -538)) -((-2963 (*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1219)))) (-3628 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-539)) (-5 *1 (-538 *4)) (-4 *4 (-1219))))) -(-10 -7 (-15 -3628 ((-539) (-1179))) (-15 -2963 (|#1| (-539)))) -((-2487 (((-112) $ $) NIL)) (-2956 (((-1161) $) 55)) (-2507 (((-112) $) 51)) (-1365 (((-1179) $) 52)) (-2962 (((-112) $) 49)) (-3322 (((-1161) $) 50)) (-2231 (($ (-1161)) 56)) (-3202 (((-112) $) NIL)) (-1667 (((-112) $) NIL)) (-2737 (((-112) $) NIL)) (-1812 (((-1161) $) NIL)) (-2655 (($ $ (-645 (-1179))) 21)) (-2963 (((-52) $) 23)) (-3243 (((-112) $) NIL)) (-1392 (((-567) $) NIL)) (-3479 (((-1122) $) NIL)) (-2894 (($ $ (-645 (-1179)) (-1179)) 73)) (-4341 (((-112) $) NIL)) (-2627 (((-225) $) NIL)) (-1782 (($ $) 44)) (-2682 (((-863) $) NIL)) (-4178 (((-112) $ $) NIL)) (-1882 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-3729 (((-645 $) $) 30)) (-3921 (((-1179) (-645 $)) 57)) (-1322 (($ (-1161)) NIL) (($ (-1179)) 19) (($ (-567)) 8) (($ (-225)) 28) (($ (-863)) NIL) (($ (-645 $)) 65) (((-1106) $) 12) (($ (-1106)) 13)) (-2539 (((-1179) (-1179) (-645 $)) 60)) (-2504 (((-863) $) 54)) (-3339 (($ $) 59)) (-3328 (($ $) 58)) (-2336 (($ $ (-645 $)) 66)) (-3858 (((-112) $ $) NIL)) (-4005 (((-112) $) 29)) (-1807 (($) 9 T CONST)) (-1820 (($) 11 T CONST)) (-2968 (((-112) $ $) 74)) (-3064 (($ $ $) 82)) (-3045 (($ $ $) 75)) (** (($ $ (-772)) 81) (($ $ (-567)) 80)) (* (($ $ $) 76)) (-2498 (((-567) $) NIL))) -(((-539) (-13 (-1105 (-1161) (-1179) (-567) (-225) (-863)) (-615 (-1106)) (-10 -8 (-15 -2963 ((-52) $)) (-15 -1322 ($ (-1106))) (-15 -2336 ($ $ (-645 $))) (-15 -2894 ($ $ (-645 (-1179)) (-1179))) (-15 -2655 ($ $ (-645 (-1179)))) (-15 -3045 ($ $ $)) (-15 * ($ $ $)) (-15 -3064 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 0 ($) -3562) (-15 1 ($) -3562) (-15 -1782 ($ $)) (-15 -2956 ((-1161) $)) (-15 -2231 ($ (-1161))) (-15 -3921 ((-1179) (-645 $))) (-15 -2539 ((-1179) (-1179) (-645 $)))))) (T -539)) -((-2963 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-539)))) (-2336 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-1179)) (-5 *1 (-539)))) (-2655 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-539)))) (-3045 (*1 *1 *1 *1) (-5 *1 (-539))) (* (*1 *1 *1 *1) (-5 *1 (-539))) (-3064 (*1 *1 *1 *1) (-5 *1 (-539))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539)))) (-1807 (*1 *1) (-5 *1 (-539))) (-1820 (*1 *1) (-5 *1 (-539))) (-1782 (*1 *1 *1) (-5 *1 (-539))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-539)))) (-2231 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-539)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1179)) (-5 *1 (-539)))) (-2539 (*1 *2 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-539))) (-5 *1 (-539))))) -(-13 (-1105 (-1161) (-1179) (-567) (-225) (-863)) (-615 (-1106)) (-10 -8 (-15 -2963 ((-52) $)) (-15 -1322 ($ (-1106))) (-15 -2336 ($ $ (-645 $))) (-15 -2894 ($ $ (-645 (-1179)) (-1179))) (-15 -2655 ($ $ (-645 (-1179)))) (-15 -3045 ($ $ $)) (-15 * ($ $ $)) (-15 -3064 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 (-1807) ($) -3562) (-15 (-1820) ($) -3562) (-15 -1782 ($ $)) (-15 -2956 ((-1161) $)) (-15 -2231 ($ (-1161))) (-15 -3921 ((-1179) (-645 $))) (-15 -2539 ((-1179) (-1179) (-645 $))))) -((-2488 ((|#2| |#2|) 17)) (-4030 ((|#2| |#2|) 13)) (-2033 ((|#2| |#2| (-567) (-567)) 20)) (-3966 ((|#2| |#2|) 15))) -(((-540 |#1| |#2|) (-10 -7 (-15 -4030 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-567) (-567)))) (-13 (-559) (-147)) (-1260 |#1|)) (T -540)) -((-2033 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1260 *4)))) (-2488 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1260 *3)))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1260 *3)))) (-4030 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1260 *3))))) -(-10 -7 (-15 -4030 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-567) (-567)))) -((-1855 (((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1179))) 32)) (-1902 (((-645 |#2|) (-954 |#1|) |#3|) 54) (((-645 |#2|) (-1175 |#1|) |#3|) 53)) (-1757 (((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)) |#3|) 106))) -(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -1902 ((-645 |#2|) (-1175 |#1|) |#3|)) (-15 -1902 ((-645 |#2|) (-954 |#1|) |#3|)) (-15 -1757 ((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)) |#3|)) (-15 -1855 ((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1179))))) (-455) (-365) (-13 (-365) (-849))) (T -541)) -((-1855 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1179))) (-4 *6 (-365)) (-5 *2 (-645 (-295 (-954 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))) (-1757 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-849))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -1902 ((-645 |#2|) (-1175 |#1|) |#3|)) (-15 -1902 ((-645 |#2|) (-954 |#1|) |#3|)) (-15 -1757 ((-645 (-645 |#2|)) (-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)) |#3|)) (-15 -1855 ((-645 (-295 (-954 |#2|))) (-645 |#2|) (-645 (-1179))))) -((-3461 ((|#2| |#2| |#1|) 17)) (-2445 ((|#2| (-645 |#2|)) 31)) (-2771 ((|#2| (-645 |#2|)) 52))) -(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2445 (|#2| (-645 |#2|))) (-15 -2771 (|#2| (-645 |#2|))) (-15 -3461 (|#2| |#2| |#1|))) (-308) (-1245 |#1|) |#1| (-1 |#1| |#1| (-772))) (T -542)) -((-3461 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1245 *3)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) -(-10 -7 (-15 -2445 (|#2| (-645 |#2|))) (-15 -2771 (|#2| (-645 |#2|))) (-15 -3461 (|#2| |#2| |#1|))) -((-3661 (((-421 (-1175 |#4|)) (-1175 |#4|) (-1 (-421 (-1175 |#3|)) (-1175 |#3|))) 89) (((-421 |#4|) |#4| (-1 (-421 (-1175 |#3|)) (-1175 |#3|))) 218))) -(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-421 |#4|) |#4| (-1 (-421 (-1175 |#3|)) (-1175 |#3|)))) (-15 -3661 ((-421 (-1175 |#4|)) (-1175 |#4|) (-1 (-421 (-1175 |#3|)) (-1175 |#3|))))) (-851) (-794) (-13 (-308) (-147)) (-951 |#3| |#2| |#1|)) (T -543)) -((-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1175 *7)) (-1175 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-951 *7 *6 *5)) (-5 *2 (-421 (-1175 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1175 *8)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1175 *7)) (-1175 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3)) (-4 *3 (-951 *7 *6 *5))))) -(-10 -7 (-15 -3661 ((-421 |#4|) |#4| (-1 (-421 (-1175 |#3|)) (-1175 |#3|)))) (-15 -3661 ((-421 (-1175 |#4|)) (-1175 |#4|) (-1 (-421 (-1175 |#3|)) (-1175 |#3|))))) -((-2488 ((|#4| |#4|) 74)) (-4030 ((|#4| |#4|) 70)) (-2033 ((|#4| |#4| (-567) (-567)) 76)) (-3966 ((|#4| |#4|) 72))) -(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4030 (|#4| |#4|)) (-15 -3966 (|#4| |#4|)) (-15 -2488 (|#4| |#4|)) (-15 -2033 (|#4| |#4| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1245 |#1|) (-725 |#1| |#2|) (-1260 |#3|)) (T -544)) -((-2033 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-4 *5 (-1245 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1260 *6)))) (-2488 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5)))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5)))) (-4030 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5))))) -(-10 -7 (-15 -4030 (|#4| |#4|)) (-15 -3966 (|#4| |#4|)) (-15 -2488 (|#4| |#4|)) (-15 -2033 (|#4| |#4| (-567) (-567)))) -((-2488 ((|#2| |#2|) 27)) (-4030 ((|#2| |#2|) 23)) (-2033 ((|#2| |#2| (-567) (-567)) 29)) (-3966 ((|#2| |#2|) 25))) -(((-545 |#1| |#2|) (-10 -7 (-15 -4030 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1260 |#1|)) (T -545)) -((-2033 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1260 *4)))) (-2488 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1260 *3)))) (-3966 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1260 *3)))) (-4030 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1260 *3))))) -(-10 -7 (-15 -4030 (|#2| |#2|)) (-15 -3966 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)) (-15 -2033 (|#2| |#2| (-567) (-567)))) -((-3656 (((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)) 18) (((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|)) 14) (((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|)) 32))) -(((-546 |#1| |#2|) (-10 -7 (-15 -3656 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -3656 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -3656 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) (-1051) (-1245 |#1|)) (T -546)) -((-3656 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) (-3656 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) (-3656 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1051)) (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -3656 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -3656 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -3656 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) -((-3309 (($ $ $) 84)) (-1466 (((-421 $) $) 52)) (-4275 (((-3 (-567) "failed") $) 64)) (-3094 (((-567) $) 42)) (-3810 (((-3 (-410 (-567)) "failed") $) 79)) (-1527 (((-112) $) 26)) (-2485 (((-410 (-567)) $) 77)) (-2946 (((-112) $) 55)) (-1591 (($ $ $ $) 92)) (-3635 (((-112) $) 17)) (-4090 (($ $ $) 62)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 74)) (-3104 (((-3 $ "failed") $) 69)) (-1789 (($ $) 24)) (-3718 (($ $ $) 90)) (-2221 (($) 65)) (-2256 (($ $) 58)) (-3661 (((-421 $) $) 50)) (-1359 (((-112) $) 15)) (-2465 (((-772) $) 32)) (-3592 (($ $ (-772)) NIL) (($ $) 11)) (-3846 (($ $) 18)) (-1322 (((-567) $) NIL) (((-539) $) 41) (((-894 (-567)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-2214 (((-772)) 9)) (-3050 (((-112) $ $) 21)) (-3040 (($ $ $) 60))) -(((-547 |#1|) (-10 -8 (-15 -3718 (|#1| |#1| |#1|)) (-15 -1591 (|#1| |#1| |#1| |#1|)) (-15 -1789 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 -3050 ((-112) |#1| |#1|)) (-15 -1359 ((-112) |#1|)) (-15 -2221 (|#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -1322 ((-225) |#1|)) (-15 -1322 ((-381) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -3040 (|#1| |#1| |#1|)) (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -1322 ((-567) |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3635 ((-112) |#1|)) (-15 -2465 ((-772) |#1|)) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -2946 ((-112) |#1|)) (-15 -2214 ((-772)))) (-548)) (T -547)) -((-2214 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548))))) -(-10 -8 (-15 -3718 (|#1| |#1| |#1|)) (-15 -1591 (|#1| |#1| |#1| |#1|)) (-15 -1789 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -3309 (|#1| |#1| |#1|)) (-15 -3050 ((-112) |#1| |#1|)) (-15 -1359 ((-112) |#1|)) (-15 -2221 (|#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -1322 ((-225) |#1|)) (-15 -1322 ((-381) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -3040 (|#1| |#1| |#1|)) (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -1322 ((-567) |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3635 ((-112) |#1|)) (-15 -2465 ((-772) |#1|)) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -2946 ((-112) |#1|)) (-15 -2214 ((-772)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-3309 (($ $ $) 90)) (-2932 (((-3 $ "failed") $ $) 20)) (-2893 (($ $ $ $) 79)) (-3864 (($ $) 57)) (-1466 (((-421 $) $) 58)) (-4175 (((-112) $ $) 130)) (-2777 (((-567) $) 119)) (-3075 (($ $ $) 93)) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 111)) (-3094 (((-567) $) 112)) (-2432 (($ $ $) 134)) (-2690 (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 109) (((-690 (-567)) (-690 $)) 108)) (-1377 (((-3 $ "failed") $) 37)) (-3810 (((-3 (-410 (-567)) "failed") $) 87)) (-1527 (((-112) $) 89)) (-2485 (((-410 (-567)) $) 88)) (-2119 (($) 86) (($ $) 85)) (-2443 (($ $ $) 133)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 128)) (-2946 (((-112) $) 59)) (-1591 (($ $ $ $) 77)) (-4211 (($ $ $) 91)) (-3635 (((-112) $) 121)) (-4090 (($ $ $) 102)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 105)) (-4384 (((-112) $) 35)) (-3807 (((-112) $) 97)) (-3104 (((-3 $ "failed") $) 99)) (-2585 (((-112) $) 120)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 137)) (-4003 (($ $ $ $) 78)) (-2727 (($ $ $) 122)) (-1446 (($ $ $) 123)) (-1789 (($ $) 81)) (-3613 (($ $) 94)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-3718 (($ $ $) 76)) (-2221 (($) 98 T CONST)) (-3762 (($ $) 83)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-2256 (($ $) 103)) (-3661 (((-421 $) $) 56)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 135)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 129)) (-1359 (((-112) $) 96)) (-2465 (((-772) $) 131)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 132)) (-3592 (($ $ (-772)) 116) (($ $) 114)) (-2199 (($ $) 82)) (-3846 (($ $) 84)) (-1322 (((-567) $) 113) (((-539) $) 107) (((-894 (-567)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 110)) (-2214 (((-772)) 32 T CONST)) (-3050 (((-112) $ $) 92)) (-3040 (($ $ $) 104)) (-3858 (((-112) $ $) 9)) (-3140 (($) 95)) (-3269 (((-112) $ $) 45)) (-1799 (($ $ $ $) 80)) (-1368 (($ $) 118)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-772)) 117) (($ $) 115)) (-3016 (((-112) $ $) 125)) (-2996 (((-112) $ $) 126)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 124)) (-2986 (((-112) $ $) 127)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-2183 (((-1174 |#1|) (-773)) 114)) (-3754 (((-1269 |#1|) (-1269 |#1|) (-922)) 107)) (-2181 (((-1275) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) |#1|) 122)) (-2185 (((-1269 |#1|) (-1269 |#1|) (-773)) 53)) (-3395 (((-1269 |#1|) (-922)) 109)) (-2187 (((-1269 |#1|) (-1269 |#1|) (-549)) 30)) (-2182 (((-1174 |#1|) (-1269 |#1|)) 115)) (-2191 (((-1269 |#1|) (-922)) 135)) (-2189 (((-112) (-1269 |#1|)) 119)) (-3536 (((-1269 |#1|) (-1269 |#1|) (-922)) 99)) (-2192 (((-1174 |#1|) (-1269 |#1|)) 129)) (-2188 (((-922) (-1269 |#1|)) 95)) (-2806 (((-1269 |#1|) (-1269 |#1|)) 38)) (-2563 (((-1269 |#1|) (-922) (-922)) 138)) (-2186 (((-1269 |#1|) (-1269 |#1|) (-1123) (-1123)) 29)) (-2184 (((-1269 |#1|) (-1269 |#1|) (-773) (-1123)) 54)) (-2190 (((-1269 (-1269 |#1|)) (-922)) 134)) (-4381 (((-1269 |#1|) (-1269 |#1|) (-1269 |#1|)) 120)) (** (((-1269 |#1|) (-1269 |#1|) (-549)) 67)) (* (((-1269 |#1|) (-1269 |#1|) (-1269 |#1|)) 31))) +(((-531 |#1|) (-10 -7 (-15 -2181 ((-1275) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) |#1|)) (-15 -3395 ((-1269 |#1|) (-922))) (-15 -2563 ((-1269 |#1|) (-922) (-922))) (-15 -2182 ((-1174 |#1|) (-1269 |#1|))) (-15 -2183 ((-1174 |#1|) (-773))) (-15 -2184 ((-1269 |#1|) (-1269 |#1|) (-773) (-1123))) (-15 -2185 ((-1269 |#1|) (-1269 |#1|) (-773))) (-15 -2186 ((-1269 |#1|) (-1269 |#1|) (-1123) (-1123))) (-15 -2187 ((-1269 |#1|) (-1269 |#1|) (-549))) (-15 ** ((-1269 |#1|) (-1269 |#1|) (-549))) (-15 * ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -4381 ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -3536 ((-1269 |#1|) (-1269 |#1|) (-922))) (-15 -3754 ((-1269 |#1|) (-1269 |#1|) (-922))) (-15 -2806 ((-1269 |#1|) (-1269 |#1|))) (-15 -2188 ((-922) (-1269 |#1|))) (-15 -2189 ((-112) (-1269 |#1|))) (-15 -2190 ((-1269 (-1269 |#1|)) (-922))) (-15 -2191 ((-1269 |#1|) (-922))) (-15 -2192 ((-1174 |#1|) (-1269 |#1|)))) (-352)) (T -531)) +((-2192 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 (-1269 *4))) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-531 *4)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-922)) (-5 *1 (-531 *4)))) (-2806 (*1 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) (-3754 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-922)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-922)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-4381 (*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-549)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-2187 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-549)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-2186 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1123)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-2185 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) (-2184 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1269 *5)) (-5 *3 (-773)) (-5 *4 (-1123)) (-4 *5 (-352)) (-5 *1 (-531 *5)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)))) (-2563 (*1 *2 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) (-2181 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) (-4 *4 (-352)) (-5 *2 (-1275)) (-5 *1 (-531 *4))))) +(-10 -7 (-15 -2181 ((-1275) (-1269 (-643 (-2 (|:| -3826 |#1|) (|:| -2563 (-1123))))) |#1|)) (-15 -3395 ((-1269 |#1|) (-922))) (-15 -2563 ((-1269 |#1|) (-922) (-922))) (-15 -2182 ((-1174 |#1|) (-1269 |#1|))) (-15 -2183 ((-1174 |#1|) (-773))) (-15 -2184 ((-1269 |#1|) (-1269 |#1|) (-773) (-1123))) (-15 -2185 ((-1269 |#1|) (-1269 |#1|) (-773))) (-15 -2186 ((-1269 |#1|) (-1269 |#1|) (-1123) (-1123))) (-15 -2187 ((-1269 |#1|) (-1269 |#1|) (-549))) (-15 ** ((-1269 |#1|) (-1269 |#1|) (-549))) (-15 * ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -4381 ((-1269 |#1|) (-1269 |#1|) (-1269 |#1|))) (-15 -3536 ((-1269 |#1|) (-1269 |#1|) (-922))) (-15 -3754 ((-1269 |#1|) (-1269 |#1|) (-922))) (-15 -2806 ((-1269 |#1|) (-1269 |#1|))) (-15 -2188 ((-922) (-1269 |#1|))) (-15 -2189 ((-112) (-1269 |#1|))) (-15 -2190 ((-1269 (-1269 |#1|)) (-922))) (-15 -2191 ((-1269 |#1|) (-922))) (-15 -2192 ((-1174 |#1|) (-1269 |#1|)))) +((-2178 (((-693 (-1228)) $) NIL)) (-2174 (((-693 (-1226)) $) NIL)) (-2176 (((-693 (-1225)) $) NIL)) (-2179 (((-693 (-553)) $) NIL)) (-2175 (((-693 (-551)) $) NIL)) (-2177 (((-693 (-550)) $) NIL)) (-2173 (((-773) $ (-129)) NIL)) (-2180 (((-693 (-128)) $) 26)) (-2193 (((-1123) $ (-1123)) 31)) (-3843 (((-1123) $) 30)) (-2961 (((-112) $) 20)) (-2195 (($ (-391)) 14) (($ (-1162)) 16)) (-2194 (((-112) $) 27)) (-4378 (((-865) $) 34)) (-1868 (($ $) 28))) +(((-532) (-13 (-530) (-615 (-865)) (-10 -8 (-15 -2195 ($ (-391))) (-15 -2195 ($ (-1162))) (-15 -2194 ((-112) $)) (-15 -2961 ((-112) $)) (-15 -3843 ((-1123) $)) (-15 -2193 ((-1123) $ (-1123)))))) (T -532)) +((-2195 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))) (-2195 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-532)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-532)))) (-2193 (*1 *2 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-532))))) +(-13 (-530) (-615 (-865)) (-10 -8 (-15 -2195 ($ (-391))) (-15 -2195 ($ (-1162))) (-15 -2194 ((-112) $)) (-15 -2961 ((-112) $)) (-15 -3843 ((-1123) $)) (-15 -2193 ((-1123) $ (-1123))))) +((-2197 (((-1 |#1| |#1|) |#1|) 11)) (-2196 (((-1 |#1| |#1|)) 10))) +(((-533 |#1|) (-10 -7 (-15 -2196 ((-1 |#1| |#1|))) (-15 -2197 ((-1 |#1| |#1|) |#1|))) (-13 (-728) (-25))) (T -533)) +((-2197 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-728) (-25))))) (-2196 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-728) (-25)))))) +(-10 -7 (-15 -2196 ((-1 |#1| |#1|))) (-15 -2197 ((-1 |#1| |#1|) |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2805 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3294 (($ (-773) |#1|) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 (-773) (-773)) $) NIL)) (-2163 ((|#1| $) NIL)) (-3594 (((-773) $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 27)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL))) +(((-534 |#1|) (-13 (-795) (-512 (-773) |#1|)) (-852)) (T -534)) +NIL +(-13 (-795) (-512 (-773) |#1|)) +((-2199 (((-643 |#2|) (-1174 |#1|) |#3|) 98)) (-2200 (((-643 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#2|))))) (-691 |#1|) |#3| (-1 (-408 (-1174 |#1|)) (-1174 |#1|))) 114)) (-2198 (((-1174 |#1|) (-691 |#1|)) 110))) +(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2198 ((-1174 |#1|) (-691 |#1|))) (-15 -2199 ((-643 |#2|) (-1174 |#1|) |#3|)) (-15 -2200 ((-643 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#2|))))) (-691 |#1|) |#3| (-1 (-408 (-1174 |#1|)) (-1174 |#1|))))) (-365) (-365) (-13 (-365) (-850))) (T -535)) +((-2200 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *6)) (-5 *5 (-1 (-408 (-1174 *6)) (-1174 *6))) (-4 *6 (-365)) (-5 *2 (-643 (-2 (|:| |outval| *7) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-850))))) (-2199 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-365)) (-5 *2 (-643 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850))))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-691 *4)) (-4 *4 (-365)) (-5 *2 (-1174 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-850)))))) +(-10 -7 (-15 -2198 ((-1174 |#1|) (-691 |#1|))) (-15 -2199 ((-643 |#2|) (-1174 |#1|) |#3|)) (-15 -2200 ((-643 (-2 (|:| |outval| |#2|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#2|))))) (-691 |#1|) |#3| (-1 (-408 (-1174 |#1|)) (-1174 |#1|))))) +((-2958 (((-693 (-1228)) $ (-1228)) NIL)) (-2959 (((-693 (-553)) $ (-553)) NIL)) (-2957 (((-773) $ (-129)) 39)) (-2960 (((-693 (-128)) $ (-128)) 40)) (-2178 (((-693 (-1228)) $) NIL)) (-2174 (((-693 (-1226)) $) NIL)) (-2176 (((-693 (-1225)) $) NIL)) (-2179 (((-693 (-553)) $) NIL)) (-2175 (((-693 (-551)) $) NIL)) (-2177 (((-693 (-550)) $) NIL)) (-2173 (((-773) $ (-129)) 35)) (-2180 (((-693 (-128)) $) 37)) (-2760 (((-112) $) 27)) (-2761 (((-693 $) (-582) (-957)) 18) (((-693 $) (-494) (-957)) 24)) (-4378 (((-865) $) 48)) (-1868 (($ $) 42))) +(((-536) (-13 (-769 (-582)) (-615 (-865)) (-10 -8 (-15 -2761 ((-693 $) (-494) (-957)))))) (T -536)) +((-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-494)) (-5 *4 (-957)) (-5 *2 (-693 (-536))) (-5 *1 (-536))))) +(-13 (-769 (-582)) (-615 (-865)) (-10 -8 (-15 -2761 ((-693 $) (-494) (-957))))) +((-2930 (((-844 (-549))) 12)) (-2929 (((-844 (-549))) 14)) (-2914 (((-834 (-549))) 9))) +(((-537) (-10 -7 (-15 -2914 ((-834 (-549)))) (-15 -2930 ((-844 (-549)))) (-15 -2929 ((-844 (-549)))))) (T -537)) +((-2929 (*1 *2) (-12 (-5 *2 (-844 (-549))) (-5 *1 (-537)))) (-2930 (*1 *2) (-12 (-5 *2 (-844 (-549))) (-5 *1 (-537)))) (-2914 (*1 *2) (-12 (-5 *2 (-834 (-549))) (-5 *1 (-537))))) +(-10 -7 (-15 -2914 ((-834 (-549)))) (-15 -2930 ((-844 (-549)))) (-15 -2929 ((-844 (-549))))) +((-2968 (((-112) $ $) NIL)) (-2204 (((-1162) $) 55)) (-3681 (((-112) $) 51)) (-3677 (((-1180) $) 52)) (-3682 (((-112) $) 49)) (-3966 (((-1162) $) 50)) (-2203 (($ (-1162)) 56)) (-3684 (((-112) $) NIL)) (-3686 (((-112) $) NIL)) (-3683 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-2206 (($ $ (-643 (-1180))) 21)) (-2209 (((-51) $) 23)) (-3680 (((-112) $) NIL)) (-3676 (((-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-2546 (($ $ (-643 (-1180)) (-1180)) 73)) (-3679 (((-112) $) NIL)) (-3675 (((-225) $) NIL)) (-2205 (($ $) 44)) (-3674 (((-865) $) NIL)) (-3687 (((-112) $ $) NIL)) (-4231 (($ $ (-549)) NIL) (($ $ (-643 (-549))) NIL)) (-3678 (((-643 $) $) 30)) (-2202 (((-1180) (-643 $)) 57)) (-4402 (($ (-1162)) NIL) (($ (-1180)) 19) (($ (-549)) 8) (($ (-225)) 28) (($ (-865)) NIL) (($ (-643 $)) 65) (((-1106) $) 12) (($ (-1106)) 13)) (-2201 (((-1180) (-1180) (-643 $)) 60)) (-4378 (((-865) $) 54)) (-3672 (($ $) 59)) (-3673 (($ $) 58)) (-2207 (($ $ (-643 $)) 66)) (-3662 (((-112) $ $) NIL)) (-3685 (((-112) $) 29)) (-3510 (($) 9 T CONST)) (-3067 (($) 11 T CONST)) (-3455 (((-112) $ $) 74)) (-4381 (($ $ $) 82)) (-4271 (($ $ $) 75)) (** (($ $ (-773)) 81) (($ $ (-549)) 80)) (* (($ $ $) 76)) (-4389 (((-549) $) NIL))) +(((-538) (-13 (-1107 (-1162) (-1180) (-549) (-225) (-865)) (-616 (-1106)) (-10 -8 (-15 -2209 ((-51) $)) (-15 -4402 ($ (-1106))) (-15 -2207 ($ $ (-643 $))) (-15 -2546 ($ $ (-643 (-1180)) (-1180))) (-15 -2206 ($ $ (-643 (-1180)))) (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ (-773))) (-15 ** ($ $ (-549))) (-15 0 ($) -4384) (-15 1 ($) -4384) (-15 -2205 ($ $)) (-15 -2204 ((-1162) $)) (-15 -2203 ($ (-1162))) (-15 -2202 ((-1180) (-643 $))) (-15 -2201 ((-1180) (-1180) (-643 $)))))) (T -538)) +((-2209 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-538)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-538)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-538))) (-5 *1 (-538)))) (-2546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-1180)) (-5 *1 (-538)))) (-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-538)))) (-4271 (*1 *1 *1 *1) (-5 *1 (-538))) (* (*1 *1 *1 *1) (-5 *1 (-538))) (-4381 (*1 *1 *1 *1) (-5 *1 (-538))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-538)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))) (-3510 (*1 *1) (-5 *1 (-538))) (-3067 (*1 *1) (-5 *1 (-538))) (-2205 (*1 *1 *1) (-5 *1 (-538))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-538)))) (-2203 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-538)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-643 (-538))) (-5 *2 (-1180)) (-5 *1 (-538)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-538))) (-5 *1 (-538))))) +(-13 (-1107 (-1162) (-1180) (-549) (-225) (-865)) (-616 (-1106)) (-10 -8 (-15 -2209 ((-51) $)) (-15 -4402 ($ (-1106))) (-15 -2207 ($ $ (-643 $))) (-15 -2546 ($ $ (-643 (-1180)) (-1180))) (-15 -2206 ($ $ (-643 (-1180)))) (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ (-773))) (-15 ** ($ $ (-549))) (-15 (-3510) ($) -4384) (-15 (-3067) ($) -4384) (-15 -2205 ($ $)) (-15 -2204 ((-1162) $)) (-15 -2203 ($ (-1162))) (-15 -2202 ((-1180) (-643 $))) (-15 -2201 ((-1180) (-1180) (-643 $))))) +((-2208 (((-538) (-1180)) 15)) (-2209 ((|#1| (-538)) 20))) +(((-539 |#1|) (-10 -7 (-15 -2208 ((-538) (-1180))) (-15 -2209 (|#1| (-538)))) (-1219)) (T -539)) +((-2209 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-539 *2)) (-4 *2 (-1219)))) (-2208 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-538)) (-5 *1 (-539 *4)) (-4 *4 (-1219))))) +(-10 -7 (-15 -2208 ((-538) (-1180))) (-15 -2209 (|#1| (-538)))) +((-3876 ((|#2| |#2|) 17)) (-3874 ((|#2| |#2|) 13)) (-3877 ((|#2| |#2| (-549) (-549)) 20)) (-3875 ((|#2| |#2|) 15))) +(((-540 |#1| |#2|) (-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2| (-549) (-549)))) (-13 (-560) (-147)) (-1262 |#1|)) (T -540)) +((-3877 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1262 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3))))) +(-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2| (-549) (-549)))) +((-2212 (((-643 (-294 (-949 |#2|))) (-643 |#2|) (-643 (-1180))) 32)) (-2210 (((-643 |#2|) (-949 |#1|) |#3|) 54) (((-643 |#2|) (-1174 |#1|) |#3|) 53)) (-2211 (((-643 (-643 |#2|)) (-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)) |#3|) 106))) +(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -2210 ((-643 |#2|) (-1174 |#1|) |#3|)) (-15 -2210 ((-643 |#2|) (-949 |#1|) |#3|)) (-15 -2211 ((-643 (-643 |#2|)) (-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)) |#3|)) (-15 -2212 ((-643 (-294 (-949 |#2|))) (-643 |#2|) (-643 (-1180))))) (-455) (-365) (-13 (-365) (-850))) (T -541)) +((-2212 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-1180))) (-4 *6 (-365)) (-5 *2 (-643 (-294 (-949 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-13 (-365) (-850))))) (-2211 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-4 *6 (-455)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-850))))) (-2210 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-4 *5 (-455)) (-5 *2 (-643 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850))))) (-2210 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *5)) (-4 *5 (-455)) (-5 *2 (-643 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850)))))) +(-10 -7 (-15 -2210 ((-643 |#2|) (-1174 |#1|) |#3|)) (-15 -2210 ((-643 |#2|) (-949 |#1|) |#3|)) (-15 -2211 ((-643 (-643 |#2|)) (-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)) |#3|)) (-15 -2212 ((-643 (-294 (-949 |#2|))) (-643 |#2|) (-643 (-1180))))) +((-2215 ((|#2| |#2| |#1|) 17)) (-2213 ((|#2| (-643 |#2|)) 31)) (-2214 ((|#2| (-643 |#2|)) 52))) +(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2213 (|#2| (-643 |#2|))) (-15 -2214 (|#2| (-643 |#2|))) (-15 -2215 (|#2| |#2| |#1|))) (-308) (-1245 |#1|) |#1| (-1 |#1| |#1| (-773))) (T -542)) +((-2215 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-773))) (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1245 *3)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-773))))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-773)))))) +(-10 -7 (-15 -2213 (|#2| (-643 |#2|))) (-15 -2214 (|#2| (-643 |#2|))) (-15 -2215 (|#2| |#2| |#1|))) +((-4164 (((-408 (-1174 |#4|)) (-1174 |#4|) (-1 (-408 (-1174 |#3|)) (-1174 |#3|))) 89) (((-408 |#4|) |#4| (-1 (-408 (-1174 |#3|)) (-1174 |#3|))) 214))) +(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4| (-1 (-408 (-1174 |#3|)) (-1174 |#3|)))) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|) (-1 (-408 (-1174 |#3|)) (-1174 |#3|))))) (-852) (-795) (-13 (-308) (-147)) (-953 |#3| |#2| |#1|)) (T -543)) +((-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-408 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-852)) (-4 *6 (-795)) (-4 *8 (-953 *7 *6 *5)) (-5 *2 (-408 (-1174 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1174 *8)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-408 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-852)) (-4 *6 (-795)) (-5 *2 (-408 *3)) (-5 *1 (-543 *5 *6 *7 *3)) (-4 *3 (-953 *7 *6 *5))))) +(-10 -7 (-15 -4164 ((-408 |#4|) |#4| (-1 (-408 (-1174 |#3|)) (-1174 |#3|)))) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|) (-1 (-408 (-1174 |#3|)) (-1174 |#3|))))) +((-3876 ((|#4| |#4|) 74)) (-3874 ((|#4| |#4|) 70)) (-3877 ((|#4| |#4| (-549) (-549)) 76)) (-3875 ((|#4| |#4|) 72))) +(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3874 (|#4| |#4|)) (-15 -3875 (|#4| |#4|)) (-15 -3876 (|#4| |#4|)) (-15 -3877 (|#4| |#4| (-549) (-549)))) (-13 (-365) (-370) (-616 (-549))) (-1245 |#1|) (-726 |#1| |#2|) (-1262 |#3|)) (T -544)) +((-3877 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-365) (-370) (-616 *3))) (-4 *5 (-1245 *4)) (-4 *6 (-726 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1262 *6)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5))))) +(-10 -7 (-15 -3874 (|#4| |#4|)) (-15 -3875 (|#4| |#4|)) (-15 -3876 (|#4| |#4|)) (-15 -3877 (|#4| |#4| (-549) (-549)))) +((-3876 ((|#2| |#2|) 27)) (-3874 ((|#2| |#2|) 23)) (-3877 ((|#2| |#2| (-549) (-549)) 29)) (-3875 ((|#2| |#2|) 25))) +(((-545 |#1| |#2|) (-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2| (-549) (-549)))) (-13 (-365) (-370) (-616 (-549))) (-1262 |#1|)) (T -545)) +((-3877 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-13 (-365) (-370) (-616 *3))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1262 *4)))) (-3876 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1262 *3)))) (-3875 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1262 *3)))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1262 *3))))) +(-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3875 (|#2| |#2|)) (-15 -3876 (|#2| |#2|)) (-15 -3877 (|#2| |#2| (-549) (-549)))) +((-2216 (((-3 (-549) #1="failed") |#2| |#1| (-1 (-3 (-549) #1#) |#1|)) 18) (((-3 (-549) #1#) |#2| |#1| (-549) (-1 (-3 (-549) #1#) |#1|)) 14) (((-3 (-549) #1#) |#2| (-549) (-1 (-3 (-549) #1#) |#1|)) 32))) +(((-546 |#1| |#2|) (-10 -7 (-15 -2216 ((-3 (-549) #1="failed") |#2| (-549) (-1 (-3 (-549) #1#) |#1|))) (-15 -2216 ((-3 (-549) #1#) |#2| |#1| (-549) (-1 (-3 (-549) #1#) |#1|))) (-15 -2216 ((-3 (-549) #1#) |#2| |#1| (-1 (-3 (-549) #1#) |#1|)))) (-1052) (-1245 |#1|)) (T -546)) +((-2216 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-549) #1="failed") *4)) (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) (-2216 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-549) #1#) *4)) (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) (-2216 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-549) #1#) *5)) (-4 *5 (-1052)) (-5 *2 (-549)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1245 *5))))) +(-10 -7 (-15 -2216 ((-3 (-549) #1="failed") |#2| (-549) (-1 (-3 (-549) #1#) |#1|))) (-15 -2216 ((-3 (-549) #1#) |#2| |#1| (-549) (-1 (-3 (-549) #1#) |#1|))) (-15 -2216 ((-3 (-549) #1#) |#2| |#1| (-1 (-3 (-549) #1#) |#1|)))) +((-2225 (($ $ $) 84)) (-4401 (((-408 $) $) 52)) (-3577 (((-3 (-549) "failed") $) 64)) (-3576 (((-549) $) 42)) (-3425 (((-3 (-410 (-549)) "failed") $) 79)) (-3424 (((-112) $) 26)) (-3423 (((-410 (-549)) $) 77)) (-4155 (((-112) $) 55)) (-2218 (($ $ $ $) 92)) (-3606 (((-112) $) 17)) (-1456 (($ $ $) 62)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 74)) (-3868 (((-3 $ "failed") $) 69)) (-2222 (($ $) 24)) (-2217 (($ $ $) 90)) (-3869 (($) 65)) (-1454 (($ $) 58)) (-4164 (((-408 $) $) 50)) (-3077 (((-112) $) 15)) (-1752 (((-773) $) 32)) (-4242 (($ $ (-773)) NIL) (($ $) 11)) (-3824 (($ $) 18)) (-4402 (((-549) $) NIL) (((-538) $) 41) (((-893 (-549)) $) 45) (((-380) $) 35) (((-225) $) 38)) (-3530 (((-773)) 9)) (-2227 (((-112) $ $) 21)) (-3505 (($ $ $) 60))) +(((-547 |#1|) (-10 -8 (-15 -2217 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2227 ((-112) |#1| |#1|)) (-15 -3077 ((-112) |#1|)) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -3577 ((-3 (-549) "failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -4402 ((-549) |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3606 ((-112) |#1|)) (-15 -1752 ((-773) |#1|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -3530 ((-773)))) (-548)) (T -547)) +((-3530 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-547 *3)) (-4 *3 (-548))))) +(-10 -8 (-15 -2217 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1| |#1|)) (-15 -2222 (|#1| |#1|)) (-15 -3824 (|#1| |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2227 ((-112) |#1| |#1|)) (-15 -3077 ((-112) |#1|)) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -1456 (|#1| |#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -3577 ((-3 (-549) "failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -4402 ((-549) |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -3606 ((-112) |#1|)) (-15 -1752 ((-773) |#1|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4155 ((-112) |#1|)) (-15 -3530 ((-773)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-2225 (($ $ $) 90)) (-1407 (((-3 $ "failed") $ $) 20)) (-2220 (($ $ $ $) 79)) (-4206 (($ $) 57)) (-4401 (((-408 $) $) 58)) (-1753 (((-112) $ $) 130)) (-4055 (((-549) $) 119)) (-2762 (($ $ $) 93)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) "failed") $) 111)) (-3576 (((-549) $) 112)) (-2964 (($ $ $) 134)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 109) (((-691 (-549)) (-691 $)) 108)) (-3890 (((-3 $ "failed") $) 37)) (-3425 (((-3 (-410 (-549)) "failed") $) 87)) (-3424 (((-112) $) 89)) (-3423 (((-410 (-549)) $) 88)) (-3395 (($) 86) (($ $) 85)) (-2963 (($ $ $) 133)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 128)) (-4155 (((-112) $) 59)) (-2218 (($ $ $ $) 77)) (-2226 (($ $ $) 91)) (-3606 (((-112) $) 121)) (-1456 (($ $ $) 102)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 105)) (-2573 (((-112) $) 35)) (-3076 (((-112) $) 97)) (-3868 (((-3 $ "failed") $) 99)) (-3607 (((-112) $) 120)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 137)) (-2219 (($ $ $ $) 78)) (-2934 (($ $ $) 122)) (-3260 (($ $ $) 123)) (-2222 (($ $) 81)) (-4265 (($ $) 94)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2217 (($ $ $) 76)) (-3869 (($) 98 T CONST)) (-2224 (($ $) 83)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1454 (($ $) 103)) (-4164 (((-408 $) $) 56)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 135)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 129)) (-3077 (((-112) $) 96)) (-1752 (((-773) $) 131)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 132)) (-4242 (($ $ (-773)) 116) (($ $) 114)) (-2223 (($ $) 82)) (-3824 (($ $) 84)) (-4402 (((-549) $) 113) (((-538) $) 107) (((-893 (-549)) $) 106) (((-380) $) 101) (((-225) $) 100)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-549)) 110)) (-3530 (((-773)) 32 T CONST)) (-2227 (((-112) $ $) 92)) (-3505 (($ $ $) 104)) (-3662 (((-112) $ $) 9)) (-3097 (($) 95)) (-2240 (((-112) $ $) 45)) (-2221 (($ $ $ $) 80)) (-3807 (($ $) 118)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-773)) 117) (($ $) 115)) (-2966 (((-112) $ $) 125)) (-2967 (((-112) $ $) 126)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 124)) (-3088 (((-112) $ $) 127)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-548) (-140)) (T -548)) -((-3807 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3140 (*1 *1) (-4 *1 (-548))) (-3613 (*1 *1 *1) (-4 *1 (-548))) (-3075 (*1 *1 *1 *1) (-4 *1 (-548))) (-3050 (*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-4211 (*1 *1 *1 *1) (-4 *1 (-548))) (-3309 (*1 *1 *1 *1) (-4 *1 (-548))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-2119 (*1 *1) (-4 *1 (-548))) (-2119 (*1 *1 *1) (-4 *1 (-548))) (-3846 (*1 *1 *1) (-4 *1 (-548))) (-3762 (*1 *1 *1) (-4 *1 (-548))) (-2199 (*1 *1 *1) (-4 *1 (-548))) (-1789 (*1 *1 *1) (-4 *1 (-548))) (-1799 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2893 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-4003 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-1591 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3718 (*1 *1 *1 *1) (-4 *1 (-548)))) -(-13 (-1223) (-308) (-821) (-233) (-615 (-567)) (-1040 (-567)) (-640 (-567)) (-615 (-539)) (-615 (-894 (-567))) (-888 (-567)) (-143) (-1024) (-147) (-1154) (-10 -8 (-15 -3807 ((-112) $)) (-15 -1359 ((-112) $)) (-6 -4421) (-15 -3140 ($)) (-15 -3613 ($ $)) (-15 -3075 ($ $ $)) (-15 -3050 ((-112) $ $)) (-15 -4211 ($ $ $)) (-15 -3309 ($ $ $)) (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $)) (-15 -2119 ($)) (-15 -2119 ($ $)) (-15 -3846 ($ $)) (-15 -3762 ($ $)) (-15 -2199 ($ $)) (-15 -1789 ($ $)) (-15 -1799 ($ $ $ $)) (-15 -2893 ($ $ $ $)) (-15 -4003 ($ $ $ $)) (-15 -1591 ($ $ $ $)) (-15 -3718 ($ $ $)) (-6 -4420))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-143) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-539)) . T) ((-615 (-567)) . T) ((-615 (-894 (-567))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-640 (-567)) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-821) . T) ((-849) . T) ((-851) . T) ((-888 (-567)) . T) ((-922) . T) ((-1024) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) . T) ((-1223) . T)) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-549) (-13 (-845) (-10 -8 (-15 -3758 ($) -3562)))) (T -549)) -((-3758 (*1 *1) (-5 *1 (-549)))) -(-13 (-845) (-10 -8 (-15 -3758 ($) -3562))) +((-3076 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3097 (*1 *1) (-4 *1 (-548))) (-4265 (*1 *1 *1) (-4 *1 (-548))) (-2762 (*1 *1 *1 *1) (-4 *1 (-548))) (-2227 (*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2226 (*1 *1 *1 *1) (-4 *1 (-548))) (-2225 (*1 *1 *1 *1) (-4 *1 (-548))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-549))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-549))))) (-3395 (*1 *1) (-4 *1 (-548))) (-3395 (*1 *1 *1) (-4 *1 (-548))) (-3824 (*1 *1 *1) (-4 *1 (-548))) (-2224 (*1 *1 *1) (-4 *1 (-548))) (-2223 (*1 *1 *1) (-4 *1 (-548))) (-2222 (*1 *1 *1) (-4 *1 (-548))) (-2221 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2220 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2219 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2218 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2217 (*1 *1 *1 *1) (-4 *1 (-548)))) +(-13 (-1224) (-308) (-822) (-233) (-616 (-549)) (-1041 (-549)) (-641 (-549)) (-616 (-538)) (-616 (-893 (-549))) (-889 (-549)) (-143) (-1023) (-147) (-1154) (-10 -8 (-15 -3076 ((-112) $)) (-15 -3077 ((-112) $)) (-6 -4424) (-15 -3097 ($)) (-15 -4265 ($ $)) (-15 -2762 ($ $ $)) (-15 -2227 ((-112) $ $)) (-15 -2226 ($ $ $)) (-15 -2225 ($ $ $)) (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $)) (-15 -3395 ($)) (-15 -3395 ($ $)) (-15 -3824 ($ $)) (-15 -2224 ($ $)) (-15 -2223 ($ $)) (-15 -2222 ($ $)) (-15 -2221 ($ $ $ $)) (-15 -2220 ($ $ $ $)) (-15 -2219 ($ $ $ $)) (-15 -2218 ($ $ $ $)) (-15 -2217 ($ $ $)) (-6 -4423))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-143) . T) ((-172) . T) ((-616 (-225)) . T) ((-616 (-380)) . T) ((-616 (-538)) . T) ((-616 (-549)) . T) ((-616 (-893 (-549))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-641 (-549)) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-822) . T) ((-850) . T) ((-852) . T) ((-889 (-549)) . T) ((-924) . T) ((-1023) . T) ((-1041 (-549)) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) . T) ((-1224) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 30)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 97)) (-2241 (($ $) 98)) (-2239 (((-112) $) NIL)) (-2225 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2220 (($ $ $ $) 52)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL)) (-2762 (($ $ $) 92)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) "failed") $) NIL)) (-3576 (((-549) $) NIL)) (-2964 (($ $ $) 54)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 77) (((-691 (-549)) (-691 $)) 73)) (-3890 (((-3 $ "failed") $) 94)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL)) (-3424 (((-112) $) NIL)) (-3423 (((-410 (-549)) $) NIL)) (-3395 (($) 79) (($ $) 80)) (-2963 (($ $ $) 91)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2218 (($ $ $ $) NIL)) (-2226 (($ $ $) 70)) (-3606 (((-112) $) NIL)) (-1456 (($ $ $) NIL)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL)) (-2573 (((-112) $) 34)) (-3076 (((-112) $) 86)) (-3868 (((-3 $ "failed") $) NIL)) (-3607 (((-112) $) 43)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2219 (($ $ $ $) 55)) (-2934 (($ $ $) 88)) (-3260 (($ $ $) 87)) (-2222 (($ $) NIL)) (-4265 (($ $) 49)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) 69)) (-2217 (($ $ $) NIL)) (-3869 (($) NIL T CONST)) (-2224 (($ $) 38)) (-3664 (((-1123) $) 42)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 129)) (-3564 (($ $ $) 95) (($ (-643 $)) NIL)) (-1454 (($ $) NIL)) (-4164 (((-408 $) $) 115)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) 113)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 90)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-2223 (($ $) 40)) (-3824 (($ $) 36)) (-4402 (((-549) $) 48) (((-538) $) 64) (((-893 (-549)) $) NIL) (((-380) $) 58) (((-225) $) 61) (((-1162) $) 66)) (-4378 (((-865) $) 46) (($ (-549)) 47) (($ $) NIL) (($ (-549)) 47)) (-3530 (((-773)) NIL T CONST)) (-2227 (((-112) $ $) NIL)) (-3505 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3097 (($) 35)) (-2240 (((-112) $ $) NIL)) (-2221 (($ $ $ $) 51)) (-3807 (($ $) 78)) (-3510 (($) 6 T CONST)) (-3067 (($) 31 T CONST)) (-2900 (((-1162) $) 26) (((-1162) $ (-112)) 27) (((-1275) (-825) $) 28) (((-1275) (-825) $ (-112)) 29)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-2966 (((-112) $ $) 50)) (-2967 (((-112) $ $) 81)) (-3455 (((-112) $ $) 33)) (-3087 (((-112) $ $) 83)) (-3088 (((-112) $ $) 10)) (-4269 (($ $) 16) (($ $ $) 39)) (-4271 (($ $ $) 37)) (** (($ $ (-922)) NIL) (($ $ (-773)) 85)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 84) (($ $ $) 53))) +(((-549) (-13 (-548) (-616 (-1162)) (-823) (-10 -7 (-6 -4412) (-6 -4417) (-6 -4413) (-6 -4407)))) (T -549)) +NIL +(-13 (-548) (-616 (-1162)) (-823) (-10 -7 (-6 -4412) (-6 -4417) (-6 -4413) (-6 -4407))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-550) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384)))) (T -550)) +((-4156 (*1 *1) (-5 *1 (-550)))) +(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-550) (-13 (-845) (-10 -8 (-15 -3758 ($) -3562)))) (T -550)) -((-3758 (*1 *1) (-5 *1 (-550)))) -(-13 (-845) (-10 -8 (-15 -3758 ($) -3562))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-551) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384)))) (T -551)) +((-4156 (*1 *1) (-5 *1 (-551)))) +(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-551) (-13 (-845) (-10 -8 (-15 -3758 ($) -3562)))) (T -551)) -((-3758 (*1 *1) (-5 *1 (-551)))) -(-13 (-845) (-10 -8 (-15 -3758 ($) -3562))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-552) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384)))) (T -552)) +((-4156 (*1 *1) (-5 *1 (-552)))) +(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-552) (-13 (-845) (-10 -8 (-15 -3758 ($) -3562)))) (T -552)) -((-3758 (*1 *1) (-5 *1 (-552)))) -(-13 (-845) (-10 -8 (-15 -3758 ($) -3562))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-553) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384)))) (T -553)) +((-4156 (*1 *1) (-5 *1 (-553)))) +(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3095 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#2| $ |#1| |#2|) NIL)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 |#2| "failed") |#1| $) NIL)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) NIL)) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) NIL)) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 ((|#1| $) NIL (|has| |#1| (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 ((|#1| $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1512 (((-645 |#1|) $) NIL)) (-1560 (((-112) |#1| $) NIL)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3360 (((-645 |#1|) $) NIL)) (-2919 (((-112) |#1| $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3436 ((|#2| $) NIL (|has| |#1| (-851)))) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-553 |#1| |#2| |#3|) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) (-1102) (-1102) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422)))) (T -553)) -NIL -(-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) -((-2724 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1175 |#2|) (-1175 |#2|))) 50))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2724 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1175 |#2|) (-1175 |#2|))))) (-559) (-13 (-27) (-433 |#1|))) (T -554)) -((-2724 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1175 *3) (-1175 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) (-5 *1 (-554 *6 *3))))) -(-10 -7 (-15 -2724 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1175 |#2|) (-1175 |#2|))))) -((-2702 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2228 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-3046 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 222))) -(((-555 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3046 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2702 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2228 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-559) (-1040 (-567))) (-13 (-27) (-433 |#1|)) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -555)) -((-2228 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *7 (-1245 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-2702 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-4 *8 (-1245 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-3046 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-4 *8 (-1245 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(-10 -7 (-15 -3046 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2702 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2228 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-4094 (((-112) (-567) (-567)) 12)) (-1494 (((-567) (-567)) 7)) (-3676 (((-567) (-567) (-567)) 10))) -(((-556) (-10 -7 (-15 -1494 ((-567) (-567))) (-15 -3676 ((-567) (-567) (-567))) (-15 -4094 ((-112) (-567) (-567))))) (T -556)) -((-4094 (*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))) (-3676 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) -(-10 -7 (-15 -1494 ((-567) (-567))) (-15 -3676 ((-567) (-567) (-567))) (-15 -4094 ((-112) (-567) (-567)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3412 ((|#1| $) 67)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-1406 (($ $) 97)) (-2545 (($ $) 80)) (-1992 ((|#1| $) 68)) (-2932 (((-3 $ "failed") $ $) 20)) (-3671 (($ $) 79)) (-1380 (($ $) 96)) (-2524 (($ $) 81)) (-1431 (($ $) 95)) (-2565 (($ $) 82)) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 75)) (-3094 (((-567) $) 76)) (-1377 (((-3 $ "failed") $) 37)) (-3216 (($ |#1| |#1|) 72)) (-3635 (((-112) $) 66)) (-4329 (($) 107)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 78)) (-2585 (((-112) $) 65)) (-2727 (($ $ $) 113)) (-1446 (($ $ $) 112)) (-2734 (($ $) 104)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-2172 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-410 (-567))) 70)) (-3871 ((|#1| $) 69)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-2478 (((-3 $ "failed") $ $) 48)) (-4272 (($ $) 105)) (-1443 (($ $) 94)) (-2576 (($ $) 83)) (-1418 (($ $) 93)) (-2555 (($ $) 84)) (-1394 (($ $) 92)) (-2533 (($ $) 85)) (-2633 (((-112) $ |#1|) 64)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 74)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1481 (($ $) 103)) (-2610 (($ $) 91)) (-3269 (((-112) $ $) 45)) (-1456 (($ $) 102)) (-2588 (($ $) 90)) (-1505 (($ $) 101)) (-2632 (($ $) 89)) (-2090 (($ $) 100)) (-1367 (($ $) 88)) (-1492 (($ $) 99)) (-2621 (($ $) 87)) (-1468 (($ $) 98)) (-2599 (($ $) 86)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-3016 (((-112) $ $) 110)) (-2996 (((-112) $ $) 109)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 111)) (-2986 (((-112) $ $) 108)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ $) 106) (($ $ (-410 (-567))) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-557 |#1|) (-140) (-13 (-407) (-1204))) (T -557)) -((-2172 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-3216 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-2172 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) (-3635 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112)))) (-2585 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112)))) (-2633 (*1 *2 *1 *3) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112))))) -(-13 (-455) (-851) (-1204) (-1004) (-1040 (-567)) (-10 -8 (-6 -3092) (-15 -2172 ($ |t#1| |t#1|)) (-15 -3216 ($ |t#1| |t#1|)) (-15 -2172 ($ |t#1|)) (-15 -2172 ($ (-410 (-567)))) (-15 -3871 (|t#1| $)) (-15 -1992 (|t#1| $)) (-15 -3412 (|t#1| $)) (-15 -3635 ((-112) $)) (-15 -2585 ((-112) $)) (-15 -2633 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-455) . T) ((-496) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1004) . T) ((-1040 (-567)) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) . T) ((-1207) . T)) -((-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 9)) (-1987 (($ $) 11)) (-3342 (((-112) $) 20)) (-1377 (((-3 $ "failed") $) 16)) (-3269 (((-112) $ $) 22))) -(((-558 |#1|) (-10 -8 (-15 -3342 ((-112) |#1|)) (-15 -3269 ((-112) |#1| |#1|)) (-15 -1987 (|#1| |#1|)) (-15 -2054 ((-2 (|:| -3414 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1377 ((-3 |#1| "failed") |#1|))) (-559)) (T -558)) -NIL -(-10 -8 (-15 -3342 ((-112) |#1|)) (-15 -3269 ((-112) |#1| |#1|)) (-15 -1987 (|#1| |#1|)) (-15 -2054 ((-2 (|:| -3414 |#1|) (|:| -4409 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1377 ((-3 |#1| "failed") |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ $) 48)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-559) (-140)) (T -559)) -((-2478 (*1 *1 *1 *1) (|partial| -4 *1 (-559))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3414 *1) (|:| -4409 *1) (|:| |associate| *1))) (-4 *1 (-559)))) (-1987 (*1 *1 *1) (-4 *1 (-559))) (-3269 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) -(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2478 ((-3 $ "failed") $ $)) (-15 -2054 ((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $)) (-15 -1987 ($ $)) (-15 -3269 ((-112) $ $)) (-15 -3342 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2829 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1179) (-645 |#2|)) 38)) (-2658 (((-588 |#2|) |#2| (-1179)) 63)) (-3743 (((-3 |#2| "failed") |#2| (-1179)) 156)) (-2743 (((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) (-613 |#2|) (-645 (-613 |#2|))) 159)) (-1781 (((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) |#2|) 41))) -(((-560 |#1| |#2|) (-10 -7 (-15 -1781 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) |#2|)) (-15 -2829 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1179) (-645 |#2|))) (-15 -3743 ((-3 |#2| "failed") |#2| (-1179))) (-15 -2658 ((-588 |#2|) |#2| (-1179))) (-15 -2743 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) (-613 |#2|) (-645 (-613 |#2|))))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -560)) -((-2743 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1179)) (-5 *6 (-645 (-613 *3))) (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *7))) (-4 *7 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) (-5 *1 (-560 *7 *3)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-3743 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-2829 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *3)))) (-1781 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))))) -(-10 -7 (-15 -1781 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) |#2|)) (-15 -2829 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1179) (-645 |#2|))) (-15 -3743 ((-3 |#2| "failed") |#2| (-1179))) (-15 -2658 ((-588 |#2|) |#2| (-1179))) (-15 -2743 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1179) (-613 |#2|) (-645 (-613 |#2|))))) -((-1466 (((-421 |#1|) |#1|) 19)) (-3661 (((-421 |#1|) |#1|) 34)) (-4206 (((-3 |#1| "failed") |#1|) 51)) (-1891 (((-421 |#1|) |#1|) 64))) -(((-561 |#1|) (-10 -7 (-15 -3661 ((-421 |#1|) |#1|)) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -1891 ((-421 |#1|) |#1|)) (-15 -4206 ((-3 |#1| "failed") |#1|))) (-548)) (T -561)) -((-4206 (*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))) (-1891 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-1466 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-3661 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -3661 ((-421 |#1|) |#1|)) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -1891 ((-421 |#1|) |#1|)) (-15 -4206 ((-3 |#1| "failed") |#1|))) -((-3019 (($) 9)) (-1595 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1512 (((-645 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-3636 (($ (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-4141 (($ (-645 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2265 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-1804 (((-645 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2324 (((-1274)) 12))) -(((-562) (-10 -8 (-15 -3019 ($)) (-15 -2324 ((-1274))) (-15 -1512 ((-645 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4141 ($ (-645 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3636 ($ (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1595 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1804 ((-645 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2265 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -562)) -((-2265 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1595 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-562)))) (-4141 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-562)))) (-2324 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-562)))) (-3019 (*1 *1) (-5 *1 (-562)))) -(-10 -8 (-15 -3019 ($)) (-15 -2324 ((-1274))) (-15 -1512 ((-645 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4141 ($ (-645 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3636 ($ (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1595 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1804 ((-645 (-2 (|:| -2025 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2265 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1159 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2031 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3633 (((-1175 (-410 (-1175 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1175 |#2|)) 35)) (-3528 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1175 |#2|)) 115)) (-3561 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))) 85) (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|)) 55)) (-3769 (((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1175 |#2|))) 92) (((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1175 |#2|)) 114)) (-1979 (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) (-613 |#2|) |#2| (-410 (-1175 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) |#2| (-1175 |#2|)) 116)) (-2861 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))) 135 (|has| |#3| (-657 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|)) 134 (|has| |#3| (-657 |#2|)))) (-3772 ((|#2| (-1175 (-410 (-1175 |#2|))) (-613 |#2|) |#2|) 53)) (-2606 (((-1175 (-410 (-1175 |#2|))) (-1175 |#2|) (-613 |#2|)) 34))) -(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -3561 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|))) (-15 -3561 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -3769 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1175 |#2|))) (-15 -3769 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -3528 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1175 |#2|))) (-15 -3528 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -1979 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) |#2| (-1175 |#2|))) (-15 -1979 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -3633 ((-1175 (-410 (-1175 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1175 |#2|))) (-15 -3772 (|#2| (-1175 (-410 (-1175 |#2|))) (-613 |#2|) |#2|)) (-15 -2606 ((-1175 (-410 (-1175 |#2|))) (-1175 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -2861 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|))) (-15 -2861 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1204)) (-1102)) (T -563)) -((-2861 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1175 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-2861 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1175 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1175 (-410 (-1175 *6)))) (-5 *1 (-563 *5 *6 *7)) (-5 *3 (-1175 *6)) (-4 *7 (-1102)))) (-3772 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1175 (-410 (-1175 *2)))) (-5 *4 (-613 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1102)))) (-3633 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1175 (-410 (-1175 *3)))) (-5 *1 (-563 *6 *3 *7)) (-5 *5 (-1175 *3)) (-4 *7 (-1102)))) (-1979 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) (-5 *5 (-410 (-1175 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) (-1979 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) (-5 *5 (-1175 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) (-3528 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-410 (-1175 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) (-3528 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1175 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) (-3769 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1175 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-3769 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1175 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-3561 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1175 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) (-3561 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1175 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))) -(-10 -7 (-15 -3561 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|))) (-15 -3561 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -3769 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1175 |#2|))) (-15 -3769 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -3528 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1175 |#2|))) (-15 -3528 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -1979 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) |#2| (-1175 |#2|))) (-15 -1979 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)) (-613 |#2|) |#2| (-410 (-1175 |#2|)))) (-15 -3633 ((-1175 (-410 (-1175 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1175 |#2|))) (-15 -3772 (|#2| (-1175 (-410 (-1175 |#2|))) (-613 |#2|) |#2|)) (-15 -2606 ((-1175 (-410 (-1175 |#2|))) (-1175 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -2861 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1175 |#2|))) (-15 -2861 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1175 |#2|))))) |%noBranch|)) -((-1642 (((-567) (-567) (-772)) 90)) (-3547 (((-567) (-567)) 88)) (-4182 (((-567) (-567)) 86)) (-2370 (((-567) (-567)) 92)) (-4248 (((-567) (-567) (-567)) 70)) (-3737 (((-567) (-567) (-567)) 67)) (-1623 (((-410 (-567)) (-567)) 30)) (-1945 (((-567) (-567)) 36)) (-2338 (((-567) (-567)) 79)) (-3996 (((-567) (-567)) 51)) (-4078 (((-645 (-567)) (-567)) 85)) (-4401 (((-567) (-567) (-567) (-567) (-567)) 63)) (-4002 (((-410 (-567)) (-567)) 60))) -(((-564) (-10 -7 (-15 -4002 ((-410 (-567)) (-567))) (-15 -4401 ((-567) (-567) (-567) (-567) (-567))) (-15 -4078 ((-645 (-567)) (-567))) (-15 -3996 ((-567) (-567))) (-15 -2338 ((-567) (-567))) (-15 -1945 ((-567) (-567))) (-15 -1623 ((-410 (-567)) (-567))) (-15 -3737 ((-567) (-567) (-567))) (-15 -4248 ((-567) (-567) (-567))) (-15 -2370 ((-567) (-567))) (-15 -4182 ((-567) (-567))) (-15 -3547 ((-567) (-567))) (-15 -1642 ((-567) (-567) (-772))))) (T -564)) -((-1642 (*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2370 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-4248 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3737 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1623 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-4078 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-4401 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-4002 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) -(-10 -7 (-15 -4002 ((-410 (-567)) (-567))) (-15 -4401 ((-567) (-567) (-567) (-567) (-567))) (-15 -4078 ((-645 (-567)) (-567))) (-15 -3996 ((-567) (-567))) (-15 -2338 ((-567) (-567))) (-15 -1945 ((-567) (-567))) (-15 -1623 ((-410 (-567)) (-567))) (-15 -3737 ((-567) (-567) (-567))) (-15 -4248 ((-567) (-567) (-567))) (-15 -2370 ((-567) (-567))) (-15 -4182 ((-567) (-567))) (-15 -3547 ((-567) (-567))) (-15 -1642 ((-567) (-567) (-772)))) -((-3143 (((-2 (|:| |answer| |#4|) (|:| -1729 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3143 ((-2 (|:| |answer| |#4|) (|:| -1729 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -565)) -((-3143 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1729 *3))) (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))) -(-10 -7 (-15 -3143 ((-2 (|:| |answer| |#4|) (|:| -1729 |#4|)) |#4| (-1 |#2| |#2|)))) -((-3143 (((-2 (|:| |answer| (-410 |#2|)) (|:| -1729 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 18))) -(((-566 |#1| |#2|) (-10 -7 (-15 -3143 ((-2 (|:| |answer| (-410 |#2|)) (|:| -1729 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -566)) -((-3143 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-410 *6)) (|:| -1729 (-410 *6)) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -3143 ((-2 (|:| |answer| (-410 |#2|)) (|:| -1729 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 30)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 97)) (-1987 (($ $) 98)) (-3342 (((-112) $) NIL)) (-3309 (($ $ $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2893 (($ $ $ $) 52)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL)) (-3075 (($ $ $) 92)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL)) (-3094 (((-567) $) NIL)) (-2432 (($ $ $) 54)) (-2690 (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 77) (((-690 (-567)) (-690 $)) 73)) (-1377 (((-3 $ "failed") $) 94)) (-3810 (((-3 (-410 (-567)) "failed") $) NIL)) (-1527 (((-112) $) NIL)) (-2485 (((-410 (-567)) $) NIL)) (-2119 (($) 79) (($ $) 80)) (-2443 (($ $ $) 91)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-1591 (($ $ $ $) NIL)) (-4211 (($ $ $) 70)) (-3635 (((-112) $) NIL)) (-4090 (($ $ $) NIL)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-4384 (((-112) $) 34)) (-3807 (((-112) $) 86)) (-3104 (((-3 $ "failed") $) NIL)) (-2585 (((-112) $) 43)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4003 (($ $ $ $) 55)) (-2727 (($ $ $) 88)) (-1446 (($ $ $) 87)) (-1789 (($ $) NIL)) (-3613 (($ $) 49)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) 69)) (-3718 (($ $ $) NIL)) (-2221 (($) NIL T CONST)) (-3762 (($ $) 38)) (-3479 (((-1122) $) 42)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 129)) (-1870 (($ $ $) 95) (($ (-645 $)) NIL)) (-2256 (($ $) NIL)) (-3661 (((-421 $) $) 115)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2478 (((-3 $ "failed") $ $) 113)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1359 (((-112) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 90)) (-3592 (($ $ (-772)) NIL) (($ $) NIL)) (-2199 (($ $) 40)) (-3846 (($ $) 36)) (-1322 (((-567) $) 48) (((-539) $) 64) (((-894 (-567)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1161) $) 66)) (-2504 (((-863) $) 46) (($ (-567)) 47) (($ $) NIL) (($ (-567)) 47)) (-2214 (((-772)) NIL T CONST)) (-3050 (((-112) $ $) NIL)) (-3040 (($ $ $) NIL)) (-3858 (((-112) $ $) NIL)) (-3140 (($) 35)) (-3269 (((-112) $ $) NIL)) (-1799 (($ $ $ $) 51)) (-1368 (($ $) 78)) (-1807 (($) 6 T CONST)) (-1820 (($) 31 T CONST)) (-2166 (((-1161) $) 26) (((-1161) $ (-112)) 27) (((-1274) (-823) $) 28) (((-1274) (-823) $ (-112)) 29)) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-3016 (((-112) $ $) 50)) (-2996 (((-112) $ $) 81)) (-2968 (((-112) $ $) 33)) (-3006 (((-112) $ $) 83)) (-2986 (((-112) $ $) 10)) (-3054 (($ $) 16) (($ $ $) 39)) (-3045 (($ $ $) 37)) (** (($ $ (-923)) NIL) (($ $ (-772)) 85)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 84) (($ $ $) 53))) -(((-567) (-13 (-548) (-615 (-1161)) (-829) (-10 -7 (-6 -4409) (-6 -4414) (-6 -4410) (-6 -4404)))) (T -567)) -NIL -(-13 (-548) (-615 (-1161)) (-829) (-10 -7 (-6 -4409) (-6 -4414) (-6 -4410) (-6 -4404))) -((-4201 (((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770) (-1065)) 119) (((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770)) 121)) (-3670 (((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1179)) 197) (((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1161)) 196) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065)) 201) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381)) 202) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381)) 203) (((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381))))) 204) (((-1037) (-317 (-381)) (-1096 (-844 (-381)))) 192) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381)) 191) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381)) 187) (((-1037) (-770)) 179) (((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065)) 186))) -(((-568) (-10 -7 (-15 -3670 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065))) (-15 -3670 ((-1037) (-770))) (-15 -3670 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381))) (-15 -3670 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381))) (-15 -3670 ((-1037) (-317 (-381)) (-1096 (-844 (-381))))) (-15 -3670 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))))) (-15 -3670 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381))) (-15 -3670 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381))) (-15 -3670 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770) (-1065))) (-15 -3670 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1161))) (-15 -3670 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1179))))) (T -568)) -((-3670 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-1179)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-1161)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) (-5 *1 (-568)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1037)) (-5 *1 (-568)))) (-3670 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568))))) -(-10 -7 (-15 -3670 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381) (-1065))) (-15 -3670 ((-1037) (-770))) (-15 -3670 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381) (-381))) (-15 -3670 ((-1037) (-317 (-381)) (-1096 (-844 (-381))) (-381))) (-15 -3670 ((-1037) (-317 (-381)) (-1096 (-844 (-381))))) (-15 -3670 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))))) (-15 -3670 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381))) (-15 -3670 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381))) (-15 -3670 ((-1037) (-317 (-381)) (-645 (-1096 (-844 (-381)))) (-381) (-381) (-1065))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037))) (-770) (-1065))) (-15 -3670 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1161))) (-15 -3670 ((-3 (-1037) "failed") (-317 (-381)) (-1094 (-844 (-381))) (-1179)))) -((-4365 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|)) 198)) (-3904 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|)) 99)) (-1926 (((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|) 194)) (-3453 (((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179))) 203)) (-2359 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1179)) 212 (|has| |#3| (-657 |#2|))))) -(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -3904 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -1926 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -4365 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -3453 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)))) (IF (|has| |#3| (-657 |#2|)) (-15 -2359 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1179))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1204)) (-1102)) (T -569)) -((-2359 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1179)) (-4 *4 (-13 (-433 *7) (-27) (-1204))) (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) (-3453 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) (-4 *2 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1102)))) (-4365 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1102)))) (-1926 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102)))) (-3904 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1204))) (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102))))) -(-10 -7 (-15 -3904 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -1926 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -4365 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -3453 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1179)))) (IF (|has| |#3| (-657 |#2|)) (-15 -2359 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4374 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1179))) |%noBranch|)) -((-1783 (((-2 (|:| -2140 |#2|) (|:| |nconst| |#2|)) |#2| (-1179)) 64)) (-4108 (((-3 |#2| "failed") |#2| (-1179) (-844 |#2|) (-844 |#2|)) 175 (-12 (|has| |#2| (-1141)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)) 154 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567)))))) (-2144 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)) 156 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-888 (-567))))))) -(((-570 |#1| |#2|) (-10 -7 (-15 -1783 ((-2 (|:| -2140 |#2|) (|:| |nconst| |#2|)) |#2| (-1179))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -2144 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179))) (-15 -4108 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)))) |%noBranch|) (IF (|has| |#2| (-1141)) (-15 -4108 ((-3 |#2| "failed") |#2| (-1179) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1040 (-567)) (-455) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -570)) -((-4108 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1179)) (-5 *4 (-844 *2)) (-4 *2 (-1141)) (-4 *2 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *1 (-570 *5 *2)))) (-4108 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-2144 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-1783 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| -2140 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))))) -(-10 -7 (-15 -1783 ((-2 (|:| -2140 |#2|) (|:| |nconst| |#2|)) |#2| (-1179))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -2144 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179))) (-15 -4108 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)))) |%noBranch|) (IF (|has| |#2| (-1141)) (-15 -4108 ((-3 |#2| "failed") |#2| (-1179) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2812 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))) 41)) (-3670 (((-588 (-410 |#2|)) (-410 |#2|)) 28)) (-3127 (((-3 (-410 |#2|) "failed") (-410 |#2|)) 17)) (-1732 (((-3 (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|)) 48))) -(((-571 |#1| |#2|) (-10 -7 (-15 -3670 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -3127 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -1732 ((-3 (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -2812 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-567))) (-1245 |#1|)) (T -571)) -((-2812 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *5 *6)))) (-1732 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -3906 (-410 *5)) (|:| |coeff| (-410 *5)))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) (-3127 (*1 *2 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147) (-1040 (-567)))) (-5 *1 (-571 *3 *4)))) (-3670 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) -(-10 -7 (-15 -3670 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -3127 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -1732 ((-3 (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -2812 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) -((-2063 (((-3 (-567) "failed") |#1|) 14)) (-3243 (((-112) |#1|) 13)) (-1392 (((-567) |#1|) 9))) -(((-572 |#1|) (-10 -7 (-15 -1392 ((-567) |#1|)) (-15 -3243 ((-112) |#1|)) (-15 -2063 ((-3 (-567) "failed") |#1|))) (-1040 (-567))) (T -572)) -((-2063 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))) (-3243 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1040 (-567))))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2))))) -(-10 -7 (-15 -1392 ((-567) |#1|)) (-15 -3243 ((-112) |#1|)) (-15 -2063 ((-3 (-567) "failed") |#1|))) -((-3156 (((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1179) (-645 (-410 (-954 |#1|)))) 48)) (-2865 (((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1179)) 28)) (-2232 (((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1179)) 23)) (-3084 (((-3 (-2 (|:| -3906 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|))) 35))) -(((-573 |#1|) (-10 -7 (-15 -2865 ((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -2232 ((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1179))) (-15 -3156 ((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1179) (-645 (-410 (-954 |#1|))))) (-15 -3084 ((-3 (-2 (|:| -3906 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|))))) (-13 (-559) (-1040 (-567)) (-147))) (T -573)) -((-3084 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-2 (|:| -3906 (-410 (-954 *5))) (|:| |coeff| (-410 (-954 *5))))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5))))) (-3156 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 (-410 (-954 *6)))) (-5 *3 (-410 (-954 *6))) (-4 *6 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6)))) (-2232 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)) (-147))) (-5 *1 (-573 *4)))) (-2865 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) (-5 *2 (-588 (-410 (-954 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5)))))) -(-10 -7 (-15 -2865 ((-588 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -2232 ((-3 (-410 (-954 |#1|)) "failed") (-410 (-954 |#1|)) (-1179))) (-15 -3156 ((-3 (-2 (|:| |mainpart| (-410 (-954 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-954 |#1|))) (|:| |logand| (-410 (-954 |#1|))))))) "failed") (-410 (-954 |#1|)) (-1179) (-645 (-410 (-954 |#1|))))) (-15 -3084 ((-3 (-2 (|:| -3906 (-410 (-954 |#1|))) (|:| |coeff| (-410 (-954 |#1|)))) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|))))) -((-2487 (((-112) $ $) 75)) (-2684 (((-112) $) 48)) (-3412 ((|#1| $) 39)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) 79)) (-1406 (($ $) 140)) (-2545 (($ $) 119)) (-1992 ((|#1| $) 37)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3671 (($ $) NIL)) (-1380 (($ $) 142)) (-2524 (($ $) 115)) (-1431 (($ $) 144)) (-2565 (($ $) 123)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) 94)) (-3094 (((-567) $) 96)) (-1377 (((-3 $ "failed") $) 78)) (-3216 (($ |#1| |#1|) 35)) (-3635 (((-112) $) 44)) (-4329 (($) 105)) (-4384 (((-112) $) 55)) (-4203 (($ $ (-567)) NIL)) (-2585 (((-112) $) 45)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-2734 (($ $) 107)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-2172 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-410 (-567))) 93)) (-3871 ((|#1| $) 36)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) 81) (($ (-645 $)) NIL)) (-2478 (((-3 $ "failed") $ $) 80)) (-4272 (($ $) 109)) (-1443 (($ $) 148)) (-2576 (($ $) 121)) (-1418 (($ $) 150)) (-2555 (($ $) 125)) (-1394 (($ $) 146)) (-2533 (($ $) 117)) (-2633 (((-112) $ |#1|) 42)) (-2504 (((-863) $) 101) (($ (-567)) 83) (($ $) NIL) (($ (-567)) 83)) (-2214 (((-772)) 103 T CONST)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) 162)) (-2610 (($ $) 131)) (-3269 (((-112) $ $) NIL)) (-1456 (($ $) 160)) (-2588 (($ $) 127)) (-1505 (($ $) 158)) (-2632 (($ $) 138)) (-2090 (($ $) 156)) (-1367 (($ $) 136)) (-1492 (($ $) 154)) (-2621 (($ $) 133)) (-1468 (($ $) 152)) (-2599 (($ $) 129)) (-1807 (($) 30 T CONST)) (-1820 (($) 10 T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 49)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 47)) (-3054 (($ $) 53) (($ $ $) 54)) (-3045 (($ $ $) 52)) (** (($ $ (-923)) 71) (($ $ (-772)) NIL) (($ $ $) 111) (($ $ (-410 (-567))) 164)) (* (($ (-923) $) 66) (($ (-772) $) NIL) (($ (-567) $) 65) (($ $ $) 61))) -(((-574 |#1|) (-557 |#1|) (-13 (-407) (-1204))) (T -574)) -NIL -(-557 |#1|) -((-1621 (((-3 (-645 (-1175 (-567))) "failed") (-645 (-1175 (-567))) (-1175 (-567))) 27))) -(((-575) (-10 -7 (-15 -1621 ((-3 (-645 (-1175 (-567))) "failed") (-645 (-1175 (-567))) (-1175 (-567)))))) (T -575)) -((-1621 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 (-567)))) (-5 *3 (-1175 (-567))) (-5 *1 (-575))))) -(-10 -7 (-15 -1621 ((-3 (-645 (-1175 (-567))) "failed") (-645 (-1175 (-567))) (-1175 (-567))))) -((-3192 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1179)) 19)) (-3170 (((-645 (-613 |#2|)) (-645 |#2|) (-1179)) 23)) (-3855 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|))) 11)) (-1632 ((|#2| |#2| (-1179)) 59 (|has| |#1| (-559)))) (-2583 ((|#2| |#2| (-1179)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-455))))) (-1665 (((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1179)) 25)) (-2562 (((-613 |#2|) (-645 (-613 |#2|))) 24)) (-1657 (((-588 |#2|) |#2| (-1179) (-1 (-588 |#2|) |#2| (-1179)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-630)) (|has| |#2| (-1040 (-1179))) (|has| |#1| (-615 (-894 (-567)))) (|has| |#1| (-455)) (|has| |#1| (-888 (-567))))))) -(((-576 |#1| |#2|) (-10 -7 (-15 -3192 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1179))) (-15 -2562 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -1665 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1179))) (-15 -3855 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -3170 ((-645 (-613 |#2|)) (-645 |#2|) (-1179))) (IF (|has| |#1| (-559)) (-15 -1632 (|#2| |#2| (-1179))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -2583 (|#2| |#2| (-1179))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1040 (-1179))) (-15 -1657 ((-588 |#2|) |#2| (-1179) (-1 (-588 |#2|) |#2| (-1179)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1102) (-433 |#1|)) (T -576)) -((-1657 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-588 *3) *3 (-1179))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1179))) (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1040 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1179)) (-4 *7 (-615 (-894 (-567)))) (-4 *7 (-455)) (-4 *7 (-888 (-567))) (-4 *7 (-1102)) (-5 *2 (-588 *3)) (-5 *1 (-576 *7 *3)))) (-2583 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-455)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))) (-1632 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))) (-3170 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-1179)) (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))) (-3855 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1102)) (-5 *1 (-576 *3 *4)))) (-1665 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1179)) (-5 *2 (-613 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *1 (-576 *5 *6)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1102)) (-5 *2 (-613 *5)) (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))) (-3192 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1179)) (-4 *5 (-433 *4)) (-4 *4 (-1102)) (-5 *1 (-576 *4 *5))))) -(-10 -7 (-15 -3192 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1179))) (-15 -2562 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -1665 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1179))) (-15 -3855 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -3170 ((-645 (-613 |#2|)) (-645 |#2|) (-1179))) (IF (|has| |#1| (-559)) (-15 -1632 (|#2| |#2| (-1179))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -2583 (|#2| |#2| (-1179))) (IF (|has| |#1| (-615 (-894 (-567)))) (IF (|has| |#1| (-888 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1040 (-1179))) (-15 -1657 ((-588 |#2|) |#2| (-1179) (-1 (-588 |#2|) |#2| (-1179)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1179)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1326 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|)) 202)) (-2394 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|))) 178)) (-4176 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|))) 175)) (-3190 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-4173 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-4099 (((-3 (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|)) 205)) (-3344 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|)) 208)) (-2935 (((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 90)) (-1636 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-2077 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|))) 182)) (-2187 (((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 170)) (-1912 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 193)) (-3998 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|)) 213))) -(((-577 |#1| |#2|) (-10 -7 (-15 -4173 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1912 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -1326 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -3344 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3998 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2394 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -2077 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -4099 ((-3 (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -4176 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -3190 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2187 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2935 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1636 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -577)) -((-1636 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2187 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-624 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4347 *4) (|:| |sol?| (-112))) (-567) *4)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *1 (-577 *4 *5)))) (-3190 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3906 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1245 *4)))) (-4176 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) (-4 *7 (-1245 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *7)))) (-4099 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3906 (-410 *6)) (|:| |coeff| (-410 *6)))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2077 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4347 *7) (|:| |sol?| (-112))) (-567) *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2394 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3906 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-3998 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4347 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -3906 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3344 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3906 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -3906 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-1326 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-1912 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4347 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-4173 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3906 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(-10 -7 (-15 -4173 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1912 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -1326 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -3344 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -3998 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2394 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -2077 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -4099 ((-3 (-2 (|:| -3906 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -4176 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -3190 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2187 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4347 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2935 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1636 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3146 (((-3 |#2| "failed") |#2| (-1179) (-1179)) 10))) -(((-578 |#1| |#2|) (-10 -7 (-15 -3146 ((-3 |#2| "failed") |#2| (-1179) (-1179)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-961) (-1141) (-29 |#1|))) (T -578)) -((-3146 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1204) (-961) (-1141) (-29 *4)))))) -(-10 -7 (-15 -3146 ((-3 |#2| "failed") |#2| (-1179) (-1179)))) -((-3532 (((-692 (-1227)) $ (-1227)) 26)) (-2787 (((-692 (-552)) $ (-552)) 25)) (-1465 (((-772) $ (-128)) 27)) (-2980 (((-692 (-129)) $ (-129)) 24)) (-2184 (((-692 (-1227)) $) 12)) (-3383 (((-692 (-1225)) $) 8)) (-2011 (((-692 (-1224)) $) 10)) (-1693 (((-692 (-552)) $) 13)) (-1867 (((-692 (-550)) $) 9)) (-3415 (((-692 (-549)) $) 11)) (-4267 (((-772) $ (-128)) 7)) (-4350 (((-692 (-129)) $) 14)) (-4023 (($ $) 6))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) NIL)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-554 |#1| |#2| |#3|) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) (-1104) (-1104) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425)))) (T -554)) +NIL +(-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) +((-2228 (((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))) 50))) +(((-555 |#1| |#2|) (-10 -7 (-15 -2228 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))))) (-560) (-13 (-27) (-424 |#1|))) (T -555)) +((-2228 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1174 *3) (-1174 *3))) (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-560)) (-5 *2 (-586 *3)) (-5 *1 (-555 *6 *3))))) +(-10 -7 (-15 -2228 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1174 |#2|) (-1174 |#2|))))) +((-2230 (((-586 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2231 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-2229 (((-586 |#5|) |#5| (-1 |#3| |#3|)) 222))) +(((-556 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2229 ((-586 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2230 ((-586 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2231 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-560) (-1041 (-549))) (-13 (-27) (-424 |#1|)) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -556)) +((-2231 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-27) (-424 *4))) (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *7 (-1245 (-410 *6))) (-5 *1 (-556 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-2230 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)))) (-4 *8 (-1245 (-410 *7))) (-5 *2 (-586 *3)) (-5 *1 (-556 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-2229 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-560) (-1041 (-549)))) (-4 *8 (-1245 (-410 *7))) (-5 *2 (-586 *3)) (-5 *1 (-556 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(-10 -7 (-15 -2229 ((-586 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2230 ((-586 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2231 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2234 (((-112) (-549) (-549)) 12)) (-2232 (((-549) (-549)) 7)) (-2233 (((-549) (-549) (-549)) 10))) +(((-557) (-10 -7 (-15 -2232 ((-549) (-549))) (-15 -2233 ((-549) (-549) (-549))) (-15 -2234 ((-112) (-549) (-549))))) (T -557)) +((-2234 (*1 *2 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-557)))) (-2233 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-557)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-557))))) +(-10 -7 (-15 -2232 ((-549) (-549))) (-15 -2233 ((-549) (-549) (-549))) (-15 -2234 ((-112) (-549) (-549)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3004 ((|#1| $) 67)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-3915 (($ $) 97)) (-4071 (($ $) 80)) (-2805 ((|#1| $) 68)) (-1407 (((-3 $ "failed") $ $) 20)) (-3438 (($ $) 79)) (-3913 (($ $) 96)) (-4070 (($ $) 81)) (-3917 (($ $) 95)) (-4069 (($ $) 82)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) "failed") $) 75)) (-3576 (((-549) $) 76)) (-3890 (((-3 $ "failed") $) 37)) (-2237 (($ |#1| |#1|) 72)) (-3606 (((-112) $) 66)) (-4059 (($) 107)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 78)) (-3607 (((-112) $) 65)) (-2934 (($ $ $) 113)) (-3260 (($ $ $) 112)) (-4374 (($ $) 104)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2238 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-410 (-549))) 70)) (-2236 ((|#1| $) 69)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3889 (((-3 $ "failed") $ $) 48)) (-4375 (($ $) 105)) (-3918 (($ $) 94)) (-4068 (($ $) 83)) (-3916 (($ $) 93)) (-4067 (($ $) 84)) (-3914 (($ $) 92)) (-4066 (($ $) 85)) (-2235 (((-112) $ |#1|) 64)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-549)) 74)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 103)) (-3909 (($ $) 91)) (-2240 (((-112) $ $) 45)) (-3919 (($ $) 102)) (-3907 (($ $) 90)) (-3923 (($ $) 101)) (-3911 (($ $) 89)) (-3924 (($ $) 100)) (-3912 (($ $) 88)) (-3922 (($ $) 99)) (-3910 (($ $) 87)) (-3920 (($ $) 98)) (-3908 (($ $) 86)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 110)) (-2967 (((-112) $ $) 109)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 111)) (-3088 (((-112) $ $) 108)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ $) 106) (($ $ (-410 (-549))) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-558 |#1|) (-140) (-13 (-407) (-1205))) (T -558)) +((-2238 (*1 *1 *2 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-2237 (*1 *1 *2 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-2238 (*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-2238 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112)))) (-2235 (*1 *2 *1 *3) (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112))))) +(-13 (-455) (-852) (-1205) (-1005) (-1041 (-549)) (-10 -8 (-6 -4201) (-15 -2238 ($ |t#1| |t#1|)) (-15 -2237 ($ |t#1| |t#1|)) (-15 -2238 ($ |t#1|)) (-15 -2238 ($ (-410 (-549)))) (-15 -2236 (|t#1| $)) (-15 -2805 (|t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3606 ((-112) $)) (-15 -3607 ((-112) $)) (-15 -2235 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-455) . T) ((-496) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-852) . T) ((-1005) . T) ((-1041 (-549)) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) . T) ((-1208) . T)) +((-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 9)) (-2241 (($ $) 11)) (-2239 (((-112) $) 20)) (-3890 (((-3 $ "failed") $) 16)) (-2240 (((-112) $ $) 22))) +(((-559 |#1|) (-10 -8 (-15 -2239 ((-112) |#1|)) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|))) (-560)) (T -559)) +NIL +(-10 -8 (-15 -2239 ((-112) |#1|)) (-15 -2240 ((-112) |#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2242 ((-2 (|:| -1947 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-560) (-140)) (T -560)) +((-3889 (*1 *1 *1 *1) (|partial| -4 *1 (-560))) (-2242 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1947 *1) (|:| -4412 *1) (|:| |associate| *1))) (-4 *1 (-560)))) (-2241 (*1 *1 *1) (-4 *1 (-560))) (-2240 (*1 *2 *1 *1) (-12 (-4 *1 (-560)) (-5 *2 (-112)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-560)) (-5 *2 (-112))))) +(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -3889 ((-3 $ "failed") $ $)) (-15 -2242 ((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $)) (-15 -2241 ($ $)) (-15 -2240 ((-112) $ $)) (-15 -2239 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2244 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1180) (-643 |#2|)) 38)) (-2246 (((-586 |#2|) |#2| (-1180)) 63)) (-2245 (((-3 |#2| "failed") |#2| (-1180)) 156)) (-2247 (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1180) (-613 |#2|) (-643 (-613 |#2|))) 159)) (-2243 (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1180) |#2|) 41))) +(((-561 |#1| |#2|) (-10 -7 (-15 -2243 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1180) |#2|)) (-15 -2244 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1180) (-643 |#2|))) (-15 -2245 ((-3 |#2| "failed") |#2| (-1180))) (-15 -2246 ((-586 |#2|) |#2| (-1180))) (-15 -2247 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1180) (-613 |#2|) (-643 (-613 |#2|))))) (-13 (-455) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -561)) +((-2247 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1180)) (-5 *6 (-643 (-613 *3))) (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *7))) (-4 *7 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-561 *7 *3)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-561 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2245 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-2244 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-561 *6 *3)))) (-2243 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-561 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) +(-10 -7 (-15 -2243 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1180) |#2|)) (-15 -2244 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1180) (-643 |#2|))) (-15 -2245 ((-3 |#2| "failed") |#2| (-1180))) (-15 -2246 ((-586 |#2|) |#2| (-1180))) (-15 -2247 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1180) (-613 |#2|) (-643 (-613 |#2|))))) +((-4401 (((-408 |#1|) |#1|) 19)) (-4164 (((-408 |#1|) |#1|) 34)) (-2249 (((-3 |#1| "failed") |#1|) 51)) (-2248 (((-408 |#1|) |#1|) 64))) +(((-562 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -2248 ((-408 |#1|) |#1|)) (-15 -2249 ((-3 |#1| "failed") |#1|))) (-548)) (T -562)) +((-2249 (*1 *2 *2) (|partial| -12 (-5 *1 (-562 *2)) (-4 *2 (-548)))) (-2248 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548)))) (-4401 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548)))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548))))) +(-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -2248 ((-408 |#1|) |#1|)) (-15 -2249 ((-3 |#1| "failed") |#1|))) +((-2250 (($) 9)) (-2253 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 34)) (-2816 (((-643 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 31)) (-4039 (($ (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28)) (-2252 (($ (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26)) (-2254 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-2379 (((-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36)) (-2251 (((-1275)) 11))) +(((-563) (-10 -8 (-15 -2250 ($)) (-15 -2251 ((-1275))) (-15 -2816 ((-643 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2252 ($ (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4039 ($ (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2253 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2379 ((-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2254 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -563)) +((-2254 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-563)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-563)))) (-2253 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-563)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-563)))) (-2252 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-563)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-563)))) (-2251 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-563)))) (-2250 (*1 *1) (-5 *1 (-563)))) +(-10 -8 (-15 -2250 ($)) (-15 -2251 ((-1275))) (-15 -2816 ((-643 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2252 ($ (-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1607 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4039 ($ (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2253 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2379 ((-643 (-2 (|:| -4292 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2254 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| #6#))) (|:| -1607 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-3487 (((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|)) 35)) (-2257 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) |#2| (-1174 |#2|)) 115)) (-2255 (((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 85) (((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|)) 55)) (-2256 (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|))) 92) (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|)) 114)) (-2258 (((-3 |#2| #3="failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 110) (((-3 |#2| #3#) |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) |#2| (-1174 |#2|)) 116)) (-2259 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))) 135 (|has| |#3| (-660 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|)) 134 (|has| |#3| (-660 |#2|)))) (-3488 ((|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|) 53)) (-3481 (((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|)) 34))) +(((-564 |#1| |#2| |#3|) (-10 -7 (-15 -2255 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2255 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2256 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|))) (-15 -2256 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) |#2| (-1174 |#2|))) (-15 -2257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2258 ((-3 |#2| #3="failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) |#2| (-1174 |#2|))) (-15 -2258 ((-3 |#2| #3#) |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3487 ((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|))) (-15 -3488 (|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|)) (-15 -3481 ((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|))) (IF (|has| |#3| (-660 |#2|)) (PROGN (-15 -2259 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2259 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))))) |%noBranch|)) (-13 (-455) (-1041 (-549)) (-147) (-641 (-549))) (-13 (-424 |#1|) (-27) (-1205)) (-1104)) (T -564)) +((-2259 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1174 *4))) (-4 *4 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104)))) (-2259 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1174 *4)) (-4 *4 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-1174 (-410 (-1174 *6)))) (-5 *1 (-564 *5 *6 *7)) (-5 *3 (-1174 *6)) (-4 *7 (-1104)))) (-3488 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1174 (-410 (-1174 *2)))) (-5 *4 (-613 *2)) (-4 *2 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1104)))) (-3487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-1174 (-410 (-1174 *3)))) (-5 *1 (-564 *6 *3 *7)) (-5 *5 (-1174 *3)) (-4 *7 (-1104)))) (-2258 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1180))) (-5 *5 (-410 (-1174 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1104)))) (-2258 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1180))) (-5 *5 (-1174 *2)) (-4 *2 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1104)))) (-2257 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-5 *6 (-410 (-1174 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1104)))) (-2257 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-5 *6 (-1174 *3)) (-4 *3 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1104)))) (-2256 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104)))) (-2256 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104)))) (-2255 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104)))) (-2255 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104))))) +(-10 -7 (-15 -2255 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2255 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2256 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1174 |#2|))) (-15 -2256 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) |#2| (-1174 |#2|))) (-15 -2257 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -2258 ((-3 |#2| #3="failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) |#2| (-1174 |#2|))) (-15 -2258 ((-3 |#2| #3#) |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1180)) (-613 |#2|) |#2| (-410 (-1174 |#2|)))) (-15 -3487 ((-1174 (-410 (-1174 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1174 |#2|))) (-15 -3488 (|#2| (-1174 (-410 (-1174 |#2|))) (-613 |#2|) |#2|)) (-15 -3481 ((-1174 (-410 (-1174 |#2|))) (-1174 |#2|) (-613 |#2|))) (IF (|has| |#3| (-660 |#2|)) (PROGN (-15 -2259 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1174 |#2|))) (-15 -2259 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1174 |#2|))))) |%noBranch|)) +((-2269 (((-549) (-549) (-773)) 90)) (-2268 (((-549) (-549)) 88)) (-2267 (((-549) (-549)) 86)) (-2266 (((-549) (-549)) 92)) (-3208 (((-549) (-549) (-549)) 70)) (-2265 (((-549) (-549) (-549)) 67)) (-2264 (((-410 (-549)) (-549)) 30)) (-2263 (((-549) (-549)) 36)) (-2262 (((-549) (-549)) 79)) (-3205 (((-549) (-549)) 51)) (-2261 (((-643 (-549)) (-549)) 85)) (-2260 (((-549) (-549) (-549) (-549) (-549)) 63)) (-3201 (((-410 (-549)) (-549)) 60))) +(((-565) (-10 -7 (-15 -3201 ((-410 (-549)) (-549))) (-15 -2260 ((-549) (-549) (-549) (-549) (-549))) (-15 -2261 ((-643 (-549)) (-549))) (-15 -3205 ((-549) (-549))) (-15 -2262 ((-549) (-549))) (-15 -2263 ((-549) (-549))) (-15 -2264 ((-410 (-549)) (-549))) (-15 -2265 ((-549) (-549) (-549))) (-15 -3208 ((-549) (-549) (-549))) (-15 -2266 ((-549) (-549))) (-15 -2267 ((-549) (-549))) (-15 -2268 ((-549) (-549))) (-15 -2269 ((-549) (-549) (-773))))) (T -565)) +((-2269 (*1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-773)) (-5 *1 (-565)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-3208 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2265 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2264 (*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-565)) (-5 *3 (-549)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-2261 (*1 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-565)) (-5 *3 (-549)))) (-2260 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-565)) (-5 *3 (-549))))) +(-10 -7 (-15 -3201 ((-410 (-549)) (-549))) (-15 -2260 ((-549) (-549) (-549) (-549) (-549))) (-15 -2261 ((-643 (-549)) (-549))) (-15 -3205 ((-549) (-549))) (-15 -2262 ((-549) (-549))) (-15 -2263 ((-549) (-549))) (-15 -2264 ((-410 (-549)) (-549))) (-15 -2265 ((-549) (-549) (-549))) (-15 -3208 ((-549) (-549) (-549))) (-15 -2266 ((-549) (-549))) (-15 -2267 ((-549) (-549))) (-15 -2268 ((-549) (-549))) (-15 -2269 ((-549) (-549) (-773)))) +((-2270 (((-2 (|:| |answer| |#4|) (|:| -2317 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2270 ((-2 (|:| |answer| |#4|) (|:| -2317 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -566)) +((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2317 *3))) (-5 *1 (-566 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))) +(-10 -7 (-15 -2270 ((-2 (|:| |answer| |#4|) (|:| -2317 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2270 (((-2 (|:| |answer| (-410 |#2|)) (|:| -2317 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 18))) +(((-567 |#1| |#2|) (-10 -7 (-15 -2270 ((-2 (|:| |answer| (-410 |#2|)) (|:| -2317 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -567)) +((-2270 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-410 *6)) (|:| -2317 (-410 *6)) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-567 *5 *6)) (-5 *3 (-410 *6))))) +(-10 -7 (-15 -2270 ((-2 (|:| |answer| (-410 |#2|)) (|:| -2317 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) +((-3071 (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771) (-1066)) 119) (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771)) 121)) (-4244 (((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1180)) 197) (((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1162)) 196) (((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380) (-1066)) 201) (((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380)) 202) (((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380)) 203) (((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380))))) 204) (((-1038) (-315 (-380)) (-1092 (-844 (-380)))) 192) (((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380)) 191) (((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380)) 187) (((-1038) (-771)) 179) (((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380) (-1066)) 186))) +(((-568) (-10 -7 (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380) (-1066))) (-15 -4244 ((-1038) (-771))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380) (-1066))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771) (-1066))) (-15 -4244 ((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1162))) (-15 -4244 ((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1180))))) (T -568)) +((-4244 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-380))) (-5 *4 (-1095 (-844 (-380)))) (-5 *5 (-1180)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-315 (-380))) (-5 *4 (-1095 (-844 (-380)))) (-5 *5 (-1162)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1066)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) (-5 *1 (-568)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) (-5 *5 (-380)) (-5 *6 (-1066)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1038)) (-5 *1 (-568)))) (-4244 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) (-5 *6 (-1066)) (-5 *2 (-1038)) (-5 *1 (-568))))) +(-10 -7 (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380) (-1066))) (-15 -4244 ((-1038) (-771))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-1092 (-844 (-380))))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380))) (-15 -4244 ((-1038) (-315 (-380)) (-643 (-1092 (-844 (-380)))) (-380) (-380) (-1066))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038))) (-771) (-1066))) (-15 -4244 ((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1162))) (-15 -4244 ((-3 (-1038) "failed") (-315 (-380)) (-1095 (-844 (-380))) (-1180)))) +((-2273 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|)) 198)) (-2271 (((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|)) 99)) (-2272 (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|) 194)) (-2274 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1180))) 203)) (-2275 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1180)) 212 (|has| |#3| (-660 |#2|))))) +(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -2271 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -2272 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -2273 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|))) (-15 -2274 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1180)))) (IF (|has| |#3| (-660 |#2|)) (-15 -2275 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1180))) |%noBranch|)) (-13 (-455) (-1041 (-549)) (-147) (-641 (-549))) (-13 (-424 |#1|) (-27) (-1205)) (-1104)) (T -569)) +((-2275 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1180)) (-4 *4 (-13 (-424 *7) (-27) (-1205))) (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104)))) (-2274 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1180))) (-4 *2 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1104)))) (-2273 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1104)))) (-2272 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1104)))) (-2271 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1205))) (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1104))))) +(-10 -7 (-15 -2271 ((-586 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -2272 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -2273 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-643 |#2|))) (-15 -2274 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1180)))) (IF (|has| |#3| (-660 |#2|)) (-15 -2275 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2190 (-643 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1180))) |%noBranch|)) +((-2276 (((-2 (|:| -2489 |#2|) (|:| |nconst| |#2|)) |#2| (-1180)) 64)) (-2278 (((-3 |#2| "failed") |#2| (-1180) (-844 |#2|) (-844 |#2|)) 175 (-12 (|has| |#2| (-1142)) (|has| |#1| (-616 (-893 (-549)))) (|has| |#1| (-889 (-549))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)) 154 (-12 (|has| |#2| (-632)) (|has| |#1| (-616 (-893 (-549)))) (|has| |#1| (-889 (-549)))))) (-2277 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)) 156 (-12 (|has| |#2| (-632)) (|has| |#1| (-616 (-893 (-549)))) (|has| |#1| (-889 (-549))))))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2276 ((-2 (|:| -2489 |#2|) (|:| |nconst| |#2|)) |#2| (-1180))) (IF (|has| |#1| (-616 (-893 (-549)))) (IF (|has| |#1| (-889 (-549))) (PROGN (IF (|has| |#2| (-632)) (PROGN (-15 -2277 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180))) (-15 -2278 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)))) |%noBranch|) (IF (|has| |#2| (-1142)) (-15 -2278 ((-3 |#2| "failed") |#2| (-1180) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1041 (-549)) (-455) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -570)) +((-2278 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1180)) (-5 *4 (-844 *2)) (-4 *2 (-1142)) (-4 *2 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-616 (-893 (-549)))) (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) (-5 *1 (-570 *5 *2)))) (-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-616 (-893 (-549)))) (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-632)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-616 (-893 (-549)))) (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-632)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) (-5 *2 (-2 (|:| -2489 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) +(-10 -7 (-15 -2276 ((-2 (|:| -2489 |#2|) (|:| |nconst| |#2|)) |#2| (-1180))) (IF (|has| |#1| (-616 (-893 (-549)))) (IF (|has| |#1| (-889 (-549))) (PROGN (IF (|has| |#2| (-632)) (PROGN (-15 -2277 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180))) (-15 -2278 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)))) |%noBranch|) (IF (|has| |#2| (-1142)) (-15 -2278 ((-3 |#2| "failed") |#2| (-1180) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2281 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-643 (-410 |#2|))) 41)) (-4244 (((-586 (-410 |#2|)) (-410 |#2|)) 28)) (-2279 (((-3 (-410 |#2|) "failed") (-410 |#2|)) 17)) (-2280 (((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|)) 48))) +(((-571 |#1| |#2|) (-10 -7 (-15 -4244 ((-586 (-410 |#2|)) (-410 |#2|))) (-15 -2279 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2280 ((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -2281 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-643 (-410 |#2|))))) (-13 (-365) (-147) (-1041 (-549))) (-1245 |#1|)) (T -571)) +((-2281 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-643 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *5 *6)))) (-2280 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2318 (-410 *5)) (|:| |coeff| (-410 *5)))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) (-2279 (*1 *2 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147) (-1041 (-549)))) (-5 *1 (-571 *3 *4)))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) (-5 *2 (-586 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) +(-10 -7 (-15 -4244 ((-586 (-410 |#2|)) (-410 |#2|))) (-15 -2279 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2280 ((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -2281 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-643 (-410 |#2|))))) +((-2282 (((-3 (-549) "failed") |#1|) 14)) (-3680 (((-112) |#1|) 13)) (-3676 (((-549) |#1|) 9))) +(((-572 |#1|) (-10 -7 (-15 -3676 ((-549) |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -2282 ((-3 (-549) "failed") |#1|))) (-1041 (-549))) (T -572)) +((-2282 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-572 *3)) (-4 *3 (-1041 *2)))) (-3680 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1041 (-549))))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-572 *3)) (-4 *3 (-1041 *2))))) +(-10 -7 (-15 -3676 ((-549) |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -2282 ((-3 (-549) "failed") |#1|))) +((-2285 (((-3 (-2 (|:| |mainpart| (-410 (-949 |#1|))) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 (-949 |#1|))) (|:| |logand| (-410 (-949 |#1|))))))) "failed") (-410 (-949 |#1|)) (-1180) (-643 (-410 (-949 |#1|)))) 48)) (-2283 (((-586 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-1180)) 28)) (-2284 (((-3 (-410 (-949 |#1|)) "failed") (-410 (-949 |#1|)) (-1180)) 23)) (-2286 (((-3 (-2 (|:| -2318 (-410 (-949 |#1|))) (|:| |coeff| (-410 (-949 |#1|)))) "failed") (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|))) 35))) +(((-573 |#1|) (-10 -7 (-15 -2283 ((-586 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -2284 ((-3 (-410 (-949 |#1|)) "failed") (-410 (-949 |#1|)) (-1180))) (-15 -2285 ((-3 (-2 (|:| |mainpart| (-410 (-949 |#1|))) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 (-949 |#1|))) (|:| |logand| (-410 (-949 |#1|))))))) "failed") (-410 (-949 |#1|)) (-1180) (-643 (-410 (-949 |#1|))))) (-15 -2286 ((-3 (-2 (|:| -2318 (-410 (-949 |#1|))) (|:| |coeff| (-410 (-949 |#1|)))) "failed") (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|))))) (-13 (-560) (-1041 (-549)) (-147))) (T -573)) +((-2286 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-147))) (-5 *2 (-2 (|:| -2318 (-410 (-949 *5))) (|:| |coeff| (-410 (-949 *5))))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-949 *5))))) (-2285 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 (-410 (-949 *6)))) (-5 *3 (-410 (-949 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6)))) (-2284 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-410 (-949 *4))) (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-147))) (-5 *1 (-573 *4)))) (-2283 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-147))) (-5 *2 (-586 (-410 (-949 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-949 *5)))))) +(-10 -7 (-15 -2283 ((-586 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -2284 ((-3 (-410 (-949 |#1|)) "failed") (-410 (-949 |#1|)) (-1180))) (-15 -2285 ((-3 (-2 (|:| |mainpart| (-410 (-949 |#1|))) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 (-949 |#1|))) (|:| |logand| (-410 (-949 |#1|))))))) "failed") (-410 (-949 |#1|)) (-1180) (-643 (-410 (-949 |#1|))))) (-15 -2286 ((-3 (-2 (|:| -2318 (-410 (-949 |#1|))) (|:| |coeff| (-410 (-949 |#1|)))) "failed") (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|))))) +((-2968 (((-112) $ $) 75)) (-3608 (((-112) $) 48)) (-3004 ((|#1| $) 39)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) 79)) (-3915 (($ $) 139)) (-4071 (($ $) 118)) (-2805 ((|#1| $) 37)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL)) (-3913 (($ $) 141)) (-4070 (($ $) 114)) (-3917 (($ $) 143)) (-4069 (($ $) 122)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) "failed") $) 93)) (-3576 (((-549) $) 95)) (-3890 (((-3 $ "failed") $) 78)) (-2237 (($ |#1| |#1|) 35)) (-3606 (((-112) $) 44)) (-4059 (($) 104)) (-2573 (((-112) $) 55)) (-3412 (($ $ (-549)) NIL)) (-3607 (((-112) $) 45)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4374 (($ $) 106)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2238 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-410 (-549))) 92)) (-2236 ((|#1| $) 36)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) 81) (($ (-643 $)) NIL)) (-3889 (((-3 $ "failed") $ $) 80)) (-4375 (($ $) 108)) (-3918 (($ $) 147)) (-4068 (($ $) 120)) (-3916 (($ $) 149)) (-4067 (($ $) 124)) (-3914 (($ $) 145)) (-4066 (($ $) 116)) (-2235 (((-112) $ |#1|) 42)) (-4378 (((-865) $) 100) (($ (-549)) 83) (($ $) NIL) (($ (-549)) 83)) (-3530 (((-773)) 102 T CONST)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 161)) (-3909 (($ $) 130)) (-2240 (((-112) $ $) NIL)) (-3919 (($ $) 159)) (-3907 (($ $) 126)) (-3923 (($ $) 157)) (-3911 (($ $) 137)) (-3924 (($ $) 155)) (-3912 (($ $) 135)) (-3922 (($ $) 153)) (-3910 (($ $) 132)) (-3920 (($ $) 151)) (-3908 (($ $) 128)) (-3510 (($) 30 T CONST)) (-3067 (($) 10 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 49)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 47)) (-4269 (($ $) 53) (($ $ $) 54)) (-4271 (($ $ $) 52)) (** (($ $ (-922)) 71) (($ $ (-773)) NIL) (($ $ $) 110) (($ $ (-410 (-549))) 163)) (* (($ (-922) $) 66) (($ (-773) $) NIL) (($ (-549) $) 65) (($ $ $) 61))) +(((-574 |#1|) (-558 |#1|) (-13 (-407) (-1205))) (T -574)) +NIL +(-558 |#1|) +((-3107 (((-3 (-643 (-1174 (-549))) "failed") (-643 (-1174 (-549))) (-1174 (-549))) 27))) +(((-575) (-10 -7 (-15 -3107 ((-3 (-643 (-1174 (-549))) "failed") (-643 (-1174 (-549))) (-1174 (-549)))))) (T -575)) +((-3107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 (-549)))) (-5 *3 (-1174 (-549))) (-5 *1 (-575))))) +(-10 -7 (-15 -3107 ((-3 (-643 (-1174 (-549))) "failed") (-643 (-1174 (-549))) (-1174 (-549))))) +((-2287 (((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-1180)) 19)) (-2290 (((-643 (-613 |#2|)) (-643 |#2|) (-1180)) 23)) (-3654 (((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-643 (-613 |#2|))) 11)) (-2291 ((|#2| |#2| (-1180)) 59 (|has| |#1| (-560)))) (-2292 ((|#2| |#2| (-1180)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-455))))) (-2289 (((-613 |#2|) (-613 |#2|) (-643 (-613 |#2|)) (-1180)) 25)) (-2288 (((-613 |#2|) (-643 (-613 |#2|))) 24)) (-2293 (((-586 |#2|) |#2| (-1180) (-1 (-586 |#2|) |#2| (-1180)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-632)) (|has| |#2| (-1041 (-1180))) (|has| |#1| (-616 (-893 (-549)))) (|has| |#1| (-455)) (|has| |#1| (-889 (-549))))))) +(((-576 |#1| |#2|) (-10 -7 (-15 -2287 ((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-1180))) (-15 -2288 ((-613 |#2|) (-643 (-613 |#2|)))) (-15 -2289 ((-613 |#2|) (-613 |#2|) (-643 (-613 |#2|)) (-1180))) (-15 -3654 ((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-643 (-613 |#2|)))) (-15 -2290 ((-643 (-613 |#2|)) (-643 |#2|) (-1180))) (IF (|has| |#1| (-560)) (-15 -2291 (|#2| |#2| (-1180))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -2292 (|#2| |#2| (-1180))) (IF (|has| |#1| (-616 (-893 (-549)))) (IF (|has| |#1| (-889 (-549))) (IF (|has| |#2| (-632)) (IF (|has| |#2| (-1041 (-1180))) (-15 -2293 ((-586 |#2|) |#2| (-1180) (-1 (-586 |#2|) |#2| (-1180)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1104) (-424 |#1|)) (T -576)) +((-2293 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-586 *3) *3 (-1180))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1180))) (-4 *3 (-285)) (-4 *3 (-632)) (-4 *3 (-1041 *4)) (-4 *3 (-424 *7)) (-5 *4 (-1180)) (-4 *7 (-616 (-893 (-549)))) (-4 *7 (-455)) (-4 *7 (-889 (-549))) (-4 *7 (-1104)) (-5 *2 (-586 *3)) (-5 *1 (-576 *7 *3)))) (-2292 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-455)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-424 *4)))) (-2291 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *2)) (-4 *2 (-424 *4)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-1180)) (-4 *6 (-424 *5)) (-4 *5 (-1104)) (-5 *2 (-643 (-613 *6))) (-5 *1 (-576 *5 *6)))) (-3654 (*1 *2 *2 *2) (-12 (-5 *2 (-643 (-613 *4))) (-4 *4 (-424 *3)) (-4 *3 (-1104)) (-5 *1 (-576 *3 *4)))) (-2289 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-643 (-613 *6))) (-5 *4 (-1180)) (-5 *2 (-613 *6)) (-4 *6 (-424 *5)) (-4 *5 (-1104)) (-5 *1 (-576 *5 *6)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-643 (-613 *5))) (-4 *4 (-1104)) (-5 *2 (-613 *5)) (-5 *1 (-576 *4 *5)) (-4 *5 (-424 *4)))) (-2287 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-613 *5))) (-5 *3 (-1180)) (-4 *5 (-424 *4)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *5))))) +(-10 -7 (-15 -2287 ((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-1180))) (-15 -2288 ((-613 |#2|) (-643 (-613 |#2|)))) (-15 -2289 ((-613 |#2|) (-613 |#2|) (-643 (-613 |#2|)) (-1180))) (-15 -3654 ((-643 (-613 |#2|)) (-643 (-613 |#2|)) (-643 (-613 |#2|)))) (-15 -2290 ((-643 (-613 |#2|)) (-643 |#2|) (-1180))) (IF (|has| |#1| (-560)) (-15 -2291 (|#2| |#2| (-1180))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -2292 (|#2| |#2| (-1180))) (IF (|has| |#1| (-616 (-893 (-549)))) (IF (|has| |#1| (-889 (-549))) (IF (|has| |#2| (-632)) (IF (|has| |#2| (-1041 (-1180))) (-15 -2293 ((-586 |#2|) |#2| (-1180) (-1 (-586 |#2|) |#2| (-1180)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1180)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2296 (((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-643 |#1|) "failed") (-549) |#1| |#1|)) 201)) (-2299 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-643 (-410 |#2|))) 176)) (-2302 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-643 (-410 |#2|))) 173)) (-2303 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 164)) (-2294 (((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 187)) (-2301 (((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|)) 204)) (-2297 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-410 |#2|)) 207)) (-2305 (((-2 (|:| |ir| (-586 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 88)) (-2306 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2300 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-643 (-410 |#2|))) 180)) (-2304 (((-3 (-625 |#1| |#2|) "failed") (-625 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|)) 168)) (-2295 (((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|)) 191)) (-2298 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-410 |#2|)) 212))) +(((-577 |#1| |#2|) (-10 -7 (-15 -2294 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2295 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2296 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-643 |#1|) "failed") (-549) |#1| |#1|))) (-15 -2297 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-410 |#2|))) (-15 -2298 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-410 |#2|))) (-15 -2299 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-643 (-410 |#2|)))) (-15 -2300 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-643 (-410 |#2|)))) (-15 -2301 ((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -2302 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-643 (-410 |#2|)))) (-15 -2303 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2304 ((-3 (-625 |#1| |#2|) "failed") (-625 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2305 ((-2 (|:| |ir| (-586 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -2306 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -577)) +((-2306 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-586 (-410 *6))) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2304 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3541 *4) (|:| |sol?| (-112))) (-549) *4)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *1 (-577 *4 *5)))) (-2303 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1245 *4)))) (-2302 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-643 (-410 *7))) (-4 *7 (-1245 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *7)))) (-2301 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2318 (-410 *6)) (|:| |coeff| (-410 *6)))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-2300 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3541 *7) (|:| |sol?| (-112))) (-549) *7)) (-5 *6 (-643 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2299 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2318 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-643 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2298 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3541 *6) (|:| |sol?| (-112))) (-549) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -2318 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2297 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2318 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -2318 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-643 *6) "failed") (-549) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2295 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3541 *6) (|:| |sol?| (-112))) (-549) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2294 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2318 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(-10 -7 (-15 -2294 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2295 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2296 ((-2 (|:| |answer| (-586 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-643 |#1|) "failed") (-549) |#1| |#1|))) (-15 -2297 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-410 |#2|))) (-15 -2298 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-410 |#2|))) (-15 -2299 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-643 (-410 |#2|)))) (-15 -2300 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|) (-643 (-410 |#2|)))) (-15 -2301 ((-3 (-2 (|:| -2318 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -2302 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-643 (-410 |#2|)))) (-15 -2303 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2304 ((-3 (-625 |#1| |#2|) "failed") (-625 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3541 |#1|) (|:| |sol?| (-112))) (-549) |#1|))) (-15 -2305 ((-2 (|:| |ir| (-586 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -2306 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2307 (((-3 |#2| "failed") |#2| (-1180) (-1180)) 10))) +(((-578 |#1| |#2|) (-10 -7 (-15 -2307 ((-3 |#2| "failed") |#2| (-1180) (-1180)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-963) (-1142) (-29 |#1|))) (T -578)) +((-2307 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1205) (-963) (-1142) (-29 *4)))))) +(-10 -7 (-15 -2307 ((-3 |#2| "failed") |#2| (-1180) (-1180)))) +((-2958 (((-693 (-1228)) $ (-1228)) 26)) (-2959 (((-693 (-553)) $ (-553)) 25)) (-2957 (((-773) $ (-129)) 27)) (-2960 (((-693 (-128)) $ (-128)) 24)) (-2178 (((-693 (-1228)) $) 12)) (-2174 (((-693 (-1226)) $) 8)) (-2176 (((-693 (-1225)) $) 10)) (-2179 (((-693 (-553)) $) 13)) (-2175 (((-693 (-551)) $) 9)) (-2177 (((-693 (-550)) $) 11)) (-2173 (((-773) $ (-129)) 7)) (-2180 (((-693 (-128)) $) 14)) (-1868 (($ $) 6))) (((-579) (-140)) (T -579)) NIL -(-13 (-530) (-861)) -(((-173) . T) ((-530) . T) ((-861) . T)) -((-3532 (((-692 (-1227)) $ (-1227)) NIL)) (-2787 (((-692 (-552)) $ (-552)) NIL)) (-1465 (((-772) $ (-128)) NIL)) (-2980 (((-692 (-129)) $ (-129)) NIL)) (-2184 (((-692 (-1227)) $) NIL)) (-3383 (((-692 (-1225)) $) NIL)) (-2011 (((-692 (-1224)) $) NIL)) (-1693 (((-692 (-552)) $) NIL)) (-1867 (((-692 (-550)) $) NIL)) (-3415 (((-692 (-549)) $) NIL)) (-4267 (((-772) $ (-128)) NIL)) (-4350 (((-692 (-129)) $) NIL)) (-3142 (((-112) $) NIL)) (-3578 (($ (-391)) 14) (($ (-1161)) 16)) (-2504 (((-863) $) NIL)) (-4023 (($ $) NIL))) -(((-580) (-13 (-579) (-614 (-863)) (-10 -8 (-15 -3578 ($ (-391))) (-15 -3578 ($ (-1161))) (-15 -3142 ((-112) $))))) (T -580)) -((-3578 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-580)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580))))) -(-13 (-579) (-614 (-863)) (-10 -8 (-15 -3578 ($ (-391))) (-15 -3578 ($ (-1161))) (-15 -3142 ((-112) $)))) -((-2487 (((-112) $ $) NIL)) (-1822 (($) 7 T CONST)) (-1812 (((-1161) $) NIL)) (-4129 (($) 6 T CONST)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 14)) (-3071 (($) 8 T CONST)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 10))) -(((-581) (-13 (-1102) (-10 -8 (-15 -4129 ($) -3562) (-15 -1822 ($) -3562) (-15 -3071 ($) -3562)))) (T -581)) -((-4129 (*1 *1) (-5 *1 (-581))) (-1822 (*1 *1) (-5 *1 (-581))) (-3071 (*1 *1) (-5 *1 (-581)))) -(-13 (-1102) (-10 -8 (-15 -4129 ($) -3562) (-15 -1822 ($) -3562) (-15 -3071 ($) -3562))) -((-2487 (((-112) $ $) NIL)) (-2953 (((-692 $) (-494)) 21)) (-1812 (((-1161) $) NIL)) (-3009 (($ (-1161)) 14)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 34)) (-2906 (((-213 4 (-129)) $) 24)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 26))) -(((-582) (-13 (-1102) (-10 -8 (-15 -3009 ($ (-1161))) (-15 -2906 ((-213 4 (-129)) $)) (-15 -2953 ((-692 $) (-494)))))) (T -582)) -((-3009 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-582)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582))))) -(-13 (-1102) (-10 -8 (-15 -3009 ($ (-1161))) (-15 -2906 ((-213 4 (-129)) $)) (-15 -2953 ((-692 $) (-494))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3671 (($ $ (-567)) 77)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-4153 (($ (-1175 (-567)) (-567)) 83)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) 68)) (-3999 (($ $) 43)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3905 (((-772) $) 16)) (-4384 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4190 (((-567)) 37)) (-4104 (((-567) $) 41)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1678 (($ $ (-567)) 24)) (-2478 (((-3 $ "failed") $ $) 73)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) 17)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 74)) (-2872 (((-1159 (-567)) $) 19)) (-4314 (($ $) 26)) (-2504 (((-863) $) 104) (($ (-567)) 63) (($ $) NIL)) (-2214 (((-772)) 15 T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-3092 (((-567) $ (-567)) 46)) (-1807 (($) 44 T CONST)) (-1820 (($) 21 T CONST)) (-2968 (((-112) $ $) 54)) (-3054 (($ $) 62) (($ $ $) 48)) (-3045 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 64) (($ $ $) 65))) -(((-583 |#1| |#2|) (-870 |#1|) (-567) (-112)) (T -583)) -NIL -(-870 |#1|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 30)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-2694 (((-1192 (-923) (-772)) (-567)) 59)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 $ "failed") $) 97)) (-3094 (($ $) 96)) (-3431 (($ (-1269 $)) 95)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) 44)) (-2119 (($) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) 61)) (-1816 (((-112) $) NIL)) (-2559 (($ $) NIL) (($ $ (-772)) NIL)) (-2946 (((-112) $) NIL)) (-3905 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-4384 (((-112) $) NIL)) (-2075 (($) 49 (|has| $ (-370)))) (-3739 (((-112) $) NIL (|has| $ (-370)))) (-2013 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 $) $ (-923)) NIL (|has| $ (-370))) (((-1175 $) $) 106)) (-2667 (((-923) $) 67)) (-4066 (((-1175 $) $) NIL (|has| $ (-370)))) (-2710 (((-3 (-1175 $) "failed") $ $) NIL (|has| $ (-370))) (((-1175 $) $) NIL (|has| $ (-370)))) (-1951 (($ $ (-1175 $)) NIL (|has| $ (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL T CONST)) (-2188 (($ (-923)) 60)) (-3626 (((-112) $) 89)) (-3479 (((-1122) $) NIL)) (-2335 (($) 28 (|has| $ (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 54)) (-3661 (((-421 $) $) NIL)) (-1884 (((-923)) 88) (((-834 (-923))) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-2589 (((-134)) NIL)) (-3592 (($ $ (-772)) NIL) (($ $) NIL)) (-3380 (((-923) $) 87) (((-834 (-923)) $) NIL)) (-2783 (((-1175 $)) 104)) (-1876 (($) 66)) (-4006 (($) 50 (|has| $ (-370)))) (-3237 (((-690 $) (-1269 $)) NIL) (((-1269 $) $) 93)) (-1322 (((-567) $) 40)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) 42) (($ $) NIL) (($ (-410 (-567))) NIL)) (-2318 (((-3 $ "failed") $) NIL) (($ $) 107)) (-2214 (((-772)) 51 T CONST)) (-3858 (((-112) $ $) 109)) (-4374 (((-1269 $) (-923)) 99) (((-1269 $)) 98)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) 31 T CONST)) (-1820 (($) 27 T CONST)) (-1620 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 34)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 83) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-584 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-923)) (T -584)) -NIL -(-13 (-351) (-330 $) (-615 (-567))) -((-2691 (((-1274) (-1161)) 10))) -(((-585) (-10 -7 (-15 -2691 ((-1274) (-1161))))) (T -585)) -((-2691 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-585))))) -(-10 -7 (-15 -2691 ((-1274) (-1161)))) -((-3601 (((-588 |#2|) (-588 |#2|)) 42)) (-4382 (((-645 |#2|) (-588 |#2|)) 44)) (-4326 ((|#2| (-588 |#2|)) 50))) -(((-586 |#1| |#2|) (-10 -7 (-15 -3601 ((-588 |#2|) (-588 |#2|))) (-15 -4382 ((-645 |#2|) (-588 |#2|))) (-15 -4326 (|#2| (-588 |#2|)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-29 |#1|) (-1204))) (T -586)) -((-4326 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1204))) (-5 *1 (-586 *4 *2)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1204))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) (-5 *1 (-586 *4 *5)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1204))) (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-586 *3 *4))))) -(-10 -7 (-15 -3601 ((-588 |#2|) (-588 |#2|))) (-15 -4382 ((-645 |#2|) (-588 |#2|))) (-15 -4326 (|#2| (-588 |#2|)))) -((-4364 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 30))) -(((-587 |#1| |#2|) (-10 -7 (-15 -4364 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -4364 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4364 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4364 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -587)) -((-4364 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) (-4364 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) (-4364 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3906 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -3906 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6))))) -(-10 -7 (-15 -4364 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -4364 ((-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3906 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4364 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4364 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) 76)) (-3094 ((|#1| $) NIL)) (-3906 ((|#1| $) 30)) (-4300 (((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2219 (($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-1729 (((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $) 31)) (-1812 (((-1161) $) NIL)) (-1954 (($ |#1| |#1|) 38) (($ |#1| (-1179)) 49 (|has| |#1| (-1040 (-1179))))) (-3479 (((-1122) $) NIL)) (-2824 (((-112) $) 35)) (-3592 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1179)) 89 (|has| |#1| (-902 (-1179))))) (-2504 (((-863) $) 112) (($ |#1|) 29)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 18 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) 17) (($ $ $) NIL)) (-3045 (($ $ $) 85)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 16) (($ (-410 (-567)) $) 41) (($ $ (-410 (-567))) NIL))) -(((-588 |#1|) (-13 (-718 (-410 (-567))) (-1040 |#1|) (-10 -8 (-15 -2219 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3906 (|#1| $)) (-15 -1729 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $)) (-15 -4300 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2824 ((-112) $)) (-15 -1954 ($ |#1| |#1|)) (-15 -3592 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-902 (-1179))) (-15 -3592 (|#1| $ (-1179))) |%noBranch|) (IF (|has| |#1| (-1040 (-1179))) (-15 -1954 ($ |#1| (-1179))) |%noBranch|))) (-365)) (T -588)) -((-2219 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 *2)) (|:| |logand| (-1175 *2))))) (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-588 *2)))) (-3906 (*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 *3)) (|:| |logand| (-1175 *3))))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-1954 (*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-3592 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-3592 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-902 *3)) (-5 *1 (-588 *2)) (-5 *3 (-1179)))) (-1954 (*1 *1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *1 (-588 *2)) (-4 *2 (-1040 *3)) (-4 *2 (-365))))) -(-13 (-718 (-410 (-567))) (-1040 |#1|) (-10 -8 (-15 -2219 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3906 (|#1| $)) (-15 -1729 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 |#1|)) (|:| |logand| (-1175 |#1|)))) $)) (-15 -4300 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2824 ((-112) $)) (-15 -1954 ($ |#1| |#1|)) (-15 -3592 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-902 (-1179))) (-15 -3592 (|#1| $ (-1179))) |%noBranch|) (IF (|has| |#1| (-1040 (-1179))) (-15 -1954 ($ |#1| (-1179))) |%noBranch|))) -((-1914 (((-112) |#1|) 16)) (-3205 (((-3 |#1| "failed") |#1|) 14)) (-4270 (((-2 (|:| -3140 |#1|) (|:| -2618 (-772))) |#1|) 39) (((-3 |#1| "failed") |#1| (-772)) 18)) (-2942 (((-112) |#1| (-772)) 19)) (-1924 ((|#1| |#1|) 43)) (-3364 ((|#1| |#1| (-772)) 46))) -(((-589 |#1|) (-10 -7 (-15 -2942 ((-112) |#1| (-772))) (-15 -4270 ((-3 |#1| "failed") |#1| (-772))) (-15 -4270 ((-2 (|:| -3140 |#1|) (|:| -2618 (-772))) |#1|)) (-15 -3364 (|#1| |#1| (-772))) (-15 -1914 ((-112) |#1|)) (-15 -3205 ((-3 |#1| "failed") |#1|)) (-15 -1924 (|#1| |#1|))) (-548)) (T -589)) -((-1924 (*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-3205 (*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1914 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-3364 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-4270 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3140 *3) (|:| -2618 (-772)))) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-4270 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -2942 ((-112) |#1| (-772))) (-15 -4270 ((-3 |#1| "failed") |#1| (-772))) (-15 -4270 ((-2 (|:| -3140 |#1|) (|:| -2618 (-772))) |#1|)) (-15 -3364 (|#1| |#1| (-772))) (-15 -1914 ((-112) |#1|)) (-15 -3205 ((-3 |#1| "failed") |#1|)) (-15 -1924 (|#1| |#1|))) -((-4280 (((-1175 |#1|) (-923)) 44))) -(((-590 |#1|) (-10 -7 (-15 -4280 ((-1175 |#1|) (-923)))) (-351)) (T -590)) -((-4280 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-590 *4)) (-4 *4 (-351))))) -(-10 -7 (-15 -4280 ((-1175 |#1|) (-923)))) -((-3601 (((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|)))) 27)) (-3670 (((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1179)) 34 (|has| |#1| (-147)))) (-4382 (((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|)))) 19)) (-3258 (((-317 |#1|) (-410 (-954 |#1|)) (-1179)) 32 (|has| |#1| (-147)))) (-4326 (((-317 |#1|) (-588 (-410 (-954 |#1|)))) 21))) -(((-591 |#1|) (-10 -7 (-15 -3601 ((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|))))) (-15 -4382 ((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|))))) (-15 -4326 ((-317 |#1|) (-588 (-410 (-954 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3670 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -3258 ((-317 |#1|) (-410 (-954 |#1|)) (-1179)))) |%noBranch|)) (-13 (-455) (-1040 (-567)) (-640 (-567)))) (T -591)) -((-3258 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) (-5 *1 (-591 *5)))) (-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-954 *4)))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-591 *4)))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-954 *4)))) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-588 (-410 (-954 *3)))) (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-591 *3))))) -(-10 -7 (-15 -3601 ((-588 (-410 (-954 |#1|))) (-588 (-410 (-954 |#1|))))) (-15 -4382 ((-645 (-317 |#1|)) (-588 (-410 (-954 |#1|))))) (-15 -4326 ((-317 |#1|) (-588 (-410 (-954 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3670 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -3258 ((-317 |#1|) (-410 (-954 |#1|)) (-1179)))) |%noBranch|)) -((-1619 (((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567)))) 78) (((-645 (-690 (-567))) (-645 (-567))) 79) (((-690 (-567)) (-645 (-567)) (-907 (-567))) 72)) (-3768 (((-772) (-645 (-567))) 69))) -(((-592) (-10 -7 (-15 -3768 ((-772) (-645 (-567)))) (-15 -1619 ((-690 (-567)) (-645 (-567)) (-907 (-567)))) (-15 -1619 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1619 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567))))))) (T -592)) -((-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-907 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-1619 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-907 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-592)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592))))) -(-10 -7 (-15 -3768 ((-772) (-645 (-567)))) (-15 -1619 ((-690 (-567)) (-645 (-567)) (-907 (-567)))) (-15 -1619 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1619 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-907 (-567)))))) -((-3087 (((-645 |#5|) |#5| (-112)) 100)) (-1417 (((-112) |#5| (-645 |#5|)) 34))) -(((-593 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3087 ((-645 |#5|) |#5| (-112))) (-15 -1417 ((-112) |#5| (-645 |#5|)))) (-13 (-308) (-147)) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1111 |#1| |#2| |#3| |#4|)) (T -593)) -((-1417 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1111 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-593 *5 *6 *7 *8 *3)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-645 *3)) (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1111 *5 *6 *7 *8))))) -(-10 -7 (-15 -3087 ((-645 |#5|) |#5| (-112))) (-15 -1417 ((-112) |#5| (-645 |#5|)))) -((-2487 (((-112) $ $) NIL)) (-2141 (((-1137) $) 11)) (-2128 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-594) (-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1137) $))))) (T -594)) -((-2128 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594))))) -(-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1137) $)))) -((-2487 (((-112) $ $) NIL (|has| (-144) (-1102)))) (-3847 (($ $) 38)) (-3860 (($ $) NIL)) (-1311 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1670 (((-112) $ $) 68)) (-1648 (((-112) $ $ (-567)) 62)) (-3601 (((-645 $) $ (-144)) 76) (((-645 $) $ (-141)) 77)) (-2051 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-2767 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-144) (-851))))) (-2080 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 (((-144) $ (-567) (-144)) 59 (|has| $ (-6 -4423))) (((-144) $ (-1236 (-567)) (-144)) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-1610 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3964 (($ $ (-1236 (-567)) $) 57)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1695 (($ (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2036 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4423)))) (-1970 (((-144) $ (-567)) NIL)) (-1694 (((-112) $ $) 90)) (-3932 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 65 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 63) (((-567) (-141) $ (-567)) 67)) (-3468 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-4223 (($ (-772) (-144)) 9)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) 32 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| (-144) (-851)))) (-1315 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-4200 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2346 (((-567) $) 47 (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| (-144) (-851)))) (-3943 (((-112) $ $ (-144)) 91)) (-4016 (((-772) $ $ (-144)) 88)) (-2021 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4158 (($ $) 41)) (-3371 (($ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1622 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-1812 (((-1161) $) 43 (|has| (-144) (-1102)))) (-4222 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) 27)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) 87 (|has| (-144) (-1102)))) (-3436 (((-144) $) NIL (|has| (-567) (-851)))) (-2989 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2930 (($ $ (-144)) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1804 (((-645 (-144)) $) NIL)) (-2319 (((-112) $) 15)) (-2973 (($) 10)) (-1882 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) 69) (($ $ (-1236 (-567))) 25) (($ $ $) NIL)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3486 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-3161 (($ $ $ (-567)) 84 (|has| $ (-6 -4423)))) (-3846 (($ $) 20)) (-1322 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-2516 (($ (-645 (-144))) NIL)) (-3644 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-645 $)) 85)) (-2504 (($ (-144)) NIL) (((-863) $) 31 (|has| (-144) (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| (-144) (-1102)))) (-3450 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2968 (((-112) $ $) 17 (|has| (-144) (-1102)))) (-3006 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2986 (((-112) $ $) 18 (|has| (-144) (-851)))) (-2498 (((-772) $) 16 (|has| $ (-6 -4422))))) -(((-595 |#1|) (-1146) (-567)) (T -595)) -NIL -(-1146) -((-3112 (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|)) 32))) -(((-596 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3112 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|))) (-15 -3112 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|)) (T -596)) -((-3112 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) (-3112 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1096 *3)) (-4 *3 (-951 *7 *6 *4)) (-4 *6 (-794)) (-4 *4 (-851)) (-4 *7 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *6 *4 *7 *3))))) -(-10 -7 (-15 -3112 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1096 |#4|))) (-15 -3112 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 72)) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3413 (($ $ (-567)) 58) (($ $ (-567) (-567)) 59)) (-3785 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 65)) (-3212 (($ $) 110)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2550 (((-863) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1179) |#1| (-410 (-567))) 243)) (-2686 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 36)) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3219 (((-112) $) NIL)) (-3905 (((-567) $) 63) (((-567) $ (-567)) 64)) (-4384 (((-112) $) NIL)) (-2240 (($ $ (-923)) 84)) (-3172 (($ (-1 |#1| (-567)) $) 81)) (-3615 (((-112) $) 26)) (-3764 (($ |#1| (-567)) 22) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) 76)) (-3579 (($ (-1028 (-844 (-567))) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 13)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3670 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-4001 (((-3 $ "failed") $ $ (-112)) 109)) (-3800 (($ $ $) 117)) (-3479 (((-1122) $) NIL)) (-4208 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 15)) (-3113 (((-1028 (-844 (-567))) $) 14)) (-1678 (($ $ (-567)) 47)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2913 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-1882 ((|#1| $ (-567)) 62) (($ $ $) NIL (|has| (-567) (-1114)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3380 (((-567) $) NIL)) (-4314 (($ $) 48)) (-2504 (((-863) $) NIL) (($ (-567)) 29) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 28 (|has| |#1| (-172)))) (-4038 ((|#1| $ (-567)) 61)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) 39 T CONST)) (-3118 ((|#1| $) NIL)) (-2659 (($ $) 201 (|has| |#1| (-38 (-410 (-567)))))) (-2712 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-2795 (($ $) 205 (|has| |#1| (-38 (-410 (-567)))))) (-2275 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2096 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-3646 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3020 (($ $ (-410 (-567))) 179 (|has| |#1| (-38 (-410 (-567)))))) (-3149 (($ $ |#1|) 159 (|has| |#1| (-38 (-410 (-567)))))) (-1335 (($ $) 207 (|has| |#1| (-38 (-410 (-567)))))) (-3249 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-1999 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-3147 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-3469 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3687 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-2385 (($ $) 203 (|has| |#1| (-38 (-410 (-567)))))) (-3406 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-3244 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-2969 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-2523 (($ $) 209 (|has| |#1| (-38 (-410 (-567)))))) (-4359 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-3910 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-2460 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-1960 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-3418 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-2500 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-3345 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-1747 (($ $) 211 (|has| |#1| (-38 (-410 (-567)))))) (-4372 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3092 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-1807 (($) 30 T CONST)) (-1820 (($) 40 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2968 (((-112) $ $) 74)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) 92) (($ $ $) 73)) (-3045 (($ $ $) 89)) (** (($ $ (-923)) NIL) (($ $ (-772)) 112)) (* (($ (-923) $) 99) (($ (-772) $) 97) (($ (-567) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-597 |#1|) (-13 (-1247 |#1| (-567)) (-10 -8 (-15 -3579 ($ (-1028 (-844 (-567))) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3113 ((-1028 (-844 (-567))) $)) (-15 -4208 ((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -2686 ($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3615 ((-112) $)) (-15 -3172 ($ (-1 |#1| (-567)) $)) (-15 -4001 ((-3 $ "failed") $ $ (-112))) (-15 -3212 ($ $)) (-15 -3800 ($ $ $)) (-15 -2550 ((-863) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1179) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $)) (-15 -3149 ($ $ |#1|)) (-15 -3020 ($ $ (-410 (-567)))) (-15 -3249 ($ $)) (-15 -1335 ($ $)) (-15 -2275 ($ $)) (-15 -3406 ($ $)) (-15 -2712 ($ $)) (-15 -3687 ($ $)) (-15 -3646 ($ $)) (-15 -3147 ($ $)) (-15 -4359 ($ $)) (-15 -4372 ($ $)) (-15 -2969 ($ $)) (-15 -3345 ($ $)) (-15 -2460 ($ $)) (-15 -3418 ($ $)) (-15 -2795 ($ $)) (-15 -2385 ($ $)) (-15 -2659 ($ $)) (-15 -3469 ($ $)) (-15 -2096 ($ $)) (-15 -1999 ($ $)) (-15 -2523 ($ $)) (-15 -1747 ($ $)) (-15 -3244 ($ $)) (-15 -2500 ($ $)) (-15 -3910 ($ $)) (-15 -1960 ($ $))) |%noBranch|))) (-1051)) (T -597)) -((-3615 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-3579 (*1 *1 *2 *3) (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *3 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1051)) (-5 *1 (-597 *4)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-4208 (*1 *2 *1) (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) (-3172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) (-4001 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) (-3212 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))) (-3800 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051)))) (-2550 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *6)))) (-5 *4 (-1028 (-844 (-567)))) (-5 *5 (-1179)) (-5 *7 (-410 (-567))) (-4 *6 (-1051)) (-5 *2 (-863)) (-5 *1 (-597 *6)))) (-3670 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3149 (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3020 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1051)))) (-3249 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1335 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3406 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3687 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3646 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3147 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4359 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-4372 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2969 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3345 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2460 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3418 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2385 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2659 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3469 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2096 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1999 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2523 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1747 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3244 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) (-1960 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(-13 (-1247 |#1| (-567)) (-10 -8 (-15 -3579 ($ (-1028 (-844 (-567))) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3113 ((-1028 (-844 (-567))) $)) (-15 -4208 ((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -2686 ($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3615 ((-112) $)) (-15 -3172 ($ (-1 |#1| (-567)) $)) (-15 -4001 ((-3 $ "failed") $ $ (-112))) (-15 -3212 ($ $)) (-15 -3800 ($ $ $)) (-15 -2550 ((-863) (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1028 (-844 (-567))) (-1179) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $)) (-15 -3149 ($ $ |#1|)) (-15 -3020 ($ $ (-410 (-567)))) (-15 -3249 ($ $)) (-15 -1335 ($ $)) (-15 -2275 ($ $)) (-15 -3406 ($ $)) (-15 -2712 ($ $)) (-15 -3687 ($ $)) (-15 -3646 ($ $)) (-15 -3147 ($ $)) (-15 -4359 ($ $)) (-15 -4372 ($ $)) (-15 -2969 ($ $)) (-15 -3345 ($ $)) (-15 -2460 ($ $)) (-15 -3418 ($ $)) (-15 -2795 ($ $)) (-15 -2385 ($ $)) (-15 -2659 ($ $)) (-15 -3469 ($ $)) (-15 -2096 ($ $)) (-15 -1999 ($ $)) (-15 -2523 ($ $)) (-15 -1747 ($ $)) (-15 -3244 ($ $)) (-15 -2500 ($ $)) (-15 -3910 ($ $)) (-15 -1960 ($ $))) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 65)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-2686 (($ (-1159 |#1|)) 9)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) 48)) (-3219 (((-112) $) 58)) (-3905 (((-772) $) 63) (((-772) $ (-772)) 62)) (-4384 (((-112) $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2478 (((-3 $ "failed") $ $) 50 (|has| |#1| (-559)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-1159 |#1|) $) 29)) (-2214 (((-772)) 57 T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) 10 T CONST)) (-1820 (($) 14 T CONST)) (-2968 (((-112) $ $) 28)) (-3054 (($ $) 36) (($ $ $) 16)) (-3045 (($ $ $) 31)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-567)) 42))) -(((-598 |#1|) (-13 (-1051) (-111 |#1| |#1|) (-10 -8 (-15 -1516 ((-1159 |#1|) $)) (-15 -2686 ($ (-1159 |#1|))) (-15 -3219 ((-112) $)) (-15 -3905 ((-772) $)) (-15 -3905 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) (-1051)) (T -598)) -((-1516 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-598 *3)))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (-3905 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1051))))) -(-13 (-1051) (-111 |#1| |#1|) (-10 -8 (-15 -1516 ((-1159 |#1|) $)) (-15 -2686 ($ (-1159 |#1|))) (-15 -3219 ((-112) $)) (-15 -3905 ((-772) $)) (-15 -3905 ((-772) $ (-772))) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) -((-4364 (((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)) 15))) -(((-599 |#1| |#2|) (-10 -7 (-15 -4364 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) (-1219) (-1219)) (T -599)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6))))) -(-10 -7 (-15 -4364 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) -((-4364 (((-1159 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1159 |#2|)) 20) (((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-602 |#2|)) 19) (((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|)) 18))) -(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -4364 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -4364 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-602 |#2|))) (-15 -4364 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1159 |#2|)))) (-1219) (-1219) (-1219)) (T -600)) -((-4364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1159 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) (-5 *1 (-600 *6 *7 *8)))) (-4364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1159 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) (-5 *1 (-600 *6 *7 *8)))) (-4364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-602 *8)) (-5 *1 (-600 *6 *7 *8))))) -(-10 -7 (-15 -4364 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -4364 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-602 |#2|))) (-15 -4364 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1159 |#2|)))) -((-2623 ((|#3| |#3| (-645 (-613 |#3|)) (-645 (-1179))) 57)) (-3922 (((-169 |#2|) |#3|) 121)) (-2958 ((|#3| (-169 |#2|)) 46)) (-2715 ((|#2| |#3|) 21)) (-3662 ((|#3| |#2|) 35))) -(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -2958 (|#3| (-169 |#2|))) (-15 -2715 (|#2| |#3|)) (-15 -3662 (|#3| |#2|)) (-15 -3922 ((-169 |#2|) |#3|)) (-15 -2623 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1179))))) (-559) (-13 (-433 |#1|) (-1004) (-1204)) (-13 (-433 (-169 |#1|)) (-1004) (-1204))) (T -601)) -((-2623 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1179))) (-4 *2 (-13 (-433 (-169 *5)) (-1004) (-1204))) (-4 *5 (-559)) (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1004) (-1204))))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1004) (-1204))) (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1204))))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1204))) (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1004) (-1204))))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1004) (-1204))) (-5 *1 (-601 *4 *2 *3)) (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1204))))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1204))) (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1204))) (-5 *1 (-601 *4 *5 *2))))) -(-10 -7 (-15 -2958 (|#3| (-169 |#2|))) (-15 -2715 (|#2| |#3|)) (-15 -3662 (|#3| |#2|)) (-15 -3922 ((-169 |#2|) |#3|)) (-15 -2623 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1179))))) -((-1316 (($ (-1 (-112) |#1|) $) 17)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2378 (($ (-1 |#1| |#1|) |#1|) 9)) (-4395 (($ (-1 (-112) |#1|) $) 13)) (-1307 (($ (-1 (-112) |#1|) $) 15)) (-2516 (((-1159 |#1|) $) 18)) (-2504 (((-863) $) NIL))) -(((-602 |#1|) (-13 (-614 (-863)) (-10 -8 (-15 -4364 ($ (-1 |#1| |#1|) $)) (-15 -4395 ($ (-1 (-112) |#1|) $)) (-15 -1307 ($ (-1 (-112) |#1|) $)) (-15 -1316 ($ (-1 (-112) |#1|) $)) (-15 -2378 ($ (-1 |#1| |#1|) |#1|)) (-15 -2516 ((-1159 |#1|) $)))) (-1219)) (T -602)) -((-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-4395 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-1307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-1316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-2378 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1219))))) -(-13 (-614 (-863)) (-10 -8 (-15 -4364 ($ (-1 |#1| |#1|) $)) (-15 -4395 ($ (-1 (-112) |#1|) $)) (-15 -1307 ($ (-1 (-112) |#1|) $)) (-15 -1316 ($ (-1 (-112) |#1|) $)) (-15 -2378 ($ (-1 |#1| |#1|) |#1|)) (-15 -2516 ((-1159 |#1|) $)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3398 (($ (-772)) NIL (|has| |#1| (-23)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3932 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-1896 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-4223 (($ (-772) |#1|) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4207 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-3421 (((-112) $ (-772)) NIL)) (-3613 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) NIL (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1336 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-1051)))) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) NIL)) (-3644 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3054 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3045 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-603 |#1| |#2|) (-1267 |#1|) (-1219) (-567)) (T -603)) -NIL -(-1267 |#1|) -((-3095 (((-1274) $ |#2| |#2|) 36)) (-2407 ((|#2| $) 23)) (-2346 ((|#2| $) 21)) (-2021 (($ (-1 |#3| |#3|) $) 32)) (-4364 (($ (-1 |#3| |#3|) $) 30)) (-3436 ((|#3| $) 26)) (-2930 (($ $ |#3|) 33)) (-3428 (((-112) |#3| $) 17)) (-1804 (((-645 |#3|) $) 15)) (-1882 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -3095 ((-1274) |#1| |#2| |#2|)) (-15 -2930 (|#1| |#1| |#3|)) (-15 -3436 (|#3| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -2346 (|#2| |#1|)) (-15 -3428 ((-112) |#3| |#1|)) (-15 -1804 ((-645 |#3|) |#1|)) (-15 -1882 (|#3| |#1| |#2|)) (-15 -1882 (|#3| |#1| |#2| |#3|)) (-15 -2021 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4364 (|#1| (-1 |#3| |#3|) |#1|))) (-605 |#2| |#3|) (-1102) (-1219)) (T -604)) -NIL -(-10 -8 (-15 -3095 ((-1274) |#1| |#2| |#2|)) (-15 -2930 (|#1| |#1| |#3|)) (-15 -3436 (|#3| |#1|)) (-15 -2407 (|#2| |#1|)) (-15 -2346 (|#2| |#1|)) (-15 -3428 ((-112) |#3| |#1|)) (-15 -1804 ((-645 |#3|) |#1|)) (-15 -1882 (|#3| |#1| |#2|)) (-15 -1882 (|#3| |#1| |#2| |#3|)) (-15 -2021 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4364 (|#1| (-1 |#3| |#3|) |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#2| (-1102)))) (-3095 (((-1274) $ |#1| |#1|) 41 (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4423)))) (-3758 (($) 7 T CONST)) (-2036 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) 52)) (-3468 (((-645 |#2|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-2407 ((|#1| $) 44 (|has| |#1| (-851)))) (-4200 (((-645 |#2|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-2346 ((|#1| $) 45 (|has| |#1| (-851)))) (-2021 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#2| |#2|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#2| (-1102)))) (-3360 (((-645 |#1|) $) 47)) (-2919 (((-112) |#1| $) 48)) (-3479 (((-1122) $) 21 (|has| |#2| (-1102)))) (-3436 ((|#2| $) 43 (|has| |#1| (-851)))) (-2930 (($ $ |#2|) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3486 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4422))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#2| (-1102)))) (-3450 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#2| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-605 |#1| |#2|) (-140) (-1102) (-1219)) (T -605)) -((-1804 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) (-5 *2 (-645 *4)))) (-2919 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) (-5 *2 (-645 *3)))) (-3428 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1102)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2346 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1102)) (-4 *2 (-851)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *3 (-851)) (-4 *2 (-1219)))) (-2930 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) (-3095 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) (-5 *2 (-1274))))) -(-13 (-492 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -1804 ((-645 |t#2|) $)) (-15 -2919 ((-112) |t#1| $)) (-15 -3360 ((-645 |t#1|) $)) (IF (|has| |t#2| (-1102)) (IF (|has| $ (-6 -4422)) (-15 -3428 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -2346 (|t#1| $)) (-15 -2407 (|t#1| $)) (-15 -3436 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4423)) (PROGN (-15 -2930 ($ $ |t#2|)) (-15 -3095 ((-1274) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1102)) ((-614 (-863)) -2836 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-1102) |has| |#2| (-1102)) ((-1219) . T)) -((-2504 (((-863) $) 19) (($ (-129)) 13) (((-129) $) 14))) -(((-606) (-13 (-614 (-863)) (-493 (-129)))) (T -606)) -NIL -(-13 (-614 (-863)) (-493 (-129))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL) (($ (-1184)) NIL) (((-1184) $) NIL) (((-1218) $) 14) (($ (-645 (-1218))) 13)) (-1893 (((-645 (-1218)) $) 10)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-607) (-13 (-1085) (-614 (-1218)) (-10 -8 (-15 -2504 ($ (-645 (-1218)))) (-15 -1893 ((-645 (-1218)) $))))) (T -607)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-607)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-607))))) -(-13 (-1085) (-614 (-1218)) (-10 -8 (-15 -2504 ($ (-645 (-1218)))) (-15 -1893 ((-645 (-1218)) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3414 (((-3 $ "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-1998 (((-1269 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1269 (-690 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1931 (((-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3758 (($) NIL T CONST)) (-2670 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3865 (((-3 $ "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1426 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4114 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4170 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1511 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3657 (((-1175 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3497 (($ $ (-923)) NIL)) (-1607 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1375 (((-1175 |#1|) $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2260 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3542 (((-1175 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3134 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3431 (($ (-1269 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1269 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1377 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1471 (((-923)) NIL (|has| |#2| (-369 |#1|)))) (-1586 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2258 (($ $ (-923)) NIL)) (-3604 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3703 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3504 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1478 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3363 (((-3 $ "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4221 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2726 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3969 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3822 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2626 (((-1175 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2310 (($ $ (-923)) NIL)) (-2152 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3485 (((-1175 |#1|) $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1741 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3522 (((-1175 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1812 (((-1161) $) NIL)) (-3403 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2905 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2541 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3479 (((-1122) $) NIL)) (-2779 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1882 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-3237 (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-420 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $) (-1269 $)) NIL (|has| |#2| (-369 |#1|))) (((-1269 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1322 (($ (-1269 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-3869 (((-645 (-954 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-954 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4033 (($ $ $) NIL)) (-2441 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2504 (((-863) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL (|has| |#2| (-420 |#1|)))) (-3477 (((-645 (-1269 |#1|))) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2862 (($ $ $ $) NIL)) (-3527 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3384 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-1793 (($ $ $) NIL)) (-1959 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3358 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2035 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1807 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) 24)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-608 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -2504 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -608)) -((-2504 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3))))) -(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -2504 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-2060 (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) 39)) (-4212 (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL) (($) NIL)) (-3095 (((-1274) $ (-1161) (-1161)) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-1161) |#1|) 49)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 |#1| "failed") (-1161) $) 52)) (-3758 (($) NIL T CONST)) (-3200 (($ $ (-1161)) 25)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102))))) (-4197 (((-3 |#1| "failed") (-1161) $) 53) (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (($ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL (|has| $ (-6 -4422)))) (-1695 (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (($ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102))))) (-2617 (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102))))) (-4118 (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) 38)) (-2036 ((|#1| $ (-1161) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-1161)) NIL)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422))) (((-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2206 (($ $) 54)) (-1692 (($ (-391)) 23) (($ (-391) (-1161)) 22)) (-1646 (((-391) $) 40)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-1161) $) NIL (|has| (-1161) (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422))) (((-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (((-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102))))) (-2346 (((-1161) $) NIL (|has| (-1161) (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-1512 (((-645 (-1161)) $) 45)) (-1560 (((-112) (-1161) $) NIL)) (-2696 (((-1161) $) 41)) (-3018 (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL)) (-3360 (((-645 (-1161)) $) NIL)) (-2919 (((-112) (-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 ((|#1| $) NIL (|has| (-1161) (-851)))) (-2989 (((-3 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) "failed") (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (($ $ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (($ $ (-645 (-295 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 43)) (-1882 ((|#1| $ (-1161) |#1|) NIL) ((|#1| $ (-1161)) 48)) (-2730 (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL) (($) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (((-772) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (((-772) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL)) (-2504 (((-863) $) 21)) (-4023 (($ $) 26)) (-3858 (((-112) $ $) NIL)) (-4225 (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20)) (-2498 (((-772) $) 47 (|has| $ (-6 -4422))))) -(((-609 |#1|) (-13 (-366 (-391) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) (-1195 (-1161) |#1|) (-10 -8 (-6 -4422) (-15 -2206 ($ $)))) (-1102)) (T -609)) -((-2206 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1102))))) -(-13 (-366 (-391) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) (-1195 (-1161) |#1|) (-10 -8 (-6 -4422) (-15 -2206 ($ $)))) -((-2203 (((-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) $) 16)) (-1512 (((-645 |#2|) $) 20)) (-1560 (((-112) |#2| $) 12))) -(((-610 |#1| |#2| |#3|) (-10 -8 (-15 -1512 ((-645 |#2|) |#1|)) (-15 -1560 ((-112) |#2| |#1|)) (-15 -2203 ((-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|))) (-611 |#2| |#3|) (-1102) (-1102)) (T -610)) -NIL -(-10 -8 (-15 -1512 ((-645 |#2|) |#1|)) (-15 -1560 ((-112) |#2| |#1|)) (-15 -2203 ((-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|))) -((-2487 (((-112) $ $) 19 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 46 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 56 (|has| $ (-6 -4422)))) (-2412 (((-3 |#2| "failed") |#1| $) 62)) (-3758 (($) 7 T CONST)) (-3470 (($ $) 59 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 47 (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 63)) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 55 (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 57 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 54 (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 53 (|has| $ (-6 -4422)))) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-1512 (((-645 |#1|) $) 64)) (-1560 (((-112) |#1| $) 65)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 40)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 41)) (-3479 (((-1122) $) 21 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 52)) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 42)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) 27 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 26 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 25 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 24 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-2730 (($) 50) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 49)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 32 (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 51)) (-2504 (((-863) $) 18 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 43)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-611 |#1| |#2|) (-140) (-1102) (-1102)) (T -611)) -((-1560 (*1 *2 *3 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-112)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-5 *2 (-645 *3)))) (-4197 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-2412 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) -(-13 (-229 (-2 (|:| -2025 |t#1|) (|:| -2265 |t#2|))) (-10 -8 (-15 -1560 ((-112) |t#1| $)) (-15 -1512 ((-645 |t#1|) $)) (-15 -4197 ((-3 |t#2| "failed") |t#1| $)) (-15 -2412 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T) ((-102) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) ((-614 (-863)) -2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) ((-492 #0#) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) ((-1102) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) ((-1219) . T)) -((-4072 (((-613 |#2|) |#1|) 17)) (-1520 (((-3 |#1| "failed") (-613 |#2|)) 21))) -(((-612 |#1| |#2|) (-10 -7 (-15 -4072 ((-613 |#2|) |#1|)) (-15 -1520 ((-3 |#1| "failed") (-613 |#2|)))) (-1102) (-1102)) (T -612)) -((-1520 (*1 *2 *3) (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) (-5 *1 (-612 *2 *4)))) (-4072 (*1 *2 *3) (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))))) -(-10 -7 (-15 -4072 ((-613 |#2|) |#1|)) (-15 -1520 ((-3 |#1| "failed") (-613 |#2|)))) -((-2487 (((-112) $ $) NIL)) (-1946 (((-3 (-1179) "failed") $) 48)) (-3157 (((-1274) $ (-772)) 24)) (-3932 (((-772) $) 23)) (-3609 (((-114) $) 12)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-4369 (($ (-114) (-645 |#1|) (-772)) 34) (($ (-1179)) 35)) (-2208 (((-112) $ (-114)) 18) (((-112) $ (-1179)) 16)) (-1337 (((-772) $) 20)) (-3479 (((-1122) $) NIL)) (-1322 (((-894 (-567)) $) 96 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 103 (|has| |#1| (-615 (-894 (-381))))) (((-539) $) 89 (|has| |#1| (-615 (-539))))) (-2504 (((-863) $) 73)) (-3858 (((-112) $ $) NIL)) (-2928 (((-645 |#1|) $) 22)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 52)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 54))) -(((-613 |#1|) (-13 (-132) (-851) (-886 |#1|) (-10 -8 (-15 -3609 ((-114) $)) (-15 -2928 ((-645 |#1|) $)) (-15 -1337 ((-772) $)) (-15 -4369 ($ (-114) (-645 |#1|) (-772))) (-15 -4369 ($ (-1179))) (-15 -1946 ((-3 (-1179) "failed") $)) (-15 -2208 ((-112) $ (-114))) (-15 -2208 ((-112) $ (-1179))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-1102)) (T -613)) -((-3609 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-4369 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1102)) (-5 *1 (-613 *5)))) (-4369 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-1946 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102)))) (-2208 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102))))) -(-13 (-132) (-851) (-886 |#1|) (-10 -8 (-15 -3609 ((-114) $)) (-15 -2928 ((-645 |#1|) $)) (-15 -1337 ((-772) $)) (-15 -4369 ($ (-114) (-645 |#1|) (-772))) (-15 -4369 ($ (-1179))) (-15 -1946 ((-3 (-1179) "failed") $)) (-15 -2208 ((-112) $ (-114))) (-15 -2208 ((-112) $ (-1179))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) -((-2504 ((|#1| $) 6))) -(((-614 |#1|) (-140) (-1219)) (T -614)) -((-2504 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -2504 (|t#1| $)))) -((-1322 ((|#1| $) 6))) +(-13 (-530) (-863)) +(((-173) . T) ((-530) . T) ((-863) . T)) +((-2958 (((-693 (-1228)) $ (-1228)) NIL)) (-2959 (((-693 (-553)) $ (-553)) NIL)) (-2957 (((-773) $ (-129)) NIL)) (-2960 (((-693 (-128)) $ (-128)) NIL)) (-2178 (((-693 (-1228)) $) NIL)) (-2174 (((-693 (-1226)) $) NIL)) (-2176 (((-693 (-1225)) $) NIL)) (-2179 (((-693 (-553)) $) NIL)) (-2175 (((-693 (-551)) $) NIL)) (-2177 (((-693 (-550)) $) NIL)) (-2173 (((-773) $ (-129)) NIL)) (-2180 (((-693 (-128)) $) NIL)) (-2961 (((-112) $) NIL)) (-2308 (($ (-391)) 14) (($ (-1162)) 16)) (-4378 (((-865) $) NIL)) (-1868 (($ $) NIL))) +(((-580) (-13 (-579) (-615 (-865)) (-10 -8 (-15 -2308 ($ (-391))) (-15 -2308 ($ (-1162))) (-15 -2961 ((-112) $))))) (T -580)) +((-2308 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-580)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580))))) +(-13 (-579) (-615 (-865)) (-10 -8 (-15 -2308 ($ (-391))) (-15 -2308 ($ (-1162))) (-15 -2961 ((-112) $)))) +((-2968 (((-112) $ $) NIL)) (-3883 (($) 7 T CONST)) (-3663 (((-1162) $) NIL)) (-2310 (($) 6 T CONST)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 14)) (-2309 (($) 8 T CONST)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 10))) +(((-581) (-13 (-1104) (-10 -8 (-15 -2310 ($) -4384) (-15 -3883 ($) -4384) (-15 -2309 ($) -4384)))) (T -581)) +((-2310 (*1 *1) (-5 *1 (-581))) (-3883 (*1 *1) (-5 *1 (-581))) (-2309 (*1 *1) (-5 *1 (-581)))) +(-13 (-1104) (-10 -8 (-15 -2310 ($) -4384) (-15 -3883 ($) -4384) (-15 -2309 ($) -4384))) +((-2968 (((-112) $ $) NIL)) (-2311 (((-693 $) (-494)) 21)) (-3663 (((-1162) $) NIL)) (-2313 (($ (-1162)) 14)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 34)) (-2312 (((-213 4 (-128)) $) 24)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 26))) +(((-582) (-13 (-1104) (-10 -8 (-15 -2313 ($ (-1162))) (-15 -2312 ((-213 4 (-128)) $)) (-15 -2311 ((-693 $) (-494)))))) (T -582)) +((-2313 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-582)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-128))) (-5 *1 (-582)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-693 (-582))) (-5 *1 (-582))))) +(-13 (-1104) (-10 -8 (-15 -2313 ($ (-1162))) (-15 -2312 ((-213 4 (-128)) $)) (-15 -2311 ((-693 $) (-494))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $ (-549)) 77)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3011 (($ (-1174 (-549)) (-549)) 83)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) 68)) (-3012 (($ $) 43)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4203 (((-773) $) 16)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 (((-549)) 37)) (-3013 (((-549) $) 41)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4200 (($ $ (-549)) 24)) (-3889 (((-3 $ "failed") $ $) 73)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) 17)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 74)) (-3015 (((-1157 (-549)) $) 19)) (-3292 (($ $) 26)) (-4378 (((-865) $) 104) (($ (-549)) 63) (($ $) NIL)) (-3530 (((-773)) 15 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-549) $ (-549)) 46)) (-3510 (($) 44 T CONST)) (-3067 (($) 21 T CONST)) (-3455 (((-112) $ $) 54)) (-4269 (($ $) 62) (($ $ $) 48)) (-4271 (($ $ $) 61)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 64) (($ $ $) 65))) +(((-583 |#1| |#2|) (-872 |#1|) (-549) (-112)) (T -583)) +NIL +(-872 |#1|) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 30)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-1843 (((-1192 (-922) (-773)) (-549)) 59)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 $ "failed") $) 95)) (-3576 (($ $) 94)) (-1967 (($ (-1269 $)) 93)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) 44)) (-3395 (($) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) 61)) (-1848 (((-112) $) NIL)) (-1941 (($ $) NIL) (($ $ (-773)) NIL)) (-4155 (((-112) $) NIL)) (-4203 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2573 (((-112) $) NIL)) (-2191 (($) 49 (|has| $ (-370)))) (-2189 (((-112) $) NIL (|has| $ (-370)))) (-3536 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-3868 (((-3 $ "failed") $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 $) $ (-922)) NIL (|has| $ (-370))) (((-1174 $) $) 104)) (-2188 (((-922) $) 67)) (-1772 (((-1174 $) $) NIL (|has| $ (-370)))) (-1771 (((-3 (-1174 $) "failed") $ $) NIL (|has| $ (-370))) (((-1174 $) $) NIL (|has| $ (-370)))) (-1773 (($ $ (-1174 $)) NIL (|has| $ (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL T CONST)) (-2563 (($ (-922)) 60)) (-4363 (((-112) $) 87)) (-3664 (((-1123) $) NIL)) (-2572 (($) 28 (|has| $ (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 54)) (-4164 (((-408 $) $) NIL)) (-4362 (((-922)) 86) (((-834 (-922))) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-3 (-773) "failed") $ $) NIL) (((-773) $) NIL)) (-4343 (((-134)) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-4380 (((-922) $) 85) (((-834 (-922)) $) NIL)) (-3605 (((-1174 $)) 102)) (-1842 (($) 66)) (-1774 (($) 50 (|has| $ (-370)))) (-3644 (((-691 $) (-1269 $)) NIL) (((-1269 $) $) 91)) (-4402 (((-549) $) 40)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) 42) (($ $) NIL) (($ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL) (($ $) 105)) (-3530 (((-773)) 51 T CONST)) (-3662 (((-112) $ $) 107)) (-2190 (((-1269 $) (-922)) 97) (((-1269 $)) 96)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) 31 T CONST)) (-3067 (($) 27 T CONST)) (-4360 (($ $ (-773)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 34)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 81) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) +(((-584 |#1|) (-13 (-352) (-330 $) (-616 (-549))) (-922)) (T -584)) +NIL +(-13 (-352) (-330 $) (-616 (-549))) +((-2314 (((-1275) (-1162)) 10))) +(((-585) (-10 -7 (-15 -2314 ((-1275) (-1162))))) (T -585)) +((-2314 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-585))))) +(-10 -7 (-15 -2314 ((-1275) (-1162)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| "failed") $) 76)) (-3576 ((|#1| $) NIL)) (-2318 ((|#1| $) 30)) (-2316 (((-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2319 (($ |#1| (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2317 (((-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $) 31)) (-3663 (((-1162) $) NIL)) (-3235 (($ |#1| |#1|) 38) (($ |#1| (-1180)) 49 (|has| |#1| (-1041 (-1180))))) (-3664 (((-1123) $) NIL)) (-2315 (((-112) $) 35)) (-4242 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1180)) 89 (|has| |#1| (-903 (-1180))))) (-4378 (((-865) $) 112) (($ |#1|) 29)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 18 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) 17) (($ $ $) NIL)) (-4271 (($ $ $) 85)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 16) (($ (-410 (-549)) $) 41) (($ $ (-410 (-549))) NIL))) +(((-586 |#1|) (-13 (-719 (-410 (-549))) (-1041 |#1|) (-10 -8 (-15 -2319 ($ |#1| (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2318 (|#1| $)) (-15 -2317 ((-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $)) (-15 -2316 ((-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2315 ((-112) $)) (-15 -3235 ($ |#1| |#1|)) (-15 -4242 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-903 (-1180))) (-15 -4242 (|#1| $ (-1180))) |%noBranch|) (IF (|has| |#1| (-1041 (-1180))) (-15 -3235 ($ |#1| (-1180))) |%noBranch|))) (-365)) (T -586)) +((-2319 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 *2)) (|:| |logand| (-1174 *2))))) (-5 *4 (-643 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-586 *2)))) (-2318 (*1 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-365)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 *3)) (|:| |logand| (-1174 *3))))) (-5 *1 (-586 *3)) (-4 *3 (-365)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-586 *3)) (-4 *3 (-365)))) (-2315 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-365)))) (-3235 (*1 *1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-365)))) (-4242 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-586 *2)) (-4 *2 (-365)))) (-4242 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-903 *3)) (-5 *1 (-586 *2)) (-5 *3 (-1180)))) (-3235 (*1 *1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *1 (-586 *2)) (-4 *2 (-1041 *3)) (-4 *2 (-365))))) +(-13 (-719 (-410 (-549))) (-1041 |#1|) (-10 -8 (-15 -2319 ($ |#1| (-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) (-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2318 (|#1| $)) (-15 -2317 ((-643 (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 |#1|)) (|:| |logand| (-1174 |#1|)))) $)) (-15 -2316 ((-643 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2315 ((-112) $)) (-15 -3235 ($ |#1| |#1|)) (-15 -4242 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-903 (-1180))) (-15 -4242 (|#1| $ (-1180))) |%noBranch|) (IF (|has| |#1| (-1041 (-1180))) (-15 -3235 ($ |#1| (-1180))) |%noBranch|))) +((-4390 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|)) 30))) +(((-587 |#1| |#2|) (-10 -7 (-15 -4390 ((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|))) (-15 -4390 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4390 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4390 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -587)) +((-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) (-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) (-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2318 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -2318 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-586 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-586 *6)) (-5 *1 (-587 *5 *6))))) +(-10 -7 (-15 -4390 ((-586 |#2|) (-1 |#2| |#1|) (-586 |#1|))) (-15 -4390 ((-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2318 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4390 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4390 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3842 (((-586 |#2|) (-586 |#2|)) 42)) (-4395 (((-643 |#2|) (-586 |#2|)) 44)) (-2327 ((|#2| (-586 |#2|)) 50))) +(((-588 |#1| |#2|) (-10 -7 (-15 -3842 ((-586 |#2|) (-586 |#2|))) (-15 -4395 ((-643 |#2|) (-586 |#2|))) (-15 -2327 (|#2| (-586 |#2|)))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-29 |#1|) (-1205))) (T -588)) +((-2327 (*1 *2 *3) (-12 (-5 *3 (-586 *2)) (-4 *2 (-13 (-29 *4) (-1205))) (-5 *1 (-588 *4 *2)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-586 *5)) (-4 *5 (-13 (-29 *4) (-1205))) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-643 *5)) (-5 *1 (-588 *4 *5)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-586 *4)) (-4 *4 (-13 (-29 *3) (-1205))) (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-588 *3 *4))))) +(-10 -7 (-15 -3842 ((-586 |#2|) (-586 |#2|))) (-15 -4395 ((-643 |#2|) (-586 |#2|))) (-15 -2327 (|#2| (-586 |#2|)))) +((-4378 (((-865) $) 9))) +(((-589) (-615 (-865))) (T -589)) +NIL +(-615 (-865)) +((-2323 (((-112) |#1|) 16)) (-2324 (((-3 |#1| "failed") |#1|) 14)) (-2321 (((-2 (|:| -3097 |#1|) (|:| -2564 (-773))) |#1|) 39) (((-3 |#1| "failed") |#1| (-773)) 18)) (-2320 (((-112) |#1| (-773)) 19)) (-2325 ((|#1| |#1|) 43)) (-2322 ((|#1| |#1| (-773)) 46))) +(((-590 |#1|) (-10 -7 (-15 -2320 ((-112) |#1| (-773))) (-15 -2321 ((-3 |#1| "failed") |#1| (-773))) (-15 -2321 ((-2 (|:| -3097 |#1|) (|:| -2564 (-773))) |#1|)) (-15 -2322 (|#1| |#1| (-773))) (-15 -2323 ((-112) |#1|)) (-15 -2324 ((-3 |#1| "failed") |#1|)) (-15 -2325 (|#1| |#1|))) (-548)) (T -590)) +((-2325 (*1 *2 *2) (-12 (-5 *1 (-590 *2)) (-4 *2 (-548)))) (-2324 (*1 *2 *2) (|partial| -12 (-5 *1 (-590 *2)) (-4 *2 (-548)))) (-2323 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-590 *3)) (-4 *3 (-548)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-5 *1 (-590 *2)) (-4 *2 (-548)))) (-2321 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3097 *3) (|:| -2564 (-773)))) (-5 *1 (-590 *3)) (-4 *3 (-548)))) (-2321 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-773)) (-5 *1 (-590 *2)) (-4 *2 (-548)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-5 *2 (-112)) (-5 *1 (-590 *3)) (-4 *3 (-548))))) +(-10 -7 (-15 -2320 ((-112) |#1| (-773))) (-15 -2321 ((-3 |#1| "failed") |#1| (-773))) (-15 -2321 ((-2 (|:| -3097 |#1|) (|:| -2564 (-773))) |#1|)) (-15 -2322 (|#1| |#1| (-773))) (-15 -2323 ((-112) |#1|)) (-15 -2324 ((-3 |#1| "failed") |#1|)) (-15 -2325 (|#1| |#1|))) +((-2326 (((-1174 |#1|) (-922)) 44))) +(((-591 |#1|) (-10 -7 (-15 -2326 ((-1174 |#1|) (-922)))) (-352)) (T -591)) +((-2326 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-591 *4)) (-4 *4 (-352))))) +(-10 -7 (-15 -2326 ((-1174 |#1|) (-922)))) +((-3842 (((-586 (-410 (-949 |#1|))) (-586 (-410 (-949 |#1|)))) 27)) (-4244 (((-3 (-315 |#1|) (-643 (-315 |#1|))) (-410 (-949 |#1|)) (-1180)) 34 (|has| |#1| (-147)))) (-4395 (((-643 (-315 |#1|)) (-586 (-410 (-949 |#1|)))) 19)) (-2328 (((-315 |#1|) (-410 (-949 |#1|)) (-1180)) 32 (|has| |#1| (-147)))) (-2327 (((-315 |#1|) (-586 (-410 (-949 |#1|)))) 21))) +(((-592 |#1|) (-10 -7 (-15 -3842 ((-586 (-410 (-949 |#1|))) (-586 (-410 (-949 |#1|))))) (-15 -4395 ((-643 (-315 |#1|)) (-586 (-410 (-949 |#1|))))) (-15 -2327 ((-315 |#1|) (-586 (-410 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4244 ((-3 (-315 |#1|) (-643 (-315 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -2328 ((-315 |#1|) (-410 (-949 |#1|)) (-1180)))) |%noBranch|)) (-13 (-455) (-1041 (-549)) (-641 (-549)))) (T -592)) +((-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-315 *5)) (-5 *1 (-592 *5)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (-315 *5) (-643 (-315 *5)))) (-5 *1 (-592 *5)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-586 (-410 (-949 *4)))) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-315 *4)) (-5 *1 (-592 *4)))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-586 (-410 (-949 *4)))) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-643 (-315 *4))) (-5 *1 (-592 *4)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-586 (-410 (-949 *3)))) (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-592 *3))))) +(-10 -7 (-15 -3842 ((-586 (-410 (-949 |#1|))) (-586 (-410 (-949 |#1|))))) (-15 -4395 ((-643 (-315 |#1|)) (-586 (-410 (-949 |#1|))))) (-15 -2327 ((-315 |#1|) (-586 (-410 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -4244 ((-3 (-315 |#1|) (-643 (-315 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -2328 ((-315 |#1|) (-410 (-949 |#1|)) (-1180)))) |%noBranch|)) +((-2330 (((-643 (-691 (-549))) (-643 (-549)) (-643 (-905 (-549)))) 78) (((-643 (-691 (-549))) (-643 (-549))) 79) (((-691 (-549)) (-643 (-549)) (-905 (-549))) 72)) (-2329 (((-773) (-643 (-549))) 69))) +(((-593) (-10 -7 (-15 -2329 ((-773) (-643 (-549)))) (-15 -2330 ((-691 (-549)) (-643 (-549)) (-905 (-549)))) (-15 -2330 ((-643 (-691 (-549))) (-643 (-549)))) (-15 -2330 ((-643 (-691 (-549))) (-643 (-549)) (-643 (-905 (-549))))))) (T -593)) +((-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-549))) (-5 *4 (-643 (-905 (-549)))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-593)))) (-2330 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-593)))) (-2330 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-549))) (-5 *4 (-905 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-593)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-773)) (-5 *1 (-593))))) +(-10 -7 (-15 -2329 ((-773) (-643 (-549)))) (-15 -2330 ((-691 (-549)) (-643 (-549)) (-905 (-549)))) (-15 -2330 ((-643 (-691 (-549))) (-643 (-549)))) (-15 -2330 ((-643 (-691 (-549))) (-643 (-549)) (-643 (-905 (-549)))))) +((-3633 (((-643 |#5|) |#5| (-112)) 100)) (-2331 (((-112) |#5| (-643 |#5|)) 34))) +(((-594 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3633 ((-643 |#5|) |#5| (-112))) (-15 -2331 ((-112) |#5| (-643 |#5|)))) (-13 (-308) (-147)) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1112 |#1| |#2| |#3| |#4|)) (T -594)) +((-2331 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1112 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-594 *5 *6 *7 *8 *3)))) (-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-643 *3)) (-5 *1 (-594 *5 *6 *7 *8 *3)) (-4 *3 (-1112 *5 *6 *7 *8))))) +(-10 -7 (-15 -3633 ((-643 |#5|) |#5| (-112))) (-15 -2331 ((-112) |#5| (-643 |#5|)))) +((-2968 (((-112) $ $) NIL)) (-3951 (((-1138) $) 11)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-595) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $))))) (T -595)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-595)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-595))))) +(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $)))) +((-2968 (((-112) $ $) NIL (|has| (-144) (-1104)))) (-3850 (($ $) 38)) (-3851 (($ $) NIL)) (-3841 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-3848 (((-112) $ $) 68)) (-3847 (((-112) $ $ (-549)) 62)) (-3842 (((-643 $) $ (-144)) 76) (((-643 $) $ (-141)) 77)) (-1900 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-852)))) (-1898 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-144) (-852))))) (-3310 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-144) $ (-549) (-144)) 59 (|has| $ (-6 -4426))) (((-144) $ (-1236 (-549)) (-144)) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-3839 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-3844 (($ $ (-1236 (-549)) $) 57)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3830 (($ (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-144) $ (-549) (-144)) NIL (|has| $ (-6 -4426)))) (-3517 (((-144) $ (-549)) NIL)) (-3849 (((-112) $ $) 90)) (-3843 (((-549) (-1 (-112) (-144)) $) NIL) (((-549) (-144) $) NIL (|has| (-144) (-1104))) (((-549) (-144) $ (-549)) 65 (|has| (-144) (-1104))) (((-549) $ $ (-549)) 63) (((-549) (-141) $ (-549)) 67)) (-2124 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-144)) 9)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 32 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| (-144) (-852)))) (-3941 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2375 (((-549) $) 47 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-144) (-852)))) (-3845 (((-112) $ $ (-144)) 91)) (-3846 (((-773) $ $ (-144)) 88)) (-2128 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3852 (($ $) 41)) (-3853 (($ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3840 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3663 (((-1162) $) 43 (|has| (-144) (-1104)))) (-2449 (($ (-144) $ (-549)) NIL) (($ $ $ (-549)) 27)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) 87 (|has| (-144) (-1104)))) (-4232 (((-144) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2373 (($ $ (-144)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-144)) (-643 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2379 (((-643 (-144)) $) NIL)) (-3827 (((-112) $) 15)) (-3996 (($) 10)) (-4231 (((-144) $ (-549) (-144)) NIL) (((-144) $ (-549)) 69) (($ $ (-1236 (-549))) 25) (($ $ $) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425))) (((-773) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-1899 (($ $ $ (-549)) 84 (|has| $ (-6 -4426)))) (-3824 (($ $) 20)) (-4402 (((-538) $) NIL (|has| (-144) (-616 (-538))))) (-3953 (($ (-643 (-144))) NIL)) (-4233 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-643 $)) 85)) (-4378 (($ (-144)) NIL) (((-865) $) 31 (|has| (-144) (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| (-144) (-1104)))) (-2127 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| (-144) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-144) (-852)))) (-3455 (((-112) $ $) 17 (|has| (-144) (-1104)))) (-3087 (((-112) $ $) NIL (|has| (-144) (-852)))) (-3088 (((-112) $ $) 18 (|has| (-144) (-852)))) (-4389 (((-773) $) 16 (|has| $ (-6 -4425))))) +(((-596 |#1|) (-1147) (-549)) (T -596)) +NIL +(-1147) +((-3955 (((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1092 |#4|)) 32))) +(((-597 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3955 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1092 |#4|))) (-15 -3955 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|))) (-795) (-852) (-560) (-953 |#3| |#1| |#2|)) (T -597)) +((-3955 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-560)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-597 *5 *4 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) (-3955 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1092 *3)) (-4 *3 (-953 *7 *6 *4)) (-4 *6 (-795)) (-4 *4 (-852)) (-4 *7 (-560)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-597 *6 *4 *7 *3))))) +(-10 -7 (-15 -3955 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2| (-1092 |#4|))) (-15 -3955 ((-2 (|:| |num| |#4|) (|:| |den| (-549))) |#4| |#2|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 72)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-549)) 58) (($ $ (-549) (-549)) 59)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 65)) (-2362 (($ $) 110)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2360 (((-865) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-1029 (-844 (-549))) (-1180) |#1| (-410 (-549))) 243)) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 36)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3293 (((-112) $) NIL)) (-4203 (((-549) $) 63) (((-549) $ (-549)) 64)) (-2573 (((-112) $) NIL)) (-4208 (($ $ (-922)) 84)) (-4247 (($ (-1 |#1| (-549)) $) 81)) (-4369 (((-112) $) 26)) (-3294 (($ |#1| (-549)) 22) (($ $ (-1085) (-549)) NIL) (($ $ (-643 (-1085)) (-643 (-549))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 76)) (-2366 (($ (-1029 (-844 (-549))) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 13)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4244 (($ $) 163 (|has| |#1| (-38 (-410 (-549)))))) (-2363 (((-3 $ "failed") $ $ (-112)) 109)) (-2361 (($ $ $) 117)) (-3664 (((-1123) $) NIL)) (-2364 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 15)) (-2365 (((-1029 (-844 (-549))) $) 14)) (-4200 (($ $ (-549)) 47)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549)))))) (-4231 ((|#1| $ (-549)) 62) (($ $ $) NIL (|has| (-549) (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-4380 (((-549) $) NIL)) (-3292 (($ $) 48)) (-4378 (((-865) $) NIL) (($ (-549)) 29) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) 28 (|has| |#1| (-172)))) (-4109 ((|#1| $ (-549)) 61)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 39 T CONST)) (-4204 ((|#1| $) NIL)) (-2341 (($ $) 200 (|has| |#1| (-38 (-410 (-549)))))) (-2353 (($ $) 171 (|has| |#1| (-38 (-410 (-549)))))) (-2343 (($ $) 204 (|has| |#1| (-38 (-410 (-549)))))) (-2355 (($ $) 176 (|has| |#1| (-38 (-410 (-549)))))) (-2339 (($ $) 203 (|has| |#1| (-38 (-410 (-549)))))) (-2351 (($ $) 175 (|has| |#1| (-38 (-410 (-549)))))) (-2358 (($ $ (-410 (-549))) 179 (|has| |#1| (-38 (-410 (-549)))))) (-2359 (($ $ |#1|) 159 (|has| |#1| (-38 (-410 (-549)))))) (-2356 (($ $) 206 (|has| |#1| (-38 (-410 (-549)))))) (-2357 (($ $) 162 (|has| |#1| (-38 (-410 (-549)))))) (-2338 (($ $) 205 (|has| |#1| (-38 (-410 (-549)))))) (-2350 (($ $) 177 (|has| |#1| (-38 (-410 (-549)))))) (-2340 (($ $) 201 (|has| |#1| (-38 (-410 (-549)))))) (-2352 (($ $) 173 (|has| |#1| (-38 (-410 (-549)))))) (-2342 (($ $) 202 (|has| |#1| (-38 (-410 (-549)))))) (-2354 (($ $) 174 (|has| |#1| (-38 (-410 (-549)))))) (-2335 (($ $) 211 (|has| |#1| (-38 (-410 (-549)))))) (-2347 (($ $) 187 (|has| |#1| (-38 (-410 (-549)))))) (-2337 (($ $) 208 (|has| |#1| (-38 (-410 (-549)))))) (-2349 (($ $) 183 (|has| |#1| (-38 (-410 (-549)))))) (-2333 (($ $) 215 (|has| |#1| (-38 (-410 (-549)))))) (-2345 (($ $) 191 (|has| |#1| (-38 (-410 (-549)))))) (-2332 (($ $) 217 (|has| |#1| (-38 (-410 (-549)))))) (-2344 (($ $) 193 (|has| |#1| (-38 (-410 (-549)))))) (-2334 (($ $) 213 (|has| |#1| (-38 (-410 (-549)))))) (-2346 (($ $) 189 (|has| |#1| (-38 (-410 (-549)))))) (-2336 (($ $) 210 (|has| |#1| (-38 (-410 (-549)))))) (-2348 (($ $) 185 (|has| |#1| (-38 (-410 (-549)))))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-4201 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3510 (($) 30 T CONST)) (-3067 (($) 40 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-3455 (((-112) $ $) 74)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) 92) (($ $ $) 73)) (-4271 (($ $ $) 89)) (** (($ $ (-922)) NIL) (($ $ (-773)) 112)) (* (($ (-922) $) 99) (($ (-773) $) 97) (($ (-549) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-598 |#1|) (-13 (-1248 |#1| (-549)) (-10 -8 (-15 -2366 ($ (-1029 (-844 (-549))) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2365 ((-1029 (-844 (-549))) $)) (-15 -2364 ((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $)) (-15 -4250 ($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -4369 ((-112) $)) (-15 -4247 ($ (-1 |#1| (-549)) $)) (-15 -2363 ((-3 $ "failed") $ $ (-112))) (-15 -2362 ($ $)) (-15 -2361 ($ $ $)) (-15 -2360 ((-865) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-1029 (-844 (-549))) (-1180) |#1| (-410 (-549)))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (-15 -2359 ($ $ |#1|)) (-15 -2358 ($ $ (-410 (-549)))) (-15 -2357 ($ $)) (-15 -2356 ($ $)) (-15 -2355 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -2345 ($ $)) (-15 -2344 ($ $)) (-15 -2343 ($ $)) (-15 -2342 ($ $)) (-15 -2341 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $)) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $)) (-15 -2332 ($ $))) |%noBranch|))) (-1052)) (T -598)) +((-4369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) (-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-1029 (-844 (-549)))) (-5 *3 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *4)))) (-4 *4 (-1052)) (-5 *1 (-598 *4)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-1029 (-844 (-549)))) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1052)) (-5 *1 (-598 *3)))) (-4247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *3 (-1052)) (-5 *1 (-598 *3)))) (-2363 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) (-2362 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1052)))) (-2361 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1052)))) (-2360 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *6)))) (-5 *4 (-1029 (-844 (-549)))) (-5 *5 (-1180)) (-5 *7 (-410 (-549))) (-4 *6 (-1052)) (-5 *2 (-865)) (-5 *1 (-598 *6)))) (-4244 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2359 (*1 *1 *1 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2358 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-598 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1052)))) (-2357 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2354 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2352 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2351 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2350 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2349 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2348 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2347 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2346 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2345 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2344 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2342 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2341 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2340 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2338 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2337 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2336 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2335 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2334 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2333 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) (-2332 (*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(-13 (-1248 |#1| (-549)) (-10 -8 (-15 -2366 ($ (-1029 (-844 (-549))) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -2365 ((-1029 (-844 (-549))) $)) (-15 -2364 ((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $)) (-15 -4250 ($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))))) (-15 -4369 ((-112) $)) (-15 -4247 ($ (-1 |#1| (-549)) $)) (-15 -2363 ((-3 $ "failed") $ $ (-112))) (-15 -2362 ($ $)) (-15 -2361 ($ $ $)) (-15 -2360 ((-865) (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) (-1029 (-844 (-549))) (-1180) |#1| (-410 (-549)))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (-15 -2359 ($ $ |#1|)) (-15 -2358 ($ $ (-410 (-549)))) (-15 -2357 ($ $)) (-15 -2356 ($ $)) (-15 -2355 ($ $)) (-15 -2354 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $)) (-15 -2350 ($ $)) (-15 -2349 ($ $)) (-15 -2348 ($ $)) (-15 -2347 ($ $)) (-15 -2346 ($ $)) (-15 -2345 ($ $)) (-15 -2344 ($ $)) (-15 -2343 ($ $)) (-15 -2342 ($ $)) (-15 -2341 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $)) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $)) (-15 -2332 ($ $))) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 65)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4250 (($ (-1157 |#1|)) 9)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) 48)) (-3293 (((-112) $) 58)) (-4203 (((-773) $) 63) (((-773) $ (-773)) 62)) (-2573 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ "failed") $ $) 50 (|has| |#1| (-560)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-1157 |#1|) $) 29)) (-3530 (((-773)) 57 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 10 T CONST)) (-3067 (($) 14 T CONST)) (-3455 (((-112) $ $) 28)) (-4269 (($ $) 36) (($ $ $) 16)) (-4271 (($ $ $) 31)) (** (($ $ (-922)) NIL) (($ $ (-773)) 55)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-549)) 42))) +(((-599 |#1|) (-13 (-1052) (-111 |#1| |#1|) (-10 -8 (-15 -4249 ((-1157 |#1|) $)) (-15 -4250 ($ (-1157 |#1|))) (-15 -3293 ((-112) $)) (-15 -4203 ((-773) $)) (-15 -4203 ((-773) $ (-773))) (-15 * ($ $ (-549))) (IF (|has| |#1| (-560)) (-6 (-560)) |%noBranch|))) (-1052)) (T -599)) +((-4249 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-599 *3)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) (-4203 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-599 *3)) (-4 *3 (-1052))))) +(-13 (-1052) (-111 |#1| |#1|) (-10 -8 (-15 -4249 ((-1157 |#1|) $)) (-15 -4250 ($ (-1157 |#1|))) (-15 -3293 ((-112) $)) (-15 -4203 ((-773) $)) (-15 -4203 ((-773) $ (-773))) (-15 * ($ $ (-549))) (IF (|has| |#1| (-560)) (-6 (-560)) |%noBranch|))) +((-4390 (((-603 |#2|) (-1 |#2| |#1|) (-603 |#1|)) 15))) +(((-600 |#1| |#2|) (-10 -7 (-15 -4390 ((-603 |#2|) (-1 |#2| |#1|) (-603 |#1|)))) (-1219) (-1219)) (T -600)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-603 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-603 *6)) (-5 *1 (-600 *5 *6))))) +(-10 -7 (-15 -4390 ((-603 |#2|) (-1 |#2| |#1|) (-603 |#1|)))) +((-4390 (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-1157 |#2|)) 20) (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-603 |#2|)) 19) (((-603 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-603 |#2|)) 18))) +(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-603 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-603 |#2|))) (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-603 |#2|))) (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-1157 |#2|)))) (-1219) (-1219) (-1219)) (T -601)) +((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-603 *6)) (-5 *5 (-1157 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) (-5 *1 (-601 *6 *7 *8)))) (-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-603 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) (-5 *1 (-601 *6 *7 *8)))) (-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-603 *6)) (-5 *5 (-603 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-603 *8)) (-5 *1 (-601 *6 *7 *8))))) +(-10 -7 (-15 -4390 ((-603 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-603 |#2|))) (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-603 |#2|))) (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-603 |#1|) (-1157 |#2|)))) +((-2371 ((|#3| |#3| (-643 (-613 |#3|)) (-643 (-1180))) 57)) (-2370 (((-168 |#2|) |#3|) 121)) (-2367 ((|#3| (-168 |#2|)) 46)) (-2368 ((|#2| |#3|) 21)) (-2369 ((|#3| |#2|) 35))) +(((-602 |#1| |#2| |#3|) (-10 -7 (-15 -2367 (|#3| (-168 |#2|))) (-15 -2368 (|#2| |#3|)) (-15 -2369 (|#3| |#2|)) (-15 -2370 ((-168 |#2|) |#3|)) (-15 -2371 (|#3| |#3| (-643 (-613 |#3|)) (-643 (-1180))))) (-560) (-13 (-424 |#1|) (-1005) (-1205)) (-13 (-424 (-168 |#1|)) (-1005) (-1205))) (T -602)) +((-2371 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-643 (-613 *2))) (-5 *4 (-643 (-1180))) (-4 *2 (-13 (-424 (-168 *5)) (-1005) (-1205))) (-4 *5 (-560)) (-5 *1 (-602 *5 *6 *2)) (-4 *6 (-13 (-424 *5) (-1005) (-1205))))) (-2370 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-168 *5)) (-5 *1 (-602 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-1005) (-1205))) (-4 *3 (-13 (-424 (-168 *4)) (-1005) (-1205))))) (-2369 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *2 (-13 (-424 (-168 *4)) (-1005) (-1205))) (-5 *1 (-602 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-1005) (-1205))))) (-2368 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))) (-5 *1 (-602 *4 *2 *3)) (-4 *3 (-13 (-424 (-168 *4)) (-1005) (-1205))))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-424 *4) (-1005) (-1205))) (-4 *4 (-560)) (-4 *2 (-13 (-424 (-168 *4)) (-1005) (-1205))) (-5 *1 (-602 *4 *5 *2))))) +(-10 -7 (-15 -2367 (|#3| (-168 |#2|))) (-15 -2368 (|#2| |#3|)) (-15 -2369 (|#3| |#2|)) (-15 -2370 ((-168 |#2|) |#3|)) (-15 -2371 (|#3| |#3| (-643 (-613 |#3|)) (-643 (-1180))))) +((-4142 (($ (-1 (-112) |#1|) $) 17)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3880 (($ (-1 |#1| |#1|) |#1|) 9)) (-3879 (($ (-1 (-112) |#1|) $) 13)) (-3878 (($ (-1 (-112) |#1|) $) 15)) (-3953 (((-1157 |#1|) $) 18)) (-4378 (((-865) $) NIL))) +(((-603 |#1|) (-13 (-615 (-865)) (-10 -8 (-15 -4390 ($ (-1 |#1| |#1|) $)) (-15 -3879 ($ (-1 (-112) |#1|) $)) (-15 -3878 ($ (-1 (-112) |#1|) $)) (-15 -4142 ($ (-1 (-112) |#1|) $)) (-15 -3880 ($ (-1 |#1| |#1|) |#1|)) (-15 -3953 ((-1157 |#1|) $)))) (-1219)) (T -603)) +((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-3878 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-4142 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-3880 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-603 *3)) (-4 *3 (-1219))))) +(-13 (-615 (-865)) (-10 -8 (-15 -4390 ($ (-1 |#1| |#1|) $)) (-15 -3879 ($ (-1 (-112) |#1|) $)) (-15 -3878 ($ (-1 (-112) |#1|) $)) (-15 -4142 ($ (-1 (-112) |#1|) $)) (-15 -3880 ($ (-1 |#1| |#1|) |#1|)) (-15 -3953 ((-1157 |#1|) $)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773)) NIL (|has| |#1| (-23)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) NIL (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4264 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-4148 (((-112) $ (-773)) NIL)) (-4265 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4268 ((|#1| $ $) NIL (|has| |#1| (-1052)))) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4266 (($ $ $) NIL (|has| |#1| (-1052)))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4271 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-728))) (($ $ |#1|) NIL (|has| |#1| (-728)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-604 |#1| |#2|) (-1268 |#1|) (-1219) (-549)) (T -604)) +NIL +(-1268 |#1|) +((-2372 (((-1275) $ |#2| |#2|) 35)) (-2374 ((|#2| $) 23)) (-2375 ((|#2| $) 21)) (-2128 (($ (-1 |#3| |#3|) $) 32)) (-4390 (($ (-1 |#3| |#3|) $) 30)) (-4232 ((|#3| $) 26)) (-2373 (($ $ |#3|) 33)) (-2376 (((-112) |#3| $) 17)) (-2379 (((-643 |#3|) $) 15)) (-4231 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-605 |#1| |#2| |#3|) (-10 -8 (-15 -2372 ((-1275) |#1| |#2| |#2|)) (-15 -2373 (|#1| |#1| |#3|)) (-15 -4232 (|#3| |#1|)) (-15 -2374 (|#2| |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2376 ((-112) |#3| |#1|)) (-15 -2379 ((-643 |#3|) |#1|)) (-15 -4231 (|#3| |#1| |#2|)) (-15 -4231 (|#3| |#1| |#2| |#3|)) (-15 -2128 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4390 (|#1| (-1 |#3| |#3|) |#1|))) (-606 |#2| |#3|) (-1104) (-1219)) (T -605)) +NIL +(-10 -8 (-15 -2372 ((-1275) |#1| |#2| |#2|)) (-15 -2373 (|#1| |#1| |#3|)) (-15 -4232 (|#3| |#1|)) (-15 -2374 (|#2| |#1|)) (-15 -2375 (|#2| |#1|)) (-15 -2376 ((-112) |#3| |#1|)) (-15 -2379 ((-643 |#3|) |#1|)) (-15 -4231 (|#3| |#1| |#2|)) (-15 -4231 (|#3| |#1| |#2| |#3|)) (-15 -2128 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4390 (|#1| (-1 |#3| |#3|) |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#2| (-1104)))) (-2372 (((-1275) $ |#1| |#1|) 41 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-1684 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) 52)) (-2124 (((-643 |#2|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-2374 ((|#1| $) 44 (|has| |#1| (-852)))) (-3008 (((-643 |#2|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-2375 ((|#1| $) 45 (|has| |#1| (-852)))) (-2128 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#2| (-1104)))) (-2377 (((-643 |#1|) $) 47)) (-2378 (((-112) |#1| $) 48)) (-3664 (((-1123) $) 21 (|has| |#2| (-1104)))) (-4232 ((|#2| $) 43 (|has| |#1| (-852)))) (-2373 (($ $ |#2|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-2125 (((-773) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4425))) (((-773) |#2| $) 29 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#2| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#2| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-606 |#1| |#2|) (-140) (-1104) (-1219)) (T -606)) +((-2379 (*1 *2 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-643 *4)))) (-2378 (*1 *2 *3 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-112)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-643 *3)))) (-2376 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-606 *4 *3)) (-4 *4 (-1104)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-2375 (*1 *2 *1) (-12 (-4 *1 (-606 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1104)) (-4 *2 (-852)))) (-2374 (*1 *2 *1) (-12 (-4 *1 (-606 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1104)) (-4 *2 (-852)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1104)) (-4 *3 (-852)) (-4 *2 (-1219)))) (-2373 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-606 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) (-2372 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-1275))))) +(-13 (-492 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -2379 ((-643 |t#2|) $)) (-15 -2378 ((-112) |t#1| $)) (-15 -2377 ((-643 |t#1|) $)) (IF (|has| |t#2| (-1104)) (IF (|has| $ (-6 -4425)) (-15 -2376 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-852)) (PROGN (-15 -2375 (|t#1| $)) (-15 -2374 (|t#1| $)) (-15 -4232 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -2373 ($ $ |t#2|)) (-15 -2372 ((-1275) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1104)) ((-615 (-865)) -3960 (|has| |#2| (-1104)) (|has| |#2| (-615 (-865)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-1104) |has| |#2| (-1104)) ((-1219) . T)) +((-4378 (((-865) $) 19) (($ (-128)) 13) (((-128) $) 14))) +(((-607) (-13 (-615 (-865)) (-493 (-128)))) (T -607)) +NIL +(-13 (-615 (-865)) (-493 (-128))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-1185)) NIL) (((-1185) $) NIL) (((-1220) $) 14) (($ (-643 (-1220))) 13)) (-2380 (((-643 (-1220)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-608) (-13 (-1086) (-615 (-1220)) (-10 -8 (-15 -4378 ($ (-643 (-1220)))) (-15 -2380 ((-643 (-1220)) $))))) (T -608)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-608)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-608))))) +(-13 (-1086) (-615 (-1220)) (-10 -8 (-15 -4378 ($ (-643 (-1220)))) (-15 -2380 ((-643 (-1220)) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 |#1|))) NIL (|has| |#2| (-421 |#1|))) (((-1269 (-691 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1897 (((-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4156 (($) NIL T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1871 (((-3 $ #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1963 (((-691 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1895 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1961 (((-691 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2567 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2078 (((-1174 (-949 |#1|))) NIL (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-365))))) (-2570 (($ $ (-922)) NIL)) (-1893 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1873 (((-1174 |#1|) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1965 ((|#1|) NIL (|has| |#2| (-421 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1891 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1885 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1967 (($ (-1269 |#1|)) NIL (|has| |#2| (-421 |#1|))) (($ (-1269 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3890 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-3513 (((-922)) NIL (|has| |#2| (-369 |#1|)))) (-1882 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2594 (($ $ (-922)) NIL)) (-1878 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1876 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1880 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1872 (((-3 $ #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1964 (((-691 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1896 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1962 (((-691 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2568 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2082 (((-1174 (-949 |#1|))) NIL (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-365))))) (-2569 (($ $ (-922)) NIL)) (-1894 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1874 (((-1174 |#1|) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1966 ((|#1|) NIL (|has| |#2| (-421 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1892 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1886 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1879 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1881 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3664 (((-1123) $) NIL)) (-1884 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4231 ((|#1| $ (-549)) NIL (|has| |#2| (-421 |#1|)))) (-3644 (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-421 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $) (-1269 $)) NIL (|has| |#2| (-369 |#1|))) (((-1269 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4402 (($ (-1269 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-421 |#1|)))) (-2070 (((-643 (-949 |#1|))) NIL (|has| |#2| (-421 |#1|))) (((-643 (-949 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2756 (($ $ $) NIL)) (-1890 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4378 (((-865) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL (|has| |#2| (-421 |#1|)))) (-1875 (((-643 (-1269 |#1|))) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2948 (($ (-691 |#1|) $) NIL (|has| |#2| (-421 |#1|)))) (-2755 (($ $ $) NIL)) (-1889 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1887 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1883 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) 24)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-609 |#1| |#2|) (-13 (-746 |#1|) (-615 |#2|) (-10 -8 (-15 -4378 ($ |#2|)) (IF (|has| |#2| (-421 |#1|)) (-6 (-421 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-746 |#1|)) (T -609)) +((-4378 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-609 *3 *2)) (-4 *2 (-746 *3))))) +(-13 (-746 |#1|) (-615 |#2|) (-10 -8 (-15 -4378 ($ |#2|)) (IF (|has| |#2| (-421 |#1|)) (-6 (-421 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-1865 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) 39)) (-4029 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL) (($) NIL)) (-2372 (((-1275) $ (-1162) (-1162)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-1162) |#1|) 49)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#1| #1="failed") (-1162) $) 52)) (-4156 (($) NIL T CONST)) (-1869 (($ $ (-1162)) 25)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-3829 (((-3 |#1| #1#) (-1162) $) 53) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (|has| $ (-6 -4425)))) (-3830 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-4274 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-1866 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) 38)) (-1684 ((|#1| $ (-1162) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-1162)) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-2420 (($ $) 54)) (-1870 (($ (-391)) 23) (($ (-391) (-1162)) 22)) (-3973 (((-391) $) 40)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1162) $) NIL (|has| (-1162) (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425))) (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (((-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-2375 (((-1162) $) NIL (|has| (-1162) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-2816 (((-643 (-1162)) $) 45)) (-2382 (((-112) (-1162) $) NIL)) (-1867 (((-1162) $) 41)) (-1369 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-2377 (((-643 (-1162)) $) NIL)) (-2378 (((-112) (-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 ((|#1| $) NIL (|has| (-1162) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) "failed") (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-643 (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 43)) (-4231 ((|#1| $ (-1162) |#1|) NIL) ((|#1| $ (-1162)) 48)) (-1567 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL) (($) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (((-773) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (((-773) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-4378 (((-865) $) 21)) (-1868 (($ $) 26)) (-3662 (((-112) $ $) NIL)) (-1371 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) +(((-610 |#1|) (-13 (-367 (-391) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) (-1196 (-1162) |#1|) (-10 -8 (-6 -4425) (-15 -2420 ($ $)))) (-1104)) (T -610)) +((-2420 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-1104))))) +(-13 (-367 (-391) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) (-1196 (-1162) |#1|) (-10 -8 (-6 -4425) (-15 -2420 ($ $)))) +((-3666 (((-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 16)) (-2816 (((-643 |#2|) $) 20)) (-2382 (((-112) |#2| $) 12))) +(((-611 |#1| |#2| |#3|) (-10 -8 (-15 -2816 ((-643 |#2|) |#1|)) (-15 -2382 ((-112) |#2| |#1|)) (-15 -3666 ((-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|))) (-612 |#2| |#3|) (-1104) (-1104)) (T -611)) +NIL +(-10 -8 (-15 -2816 ((-643 |#2|) |#1|)) (-15 -2382 ((-112) |#2| |#1|)) (-15 -3666 ((-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|))) +((-2968 (((-112) $ $) 19 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 56 (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| "failed") |#1| $) 62)) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 47 (|has| $ (-6 -4425))) (((-3 |#2| "failed") |#1| $) 63)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 55 (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 57 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 54 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-2816 (((-643 |#1|) $) 64)) (-2382 (((-112) |#1| $) 65)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 40)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 41)) (-3664 (((-1123) $) 21 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 52)) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 42)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) 27 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 26 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 25 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 24 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-1567 (($) 50) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 49)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 32 (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 51)) (-4378 (((-865) $) 18 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 43)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-612 |#1| |#2|) (-140) (-1104) (-1104)) (T -612)) +((-2382 (*1 *2 *3 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-112)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-643 *3)))) (-3829 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-2381 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) +(-13 (-229 (-2 (|:| -4292 |t#1|) (|:| -2254 |t#2|))) (-10 -8 (-15 -2382 ((-112) |t#1| $)) (-15 -2816 ((-643 |t#1|) $)) (-15 -3829 ((-3 |t#2| "failed") |t#1| $)) (-15 -2381 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((-102) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) ((-615 (-865)) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865)))) ((-151 #1#) . T) ((-616 (-538)) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))) ((-229 #1#) . T) ((-235 #1#) . T) ((-310 #1#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-492 #1#) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-1104) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL)) (-2383 (((-3 (-1180) "failed") $) 48)) (-1408 (((-1275) $ (-773)) 24)) (-3843 (((-773) $) 23)) (-3448 (((-113) $) 12)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2384 (($ (-113) (-643 |#1|) (-773)) 34) (($ (-1180)) 35)) (-3035 (((-112) $ (-113)) 18) (((-112) $ (-1180)) 16)) (-3003 (((-773) $) 20)) (-3664 (((-1123) $) NIL)) (-4402 (((-893 (-549)) $) 96 (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) 103 (|has| |#1| (-616 (-893 (-380))))) (((-538) $) 89 (|has| |#1| (-616 (-538))))) (-4378 (((-865) $) 73)) (-3662 (((-112) $ $) NIL)) (-2385 (((-643 |#1|) $) 22)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 52)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 54))) +(((-613 |#1|) (-13 (-132) (-852) (-887 |#1|) (-10 -8 (-15 -3448 ((-113) $)) (-15 -2385 ((-643 |#1|) $)) (-15 -3003 ((-773) $)) (-15 -2384 ($ (-113) (-643 |#1|) (-773))) (-15 -2384 ($ (-1180))) (-15 -2383 ((-3 (-1180) "failed") $)) (-15 -3035 ((-112) $ (-113))) (-15 -3035 ((-112) $ (-1180))) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) (-1104)) (T -613)) +((-3448 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-2384 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-643 *5)) (-5 *4 (-773)) (-4 *5 (-1104)) (-5 *1 (-613 *5)))) (-2384 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-2383 (*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) (-3035 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1104)))) (-3035 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1104))))) +(-13 (-132) (-852) (-887 |#1|) (-10 -8 (-15 -3448 ((-113) $)) (-15 -2385 ((-643 |#1|) $)) (-15 -3003 ((-773) $)) (-15 -2384 ($ (-113) (-643 |#1|) (-773))) (-15 -2384 ($ (-1180))) (-15 -2383 ((-3 (-1180) "failed") $)) (-15 -3035 ((-112) $ (-113))) (-15 -3035 ((-112) $ (-1180))) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) +((-2386 (((-613 |#2|) |#1|) 17)) (-2387 (((-3 |#1| "failed") (-613 |#2|)) 21))) +(((-614 |#1| |#2|) (-10 -7 (-15 -2386 ((-613 |#2|) |#1|)) (-15 -2387 ((-3 |#1| "failed") (-613 |#2|)))) (-1104) (-1104)) (T -614)) +((-2387 (*1 *2 *3) (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1104)) (-4 *2 (-1104)) (-5 *1 (-614 *2 *4)))) (-2386 (*1 *2 *3) (-12 (-5 *2 (-613 *4)) (-5 *1 (-614 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(-10 -7 (-15 -2386 ((-613 |#2|) |#1|)) (-15 -2387 ((-3 |#1| "failed") (-613 |#2|)))) +((-4378 ((|#1| $) 6))) (((-615 |#1|) (-140) (-1219)) (T -615)) -((-1322 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -1322 (|t#1| $)))) -((-3765 (((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)) 15) (((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 16))) -(((-616 |#1| |#2|) (-10 -7 (-15 -3765 ((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -3765 ((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -616)) -((-3765 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-1175 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))) (-3765 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-1175 (-410 *5))) (-5 *1 (-616 *4 *5)) (-5 *3 (-410 *5))))) -(-10 -7 (-15 -3765 ((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -3765 ((-3 (-1175 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) -((-2504 (($ |#1|) 6))) -(((-617 |#1|) (-140) (-1219)) (T -617)) -((-2504 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -2504 ($ |t#1|)))) -((-2487 (((-112) $ $) NIL)) (-1554 (($) 14 T CONST)) (-3023 (($) 15 T CONST)) (-1763 (($ $ $) 29)) (-1736 (($ $) 27)) (-1812 (((-1161) $) NIL)) (-2406 (($ $ $) 30)) (-3479 (((-1122) $) NIL)) (-1883 (($) 11 T CONST)) (-2663 (($ $ $) 31)) (-2504 (((-863) $) 35)) (-1794 (((-112) $ (|[\|\|]| -1883)) 24) (((-112) $ (|[\|\|]| -1554)) 26) (((-112) $ (|[\|\|]| -3023)) 21)) (-3858 (((-112) $ $) NIL)) (-1750 (($ $ $) 28)) (-2968 (((-112) $ $) 18))) -(((-618) (-13 (-969) (-10 -8 (-15 -1554 ($) -3562) (-15 -1794 ((-112) $ (|[\|\|]| -1883))) (-15 -1794 ((-112) $ (|[\|\|]| -1554))) (-15 -1794 ((-112) $ (|[\|\|]| -3023)))))) (T -618)) -((-1554 (*1 *1) (-5 *1 (-618))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1883)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1554)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3023)) (-5 *2 (-112)) (-5 *1 (-618))))) -(-13 (-969) (-10 -8 (-15 -1554 ($) -3562) (-15 -1794 ((-112) $ (|[\|\|]| -1883))) (-15 -1794 ((-112) $ (|[\|\|]| -1554))) (-15 -1794 ((-112) $ (|[\|\|]| -3023))))) -((-1322 (($ |#1|) 6))) -(((-619 |#1|) (-140) (-1219)) (T -619)) -((-1322 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1219))))) -(-13 (-10 -8 (-15 -1322 ($ |t#1|)))) -((-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10))) -(((-620 |#1| |#2|) (-10 -8 (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-621 |#2|) (-1051)) (T -620)) -NIL -(-10 -8 (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 41)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-621 |#1|) (-140) (-1051)) (T -621)) -((-2504 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1051))))) -(-13 (-1051) (-649 |t#1|) (-10 -8 (-15 -2504 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2777 (((-567) $) NIL (|has| |#1| (-849)))) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-3635 (((-112) $) NIL (|has| |#1| (-849)))) (-4384 (((-112) $) NIL)) (-4294 ((|#1| $) 13)) (-2585 (((-112) $) NIL (|has| |#1| (-849)))) (-2727 (($ $ $) NIL (|has| |#1| (-849)))) (-1446 (($ $ $) NIL (|has| |#1| (-849)))) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-4306 ((|#3| $) 15)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL)) (-2214 (((-772)) 20 T CONST)) (-3858 (((-112) $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-849)))) (-1807 (($) NIL T CONST)) (-1820 (($) 12 T CONST)) (-3016 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3064 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-622 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3064 ($ $ |#3|)) (-15 -3064 ($ |#1| |#3|)) (-15 -4294 (|#1| $)) (-15 -4306 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -622)) -((-3064 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3064 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-4294 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-4306 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3064 ($ $ |#3|)) (-15 -3064 ($ |#1| |#3|)) (-15 -4294 (|#1| $)) (-15 -4306 (|#3| $)))) -((-3254 ((|#2| |#2| (-1179) (-1179)) 16))) -(((-623 |#1| |#2|) (-10 -7 (-15 -3254 (|#2| |#2| (-1179) (-1179)))) (-13 (-308) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-961) (-29 |#1|))) (T -623)) -((-3254 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1204) (-961) (-29 *4)))))) -(-10 -7 (-15 -3254 (|#2| |#2| (-1179) (-1179)))) -((-2487 (((-112) $ $) 64)) (-2684 (((-112) $) 58)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-1376 ((|#1| $) 55)) (-2932 (((-3 $ "failed") $ $) NIL)) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2170 (((-2 (|:| -2191 $) (|:| -3845 (-410 |#2|))) (-410 |#2|)) 111 (|has| |#1| (-365)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) 27)) (-1377 (((-3 $ "failed") $) 88)) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3905 (((-567) $) 22)) (-4384 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) 40)) (-3764 (($ |#1| (-567)) 24)) (-1809 ((|#1| $) 57)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2478 (((-3 $ "failed") $ $) 93)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2465 (((-772) $) 115 (|has| |#1| (-365)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 114 (|has| |#1| (-365)))) (-3592 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3380 (((-567) $) 38)) (-1322 (((-410 |#2|) $) 47)) (-2504 (((-863) $) 69) (($ (-567)) 35) (($ $) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 34) (($ |#2|) 25)) (-4038 ((|#1| $ (-567)) 72)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) 9 T CONST)) (-1820 (($) 14 T CONST)) (-2856 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2968 (((-112) $ $) 21)) (-3054 (($ $) 51) (($ $ $) NIL)) (-3045 (($ $ $) 90)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 29) (($ $ $) 49))) -(((-624 |#1| |#2|) (-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1040 |#2|) (-10 -8 (-15 -3615 ((-112) $)) (-15 -3380 ((-567) $)) (-15 -3905 ((-567) $)) (-15 -1833 ($ $)) (-15 -1809 (|#1| $)) (-15 -1376 (|#1| $)) (-15 -4038 (|#1| $ (-567))) (-15 -3764 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2170 ((-2 (|:| -2191 $) (|:| -3845 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) (-559) (-1245 |#1|)) (T -624)) -((-3615 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1245 *3)))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1245 *3)))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1245 *3)))) (-1833 (*1 *1 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))) (-1809 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))) (-1376 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))) (-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1245 *2)))) (-3764 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1245 *2)))) (-2170 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2191 (-624 *4 *5)) (|:| -3845 (-410 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5))))) -(-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1040 |#2|) (-10 -8 (-15 -3615 ((-112) $)) (-15 -3380 ((-567) $)) (-15 -3905 ((-567) $)) (-15 -1833 ($ $)) (-15 -1809 (|#1| $)) (-15 -1376 (|#1| $)) (-15 -4038 (|#1| $ (-567))) (-15 -3764 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2170 ((-2 (|:| -2191 $) (|:| -3845 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) -((-3148 (((-645 |#6|) (-645 |#4|) (-112)) 54)) (-4354 ((|#6| |#6|) 48))) -(((-625 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4354 (|#6| |#6|)) (-15 -3148 ((-645 |#6|) (-645 |#4|) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|) (-1111 |#1| |#2| |#3| |#4|)) (T -625)) -((-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *10 (-1111 *5 *6 *7 *8)))) (-4354 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *2 (-1111 *3 *4 *5 *6))))) -(-10 -7 (-15 -4354 (|#6| |#6|)) (-15 -3148 ((-645 |#6|) (-645 |#4|) (-112)))) -((-4286 (((-112) |#3| (-772) (-645 |#3|)) 32)) (-3741 (((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1175 |#3|)))) "failed") |#3| (-645 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1444 (-645 (-2 (|:| |irr| |#4|) (|:| -3451 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)) 73))) -(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4286 ((-112) |#3| (-772) (-645 |#3|))) (-15 -3741 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1175 |#3|)))) "failed") |#3| (-645 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1444 (-645 (-2 (|:| |irr| |#4|) (|:| -3451 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) (-851) (-794) (-308) (-951 |#3| |#2| |#1|)) (T -626)) -((-3741 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1444 (-645 (-2 (|:| |irr| *10) (|:| -3451 (-567))))))) (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) (-4 *10 (-951 *3 *9 *8)) (-4 *9 (-794)) (-5 *2 (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) (|:| |corrfact| (-645 (-1175 *3))))) (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1175 *3))))) (-4286 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) (-4 *8 (-951 *3 *7 *6))))) -(-10 -7 (-15 -4286 ((-112) |#3| (-772) (-645 |#3|))) (-15 -3741 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1175 |#3|)))) "failed") |#3| (-645 (-1175 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1444 (-645 (-2 (|:| |irr| |#4|) (|:| -3451 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) -((-2487 (((-112) $ $) NIL)) (-2141 (((-1137) $) 11)) (-2128 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-627) (-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1137) $))))) (T -627)) -((-2128 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627))))) -(-13 (-1085) (-10 -8 (-15 -2128 ((-1137) $)) (-15 -2141 ((-1137) $)))) -((-2487 (((-112) $ $) NIL)) (-3055 (((-645 |#1|) $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-2247 (($ $) 77)) (-2734 (((-665 |#1| |#2|) $) 60)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 81)) (-3916 (((-645 (-295 |#2|)) $ $) 42)) (-3479 (((-1122) $) NIL)) (-4272 (($ (-665 |#1| |#2|)) 56)) (-3307 (($ $ $) NIL)) (-4033 (($ $ $) NIL)) (-2504 (((-863) $) 66) (((-1284 |#1| |#2|) $) NIL) (((-1289 |#1| |#2|) $) 74)) (-3858 (((-112) $ $) NIL)) (-1820 (($) 61 T CONST)) (-4346 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) 41)) (-4172 (((-645 (-665 |#1| |#2|)) (-645 |#1|)) 73)) (-1848 (((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $) 46)) (-2968 (((-112) $ $) 62)) (-3064 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 52))) -(((-628 |#1| |#2| |#3|) (-13 (-476) (-10 -8 (-15 -4272 ($ (-665 |#1| |#2|))) (-15 -2734 ((-665 |#1| |#2|) $)) (-15 -1848 ((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $)) (-15 -2504 ((-1284 |#1| |#2|) $)) (-15 -2504 ((-1289 |#1| |#2|) $)) (-15 -2247 ($ $)) (-15 -3055 ((-645 |#1|) $)) (-15 -4172 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -4346 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -3916 ((-645 (-295 |#2|)) $ $)))) (-851) (-13 (-172) (-718 (-410 (-567)))) (-923)) (T -628)) -((-4272 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5)) (-14 *5 (-923)))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-895 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1289 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-2247 (*1 *1 *1) (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-923)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) (-14 *6 (-923)))) (-4346 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) (-3916 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))) -(-13 (-476) (-10 -8 (-15 -4272 ($ (-665 |#1| |#2|))) (-15 -2734 ((-665 |#1| |#2|) $)) (-15 -1848 ((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $)) (-15 -2504 ((-1284 |#1| |#2|) $)) (-15 -2504 ((-1289 |#1| |#2|) $)) (-15 -2247 ($ $)) (-15 -3055 ((-645 |#1|) $)) (-15 -4172 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -4346 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -3916 ((-645 (-295 |#2|)) $ $)))) -((-3148 (((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 103) (((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 77)) (-2947 (((-112) (-645 (-781 |#1| (-865 |#2|)))) 26)) (-2261 (((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 102)) (-3580 (((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 76)) (-3546 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) 30)) (-3974 (((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|)))) 29))) -(((-629 |#1| |#2|) (-10 -7 (-15 -2947 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -3974 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -3546 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -3580 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2261 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3148 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3148 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) (-455) (-645 (-1179))) (T -629)) -((-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-629 *5 *6)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-3580 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-629 *5 *6)))) (-3546 (*1 *2 *2) (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1179))) (-5 *1 (-629 *3 *4)))) (-3974 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1179))) (-5 *1 (-629 *3 *4)))) (-2947 (*1 *2 *3) (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) (-14 *5 (-645 (-1179))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5))))) -(-10 -7 (-15 -2947 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -3974 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -3546 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -3580 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2261 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3148 ((-645 (-1048 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -3148 ((-645 (-1148 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) -((-1406 (($ $) 38)) (-2545 (($ $) 21)) (-1380 (($ $) 37)) (-2524 (($ $) 22)) (-1431 (($ $) 36)) (-2565 (($ $) 23)) (-4329 (($) 48)) (-2734 (($ $) 45)) (-4029 (($ $) 17)) (-1954 (($ $ (-1094 $)) 7) (($ $ (-1179)) 6)) (-4272 (($ $) 46)) (-2480 (($ $) 15)) (-2511 (($ $) 16)) (-1443 (($ $) 35)) (-2576 (($ $) 24)) (-1418 (($ $) 34)) (-2555 (($ $) 25)) (-1394 (($ $) 33)) (-2533 (($ $) 26)) (-1481 (($ $) 44)) (-2610 (($ $) 32)) (-1456 (($ $) 43)) (-2588 (($ $) 31)) (-1505 (($ $) 42)) (-2632 (($ $) 30)) (-2090 (($ $) 41)) (-1367 (($ $) 29)) (-1492 (($ $) 40)) (-2621 (($ $) 28)) (-1468 (($ $) 39)) (-2599 (($ $) 27)) (-2087 (($ $) 19)) (-4062 (($ $) 20)) (-4311 (($ $) 18)) (** (($ $ $) 47))) -(((-630) (-140)) (T -630)) -((-4062 (*1 *1 *1) (-4 *1 (-630))) (-2087 (*1 *1 *1) (-4 *1 (-630))) (-4311 (*1 *1 *1) (-4 *1 (-630))) (-4029 (*1 *1 *1) (-4 *1 (-630))) (-2511 (*1 *1 *1) (-4 *1 (-630))) (-2480 (*1 *1 *1) (-4 *1 (-630)))) -(-13 (-961) (-1204) (-10 -8 (-15 -4062 ($ $)) (-15 -2087 ($ $)) (-15 -4311 ($ $)) (-15 -4029 ($ $)) (-15 -2511 ($ $)) (-15 -2480 ($ $)))) -(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-961) . T) ((-1204) . T) ((-1207) . T)) -((-3609 (((-114) (-114)) 88)) (-4029 ((|#2| |#2|) 28)) (-1954 ((|#2| |#2| (-1094 |#2|)) 84) ((|#2| |#2| (-1179)) 50)) (-2480 ((|#2| |#2|) 27)) (-2511 ((|#2| |#2|) 29)) (-3862 (((-112) (-114)) 33)) (-2087 ((|#2| |#2|) 24)) (-4062 ((|#2| |#2|) 26)) (-4311 ((|#2| |#2|) 25))) -(((-631 |#1| |#2|) (-10 -7 (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -4062 (|#2| |#2|)) (-15 -2087 (|#2| |#2|)) (-15 -4311 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -2480 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -1954 (|#2| |#2| (-1179))) (-15 -1954 (|#2| |#2| (-1094 |#2|)))) (-559) (-13 (-433 |#1|) (-1004) (-1204))) (T -631)) -((-1954 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1204))) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) (-1954 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1204))))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-2480 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-4029 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-4311 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-2087 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-4062 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1004) (-1204))))) (-3609 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4)) (-4 *4 (-13 (-433 *3) (-1004) (-1204))))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1204)))))) -(-10 -7 (-15 -3862 ((-112) (-114))) (-15 -3609 ((-114) (-114))) (-15 -4062 (|#2| |#2|)) (-15 -2087 (|#2| |#2|)) (-15 -4311 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -2480 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -1954 (|#2| |#2| (-1179))) (-15 -1954 (|#2| |#2| (-1094 |#2|)))) -((-4162 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-3213 (((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 93)) (-2744 (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 95) (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 94)) (-3214 (((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|))) 138)) (-2695 (((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 108)) (-1790 (((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|))) 148)) (-4278 (((-1269 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|))) 72)) (-4368 (((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 48)) (-2364 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 64)) (-2700 (((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 116))) -(((-632 |#1| |#2|) (-10 -7 (-15 -3214 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -1790 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -3213 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2744 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -2744 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -4368 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -4278 ((-1269 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -2700 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -2695 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2364 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -4162 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) (-645 (-1179)) (-455)) (T -632)) -((-4162 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))) (-2364 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-2695 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-2700 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1179))) (-5 *1 (-632 *5 *6)))) (-4278 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-1269 *6)) (-5 *1 (-632 *5 *6)))) (-4368 (*1 *2 *2) (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1179))) (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1179))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-2744 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1179))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))) (-1790 (*1 *2 *3) (-12 (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |gblist| (-645 (-247 *4 *5))) (|:| |gvlist| (-645 (-567))))) (-5 *1 (-632 *4 *5))))) -(-10 -7 (-15 -3214 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -1790 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -3213 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2744 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -2744 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -4368 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -4278 ((-1269 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -2700 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -2695 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2364 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -4162 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) NIL)) (-3095 (((-1274) $ (-1161) (-1161)) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 (((-52) $ (-1161) (-52)) 16) (((-52) $ (-1179) (-52)) 17)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 (-52) "failed") (-1161) $) NIL)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102))))) (-4197 (($ (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-3 (-52) "failed") (-1161) $) NIL)) (-1695 (($ (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $ (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102)))) (((-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $ (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2036 (((-52) $ (-1161) (-52)) NIL (|has| $ (-6 -4423)))) (-1970 (((-52) $ (-1161)) NIL)) (-3468 (((-645 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-2206 (($ $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-1161) $) NIL (|has| (-1161) (-851)))) (-4200 (((-645 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-2346 (((-1161) $) NIL (|has| (-1161) (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4142 (($ (-391)) 9)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102))))) (-1512 (((-645 (-1161)) $) NIL)) (-1560 (((-112) (-1161) $) NIL)) (-3018 (((-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) $) NIL)) (-3636 (($ (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) $) NIL)) (-3360 (((-645 (-1161)) $) NIL)) (-2919 (((-112) (-1161) $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102))))) (-3436 (((-52) $) NIL (|has| (-1161) (-851)))) (-2989 (((-3 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) "failed") (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL)) (-2930 (($ $ (-52)) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102)))) (($ $ (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-1804 (((-645 (-52)) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 (((-52) $ (-1161)) 14) (((-52) $ (-1161) (-52)) NIL) (((-52) $ (-1179)) 15)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 (-52))) (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-633) (-13 (-1195 (-1161) (-52)) (-10 -8 (-15 -4142 ($ (-391))) (-15 -2206 ($ $)) (-15 -1882 ((-52) $ (-1179))) (-15 -3824 ((-52) $ (-1179) (-52)))))) (T -633)) -((-4142 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633)))) (-2206 (*1 *1 *1) (-5 *1 (-633))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-633)))) (-3824 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1179)) (-5 *1 (-633))))) -(-13 (-1195 (-1161) (-52)) (-10 -8 (-15 -4142 ($ (-391))) (-15 -2206 ($ $)) (-15 -1882 ((-52) $ (-1179))) (-15 -3824 ((-52) $ (-1179) (-52))))) -((-3064 (($ $ |#2|) 10))) -(((-634 |#1| |#2|) (-10 -8 (-15 -3064 (|#1| |#1| |#2|))) (-635 |#2|) (-172)) (T -634)) -NIL -(-10 -8 (-15 -3064 (|#1| |#1| |#2|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2516 (($ $ $) 34)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-635 |#1|) (-140) (-172)) (T -635)) -((-2516 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)))) (-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(-13 (-718 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2516 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3064 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3414 (((-3 $ "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-1998 (((-1269 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1269 (-690 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1931 (((-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3758 (($) NIL T CONST)) (-2670 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3865 (((-3 $ "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1426 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4114 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4170 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1511 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3657 (((-1175 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3497 (($ $ (-923)) NIL)) (-1607 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1375 (((-1175 |#1|) $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2260 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3542 (((-1175 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3134 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3431 (($ (-1269 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1269 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1377 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1471 (((-923)) NIL (|has| |#2| (-369 |#1|)))) (-1586 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2258 (($ $ (-923)) NIL)) (-3604 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3703 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3504 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1478 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3363 (((-3 $ "failed")) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4221 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2726 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3969 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3822 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2626 (((-1175 (-954 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-2310 (($ $ (-923)) NIL)) (-2152 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3485 (((-1175 |#1|) $) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1741 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3522 (((-1175 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1812 (((-1161) $) NIL)) (-3403 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2905 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2541 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3479 (((-1122) $) NIL)) (-2779 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1882 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-3237 (((-690 |#1|) (-1269 $)) NIL (|has| |#2| (-420 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1269 $) (-1269 $)) NIL (|has| |#2| (-369 |#1|))) (((-1269 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1322 (($ (-1269 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-3869 (((-645 (-954 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-954 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4033 (($ $ $) NIL)) (-2441 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2504 (((-863) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL (|has| |#2| (-420 |#1|)))) (-3477 (((-645 (-1269 |#1|))) NIL (-2836 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2862 (($ $ $ $) NIL)) (-3527 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3384 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-1793 (($ $ $) NIL)) (-1959 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3358 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2035 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) 20)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-636 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -2504 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -636)) -((-2504 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3))))) -(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -2504 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) -((-3927 (((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1161)) 106) (((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|))) 131)) (-1356 (((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|))) 136))) -(((-637 |#1| |#2|) (-10 -7 (-15 -3927 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -1356 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -3927 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1161)))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -637)) -((-3927 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1161)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) (-1356 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-834 *3))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) (-3927 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1204) (-433 *5))) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-637 *5 *3))))) -(-10 -7 (-15 -3927 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -1356 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -3927 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1161)))) -((-3927 (((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1161)) 86) (((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 20) (((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|)))) 35)) (-1356 (((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 23) (((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|)))) 43))) -(((-638 |#1|) (-10 -7 (-15 -3927 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|))))) (-15 -3927 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -1356 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|))))) (-15 -1356 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -3927 ((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1161)))) (-455)) (T -638)) -((-3927 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-410 (-954 *6)))) (-5 *5 (-1161)) (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) (-5 *1 (-638 *6)))) (-1356 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))) (-1356 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-834 (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-834 (-410 (-954 *5)))) (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5))))) (-3927 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-455)) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-638 *5)))) (-3927 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 (-954 *5)))) (-4 *5 (-455)) (-5 *2 (-3 (-844 (-410 (-954 *5))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 *5))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 *5))) "failed"))) "failed")) (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5)))))) -(-10 -7 (-15 -3927 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-844 (-954 |#1|))))) (-15 -3927 ((-3 (-844 (-410 (-954 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-954 |#1|))) "failed"))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -1356 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-834 (-954 |#1|))))) (-15 -1356 ((-834 (-410 (-954 |#1|))) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -3927 ((-3 (-844 (-410 (-954 |#1|))) "failed") (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))) (-1161)))) -((-4308 (((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|) 64 (-1736 (|has| |#1| (-365)))) (((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-2123 (((-112) (-1269 |#2|)) 33)) (-2640 (((-3 (-1269 |#1|) "failed") (-1269 |#2|)) 40))) -(((-639 |#1| |#2|) (-10 -7 (-15 -2123 ((-112) (-1269 |#2|))) (-15 -2640 ((-3 (-1269 |#1|) "failed") (-1269 |#2|))) (IF (|has| |#1| (-365)) (-15 -4308 ((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|)) (-15 -4308 ((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|)))) (-559) (-640 |#1|)) (T -639)) -((-4308 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 *5)) (-1736 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1269 (-410 *5))) (-5 *1 (-639 *5 *4)))) (-4308 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-1269 *5)) (-5 *1 (-639 *5 *4)))) (-2640 (*1 *2 *3) (|partial| -12 (-5 *3 (-1269 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-1269 *4)) (-5 *1 (-639 *4 *5)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-639 *4 *5))))) -(-10 -7 (-15 -2123 ((-112) (-1269 |#2|))) (-15 -2640 ((-3 (-1269 |#1|) "failed") (-1269 |#2|))) (IF (|has| |#1| (-365)) (-15 -4308 ((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|)) (-15 -4308 ((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-2690 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 39)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-640 |#1|) (-140) (-1051)) (T -640)) -((-2690 (*1 *2 *3) (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1051)) (-5 *2 (-690 *4)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *1)) (-5 *4 (-1269 *1)) (-4 *1 (-640 *5)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -2434 (-690 *5)) (|:| |vec| (-1269 *5))))))) -(-13 (-1051) (-10 -8 (-15 -2690 ((-690 |t#1|) (-690 $))) (-15 -2690 ((-2 (|:| -2434 (-690 |t#1|)) (|:| |vec| (-1269 |t#1|))) (-690 $) (-1269 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 16 T CONST)) (-2968 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-641 |#1|) (-140) (-1060)) (T -641)) -NIL -(-13 (-647 |t#1|) (-1053 |t#1|)) -(((-102) . T) ((-614 (-863)) . T) ((-647 |#1|) . T) ((-1053 |#1|) . T) ((-1102) . T)) -((-4016 ((|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|) 17) ((|#2| (-645 |#1|) (-645 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|)) 12))) -(((-642 |#1| |#2|) (-10 -7 (-15 -4016 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4016 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4016 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4016 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4016 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4016 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) (-1102) (-1219)) (T -642)) -((-4016 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1102)) (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) (-4016 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *1 (-642 *5 *6)))) (-4016 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) (-4016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1102)) (-4 *5 (-1219)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) (-4016 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) (-4016 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6))))) -(-10 -7 (-15 -4016 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -4016 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -4016 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -4016 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -4016 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -4016 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) -((-4309 (((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 16)) (-2617 ((|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 18)) (-4364 (((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)) 13))) -(((-643 |#1| |#2|) (-10 -7 (-15 -4309 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2617 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -4364 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) (-1219) (-1219)) (T -643)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) (-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-643 *5 *2)))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5))))) -(-10 -7 (-15 -4309 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -2617 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -4364 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) -((-4364 (((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)) 21))) -(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -4364 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) (-1219) (-1219) (-1219)) (T -644)) -((-4364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-645 *8)) (-5 *1 (-644 *6 *7 *8))))) -(-10 -7 (-15 -4364 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) NIL)) (-2587 ((|#1| $) NIL)) (-1493 (($ $) NIL)) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2767 (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-2080 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4234 (($ $ $) NIL (|has| $ (-6 -4423)))) (-2718 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-1588 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "rest" $) NIL (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3372 (($ $ $) 37 (|has| |#1| (-1102)))) (-3361 (($ $ $) 41 (|has| |#1| (-1102)))) (-3350 (($ $ $) 44 (|has| |#1| (-1102)))) (-2105 (($ (-1 (-112) |#1|) $) NIL)) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2574 ((|#1| $) NIL)) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3447 (($ $) 23) (($ $ (-772)) NIL)) (-3048 (($ $) NIL (|has| |#1| (-1102)))) (-3470 (($ $) 36 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4197 (($ |#1| $) NIL (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) NIL)) (-1695 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3689 (((-112) $) NIL)) (-3932 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102))) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) NIL)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-1720 (((-112) $) 11)) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3062 (($) 9 T CONST)) (-4223 (($ (-772) |#1|) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-3196 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1315 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3316 (($ |#1|) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1725 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-3636 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-4222 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) 20) (($ $ (-772)) NIL)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-3268 (((-112) $) NIL)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) 39)) (-2973 (($) 38)) (-1882 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1236 (-567))) NIL) ((|#1| $ (-567)) 42) ((|#1| $ (-567) |#1|) NIL)) (-2721 (((-567) $ $) NIL)) (-1664 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-4281 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-3625 (((-112) $) NIL)) (-4121 (($ $) NIL)) (-3277 (($ $) NIL (|has| $ (-6 -4423)))) (-3880 (((-772) $) NIL)) (-1908 (($ $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) 53 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) NIL)) (-1849 (($ |#1| $) 12)) (-3416 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3644 (($ $ $) 35) (($ |#1| $) 43) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1856 (($ $ $) 13)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2166 (((-1161) $) 31 (|has| |#1| (-829))) (((-1161) $ (-112)) 32 (|has| |#1| (-829))) (((-1274) (-823) $) 33 (|has| |#1| (-829))) (((-1274) (-823) $ (-112)) 34 (|has| |#1| (-829)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-645 |#1|) (-13 (-667 |#1|) (-10 -8 (-15 -3062 ($) -3562) (-15 -1720 ((-112) $)) (-15 -1849 ($ |#1| $)) (-15 -1856 ($ $ $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -3372 ($ $ $)) (-15 -3361 ($ $ $)) (-15 -3350 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-1219)) (T -645)) -((-3062 (*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))) (-1720 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1219)))) (-1849 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))) (-1856 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))) (-3372 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)))) (-3361 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)))) (-3350 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219))))) -(-13 (-667 |#1|) (-10 -8 (-15 -3062 ($) -3562) (-15 -1720 ((-112) $)) (-15 -1849 ($ |#1| $)) (-15 -1856 ($ $ $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -3372 ($ $ $)) (-15 -3361 ($ $ $)) (-15 -3350 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 11) (($ (-1184)) NIL) (((-1184) $) NIL) ((|#1| $) 8)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-646 |#1|) (-13 (-1085) (-614 |#1|)) (-1102)) (T -646)) -NIL -(-13 (-1085) (-614 |#1|)) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 16 T CONST)) (-2968 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-647 |#1|) (-140) (-1060)) (T -647)) -((-1807 (*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060))))) -(-13 (-1102) (-10 -8 (-15 (-1807) ($) -3562) (-15 -2684 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3458 (($ |#1| |#1| $) 46)) (-1555 (((-112) $ (-772)) NIL)) (-2105 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3048 (($ $) 48)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4197 (($ |#1| $) 59 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4422)))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3468 (((-645 |#1|) $) 9 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 37)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3018 ((|#1| $) 50)) (-3636 (($ |#1| $) 29) (($ |#1| $ (-772)) 45)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 ((|#1| $) 53)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 23)) (-2973 (($) 28)) (-4139 (((-112) $) 57)) (-4043 (((-645 (-2 (|:| -2265 |#1|) (|:| -3486 (-772)))) $) 69)) (-2730 (($) 26) (($ (-645 |#1|)) 19)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) 66 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) 20)) (-1322 (((-539) $) 34 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) NIL)) (-2504 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 24)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 71 (|has| |#1| (-1102)))) (-2498 (((-772) $) 17 (|has| $ (-6 -4422))))) -(((-648 |#1|) (-13 (-696 |#1|) (-10 -8 (-6 -4422) (-15 -4139 ((-112) $)) (-15 -3458 ($ |#1| |#1| $)))) (-1102)) (T -648)) -((-4139 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1102)))) (-3458 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1102))))) -(-13 (-696 |#1|) (-10 -8 (-6 -4422) (-15 -4139 ((-112) $)) (-15 -3458 ($ |#1| |#1| $)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27))) -(((-649 |#1|) (-140) (-1060)) (T -649)) -NIL -(-13 (-21) (-647 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772) $) 17)) (-4143 (($ $ |#1|) 69)) (-3790 (($ $) 39)) (-3247 (($ $) 37)) (-4275 (((-3 |#1| "failed") $) 61)) (-3094 ((|#1| $) NIL)) (-3174 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2112 (((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567)) 56)) (-3102 ((|#1| $ (-567)) 35)) (-2889 ((|#2| $ (-567)) 34)) (-3786 (($ (-1 |#1| |#1|) $) 41)) (-2430 (($ (-1 |#2| |#2|) $) 47)) (-4328 (($) 11)) (-3581 (($ |#1| |#2|) 24)) (-3939 (($ (-645 (-2 (|:| |gen| |#1|) (|:| -4272 |#2|)))) 25)) (-3866 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 |#2|))) $) 14)) (-2929 (($ |#1| $) 71)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2046 (((-112) $ $) 76)) (-2504 (((-863) $) 21) (($ |#1|) 18)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 27))) -(((-650 |#1| |#2| |#3|) (-13 (-1102) (-1040 |#1|) (-10 -8 (-15 -2112 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -3866 ((-645 (-2 (|:| |gen| |#1|) (|:| -4272 |#2|))) $)) (-15 -3581 ($ |#1| |#2|)) (-15 -3939 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -4272 |#2|))))) (-15 -2889 (|#2| $ (-567))) (-15 -3102 (|#1| $ (-567))) (-15 -3247 ($ $)) (-15 -3790 ($ $)) (-15 -3404 ((-772) $)) (-15 -4328 ($)) (-15 -4143 ($ $ |#1|)) (-15 -2929 ($ |#1| $)) (-15 -3174 ($ |#1| |#2| $)) (-15 -3174 ($ $ $)) (-15 -2046 ((-112) $ $)) (-15 -2430 ($ (-1 |#2| |#2|) $)) (-15 -3786 ($ (-1 |#1| |#1|) $)))) (-1102) (-23) |#2|) (T -650)) -((-2112 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1102)) (-4 *6 (-23)) (-14 *7 *6))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 *4)))) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-3581 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 *4)))) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))) (-2889 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) (-4 *4 (-1102)) (-14 *5 *2))) (-3102 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-1102)) (-5 *1 (-650 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3247 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-3790 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-4328 (*1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-4143 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2929 (*1 *1 *2 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-3174 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-3174 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) (-14 *4 *3))) (-2046 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4))) (-2430 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)))) (-3786 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-650 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1102) (-1040 |#1|) (-10 -8 (-15 -2112 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -3866 ((-645 (-2 (|:| |gen| |#1|) (|:| -4272 |#2|))) $)) (-15 -3581 ($ |#1| |#2|)) (-15 -3939 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -4272 |#2|))))) (-15 -2889 (|#2| $ (-567))) (-15 -3102 (|#1| $ (-567))) (-15 -3247 ($ $)) (-15 -3790 ($ $)) (-15 -3404 ((-772) $)) (-15 -4328 ($)) (-15 -4143 ($ $ |#1|)) (-15 -2929 ($ |#1| $)) (-15 -3174 ($ |#1| |#2| $)) (-15 -3174 ($ $ $)) (-15 -2046 ((-112) $ $)) (-15 -2430 ($ (-1 |#2| |#2|) $)) (-15 -3786 ($ (-1 |#1| |#1|) $)))) -((-2346 (((-567) $) 31)) (-4222 (($ |#2| $ (-567)) 27) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) 12)) (-2919 (((-112) (-567) $) 18)) (-3644 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-645 $)) NIL))) -(((-651 |#1| |#2|) (-10 -8 (-15 -4222 (|#1| |#1| |#1| (-567))) (-15 -4222 (|#1| |#2| |#1| (-567))) (-15 -3644 (|#1| (-645 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#2|)) (-15 -2346 ((-567) |#1|)) (-15 -3360 ((-645 (-567)) |#1|)) (-15 -2919 ((-112) (-567) |#1|))) (-652 |#2|) (-1219)) (T -651)) -NIL -(-10 -8 (-15 -4222 (|#1| |#1| |#1| (-567))) (-15 -4222 (|#1| |#2| |#1| (-567))) (-15 -3644 (|#1| (-645 |#1|))) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#2|)) (-15 -2346 ((-567) |#1|)) (-15 -3360 ((-645 (-567)) |#1|)) (-15 -2919 ((-112) (-567) |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3470 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 52)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-4223 (($ (-772) |#1|) 70)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 43 (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2930 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-4281 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 71)) (-3644 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-652 |#1|) (-140) (-1219)) (T -652)) -((-4223 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-3644 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) (-3644 (*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) (-3644 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-4364 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-4222 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) (-3824 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1236 (-567))) (|has| *1 (-6 -4423)) (-4 *1 (-652 *2)) (-4 *2 (-1219))))) -(-13 (-605 (-567) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4223 ($ (-772) |t#1|)) (-15 -3644 ($ $ |t#1|)) (-15 -3644 ($ |t#1| $)) (-15 -3644 ($ $ $)) (-15 -3644 ($ (-645 $))) (-15 -4364 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1882 ($ $ (-1236 (-567)))) (-15 -4281 ($ $ (-567))) (-15 -4281 ($ $ (-1236 (-567)))) (-15 -4222 ($ |t#1| $ (-567))) (-15 -4222 ($ $ $ (-567))) (IF (|has| $ (-6 -4423)) (-15 -3824 (|t#1| $ (-1236 (-567)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-2510 (((-3 |#2| "failed") |#3| |#2| (-1179) |#2| (-645 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) "failed") |#3| |#2| (-1179)) 44))) -(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -2510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) "failed") |#3| |#2| (-1179))) (-15 -2510 ((-3 |#2| "failed") |#3| |#2| (-1179) |#2| (-645 |#2|)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961)) (-657 |#2|)) (T -653)) -((-2510 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1179)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1204) (-961))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4374 (-645 *4)))) (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4))))) -(-10 -7 (-15 -2510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) "failed") |#3| |#2| (-1179))) (-15 -2510 ((-3 |#2| "failed") |#3| |#2| (-1179) |#2| (-645 |#2|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3487 (($ $) NIL (|has| |#1| (-365)))) (-3183 (($ $ $) NIL (|has| |#1| (-365)))) (-2863 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-3454 (($ $ $) NIL (|has| |#1| (-365)))) (-4332 (($ $ $) NIL (|has| |#1| (-365)))) (-1989 (($ $ $) NIL (|has| |#1| (-365)))) (-1705 (($ $ $) NIL (|has| |#1| (-365)))) (-3538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-3666 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3233 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455)))) (-4384 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) NIL)) (-4007 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-4045 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-1562 (((-772) $) NIL)) (-3119 (($ $ $) NIL (|has| |#1| (-365)))) (-3049 (($ $ $) NIL (|has| |#1| (-365)))) (-2669 (($ $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ $) NIL (|has| |#1| (-365)))) (-4082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2535 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4240 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1882 ((|#1| $ |#1|) NIL)) (-3026 (($ $ $) NIL (|has| |#1| (-365)))) (-3380 (((-772) $) NIL)) (-1390 ((|#1| $) NIL (|has| |#1| (-455)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-772)) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3384 ((|#1| $ |#1| |#1|) NIL)) (-3766 (($ $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($) NIL)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-654 |#1|) (-657 |#1|) (-233)) (T -654)) -NIL -(-657 |#1|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3487 (($ $) NIL (|has| |#1| (-365)))) (-3183 (($ $ $) NIL (|has| |#1| (-365)))) (-2863 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-3454 (($ $ $) NIL (|has| |#1| (-365)))) (-4332 (($ $ $) NIL (|has| |#1| (-365)))) (-1989 (($ $ $) NIL (|has| |#1| (-365)))) (-1705 (($ $ $) NIL (|has| |#1| (-365)))) (-3538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-3666 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3233 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455)))) (-4384 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) NIL)) (-4007 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-4045 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-1562 (((-772) $) NIL)) (-3119 (($ $ $) NIL (|has| |#1| (-365)))) (-3049 (($ $ $) NIL (|has| |#1| (-365)))) (-2669 (($ $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ $) NIL (|has| |#1| (-365)))) (-4082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2535 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4240 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1882 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3026 (($ $ $) NIL (|has| |#1| (-365)))) (-3380 (((-772) $) NIL)) (-1390 ((|#1| $) NIL (|has| |#1| (-455)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-772)) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3384 ((|#1| $ |#1| |#1|) NIL)) (-3766 (($ $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($) NIL)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-655 |#1| |#2|) (-13 (-657 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-649 |#1|) (-10 -8 (-15 -3592 ($ $))))) (T -655)) -NIL -(-13 (-657 |#1|) (-287 |#2| |#2|)) -((-3487 (($ $) 29)) (-3766 (($ $) 27)) (-2856 (($) 13))) -(((-656 |#1| |#2|) (-10 -8 (-15 -3487 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -2856 (|#1|))) (-657 |#2|) (-1051)) (T -656)) -NIL -(-10 -8 (-15 -3487 (|#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -2856 (|#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3487 (($ $) 87 (|has| |#1| (-365)))) (-3183 (($ $ $) 89 (|has| |#1| (-365)))) (-2863 (($ $ (-772)) 88 (|has| |#1| (-365)))) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-3454 (($ $ $) 50 (|has| |#1| (-365)))) (-4332 (($ $ $) 51 (|has| |#1| (-365)))) (-1989 (($ $ $) 53 (|has| |#1| (-365)))) (-1705 (($ $ $) 48 (|has| |#1| (-365)))) (-3538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 47 (|has| |#1| (-365)))) (-3666 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-3233 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 52 (|has| |#1| (-365)))) (-4275 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-3094 (((-567) $) 79 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 75)) (-1833 (($ $) 69)) (-1377 (((-3 $ "failed") $) 37)) (-1873 (($ $) 60 (|has| |#1| (-455)))) (-4384 (((-112) $) 35)) (-3764 (($ |#1| (-772)) 67)) (-4007 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 62 (|has| |#1| (-559)))) (-4045 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63 (|has| |#1| (-559)))) (-1562 (((-772) $) 71)) (-3119 (($ $ $) 57 (|has| |#1| (-365)))) (-3049 (($ $ $) 58 (|has| |#1| (-365)))) (-2669 (($ $ $) 46 (|has| |#1| (-365)))) (-1874 (($ $ $) 55 (|has| |#1| (-365)))) (-4082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 54 (|has| |#1| (-365)))) (-2535 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-4240 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 59 (|has| |#1| (-365)))) (-1809 ((|#1| $) 70)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-1882 ((|#1| $ |#1|) 92)) (-3026 (($ $ $) 86 (|has| |#1| (-365)))) (-3380 (((-772) $) 72)) (-1390 ((|#1| $) 61 (|has| |#1| (-455)))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 73)) (-1516 (((-645 |#1|) $) 66)) (-4038 ((|#1| $ (-772)) 68)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3384 ((|#1| $ |#1| |#1|) 65)) (-3766 (($ $) 90)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($) 91)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-657 |#1|) (-140) (-1051)) (T -657)) -((-2856 (*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) (-3183 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1051)) (-4 *3 (-365)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3026 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(-13 (-853 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -2856 ($)) (-15 -3766 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -3183 ($ $ $)) (-15 -2863 ($ $ (-772))) (-15 -3487 ($ $)) (-15 -3026 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-287 |#1| |#1|) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-853 |#1|) . T)) -((-4055 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 87 (|has| |#1| (-27)))) (-3661 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 86 (|has| |#1| (-27))) (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 19))) -(((-658 |#1| |#2|) (-10 -7 (-15 -3661 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3661 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -4055 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -658)) -((-4055 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-654 (-410 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6)))))) -(-10 -7 (-15 -3661 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3661 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -4055 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3487 (($ $) NIL (|has| |#1| (-365)))) (-3183 (($ $ $) 28 (|has| |#1| (-365)))) (-2863 (($ $ (-772)) 31 (|has| |#1| (-365)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-3454 (($ $ $) NIL (|has| |#1| (-365)))) (-4332 (($ $ $) NIL (|has| |#1| (-365)))) (-1989 (($ $ $) NIL (|has| |#1| (-365)))) (-1705 (($ $ $) NIL (|has| |#1| (-365)))) (-3538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-3666 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3233 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455)))) (-4384 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) NIL)) (-4007 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-4045 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-1562 (((-772) $) NIL)) (-3119 (($ $ $) NIL (|has| |#1| (-365)))) (-3049 (($ $ $) NIL (|has| |#1| (-365)))) (-2669 (($ $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ $) NIL (|has| |#1| (-365)))) (-4082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2535 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4240 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1882 ((|#1| $ |#1|) 24)) (-3026 (($ $ $) 33 (|has| |#1| (-365)))) (-3380 (((-772) $) NIL)) (-1390 ((|#1| $) NIL (|has| |#1| (-455)))) (-2504 (((-863) $) 20) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-772)) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3384 ((|#1| $ |#1| |#1|) 23)) (-3766 (($ $) NIL)) (-1807 (($) 21 T CONST)) (-1820 (($) 8 T CONST)) (-2856 (($) NIL)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-659 |#1| |#2|) (-657 |#1|) (-1051) (-1 |#1| |#1|)) (T -659)) -NIL -(-657 |#1|) -((-3183 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2863 ((|#2| |#2| (-772) (-1 |#1| |#1|)) 48)) (-3026 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) -(((-660 |#1| |#2|) (-10 -7 (-15 -3183 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2863 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -3026 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -660)) -((-3026 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))) (-2863 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))) (-3183 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4))))) -(-10 -7 (-15 -3183 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2863 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -3026 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2552 (($ $ $) 9))) -(((-661 |#1|) (-10 -8 (-15 -2552 (|#1| |#1| |#1|))) (-662)) (T -661)) -NIL -(-10 -8 (-15 -2552 (|#1| |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2509 (($ $) 10)) (-2552 (($ $ $) 8)) (-2968 (((-112) $ $) 6)) (-2542 (($ $ $) 9))) -(((-662) (-140)) (T -662)) -((-2509 (*1 *1 *1) (-4 *1 (-662))) (-2542 (*1 *1 *1 *1) (-4 *1 (-662))) (-2552 (*1 *1 *1 *1) (-4 *1 (-662)))) -(-13 (-102) (-10 -8 (-15 -2509 ($ $)) (-15 -2542 ($ $ $)) (-15 -2552 ($ $ $)))) +((-4378 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1219))))) +(-13 (-10 -8 (-15 -4378 (|t#1| $)))) +((-4402 ((|#1| $) 6))) +(((-616 |#1|) (-140) (-1219)) (T -616)) +((-4402 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1219))))) +(-13 (-10 -8 (-15 -4402 (|t#1| $)))) +((-2388 (((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-408 |#2|) |#2|)) 15) (((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 16))) +(((-617 |#1| |#2|) (-10 -7 (-15 -2388 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -2388 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-408 |#2|) |#2|)))) (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -617)) +((-2388 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-1174 (-410 *6))) (-5 *1 (-617 *5 *6)) (-5 *3 (-410 *6)))) (-2388 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-1174 (-410 *5))) (-5 *1 (-617 *4 *5)) (-5 *3 (-410 *5))))) +(-10 -7 (-15 -2388 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -2388 ((-3 (-1174 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-408 |#2|) |#2|)))) +((-4378 (($ |#1|) 6))) +(((-618 |#1|) (-140) (-1219)) (T -618)) +((-4378 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1219))))) +(-13 (-10 -8 (-15 -4378 ($ |t#1|)))) +((-2968 (((-112) $ $) NIL)) (-2389 (($) 14 T CONST)) (-3258 (($) 15 T CONST)) (-3255 (($ $ $) 29)) (-3746 (($ $) 27)) (-3663 (((-1162) $) NIL)) (-3254 (($ $ $) 30)) (-3664 (((-1123) $) NIL)) (-3257 (($) 11 T CONST)) (-3253 (($ $ $) 31)) (-4378 (((-865) $) 35)) (-3997 (((-112) $ (|[\|\|]| -3257)) 24) (((-112) $ (|[\|\|]| -2389)) 26) (((-112) $ (|[\|\|]| -3258)) 21)) (-3662 (((-112) $ $) NIL)) (-3256 (($ $ $) 28)) (-3455 (((-112) $ $) 18))) +(((-619) (-13 (-970) (-10 -8 (-15 -2389 ($) -4384) (-15 -3997 ((-112) $ (|[\|\|]| -3257))) (-15 -3997 ((-112) $ (|[\|\|]| -2389))) (-15 -3997 ((-112) $ (|[\|\|]| -3258)))))) (T -619)) +((-2389 (*1 *1) (-5 *1 (-619))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3257)) (-5 *2 (-112)) (-5 *1 (-619)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2389)) (-5 *2 (-112)) (-5 *1 (-619)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3258)) (-5 *2 (-112)) (-5 *1 (-619))))) +(-13 (-970) (-10 -8 (-15 -2389 ($) -4384) (-15 -3997 ((-112) $ (|[\|\|]| -3257))) (-15 -3997 ((-112) $ (|[\|\|]| -2389))) (-15 -3997 ((-112) $ (|[\|\|]| -3258))))) +((-4402 (($ |#1|) 6))) +(((-620 |#1|) (-140) (-1219)) (T -620)) +((-4402 (*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1219))))) +(-13 (-10 -8 (-15 -4402 ($ |t#1|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4055 (((-549) $) NIL (|has| |#1| (-850)))) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-3606 (((-112) $) NIL (|has| |#1| (-850)))) (-2573 (((-112) $) NIL)) (-3399 ((|#1| $) 13)) (-3607 (((-112) $) NIL (|has| |#1| (-850)))) (-2934 (($ $ $) NIL (|has| |#1| (-850)))) (-3260 (($ $ $) NIL (|has| |#1| (-850)))) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3398 ((|#3| $) 15)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL)) (-3530 (((-773)) 20 T CONST)) (-3662 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-850)))) (-3510 (($) NIL T CONST)) (-3067 (($) 12 T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-850)))) (-4381 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-621 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (-15 -4381 ($ $ |#3|)) (-15 -4381 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-728) |#2|)) (T -621)) +((-4381 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-728) *4)))) (-4381 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-728) *4)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-728) *3)))) (-3398 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-728) *4)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (-15 -4381 ($ $ |#3|)) (-15 -4381 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) +((-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) 10))) +(((-622 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-623 |#2|) (-1052)) (T -622)) +NIL +(-10 -8 (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 41)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-623 |#1|) (-140) (-1052)) (T -623)) +((-4378 (*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1052))))) +(-13 (-1052) (-650 |t#1|) (-10 -8 (-15 -4378 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2390 ((|#2| |#2| (-1180) (-1180)) 16))) +(((-624 |#1| |#2|) (-10 -7 (-15 -2390 (|#2| |#2| (-1180) (-1180)))) (-13 (-308) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-963) (-29 |#1|))) (T -624)) +((-2390 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-624 *4 *2)) (-4 *2 (-13 (-1205) (-963) (-29 *4)))))) +(-10 -7 (-15 -2390 (|#2| |#2| (-1180) (-1180)))) +((-2968 (((-112) $ $) 64)) (-3608 (((-112) $) 58)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2391 ((|#1| $) 55)) (-1407 (((-3 $ "failed") $ $) NIL)) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4183 (((-2 (|:| -1939 $) (|:| -1938 (-410 |#2|))) (-410 |#2|)) 111 (|has| |#1| (-365)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 99) (((-3 |#2| #1#) $) 95)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) 27)) (-3890 (((-3 $ "failed") $) 88)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4203 (((-549) $) 22)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) 40)) (-3294 (($ |#1| (-549)) 24)) (-3594 ((|#1| $) 57)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ $) 93)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-1752 (((-773) $) 115 (|has| |#1| (-365)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 114 (|has| |#1| (-365)))) (-4242 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-4380 (((-549) $) 38)) (-4402 (((-410 |#2|) $) 47)) (-4378 (((-865) $) 69) (($ (-549)) 35) (($ $) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 34) (($ |#2|) 25)) (-4109 ((|#1| $ (-549)) 72)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 9 T CONST)) (-3067 (($) 14 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3455 (((-112) $ $) 21)) (-4269 (($ $) 51) (($ $ $) NIL)) (-4271 (($ $ $) 90)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 29) (($ $ $) 49))) +(((-625 |#1| |#2|) (-13 (-231 |#2|) (-560) (-616 (-410 |#2|)) (-415 |#1|) (-1041 |#2|) (-10 -8 (-15 -4369 ((-112) $)) (-15 -4380 ((-549) $)) (-15 -4203 ((-549) $)) (-15 -4391 ($ $)) (-15 -3594 (|#1| $)) (-15 -2391 (|#1| $)) (-15 -4109 (|#1| $ (-549))) (-15 -3294 ($ |#1| (-549))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -4183 ((-2 (|:| -1939 $) (|:| -1938 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) (-560) (-1245 |#1|)) (T -625)) +((-4369 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-112)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) (-4380 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-549)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) (-4203 (*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-549)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) (-4391 (*1 *1 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) (-3594 (*1 *2 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) (-2391 (*1 *2 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-560)) (-5 *1 (-625 *2 *4)) (-4 *4 (-1245 *2)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-4 *2 (-560)) (-5 *1 (-625 *2 *4)) (-4 *4 (-1245 *2)))) (-4183 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-560)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -1939 (-625 *4 *5)) (|:| -1938 (-410 *5)))) (-5 *1 (-625 *4 *5)) (-5 *3 (-410 *5))))) +(-13 (-231 |#2|) (-560) (-616 (-410 |#2|)) (-415 |#1|) (-1041 |#2|) (-10 -8 (-15 -4369 ((-112) $)) (-15 -4380 ((-549) $)) (-15 -4203 ((-549) $)) (-15 -4391 ($ $)) (-15 -3594 (|#1| $)) (-15 -2391 (|#1| $)) (-15 -4109 (|#1| $ (-549))) (-15 -3294 ($ |#1| (-549))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -4183 ((-2 (|:| -1939 $) (|:| -1938 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) +((-4114 (((-643 |#6|) (-643 |#4|) (-112)) 54)) (-2392 ((|#6| |#6|) 48))) +(((-626 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2392 (|#6| |#6|)) (-15 -4114 ((-643 |#6|) (-643 |#4|) (-112)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|) (-1112 |#1| |#2| |#3| |#4|)) (T -626)) +((-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 *10)) (-5 *1 (-626 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *10 (-1112 *5 *6 *7 *8)))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-626 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *2 (-1112 *3 *4 *5 *6))))) +(-10 -7 (-15 -2392 (|#6| |#6|)) (-15 -4114 ((-643 |#6|) (-643 |#4|) (-112)))) +((-2393 (((-112) |#3| (-773) (-643 |#3|)) 32)) (-2394 (((-3 (-2 (|:| |polfac| (-643 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-643 (-1174 |#3|)))) "failed") |#3| (-643 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1954 (-643 (-2 (|:| |irr| |#4|) (|:| -2558 (-549)))))) (-643 |#3|) (-643 |#1|) (-643 |#3|)) 73))) +(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2393 ((-112) |#3| (-773) (-643 |#3|))) (-15 -2394 ((-3 (-2 (|:| |polfac| (-643 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-643 (-1174 |#3|)))) "failed") |#3| (-643 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1954 (-643 (-2 (|:| |irr| |#4|) (|:| -2558 (-549)))))) (-643 |#3|) (-643 |#1|) (-643 |#3|)))) (-852) (-795) (-308) (-953 |#3| |#2| |#1|)) (T -627)) +((-2394 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1954 (-643 (-2 (|:| |irr| *10) (|:| -2558 (-549))))))) (-5 *6 (-643 *3)) (-5 *7 (-643 *8)) (-4 *8 (-852)) (-4 *3 (-308)) (-4 *10 (-953 *3 *9 *8)) (-4 *9 (-795)) (-5 *2 (-2 (|:| |polfac| (-643 *10)) (|:| |correct| *3) (|:| |corrfact| (-643 (-1174 *3))))) (-5 *1 (-627 *8 *9 *3 *10)) (-5 *4 (-643 (-1174 *3))))) (-2393 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-773)) (-5 *5 (-643 *3)) (-4 *3 (-308)) (-4 *6 (-852)) (-4 *7 (-795)) (-5 *2 (-112)) (-5 *1 (-627 *6 *7 *3 *8)) (-4 *8 (-953 *3 *7 *6))))) +(-10 -7 (-15 -2393 ((-112) |#3| (-773) (-643 |#3|))) (-15 -2394 ((-3 (-2 (|:| |polfac| (-643 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-643 (-1174 |#3|)))) "failed") |#3| (-643 (-1174 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1954 (-643 (-2 (|:| |irr| |#4|) (|:| -2558 (-549)))))) (-643 |#3|) (-643 |#1|) (-643 |#3|)))) +((-2968 (((-112) $ $) NIL)) (-3951 (((-1138) $) 11)) (-3952 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-628) (-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $))))) (T -628)) +((-3952 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-628)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-628))))) +(-13 (-1086) (-10 -8 (-15 -3952 ((-1138) $)) (-15 -3951 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-4368 (($ $) 77)) (-4374 (((-666 |#1| |#2|) $) 60)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 81)) (-2395 (((-643 (-294 |#2|)) $ $) 42)) (-3664 (((-1123) $) NIL)) (-4375 (($ (-666 |#1| |#2|)) 56)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 66) (((-1285 |#1| |#2|) $) NIL) (((-1290 |#1| |#2|) $) 74)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 61 T CONST)) (-2396 (((-643 (-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|))) $) 41)) (-2397 (((-643 (-666 |#1| |#2|)) (-643 |#1|)) 73)) (-3066 (((-643 (-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|))) $) 46)) (-3455 (((-112) $ $) 62)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 52))) +(((-629 |#1| |#2| |#3|) (-13 (-476) (-10 -8 (-15 -4375 ($ (-666 |#1| |#2|))) (-15 -4374 ((-666 |#1| |#2|) $)) (-15 -3066 ((-643 (-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|))) $)) (-15 -4378 ((-1285 |#1| |#2|) $)) (-15 -4378 ((-1290 |#1| |#2|) $)) (-15 -4368 ($ $)) (-15 -4366 ((-643 |#1|) $)) (-15 -2397 ((-643 (-666 |#1| |#2|)) (-643 |#1|))) (-15 -2396 ((-643 (-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|))) $)) (-15 -2395 ((-643 (-294 |#2|)) $ $)))) (-852) (-13 (-172) (-719 (-410 (-549)))) (-922)) (T -629)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-666 *3 *4)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-5 *1 (-629 *3 *4 *5)) (-14 *5 (-922)))) (-4374 (*1 *2 *1) (-12 (-5 *2 (-666 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |k| (-896 *3)) (|:| |c| *4)))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-4368 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-852)) (-4 *3 (-13 (-172) (-719 (-410 (-549))))) (-14 *4 (-922)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-852)) (-5 *2 (-643 (-666 *4 *5))) (-5 *1 (-629 *4 *5 *6)) (-4 *5 (-13 (-172) (-719 (-410 (-549))))) (-14 *6 (-922)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |k| (-674 *3)) (|:| |c| *4)))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) (-2395 (*1 *2 *1 *1) (-12 (-5 *2 (-643 (-294 *4))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922))))) +(-13 (-476) (-10 -8 (-15 -4375 ($ (-666 |#1| |#2|))) (-15 -4374 ((-666 |#1| |#2|) $)) (-15 -3066 ((-643 (-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|))) $)) (-15 -4378 ((-1285 |#1| |#2|) $)) (-15 -4378 ((-1290 |#1| |#2|) $)) (-15 -4368 ($ $)) (-15 -4366 ((-643 |#1|) $)) (-15 -2397 ((-643 (-666 |#1| |#2|)) (-643 |#1|))) (-15 -2396 ((-643 (-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|))) $)) (-15 -2395 ((-643 (-294 |#2|)) $ $)))) +((-4114 (((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112)) 103) (((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112)) 77)) (-2398 (((-112) (-643 (-782 |#1| (-866 |#2|)))) 26)) (-2402 (((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112)) 102)) (-2401 (((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112)) 76)) (-2400 (((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|)))) 30)) (-2399 (((-3 (-643 (-782 |#1| (-866 |#2|))) "failed") (-643 (-782 |#1| (-866 |#2|)))) 29))) +(((-630 |#1| |#2|) (-10 -7 (-15 -2398 ((-112) (-643 (-782 |#1| (-866 |#2|))))) (-15 -2399 ((-3 (-643 (-782 |#1| (-866 |#2|))) "failed") (-643 (-782 |#1| (-866 |#2|))))) (-15 -2400 ((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))))) (-15 -2401 ((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -2402 ((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -4114 ((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -4114 ((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112)))) (-455) (-643 (-1180))) (T -630)) +((-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1149 *5 (-534 (-866 *6)) (-866 *6) (-782 *5 (-866 *6))))) (-5 *1 (-630 *5 *6)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-630 *5 *6)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1149 *5 (-534 (-866 *6)) (-866 *6) (-782 *5 (-866 *6))))) (-5 *1 (-630 *5 *6)))) (-2401 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-630 *5 *6)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-643 (-782 *3 (-866 *4)))) (-4 *3 (-455)) (-14 *4 (-643 (-1180))) (-5 *1 (-630 *3 *4)))) (-2399 (*1 *2 *2) (|partial| -12 (-5 *2 (-643 (-782 *3 (-866 *4)))) (-4 *3 (-455)) (-14 *4 (-643 (-1180))) (-5 *1 (-630 *3 *4)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-643 (-782 *4 (-866 *5)))) (-4 *4 (-455)) (-14 *5 (-643 (-1180))) (-5 *2 (-112)) (-5 *1 (-630 *4 *5))))) +(-10 -7 (-15 -2398 ((-112) (-643 (-782 |#1| (-866 |#2|))))) (-15 -2399 ((-3 (-643 (-782 |#1| (-866 |#2|))) "failed") (-643 (-782 |#1| (-866 |#2|))))) (-15 -2400 ((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))))) (-15 -2401 ((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -2402 ((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -4114 ((-643 (-1049 |#1| |#2|)) (-643 (-782 |#1| (-866 |#2|))) (-112))) (-15 -4114 ((-643 (-1149 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|)))) (-643 (-782 |#1| (-866 |#2|))) (-112)))) +((-3448 (((-113) (-113)) 88)) (-2406 ((|#2| |#2|) 28)) (-3235 ((|#2| |#2| (-1095 |#2|)) 84) ((|#2| |#2| (-1180)) 50)) (-2404 ((|#2| |#2|) 27)) (-2405 ((|#2| |#2|) 29)) (-2403 (((-112) (-113)) 33)) (-2408 ((|#2| |#2|) 24)) (-2409 ((|#2| |#2|) 26)) (-2407 ((|#2| |#2|) 25))) +(((-631 |#1| |#2|) (-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -2409 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -2406 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3235 (|#2| |#2| (-1180))) (-15 -3235 (|#2| |#2| (-1095 |#2|)))) (-560) (-13 (-424 |#1|) (-1005) (-1205))) (T -631)) +((-3235 (*1 *2 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))) (-4 *4 (-560)) (-5 *1 (-631 *4 *2)))) (-3235 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))))) (-2405 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2406 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2408 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) (-3448 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-631 *3 *4)) (-4 *4 (-13 (-424 *3) (-1005) (-1205))))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-424 *4) (-1005) (-1205)))))) +(-10 -7 (-15 -2403 ((-112) (-113))) (-15 -3448 ((-113) (-113))) (-15 -2409 (|#2| |#2|)) (-15 -2408 (|#2| |#2|)) (-15 -2407 (|#2| |#2|)) (-15 -2406 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3235 (|#2| |#2| (-1180))) (-15 -3235 (|#2| |#2| (-1095 |#2|)))) +((-3915 (($ $) 38)) (-4071 (($ $) 21)) (-3913 (($ $) 37)) (-4070 (($ $) 22)) (-3917 (($ $) 36)) (-4069 (($ $) 23)) (-4059 (($) 48)) (-4374 (($ $) 45)) (-2406 (($ $) 17)) (-3235 (($ $ (-1095 $)) 7) (($ $ (-1180)) 6)) (-4375 (($ $) 46)) (-2404 (($ $) 15)) (-2405 (($ $) 16)) (-3918 (($ $) 35)) (-4068 (($ $) 24)) (-3916 (($ $) 34)) (-4067 (($ $) 25)) (-3914 (($ $) 33)) (-4066 (($ $) 26)) (-3921 (($ $) 44)) (-3909 (($ $) 32)) (-3919 (($ $) 43)) (-3907 (($ $) 31)) (-3923 (($ $) 42)) (-3911 (($ $) 30)) (-3924 (($ $) 41)) (-3912 (($ $) 29)) (-3922 (($ $) 40)) (-3910 (($ $) 28)) (-3920 (($ $) 39)) (-3908 (($ $) 27)) (-2408 (($ $) 19)) (-2409 (($ $) 20)) (-2407 (($ $) 18)) (** (($ $ $) 47))) +(((-632) (-140)) (T -632)) +((-2409 (*1 *1 *1) (-4 *1 (-632))) (-2408 (*1 *1 *1) (-4 *1 (-632))) (-2407 (*1 *1 *1) (-4 *1 (-632))) (-2406 (*1 *1 *1) (-4 *1 (-632))) (-2405 (*1 *1 *1) (-4 *1 (-632))) (-2404 (*1 *1 *1) (-4 *1 (-632)))) +(-13 (-963) (-1205) (-10 -8 (-15 -2409 ($ $)) (-15 -2408 ($ $)) (-15 -2407 ($ $)) (-15 -2406 ($ $)) (-15 -2405 ($ $)) (-15 -2404 ($ $)))) +(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-963) . T) ((-1205) . T) ((-1208) . T)) +((-2419 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 66)) (-2412 (((-643 (-247 |#1| |#2|)) (-643 (-484 |#1| |#2|))) 92)) (-2413 (((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-866 |#1|)) 94) (((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)) (-866 |#1|)) 93)) (-2410 (((-2 (|:| |gblist| (-643 (-247 |#1| |#2|))) (|:| |gvlist| (-643 (-549)))) (-643 (-484 |#1| |#2|))) 137)) (-2417 (((-643 (-484 |#1| |#2|)) (-866 |#1|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|))) 107)) (-2411 (((-2 (|:| |glbase| (-643 (-247 |#1| |#2|))) (|:| |glval| (-643 (-549)))) (-643 (-247 |#1| |#2|))) 147)) (-2415 (((-1269 |#2|) (-484 |#1| |#2|) (-643 (-484 |#1| |#2|))) 71)) (-2414 (((-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|))) 48)) (-2418 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|))) 63)) (-2416 (((-247 |#1| |#2|) (-643 |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|))) 115))) +(((-633 |#1| |#2|) (-10 -7 (-15 -2410 ((-2 (|:| |gblist| (-643 (-247 |#1| |#2|))) (|:| |gvlist| (-643 (-549)))) (-643 (-484 |#1| |#2|)))) (-15 -2411 ((-2 (|:| |glbase| (-643 (-247 |#1| |#2|))) (|:| |glval| (-643 (-549)))) (-643 (-247 |#1| |#2|)))) (-15 -2412 ((-643 (-247 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2413 ((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)) (-866 |#1|))) (-15 -2413 ((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-866 |#1|))) (-15 -2414 ((-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2415 ((-1269 |#2|) (-484 |#1| |#2|) (-643 (-484 |#1| |#2|)))) (-15 -2416 ((-247 |#1| |#2|) (-643 |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|)))) (-15 -2417 ((-643 (-484 |#1| |#2|)) (-866 |#1|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2418 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|)))) (-15 -2419 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) (-643 (-1180)) (-455)) (T -633)) +((-2419 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *2 (-484 *4 *5)) (-5 *1 (-633 *4 *5)))) (-2418 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *1 (-633 *4 *5)))) (-2417 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-643 (-484 *4 *5))) (-5 *3 (-866 *4)) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *1 (-633 *4 *5)))) (-2416 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-247 *5 *6))) (-4 *6 (-455)) (-5 *2 (-247 *5 *6)) (-14 *5 (-643 (-1180))) (-5 *1 (-633 *5 *6)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) (-5 *2 (-1269 *6)) (-5 *1 (-633 *5 *6)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-643 (-484 *3 *4))) (-14 *3 (-643 (-1180))) (-4 *4 (-455)) (-5 *1 (-633 *3 *4)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-484 *5 *6))) (-5 *4 (-866 *5)) (-14 *5 (-643 (-1180))) (-5 *2 (-484 *5 *6)) (-5 *1 (-633 *5 *6)) (-4 *6 (-455)))) (-2413 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-643 (-484 *5 *6))) (-5 *4 (-866 *5)) (-14 *5 (-643 (-1180))) (-5 *2 (-484 *5 *6)) (-5 *1 (-633 *5 *6)) (-4 *6 (-455)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-643 (-484 *4 *5))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *2 (-643 (-247 *4 *5))) (-5 *1 (-633 *4 *5)))) (-2411 (*1 *2 *3) (-12 (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |glbase| (-643 (-247 *4 *5))) (|:| |glval| (-643 (-549))))) (-5 *1 (-633 *4 *5)) (-5 *3 (-643 (-247 *4 *5))))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-643 (-484 *4 *5))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |gblist| (-643 (-247 *4 *5))) (|:| |gvlist| (-643 (-549))))) (-5 *1 (-633 *4 *5))))) +(-10 -7 (-15 -2410 ((-2 (|:| |gblist| (-643 (-247 |#1| |#2|))) (|:| |gvlist| (-643 (-549)))) (-643 (-484 |#1| |#2|)))) (-15 -2411 ((-2 (|:| |glbase| (-643 (-247 |#1| |#2|))) (|:| |glval| (-643 (-549)))) (-643 (-247 |#1| |#2|)))) (-15 -2412 ((-643 (-247 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2413 ((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)) (-866 |#1|))) (-15 -2413 ((-484 |#1| |#2|) (-643 (-484 |#1| |#2|)) (-866 |#1|))) (-15 -2414 ((-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2415 ((-1269 |#2|) (-484 |#1| |#2|) (-643 (-484 |#1| |#2|)))) (-15 -2416 ((-247 |#1| |#2|) (-643 |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|)))) (-15 -2417 ((-643 (-484 |#1| |#2|)) (-866 |#1|) (-643 (-484 |#1| |#2|)) (-643 (-484 |#1| |#2|)))) (-15 -2418 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-643 (-247 |#1| |#2|)))) (-15 -2419 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL)) (-2372 (((-1275) $ (-1162) (-1162)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-51) $ (-1162) (-51)) 16) (((-51) $ (-1180) (-51)) 17)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 (-51) #1="failed") (-1162) $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-3829 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-3 (-51) #1#) (-1162) $) NIL)) (-3830 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-51) $ (-1162) (-51)) NIL (|has| $ (-6 -4426)))) (-3517 (((-51) $ (-1162)) NIL)) (-2124 (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-2420 (($ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1162) $) NIL (|has| (-1162) (-852)))) (-3008 (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2375 (((-1162) $) NIL (|has| (-1162) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2421 (($ (-391)) 9)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-2816 (((-643 (-1162)) $) NIL)) (-2382 (((-112) (-1162) $) NIL)) (-1369 (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL)) (-2377 (((-643 (-1162)) $) NIL)) (-2378 (((-112) (-1162) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-4232 (((-51) $) NIL (|has| (-1162) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) "failed") (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL)) (-2373 (($ $ (-51)) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ $ (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-51)) (-643 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-294 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-643 (-294 (-51)))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2379 (((-643 (-51)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (((-51) $ (-1162)) 14) (((-51) $ (-1162) (-51)) NIL) (((-51) $ (-1180)) 15)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104)))) (((-773) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104)))) (((-773) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-615 (-865))) (|has| (-51) (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 (-51))) (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-634) (-13 (-1196 (-1162) (-51)) (-10 -8 (-15 -2421 ($ (-391))) (-15 -2420 ($ $)) (-15 -4231 ((-51) $ (-1180))) (-15 -4219 ((-51) $ (-1180) (-51)))))) (T -634)) +((-2421 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-634)))) (-2420 (*1 *1 *1) (-5 *1 (-634))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-51)) (-5 *1 (-634)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1180)) (-5 *1 (-634))))) +(-13 (-1196 (-1162) (-51)) (-10 -8 (-15 -2421 ($ (-391))) (-15 -2420 ($ $)) (-15 -4231 ((-51) $ (-1180))) (-15 -4219 ((-51) $ (-1180) (-51))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 |#1|))) NIL (|has| |#2| (-421 |#1|))) (((-1269 (-691 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1897 (((-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4156 (($) NIL T CONST)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1871 (((-3 $ #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1963 (((-691 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1895 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1961 (((-691 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2567 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2078 (((-1174 (-949 |#1|))) NIL (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-365))))) (-2570 (($ $ (-922)) NIL)) (-1893 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1873 (((-1174 |#1|) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1965 ((|#1|) NIL (|has| |#2| (-421 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1891 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1885 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1967 (($ (-1269 |#1|)) NIL (|has| |#2| (-421 |#1|))) (($ (-1269 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-3890 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-3513 (((-922)) NIL (|has| |#2| (-369 |#1|)))) (-1882 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2594 (($ $ (-922)) NIL)) (-1878 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1876 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1880 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1872 (((-3 $ #1#)) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1964 (((-691 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1896 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1962 (((-691 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2568 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2082 (((-1174 (-949 |#1|))) NIL (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-365))))) (-2569 (($ $ (-922)) NIL)) (-1894 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1874 (((-1174 |#1|) $) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-1966 ((|#1|) NIL (|has| |#2| (-421 |#1|))) ((|#1| (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-1892 (((-1174 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1886 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1879 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1881 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3664 (((-1123) $) NIL)) (-1884 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4231 ((|#1| $ (-549)) NIL (|has| |#2| (-421 |#1|)))) (-3644 (((-691 |#1|) (-1269 $)) NIL (|has| |#2| (-421 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-421 |#1|))) (((-691 |#1|) (-1269 $) (-1269 $)) NIL (|has| |#2| (-369 |#1|))) (((-1269 |#1|) $ (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-4402 (($ (-1269 |#1|)) NIL (|has| |#2| (-421 |#1|))) (((-1269 |#1|) $) NIL (|has| |#2| (-421 |#1|)))) (-2070 (((-643 (-949 |#1|))) NIL (|has| |#2| (-421 |#1|))) (((-643 (-949 |#1|)) (-1269 $)) NIL (|has| |#2| (-369 |#1|)))) (-2756 (($ $ $) NIL)) (-1890 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4378 (((-865) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL (|has| |#2| (-421 |#1|)))) (-1875 (((-643 (-1269 |#1|))) NIL (-3960 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-560))) (-12 (|has| |#2| (-421 |#1|)) (|has| |#1| (-560)))))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2948 (($ (-691 |#1|) $) NIL (|has| |#2| (-421 |#1|)))) (-2755 (($ $ $) NIL)) (-1889 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1887 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1883 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) 20)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-635 |#1| |#2|) (-13 (-746 |#1|) (-615 |#2|) (-10 -8 (-15 -4378 ($ |#2|)) (IF (|has| |#2| (-421 |#1|)) (-6 (-421 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-746 |#1|)) (T -635)) +((-4378 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-746 *3))))) +(-13 (-746 |#1|) (-615 |#2|) (-10 -8 (-15 -4378 ($ |#2|)) (IF (|has| |#2| (-421 |#1|)) (-6 (-421 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) +((-4381 (($ $ |#2|) 10))) +(((-636 |#1| |#2|) (-10 -8 (-15 -4381 (|#1| |#1| |#2|))) (-637 |#2|) (-172)) (T -636)) +NIL +(-10 -8 (-15 -4381 (|#1| |#1| |#2|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3953 (($ $ $) 34)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-637 |#1|) (-140) (-172)) (T -637)) +((-3953 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-172)))) (-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-719 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3953 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -4381 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) +((-2423 (((-3 (-844 |#2|) #1="failed") |#2| (-294 |#2|) (-1162)) 106) (((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-844 |#2|) #1#))) "failed") |#2| (-294 (-844 |#2|))) 131)) (-2422 (((-3 (-834 |#2|) "failed") |#2| (-294 (-834 |#2|))) 136))) +(((-638 |#1| |#2|) (-10 -7 (-15 -2423 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) #1#))) "failed") |#2| (-294 (-844 |#2|)))) (-15 -2422 ((-3 (-834 |#2|) "failed") |#2| (-294 (-834 |#2|)))) (-15 -2423 ((-3 (-844 |#2|) #1#) |#2| (-294 |#2|) (-1162)))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -638)) +((-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1162)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-844 *3)) (-5 *1 (-638 *6 *3)))) (-2422 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-834 *3))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-834 *3)) (-5 *1 (-638 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-844 *3))) (-4 *3 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-844 *3) #1#))) "failed")) (-5 *1 (-638 *5 *3))))) +(-10 -7 (-15 -2423 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) #1#))) "failed") |#2| (-294 (-844 |#2|)))) (-15 -2422 ((-3 (-834 |#2|) "failed") |#2| (-294 (-834 |#2|)))) (-15 -2423 ((-3 (-844 |#2|) #1#) |#2| (-294 |#2|) (-1162)))) +((-2423 (((-3 (-844 (-410 (-949 |#1|))) #1="failed") (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))) (-1162)) 86) (((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2="failed") (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|)))) 20) (((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2#) (-410 (-949 |#1|)) (-294 (-844 (-949 |#1|)))) 35)) (-2422 (((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|)))) 23) (((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-834 (-949 |#1|)))) 43))) +(((-639 |#1|) (-10 -7 (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2="failed") (-410 (-949 |#1|)) (-294 (-844 (-949 |#1|))))) (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2#) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -2422 ((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-834 (-949 |#1|))))) (-15 -2422 ((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) #1#) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))) (-1162)))) (-455)) (T -639)) +((-2423 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-410 (-949 *6)))) (-5 *5 (-1162)) (-5 *3 (-410 (-949 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) (-5 *1 (-639 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-639 *5)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-834 (-949 *5)))) (-4 *5 (-455)) (-5 *2 (-834 (-410 (-949 *5)))) (-5 *1 (-639 *5)) (-5 *3 (-410 (-949 *5))))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-455)) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-844 *3) #1#))) #2="failed")) (-5 *1 (-639 *5)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-844 (-949 *5)))) (-4 *5 (-455)) (-5 *2 (-3 (-844 (-410 (-949 *5))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 *5))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 *5))) #1#))) #2#)) (-5 *1 (-639 *5)) (-5 *3 (-410 (-949 *5)))))) +(-10 -7 (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2="failed") (-410 (-949 |#1|)) (-294 (-844 (-949 |#1|))))) (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-844 (-410 (-949 |#1|))) #1#))) #2#) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -2422 ((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-834 (-949 |#1|))))) (-15 -2422 ((-834 (-410 (-949 |#1|))) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -2423 ((-3 (-844 (-410 (-949 |#1|))) #1#) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))) (-1162)))) +((-2426 (((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|) 64 (-3746 (|has| |#1| (-365)))) (((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-2424 (((-112) (-1269 |#2|)) 33)) (-2425 (((-3 (-1269 |#1|) "failed") (-1269 |#2|)) 40))) +(((-640 |#1| |#2|) (-10 -7 (-15 -2424 ((-112) (-1269 |#2|))) (-15 -2425 ((-3 (-1269 |#1|) "failed") (-1269 |#2|))) (IF (|has| |#1| (-365)) (-15 -2426 ((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|)) (-15 -2426 ((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|)))) (-560) (-641 |#1|)) (T -640)) +((-2426 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 *5)) (-3746 (-4 *5 (-365))) (-4 *5 (-560)) (-5 *2 (-1269 (-410 *5))) (-5 *1 (-640 *5 *4)))) (-2426 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 *5)) (-4 *5 (-365)) (-4 *5 (-560)) (-5 *2 (-1269 *5)) (-5 *1 (-640 *5 *4)))) (-2425 (*1 *2 *3) (|partial| -12 (-5 *3 (-1269 *5)) (-4 *5 (-641 *4)) (-4 *4 (-560)) (-5 *2 (-1269 *4)) (-5 *1 (-640 *4 *5)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-641 *4)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(-10 -7 (-15 -2424 ((-112) (-1269 |#2|))) (-15 -2425 ((-3 (-1269 |#1|) "failed") (-1269 |#2|))) (IF (|has| |#1| (-365)) (-15 -2426 ((-3 (-1269 |#1|) "failed") (-1269 |#2|) |#2|)) (-15 -2426 ((-3 (-1269 (-410 |#1|)) "failed") (-1269 |#2|) |#2|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2427 (((-691 |#1|) (-691 $)) 40) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 39)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-641 |#1|) (-140) (-1052)) (T -641)) +((-2427 (*1 *2 *3) (-12 (-5 *3 (-691 *1)) (-4 *1 (-641 *4)) (-4 *4 (-1052)) (-5 *2 (-691 *4)))) (-2427 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *1)) (-5 *4 (-1269 *1)) (-4 *1 (-641 *5)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -1748 (-691 *5)) (|:| |vec| (-1269 *5))))))) +(-13 (-1052) (-10 -8 (-15 -2427 ((-691 |t#1|) (-691 $))) (-15 -2427 ((-2 (|:| -1748 (-691 |t#1|)) (|:| |vec| (-1269 |t#1|))) (-691 $) (-1269 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 16 T CONST)) (-3455 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-642 |#1|) (-140) (-1060)) (T -642)) +NIL +(-13 (-648 |t#1|) (-1054 |t#1|)) +(((-102) . T) ((-615 (-865)) . T) ((-648 |#1|) . T) ((-1054 |#1|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-4226 ((|#1| $) NIL)) (-4228 (($ $) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) $) NIL (|has| |#1| (-852))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1898 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-3310 (($ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) NIL (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-2430 (($ $ $) 37 (|has| |#1| (-1104)))) (-2429 (($ $ $) 41 (|has| |#1| (-1104)))) (-2428 (($ $ $) 44 (|has| |#1| (-1104)))) (-1678 (($ (-1 (-112) |#1|) $) NIL)) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4227 ((|#1| $) NIL)) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-4230 (($ $) 23) (($ $ (-773)) NIL)) (-2526 (($ $) NIL (|has| |#1| (-1104)))) (-1440 (($ $) 36 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) NIL (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) NIL)) (-3830 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-3843 (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104))) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) (-1 (-112) |#1|) $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-2432 (((-112) $) 11)) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2433 (($) 9 T CONST)) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3259 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3941 (($ $ $) NIL (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3965 (($ |#1|) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4229 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-4039 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) 20) (($ $ (-773)) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-3867 (((-112) $) NIL)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) 39)) (-3996 (($) 38)) (-4231 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1236 (-549))) NIL) ((|#1| $ (-549)) 42) ((|#1| $ (-549) |#1|) NIL)) (-3430 (((-549) $ $) NIL)) (-1679 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-4065 (((-112) $) NIL)) (-4223 (($ $) NIL)) (-4221 (($ $) NIL (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 53 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-3884 (($ |#1| $) 12)) (-4222 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4233 (($ $ $) 35) (($ |#1| $) 43) (($ (-643 $)) NIL) (($ $ |#1|) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2431 (($ $ $) 13)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2900 (((-1162) $) 31 (|has| |#1| (-823))) (((-1162) $ (-112)) 32 (|has| |#1| (-823))) (((-1275) (-825) $) 33 (|has| |#1| (-823))) (((-1275) (-825) $ (-112)) 34 (|has| |#1| (-823)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-643 |#1|) (-13 (-668 |#1|) (-10 -8 (-15 -2433 ($) -4384) (-15 -2432 ((-112) $)) (-15 -3884 ($ |#1| $)) (-15 -2431 ($ $ $)) (IF (|has| |#1| (-1104)) (PROGN (-15 -2430 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2428 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) (-1219)) (T -643)) +((-2433 (*1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1219)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219)))) (-2431 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219)))) (-2430 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219)))) (-2429 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219)))) (-2428 (*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219))))) +(-13 (-668 |#1|) (-10 -8 (-15 -2433 ($) -4384) (-15 -2432 ((-112) $)) (-15 -3884 ($ |#1| $)) (-15 -2431 ($ $ $)) (IF (|has| |#1| (-1104)) (PROGN (-15 -2430 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2428 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|))) +((-4273 (((-643 |#2|) (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|) 16)) (-4274 ((|#2| (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|) 18)) (-4390 (((-643 |#2|) (-1 |#2| |#1|) (-643 |#1|)) 13))) +(((-644 |#1| |#2|) (-10 -7 (-15 -4273 ((-643 |#2|) (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|)) (-15 -4390 ((-643 |#2|) (-1 |#2| |#1|) (-643 |#1|)))) (-1219) (-1219)) (T -644)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-643 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-643 *6)) (-5 *1 (-644 *5 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-643 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-644 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-643 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-643 *5)) (-5 *1 (-644 *6 *5))))) +(-10 -7 (-15 -4273 ((-643 |#2|) (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-643 |#1|) |#2|)) (-15 -4390 ((-643 |#2|) (-1 |#2| |#1|) (-643 |#1|)))) +((-3846 ((|#2| (-643 |#1|) (-643 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-643 |#1|) (-643 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) |#2|) 17) ((|#2| (-643 |#1|) (-643 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|)) 12))) +(((-645 |#1| |#2|) (-10 -7 (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|))) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1|)) (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) |#2|)) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1| |#2|)) (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) (-1 |#2| |#1|))) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1| (-1 |#2| |#1|)))) (-1104) (-1219)) (T -645)) +((-3846 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1104)) (-4 *2 (-1219)) (-5 *1 (-645 *5 *2)))) (-3846 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-643 *5)) (-5 *4 (-643 *6)) (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *1 (-645 *5 *6)))) (-3846 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-4 *5 (-1104)) (-4 *2 (-1219)) (-5 *1 (-645 *5 *2)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 *5)) (-4 *6 (-1104)) (-4 *5 (-1219)) (-5 *2 (-1 *5 *6)) (-5 *1 (-645 *6 *5)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-4 *5 (-1104)) (-4 *2 (-1219)) (-5 *1 (-645 *5 *2)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *6)) (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *5 *6))))) +(-10 -7 (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|))) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1|)) (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) |#2|)) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1| |#2|)) (-15 -3846 ((-1 |#2| |#1|) (-643 |#1|) (-643 |#2|) (-1 |#2| |#1|))) (-15 -3846 (|#2| (-643 |#1|) (-643 |#2|) |#1| (-1 |#2| |#1|)))) +((-4390 (((-643 |#3|) (-1 |#3| |#1| |#2|) (-643 |#1|) (-643 |#2|)) 21))) +(((-646 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-643 |#3|) (-1 |#3| |#1| |#2|) (-643 |#1|) (-643 |#2|)))) (-1219) (-1219) (-1219)) (T -646)) +((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-643 *6)) (-5 *5 (-643 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-643 *8)) (-5 *1 (-646 *6 *7 *8))))) +(-10 -7 (-15 -4390 ((-643 |#3|) (-1 |#3| |#1| |#2|) (-643 |#1|) (-643 |#2|)))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 11) (($ (-1185)) NIL) (((-1185) $) NIL) ((|#1| $) 8)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-647 |#1|) (-13 (-1086) (-615 |#1|)) (-1104)) (T -647)) +NIL +(-13 (-1086) (-615 |#1|)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 16 T CONST)) (-3455 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-648 |#1|) (-140) (-1060)) (T -648)) +((-3510 (*1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1060)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1060))))) +(-13 (-1104) (-10 -8 (-15 (-3510) ($) -4384) (-15 -3608 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2434 (($ |#1| |#1| $) 46)) (-1309 (((-112) $ (-773)) NIL)) (-1678 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2526 (($ $) 48)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) 59 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 9 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 37)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) 50)) (-4039 (($ |#1| $) 29) (($ |#1| $ (-773)) 45)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1370 ((|#1| $) 53)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 23)) (-3996 (($) 28)) (-2435 (((-112) $) 57)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 69)) (-1567 (($) 26) (($ (-643 |#1|)) 19)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) 66 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 20)) (-4402 (((-538) $) 34 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) NIL)) (-4378 (((-865) $) 14 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 24)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 71 (|has| |#1| (-1104)))) (-4389 (((-773) $) 17 (|has| $ (-6 -4425))))) +(((-649 |#1|) (-13 (-697 |#1|) (-10 -8 (-6 -4425) (-15 -2435 ((-112) $)) (-15 -2434 ($ |#1| |#1| $)))) (-1104)) (T -649)) +((-2435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1104)))) (-2434 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1104))))) +(-13 (-697 |#1|) (-10 -8 (-6 -4425) (-15 -2435 ((-112) $)) (-15 -2434 ($ |#1| |#1| $)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27))) +(((-650 |#1|) (-140) (-1060)) (T -650)) +NIL +(-13 (-21) (-648 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773) $) 17)) (-2440 (($ $ |#1|) 69)) (-2442 (($ $) 39)) (-2443 (($ $) 37)) (-3577 (((-3 |#1| "failed") $) 61)) (-3576 ((|#1| $) NIL)) (-2477 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3956 (((-865) $ (-1 (-865) (-865) (-865)) (-1 (-865) (-865) (-865)) (-549)) 56)) (-2444 ((|#1| $ (-549)) 35)) (-2445 ((|#2| $ (-549)) 34)) (-2436 (($ (-1 |#1| |#1|) $) 41)) (-2437 (($ (-1 |#2| |#2|) $) 47)) (-2441 (($) 11)) (-2447 (($ |#1| |#2|) 24)) (-2446 (($ (-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|)))) 25)) (-2448 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $) 14)) (-2439 (($ |#1| $) 71)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2438 (((-112) $ $) 76)) (-4378 (((-865) $) 21) (($ |#1|) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 27))) +(((-651 |#1| |#2| |#3|) (-13 (-1104) (-1041 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-1 (-865) (-865) (-865)) (-1 (-865) (-865) (-865)) (-549))) (-15 -2448 ((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $)) (-15 -2447 ($ |#1| |#2|)) (-15 -2446 ($ (-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))))) (-15 -2445 (|#2| $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -2443 ($ $)) (-15 -2442 ($ $)) (-15 -3540 ((-773) $)) (-15 -2441 ($)) (-15 -2440 ($ $ |#1|)) (-15 -2439 ($ |#1| $)) (-15 -2477 ($ |#1| |#2| $)) (-15 -2477 ($ $ $)) (-15 -2438 ((-112) $ $)) (-15 -2437 ($ (-1 |#2| |#2|) $)) (-15 -2436 ($ (-1 |#1| |#1|) $)))) (-1104) (-23) |#2|) (T -651)) +((-3956 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-865) (-865) (-865))) (-5 *4 (-549)) (-5 *2 (-865)) (-5 *1 (-651 *5 *6 *7)) (-4 *5 (-1104)) (-4 *6 (-23)) (-14 *7 *6))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4))) (-2447 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-651 *3 *4 *5)))) (-2445 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-23)) (-5 *1 (-651 *4 *2 *5)) (-4 *4 (-1104)) (-14 *5 *2))) (-2444 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *2 (-1104)) (-5 *1 (-651 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2443 (*1 *1 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2442 (*1 *1 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4))) (-2441 (*1 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2440 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2439 (*1 *1 *2 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2477 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2477 (*1 *1 *1 *1) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) (-2438 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4))) (-2437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)))) (-2436 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-651 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1104) (-1041 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-1 (-865) (-865) (-865)) (-1 (-865) (-865) (-865)) (-549))) (-15 -2448 ((-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))) $)) (-15 -2447 ($ |#1| |#2|)) (-15 -2446 ($ (-643 (-2 (|:| |gen| |#1|) (|:| -4375 |#2|))))) (-15 -2445 (|#2| $ (-549))) (-15 -2444 (|#1| $ (-549))) (-15 -2443 ($ $)) (-15 -2442 ($ $)) (-15 -3540 ((-773) $)) (-15 -2441 ($)) (-15 -2440 ($ $ |#1|)) (-15 -2439 ($ |#1| $)) (-15 -2477 ($ |#1| |#2| $)) (-15 -2477 ($ $ $)) (-15 -2438 ((-112) $ $)) (-15 -2437 ($ (-1 |#2| |#2|) $)) (-15 -2436 ($ (-1 |#1| |#1|) $)))) +((-2375 (((-549) $) 31)) (-2449 (($ |#2| $ (-549)) 27) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) 12)) (-2378 (((-112) (-549) $) 18)) (-4233 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-643 $)) NIL))) +(((-652 |#1| |#2|) (-10 -8 (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -2375 ((-549) |#1|)) (-15 -2377 ((-643 (-549)) |#1|)) (-15 -2378 ((-112) (-549) |#1|))) (-653 |#2|) (-1219)) (T -652)) +NIL +(-10 -8 (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -2375 ((-549) |#1|)) (-15 -2377 ((-643 (-549)) |#1|)) (-15 -2378 ((-112) (-549) |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-653 |#1|) (-140) (-1219)) (T -653)) +((-4046 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-4233 (*1 *1 *1 *2) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) (-4233 (*1 *1 *2 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) (-4233 (*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) (-4233 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-2450 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-2450 (*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-2449 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-653 *2)) (-4 *2 (-1219)))) (-2449 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1236 (-549))) (|has| *1 (-6 -4426)) (-4 *1 (-653 *2)) (-4 *2 (-1219))))) +(-13 (-606 (-549) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4046 ($ (-773) |t#1|)) (-15 -4233 ($ $ |t#1|)) (-15 -4233 ($ |t#1| $)) (-15 -4233 ($ $ $)) (-15 -4233 ($ (-643 $))) (-15 -4390 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4231 ($ $ (-1236 (-549)))) (-15 -2450 ($ $ (-549))) (-15 -2450 ($ $ (-1236 (-549)))) (-15 -2449 ($ |t#1| $ (-549))) (-15 -2449 ($ $ $ (-549))) (IF (|has| $ (-6 -4426)) (-15 -4219 (|t#1| $ (-1236 (-549)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 15)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3399 ((|#1| $) 23)) (-2934 (($ $ $) NIL (|has| |#1| (-793)))) (-3260 (($ $ $) NIL (|has| |#1| (-793)))) (-3663 (((-1162) $) 48)) (-3664 (((-1123) $) NIL)) (-3398 ((|#3| $) 24)) (-4378 (((-865) $) 43)) (-3662 (((-112) $ $) 22)) (-3510 (($) 10 T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-793)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-793)))) (-3455 (((-112) $ $) 20)) (-3087 (((-112) $ $) NIL (|has| |#1| (-793)))) (-3088 (((-112) $ $) 26 (|has| |#1| (-793)))) (-4381 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4269 (($ $) 17) (($ $ $) NIL)) (-4271 (($ $ $) 29)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-654 |#1| |#2| |#3|) (-13 (-719 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -4381 ($ $ |#3|)) (-15 -4381 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) (-719 |#2|) (-172) (|SubsetCategory| (-728) |#2|)) (T -654)) +((-4381 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-654 *3 *4 *2)) (-4 *3 (-719 *4)) (-4 *2 (|SubsetCategory| (-728) *4)))) (-4381 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-654 *2 *4 *3)) (-4 *2 (-719 *4)) (-4 *3 (|SubsetCategory| (-728) *4)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-719 *3)) (-5 *1 (-654 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-728) *3)))) (-3398 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-728) *4)) (-5 *1 (-654 *3 *4 *2)) (-4 *3 (-719 *4))))) +(-13 (-719 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -4381 ($ $ |#3|)) (-15 -4381 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) +((-4004 (((-3 |#2| "failed") |#3| |#2| (-1180) |#2| (-643 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) "failed") |#3| |#2| (-1180)) 44))) +(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) "failed") |#3| |#2| (-1180))) (-15 -4004 ((-3 |#2| "failed") |#3| |#2| (-1180) |#2| (-643 |#2|)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963)) (-660 |#2|)) (T -655)) +((-4004 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 *2)) (-4 *2 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-655 *6 *2 *3)) (-4 *3 (-660 *2)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1180)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-4 *4 (-13 (-29 *6) (-1205) (-963))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2190 (-643 *4)))) (-5 *1 (-655 *6 *4 *3)) (-4 *3 (-660 *4))))) +(-10 -7 (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) "failed") |#3| |#2| (-1180))) (-15 -4004 ((-3 |#2| "failed") |#3| |#2| (-1180) |#2| (-643 |#2|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-365)))) (-2453 (($ $ $) 28 (|has| |#1| (-365)))) (-2454 (($ $ (-773)) 31 (|has| |#1| (-365)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#1| (-365)))) (-2940 (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $ $) NIL (|has| |#1| (-365)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-2573 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-2935 (($ $ $) NIL (|has| |#1| (-365)))) (-2943 (($ $ $) NIL (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-560)))) (-4231 ((|#1| $ |#1|) 24)) (-2455 (($ $ $) 33 (|has| |#1| (-365)))) (-4380 (((-773) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) 20) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#1| $ |#1| |#1|) 23)) (-2920 (($ $) NIL)) (-3510 (($) 21 T CONST)) (-3067 (($) 8 T CONST)) (-3072 (($) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-656 |#1| |#2|) (-660 |#1|) (-1052) (-1 |#1| |#1|)) (T -656)) +NIL +(-660 |#1|) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-365)))) (-2453 (($ $ $) NIL (|has| |#1| (-365)))) (-2454 (($ $ (-773)) NIL (|has| |#1| (-365)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#1| (-365)))) (-2940 (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $ $) NIL (|has| |#1| (-365)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-2573 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-2935 (($ $ $) NIL (|has| |#1| (-365)))) (-2943 (($ $ $) NIL (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-560)))) (-4231 ((|#1| $ |#1|) NIL)) (-2455 (($ $ $) NIL (|has| |#1| (-365)))) (-4380 (((-773) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#1| $ |#1| |#1|) NIL)) (-2920 (($ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-657 |#1|) (-660 |#1|) (-233)) (T -657)) +NIL +(-660 |#1|) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-365)))) (-2453 (($ $ $) NIL (|has| |#1| (-365)))) (-2454 (($ $ (-773)) NIL (|has| |#1| (-365)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#1| (-365)))) (-2940 (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $ $) NIL (|has| |#1| (-365)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-2573 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-2935 (($ $ $) NIL (|has| |#1| (-365)))) (-2943 (($ $ $) NIL (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-560)))) (-4231 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2455 (($ $ $) NIL (|has| |#1| (-365)))) (-4380 (((-773) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#1| $ |#1| |#1|) NIL)) (-2920 (($ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($) NIL)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-658 |#1| |#2|) (-13 (-660 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-650 |#1|) (-10 -8 (-15 -4242 ($ $))))) (T -658)) +NIL +(-13 (-660 |#1|) (-287 |#2| |#2|)) +((-2451 (($ $) 29)) (-2920 (($ $) 27)) (-3072 (($) 13))) +(((-659 |#1| |#2|) (-10 -8 (-15 -2451 (|#1| |#1|)) (-15 -2920 (|#1| |#1|)) (-15 -3072 (|#1|))) (-660 |#2|) (-1052)) (T -659)) +NIL +(-10 -8 (-15 -2451 (|#1| |#1|)) (-15 -2920 (|#1| |#1|)) (-15 -3072 (|#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2451 (($ $) 87 (|has| |#1| (-365)))) (-2453 (($ $ $) 89 (|has| |#1| (-365)))) (-2454 (($ $ (-773)) 88 (|has| |#1| (-365)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2939 (($ $ $) 50 (|has| |#1| (-365)))) (-2940 (($ $ $) 51 (|has| |#1| (-365)))) (-2941 (($ $ $) 53 (|has| |#1| (-365)))) (-2937 (($ $ $) 48 (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 47 (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) 49 (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 52 (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) 80 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) 77 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) 74)) (-3576 (((-549) $) 79 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 76 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 75)) (-4391 (($ $) 69)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 60 (|has| |#1| (-455)))) (-2573 (((-112) $) 35)) (-3294 (($ |#1| (-773)) 67)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 62 (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63 (|has| |#1| (-560)))) (-3223 (((-773) $) 71)) (-2945 (($ $ $) 57 (|has| |#1| (-365)))) (-2946 (($ $ $) 58 (|has| |#1| (-365)))) (-2935 (($ $ $) 46 (|has| |#1| (-365)))) (-2943 (($ $ $) 55 (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 54 (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) 56 (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 59 (|has| |#1| (-365)))) (-3594 ((|#1| $) 70)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ #1#) $ |#1|) 64 (|has| |#1| (-560)))) (-4231 ((|#1| $ |#1|) 92)) (-2455 (($ $ $) 86 (|has| |#1| (-365)))) (-4380 (((-773) $) 72)) (-3220 ((|#1| $) 61 (|has| |#1| (-455)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 78 (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 73)) (-4249 (((-643 |#1|) $) 66)) (-4109 ((|#1| $ (-773)) 68)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2948 ((|#1| $ |#1| |#1|) 65)) (-2920 (($ $) 90)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($) 91)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-660 |#1|) (-140) (-1052)) (T -660)) +((-3072 (*1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)))) (-2920 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)))) (-2453 (*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2454 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-660 *3)) (-4 *3 (-1052)) (-4 *3 (-365)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2455 (*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(-13 (-854 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -3072 ($)) (-15 -2920 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2453 ($ $ $)) (-15 -2454 ($ $ (-773))) (-15 -2451 ($ $)) (-15 -2455 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 #1=(-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-287 |#1| |#1|) . T) ((-415 |#1|) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-728) . T) ((-1041 #1#) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-854 |#1|) . T)) +((-2452 (((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|))) 87 (|has| |#1| (-27)))) (-4164 (((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|))) 86 (|has| |#1| (-27))) (((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|)) 19))) +(((-661 |#1| |#2|) (-10 -7 (-15 -4164 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4164 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)))) (-15 -2452 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -661)) +((-2452 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-657 (-410 *5)))) (-5 *1 (-661 *4 *5)) (-5 *3 (-657 (-410 *5))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-657 (-410 *5)))) (-5 *1 (-661 *4 *5)) (-5 *3 (-657 (-410 *5))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-657 (-410 *6)))) (-5 *1 (-661 *5 *6)) (-5 *3 (-657 (-410 *6)))))) +(-10 -7 (-15 -4164 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4164 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|)))) (-15 -2452 ((-643 (-657 (-410 |#2|))) (-657 (-410 |#2|))))) |%noBranch|)) +((-2453 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2454 ((|#2| |#2| (-773) (-1 |#1| |#1|)) 48)) (-2455 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) +(((-662 |#1| |#2|) (-10 -7 (-15 -2453 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2454 (|#2| |#2| (-773) (-1 |#1| |#1|))) (-15 -2455 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-660 |#1|)) (T -662)) +((-2455 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-662 *4 *2)) (-4 *2 (-660 *4)))) (-2454 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-662 *5 *2)) (-4 *2 (-660 *5)))) (-2453 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-662 *4 *2)) (-4 *2 (-660 *4))))) +(-10 -7 (-15 -2453 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2454 (|#2| |#2| (-773) (-1 |#1| |#1|))) (-15 -2455 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-2456 (($ $ $) 9))) +(((-663 |#1|) (-10 -8 (-15 -2456 (|#1| |#1| |#1|))) (-664)) (T -663)) +NIL +(-10 -8 (-15 -2456 (|#1| |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-2458 (($ $) 10)) (-2456 (($ $ $) 8)) (-3455 (((-112) $ $) 6)) (-2457 (($ $ $) 9))) +(((-664) (-140)) (T -664)) +((-2458 (*1 *1 *1) (-4 *1 (-664))) (-2457 (*1 *1 *1 *1) (-4 *1 (-664))) (-2456 (*1 *1 *1 *1) (-4 *1 (-664)))) +(-13 (-102) (-10 -8 (-15 -2458 ($ $)) (-15 -2457 ($ $ $)) (-15 -2456 ($ $ $)))) (((-102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 15)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4294 ((|#1| $) 23)) (-2727 (($ $ $) NIL (|has| |#1| (-792)))) (-1446 (($ $ $) NIL (|has| |#1| (-792)))) (-1812 (((-1161) $) 48)) (-3479 (((-1122) $) NIL)) (-4306 ((|#3| $) 24)) (-2504 (((-863) $) 43)) (-3858 (((-112) $ $) 22)) (-1807 (($) 10 T CONST)) (-3016 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2968 (((-112) $ $) 20)) (-3006 (((-112) $ $) NIL (|has| |#1| (-792)))) (-2986 (((-112) $ $) 26 (|has| |#1| (-792)))) (-3064 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3054 (($ $) 17) (($ $ $) NIL)) (-3045 (($ $ $) 29)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-663 |#1| |#2| |#3|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3064 ($ $ |#3|)) (-15 -3064 ($ |#1| |#3|)) (-15 -4294 (|#1| $)) (-15 -4306 (|#3| $)))) (-718 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -663)) -((-3064 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3064 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-663 *2 *4 *3)) (-4 *2 (-718 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-4294 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-4306 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4))))) -(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3064 ($ $ |#3|)) (-15 -3064 ($ |#1| |#3|)) (-15 -4294 (|#1| $)) (-15 -4306 (|#3| $)))) -((-1721 (((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|)) 33))) -(((-664 |#1|) (-10 -7 (-15 -1721 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|)))) (-911)) (T -664)) -((-1721 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *4))) (-5 *3 (-1175 *4)) (-4 *4 (-911)) (-5 *1 (-664 *4))))) -(-10 -7 (-15 -1721 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3055 (((-645 |#1|) $) 84)) (-2003 (($ $ (-772)) 94)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-3917 (((-1293 |#1| |#2|) (-1293 |#1| |#2|) $) 50)) (-4275 (((-3 (-673 |#1|) "failed") $) NIL)) (-3094 (((-673 |#1|) $) NIL)) (-1833 (($ $) 93)) (-1921 (((-772) $) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3245 (($ (-673 |#1|) |#2|) 70)) (-2247 (($ $) 89)) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-4040 (((-1293 |#1| |#2|) (-1293 |#1| |#2|) $) 49)) (-3622 (((-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1796 (((-673 |#1|) $) NIL)) (-1809 ((|#2| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2913 (($ $ |#1| $) 32) (($ $ (-645 |#1|) (-645 $)) 34)) (-3380 (((-772) $) 91)) (-2516 (($ $ $) 20) (($ (-673 |#1|) (-673 |#1|)) 79) (($ (-673 |#1|) $) 77) (($ $ (-673 |#1|)) 78)) (-2504 (((-863) $) NIL) (($ |#1|) 76) (((-1284 |#1| |#2|) $) 60) (((-1293 |#1| |#2|) $) 43) (($ (-673 |#1|)) 27)) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ (-673 |#1|)) NIL)) (-1344 ((|#2| (-1293 |#1| |#2|) $) 45)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 23 T CONST)) (-1848 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2271 (((-3 $ "failed") (-1284 |#1| |#2|)) 62)) (-2832 (($ (-673 |#1|)) 14)) (-2968 (((-112) $ $) 46)) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $) 68) (($ $ $) NIL)) (-3045 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-673 |#1|)) NIL))) -(((-665 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -2271 ((-3 $ "failed") (-1284 |#1| |#2|))) (-15 -2516 ($ (-673 |#1|) (-673 |#1|))) (-15 -2516 ($ (-673 |#1|) $)) (-15 -2516 ($ $ (-673 |#1|))))) (-851) (-172)) (T -665)) -((-2271 (*1 *1 *2) (|partial| -12 (-5 *2 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-665 *3 *4)))) (-2516 (*1 *1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-2516 (*1 *1 *2 *1) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-2516 (*1 *1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172))))) -(-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -2271 ((-3 $ "failed") (-1284 |#1| |#2|))) (-15 -2516 ($ (-673 |#1|) (-673 |#1|))) (-15 -2516 ($ (-673 |#1|) $)) (-15 -2516 ($ $ (-673 |#1|))))) -((-2051 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-2767 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2105 (($ (-1 (-112) |#2|) $) 29)) (-3790 (($ $) 67)) (-3048 (($ $) 78)) (-4197 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2617 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3932 (((-567) |#2| $ (-567)) 75) (((-567) |#2| $) NIL) (((-567) (-1 (-112) |#2|) $) 56)) (-4223 (($ (-772) |#2|) 65)) (-3196 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1315 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4364 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3316 (($ |#2|) 15)) (-3636 (($ $ $ (-567)) 42) (($ |#2| $ (-567)) 40)) (-2989 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1664 (($ $ (-1236 (-567))) 51) (($ $ (-567)) 44)) (-3161 (($ $ $ (-567)) 74)) (-3846 (($ $) 72)) (-2986 (((-112) $ $) 80))) -(((-666 |#1| |#2|) (-10 -8 (-15 -3316 (|#1| |#2|)) (-15 -1664 (|#1| |#1| (-567))) (-15 -1664 (|#1| |#1| (-1236 (-567)))) (-15 -4197 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3636 (|#1| |#2| |#1| (-567))) (-15 -3636 (|#1| |#1| |#1| (-567))) (-15 -3196 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2105 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| |#2| |#1|)) (-15 -3048 (|#1| |#1|)) (-15 -3196 (|#1| |#1| |#1|)) (-15 -1315 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2051 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3932 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -3932 ((-567) |#2| |#1|)) (-15 -3932 ((-567) |#2| |#1| (-567))) (-15 -1315 (|#1| |#1| |#1|)) (-15 -2051 ((-112) |#1|)) (-15 -3161 (|#1| |#1| |#1| (-567))) (-15 -3790 (|#1| |#1|)) (-15 -2767 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2989 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4223 (|#1| (-772) |#2|)) (-15 -4364 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3846 (|#1| |#1|))) (-667 |#2|) (-1219)) (T -666)) -NIL -(-10 -8 (-15 -3316 (|#1| |#2|)) (-15 -1664 (|#1| |#1| (-567))) (-15 -1664 (|#1| |#1| (-1236 (-567)))) (-15 -4197 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3636 (|#1| |#2| |#1| (-567))) (-15 -3636 (|#1| |#1| |#1| (-567))) (-15 -3196 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2105 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#1| |#2| |#1|)) (-15 -3048 (|#1| |#1|)) (-15 -3196 (|#1| |#1| |#1|)) (-15 -1315 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2051 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3932 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -3932 ((-567) |#2| |#1|)) (-15 -3932 ((-567) |#2| |#1| (-567))) (-15 -1315 (|#1| |#1| |#1|)) (-15 -2051 ((-112) |#1|)) (-15 -3161 (|#1| |#1| |#1| (-567))) (-15 -3790 (|#1| |#1|)) (-15 -2767 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2767 (|#1| |#1|)) (-15 -2986 ((-112) |#1| |#1|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2617 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2989 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4223 (|#1| (-772) |#2|)) (-15 -4364 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3846 (|#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2233 ((|#1| $) 49)) (-2587 ((|#1| $) 66)) (-1493 (($ $) 68)) (-3095 (((-1274) $ (-567) (-567)) 98 (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) 53 (|has| $ (-6 -4423)))) (-2051 (((-112) $) 143 (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-2767 (($ $) 147 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4423)))) (-2080 (($ $) 142 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1555 (((-112) $ (-772)) 8)) (-3647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4234 (($ $ $) 57 (|has| $ (-6 -4423)))) (-2718 ((|#1| $ |#1|) 55 (|has| $ (-6 -4423)))) (-1588 ((|#1| $ |#1|) 59 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4423))) (($ $ "rest" $) 56 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 118 (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-2105 (($ (-1 (-112) |#1|) $) 130)) (-1316 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4422)))) (-2574 ((|#1| $) 67)) (-3758 (($) 7 T CONST)) (-3790 (($ $) 145 (|has| $ (-6 -4423)))) (-3247 (($ $) 135)) (-3447 (($ $) 74) (($ $ (-772)) 72)) (-3048 (($ $) 132 (|has| |#1| (-1102)))) (-3470 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ |#1| $) 131 (|has| |#1| (-1102))) (($ (-1 (-112) |#1|) $) 126)) (-1695 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4422))) (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2036 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 88)) (-3689 (((-112) $) 84)) (-3932 (((-567) |#1| $ (-567)) 140 (|has| |#1| (-1102))) (((-567) |#1| $) 139 (|has| |#1| (-1102))) (((-567) (-1 (-112) |#1|) $) 138)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 51)) (-2373 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-4223 (($ (-772) |#1|) 109)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 96 (|has| (-567) (-851)))) (-2727 (($ $ $) 148 (|has| |#1| (-851)))) (-3196 (($ $ $) 133 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-1315 (($ $ $) 141 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 95 (|has| (-567) (-851)))) (-1446 (($ $ $) 149 (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3316 (($ |#1|) 123)) (-3421 (((-112) $ (-772)) 10)) (-3895 (((-645 |#1|) $) 46)) (-1972 (((-112) $) 50)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-1725 ((|#1| $) 71) (($ $ (-772)) 69)) (-3636 (($ $ $ (-567)) 128) (($ |#1| $ (-567)) 127)) (-4222 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-3360 (((-645 (-567)) $) 93)) (-2919 (((-112) (-567) $) 92)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 77) (($ $ (-772)) 75)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2930 (($ $ |#1|) 97 (|has| $ (-6 -4423)))) (-3268 (((-112) $) 85)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 91)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1236 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2721 (((-567) $ $) 45)) (-1664 (($ $ (-1236 (-567))) 125) (($ $ (-567)) 124)) (-4281 (($ $ (-1236 (-567))) 115) (($ $ (-567)) 114)) (-3625 (((-112) $) 47)) (-4121 (($ $) 63)) (-3277 (($ $) 60 (|has| $ (-6 -4423)))) (-3880 (((-772) $) 64)) (-1908 (($ $) 65)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3161 (($ $ $ (-567)) 144 (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 108)) (-3416 (($ $ $) 62) (($ $ |#1|) 61)) (-3644 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 52)) (-2049 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) 151 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 152 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3006 (((-112) $ $) 150 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 153 (|has| |#1| (-851)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-667 |#1|) (-140) (-1219)) (T -667)) -((-3316 (*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1219))))) -(-13 (-1151 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -3316 ($ |t#1|)))) -(((-34) . T) ((-102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1012 |#1|) . T) ((-1102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1151 |#1|) . T) ((-1219) . T) ((-1257 |#1|) . T)) -((-2510 (((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|))))) (-645 (-645 |#1|)) (-645 (-1269 |#1|))) 22) (((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|))))) (-690 |#1|) (-645 (-1269 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-645 (-645 |#1|)) (-1269 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|)) 14)) (-1471 (((-772) (-690 |#1|) (-1269 |#1|)) 30)) (-1342 (((-3 (-1269 |#1|) "failed") (-690 |#1|) (-1269 |#1|)) 24)) (-4370 (((-112) (-690 |#1|) (-1269 |#1|)) 27))) -(((-668 |#1|) (-10 -7 (-15 -2510 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|))) (-15 -2510 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-645 (-645 |#1|)) (-1269 |#1|))) (-15 -2510 ((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|))))) (-690 |#1|) (-645 (-1269 |#1|)))) (-15 -2510 ((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|))))) (-645 (-645 |#1|)) (-645 (-1269 |#1|)))) (-15 -1342 ((-3 (-1269 |#1|) "failed") (-690 |#1|) (-1269 |#1|))) (-15 -4370 ((-112) (-690 |#1|) (-1269 |#1|))) (-15 -1471 ((-772) (-690 |#1|) (-1269 |#1|)))) (-365)) (T -668)) -((-1471 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-668 *5)))) (-4370 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-668 *5)))) (-1342 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1269 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *1 (-668 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1269 *5) "failed")) (|:| -4374 (-645 (-1269 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1269 *5))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1269 *5) "failed")) (|:| -4374 (-645 (-1269 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1269 *5))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *5) "failed")) (|:| -4374 (-645 (-1269 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1269 *5)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *5) "failed")) (|:| -4374 (-645 (-1269 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1269 *5))))) -(-10 -7 (-15 -2510 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|))) (-15 -2510 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-645 (-645 |#1|)) (-1269 |#1|))) (-15 -2510 ((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|))))) (-690 |#1|) (-645 (-1269 |#1|)))) (-15 -2510 ((-645 (-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|))))) (-645 (-645 |#1|)) (-645 (-1269 |#1|)))) (-15 -1342 ((-3 (-1269 |#1|) "failed") (-690 |#1|) (-1269 |#1|))) (-15 -4370 ((-112) (-690 |#1|) (-1269 |#1|))) (-15 -1471 ((-772) (-690 |#1|) (-1269 |#1|)))) -((-2510 (((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|)))) |#4| (-645 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|))) |#4| |#3|) 60)) (-1471 (((-772) |#4| |#3|) 18)) (-1342 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4370 (((-112) |#4| |#3|) 14))) -(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2510 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|))) |#4| |#3|)) (-15 -2510 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -1342 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4370 ((-112) |#4| |#3|)) (-15 -1471 ((-772) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4423))) (-13 (-375 |#1|) (-10 -7 (-6 -4423))) (-688 |#1| |#2| |#3|)) (T -669)) -((-1471 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-772)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-4370 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-112)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-1342 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4423)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))) (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) (-2510 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-645 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4374 (-645 *7))))) (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) (-4 *3 (-688 *5 *6 *7)))) (-2510 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) -(-10 -7 (-15 -2510 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|))) |#4| |#3|)) (-15 -2510 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -1342 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4370 ((-112) |#4| |#3|)) (-15 -1471 ((-772) |#4| |#3|))) -((-2699 (((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -4374 (-645 (-1269 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)) 52))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2699 ((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -4374 (-645 (-1269 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) (-559) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -670)) -((-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 (-410 *8)) "failed")) (|:| -4374 (-645 (-1269 (-410 *8)))))) (-5 *1 (-670 *5 *6 *7 *8))))) -(-10 -7 (-15 -2699 ((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -4374 (-645 (-1269 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3414 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-3132 ((|#2| $) NIL)) (-3740 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-1998 (((-1269 (-690 |#2|))) NIL) (((-1269 (-690 |#2|)) (-1269 $)) NIL)) (-2995 (((-112) $) NIL)) (-1931 (((-1269 $)) 44)) (-1555 (((-112) $ (-772)) NIL)) (-3923 (($ |#2|) NIL)) (-3758 (($) NIL T CONST)) (-2367 (($ $) NIL (|has| |#2| (-308)))) (-4134 (((-240 |#1| |#2|) $ (-567)) NIL)) (-2670 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-3865 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-1426 (((-690 |#2|)) NIL) (((-690 |#2|) (-1269 $)) NIL)) (-4114 ((|#2| $) NIL)) (-4170 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1269 $)) NIL)) (-1511 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-3657 (((-1175 (-954 |#2|))) NIL (|has| |#2| (-365)))) (-3497 (($ $ (-923)) NIL)) (-1607 ((|#2| $) NIL)) (-1375 (((-1175 |#2|) $) NIL (|has| |#2| (-559)))) (-2260 ((|#2|) NIL) ((|#2| (-1269 $)) NIL)) (-3542 (((-1175 |#2|) $) NIL)) (-3134 (((-112)) NIL)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-3431 (($ (-1269 |#2|)) NIL) (($ (-1269 |#2|) (-1269 $)) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1471 (((-772) $) NIL (|has| |#2| (-559))) (((-923)) 45)) (-1970 ((|#2| $ (-567) (-567)) NIL)) (-1586 (((-112)) NIL)) (-2258 (($ $ (-923)) NIL)) (-3468 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4384 (((-112) $) NIL)) (-3301 (((-772) $) NIL (|has| |#2| (-559)))) (-3010 (((-645 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-559)))) (-4371 (((-772) $) NIL)) (-3604 (((-112)) NIL)) (-4385 (((-772) $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2241 ((|#2| $) NIL (|has| |#2| (-6 (-4424 "*"))))) (-3181 (((-567) $) NIL)) (-2631 (((-567) $) NIL)) (-4200 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-4244 (((-567) $) NIL)) (-3802 (((-567) $) NIL)) (-2446 (($ (-645 (-645 |#2|))) NIL)) (-2021 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3298 (((-645 (-645 |#2|)) $) NIL)) (-3703 (((-112)) NIL)) (-3504 (((-112)) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1478 (((-3 (-2 (|:| |particular| $) (|:| -4374 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-3363 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-4221 (((-690 |#2|)) NIL) (((-690 |#2|) (-1269 $)) NIL)) (-2726 ((|#2| $) NIL)) (-3969 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1269 $)) NIL)) (-3822 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-2626 (((-1175 (-954 |#2|))) NIL (|has| |#2| (-365)))) (-2310 (($ $ (-923)) NIL)) (-2152 ((|#2| $) NIL)) (-3485 (((-1175 |#2|) $) NIL (|has| |#2| (-559)))) (-1741 ((|#2|) NIL) ((|#2| (-1269 $)) NIL)) (-3522 (((-1175 |#2|) $) NIL)) (-1830 (((-112)) NIL)) (-1812 (((-1161) $) NIL)) (-3403 (((-112)) NIL)) (-2905 (((-112)) NIL)) (-2541 (((-112)) NIL)) (-1656 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-3479 (((-1122) $) NIL)) (-2779 (((-112)) NIL)) (-2478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-1430 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) 30) ((|#2| $ (-567)) NIL)) (-3592 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2274 ((|#2| $) NIL)) (-4217 (($ (-645 |#2|)) NIL)) (-2698 (((-112) $) NIL)) (-1930 (((-240 |#1| |#2|) $) NIL)) (-2593 ((|#2| $) NIL (|has| |#2| (-6 (-4424 "*"))))) (-3486 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3846 (($ $) NIL)) (-3237 (((-690 |#2|) (-1269 $)) NIL) (((-1269 |#2|) $) NIL) (((-690 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $ (-1269 $)) 33)) (-1322 (($ (-1269 |#2|)) NIL) (((-1269 |#2|) $) NIL)) (-3869 (((-645 (-954 |#2|))) NIL) (((-645 (-954 |#2|)) (-1269 $)) NIL)) (-4033 (($ $ $) NIL)) (-2441 (((-112)) NIL)) (-2900 (((-240 |#1| |#2|) $ (-567)) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) 43)) (-3477 (((-645 (-1269 |#2|))) NIL (|has| |#2| (-559)))) (-2862 (($ $ $ $) NIL)) (-3527 (((-112)) NIL)) (-3384 (($ (-690 |#2|) $) NIL)) (-3450 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-3343 (((-112) $) NIL)) (-1793 (($ $ $) NIL)) (-1959 (((-112)) NIL)) (-3358 (((-112)) NIL)) (-2035 (((-112)) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-671 |#1| |#2|) (-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|)) (-923) (-172)) (T -671)) -NIL -(-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3144 (((-645 (-1137)) $) 10)) (-2504 (((-863) $) 16) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-672) (-13 (-1085) (-10 -8 (-15 -3144 ((-645 (-1137)) $))))) (T -672)) -((-3144 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-672))))) -(-13 (-1085) (-10 -8 (-15 -3144 ((-645 (-1137)) $)))) -((-2487 (((-112) $ $) NIL)) (-3055 (((-645 |#1|) $) NIL)) (-4347 (($ $) 67)) (-2110 (((-112) $) NIL)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1938 (((-3 $ "failed") (-820 |#1|)) 27)) (-1773 (((-112) (-820 |#1|)) 17)) (-3872 (($ (-820 |#1|)) 28)) (-2553 (((-112) $ $) 36)) (-3613 (((-923) $) 43)) (-4335 (($ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3661 (((-645 $) (-820 |#1|)) 19)) (-2504 (((-863) $) 51) (($ |#1|) 40) (((-820 |#1|) $) 47) (((-678 |#1|) $) 52)) (-3858 (((-112) $ $) NIL)) (-2951 (((-59 (-645 $)) (-645 |#1|) (-923)) 72)) (-3572 (((-645 $) (-645 |#1|) (-923)) 76)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 68)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 46))) -(((-673 |#1|) (-13 (-851) (-1040 |#1|) (-10 -8 (-15 -2110 ((-112) $)) (-15 -4335 ($ $)) (-15 -4347 ($ $)) (-15 -3613 ((-923) $)) (-15 -2553 ((-112) $ $)) (-15 -2504 ((-820 |#1|) $)) (-15 -2504 ((-678 |#1|) $)) (-15 -3661 ((-645 $) (-820 |#1|))) (-15 -1773 ((-112) (-820 |#1|))) (-15 -3872 ($ (-820 |#1|))) (-15 -1938 ((-3 $ "failed") (-820 |#1|))) (-15 -3055 ((-645 |#1|) $)) (-15 -2951 ((-59 (-645 $)) (-645 |#1|) (-923))) (-15 -3572 ((-645 $) (-645 |#1|) (-923))))) (-851)) (T -673)) -((-2110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4335 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-4347 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2553 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4))) (-5 *1 (-673 *4)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) (-5 *1 (-673 *4)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-1938 (*1 *1 *2) (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2951 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5))))) -(-13 (-851) (-1040 |#1|) (-10 -8 (-15 -2110 ((-112) $)) (-15 -4335 ($ $)) (-15 -4347 ($ $)) (-15 -3613 ((-923) $)) (-15 -2553 ((-112) $ $)) (-15 -2504 ((-820 |#1|) $)) (-15 -2504 ((-678 |#1|) $)) (-15 -3661 ((-645 $) (-820 |#1|))) (-15 -1773 ((-112) (-820 |#1|))) (-15 -3872 ($ (-820 |#1|))) (-15 -1938 ((-3 $ "failed") (-820 |#1|))) (-15 -3055 ((-645 |#1|) $)) (-15 -2951 ((-59 (-645 $)) (-645 |#1|) (-923))) (-15 -3572 ((-645 $) (-645 |#1|) (-923))))) -((-2233 ((|#2| $) 103)) (-1493 (($ $) 124)) (-1555 (((-112) $ (-772)) 35)) (-3447 (($ $) 112) (($ $ (-772)) 115)) (-3689 (((-112) $) 125)) (-3047 (((-645 $) $) 99)) (-2373 (((-112) $ $) 95)) (-3753 (((-112) $ (-772)) 33)) (-2407 (((-567) $) 69)) (-2346 (((-567) $) 68)) (-3421 (((-112) $ (-772)) 31)) (-1972 (((-112) $) 101)) (-1725 ((|#2| $) 116) (($ $ (-772)) 120)) (-4222 (($ $ $ (-567)) 86) (($ |#2| $ (-567)) 85)) (-3360 (((-645 (-567)) $) 67)) (-2919 (((-112) (-567) $) 61)) (-3436 ((|#2| $) NIL) (($ $ (-772)) 111)) (-1678 (($ $ (-567)) 128)) (-3268 (((-112) $) 127)) (-1430 (((-112) (-1 (-112) |#2|) $) 44)) (-1804 (((-645 |#2|) $) 48)) (-1882 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1236 (-567))) 82) ((|#2| $ (-567)) 59) ((|#2| $ (-567) |#2|) 60)) (-2721 (((-567) $ $) 94)) (-4281 (($ $ (-1236 (-567))) 81) (($ $ (-567)) 75)) (-3625 (((-112) $) 90)) (-4121 (($ $) 108)) (-3880 (((-772) $) 107)) (-1908 (($ $) 106)) (-2516 (($ (-645 |#2|)) 55)) (-4314 (($ $) 129)) (-2629 (((-645 $) $) 93)) (-2049 (((-112) $ $) 92)) (-3450 (((-112) (-1 (-112) |#2|) $) 43)) (-2968 (((-112) $ $) 20)) (-2498 (((-772) $) 41))) -(((-674 |#1| |#2|) (-10 -8 (-15 -4314 (|#1| |#1|)) (-15 -1678 (|#1| |#1| (-567))) (-15 -3689 ((-112) |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -1882 (|#2| |#1| (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567))) (-15 -1804 ((-645 |#2|) |#1|)) (-15 -2919 ((-112) (-567) |#1|)) (-15 -3360 ((-645 (-567)) |#1|)) (-15 -2346 ((-567) |#1|)) (-15 -2407 ((-567) |#1|)) (-15 -2516 (|#1| (-645 |#2|))) (-15 -1882 (|#1| |#1| (-1236 (-567)))) (-15 -4281 (|#1| |#1| (-567))) (-15 -4281 (|#1| |#1| (-1236 (-567)))) (-15 -4222 (|#1| |#2| |#1| (-567))) (-15 -4222 (|#1| |#1| |#1| (-567))) (-15 -4121 (|#1| |#1|)) (-15 -3880 ((-772) |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-772))) (-15 -1882 (|#2| |#1| "last")) (-15 -1725 (|#2| |#1|)) (-15 -3447 (|#1| |#1| (-772))) (-15 -1882 (|#1| |#1| "rest")) (-15 -3447 (|#1| |#1|)) (-15 -3436 (|#1| |#1| (-772))) (-15 -1882 (|#2| |#1| "first")) (-15 -3436 (|#2| |#1|)) (-15 -2373 ((-112) |#1| |#1|)) (-15 -2049 ((-112) |#1| |#1|)) (-15 -2721 ((-567) |#1| |#1|)) (-15 -3625 ((-112) |#1|)) (-15 -1882 (|#2| |#1| "value")) (-15 -2233 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -3047 ((-645 |#1|) |#1|)) (-15 -2629 ((-645 |#1|) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2498 ((-772) |#1|)) (-15 -1555 ((-112) |#1| (-772))) (-15 -3753 ((-112) |#1| (-772))) (-15 -3421 ((-112) |#1| (-772)))) (-675 |#2|) (-1219)) (T -674)) -NIL -(-10 -8 (-15 -4314 (|#1| |#1|)) (-15 -1678 (|#1| |#1| (-567))) (-15 -3689 ((-112) |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -1882 (|#2| |#1| (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567))) (-15 -1804 ((-645 |#2|) |#1|)) (-15 -2919 ((-112) (-567) |#1|)) (-15 -3360 ((-645 (-567)) |#1|)) (-15 -2346 ((-567) |#1|)) (-15 -2407 ((-567) |#1|)) (-15 -2516 (|#1| (-645 |#2|))) (-15 -1882 (|#1| |#1| (-1236 (-567)))) (-15 -4281 (|#1| |#1| (-567))) (-15 -4281 (|#1| |#1| (-1236 (-567)))) (-15 -4222 (|#1| |#2| |#1| (-567))) (-15 -4222 (|#1| |#1| |#1| (-567))) (-15 -4121 (|#1| |#1|)) (-15 -3880 ((-772) |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-772))) (-15 -1882 (|#2| |#1| "last")) (-15 -1725 (|#2| |#1|)) (-15 -3447 (|#1| |#1| (-772))) (-15 -1882 (|#1| |#1| "rest")) (-15 -3447 (|#1| |#1|)) (-15 -3436 (|#1| |#1| (-772))) (-15 -1882 (|#2| |#1| "first")) (-15 -3436 (|#2| |#1|)) (-15 -2373 ((-112) |#1| |#1|)) (-15 -2049 ((-112) |#1| |#1|)) (-15 -2721 ((-567) |#1| |#1|)) (-15 -3625 ((-112) |#1|)) (-15 -1882 (|#2| |#1| "value")) (-15 -2233 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -3047 ((-645 |#1|) |#1|)) (-15 -2629 ((-645 |#1|) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -1430 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2498 ((-772) |#1|)) (-15 -1555 ((-112) |#1| (-772))) (-15 -3753 ((-112) |#1| (-772))) (-15 -3421 ((-112) |#1| (-772)))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2233 ((|#1| $) 49)) (-2587 ((|#1| $) 66)) (-1493 (($ $) 68)) (-3095 (((-1274) $ (-567) (-567)) 98 (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) 53 (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) 8)) (-3647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4234 (($ $ $) 57 (|has| $ (-6 -4423)))) (-2718 ((|#1| $ |#1|) 55 (|has| $ (-6 -4423)))) (-1588 ((|#1| $ |#1|) 59 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4423))) (($ $ "rest" $) 56 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 118 (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) 103)) (-2574 ((|#1| $) 67)) (-3758 (($) 7 T CONST)) (-3082 (($ $) 125)) (-3447 (($ $) 74) (($ $ (-772)) 72)) (-3470 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 104)) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2036 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 88)) (-3689 (((-112) $) 84)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2026 (((-772) $) 124)) (-3047 (((-645 $) $) 51)) (-2373 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-4223 (($ (-772) |#1|) 109)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 96 (|has| (-567) (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 95 (|has| (-567) (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3421 (((-112) $ (-772)) 10)) (-3895 (((-645 |#1|) $) 46)) (-1972 (((-112) $) 50)) (-2097 (($ $) 127)) (-2134 (((-112) $) 128)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-1725 ((|#1| $) 71) (($ $ (-772)) 69)) (-4222 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-3360 (((-645 (-567)) $) 93)) (-2919 (((-112) (-567) $) 92)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3067 ((|#1| $) 126)) (-3436 ((|#1| $) 77) (($ $ (-772)) 75)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2930 (($ $ |#1|) 97 (|has| $ (-6 -4423)))) (-1678 (($ $ (-567)) 123)) (-3268 (((-112) $) 85)) (-3820 (((-112) $) 129)) (-2778 (((-112) $) 130)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 91)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1236 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2721 (((-567) $ $) 45)) (-4281 (($ $ (-1236 (-567))) 115) (($ $ (-567)) 114)) (-3625 (((-112) $) 47)) (-4121 (($ $) 63)) (-3277 (($ $) 60 (|has| $ (-6 -4423)))) (-3880 (((-772) $) 64)) (-1908 (($ $) 65)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 108)) (-3416 (($ $ $) 62 (|has| $ (-6 -4423))) (($ $ |#1|) 61 (|has| $ (-6 -4423)))) (-3644 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4314 (($ $) 122)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 52)) (-2049 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-675 |#1|) (-140) (-1219)) (T -675)) -((-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) (-1316 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3820 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2097 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))) (-3067 (*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))) (-3082 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219))))) -(-13 (-1151 |t#1|) (-10 -8 (-15 -1695 ($ (-1 (-112) |t#1|) $)) (-15 -1316 ($ (-1 (-112) |t#1|) $)) (-15 -2778 ((-112) $)) (-15 -3820 ((-112) $)) (-15 -2134 ((-112) $)) (-15 -2097 ($ $)) (-15 -3067 (|t#1| $)) (-15 -3082 ($ $)) (-15 -2026 ((-772) $)) (-15 -1678 ($ $ (-567))) (-15 -4314 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1151 |#1|) . T) ((-1219) . T) ((-1257 |#1|) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2475 (($ (-772) (-772) (-772)) 55 (|has| |#1| (-1051)))) (-1555 (((-112) $ (-772)) NIL)) (-1658 ((|#1| $ (-772) (-772) (-772) |#1|) 49)) (-3758 (($) NIL T CONST)) (-3174 (($ $ $) 60 (|has| |#1| (-1051)))) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3589 (((-1269 (-772)) $) 12)) (-1464 (($ (-1179) $ $) 37)) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-4344 (($ (-772)) 57 (|has| |#1| (-1051)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-772) (-772) (-772)) 46)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2516 (($ (-645 (-645 (-645 |#1|)))) 70)) (-2504 (($ (-960 (-960 (-960 |#1|)))) 23) (((-960 (-960 (-960 |#1|))) $) 19) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-676 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1051)) (PROGN (-15 -2475 ($ (-772) (-772) (-772))) (-15 -4344 ($ (-772))) (-15 -3174 ($ $ $))) |%noBranch|) (-15 -2516 ($ (-645 (-645 (-645 |#1|))))) (-15 -1882 (|#1| $ (-772) (-772) (-772))) (-15 -1658 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -2504 ($ (-960 (-960 (-960 |#1|))))) (-15 -2504 ((-960 (-960 (-960 |#1|))) $)) (-15 -1464 ($ (-1179) $ $)) (-15 -3589 ((-1269 (-772)) $)))) (-1102)) (T -676)) -((-2475 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) (-4 *3 (-1102)))) (-4344 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) (-4 *3 (-1102)))) (-3174 (*1 *1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1051)) (-4 *2 (-1102)))) (-2516 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) (-1882 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) (-1658 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-4 *3 (-1102)) (-5 *1 (-676 *3)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-5 *1 (-676 *3)) (-4 *3 (-1102)))) (-1464 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-676 *3)) (-4 *3 (-1102)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1269 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1102))))) -(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1051)) (PROGN (-15 -2475 ($ (-772) (-772) (-772))) (-15 -4344 ($ (-772))) (-15 -3174 ($ $ $))) |%noBranch|) (-15 -2516 ($ (-645 (-645 (-645 |#1|))))) (-15 -1882 (|#1| $ (-772) (-772) (-772))) (-15 -1658 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -2504 ($ (-960 (-960 (-960 |#1|))))) (-15 -2504 ((-960 (-960 (-960 |#1|))) $)) (-15 -1464 ($ (-1179) $ $)) (-15 -3589 ((-1269 (-772)) $)))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-2404 (((-486) $) 10)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 19) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-1137) $) 12)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-677) (-13 (-1085) (-10 -8 (-15 -2404 ((-486) $)) (-15 -3501 ((-1137) $))))) (T -677)) -((-2404 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-677))))) -(-13 (-1085) (-10 -8 (-15 -2404 ((-486) $)) (-15 -3501 ((-1137) $)))) -((-2487 (((-112) $ $) NIL)) (-3055 (((-645 |#1|) $) 15)) (-4347 (($ $) 19)) (-2110 (((-112) $) 20)) (-4275 (((-3 |#1| "failed") $) 23)) (-3094 ((|#1| $) 21)) (-3447 (($ $) 37)) (-2247 (($ $) 25)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-2553 (((-112) $ $) 47)) (-3613 (((-923) $) 40)) (-4335 (($ $) 18)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 ((|#1| $) 36)) (-2504 (((-863) $) 32) (($ |#1|) 24) (((-820 |#1|) $) 28)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 13)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-678 |#1|) (-13 (-851) (-1040 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2504 ((-820 |#1|) $)) (-15 -3436 (|#1| $)) (-15 -4335 ($ $)) (-15 -3613 ((-923) $)) (-15 -2553 ((-112) $ $)) (-15 -2247 ($ $)) (-15 -3447 ($ $)) (-15 -2110 ((-112) $)) (-15 -4347 ($ $)) (-15 -3055 ((-645 |#1|) $)))) (-851)) (T -678)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-3436 (*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-4335 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2553 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2247 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3447 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-4347 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851))))) -(-13 (-851) (-1040 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2504 ((-820 |#1|) $)) (-15 -3436 (|#1| $)) (-15 -4335 ($ $)) (-15 -3613 ((-923) $)) (-15 -2553 ((-112) $ $)) (-15 -2247 ($ $)) (-15 -3447 ($ $)) (-15 -2110 ((-112) $)) (-15 -4347 ($ $)) (-15 -3055 ((-645 |#1|) $)))) -((-2984 ((|#1| (-1 |#1| (-772) |#1|) (-772) |#1|) 14)) (-4187 ((|#1| (-1 |#1| |#1|) (-772) |#1|) 12))) -(((-679 |#1|) (-10 -7 (-15 -4187 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -2984 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) (-1102)) (T -679)) -((-2984 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1102)) (-5 *1 (-679 *2)))) (-4187 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1102)) (-5 *1 (-679 *2))))) -(-10 -7 (-15 -4187 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -2984 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) -((-3979 ((|#2| |#1| |#2|) 9)) (-2173 ((|#1| |#1| |#2|) 8))) -(((-680 |#1| |#2|) (-10 -7 (-15 -2173 (|#1| |#1| |#2|)) (-15 -3979 (|#2| |#1| |#2|))) (-1102) (-1102)) (T -680)) -((-3979 (*1 *2 *3 *2) (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-2173 (*1 *2 *2 *3) (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) -(-10 -7 (-15 -2173 (|#1| |#1| |#2|)) (-15 -3979 (|#2| |#1| |#2|))) -((-3276 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -3276 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1102) (-1102) (-1102)) (T -681)) -((-3276 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)) (-5 *1 (-681 *5 *6 *2))))) -(-10 -7 (-15 -3276 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2487 (((-112) $ $) NIL)) (-3755 (((-1218) $) 21)) (-3709 (((-645 (-1218)) $) 19)) (-2789 (($ (-645 (-1218)) (-1218)) 14)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 29) (($ (-1184)) NIL) (((-1184) $) NIL) (((-1218) $) 22) (($ (-1120)) 10)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-682) (-13 (-1085) (-614 (-1218)) (-10 -8 (-15 -2504 ($ (-1120))) (-15 -2789 ($ (-645 (-1218)) (-1218))) (-15 -3709 ((-645 (-1218)) $)) (-15 -3755 ((-1218) $))))) (T -682)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-682)))) (-2789 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1218))) (-5 *3 (-1218)) (-5 *1 (-682)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-682)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-682))))) -(-13 (-1085) (-614 (-1218)) (-10 -8 (-15 -2504 ($ (-1120))) (-15 -2789 ($ (-645 (-1218)) (-1218))) (-15 -3709 ((-645 (-1218)) $)) (-15 -3755 ((-1218) $)))) -((-2984 (((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)) 29)) (-2749 (((-1 |#1|) |#1|) 8)) (-4188 ((|#1| |#1|) 23)) (-2253 (((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2504 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-772)) 26))) -(((-683 |#1|) (-10 -7 (-15 -2749 ((-1 |#1|) |#1|)) (-15 -2504 ((-1 |#1|) |#1|)) (-15 -2253 (|#1| (-1 |#1| |#1|))) (-15 -2253 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -4188 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -2984 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) (-1102)) (T -683)) -((-2984 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1102)) (-5 *1 (-683 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1102)) (-5 *1 (-683 *4)))) (-4188 (*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1102)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1102)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1102)))) (-2504 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))) (-2749 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102))))) -(-10 -7 (-15 -2749 ((-1 |#1|) |#1|)) (-15 -2504 ((-1 |#1|) |#1|)) (-15 -2253 (|#1| (-1 |#1| |#1|))) (-15 -2253 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -4188 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -2984 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) -((-2022 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2572 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3562 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2140 (((-1 |#2| |#1|) |#2|) 11))) -(((-684 |#1| |#2|) (-10 -7 (-15 -2140 ((-1 |#2| |#1|) |#2|)) (-15 -2572 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3562 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2022 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1102) (-1102)) (T -684)) -((-2022 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)) (-4 *4 (-1102)))) (-2572 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))) (-2140 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1102)) (-4 *3 (-1102))))) -(-10 -7 (-15 -2140 ((-1 |#2| |#1|) |#2|)) (-15 -2572 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3562 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2022 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2183 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1791 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3854 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3673 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2455 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -1791 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3854 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3673 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2455 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2183 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1102) (-1102) (-1102)) (T -685)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-1 *7 *5)) (-5 *1 (-685 *5 *6 *7)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1102)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1102)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1102)) (-4 *4 (-1102)) (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6))))) -(-10 -7 (-15 -1791 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3854 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3673 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2455 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2183 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2617 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4364 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-686 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4364 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4364 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2617 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1051) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-1051) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -686)) -((-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1051)) (-4 *2 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) (-4364 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))) -(-10 -7 (-15 -4364 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4364 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2617 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3398 (($ (-772) (-772)) 43)) (-3158 (($ $ $) 71)) (-3017 (($ |#3|) 66) (($ $) 67)) (-3740 (((-112) $) 38)) (-2017 (($ $ (-567) (-567)) 82)) (-2302 (($ $ (-567) (-567)) 83)) (-4088 (($ $ (-567) (-567) (-567) (-567)) 88)) (-1395 (($ $) 69)) (-2995 (((-112) $) 15)) (-3876 (($ $ (-567) (-567) $) 89)) (-3824 ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) 87)) (-3923 (($ (-772) |#2|) 53)) (-2446 (($ (-645 (-645 |#2|))) 51)) (-3298 (((-645 (-645 |#2|)) $) 78)) (-2833 (($ $ $) 70)) (-2478 (((-3 $ "failed") $ |#2|) 121)) (-1882 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-4217 (($ (-645 |#2|)) 54) (($ (-645 $)) 56)) (-2698 (((-112) $) 28)) (-2504 (($ |#4|) 61) (((-863) $) NIL)) (-3343 (((-112) $) 40)) (-3064 (($ $ |#2|) 123)) (-3054 (($ $ $) 93) (($ $) 96)) (-3045 (($ $ $) 91)) (** (($ $ (-772)) 110) (($ $ (-567)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-567) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) -(((-687 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2504 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3064 (|#1| |#1| |#2|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3876 (|#1| |#1| (-567) (-567) |#1|)) (-15 -4088 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -2302 (|#1| |#1| (-567) (-567))) (-15 -2017 (|#1| |#1| (-567) (-567))) (-15 -3824 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1882 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -3298 ((-645 (-645 |#2|)) |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -2833 (|#1| |#1| |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -3017 (|#1| |#1|)) (-15 -3017 (|#1| |#3|)) (-15 -2504 (|#1| |#4|)) (-15 -4217 (|#1| (-645 |#1|))) (-15 -4217 (|#1| (-645 |#2|))) (-15 -3923 (|#1| (-772) |#2|)) (-15 -2446 (|#1| (-645 (-645 |#2|)))) (-15 -3398 (|#1| (-772) (-772))) (-15 -3343 ((-112) |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -2698 ((-112) |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -3824 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567) (-567)))) (-688 |#2| |#3| |#4|) (-1051) (-375 |#2|) (-375 |#2|)) (T -687)) -NIL -(-10 -8 (-15 -2504 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3064 (|#1| |#1| |#2|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -3876 (|#1| |#1| (-567) (-567) |#1|)) (-15 -4088 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -2302 (|#1| |#1| (-567) (-567))) (-15 -2017 (|#1| |#1| (-567) (-567))) (-15 -3824 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1882 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -3298 ((-645 (-645 |#2|)) |#1|)) (-15 -3158 (|#1| |#1| |#1|)) (-15 -2833 (|#1| |#1| |#1|)) (-15 -1395 (|#1| |#1|)) (-15 -3017 (|#1| |#1|)) (-15 -3017 (|#1| |#3|)) (-15 -2504 (|#1| |#4|)) (-15 -4217 (|#1| (-645 |#1|))) (-15 -4217 (|#1| (-645 |#2|))) (-15 -3923 (|#1| (-772) |#2|)) (-15 -2446 (|#1| (-645 (-645 |#2|)))) (-15 -3398 (|#1| (-772) (-772))) (-15 -3343 ((-112) |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -2698 ((-112) |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -3824 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567) (-567)))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3398 (($ (-772) (-772)) 98)) (-3158 (($ $ $) 88)) (-3017 (($ |#2|) 92) (($ $) 91)) (-3740 (((-112) $) 100)) (-2017 (($ $ (-567) (-567)) 84)) (-2302 (($ $ (-567) (-567)) 83)) (-4088 (($ $ (-567) (-567) (-567) (-567)) 82)) (-1395 (($ $) 90)) (-2995 (((-112) $) 102)) (-1555 (((-112) $ (-772)) 8)) (-3876 (($ $ (-567) (-567) $) 81)) (-3824 ((|#1| $ (-567) (-567) |#1|) 45) (($ $ (-645 (-567)) (-645 (-567)) $) 85)) (-2391 (($ $ (-567) |#2|) 43)) (-3523 (($ $ (-567) |#3|) 42)) (-3923 (($ (-772) |#1|) 96)) (-3758 (($) 7 T CONST)) (-2367 (($ $) 68 (|has| |#1| (-308)))) (-4134 ((|#2| $ (-567)) 47)) (-1471 (((-772) $) 67 (|has| |#1| (-559)))) (-2036 ((|#1| $ (-567) (-567) |#1|) 44)) (-1970 ((|#1| $ (-567) (-567)) 49)) (-3468 (((-645 |#1|) $) 31)) (-3301 (((-772) $) 66 (|has| |#1| (-559)))) (-3010 (((-645 |#3|) $) 65 (|has| |#1| (-559)))) (-4371 (((-772) $) 52)) (-4223 (($ (-772) (-772) |#1|) 58)) (-4385 (((-772) $) 51)) (-3753 (((-112) $ (-772)) 9)) (-2241 ((|#1| $) 63 (|has| |#1| (-6 (-4424 "*"))))) (-3181 (((-567) $) 56)) (-2631 (((-567) $) 54)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4244 (((-567) $) 55)) (-3802 (((-567) $) 53)) (-2446 (($ (-645 (-645 |#1|))) 97)) (-2021 (($ (-1 |#1| |#1|) $) 35)) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3298 (((-645 (-645 |#1|)) $) 87)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-1656 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-2833 (($ $ $) 89)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2930 (($ $ |#1|) 57)) (-2478 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-559)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-4217 (($ (-645 |#1|)) 95) (($ (-645 $)) 94)) (-2698 (((-112) $) 101)) (-2593 ((|#1| $) 64 (|has| |#1| (-6 (-4424 "*"))))) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2900 ((|#3| $ (-567)) 46)) (-2504 (($ |#3|) 93) (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3343 (((-112) $) 99)) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3064 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3054 (($ $ $) 79) (($ $) 78)) (-3045 (($ $ $) 80)) (** (($ $ (-772)) 71) (($ $ (-567)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-567) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-688 |#1| |#2| |#3|) (-140) (-1051) (-375 |t#1|) (-375 |t#1|)) (T -688)) -((-2995 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3398 (*1 *1 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4217 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4217 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2504 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-3017 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-3017 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1395 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2833 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3158 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3))))) (-1882 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3824 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2017 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2302 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4088 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3876 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3054 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1051)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559)))) (-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) (-1656 (*1 *1 *1) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4423) (-6 -4422) (-15 -2995 ((-112) $)) (-15 -2698 ((-112) $)) (-15 -3740 ((-112) $)) (-15 -3343 ((-112) $)) (-15 -3398 ($ (-772) (-772))) (-15 -2446 ($ (-645 (-645 |t#1|)))) (-15 -3923 ($ (-772) |t#1|)) (-15 -4217 ($ (-645 |t#1|))) (-15 -4217 ($ (-645 $))) (-15 -2504 ($ |t#3|)) (-15 -3017 ($ |t#2|)) (-15 -3017 ($ $)) (-15 -1395 ($ $)) (-15 -2833 ($ $ $)) (-15 -3158 ($ $ $)) (-15 -3298 ((-645 (-645 |t#1|)) $)) (-15 -1882 ($ $ (-645 (-567)) (-645 (-567)))) (-15 -3824 ($ $ (-645 (-567)) (-645 (-567)) $)) (-15 -2017 ($ $ (-567) (-567))) (-15 -2302 ($ $ (-567) (-567))) (-15 -4088 ($ $ (-567) (-567) (-567) (-567))) (-15 -3876 ($ $ (-567) (-567) $)) (-15 -3045 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3054 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-567) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-772))) (IF (|has| |t#1| (-559)) (-15 -2478 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3064 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2367 ($ $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1471 ((-772) $)) (-15 -3301 ((-772) $)) (-15 -3010 ((-645 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4424 "*"))) (PROGN (-15 -2593 (|t#1| $)) (-15 -2241 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1656 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-57 |#1| |#2| |#3|) . T) ((-1219) . T)) -((-2367 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-1471 (((-772) |#4|) 125 (|has| |#1| (-559)))) (-3301 (((-772) |#4|) 101 (|has| |#1| (-559)))) (-3010 (((-645 |#3|) |#4|) 108 (|has| |#1| (-559)))) (-1579 (((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-2241 ((|#1| |#4|) 57)) (-4183 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-559)))) (-1656 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-3675 ((|#4| |#4|) 93 (|has| |#1| (-559)))) (-3695 ((|#4| |#4| |#1| (-567) (-567)) 65)) (-3516 ((|#4| |#4| (-567) (-567)) 60)) (-3195 ((|#4| |#4| |#1| (-567) (-567)) 70)) (-2593 ((|#1| |#4|) 103)) (-3766 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-559))))) -(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2593 (|#1| |#4|)) (-15 -2241 (|#1| |#4|)) (-15 -3516 (|#4| |#4| (-567) (-567))) (-15 -3695 (|#4| |#4| |#1| (-567) (-567))) (-15 -3195 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1471 ((-772) |#4|)) (-15 -3301 ((-772) |#4|)) (-15 -3010 ((-645 |#3|) |#4|)) (-15 -3675 (|#4| |#4|)) (-15 -4183 ((-3 |#4| "failed") |#4|)) (-15 -3766 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2367 (|#4| |#4|)) (-15 -1579 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1656 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -689)) -((-1656 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1579 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-4183 (*1 *2 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3301 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3195 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-3695 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-3516 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6)))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-2593 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))) -(-10 -7 (-15 -2593 (|#1| |#4|)) (-15 -2241 (|#1| |#4|)) (-15 -3516 (|#4| |#4| (-567) (-567))) (-15 -3695 (|#4| |#4| |#1| (-567) (-567))) (-15 -3195 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -1471 ((-772) |#4|)) (-15 -3301 ((-772) |#4|)) (-15 -3010 ((-645 |#3|) |#4|)) (-15 -3675 (|#4| |#4|)) (-15 -4183 ((-3 |#4| "failed") |#4|)) (-15 -3766 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2367 (|#4| |#4|)) (-15 -1579 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1656 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3398 (($ (-772) (-772)) 64)) (-3158 (($ $ $) NIL)) (-3017 (($ (-1269 |#1|)) NIL) (($ $) NIL)) (-3740 (((-112) $) NIL)) (-2017 (($ $ (-567) (-567)) 22)) (-2302 (($ $ (-567) (-567)) NIL)) (-4088 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-1395 (($ $) NIL)) (-2995 (((-112) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3876 (($ $ (-567) (-567) $) NIL)) (-3824 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-2391 (($ $ (-567) (-1269 |#1|)) NIL)) (-3523 (($ $ (-567) (-1269 |#1|)) NIL)) (-3923 (($ (-772) |#1|) 37)) (-3758 (($) NIL T CONST)) (-2367 (($ $) 46 (|has| |#1| (-308)))) (-4134 (((-1269 |#1|) $ (-567)) NIL)) (-1471 (((-772) $) 48 (|has| |#1| (-559)))) (-2036 ((|#1| $ (-567) (-567) |#1|) 69)) (-1970 ((|#1| $ (-567) (-567)) NIL)) (-3468 (((-645 |#1|) $) NIL)) (-3301 (((-772) $) 50 (|has| |#1| (-559)))) (-3010 (((-645 (-1269 |#1|)) $) 53 (|has| |#1| (-559)))) (-4371 (((-772) $) 32)) (-4223 (($ (-772) (-772) |#1|) 28)) (-4385 (((-772) $) 33)) (-3753 (((-112) $ (-772)) NIL)) (-2241 ((|#1| $) 44 (|has| |#1| (-6 (-4424 "*"))))) (-3181 (((-567) $) 10)) (-2631 (((-567) $) 11)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4244 (((-567) $) 14)) (-3802 (((-567) $) 65)) (-2446 (($ (-645 (-645 |#1|))) NIL)) (-2021 (($ (-1 |#1| |#1|) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3298 (((-645 (-645 |#1|)) $) 76)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1656 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-2833 (($ $ $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2930 (($ $ |#1|) NIL)) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-4217 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL) (($ (-1269 |#1|)) 70)) (-2698 (((-112) $) NIL)) (-2593 ((|#1| $) 42 (|has| |#1| (-6 (-4424 "*"))))) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-1322 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-2900 (((-1269 |#1|) $ (-567)) NIL)) (-2504 (($ (-1269 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3343 (((-112) $) NIL)) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $ $) NIL) (($ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) 38) (($ $ (-567)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1269 |#1|) $ (-1269 |#1|)) NIL) (((-1269 |#1|) (-1269 |#1|) $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-690 |#1|) (-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 -4217 ($ (-1269 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1656 ((-3 $ "failed") $)) |%noBranch|))) (-1051)) (T -690)) -((-1656 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1051)))) (-4217 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1051)) (-5 *1 (-690 *3))))) -(-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 -4217 ($ (-1269 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1656 ((-3 $ "failed") $)) |%noBranch|))) -((-2476 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 37)) (-4177 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 34)) (-4147 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772)) 43)) (-4387 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 27)) (-1543 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 31) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 29)) (-2598 (((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|)) 33)) (-4250 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 25)) (** (((-690 |#1|) (-690 |#1|) (-772)) 46))) -(((-691 |#1|) (-10 -7 (-15 -4250 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4387 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1543 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1543 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2598 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -4177 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2476 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4147 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) (-1051)) (T -691)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) (-4147 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-691 *4)))) (-2476 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-4177 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-2598 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-1543 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-1543 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-4387 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) (-4250 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) -(-10 -7 (-15 -4250 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4387 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1543 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1543 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2598 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -4177 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -2476 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -4147 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) -((-4275 (((-3 |#1| "failed") $) 18)) (-3094 ((|#1| $) NIL)) (-3353 (($) 7 T CONST)) (-2057 (($ |#1|) 8)) (-2504 (($ |#1|) 16) (((-863) $) 23)) (-1794 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3353)) 11)) (-3879 ((|#1| $) 15))) -(((-692 |#1|) (-13 (-1264) (-1040 |#1|) (-614 (-863)) (-10 -8 (-15 -2057 ($ |#1|)) (-15 -1794 ((-112) $ (|[\|\|]| |#1|))) (-15 -1794 ((-112) $ (|[\|\|]| -3353))) (-15 -3879 (|#1| $)) (-15 -3353 ($) -3562))) (-614 (-863))) (T -692)) -((-2057 (*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112)) (-5 *1 (-692 *4)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3353)) (-5 *2 (-112)) (-5 *1 (-692 *4)) (-4 *4 (-614 (-863))))) (-3879 (*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-3353 (*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) -(-13 (-1264) (-1040 |#1|) (-614 (-863)) (-10 -8 (-15 -2057 ($ |#1|)) (-15 -1794 ((-112) $ (|[\|\|]| |#1|))) (-15 -1794 ((-112) $ (|[\|\|]| -3353))) (-15 -3879 (|#1| $)) (-15 -3353 ($) -3562))) -((-3920 ((|#2| |#2| |#4|) 33)) (-3162 (((-690 |#2|) |#3| |#4|) 39)) (-1371 (((-690 |#2|) |#2| |#4|) 38)) (-4113 (((-1269 |#2|) |#2| |#4|) 16)) (-2422 ((|#2| |#3| |#4|) 32)) (-2729 (((-690 |#2|) |#3| |#4| (-772) (-772)) 50)) (-2750 (((-690 |#2|) |#2| |#4| (-772)) 49))) -(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4113 ((-1269 |#2|) |#2| |#4|)) (-15 -2422 (|#2| |#3| |#4|)) (-15 -3920 (|#2| |#2| |#4|)) (-15 -1371 ((-690 |#2|) |#2| |#4|)) (-15 -2750 ((-690 |#2|) |#2| |#4| (-772))) (-15 -3162 ((-690 |#2|) |#3| |#4|)) (-15 -2729 ((-690 |#2|) |#3| |#4| (-772) (-772)))) (-1102) (-902 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4422)))) (T -693)) -((-2729 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *7 (-902 *6)) (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4422)))))) (-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *6 (-902 *5)) (-5 *2 (-690 *6)) (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))) (-2750 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *3 (-902 *6)) (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4422)))))) (-1371 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-690 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))) (-3920 (*1 *2 *2 *3) (-12 (-4 *4 (-1102)) (-4 *2 (-902 *4)) (-5 *1 (-693 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4422)))))) (-2422 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *2 (-902 *5)) (-5 *1 (-693 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422)))))) (-4113 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-1269 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422))))))) -(-10 -7 (-15 -4113 ((-1269 |#2|) |#2| |#4|)) (-15 -2422 (|#2| |#3| |#4|)) (-15 -3920 (|#2| |#2| |#4|)) (-15 -1371 ((-690 |#2|) |#2| |#4|)) (-15 -2750 ((-690 |#2|) |#2| |#4| (-772))) (-15 -3162 ((-690 |#2|) |#3| |#4|)) (-15 -2729 ((-690 |#2|) |#3| |#4| (-772) (-772)))) -((-2985 (((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)) 20)) (-3228 ((|#1| (-690 |#2|)) 9)) (-2448 (((-690 |#1|) (-690 |#2|)) 18))) -(((-694 |#1| |#2|) (-10 -7 (-15 -3228 (|#1| (-690 |#2|))) (-15 -2448 ((-690 |#1|) (-690 |#2|))) (-15 -2985 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) (-559) (-994 |#1|)) (T -694)) -((-2985 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) (-5 *1 (-694 *4 *5)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-694 *2 *4))))) -(-10 -7 (-15 -3228 (|#1| (-690 |#2|))) (-15 -2448 ((-690 |#1|) (-690 |#2|))) (-15 -2985 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2706 (((-690 (-700))) NIL) (((-690 (-700)) (-1269 $)) NIL)) (-3132 (((-700) $) NIL)) (-1406 (($ $) NIL (|has| (-700) (-1204)))) (-2545 (($ $) NIL (|has| (-700) (-1204)))) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-700) (-351)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3864 (($ $) NIL (-2836 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-1466 (((-421 $) $) NIL (-2836 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-3671 (($ $) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1204))))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-4175 (((-112) $ $) NIL (|has| (-700) (-308)))) (-3404 (((-772)) NIL (|has| (-700) (-370)))) (-1380 (($ $) NIL (|has| (-700) (-1204)))) (-2524 (($ $) NIL (|has| (-700) (-1204)))) (-1431 (($ $) NIL (|has| (-700) (-1204)))) (-2565 (($ $) NIL (|has| (-700) (-1204)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-700) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-1040 (-410 (-567)))))) (-3094 (((-567) $) NIL) (((-700) $) NIL) (((-410 (-567)) $) NIL (|has| (-700) (-1040 (-410 (-567)))))) (-3431 (($ (-1269 (-700))) NIL) (($ (-1269 (-700)) (-1269 $)) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-700) (-351)))) (-2432 (($ $ $) NIL (|has| (-700) (-308)))) (-3815 (((-690 (-700)) $) NIL) (((-690 (-700)) $ (-1269 $)) NIL)) (-2690 (((-690 (-700)) (-690 $)) NIL) (((-2 (|:| -2434 (-690 (-700))) (|:| |vec| (-1269 (-700)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-700) (-640 (-567)))) (((-690 (-567)) (-690 $)) NIL (|has| (-700) (-640 (-567))))) (-2617 (((-3 $ "failed") (-410 (-1175 (-700)))) NIL (|has| (-700) (-365))) (($ (-1175 (-700))) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3680 (((-700) $) 29)) (-3810 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-548)))) (-1527 (((-112) $) NIL (|has| (-700) (-548)))) (-2485 (((-410 (-567)) $) NIL (|has| (-700) (-548)))) (-1471 (((-923)) NIL)) (-2119 (($) NIL (|has| (-700) (-370)))) (-2443 (($ $ $) NIL (|has| (-700) (-308)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| (-700) (-308)))) (-3882 (($) NIL (|has| (-700) (-351)))) (-1816 (((-112) $) NIL (|has| (-700) (-351)))) (-2559 (($ $) NIL (|has| (-700) (-351))) (($ $ (-772)) NIL (|has| (-700) (-351)))) (-2946 (((-112) $) NIL (-2836 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-2209 (((-2 (|:| |r| (-700)) (|:| |phi| (-700))) $) NIL (-12 (|has| (-700) (-1062)) (|has| (-700) (-1204))))) (-4329 (($) NIL (|has| (-700) (-1204)))) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-700) (-888 (-381)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-700) (-888 (-567))))) (-3905 (((-834 (-923)) $) NIL (|has| (-700) (-351))) (((-923) $) NIL (|has| (-700) (-351)))) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1204))))) (-2013 (((-700) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| (-700) (-351)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-3908 (((-1175 (-700)) $) NIL (|has| (-700) (-365)))) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-4364 (($ (-1 (-700) (-700)) $) NIL)) (-2667 (((-923) $) NIL (|has| (-700) (-370)))) (-2734 (($ $) NIL (|has| (-700) (-1204)))) (-2606 (((-1175 (-700)) $) NIL)) (-1831 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| (-700) (-365)))) (-2221 (($) NIL (|has| (-700) (-351)) CONST)) (-2188 (($ (-923)) NIL (|has| (-700) (-370)))) (-2032 (($) NIL)) (-3690 (((-700) $) 31)) (-3479 (((-1122) $) NIL)) (-2335 (($) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-700) (-308)))) (-1870 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| (-700) (-351)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-911))))) (-3661 (((-421 $) $) NIL (-2836 (-12 (|has| (-700) (-308)) (|has| (-700) (-911))) (|has| (-700) (-365))))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-700) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| (-700) (-308)))) (-2478 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-700)) NIL (|has| (-700) (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-4272 (($ $) NIL (|has| (-700) (-1204)))) (-2913 (($ $ (-1179) (-700)) NIL (|has| (-700) (-517 (-1179) (-700)))) (($ $ (-645 (-1179)) (-645 (-700))) NIL (|has| (-700) (-517 (-1179) (-700)))) (($ $ (-645 (-295 (-700)))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-295 (-700))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-700) (-700)) NIL (|has| (-700) (-310 (-700)))) (($ $ (-645 (-700)) (-645 (-700))) NIL (|has| (-700) (-310 (-700))))) (-2465 (((-772) $) NIL (|has| (-700) (-308)))) (-1882 (($ $ (-700)) NIL (|has| (-700) (-287 (-700) (-700))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| (-700) (-308)))) (-2254 (((-700)) NIL) (((-700) (-1269 $)) NIL)) (-2943 (((-3 (-772) "failed") $ $) NIL (|has| (-700) (-351))) (((-772) $) NIL (|has| (-700) (-351)))) (-3592 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-1179)) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-3089 (((-690 (-700)) (-1269 $) (-1 (-700) (-700))) NIL (|has| (-700) (-365)))) (-2783 (((-1175 (-700))) NIL)) (-1443 (($ $) NIL (|has| (-700) (-1204)))) (-2576 (($ $) NIL (|has| (-700) (-1204)))) (-1876 (($) NIL (|has| (-700) (-351)))) (-1418 (($ $) NIL (|has| (-700) (-1204)))) (-2555 (($ $) NIL (|has| (-700) (-1204)))) (-1394 (($ $) NIL (|has| (-700) (-1204)))) (-2533 (($ $) NIL (|has| (-700) (-1204)))) (-3237 (((-690 (-700)) (-1269 $)) NIL) (((-1269 (-700)) $) NIL) (((-690 (-700)) (-1269 $) (-1269 $)) NIL) (((-1269 (-700)) $ (-1269 $)) NIL)) (-1322 (((-539) $) NIL (|has| (-700) (-615 (-539)))) (((-169 (-225)) $) NIL (|has| (-700) (-1024))) (((-169 (-381)) $) NIL (|has| (-700) (-1024))) (((-894 (-381)) $) NIL (|has| (-700) (-615 (-894 (-381))))) (((-894 (-567)) $) NIL (|has| (-700) (-615 (-894 (-567))))) (($ (-1175 (-700))) NIL) (((-1175 (-700)) $) NIL) (($ (-1269 (-700))) NIL) (((-1269 (-700)) $) NIL)) (-3307 (($ $) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-2836 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-911))) (|has| (-700) (-351))))) (-3100 (($ (-700) (-700)) 12)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-700)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-567))) 19) (($ (-169 (-700))) 28) (($ (-169 (-702))) 25) (((-169 (-381)) $) 33) (($ (-410 (-567))) NIL (-2836 (|has| (-700) (-1040 (-410 (-567)))) (|has| (-700) (-365))))) (-2318 (($ $) NIL (|has| (-700) (-351))) (((-3 $ "failed") $) NIL (-2836 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-911))) (|has| (-700) (-145))))) (-4019 (((-1175 (-700)) $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) NIL)) (-1481 (($ $) NIL (|has| (-700) (-1204)))) (-2610 (($ $) NIL (|has| (-700) (-1204)))) (-3269 (((-112) $ $) NIL)) (-1456 (($ $) NIL (|has| (-700) (-1204)))) (-2588 (($ $) NIL (|has| (-700) (-1204)))) (-1505 (($ $) NIL (|has| (-700) (-1204)))) (-2632 (($ $) NIL (|has| (-700) (-1204)))) (-2928 (((-700) $) NIL (|has| (-700) (-1204)))) (-2090 (($ $) NIL (|has| (-700) (-1204)))) (-1367 (($ $) NIL (|has| (-700) (-1204)))) (-1492 (($ $) NIL (|has| (-700) (-1204)))) (-2621 (($ $) NIL (|has| (-700) (-1204)))) (-1468 (($ $) NIL (|has| (-700) (-1204)))) (-2599 (($ $) NIL (|has| (-700) (-1204)))) (-1368 (($ $) NIL (|has| (-700) (-1062)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-1179)) NIL (|has| (-700) (-902 (-1179)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL (|has| (-700) (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| (-700) (-1204))) (($ $ (-410 (-567))) NIL (-12 (|has| (-700) (-1004)) (|has| (-700) (-1204)))) (($ $ (-567)) NIL (|has| (-700) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-700) $) NIL) (($ $ (-700)) NIL) (($ (-410 (-567)) $) NIL (|has| (-700) (-365))) (($ $ (-410 (-567))) NIL (|has| (-700) (-365))))) -(((-695) (-13 (-390) (-166 (-700)) (-10 -8 (-15 -2504 ($ (-169 (-381)))) (-15 -2504 ($ (-169 (-567)))) (-15 -2504 ($ (-169 (-700)))) (-15 -2504 ($ (-169 (-702)))) (-15 -2504 ((-169 (-381)) $))))) (T -695)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-169 (-567))) (-5 *1 (-695)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-169 (-700))) (-5 *1 (-695)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695))))) -(-13 (-390) (-166 (-700)) (-10 -8 (-15 -2504 ($ (-169 (-381)))) (-15 -2504 ($ (-169 (-567)))) (-15 -2504 ($ (-169 (-700)))) (-15 -2504 ($ (-169 (-702)))) (-15 -2504 ((-169 (-381)) $)))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-2105 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3048 (($ $) 63)) (-3470 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-1695 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-4043 (((-645 (-2 (|:| -2265 |#1|) (|:| -3486 (-772)))) $) 62)) (-2730 (($) 50) (($ (-645 |#1|)) 49)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 51)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-696 |#1|) (-140) (-1102)) (T -696)) -((-3636 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1102)))) (-3048 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1102)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-2 (|:| -2265 *3) (|:| -3486 (-772)))))))) -(-13 (-235 |t#1|) (-10 -8 (-15 -3636 ($ |t#1| $ (-772))) (-15 -3048 ($ $)) (-15 -4043 ((-645 (-2 (|:| -2265 |t#1|) (|:| -3486 (-772)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-1397 (((-645 |#1|) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))) (-567)) 66)) (-3970 ((|#1| |#1| (-567)) 62)) (-1870 ((|#1| |#1| |#1| (-567)) 46)) (-3661 (((-645 |#1|) |#1| (-567)) 49)) (-3056 ((|#1| |#1| (-567) |#1| (-567)) 40)) (-3168 (((-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))) |#1| (-567)) 61))) -(((-697 |#1|) (-10 -7 (-15 -1870 (|#1| |#1| |#1| (-567))) (-15 -3970 (|#1| |#1| (-567))) (-15 -3661 ((-645 |#1|) |#1| (-567))) (-15 -3168 ((-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))) |#1| (-567))) (-15 -1397 ((-645 |#1|) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))) (-567))) (-15 -3056 (|#1| |#1| (-567) |#1| (-567)))) (-1245 (-567))) (T -697)) -((-3056 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| -3661 *5) (|:| -3380 (-567))))) (-5 *4 (-567)) (-4 *5 (-1245 *4)) (-5 *2 (-645 *5)) (-5 *1 (-697 *5)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -3661 *3) (|:| -3380 *4)))) (-5 *1 (-697 *3)) (-4 *3 (-1245 *4)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3)) (-4 *3 (-1245 *4)))) (-3970 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3)))) (-1870 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3))))) -(-10 -7 (-15 -1870 (|#1| |#1| |#1| (-567))) (-15 -3970 (|#1| |#1| (-567))) (-15 -3661 ((-645 |#1|) |#1| (-567))) (-15 -3168 ((-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))) |#1| (-567))) (-15 -1397 ((-645 |#1|) (-645 (-2 (|:| -3661 |#1|) (|:| -3380 (-567)))) (-567))) (-15 -3056 (|#1| |#1| (-567) |#1| (-567)))) -((-1571 (((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-3981 (((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 56) (((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 58) (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 60)) (-4291 (((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264))) NIL)) (-1654 (((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264))) 61))) -(((-698) (-10 -7 (-15 -3981 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3981 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3981 ((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -1654 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -4291 ((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -1571 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -698)) -((-1571 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *1 (-698)))) (-4291 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-1654 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3981 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))) (-3981 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) (-3981 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698))))) -(-10 -7 (-15 -3981 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3981 ((-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -3981 ((-1135 (-225)) (-1135 (-225)) (-1 (-945 (-225)) (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -1654 ((-1135 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1096 (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -4291 ((-1135 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1096 (-225)) (-645 (-264)))) (-15 -1571 ((-1 (-945 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-3661 (((-421 (-1175 |#4|)) (-1175 |#4|)) 86) (((-421 |#4|) |#4|) 270))) -(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-421 |#4|) |#4|)) (-15 -3661 ((-421 (-1175 |#4|)) (-1175 |#4|)))) (-851) (-794) (-351) (-951 |#3| |#2| |#1|)) (T -699)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))) -(-10 -7 (-15 -3661 ((-421 |#4|) |#4|)) (-15 -3661 ((-421 (-1175 |#4|)) (-1175 |#4|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 100)) (-4199 (((-567) $) 34)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-3413 (($ $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-3671 (($ $) NIL)) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL)) (-3758 (($) NIL T CONST)) (-3517 (($ $) NIL)) (-4275 (((-3 (-567) "failed") $) 89) (((-3 (-410 (-567)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-3094 (((-567) $) 91) (((-410 (-567)) $) 83) (((-381) $) 84)) (-2432 (($ $ $) 112)) (-1377 (((-3 $ "failed") $) 103)) (-2443 (($ $ $) 111)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3832 (((-923)) 93) (((-923) (-923)) 92)) (-3635 (((-112) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL)) (-3905 (((-567) $) NIL)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL)) (-2013 (($ $) NIL)) (-2585 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1974 (((-567) (-567)) 97) (((-567)) 98)) (-2727 (($ $ $) NIL) (($) NIL (-12 (-1736 (|has| $ (-6 -4405))) (-1736 (|has| $ (-6 -4413)))))) (-2245 (((-567) (-567)) 95) (((-567)) 96)) (-1446 (($ $ $) NIL) (($) NIL (-12 (-1736 (|has| $ (-6 -4405))) (-1736 (|has| $ (-6 -4413)))))) (-3036 (((-567) $) 17)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 107)) (-3912 (((-923) (-567)) NIL (|has| $ (-6 -4413)))) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL)) (-1952 (($ $) NIL)) (-2627 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-923)) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) 108)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2618 (((-567) $) 24)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 110)) (-2872 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-1339 (((-923) (-567)) NIL (|has| $ (-6 -4413)))) (-1322 (((-381) $) NIL) (((-225) $) NIL) (((-894 (-381)) $) NIL)) (-2504 (((-863) $) 68) (($ (-567)) 79) (($ $) NIL) (($ (-410 (-567))) 82) (($ (-567)) 79) (($ (-410 (-567))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-702)) 71)) (-2214 (((-772)) 122 T CONST)) (-3591 (($ (-567) (-567) (-923)) 59)) (-3471 (($ $) NIL)) (-3570 (((-923)) NIL) (((-923) (-923)) NIL (|has| $ (-6 -4413)))) (-3858 (((-112) $ $) NIL)) (-3140 (((-923)) 46) (((-923) (-923)) 94)) (-3269 (((-112) $ $) NIL)) (-1368 (($ $) NIL)) (-1807 (($) 37 T CONST)) (-1820 (($) 18 T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 99)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 121)) (-3064 (($ $ $) 81)) (-3054 (($ $) 118) (($ $ $) 119)) (-3045 (($ $ $) 117)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 106)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 113) (($ $ $) 104) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-700) (-13 (-407) (-390) (-365) (-1040 (-381)) (-1040 (-410 (-567))) (-147) (-10 -8 (-15 -3832 ((-923) (-923))) (-15 -3832 ((-923))) (-15 -3140 ((-923) (-923))) (-15 -2245 ((-567) (-567))) (-15 -2245 ((-567))) (-15 -1974 ((-567) (-567))) (-15 -1974 ((-567))) (-15 -2504 ((-381) $)) (-15 -2504 ($ (-702))) (-15 -3036 ((-567) $)) (-15 -2618 ((-567) $)) (-15 -3591 ($ (-567) (-567) (-923)))))) (T -700)) -((-2618 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-3832 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-3140 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) (-2245 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2245 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-1974 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-1974 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-702)) (-5 *1 (-700)))) (-3591 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-5 *1 (-700))))) -(-13 (-407) (-390) (-365) (-1040 (-381)) (-1040 (-410 (-567))) (-147) (-10 -8 (-15 -3832 ((-923) (-923))) (-15 -3832 ((-923))) (-15 -3140 ((-923) (-923))) (-15 -2245 ((-567) (-567))) (-15 -2245 ((-567))) (-15 -1974 ((-567) (-567))) (-15 -1974 ((-567))) (-15 -2504 ((-381) $)) (-15 -2504 ($ (-702))) (-15 -3036 ((-567) $)) (-15 -2618 ((-567) $)) (-15 -3591 ($ (-567) (-567) (-923))))) -((-3346 (((-690 |#1|) (-690 |#1|) |#1| |#1|) 88)) (-2367 (((-690 |#1|) (-690 |#1|) |#1|) 67)) (-3968 (((-690 |#1|) (-690 |#1|) |#1|) 89)) (-3991 (((-690 |#1|) (-690 |#1|)) 68)) (-1579 (((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|) 87))) -(((-701 |#1|) (-10 -7 (-15 -3991 ((-690 |#1|) (-690 |#1|))) (-15 -2367 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3968 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3346 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -1579 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|))) (-308)) (T -701)) -((-1579 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-701 *3)) (-4 *3 (-308)))) (-3346 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-3968 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-2367 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) -(-10 -7 (-15 -3991 ((-690 |#1|) (-690 |#1|))) (-15 -2367 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3968 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3346 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -1579 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-3309 (($ $ $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2893 (($ $ $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL)) (-3075 (($ $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) 31)) (-3094 (((-567) $) 29)) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-410 (-567)) "failed") $) NIL)) (-1527 (((-112) $) NIL)) (-2485 (((-410 (-567)) $) NIL)) (-2119 (($ $) NIL) (($) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-1591 (($ $ $ $) NIL)) (-4211 (($ $ $) NIL)) (-3635 (((-112) $) NIL)) (-4090 (($ $ $) NIL)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-4384 (((-112) $) NIL)) (-3807 (((-112) $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2585 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4003 (($ $ $ $) NIL)) (-2727 (($ $ $) NIL)) (-1435 (((-923) (-923)) 10) (((-923)) 9)) (-1446 (($ $ $) NIL)) (-1789 (($ $) NIL)) (-3613 (($ $) NIL)) (-1831 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3718 (($ $ $) NIL)) (-2221 (($) NIL T CONST)) (-3762 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2256 (($ $) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1359 (((-112) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL) (($ $ (-772)) NIL)) (-2199 (($ $) NIL)) (-3846 (($ $) NIL)) (-1322 (((-225) $) NIL) (((-381) $) NIL) (((-894 (-567)) $) NIL) (((-539) $) NIL) (((-567) $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) 28) (($ $) NIL) (($ (-567)) 28) (((-317 $) (-317 (-567))) 18)) (-2214 (((-772)) NIL T CONST)) (-3050 (((-112) $ $) NIL)) (-3040 (($ $ $) NIL)) (-3858 (((-112) $ $) NIL)) (-3140 (($) NIL)) (-3269 (((-112) $ $) NIL)) (-1799 (($ $ $ $) NIL)) (-1368 (($ $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $) NIL) (($ $ (-772)) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) -(((-702) (-13 (-390) (-548) (-10 -8 (-15 -1435 ((-923) (-923))) (-15 -1435 ((-923))) (-15 -2504 ((-317 $) (-317 (-567))))))) (T -702)) -((-1435 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-1435 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702))))) -(-13 (-390) (-548) (-10 -8 (-15 -1435 ((-923) (-923))) (-15 -1435 ((-923))) (-15 -2504 ((-317 $) (-317 (-567)))))) -((-2139 (((-1 |#4| |#2| |#3|) |#1| (-1179) (-1179)) 19)) (-1691 (((-1 |#4| |#2| |#3|) (-1179)) 12))) -(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1691 ((-1 |#4| |#2| |#3|) (-1179))) (-15 -2139 ((-1 |#4| |#2| |#3|) |#1| (-1179) (-1179)))) (-615 (-539)) (-1219) (-1219) (-1219)) (T -703)) -((-2139 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) (-4 *3 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *4 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219))))) -(-10 -7 (-15 -1691 ((-1 |#4| |#2| |#3|) (-1179))) (-15 -2139 ((-1 |#4| |#2| |#3|) |#1| (-1179) (-1179)))) -((-1405 (((-1 (-225) (-225) (-225)) |#1| (-1179) (-1179)) 43) (((-1 (-225) (-225)) |#1| (-1179)) 48))) -(((-704 |#1|) (-10 -7 (-15 -1405 ((-1 (-225) (-225)) |#1| (-1179))) (-15 -1405 ((-1 (-225) (-225) (-225)) |#1| (-1179) (-1179)))) (-615 (-539))) (T -704)) -((-1405 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))) (-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539)))))) -(-10 -7 (-15 -1405 ((-1 (-225) (-225)) |#1| (-1179))) (-15 -1405 ((-1 (-225) (-225) (-225)) |#1| (-1179) (-1179)))) -((-2894 (((-1179) |#1| (-1179) (-645 (-1179))) 10) (((-1179) |#1| (-1179) (-1179) (-1179)) 13) (((-1179) |#1| (-1179) (-1179)) 12) (((-1179) |#1| (-1179)) 11))) -(((-705 |#1|) (-10 -7 (-15 -2894 ((-1179) |#1| (-1179))) (-15 -2894 ((-1179) |#1| (-1179) (-1179))) (-15 -2894 ((-1179) |#1| (-1179) (-1179) (-1179))) (-15 -2894 ((-1179) |#1| (-1179) (-645 (-1179))))) (-615 (-539))) (T -705)) -((-2894 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-645 (-1179))) (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2894 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2894 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-2894 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))) -(-10 -7 (-15 -2894 ((-1179) |#1| (-1179))) (-15 -2894 ((-1179) |#1| (-1179) (-1179))) (-15 -2894 ((-1179) |#1| (-1179) (-1179) (-1179))) (-15 -2894 ((-1179) |#1| (-1179) (-645 (-1179))))) -((-1389 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-706 |#1| |#2|) (-10 -7 (-15 -1389 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1219) (-1219)) (T -706)) -((-1389 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-706 *3 *4)) (-4 *3 (-1219)) (-4 *4 (-1219))))) -(-10 -7 (-15 -1389 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3868 (((-1 |#3| |#2|) (-1179)) 11)) (-2139 (((-1 |#3| |#2|) |#1| (-1179)) 21))) -(((-707 |#1| |#2| |#3|) (-10 -7 (-15 -3868 ((-1 |#3| |#2|) (-1179))) (-15 -2139 ((-1 |#3| |#2|) |#1| (-1179)))) (-615 (-539)) (-1219) (-1219)) (T -707)) -((-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) (-4 *3 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) (-4 *4 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219))))) -(-10 -7 (-15 -3868 ((-1 |#3| |#2|) (-1179))) (-15 -2139 ((-1 |#3| |#2|) |#1| (-1179)))) -((-2285 (((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1269 (-645 (-1175 |#3|))) |#3|) 95)) (-2741 (((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|) 113)) (-3631 (((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1175 |#4|)) (-1269 (-645 (-1175 |#3|))) |#3|) 47))) -(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3631 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1175 |#4|)) (-1269 (-645 (-1175 |#3|))) |#3|)) (-15 -2741 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -2285 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1269 (-645 (-1175 |#3|))) |#3|))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -708)) -((-2285 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-645 (-1175 *13))) (-5 *3 (-1175 *13)) (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) (-5 *7 (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| *13))))) (-5 *8 (-645 (-772))) (-5 *9 (-1269 (-645 (-1175 *10)))) (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-951 *10 *11 *12)) (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))) (-2741 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1175 *9))) (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-951 *9 *10 *11)) (-4 *10 (-794)) (-5 *2 (-645 (-1175 *12))) (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1175 *12)))) (-3631 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-645 (-1175 *11))) (-5 *3 (-1175 *11)) (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) (-5 *7 (-1269 (-645 (-1175 *8)))) (-4 *10 (-851)) (-4 *8 (-308)) (-4 *11 (-951 *8 *9 *10)) (-4 *9 (-794)) (-5 *1 (-708 *9 *10 *8 *11))))) -(-10 -7 (-15 -3631 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1175 |#4|)) (-1269 (-645 (-1175 |#3|))) |#3|)) (-15 -2741 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -2285 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-645 |#2|) (-645 (-1175 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1269 (-645 (-1175 |#3|))) |#3|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1833 (($ $) 48)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-3764 (($ |#1| (-772)) 46)) (-1562 (((-772) $) 50)) (-1809 ((|#1| $) 49)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3380 (((-772) $) 51)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-4038 ((|#1| $ (-772)) 47)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-709 |#1|) (-140) (-1051)) (T -709)) -((-3380 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-1833 (*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))) (-3764 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051))))) -(-13 (-1051) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3380 ((-772) $)) (-15 -1562 ((-772) $)) (-15 -1809 (|t#1| $)) (-15 -1833 ($ $)) (-15 -4038 (|t#1| $ (-772))) (-15 -3764 ($ |t#1| (-772))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-4364 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-710 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4364 (|#6| (-1 |#4| |#1|) |#3|))) (-559) (-1245 |#1|) (-1245 (-410 |#2|)) (-559) (-1245 |#4|) (-1245 (-410 |#5|))) (T -710)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559)) (-4 *6 (-1245 *5)) (-4 *2 (-1245 (-410 *8))) (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1245 (-410 *6))) (-4 *8 (-1245 *7))))) -(-10 -7 (-15 -4364 (|#6| (-1 |#4| |#1|) |#3|))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2845 (((-1161) (-863)) 39)) (-4079 (((-1274) (-1161)) 32)) (-3960 (((-1161) (-863)) 28)) (-3480 (((-1161) (-863)) 29)) (-2504 (((-863) $) NIL) (((-1161) (-863)) 27)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-711) (-13 (-1102) (-10 -7 (-15 -2504 ((-1161) (-863))) (-15 -3960 ((-1161) (-863))) (-15 -3480 ((-1161) (-863))) (-15 -2845 ((-1161) (-863))) (-15 -4079 ((-1274) (-1161)))))) (T -711)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-711))))) -(-13 (-1102) (-10 -7 (-15 -2504 ((-1161) (-863))) (-15 -3960 ((-1161) (-863))) (-15 -3480 ((-1161) (-863))) (-15 -2845 ((-1161) (-863))) (-15 -4079 ((-1274) (-1161))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-2432 (($ $ $) NIL)) (-2617 (($ |#1| |#2|) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-4384 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4190 ((|#2| $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2957 (((-3 $ "failed") $ $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) ((|#1| $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -4190 (|#2| $)) (-15 -2504 (|#1| $)) (-15 -2617 ($ |#1| |#2|)) (-15 -2957 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712)) -((-4190 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2504 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2617 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2957 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-365) (-10 -8 (-15 -4190 (|#2| $)) (-15 -2504 (|#1| $)) (-15 -2617 ($ |#1| |#2|)) (-15 -2957 ((-3 $ "failed") $ $)))) -((-2487 (((-112) $ $) 92)) (-2684 (((-112) $) 36)) (-1995 (((-1269 |#1|) $ (-772)) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-3678 (($ (-1175 |#1|)) NIL)) (-3633 (((-1175 $) $ (-1084)) NIL) (((-1175 |#1|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2717 (($ $ $) NIL (|has| |#1| (-559)))) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3404 (((-772)) 56 (|has| |#1| (-370)))) (-1863 (($ $ (-772)) NIL)) (-1751 (($ $ (-772)) NIL)) (-3816 ((|#2| |#2|) 52)) (-2170 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-3094 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL)) (-2304 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) 40)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-2617 (($ |#2|) 50)) (-1377 (((-3 $ "failed") $) 102)) (-2119 (($) 61 (|has| |#1| (-370)))) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-2497 (($ $ $) NIL)) (-4228 (($ $ $) NIL (|has| |#1| (-559)))) (-3207 (((-2 (|:| -1344 |#1|) (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1873 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-3451 (((-960 $)) 94)) (-1978 (($ $ |#1| (-772) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3905 (((-772) $ $) NIL (|has| |#1| (-559)))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3772 (($ (-1175 |#1|) (-1084)) NIL) (($ (-1175 $) (-1084)) NIL)) (-2240 (($ $ (-772)) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) 88) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-1084)) NIL) (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-4190 ((|#2|) 53)) (-1562 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-2972 (($ (-1 (-772) (-772)) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-4163 (((-1175 |#1|) $) NIL)) (-2047 (((-3 (-1084) "failed") $) NIL)) (-2667 (((-923) $) NIL (|has| |#1| (-370)))) (-2606 ((|#2| $) 49)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) 34)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1812 (((-1161) $) NIL)) (-3287 (((-2 (|:| -3693 $) (|:| -2642 $)) $ (-772)) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-1084)) (|:| -2618 (-772))) "failed") $) NIL)) (-3670 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2221 (($) NIL (|has| |#1| (-1154)) CONST)) (-2188 (($ (-923)) NIL (|has| |#1| (-370)))) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3427 (($ $) 93 (|has| |#1| (-351)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-911)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2462 (((-3 $ "failed") $ (-772)) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 103 (|has| |#1| (-365)))) (-2254 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3592 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3380 (((-772) $) 38) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2938 (((-960 $)) 42)) (-2557 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-2504 (((-863) $) 71) (($ (-567)) NIL) (($ |#1|) 68) (($ (-1084)) NIL) (($ |#2|) 78) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-772)) 73) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) 25 T CONST)) (-1825 (((-1269 |#1|) $) 86)) (-3551 (($ (-1269 |#1|)) 60)) (-1820 (($) 8 T CONST)) (-2856 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1885 (((-1269 |#1|) $) NIL)) (-2968 (((-112) $ $) 79)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) 82) (($ $ $) NIL)) (-3045 (($ $ $) 39)) (** (($ $ (-923)) NIL) (($ $ (-772)) 97)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 67) (($ $ $) 85) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) -(((-713 |#1| |#2|) (-13 (-1245 |#1|) (-617 |#2|) (-10 -8 (-15 -3816 (|#2| |#2|)) (-15 -4190 (|#2|)) (-15 -2617 ($ |#2|)) (-15 -2606 (|#2| $)) (-15 -1825 ((-1269 |#1|) $)) (-15 -3551 ($ (-1269 |#1|))) (-15 -1885 ((-1269 |#1|) $)) (-15 -3451 ((-960 $))) (-15 -2938 ((-960 $))) (IF (|has| |#1| (-351)) (-15 -3427 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1051) (-1245 |#1|)) (T -713)) -((-3816 (*1 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1245 *3)))) (-4190 (*1 *2) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) (-2617 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1245 *3)))) (-2606 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) (-1825 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-1269 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1051)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-1885 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-1269 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-3451 (*1 *2) (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-2938 (*1 *2) (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1245 *3)))) (-3427 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1051)) (-5 *1 (-713 *2 *3)) (-4 *3 (-1245 *2))))) -(-13 (-1245 |#1|) (-617 |#2|) (-10 -8 (-15 -3816 (|#2| |#2|)) (-15 -4190 (|#2|)) (-15 -2617 ($ |#2|)) (-15 -2606 (|#2| $)) (-15 -1825 ((-1269 |#1|) $)) (-15 -3551 ($ (-1269 |#1|))) (-15 -1885 ((-1269 |#1|) $)) (-15 -3451 ((-960 $))) (-15 -2938 ((-960 $))) (IF (|has| |#1| (-351)) (-15 -3427 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 ((|#1| $) 13)) (-3479 (((-1122) $) NIL)) (-2618 ((|#2| $) 12)) (-2516 (($ |#1| |#2|) 16)) (-2504 (((-863) $) NIL) (($ (-2 (|:| -2188 |#1|) (|:| -2618 |#2|))) 15) (((-2 (|:| -2188 |#1|) (|:| -2618 |#2|)) $) 14)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11))) -(((-714 |#1| |#2| |#3|) (-13 (-851) (-493 (-2 (|:| -2188 |#1|) (|:| -2618 |#2|))) (-10 -8 (-15 -2618 (|#2| $)) (-15 -2188 (|#1| $)) (-15 -2516 ($ |#1| |#2|)))) (-851) (-1102) (-1 (-112) (-2 (|:| -2188 |#1|) (|:| -2618 |#2|)) (-2 (|:| -2188 |#1|) (|:| -2618 |#2|)))) (T -714)) -((-2618 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) (-14 *4 (-1 (-112) (-2 (|:| -2188 *3) (|:| -2618 *2)) (-2 (|:| -2188 *3) (|:| -2618 *2)))))) (-2188 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1102)) (-14 *4 (-1 (-112) (-2 (|:| -2188 *2) (|:| -2618 *3)) (-2 (|:| -2188 *2) (|:| -2618 *3)))))) (-2516 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1102)) (-14 *4 (-1 (-112) (-2 (|:| -2188 *2) (|:| -2618 *3)) (-2 (|:| -2188 *2) (|:| -2618 *3))))))) -(-13 (-851) (-493 (-2 (|:| -2188 |#1|) (|:| -2618 |#2|))) (-10 -8 (-15 -2618 (|#2| $)) (-15 -2188 (|#1| $)) (-15 -2516 ($ |#1| |#2|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 66)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-3094 ((|#1| $) NIL) (((-114) $) 39)) (-1377 (((-3 $ "failed") $) 106)) (-1958 ((|#2| (-114) |#2|) 93)) (-4384 (((-112) $) NIL)) (-3529 (($ |#1| (-363 (-114))) 14)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1739 (($ $ (-1 |#2| |#2|)) 65)) (-1484 (($ $ (-1 |#2| |#2|)) 44)) (-1882 ((|#2| $ |#2|) 33)) (-3160 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-2504 (((-863) $) 73) (($ (-567)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) 37 T CONST)) (-3858 (((-112) $ $) NIL)) (-3766 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-1807 (($) 21 T CONST)) (-1820 (($) 9 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) 48) (($ $ $) NIL)) (-3045 (($ $ $) 83)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) 64)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) -(((-715 |#1| |#2|) (-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3766 ($ $)) (-15 -3766 ($ $ $)) (-15 -3160 (|#1| |#1|))) |%noBranch|) (-15 -1484 ($ $ (-1 |#2| |#2|))) (-15 -1739 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1958 (|#2| (-114) |#2|)) (-15 -3529 ($ |#1| (-363 (-114)))))) (-1051) (-649 |#1|)) (T -715)) -((-3766 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-3766 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-3160 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-1484 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)))) (-1739 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)) (-4 *4 (-649 *3)))) (-1958 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *2)) (-4 *2 (-649 *4)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1051)) (-5 *1 (-715 *2 *4)) (-4 *4 (-649 *2))))) -(-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3766 ($ $)) (-15 -3766 ($ $ $)) (-15 -3160 (|#1| |#1|))) |%noBranch|) (-15 -1484 ($ $ (-1 |#2| |#2|))) (-15 -1739 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1958 (|#2| (-114) |#2|)) (-15 -3529 ($ |#1| (-363 (-114)))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 33)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-2617 (($ |#1| |#2|) 25)) (-1377 (((-3 $ "failed") $) 51)) (-4384 (((-112) $) 35)) (-4190 ((|#2| $) 12)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 52)) (-3479 (((-1122) $) NIL)) (-2957 (((-3 $ "failed") $ $) 50)) (-2504 (((-863) $) 24) (($ (-567)) 19) ((|#1| $) 13)) (-2214 (((-772)) 28 T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 16 T CONST)) (-1820 (($) 30 T CONST)) (-2968 (((-112) $ $) 41)) (-3054 (($ $) 46) (($ $ $) 40)) (-3045 (($ $ $) 43)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21) (($ $ $) 20))) -(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-1051) (-10 -8 (-15 -4190 (|#2| $)) (-15 -2504 (|#1| $)) (-15 -2617 ($ |#1| |#2|)) (-15 -2957 ((-3 $ "failed") $ $)) (-15 -1377 ((-3 $ "failed") $)) (-15 -1752 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716)) -((-1377 (*1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4190 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2504 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2617 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2957 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1752 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1051) (-10 -8 (-15 -4190 (|#2| $)) (-15 -2504 (|#1| $)) (-15 -2617 ($ |#1| |#2|)) (-15 -2957 ((-3 $ "failed") $ $)) (-15 -1377 ((-3 $ "failed") $)) (-15 -1752 ($ $)))) -((* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-717 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-718 |#2|) (-172)) (T -717)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-718 |#1|) (-140) (-172)) (T -718)) -NIL -(-13 (-111 |t#1| |t#1|) (-641 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-3075 (($ |#1|) 17) (($ $ |#1|) 20)) (-3260 (($ |#1|) 18) (($ $ |#1|) 21)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4384 (((-112) $) NIL)) (-2457 (($ |#1| |#1| |#1| |#1|) 8)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 16)) (-3479 (((-1122) $) NIL)) (-2913 ((|#1| $ |#1|) 24) (((-834 |#1|) $ (-834 |#1|)) 32)) (-3307 (($ $ $) NIL)) (-4033 (($ $ $) NIL)) (-2504 (((-863) $) 39)) (-3858 (((-112) $ $) NIL)) (-1820 (($) 9 T CONST)) (-2968 (((-112) $ $) 48)) (-3064 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 14))) -(((-719 |#1|) (-13 (-476) (-10 -8 (-15 -2457 ($ |#1| |#1| |#1| |#1|)) (-15 -3075 ($ |#1|)) (-15 -3260 ($ |#1|)) (-15 -1377 ($)) (-15 -3075 ($ $ |#1|)) (-15 -3260 ($ $ |#1|)) (-15 -1377 ($ $)) (-15 -2913 (|#1| $ |#1|)) (-15 -2913 ((-834 |#1|) $ (-834 |#1|))))) (-365)) (T -719)) -((-2457 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3075 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3260 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-1377 (*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3260 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-1377 (*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2913 (*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-2913 (*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3))))) -(-13 (-476) (-10 -8 (-15 -2457 ($ |#1| |#1| |#1| |#1|)) (-15 -3075 ($ |#1|)) (-15 -3260 ($ |#1|)) (-15 -1377 ($)) (-15 -3075 ($ $ |#1|)) (-15 -3260 ($ $ |#1|)) (-15 -1377 ($ $)) (-15 -2913 (|#1| $ |#1|)) (-15 -2913 ((-834 |#1|) $ (-834 |#1|))))) -((-3497 (($ $ (-923)) 21)) (-2310 (($ $ (-923)) 22)) (** (($ $ (-923)) 10))) -(((-720 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -2310 (|#1| |#1| (-923))) (-15 -3497 (|#1| |#1| (-923)))) (-721)) (T -720)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-923))) (-15 -2310 (|#1| |#1| (-923))) (-15 -3497 (|#1| |#1| (-923)))) -((-2487 (((-112) $ $) 7)) (-3497 (($ $ (-923)) 16)) (-2310 (($ $ (-923)) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 17))) -(((-721) (-140)) (T -721)) -((* (*1 *1 *1 *1) (-4 *1 (-721))) (-3497 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) (-2310 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923))))) -(-13 (-1102) (-10 -8 (-15 * ($ $ $)) (-15 -3497 ($ $ (-923))) (-15 -2310 ($ $ (-923))) (-15 ** ($ $ (-923))))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-3497 (($ $ (-923)) NIL) (($ $ (-772)) 21)) (-4384 (((-112) $) 10)) (-2310 (($ $ (-923)) NIL) (($ $ (-772)) 22)) (** (($ $ (-923)) NIL) (($ $ (-772)) 16))) -(((-722 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -2310 (|#1| |#1| (-772))) (-15 -3497 (|#1| |#1| (-772))) (-15 -4384 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -2310 (|#1| |#1| (-923))) (-15 -3497 (|#1| |#1| (-923)))) (-723)) (T -722)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -2310 (|#1| |#1| (-772))) (-15 -3497 (|#1| |#1| (-772))) (-15 -4384 ((-112) |#1|)) (-15 ** (|#1| |#1| (-923))) (-15 -2310 (|#1| |#1| (-923))) (-15 -3497 (|#1| |#1| (-923)))) -((-2487 (((-112) $ $) 7)) (-1511 (((-3 $ "failed") $) 18)) (-3497 (($ $ (-923)) 16) (($ $ (-772)) 23)) (-1377 (((-3 $ "failed") $) 20)) (-4384 (((-112) $) 24)) (-3822 (((-3 $ "failed") $) 19)) (-2310 (($ $ (-923)) 15) (($ $ (-772)) 22)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1820 (($) 25 T CONST)) (-2968 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-772)) 21)) (* (($ $ $) 17))) -(((-723) (-140)) (T -723)) -((-1820 (*1 *1) (-4 *1 (-723))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (-3497 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-2310 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-1377 (*1 *1 *1) (|partial| -4 *1 (-723))) (-3822 (*1 *1 *1) (|partial| -4 *1 (-723))) (-1511 (*1 *1 *1) (|partial| -4 *1 (-723)))) -(-13 (-721) (-10 -8 (-15 (-1820) ($) -3562) (-15 -4384 ((-112) $)) (-15 -3497 ($ $ (-772))) (-15 -2310 ($ $ (-772))) (-15 ** ($ $ (-772))) (-15 -1377 ((-3 $ "failed") $)) (-15 -3822 ((-3 $ "failed") $)) (-15 -1511 ((-3 $ "failed") $)))) -(((-102) . T) ((-614 (-863)) . T) ((-721) . T) ((-1102) . T)) -((-3404 (((-772)) 42)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3094 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 23)) (-2617 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) 53)) (-1377 (((-3 $ "failed") $) 73)) (-2119 (($) 47)) (-2013 ((|#2| $) 21)) (-2335 (($) 18)) (-3592 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-3089 (((-690 |#2|) (-1269 $) (-1 |#2| |#2|)) 68)) (-1322 (((-1269 |#2|) $) NIL) (($ (-1269 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4019 ((|#3| $) 39)) (-4374 (((-1269 $)) 36))) -(((-724 |#1| |#2| |#3|) (-10 -8 (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2119 (|#1|)) (-15 -3404 ((-772))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3089 ((-690 |#2|) (-1269 |#1|) (-1 |#2| |#2|))) (-15 -2617 ((-3 |#1| "failed") (-410 |#3|))) (-15 -1322 (|#1| |#3|)) (-15 -2617 (|#1| |#3|)) (-15 -2335 (|#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -1322 (|#3| |#1|)) (-15 -1322 (|#1| (-1269 |#2|))) (-15 -1322 ((-1269 |#2|) |#1|)) (-15 -4374 ((-1269 |#1|))) (-15 -4019 (|#3| |#1|)) (-15 -2013 (|#2| |#1|)) (-15 -1377 ((-3 |#1| "failed") |#1|))) (-725 |#2| |#3|) (-172) (-1245 |#2|)) (T -724)) -((-3404 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-772)) (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5))))) -(-10 -8 (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -2119 (|#1|)) (-15 -3404 ((-772))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3089 ((-690 |#2|) (-1269 |#1|) (-1 |#2| |#2|))) (-15 -2617 ((-3 |#1| "failed") (-410 |#3|))) (-15 -1322 (|#1| |#3|)) (-15 -2617 (|#1| |#3|)) (-15 -2335 (|#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -1322 (|#3| |#1|)) (-15 -1322 (|#1| (-1269 |#2|))) (-15 -1322 ((-1269 |#2|) |#1|)) (-15 -4374 ((-1269 |#1|))) (-15 -4019 (|#3| |#1|)) (-15 -2013 (|#2| |#1|)) (-15 -1377 ((-3 |#1| "failed") |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-1987 (($ $) 103 (|has| |#1| (-365)))) (-3342 (((-112) $) 105 (|has| |#1| (-365)))) (-2706 (((-690 |#1|) (-1269 $)) 53) (((-690 |#1|)) 68)) (-3132 ((|#1| $) 59)) (-2694 (((-1192 (-923) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 122 (|has| |#1| (-365)))) (-1466 (((-421 $) $) 123 (|has| |#1| (-365)))) (-4175 (((-112) $ $) 113 (|has| |#1| (-365)))) (-3404 (((-772)) 96 (|has| |#1| (-370)))) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-3094 (((-567) $) 177 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 174)) (-3431 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2432 (($ $ $) 117 (|has| |#1| (-365)))) (-3815 (((-690 |#1|) $ (-1269 $)) 60) (((-690 |#1|) $) 66)) (-2690 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-2617 (($ |#2|) 166) (((-3 $ "failed") (-410 |#2|)) 163 (|has| |#1| (-365)))) (-1377 (((-3 $ "failed") $) 37)) (-1471 (((-923)) 61)) (-2119 (($) 99 (|has| |#1| (-370)))) (-2443 (($ $ $) 116 (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 111 (|has| |#1| (-365)))) (-3882 (($) 157 (|has| |#1| (-351)))) (-1816 (((-112) $) 158 (|has| |#1| (-351)))) (-2559 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-2946 (((-112) $) 124 (|has| |#1| (-365)))) (-3905 (((-923) $) 160 (|has| |#1| (-351))) (((-834 (-923)) $) 146 (|has| |#1| (-351)))) (-4384 (((-112) $) 35)) (-2013 ((|#1| $) 58)) (-3104 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-365)))) (-3908 ((|#2| $) 51 (|has| |#1| (-365)))) (-2667 (((-923) $) 98 (|has| |#1| (-370)))) (-2606 ((|#2| $) 164)) (-1831 (($ (-645 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-1812 (((-1161) $) 10)) (-1752 (($ $) 125 (|has| |#1| (-365)))) (-2221 (($) 151 (|has| |#1| (-351)) CONST)) (-2188 (($ (-923)) 97 (|has| |#1| (-370)))) (-3479 (((-1122) $) 11)) (-2335 (($) 168)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 110 (|has| |#1| (-365)))) (-1870 (($ (-645 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) 154 (|has| |#1| (-351)))) (-3661 (((-421 $) $) 121 (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 118 (|has| |#1| (-365)))) (-2478 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-365)))) (-2465 (((-772) $) 114 (|has| |#1| (-365)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 115 (|has| |#1| (-365)))) (-2254 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-2943 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-3592 (($ $) 145 (-2836 (-1750 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 143 (-2836 (-1750 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1179)) 141 (-1750 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-645 (-1179))) 140 (-1750 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-1179) (-772)) 139 (-1750 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 (-772))) 138 (-1750 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-3089 (((-690 |#1|) (-1269 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2783 ((|#2|) 167)) (-1876 (($) 156 (|has| |#1| (-351)))) (-3237 (((-1269 |#1|) $ (-1269 $)) 57) (((-690 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-690 |#1|) (-1269 $)) 72)) (-1322 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 153 (|has| |#1| (-351)))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-410 (-567))) 95 (-2836 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-2318 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-4019 ((|#2| $) 52)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-4374 (((-1269 $)) 74)) (-3269 (((-112) $ $) 104 (|has| |#1| (-365)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $) 144 (-2836 (-1750 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 142 (-2836 (-1750 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1179)) 137 (-1750 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-645 (-1179))) 136 (-1750 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-1179) (-772)) 135 (-1750 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 (-772))) 134 (-1750 (|has| |#1| (-902 (-1179))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 129 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365))))) -(((-725 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -725)) -((-2335 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1245 *2)))) (-2783 (*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-2617 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1245 *3)))) (-1322 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1245 *3)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-2617 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-725 *3 *4)))) (-3089 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1245 *5)) (-5 *2 (-690 *5))))) -(-13 (-412 |t#1| |t#2|) (-172) (-615 |t#2|) (-414 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2335 ($)) (-15 -2783 (|t#2|)) (-15 -2617 ($ |t#2|)) (-15 -1322 ($ |t#2|)) (-15 -2606 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -2617 ((-3 $ "failed") (-410 |t#2|))) (-15 -3089 ((-690 |t#1|) (-1269 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2836 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2836 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2836 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-412 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-559) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179)))) ((-922) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) -2836 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-351)) ((-1223) -2836 (|has| |#1| (-351)) (|has| |#1| (-365)))) -((-3758 (($) 11)) (-1377 (((-3 $ "failed") $) 14)) (-4384 (((-112) $) 10)) (** (($ $ (-923)) NIL) (($ $ (-772)) 20))) -(((-726 |#1|) (-10 -8 (-15 -1377 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -4384 ((-112) |#1|)) (-15 -3758 (|#1|)) (-15 ** (|#1| |#1| (-923)))) (-727)) (T -726)) -NIL -(-10 -8 (-15 -1377 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -4384 ((-112) |#1|)) (-15 -3758 (|#1|)) (-15 ** (|#1| |#1| (-923)))) -((-2487 (((-112) $ $) 7)) (-3758 (($) 19 T CONST)) (-1377 (((-3 $ "failed") $) 16)) (-4384 (((-112) $) 18)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1820 (($) 20 T CONST)) (-2968 (((-112) $ $) 6)) (** (($ $ (-923)) 14) (($ $ (-772)) 17)) (* (($ $ $) 15))) -(((-727) (-140)) (T -727)) -((-1820 (*1 *1) (-4 *1 (-727))) (-3758 (*1 *1) (-4 *1 (-727))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772)))) (-1377 (*1 *1 *1) (|partial| -4 *1 (-727)))) -(-13 (-1114) (-10 -8 (-15 (-1820) ($) -3562) (-15 -3758 ($) -3562) (-15 -4384 ((-112) $)) (-15 ** ($ $ (-772))) (-15 -1377 ((-3 $ "failed") $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1114) . T) ((-1102) . T)) -((-3106 (((-2 (|:| -1374 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3601 (((-2 (|:| -1374 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3492 ((|#2| (-410 |#2|) (-1 |#2| |#2|)) 13)) (-2289 (((-2 (|:| |poly| |#2|) (|:| -1374 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)) 48))) -(((-728 |#1| |#2|) (-10 -7 (-15 -3601 ((-2 (|:| -1374 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3106 ((-2 (|:| -1374 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3492 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2289 ((-2 (|:| |poly| |#2|) (|:| -1374 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -728)) -((-2289 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1374 (-410 *6)) (|:| |special| (-410 *6)))) (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1374 (-421 *3)) (|:| |special| (-421 *3)))) (-5 *1 (-728 *5 *3)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1374 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3))))) -(-10 -7 (-15 -3601 ((-2 (|:| -1374 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3106 ((-2 (|:| -1374 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3492 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2289 ((-2 (|:| |poly| |#2|) (|:| -1374 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) -((-3818 ((|#7| (-645 |#5|) |#6|) NIL)) (-4364 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4364 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3818 (|#7| (-645 |#5|) |#6|))) (-851) (-794) (-794) (-1051) (-1051) (-951 |#4| |#2| |#1|) (-951 |#5| |#3| |#1|)) (T -729)) -((-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *9)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-1051)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-951 *8 *6 *5)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1051)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-951 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-951 *8 *6 *5))))) -(-10 -7 (-15 -4364 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3818 (|#7| (-645 |#5|) |#6|))) -((-4364 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-730 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4364 (|#7| (-1 |#2| |#1|) |#6|))) (-851) (-851) (-794) (-794) (-1051) (-951 |#5| |#3| |#1|) (-951 |#5| |#4| |#2|)) (T -730)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794)) (-4 *9 (-1051)) (-4 *2 (-951 *9 *8 *6)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794)) (-4 *4 (-951 *9 *7 *5))))) -(-10 -7 (-15 -4364 (|#7| (-1 |#2| |#1|) |#6|))) -((-3661 (((-421 |#4|) |#4|) 42))) -(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179))))) (-308) (-951 (-954 |#3|) |#1| |#2|)) (T -731)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179)))))) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-951 (-954 *6) *4 *5))))) -(-10 -7 (-15 -3661 ((-421 |#4|) |#4|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-865 |#1|)) $) NIL)) (-3633 (((-1175 $) $ (-865 |#1|)) NIL) (((-1175 |#2|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1987 (($ $) NIL (|has| |#2| (-559)))) (-3342 (((-112) $) NIL (|has| |#2| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3864 (($ $) NIL (|has| |#2| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-3094 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-865 |#1|) $) NIL)) (-2304 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#2| (-911)))) (-1978 (($ $ |#2| (-534 (-865 |#1|)) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3772 (($ (-1175 |#2|) (-865 |#1|)) NIL) (($ (-1175 $) (-865 |#1|)) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#2| (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-865 |#1|)) NIL)) (-1562 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-2972 (($ (-1 (-534 (-865 |#1|)) (-534 (-865 |#1|))) $) NIL)) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-2047 (((-3 (-865 |#1|) "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#2| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1812 (((-1161) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -2618 (-772))) "failed") $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#2| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#2| (-911)))) (-2478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-2254 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-3592 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3380 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1390 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ $) NIL (|has| |#2| (-559))) (($ (-410 (-567))) NIL (-2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567))))))) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-732 |#1| |#2|) (-951 |#2| (-534 (-865 |#1|)) (-865 |#1|)) (-645 (-1179)) (-1051)) (T -732)) -NIL -(-951 |#2| (-534 (-865 |#1|)) (-865 |#1|)) -((-2127 (((-2 (|:| -1992 (-954 |#3|)) (|:| -3871 (-954 |#3|))) |#4|) 14)) (-4402 ((|#4| |#4| |#2|) 33)) (-2747 ((|#4| (-410 (-954 |#3|)) |#2|) 64)) (-2635 ((|#4| (-1175 (-954 |#3|)) |#2|) 77)) (-3365 ((|#4| (-1175 |#4|) |#2|) 51)) (-1581 ((|#4| |#4| |#2|) 54)) (-3661 (((-421 |#4|) |#4|) 40))) -(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2127 ((-2 (|:| -1992 (-954 |#3|)) (|:| -3871 (-954 |#3|))) |#4|)) (-15 -1581 (|#4| |#4| |#2|)) (-15 -3365 (|#4| (-1175 |#4|) |#2|)) (-15 -4402 (|#4| |#4| |#2|)) (-15 -2635 (|#4| (-1175 (-954 |#3|)) |#2|)) (-15 -2747 (|#4| (-410 (-954 |#3|)) |#2|)) (-15 -3661 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)))) (-559) (-951 (-410 (-954 |#3|)) |#1| |#2|)) (T -733)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *6 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))) (-2747 (*1 *2 *3 *4) (-12 (-4 *6 (-559)) (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-954 *6))) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 (-954 *6))) (-4 *6 (-559)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))))) (-4402 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *6 (-559)))) (-1581 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) (-2127 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *6 (-559)) (-5 *2 (-2 (|:| -1992 (-954 *6)) (|:| -3871 (-954 *6)))) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5))))) -(-10 -7 (-15 -2127 ((-2 (|:| -1992 (-954 |#3|)) (|:| -3871 (-954 |#3|))) |#4|)) (-15 -1581 (|#4| |#4| |#2|)) (-15 -3365 (|#4| (-1175 |#4|) |#2|)) (-15 -4402 (|#4| |#4| |#2|)) (-15 -2635 (|#4| (-1175 (-954 |#3|)) |#2|)) (-15 -2747 (|#4| (-410 (-954 |#3|)) |#2|)) (-15 -3661 ((-421 |#4|) |#4|))) -((-3661 (((-421 |#4|) |#4|) 54))) -(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-421 |#4|) |#4|))) (-794) (-851) (-13 (-308) (-147)) (-951 (-410 |#3|) |#1| |#2|)) (T -734)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-951 (-410 *6) *4 *5))))) -(-10 -7 (-15 -3661 ((-421 |#4|) |#4|))) -((-4364 (((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)) 18))) -(((-735 |#1| |#2| |#3|) (-10 -7 (-15 -4364 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) (-1051) (-1051) (-727)) (T -735)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) (-5 *1 (-735 *5 *6 *7))))) -(-10 -7 (-15 -4364 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 38)) (-3785 (((-645 (-2 (|:| -1344 |#1|) (|:| -3245 |#2|))) $) 39)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3404 (((-772)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3094 ((|#2| $) NIL) ((|#1| $) NIL)) (-1833 (($ $) 104 (|has| |#2| (-851)))) (-1377 (((-3 $ "failed") $) 87)) (-2119 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) 72)) (-2615 (((-645 $) $) 54)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| |#2|) 17)) (-4364 (($ (-1 |#1| |#1|) $) 70)) (-2667 (((-923) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-1796 ((|#2| $) 103 (|has| |#2| (-851)))) (-1809 ((|#1| $) 102 (|has| |#2| (-851)))) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 101) (($ (-567)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-645 (-2 (|:| -1344 |#1|) (|:| -3245 |#2|)))) 11)) (-1516 (((-645 |#1|) $) 56)) (-4038 ((|#1| $ |#2|) 117)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 12 T CONST)) (-1820 (($) 46 T CONST)) (-2968 (((-112) $ $) 107)) (-3054 (($ $) 63) (($ $ $) NIL)) (-3045 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-736 |#1| |#2|) (-13 (-1051) (-1040 |#2|) (-1040 |#1|) (-10 -8 (-15 -3764 ($ |#1| |#2|)) (-15 -4038 (|#1| $ |#2|)) (-15 -2504 ($ (-645 (-2 (|:| -1344 |#1|) (|:| -3245 |#2|))))) (-15 -3785 ((-645 (-2 (|:| -1344 |#1|) (|:| -3245 |#2|))) $)) (-15 -4364 ($ (-1 |#1| |#1|) $)) (-15 -3615 ((-112) $)) (-15 -1516 ((-645 |#1|) $)) (-15 -2615 ((-645 $) $)) (-15 -1921 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -1796 (|#2| $)) (-15 -1809 (|#1| $)) (-15 -1833 ($ $))) |%noBranch|))) (-1051) (-727)) (T -736)) -((-3764 (*1 *1 *2 *3) (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-727)))) (-4038 (*1 *2 *1 *3) (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1344 *3) (|:| -3245 *4)))) (-4 *3 (-1051)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1344 *3) (|:| -3245 *4)))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-736 *3 *4)) (-4 *4 (-727)))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-2615 (*1 *2 *1) (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) (-1796 (*1 *2 *1) (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2)) (-4 *3 (-1051)))) (-1809 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *3 (-727)))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1051)) (-4 *3 (-727))))) -(-13 (-1051) (-1040 |#2|) (-1040 |#1|) (-10 -8 (-15 -3764 ($ |#1| |#2|)) (-15 -4038 (|#1| $ |#2|)) (-15 -2504 ($ (-645 (-2 (|:| -1344 |#1|) (|:| -3245 |#2|))))) (-15 -3785 ((-645 (-2 (|:| -1344 |#1|) (|:| -3245 |#2|))) $)) (-15 -4364 ($ (-1 |#1| |#1|) $)) (-15 -3615 ((-112) $)) (-15 -1516 ((-645 |#1|) $)) (-15 -2615 ((-645 $) $)) (-15 -1921 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -1796 (|#2| $)) (-15 -1809 (|#1| $)) (-15 -1833 ($ $))) |%noBranch|))) -((-2487 (((-112) $ $) 19)) (-3855 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1321 (($ $ $) 73)) (-3103 (((-112) $ $) 74)) (-1555 (((-112) $ (-772)) 8)) (-4191 (($ (-645 |#1|)) 69) (($) 68)) (-2105 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3048 (($ $) 63)) (-3470 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-1695 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2117 (((-112) $ $) 65)) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22)) (-3873 (($ $ $) 70)) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3479 (((-1122) $) 21)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-4043 (((-645 (-2 (|:| -2265 |#1|) (|:| -3486 (-772)))) $) 62)) (-2828 (($ $ |#1|) 72) (($ $ $) 71)) (-2730 (($) 50) (($ (-645 |#1|)) 49)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 51)) (-2504 (((-863) $) 18)) (-3719 (($ (-645 |#1|)) 67) (($) 66)) (-3858 (((-112) $ $) 23)) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20)) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-737 |#1|) (-140) (-1102)) (T -737)) -NIL -(-13 (-696 |t#1|) (-1100 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-696 |#1|) . T) ((-1100 |#1|) . T) ((-1102) . T) ((-1219) . T)) -((-2487 (((-112) $ $) NIL)) (-3855 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-1321 (($ $ $) 99)) (-3103 (((-112) $ $) 107)) (-1555 (((-112) $ (-772)) NIL)) (-4191 (($ (-645 |#1|)) 26) (($) 17)) (-2105 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3048 (($ $) 85)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4197 (($ |#1| $) 70 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4422))) (($ |#1| $ (-567)) 75) (($ (-1 (-112) |#1|) $ (-567)) 78)) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (($ |#1| $ (-567)) 80) (($ (-1 (-112) |#1|) $ (-567)) 81)) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-3468 (((-645 |#1|) $) 32 (|has| $ (-6 -4422)))) (-2117 (((-112) $ $) 106)) (-2902 (($) 15) (($ |#1|) 28) (($ (-645 |#1|)) 23)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) 38)) (-2203 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 89)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-3873 (($ $ $) 97)) (-3018 ((|#1| $) 62)) (-3636 (($ |#1| $) 63) (($ |#1| $ (-772)) 86)) (-3479 (((-1122) $) NIL)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1713 ((|#1| $) 61)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 56)) (-2973 (($) 14)) (-4043 (((-645 (-2 (|:| -2265 |#1|) (|:| -3486 (-772)))) $) 55)) (-2828 (($ $ |#1|) NIL) (($ $ $) 98)) (-2730 (($) 16) (($ (-645 |#1|)) 25)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) 68 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) 79)) (-1322 (((-539) $) 36 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 22)) (-2504 (((-863) $) 49)) (-3719 (($ (-645 |#1|)) 27) (($) 18)) (-3858 (((-112) $ $) NIL)) (-4225 (($ (-645 |#1|)) 24)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 103)) (-2498 (((-772) $) 67 (|has| $ (-6 -4422))))) -(((-738 |#1|) (-13 (-737 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -2902 ($)) (-15 -2902 ($ |#1|)) (-15 -2902 ($ (-645 |#1|))) (-15 -4200 ((-645 |#1|) $)) (-15 -1695 ($ |#1| $ (-567))) (-15 -1695 ($ (-1 (-112) |#1|) $ (-567))) (-15 -4197 ($ |#1| $ (-567))) (-15 -4197 ($ (-1 (-112) |#1|) $ (-567))))) (-1102)) (T -738)) -((-2902 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-2902 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-738 *3)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1102)))) (-1695 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-1695 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4)))) (-4197 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) (-4197 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) (-5 *1 (-738 *4))))) -(-13 (-737 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -2902 ($)) (-15 -2902 ($ |#1|)) (-15 -2902 ($ (-645 |#1|))) (-15 -4200 ((-645 |#1|) $)) (-15 -1695 ($ |#1| $ (-567))) (-15 -1695 ($ (-1 (-112) |#1|) $ (-567))) (-15 -4197 ($ |#1| $ (-567))) (-15 -4197 ($ (-1 (-112) |#1|) $ (-567))))) -((-1338 (((-1274) (-1161)) 8))) -(((-739) (-10 -7 (-15 -1338 ((-1274) (-1161))))) (T -739)) -((-1338 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-739))))) -(-10 -7 (-15 -1338 ((-1274) (-1161)))) -((-2396 (((-645 |#1|) (-645 |#1|) (-645 |#1|)) 15))) -(((-740 |#1|) (-10 -7 (-15 -2396 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) (-851)) (T -740)) -((-2396 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3))))) -(-10 -7 (-15 -2396 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 |#2|) $) 148)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 141 (|has| |#1| (-559)))) (-1987 (($ $) 140 (|has| |#1| (-559)))) (-3342 (((-112) $) 138 (|has| |#1| (-559)))) (-1406 (($ $) 97 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 80 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) 20)) (-3671 (($ $) 79 (|has| |#1| (-38 (-410 (-567)))))) (-1380 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-1431 (($ $) 95 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) 18 T CONST)) (-1833 (($ $) 132)) (-1377 (((-3 $ "failed") $) 37)) (-3204 (((-954 |#1|) $ (-772)) 110) (((-954 |#1|) $ (-772) (-772)) 109)) (-3219 (((-112) $) 149)) (-4329 (($) 107 (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-772) $ |#2|) 112) (((-772) $ |#2| (-772)) 111)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 78 (|has| |#1| (-38 (-410 (-567)))))) (-3615 (((-112) $) 130)) (-3764 (($ $ (-645 |#2|) (-645 (-534 |#2|))) 147) (($ $ |#2| (-534 |#2|)) 146) (($ |#1| (-534 |#2|)) 131) (($ $ |#2| (-772)) 114) (($ $ (-645 |#2|) (-645 (-772))) 113)) (-4364 (($ (-1 |#1| |#1|) $) 129)) (-2734 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) 127)) (-1809 ((|#1| $) 126)) (-1812 (((-1161) $) 10)) (-3670 (($ $ |#2|) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) 11)) (-1678 (($ $ (-772)) 115)) (-2478 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-4272 (($ $) 105 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (($ $ |#2| $) 123) (($ $ (-645 |#2|) (-645 $)) 122) (($ $ (-645 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-645 $) (-645 $)) 118)) (-3592 (($ $ |#2|) 46) (($ $ (-645 |#2|)) 45) (($ $ |#2| (-772)) 44) (($ $ (-645 |#2|) (-645 (-772))) 43)) (-3380 (((-534 |#2|) $) 128)) (-1443 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 83 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 93 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 84 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 85 (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 150)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-559))) (($ (-410 (-567))) 135 (|has| |#1| (-38 (-410 (-567)))))) (-4038 ((|#1| $ (-534 |#2|)) 133) (($ $ |#2| (-772)) 117) (($ $ (-645 |#2|) (-645 (-772))) 116)) (-2318 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1481 (($ $) 103 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 91 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) 139 (|has| |#1| (-559)))) (-1456 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 101 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 89 (|has| |#1| (-38 (-410 (-567)))))) (-2090 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 99 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 87 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 86 (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ |#2|) 42) (($ $ (-645 |#2|)) 41) (($ $ |#2| (-772)) 40) (($ $ (-645 |#2|) (-645 (-772))) 39)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ $) 106 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 77 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 136 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 125) (($ $ |#1|) 124))) -(((-741 |#1| |#2|) (-140) (-1051) (-851)) (T -741)) -((-4038 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) (-4038 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-851)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) (-4 *2 (-851)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-3905 (*1 *2 *1 *3) (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3905 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)))) (-3204 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)) (-5 *2 (-954 *4)))) (-3204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) (-4 *5 (-851)) (-5 *2 (-954 *4)))) (-3670 (*1 *1 *1 *2) (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)) (-4 *3 (-38 (-410 (-567))))))) -(-13 (-902 |t#2|) (-975 |t#1| (-534 |t#2|) |t#2|) (-517 |t#2| $) (-310 $) (-10 -8 (-15 -4038 ($ $ |t#2| (-772))) (-15 -4038 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -1678 ($ $ (-772))) (-15 -3764 ($ $ |t#2| (-772))) (-15 -3764 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -3905 ((-772) $ |t#2|)) (-15 -3905 ((-772) $ |t#2| (-772))) (-15 -3204 ((-954 |t#1|) $ (-772))) (-15 -3204 ((-954 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $ |t#2|)) (-6 (-1004)) (-6 (-1204))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-534 |#2|)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-291) |has| |#1| (-559)) ((-310 $) . T) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 |#2| $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 |#2|) . T) ((-975 |#1| #0# |#2|) . T) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567))))) -((-3661 (((-421 (-1175 |#4|)) (-1175 |#4|)) 30) (((-421 |#4|) |#4|) 26))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-421 |#4|) |#4|)) (-15 -3661 ((-421 (-1175 |#4|)) (-1175 |#4|)))) (-851) (-794) (-13 (-308) (-147)) (-951 |#3| |#2| |#1|)) (T -742)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))) -(-10 -7 (-15 -3661 ((-421 |#4|) |#4|)) (-15 -3661 ((-421 (-1175 |#4|)) (-1175 |#4|)))) -((-2790 (((-421 |#4|) |#4| |#2|) 142)) (-1775 (((-421 |#4|) |#4|) NIL)) (-1466 (((-421 (-1175 |#4|)) (-1175 |#4|)) 127) (((-421 |#4|) |#4|) 52)) (-3568 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -3661 (-1175 |#4|)) (|:| -2618 (-567)))))) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 81)) (-1412 (((-1175 |#3|) (-1175 |#3|) (-567)) 168)) (-3952 (((-645 (-772)) (-1175 |#4|) (-645 |#2|) (-772)) 75)) (-2606 (((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|)) 79)) (-2332 (((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 27)) (-1735 (((-2 (|:| -1916 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-567)) 72)) (-2255 (((-567) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567))))) 164)) (-2339 ((|#4| (-567) (-421 |#4|)) 73)) (-1983 (((-112) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567)))) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567))))) NIL))) -(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1466 ((-421 |#4|) |#4|)) (-15 -1466 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -1775 ((-421 |#4|) |#4|)) (-15 -2255 ((-567) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567)))))) (-15 -2790 ((-421 |#4|) |#4| |#2|)) (-15 -1735 ((-2 (|:| -1916 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-567))) (-15 -3568 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -3661 (-1175 |#4|)) (|:| -2618 (-567)))))) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2332 ((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2339 (|#4| (-567) (-421 |#4|))) (-15 -1983 ((-112) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567)))) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567)))))) (-15 -2606 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3952 ((-645 (-772)) (-1175 |#4|) (-645 |#2|) (-772))) (-15 -1412 ((-1175 |#3|) (-1175 |#3|) (-567)))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -743)) -((-1412 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-3952 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))) (-2606 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1175 *11)) (-5 *6 (-645 *10)) (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-951 *11 *9 *10)) (-5 *2 (-645 (-1175 *5))) (-5 *1 (-743 *9 *10 *11 *5)) (-5 *3 (-1175 *5)))) (-1983 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-2 (|:| -3661 (-1175 *6)) (|:| -2618 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-951 *7 *5 *6)) (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-308)))) (-2332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |upol| (-1175 *8)) (|:| |Lval| (-645 *8)) (|:| |Lfact| (-645 (-2 (|:| -3661 (-1175 *8)) (|:| -2618 (-567))))) (|:| |ctpol| *8))) (-5 *1 (-743 *6 *7 *8 *9)))) (-3568 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-951 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-645 (-2 (|:| -3661 (-1175 *9)) (|:| -2618 (-567))))))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1175 *9)))) (-1735 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-5 *2 (-2 (|:| -1916 (-1175 *9)) (|:| |polval| (-1175 *8)))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1175 *9)) (-5 *4 (-1175 *8)))) (-2790 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -3661 (-1175 *6)) (|:| -2618 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-1775 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))) (-1466 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-1466 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5))))) -(-10 -7 (-15 -1466 ((-421 |#4|) |#4|)) (-15 -1466 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -1775 ((-421 |#4|) |#4|)) (-15 -2255 ((-567) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567)))))) (-15 -2790 ((-421 |#4|) |#4| |#2|)) (-15 -1735 ((-2 (|:| -1916 (-1175 |#4|)) (|:| |polval| (-1175 |#3|))) (-1175 |#4|) (-1175 |#3|) (-567))) (-15 -3568 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -3661 (-1175 |#4|)) (|:| -2618 (-567)))))) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2332 ((-2 (|:| |upol| (-1175 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567))))) (|:| |ctpol| |#3|)) (-1175 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2339 (|#4| (-567) (-421 |#4|))) (-15 -1983 ((-112) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567)))) (-645 (-2 (|:| -3661 (-1175 |#3|)) (|:| -2618 (-567)))))) (-15 -2606 ((-3 (-645 (-1175 |#4|)) "failed") (-1175 |#4|) (-1175 |#3|) (-1175 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -3952 ((-645 (-772)) (-1175 |#4|) (-645 |#2|) (-772))) (-15 -1412 ((-1175 |#3|) (-1175 |#3|) (-567)))) -((-2258 (($ $ (-923)) 17))) -(((-744 |#1| |#2|) (-10 -8 (-15 -2258 (|#1| |#1| (-923)))) (-745 |#2|) (-172)) (T -744)) -NIL -(-10 -8 (-15 -2258 (|#1| |#1| (-923)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-3497 (($ $ (-923)) 31)) (-2258 (($ $ (-923)) 38)) (-2310 (($ $ (-923)) 32)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-4033 (($ $ $) 28)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2862 (($ $ $ $) 29)) (-1793 (($ $ $) 27)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-745 |#1|) (-140) (-172)) (T -745)) -((-2258 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-745 *3)) (-4 *3 (-172))))) -(-13 (-762) (-718 |t#1|) (-10 -8 (-15 -2258 ($ $ (-923))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-762) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) -((-2015 (((-1037) (-690 (-225)) (-567) (-112) (-567)) 25)) (-3255 (((-1037) (-690 (-225)) (-567) (-112) (-567)) 24))) -(((-746) (-10 -7 (-15 -3255 ((-1037) (-690 (-225)) (-567) (-112) (-567))) (-15 -2015 ((-1037) (-690 (-225)) (-567) (-112) (-567))))) (T -746)) -((-2015 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-746)))) (-3255 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-746))))) -(-10 -7 (-15 -3255 ((-1037) (-690 (-225)) (-567) (-112) (-567))) (-15 -2015 ((-1037) (-690 (-225)) (-567) (-112) (-567)))) -((-3611 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) 43)) (-1742 (((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) 39)) (-2496 (((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) 32))) -(((-747) (-10 -7 (-15 -2496 ((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -1742 ((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -3611 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))) (T -747)) -((-3611 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1037)) (-5 *1 (-747)))) (-1742 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1037)) (-5 *1 (-747)))) (-2496 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) (-5 *2 (-1037)) (-5 *1 (-747))))) -(-10 -7 (-15 -2496 ((-1037) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -1742 ((-1037) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -3611 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))))) -((-2341 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 34)) (-1880 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 33)) (-2773 (((-1037) (-567) (-690 (-225)) (-567)) 32)) (-1507 (((-1037) (-567) (-690 (-225)) (-567)) 31)) (-3751 (((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 30)) (-3549 (((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2431 (((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3116 (((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-3271 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-2967 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-1684 (((-1037) (-567) (-690 (-225)) (-567)) 22)) (-3166 (((-1037) (-567) (-690 (-225)) (-567)) 21))) -(((-748) (-10 -7 (-15 -3166 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1684 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -2967 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3271 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3116 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2431 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3549 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3751 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1507 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -2773 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1880 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -2341 ((-1037) (-567) (-567) (-690 (-225)) (-567))))) (T -748)) -((-2341 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1880 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2773 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1507 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3751 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3549 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2431 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3116 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3271 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-2967 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-1684 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748)))) (-3166 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-748))))) -(-10 -7 (-15 -3166 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1684 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -2967 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3271 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3116 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2431 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3549 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3751 ((-1037) (-567) (-567) (-1161) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1507 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -2773 ((-1037) (-567) (-690 (-225)) (-567))) (-15 -1880 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -2341 ((-1037) (-567) (-567) (-690 (-225)) (-567)))) -((-1887 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1361 (((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567)) 51)) (-2458 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3359 (((-1037) (-225) (-225) (-567) (-567) (-567) (-567)) 46)) (-3797 (((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 45)) (-2624 (((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 44)) (-3111 (((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 43)) (-3319 (((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 42)) (-3659 (((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) 38)) (-3282 (((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) 37)) (-2578 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) 33)) (-2016 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) 32))) -(((-749) (-10 -7 (-15 -2016 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -2578 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -3282 ((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -3659 ((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -3319 ((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3111 ((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2624 ((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3797 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3359 ((-1037) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -2458 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -1361 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -1887 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))) (T -749)) -((-1887 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-1361 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2458 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3359 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3797 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2624 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3111 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3319 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3659 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-3282 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2578 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) (-5 *2 (-1037)) (-5 *1 (-749)))) (-2016 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) (-5 *2 (-1037)) (-5 *1 (-749))))) -(-10 -7 (-15 -2016 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -2578 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -3282 ((-1037) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -3659 ((-1037) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676))))) (-15 -3319 ((-1037) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3111 ((-1037) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2624 ((-1037) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3797 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3359 ((-1037) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -2458 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -1361 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -1887 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))))) -((-2065 (((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-4080 (((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391)) 69) (((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2027 (((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) 57)) (-3888 (((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 50)) (-3407 (((-1037) (-225) (-567) (-567) (-1161) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3946 (((-1037) (-225) (-567) (-567) (-225) (-1161) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3643 (((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 42)) (-3812 (((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-750) (-10 -7 (-15 -3812 ((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3643 ((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -3946 ((-1037) (-225) (-567) (-567) (-225) (-1161) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3407 ((-1037) (-225) (-567) (-567) (-1161) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3888 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2027 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -4080 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -4080 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -2065 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -750)) -((-2065 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4080 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-391)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-4080 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1037)) (-5 *1 (-750)))) (-2027 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3888 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3407 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3946 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3643 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750)))) (-3812 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) -(-10 -7 (-15 -3812 ((-1037) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3643 ((-1037) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -3946 ((-1037) (-225) (-567) (-567) (-225) (-1161) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3407 ((-1037) (-225) (-567) (-567) (-1161) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3888 ((-1037) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -2027 ((-1037) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -4080 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -4080 ((-1037) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -2065 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-4106 (((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)) 45)) (-1635 (((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1161) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) 41)) (-1748 (((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 23))) -(((-751) (-10 -7 (-15 -1748 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1635 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1161) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -4106 ((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))) (T -751)) -((-4106 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-751)))) (-1635 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1037)) (-5 *1 (-751)))) (-1748 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-751))))) -(-10 -7 (-15 -1748 ((-1037) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1635 ((-1037) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1161) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -4106 ((-1037) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)))) -((-2174 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)) 35)) (-4096 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567)) 34)) (-1801 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567)) 33)) (-3808 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2200 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-1701 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567)) 27)) (-2145 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 24)) (-2965 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 23)) (-2277 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 22)) (-3399 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 21))) -(((-752) (-10 -7 (-15 -3399 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -2277 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2965 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2145 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1701 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2200 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3808 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1801 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -4096 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -2174 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))) (T -752)) -((-2174 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-4096 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-1801 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3808 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2200 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-1701 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2145 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2965 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-2277 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752)))) (-3399 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-752))))) -(-10 -7 (-15 -3399 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -2277 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2965 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2145 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1701 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2200 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3808 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1801 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -4096 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -2174 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)))) -((-1839 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 45)) (-4276 (((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567)) 44)) (-2875 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 43)) (-4025 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 42)) (-2099 (((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567)) 41)) (-3679 (((-1037) (-1161) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 40)) (-3015 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567)) 39)) (-3887 (((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567))) 38)) (-2703 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567)) 35)) (-2474 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567)) 34)) (-3616 (((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567)) 33)) (-2426 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 32)) (-2202 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567)) 31)) (-2948 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567)) 30)) (-2711 (((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 29)) (-3151 (((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567)) 28)) (-3823 (((-1037) (-567) (-690 (-225)) (-225) (-567)) 24)) (-4340 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 21))) -(((-753) (-10 -7 (-15 -4340 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3823 ((-1037) (-567) (-690 (-225)) (-225) (-567))) (-15 -3151 ((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -2711 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2948 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -2202 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -2426 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3616 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -2474 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -2703 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3887 ((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3015 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -3679 ((-1037) (-1161) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -2099 ((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4025 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2875 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -4276 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1839 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))) (T -753)) -((-1839 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4276 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2875 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4025 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2099 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3679 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3015 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3887 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2703 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2474 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3616 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2426 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2202 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2948 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-2711 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3151 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-3823 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1037)) (-5 *1 (-753)))) (-4340 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-753))))) -(-10 -7 (-15 -4340 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3823 ((-1037) (-567) (-690 (-225)) (-225) (-567))) (-15 -3151 ((-1037) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -2711 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2948 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -2202 ((-1037) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -2426 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3616 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -2474 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -2703 ((-1037) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3887 ((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3015 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -3679 ((-1037) (-1161) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -2099 ((-1037) (-1161) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4025 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2875 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -4276 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1839 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)))) -((-4031 (((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)) 63)) (-4348 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2908 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) 58)) (-1957 (((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567)) 51)) (-2678 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3949 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2366 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1474 (((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-754) (-10 -7 (-15 -1474 ((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -2366 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -3949 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -2678 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -1957 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -2908 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -4348 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -4031 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))) (T -754)) -((-4031 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-4348 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2908 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-1957 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2678 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-3949 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-2366 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1037)) (-5 *1 (-754)))) (-1474 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754))))) -(-10 -7 (-15 -1474 ((-1037) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -2366 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -3949 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -2678 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -1957 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -2908 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -4348 ((-1037) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -4031 ((-1037) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)))) -((-1847 (((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 47)) (-4037 (((-1037) (-1161) (-1161) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567)) 46)) (-1681 (((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 45)) (-3335 (((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 40)) (-4366 (((-1037) (-1161) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567)) 39)) (-2372 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-567)) 36)) (-3120 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567)) 35)) (-3500 (((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567)) 34)) (-1948 (((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567)) 33)) (-2648 (((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567)) 32))) -(((-755) (-10 -7 (-15 -2648 ((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -1948 ((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -3500 ((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -3120 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -2372 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -4366 ((-1037) (-1161) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3335 ((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1681 ((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -4037 ((-1037) (-1161) (-1161) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -1847 ((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -755)) -((-1847 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-4037 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1681 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3335 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-4366 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2372 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3120 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-3500 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-1948 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-755)))) (-2648 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1037)) (-5 *1 (-755))))) -(-10 -7 (-15 -2648 ((-1037) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -1948 ((-1037) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -3500 ((-1037) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -3120 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -2372 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -4366 ((-1037) (-1161) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3335 ((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1681 ((-1037) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -4037 ((-1037) (-1161) (-1161) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -1847 ((-1037) (-1161) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)))) -((-1671 (((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 80)) (-3809 (((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 69)) (-2092 (((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391)) 56) (((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) 55)) (-2280 (((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 37)) (-1423 (((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567)) 33)) (-3595 (((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 30)) (-4397 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2436 (((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-3890 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-3440 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567)) 26)) (-1716 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 25)) (-4020 (((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-1313 (((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-1792 (((-1037) (-690 (-225)) (-567) (-567) (-567) (-567)) 22)) (-3445 (((-1037) (-567) (-567) (-690 (-225)) (-567)) 21))) -(((-756) (-10 -7 (-15 -3445 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -1792 ((-1037) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -1313 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4020 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1716 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3440 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -3890 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2436 ((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4397 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3595 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -1423 ((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -2280 ((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2092 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2092 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -3809 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1671 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -756)) -((-1671 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3809 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2092 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2092 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2280 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-1423 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3595 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-4397 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-2436 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3890 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3440 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-1716 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-4020 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-1313 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756)))) (-1792 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-756)))) (-3445 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-756))))) -(-10 -7 (-15 -3445 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -1792 ((-1037) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -1313 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4020 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1716 ((-1037) (-567) (-567) (-690 (-225)) (-567))) (-15 -3440 ((-1037) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -3890 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2436 ((-1037) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4397 ((-1037) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3595 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -1423 ((-1037) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -2280 ((-1037) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2092 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2092 ((-1037) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -3809 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1671 ((-1037) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)))) -((-3988 (((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) 64)) (-2877 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567)) 60)) (-2978 (((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) 59)) (-4011 (((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 37)) (-1724 (((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567)) 36)) (-4012 (((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 33)) (-1587 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225))) 32)) (-2169 (((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567)) 28)) (-1806 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 27)) (-2157 (((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 26)) (-3184 (((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 22))) -(((-757) (-10 -7 (-15 -3184 ((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2157 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1806 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2169 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -1587 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -4012 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1724 ((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4011 ((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -2978 ((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2877 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -3988 ((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))) (T -757)) -((-3988 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2877 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2978 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-4011 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-1724 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-4012 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-1587 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2169 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-757)))) (-1806 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-2157 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-757)))) (-3184 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) (-5 *1 (-757))))) -(-10 -7 (-15 -3184 ((-1037) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2157 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1806 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2169 ((-1037) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -1587 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -4012 ((-1037) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1724 ((-1037) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4011 ((-1037) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -2978 ((-1037) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2877 ((-1037) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -3988 ((-1037) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))))) -((-2566 (((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))) 29)) (-1364 (((-1037) (-1161) (-567) (-567) (-690 (-225))) 28)) (-2515 (((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225))) 27)) (-3438 (((-1037) (-567) (-567) (-567) (-690 (-225))) 21))) -(((-758) (-10 -7 (-15 -3438 ((-1037) (-567) (-567) (-567) (-690 (-225)))) (-15 -2515 ((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -1364 ((-1037) (-1161) (-567) (-567) (-690 (-225)))) (-15 -2566 ((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))) (T -758)) -((-2566 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))) (-1364 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758)))) (-2515 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-758)))) (-3438 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) (-5 *1 (-758))))) -(-10 -7 (-15 -3438 ((-1037) (-567) (-567) (-567) (-690 (-225)))) (-15 -2515 ((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -1364 ((-1037) (-1161) (-567) (-567) (-690 (-225)))) (-15 -2566 ((-1037) (-1161) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))))) -((-3831 (((-1037) (-225) (-225) (-225) (-225) (-567)) 62)) (-2307 (((-1037) (-225) (-225) (-225) (-567)) 61)) (-2313 (((-1037) (-225) (-225) (-225) (-567)) 60)) (-3986 (((-1037) (-225) (-225) (-567)) 59)) (-3971 (((-1037) (-225) (-567)) 58)) (-1717 (((-1037) (-225) (-567)) 57)) (-3164 (((-1037) (-225) (-567)) 56)) (-1759 (((-1037) (-225) (-567)) 55)) (-4014 (((-1037) (-225) (-567)) 54)) (-3778 (((-1037) (-225) (-567)) 53)) (-2146 (((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567)) 52)) (-2263 (((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567)) 51)) (-3068 (((-1037) (-225) (-567)) 50)) (-3732 (((-1037) (-225) (-567)) 49)) (-3197 (((-1037) (-225) (-567)) 48)) (-2132 (((-1037) (-225) (-567)) 47)) (-2472 (((-1037) (-567) (-225) (-169 (-225)) (-567) (-1161) (-567)) 46)) (-2992 (((-1037) (-1161) (-169 (-225)) (-1161) (-567)) 45)) (-2567 (((-1037) (-1161) (-169 (-225)) (-1161) (-567)) 44)) (-2192 (((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567)) 43)) (-3744 (((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567)) 42)) (-2768 (((-1037) (-225) (-567)) 39)) (-3640 (((-1037) (-225) (-567)) 38)) (-3283 (((-1037) (-225) (-567)) 37)) (-1592 (((-1037) (-225) (-567)) 36)) (-2656 (((-1037) (-225) (-567)) 35)) (-2662 (((-1037) (-225) (-567)) 34)) (-3191 (((-1037) (-225) (-567)) 33)) (-1538 (((-1037) (-225) (-567)) 32)) (-3210 (((-1037) (-225) (-567)) 31)) (-1922 (((-1037) (-225) (-567)) 30)) (-3505 (((-1037) (-225) (-225) (-225) (-567)) 29)) (-3702 (((-1037) (-225) (-567)) 28)) (-3723 (((-1037) (-225) (-567)) 27)) (-3091 (((-1037) (-225) (-567)) 26)) (-1594 (((-1037) (-225) (-567)) 25)) (-4337 (((-1037) (-225) (-567)) 24)) (-1568 (((-1037) (-169 (-225)) (-567)) 21))) -(((-759) (-10 -7 (-15 -1568 ((-1037) (-169 (-225)) (-567))) (-15 -4337 ((-1037) (-225) (-567))) (-15 -1594 ((-1037) (-225) (-567))) (-15 -3091 ((-1037) (-225) (-567))) (-15 -3723 ((-1037) (-225) (-567))) (-15 -3702 ((-1037) (-225) (-567))) (-15 -3505 ((-1037) (-225) (-225) (-225) (-567))) (-15 -1922 ((-1037) (-225) (-567))) (-15 -3210 ((-1037) (-225) (-567))) (-15 -1538 ((-1037) (-225) (-567))) (-15 -3191 ((-1037) (-225) (-567))) (-15 -2662 ((-1037) (-225) (-567))) (-15 -2656 ((-1037) (-225) (-567))) (-15 -1592 ((-1037) (-225) (-567))) (-15 -3283 ((-1037) (-225) (-567))) (-15 -3640 ((-1037) (-225) (-567))) (-15 -2768 ((-1037) (-225) (-567))) (-15 -3744 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2192 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2567 ((-1037) (-1161) (-169 (-225)) (-1161) (-567))) (-15 -2992 ((-1037) (-1161) (-169 (-225)) (-1161) (-567))) (-15 -2472 ((-1037) (-567) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2132 ((-1037) (-225) (-567))) (-15 -3197 ((-1037) (-225) (-567))) (-15 -3732 ((-1037) (-225) (-567))) (-15 -3068 ((-1037) (-225) (-567))) (-15 -2263 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2146 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -3778 ((-1037) (-225) (-567))) (-15 -4014 ((-1037) (-225) (-567))) (-15 -1759 ((-1037) (-225) (-567))) (-15 -3164 ((-1037) (-225) (-567))) (-15 -1717 ((-1037) (-225) (-567))) (-15 -3971 ((-1037) (-225) (-567))) (-15 -3986 ((-1037) (-225) (-225) (-567))) (-15 -2313 ((-1037) (-225) (-225) (-225) (-567))) (-15 -2307 ((-1037) (-225) (-225) (-225) (-567))) (-15 -3831 ((-1037) (-225) (-225) (-225) (-225) (-567))))) (T -759)) -((-3831 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2307 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2313 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3986 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1759 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3778 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2146 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2263 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2132 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2472 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1161)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2992 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1161)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2567 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1161)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2192 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3744 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2768 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3191 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1538 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1922 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3505 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-3091 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1594 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-4337 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759)))) (-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(-10 -7 (-15 -1568 ((-1037) (-169 (-225)) (-567))) (-15 -4337 ((-1037) (-225) (-567))) (-15 -1594 ((-1037) (-225) (-567))) (-15 -3091 ((-1037) (-225) (-567))) (-15 -3723 ((-1037) (-225) (-567))) (-15 -3702 ((-1037) (-225) (-567))) (-15 -3505 ((-1037) (-225) (-225) (-225) (-567))) (-15 -1922 ((-1037) (-225) (-567))) (-15 -3210 ((-1037) (-225) (-567))) (-15 -1538 ((-1037) (-225) (-567))) (-15 -3191 ((-1037) (-225) (-567))) (-15 -2662 ((-1037) (-225) (-567))) (-15 -2656 ((-1037) (-225) (-567))) (-15 -1592 ((-1037) (-225) (-567))) (-15 -3283 ((-1037) (-225) (-567))) (-15 -3640 ((-1037) (-225) (-567))) (-15 -2768 ((-1037) (-225) (-567))) (-15 -3744 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2192 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2567 ((-1037) (-1161) (-169 (-225)) (-1161) (-567))) (-15 -2992 ((-1037) (-1161) (-169 (-225)) (-1161) (-567))) (-15 -2472 ((-1037) (-567) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2132 ((-1037) (-225) (-567))) (-15 -3197 ((-1037) (-225) (-567))) (-15 -3732 ((-1037) (-225) (-567))) (-15 -3068 ((-1037) (-225) (-567))) (-15 -2263 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -2146 ((-1037) (-225) (-169 (-225)) (-567) (-1161) (-567))) (-15 -3778 ((-1037) (-225) (-567))) (-15 -4014 ((-1037) (-225) (-567))) (-15 -1759 ((-1037) (-225) (-567))) (-15 -3164 ((-1037) (-225) (-567))) (-15 -1717 ((-1037) (-225) (-567))) (-15 -3971 ((-1037) (-225) (-567))) (-15 -3986 ((-1037) (-225) (-225) (-567))) (-15 -2313 ((-1037) (-225) (-225) (-225) (-567))) (-15 -2307 ((-1037) (-225) (-225) (-225) (-567))) (-15 -3831 ((-1037) (-225) (-225) (-225) (-225) (-567)))) -((-3748 (((-1274)) 21)) (-1521 (((-1161)) 32)) (-1860 (((-1161)) 31)) (-3513 (((-1106) (-1179) (-690 (-567))) 46) (((-1106) (-1179) (-690 (-225))) 42)) (-4247 (((-112)) 19)) (-2242 (((-1161) (-1161)) 35))) -(((-760) (-10 -7 (-15 -1860 ((-1161))) (-15 -1521 ((-1161))) (-15 -2242 ((-1161) (-1161))) (-15 -3513 ((-1106) (-1179) (-690 (-225)))) (-15 -3513 ((-1106) (-1179) (-690 (-567)))) (-15 -4247 ((-112))) (-15 -3748 ((-1274))))) (T -760)) -((-3748 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-760)))) (-4247 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))) (-3513 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-690 (-567))) (-5 *2 (-1106)) (-5 *1 (-760)))) (-3513 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-690 (-225))) (-5 *2 (-1106)) (-5 *1 (-760)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760)))) (-1521 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760)))) (-1860 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760))))) -(-10 -7 (-15 -1860 ((-1161))) (-15 -1521 ((-1161))) (-15 -2242 ((-1161) (-1161))) (-15 -3513 ((-1106) (-1179) (-690 (-225)))) (-15 -3513 ((-1106) (-1179) (-690 (-567)))) (-15 -4247 ((-112))) (-15 -3748 ((-1274)))) -((-4033 (($ $ $) 10)) (-2862 (($ $ $ $) 9)) (-1793 (($ $ $) 12))) -(((-761 |#1|) (-10 -8 (-15 -1793 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1| |#1|))) (-762)) (T -761)) -NIL -(-10 -8 (-15 -1793 (|#1| |#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-3497 (($ $ (-923)) 31)) (-2310 (($ $ (-923)) 32)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-4033 (($ $ $) 28)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2862 (($ $ $ $) 29)) (-1793 (($ $ $) 27)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 33)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30))) -(((-762) (-140)) (T -762)) -((-2862 (*1 *1 *1 *1 *1) (-4 *1 (-762))) (-4033 (*1 *1 *1 *1) (-4 *1 (-762))) (-1793 (*1 *1 *1 *1) (-4 *1 (-762)))) -(-13 (-21) (-721) (-10 -8 (-15 -2862 ($ $ $ $)) (-15 -4033 ($ $ $)) (-15 -1793 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-1102) . T)) -((-2504 (((-863) $) NIL) (($ (-567)) 10))) -(((-763 |#1|) (-10 -8 (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-764)) (T -763)) -NIL -(-10 -8 (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1511 (((-3 $ "failed") $) 43)) (-3497 (($ $ (-923)) 31) (($ $ (-772)) 38)) (-1377 (((-3 $ "failed") $) 41)) (-4384 (((-112) $) 37)) (-3822 (((-3 $ "failed") $) 42)) (-2310 (($ $ (-923)) 32) (($ $ (-772)) 39)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-4033 (($ $ $) 28)) (-2504 (((-863) $) 12) (($ (-567)) 34)) (-2214 (((-772)) 35 T CONST)) (-3858 (((-112) $ $) 9)) (-2862 (($ $ $ $) 29)) (-1793 (($ $ $) 27)) (-1807 (($) 19 T CONST)) (-1820 (($) 36 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 33) (($ $ (-772)) 40)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30))) -(((-764) (-140)) (T -764)) -((-2214 (*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764))))) -(-13 (-762) (-723) (-10 -8 (-15 -2214 ((-772)) -3562) (-15 -2504 ($ (-567))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-723) . T) ((-762) . T) ((-1102) . T)) -((-3198 (((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|) 33)) (-2803 (((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|) 23)) (-4019 (((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1179)) 20) (((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567))))) 19))) -(((-765 |#1|) (-10 -7 (-15 -4019 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -4019 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1179))) (-15 -2803 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -3198 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) (-13 (-365) (-849))) (T -765)) -((-3198 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 *4))))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1179)) (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-365) (-849))))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -4019 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -4019 ((-954 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1179))) (-15 -2803 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -3198 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) -((-3617 (((-174 (-567)) |#1|) 27))) -(((-766 |#1|) (-10 -7 (-15 -3617 ((-174 (-567)) |#1|))) (-407)) (T -766)) -((-3617 (*1 *2 *3) (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407))))) -(-10 -7 (-15 -3617 ((-174 (-567)) |#1|))) -((-3119 ((|#1| |#1| |#1|) 28)) (-3049 ((|#1| |#1| |#1|) 27)) (-2669 ((|#1| |#1| |#1|) 38)) (-1874 ((|#1| |#1| |#1|) 34)) (-2535 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4240 (((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|) 26))) -(((-767 |#1| |#2|) (-10 -7 (-15 -4240 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -3119 (|#1| |#1| |#1|)) (-15 -2535 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -2669 (|#1| |#1| |#1|))) (-709 |#2|) (-365)) (T -767)) -((-2669 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-1874 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2535 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3119 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3049 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-4240 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4))))) -(-10 -7 (-15 -4240 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -3119 (|#1| |#1| |#1|)) (-15 -2535 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -2669 (|#1| |#1| |#1|))) -((-3532 (((-692 (-1227)) $ (-1227)) 26)) (-2787 (((-692 (-552)) $ (-552)) 25)) (-1465 (((-772) $ (-128)) 27)) (-2980 (((-692 (-129)) $ (-129)) 24)) (-2184 (((-692 (-1227)) $) 12)) (-3383 (((-692 (-1225)) $) 8)) (-2011 (((-692 (-1224)) $) 10)) (-1693 (((-692 (-552)) $) 13)) (-1867 (((-692 (-550)) $) 9)) (-3415 (((-692 (-549)) $) 11)) (-4267 (((-772) $ (-128)) 7)) (-4350 (((-692 (-129)) $) 14)) (-1453 (((-112) $) 31)) (-1956 (((-692 $) |#1| (-956)) 32)) (-4023 (($ $) 6))) -(((-768 |#1|) (-140) (-1102)) (T -768)) -((-1956 (*1 *2 *3 *4) (-12 (-5 *4 (-956)) (-4 *3 (-1102)) (-5 *2 (-692 *1)) (-4 *1 (-768 *3)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(-13 (-579) (-10 -8 (-15 -1956 ((-692 $) |t#1| (-956))) (-15 -1453 ((-112) $)))) -(((-173) . T) ((-530) . T) ((-579) . T) ((-861) . T)) -((-4112 (((-2 (|:| -4374 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)) 71)) (-2171 (((-2 (|:| -4374 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) 69)) (-2254 (((-567)) 85))) -(((-769 |#1| |#2|) (-10 -7 (-15 -2254 ((-567))) (-15 -2171 ((-2 (|:| -4374 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -4112 ((-2 (|:| -4374 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) (-1245 (-567)) (-412 (-567) |#1|)) (T -769)) -((-4112 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2171 (*1 *2) (-12 (-4 *3 (-1245 (-567))) (-5 *2 (-2 (|:| -4374 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) (-2254 (*1 *2) (-12 (-4 *3 (-1245 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 *2 *3))))) -(-10 -7 (-15 -2254 ((-567))) (-15 -2171 ((-2 (|:| -4374 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -4112 ((-2 (|:| -4374 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) -((-2487 (((-112) $ $) NIL)) (-3094 (((-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 20) (($ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-770) (-13 (-1102) (-10 -8 (-15 -2504 ($ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2504 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2504 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3094 ((-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -770)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770))))) -(-13 (-1102) (-10 -8 (-15 -2504 ($ (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2504 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2504 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3094 ((-3 (|:| |nia| (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) -((-2158 (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))) 18) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179))) 17)) (-2510 (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))) 20) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179))) 19))) -(((-771 |#1|) (-10 -7 (-15 -2158 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -2158 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))))) (-559)) (T -771)) -((-2510 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) (-2158 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5))))) -(-10 -7 (-15 -2158 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -2158 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-954 |#1|))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-1992 (($ $ $) 10)) (-2932 (((-3 $ "failed") $ $) 15)) (-3075 (($ $ (-567)) 11)) (-3758 (($) NIL T CONST)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($ $) NIL)) (-2443 (($ $ $) NIL)) (-4384 (((-112) $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1870 (($ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 6 T CONST)) (-1820 (($) NIL T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ $ $) NIL))) -(((-772) (-13 (-794) (-727) (-10 -8 (-15 -2443 ($ $ $)) (-15 -2432 ($ $ $)) (-15 -1870 ($ $ $)) (-15 -2401 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -2478 ((-3 $ "failed") $ $)) (-15 -3075 ($ $ (-567))) (-15 -2119 ($ $)) (-6 (-4424 "*"))))) (T -772)) -((-2443 (*1 *1 *1 *1) (-5 *1 (-772))) (-2432 (*1 *1 *1 *1) (-5 *1 (-772))) (-1870 (*1 *1 *1 *1) (-5 *1 (-772))) (-2401 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3693 (-772)) (|:| -2642 (-772)))) (-5 *1 (-772)))) (-2478 (*1 *1 *1 *1) (|partial| -5 *1 (-772))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772)))) (-2119 (*1 *1 *1) (-5 *1 (-772)))) -(-13 (-794) (-727) (-10 -8 (-15 -2443 ($ $ $)) (-15 -2432 ($ $ $)) (-15 -1870 ($ $ $)) (-15 -2401 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -2478 ((-3 $ "failed") $ $)) (-15 -3075 ($ $ (-567))) (-15 -2119 ($ $)) (-6 (-4424 "*")))) +((-2459 (((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|)) 33))) +(((-665 |#1|) (-10 -7 (-15 -2459 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|)))) (-913)) (T -665)) +((-2459 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *4))) (-5 *3 (-1174 *4)) (-4 *4 (-913)) (-5 *1 (-665 *4))))) +(-10 -7 (-15 -2459 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4366 (((-643 |#1|) $) 84)) (-4379 (($ $ (-773)) 94)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4371 (((-1294 |#1| |#2|) (-1294 |#1| |#2|) $) 50)) (-3577 (((-3 (-674 |#1|) "failed") $) NIL)) (-3576 (((-674 |#1|) $) NIL)) (-4391 (($ $) 93)) (-2581 (((-773) $) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-674 |#1|) |#2|) 70)) (-4368 (($ $) 89)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (((-1294 |#1| |#2|) (-1294 |#1| |#2|) $) 49)) (-1917 (((-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3295 (((-674 |#1|) $) NIL)) (-3594 ((|#2| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4199 (($ $ |#1| $) 32) (($ $ (-643 |#1|) (-643 $)) 34)) (-4380 (((-773) $) 91)) (-3953 (($ $ $) 20) (($ (-674 |#1|) (-674 |#1|)) 79) (($ (-674 |#1|) $) 77) (($ $ (-674 |#1|)) 78)) (-4378 (((-865) $) NIL) (($ |#1|) 76) (((-1285 |#1| |#2|) $) 60) (((-1294 |#1| |#2|) $) 43) (($ (-674 |#1|)) 27)) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-674 |#1|)) NIL)) (-4386 ((|#2| (-1294 |#1| |#2|) $) 45)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 23 T CONST)) (-3066 (((-643 (-2 (|:| |k| (-674 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4377 (((-3 $ "failed") (-1285 |#1| |#2|)) 62)) (-1901 (($ (-674 |#1|)) 14)) (-3455 (((-112) $ $) 46)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) 68) (($ $ $) NIL)) (-4271 (($ $ $) 31)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-674 |#1|)) NIL))) +(((-666 |#1| |#2|) (-13 (-376 |#1| |#2|) (-386 |#2| (-674 |#1|)) (-10 -8 (-15 -4377 ((-3 $ "failed") (-1285 |#1| |#2|))) (-15 -3953 ($ (-674 |#1|) (-674 |#1|))) (-15 -3953 ($ (-674 |#1|) $)) (-15 -3953 ($ $ (-674 |#1|))))) (-852) (-172)) (T -666)) +((-4377 (*1 *1 *2) (|partial| -12 (-5 *2 (-1285 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *1 (-666 *3 *4)))) (-3953 (*1 *1 *2 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) (-3953 (*1 *1 *2 *1) (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) (-3953 (*1 *1 *1 *2) (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172))))) +(-13 (-376 |#1| |#2|) (-386 |#2| (-674 |#1|)) (-10 -8 (-15 -4377 ((-3 $ "failed") (-1285 |#1| |#2|))) (-15 -3953 ($ (-674 |#1|) (-674 |#1|))) (-15 -3953 ($ (-674 |#1|) $)) (-15 -3953 ($ $ (-674 |#1|))))) +((-1900 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-1898 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1678 (($ (-1 (-112) |#2|) $) 29)) (-2442 (($ $) 67)) (-2526 (($ $) 78)) (-3829 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-4274 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3843 (((-549) |#2| $ (-549)) 75) (((-549) |#2| $) NIL) (((-549) (-1 (-112) |#2|) $) 56)) (-4046 (($ (-773) |#2|) 65)) (-3259 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3941 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4390 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3965 (($ |#2|) 15)) (-4039 (($ $ $ (-549)) 42) (($ |#2| $ (-549)) 40)) (-1441 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1679 (($ $ (-1236 (-549))) 51) (($ $ (-549)) 44)) (-1899 (($ $ $ (-549)) 74)) (-3824 (($ $) 72)) (-3088 (((-112) $ $) 80))) +(((-667 |#1| |#2|) (-10 -8 (-15 -3965 (|#1| |#2|)) (-15 -1679 (|#1| |#1| (-549))) (-15 -1679 (|#1| |#1| (-1236 (-549)))) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4039 (|#1| |#2| |#1| (-549))) (-15 -4039 (|#1| |#1| |#1| (-549))) (-15 -3259 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -2526 (|#1| |#1|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3941 (|#1| |#1| |#1|)) (-15 -1900 ((-112) |#1|)) (-15 -1899 (|#1| |#1| |#1| (-549))) (-15 -2442 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4046 (|#1| (-773) |#2|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#1| |#1|))) (-668 |#2|) (-1219)) (T -667)) +NIL +(-10 -8 (-15 -3965 (|#1| |#2|)) (-15 -1679 (|#1| |#1| (-549))) (-15 -1679 (|#1| |#1| (-1236 (-549)))) (-15 -3829 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4039 (|#1| |#2| |#1| (-549))) (-15 -4039 (|#1| |#1| |#1| (-549))) (-15 -3259 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1678 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3829 (|#1| |#2| |#1|)) (-15 -2526 (|#1| |#1|)) (-15 -3259 (|#1| |#1| |#1|)) (-15 -3941 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3843 ((-549) (-1 (-112) |#2|) |#1|)) (-15 -3843 ((-549) |#2| |#1|)) (-15 -3843 ((-549) |#2| |#1| (-549))) (-15 -3941 (|#1| |#1| |#1|)) (-15 -1900 ((-112) |#1|)) (-15 -1899 (|#1| |#1| |#1| (-549))) (-15 -2442 (|#1| |#1|)) (-15 -1898 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -3088 ((-112) |#1| |#1|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4274 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1441 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4046 (|#1| (-773) |#2|)) (-15 -4390 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3824 (|#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4226 ((|#1| $) 66)) (-4228 (($ $) 68)) (-2372 (((-1275) $ (-549) (-549)) 98 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 53 (|has| $ (-6 -4426)))) (-1900 (((-112) $) 143 (|has| |#1| (-852))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-1898 (($ $) 147 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4426)))) (-3310 (($ $) 142 (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 57 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) 55 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 59 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 118 (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) 87 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-1678 (($ (-1 (-112) |#1|) $) 130)) (-4142 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4425)))) (-4227 ((|#1| $) 67)) (-4156 (($) 7 T CONST)) (-2442 (($ $) 145 (|has| $ (-6 -4426)))) (-2443 (($ $) 135)) (-4230 (($ $) 74) (($ $ (-773)) 72)) (-2526 (($ $) 132 (|has| |#1| (-1104)))) (-1440 (($ $) 100 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 131 (|has| |#1| (-1104))) (($ (-1 (-112) |#1|) $) 126)) (-3830 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4425))) (($ |#1| $) 101 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1684 ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 88)) (-3866 (((-112) $) 84)) (-3843 (((-549) |#1| $ (-549)) 140 (|has| |#1| (-1104))) (((-549) |#1| $) 139 (|has| |#1| (-1104))) (((-549) (-1 (-112) |#1|) $) 138)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) 109)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 96 (|has| (-549) (-852)))) (-2934 (($ $ $) 148 (|has| |#1| (-852)))) (-3259 (($ $ $) 133 (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3941 (($ $ $) 141 (|has| |#1| (-852))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 95 (|has| (-549) (-852)))) (-3260 (($ $ $) 149 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3965 (($ |#1|) 123)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 71) (($ $ (-773)) 69)) (-4039 (($ $ $ (-549)) 128) (($ |#1| $ (-549)) 127)) (-2449 (($ $ $ (-549)) 117) (($ |#1| $ (-549)) 116)) (-2377 (((-643 (-549)) $) 93)) (-2378 (((-112) (-549) $) 92)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 77) (($ $ (-773)) 75)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2373 (($ $ |#1|) 97 (|has| $ (-6 -4426)))) (-3867 (((-112) $) 85)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 91)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1236 (-549))) 113) ((|#1| $ (-549)) 90) ((|#1| $ (-549) |#1|) 89)) (-3430 (((-549) $ $) 45)) (-1679 (($ $ (-1236 (-549))) 125) (($ $ (-549)) 124)) (-2450 (($ $ (-1236 (-549))) 115) (($ $ (-549)) 114)) (-4065 (((-112) $) 47)) (-4223 (($ $) 63)) (-4221 (($ $) 60 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 64)) (-4225 (($ $) 65)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 144 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 99 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 108)) (-4222 (($ $ $) 62) (($ $ |#1|) 61)) (-4233 (($ $ $) 79) (($ |#1| $) 78) (($ (-643 $)) 111) (($ $ |#1|) 110)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 151 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 152 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 150 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 153 (|has| |#1| (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-668 |#1|) (-140) (-1219)) (T -668)) +((-3965 (*1 *1 *2) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1219))))) +(-13 (-1152 |t#1|) (-374 |t#1|) (-283 |t#1|) (-10 -8 (-15 -3965 ($ |t#1|)))) +(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-283 |#1|) . T) ((-374 |#1|) . T) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1013 |#1|) . T) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1152 |#1|) . T) ((-1219) . T) ((-1258 |#1|) . T)) +((-4004 (((-643 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2190 (-643 |#3|)))) |#4| (-643 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2190 (-643 |#3|))) |#4| |#3|) 60)) (-3513 (((-773) |#4| |#3|) 18)) (-3764 (((-3 |#3| #1#) |#4| |#3|) 21)) (-2460 (((-112) |#4| |#3|) 14))) +(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4004 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|)) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2190 (-643 |#3|)))) |#4| (-643 |#3|))) (-15 -3764 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2460 ((-112) |#4| |#3|)) (-15 -3513 ((-773) |#4| |#3|))) (-365) (-13 (-374 |#1|) (-10 -7 (-6 -4426))) (-13 (-374 |#1|) (-10 -7 (-6 -4426))) (-688 |#1| |#2| |#3|)) (T -669)) +((-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-773)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2460 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-112)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3764 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-374 *4) (-10 -7 (-6 -4426)))) (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426)))) (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) (-4004 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-4 *7 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-643 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2190 (-643 *7))))) (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-643 *7)) (-4 *3 (-688 *5 *6 *7)))) (-4004 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) +(-10 -7 (-15 -4004 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|)) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2190 (-643 |#3|)))) |#4| (-643 |#3|))) (-15 -3764 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2460 ((-112) |#4| |#3|)) (-15 -3513 ((-773) |#4| |#3|))) +((-4004 (((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1="failed")) (|:| -2190 (-643 (-1269 |#1|))))) (-643 (-643 |#1|)) (-643 (-1269 |#1|))) 22) (((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-691 |#1|) (-643 (-1269 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|)))) (-643 (-643 |#1|)) (-1269 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|)) 14)) (-3513 (((-773) (-691 |#1|) (-1269 |#1|)) 30)) (-3764 (((-3 (-1269 |#1|) #1#) (-691 |#1|) (-1269 |#1|)) 24)) (-2460 (((-112) (-691 |#1|) (-1269 |#1|)) 27))) +(((-670 |#1|) (-10 -7 (-15 -4004 ((-2 (|:| |particular| (-3 (-1269 |#1|) #1="failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|))) (-15 -4004 ((-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|)))) (-643 (-643 |#1|)) (-1269 |#1|))) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-691 |#1|) (-643 (-1269 |#1|)))) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-643 (-643 |#1|)) (-643 (-1269 |#1|)))) (-15 -3764 ((-3 (-1269 |#1|) #1#) (-691 |#1|) (-1269 |#1|))) (-15 -2460 ((-112) (-691 |#1|) (-1269 |#1|))) (-15 -3513 ((-773) (-691 |#1|) (-1269 |#1|)))) (-365)) (T -670)) +((-3513 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-773)) (-5 *1 (-670 *5)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-670 *5)))) (-3764 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1269 *4)) (-5 *3 (-691 *4)) (-4 *4 (-365)) (-5 *1 (-670 *4)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 *5))) (-4 *5 (-365)) (-5 *2 (-643 (-2 (|:| |particular| (-3 (-1269 *5) #1="failed")) (|:| -2190 (-643 (-1269 *5)))))) (-5 *1 (-670 *5)) (-5 *4 (-643 (-1269 *5))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *5)) (-4 *5 (-365)) (-5 *2 (-643 (-2 (|:| |particular| (-3 (-1269 *5) #1#)) (|:| -2190 (-643 (-1269 *5)))))) (-5 *1 (-670 *5)) (-5 *4 (-643 (-1269 *5))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *5) #1#)) (|:| -2190 (-643 (-1269 *5))))) (-5 *1 (-670 *5)) (-5 *4 (-1269 *5)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *5) #1#)) (|:| -2190 (-643 (-1269 *5))))) (-5 *1 (-670 *5)) (-5 *4 (-1269 *5))))) +(-10 -7 (-15 -4004 ((-2 (|:| |particular| (-3 (-1269 |#1|) #1="failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|))) (-15 -4004 ((-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|)))) (-643 (-643 |#1|)) (-1269 |#1|))) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-691 |#1|) (-643 (-1269 |#1|)))) (-15 -4004 ((-643 (-2 (|:| |particular| (-3 (-1269 |#1|) #1#)) (|:| -2190 (-643 (-1269 |#1|))))) (-643 (-643 |#1|)) (-643 (-1269 |#1|)))) (-15 -3764 ((-3 (-1269 |#1|) #1#) (-691 |#1|) (-1269 |#1|))) (-15 -2460 ((-112) (-691 |#1|) (-1269 |#1|))) (-15 -3513 ((-773) (-691 |#1|) (-1269 |#1|)))) +((-2461 (((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2190 (-643 (-1269 (-410 |#4|))))) (-643 |#4|) (-643 |#3|)) 52))) +(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2461 ((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2190 (-643 (-1269 (-410 |#4|))))) (-643 |#4|) (-643 |#3|)))) (-560) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -671)) +((-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *7)) (-4 *7 (-852)) (-4 *8 (-953 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 (-410 *8)) "failed")) (|:| -2190 (-643 (-1269 (-410 *8)))))) (-5 *1 (-671 *5 *6 *7 *8))))) +(-10 -7 (-15 -2461 ((-2 (|:| |particular| (-3 (-1269 (-410 |#4|)) "failed")) (|:| -2190 (-643 (-1269 (-410 |#4|))))) (-643 |#4|) (-643 |#3|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1947 (((-3 $ #1="failed")) NIL (|has| |#2| (-560)))) (-3754 ((|#2| $) NIL)) (-3525 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3643 (((-1269 (-691 |#2|))) NIL) (((-1269 (-691 |#2|)) (-1269 $)) NIL)) (-3527 (((-112) $) NIL)) (-1897 (((-1269 $)) 44)) (-1309 (((-112) $ (-773)) NIL)) (-3757 (($ |#2|) NIL)) (-4156 (($) NIL T CONST)) (-3514 (($ $) NIL (|has| |#2| (-308)))) (-3516 (((-239 |#1| |#2|) $ (-549)) NIL)) (-2084 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (|has| |#2| (-560)))) (-1871 (((-3 $ #1#)) NIL (|has| |#2| (-560)))) (-1963 (((-691 |#2|)) NIL) (((-691 |#2|) (-1269 $)) NIL)) (-1895 ((|#2| $) NIL)) (-1961 (((-691 |#2|) $) NIL) (((-691 |#2|) $ (-1269 $)) NIL)) (-2567 (((-3 $ #1#) $) NIL (|has| |#2| (-560)))) (-2078 (((-1174 (-949 |#2|))) NIL (|has| |#2| (-365)))) (-2570 (($ $ (-922)) NIL)) (-1893 ((|#2| $) NIL)) (-1873 (((-1174 |#2|) $) NIL (|has| |#2| (-560)))) (-1965 ((|#2|) NIL) ((|#2| (-1269 $)) NIL)) (-1891 (((-1174 |#2|) $) NIL)) (-1885 (((-112)) NIL)) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 |#2| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) ((|#2| $) NIL)) (-1967 (($ (-1269 |#2|)) NIL) (($ (-1269 |#2|) (-1269 $)) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3513 (((-773) $) NIL (|has| |#2| (-560))) (((-922)) 45)) (-3517 ((|#2| $ (-549) (-549)) NIL)) (-1882 (((-112)) NIL)) (-2594 (($ $ (-922)) NIL)) (-2124 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL)) (-3512 (((-773) $) NIL (|has| |#2| (-560)))) (-3511 (((-643 (-239 |#1| |#2|)) $) NIL (|has| |#2| (-560)))) (-3519 (((-773) $) NIL)) (-1878 (((-112)) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#2| $) NIL (|has| |#2| (-6 (-4427 #3="*"))))) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#2|))) NIL)) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4025 (((-643 (-643 |#2|)) $) NIL)) (-1876 (((-112)) NIL)) (-1880 (((-112)) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-2085 (((-3 (-2 (|:| |particular| $) (|:| -2190 (-643 $))) #1#)) NIL (|has| |#2| (-560)))) (-1872 (((-3 $ #1#)) NIL (|has| |#2| (-560)))) (-1964 (((-691 |#2|)) NIL) (((-691 |#2|) (-1269 $)) NIL)) (-1896 ((|#2| $) NIL)) (-1962 (((-691 |#2|) $) NIL) (((-691 |#2|) $ (-1269 $)) NIL)) (-2568 (((-3 $ #1#) $) NIL (|has| |#2| (-560)))) (-2082 (((-1174 (-949 |#2|))) NIL (|has| |#2| (-365)))) (-2569 (($ $ (-922)) NIL)) (-1894 ((|#2| $) NIL)) (-1874 (((-1174 |#2|) $) NIL (|has| |#2| (-560)))) (-1966 ((|#2|) NIL) ((|#2| (-1269 $)) NIL)) (-1892 (((-1174 |#2|) $) NIL)) (-1886 (((-112)) NIL)) (-3663 (((-1162) $) NIL)) (-1877 (((-112)) NIL)) (-1879 (((-112)) NIL)) (-1881 (((-112)) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-3664 (((-1123) $) NIL)) (-1884 (((-112)) NIL)) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560)))) (-2126 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) (-549) |#2|) NIL) ((|#2| $ (-549) (-549)) 30) ((|#2| $ (-549)) NIL)) (-4242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3753 ((|#2| $) NIL)) (-3756 (($ (-643 |#2|)) NIL)) (-3526 (((-112) $) NIL)) (-3755 (((-239 |#1| |#2|) $) NIL)) (-3752 ((|#2| $) NIL (|has| |#2| (-6 (-4427 #3#))))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-3644 (((-691 |#2|) (-1269 $)) NIL) (((-1269 |#2|) $) NIL) (((-691 |#2|) (-1269 $) (-1269 $)) NIL) (((-1269 |#2|) $ (-1269 $)) 33)) (-4402 (($ (-1269 |#2|)) NIL) (((-1269 |#2|) $) NIL)) (-2070 (((-643 (-949 |#2|))) NIL) (((-643 (-949 |#2|)) (-1269 $)) NIL)) (-2756 (($ $ $) NIL)) (-1890 (((-112)) NIL)) (-3515 (((-239 |#1| |#2|) $ (-549)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#2| (-1041 (-410 (-549))))) (($ |#2|) NIL) (((-691 |#2|) $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 43)) (-1875 (((-643 (-1269 |#2|))) NIL (|has| |#2| (-560)))) (-2757 (($ $ $ $) NIL)) (-1888 (((-112)) NIL)) (-2948 (($ (-691 |#2|) $) NIL)) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-2755 (($ $ $) NIL)) (-1889 (((-112)) NIL)) (-1887 (((-112)) NIL)) (-1883 (((-112)) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) NIL) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-672 |#1| |#2|) (-13 (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-615 (-691 |#2|)) (-421 |#2|)) (-922) (-172)) (T -672)) +NIL +(-13 (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-615 (-691 |#2|)) (-421 |#2|)) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3669 (((-643 (-1138)) $) 10)) (-4378 (((-865) $) 16) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-673) (-13 (-1086) (-10 -8 (-15 -3669 ((-643 (-1138)) $))))) (T -673)) +((-3669 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-673))))) +(-13 (-1086) (-10 -8 (-15 -3669 ((-643 (-1138)) $)))) +((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) NIL)) (-3541 (($ $) 62)) (-3065 (((-112) $) NIL)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-2464 (((-3 $ "failed") (-821 |#1|)) 27)) (-2466 (((-112) (-821 |#1|)) 17)) (-2465 (($ (-821 |#1|)) 28)) (-2839 (((-112) $ $) 36)) (-4265 (((-922) $) 43)) (-3542 (($ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4164 (((-643 $) (-821 |#1|)) 19)) (-4378 (((-865) $) 51) (($ |#1|) 40) (((-821 |#1|) $) 47) (((-679 |#1|) $) 52)) (-3662 (((-112) $ $) NIL)) (-2463 (((-58 (-643 $)) (-643 |#1|) (-922)) 67)) (-2462 (((-643 $) (-643 |#1|) (-922)) 72)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 63)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 46))) +(((-674 |#1|) (-13 (-852) (-1041 |#1|) (-10 -8 (-15 -3065 ((-112) $)) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -4265 ((-922) $)) (-15 -2839 ((-112) $ $)) (-15 -4378 ((-821 |#1|) $)) (-15 -4378 ((-679 |#1|) $)) (-15 -4164 ((-643 $) (-821 |#1|))) (-15 -2466 ((-112) (-821 |#1|))) (-15 -2465 ($ (-821 |#1|))) (-15 -2464 ((-3 $ "failed") (-821 |#1|))) (-15 -4366 ((-643 |#1|) $)) (-15 -2463 ((-58 (-643 $)) (-643 |#1|) (-922))) (-15 -2462 ((-643 $) (-643 |#1|) (-922))))) (-852)) (T -674)) +((-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-852)))) (-3541 (*1 *1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-852)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-2839 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-679 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-4164 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-852)) (-5 *2 (-643 (-674 *4))) (-5 *1 (-674 *4)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-821 *4)) (-4 *4 (-852)) (-5 *2 (-112)) (-5 *1 (-674 *4)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-821 *3)) (-4 *3 (-852)) (-5 *1 (-674 *3)))) (-2464 (*1 *1 *2) (|partial| -12 (-5 *2 (-821 *3)) (-4 *3 (-852)) (-5 *1 (-674 *3)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-922)) (-4 *5 (-852)) (-5 *2 (-58 (-643 (-674 *5)))) (-5 *1 (-674 *5)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-922)) (-4 *5 (-852)) (-5 *2 (-643 (-674 *5))) (-5 *1 (-674 *5))))) +(-13 (-852) (-1041 |#1|) (-10 -8 (-15 -3065 ((-112) $)) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -4265 ((-922) $)) (-15 -2839 ((-112) $ $)) (-15 -4378 ((-821 |#1|) $)) (-15 -4378 ((-679 |#1|) $)) (-15 -4164 ((-643 $) (-821 |#1|))) (-15 -2466 ((-112) (-821 |#1|))) (-15 -2465 ($ (-821 |#1|))) (-15 -2464 ((-3 $ "failed") (-821 |#1|))) (-15 -4366 ((-643 |#1|) $)) (-15 -2463 ((-58 (-643 $)) (-643 |#1|) (-922))) (-15 -2462 ((-643 $) (-643 |#1|) (-922))))) +((-3826 ((|#2| $) 103)) (-4228 (($ $) 124)) (-1309 (((-112) $ (-773)) 35)) (-4230 (($ $) 112) (($ $ (-773)) 115)) (-3866 (((-112) $) 125)) (-3432 (((-643 $) $) 99)) (-3428 (((-112) $ $) 95)) (-4151 (((-112) $ (-773)) 33)) (-2374 (((-549) $) 69)) (-2375 (((-549) $) 68)) (-4148 (((-112) $ (-773)) 31)) (-3950 (((-112) $) 101)) (-4229 ((|#2| $) 116) (($ $ (-773)) 120)) (-2449 (($ $ $ (-549)) 86) (($ |#2| $ (-549)) 85)) (-2377 (((-643 (-549)) $) 67)) (-2378 (((-112) (-549) $) 61)) (-4232 ((|#2| $) NIL) (($ $ (-773)) 111)) (-4200 (($ $ (-549)) 128)) (-3867 (((-112) $) 127)) (-2126 (((-112) (-1 (-112) |#2|) $) 44)) (-2379 (((-643 |#2|) $) 48)) (-4231 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1236 (-549))) 82) ((|#2| $ (-549)) 59) ((|#2| $ (-549) |#2|) 60)) (-3430 (((-549) $ $) 94)) (-2450 (($ $ (-1236 (-549))) 81) (($ $ (-549)) 75)) (-4065 (((-112) $) 90)) (-4223 (($ $) 108)) (-4224 (((-773) $) 107)) (-4225 (($ $) 106)) (-3953 (($ (-643 |#2|)) 55)) (-3292 (($ $) 129)) (-3945 (((-643 $) $) 93)) (-3429 (((-112) $ $) 92)) (-2127 (((-112) (-1 (-112) |#2|) $) 43)) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 41))) +(((-675 |#1| |#2|) (-10 -8 (-15 -3292 (|#1| |#1|)) (-15 -4200 (|#1| |#1| (-549))) (-15 -3866 ((-112) |#1|)) (-15 -3867 ((-112) |#1|)) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -2379 ((-643 |#2|) |#1|)) (-15 -2378 ((-112) (-549) |#1|)) (-15 -2377 ((-643 (-549)) |#1|)) (-15 -2375 ((-549) |#1|)) (-15 -2374 ((-549) |#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -4223 (|#1| |#1|)) (-15 -4224 ((-773) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "last")) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| "rest")) (-15 -4230 (|#1| |#1|)) (-15 -4232 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "first")) (-15 -4232 (|#2| |#1|)) (-15 -3428 ((-112) |#1| |#1|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -3430 ((-549) |#1| |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| "value")) (-15 -3826 (|#2| |#1|)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773)))) (-676 |#2|) (-1219)) (T -675)) +NIL +(-10 -8 (-15 -3292 (|#1| |#1|)) (-15 -4200 (|#1| |#1| (-549))) (-15 -3866 ((-112) |#1|)) (-15 -3867 ((-112) |#1|)) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -2379 ((-643 |#2|) |#1|)) (-15 -2378 ((-112) (-549) |#1|)) (-15 -2377 ((-643 (-549)) |#1|)) (-15 -2375 ((-549) |#1|)) (-15 -2374 ((-549) |#1|)) (-15 -3953 (|#1| (-643 |#2|))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -2450 (|#1| |#1| (-549))) (-15 -2450 (|#1| |#1| (-1236 (-549)))) (-15 -2449 (|#1| |#2| |#1| (-549))) (-15 -2449 (|#1| |#1| |#1| (-549))) (-15 -4223 (|#1| |#1|)) (-15 -4224 ((-773) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "last")) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| "rest")) (-15 -4230 (|#1| |#1|)) (-15 -4232 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "first")) (-15 -4232 (|#2| |#1|)) (-15 -3428 ((-112) |#1| |#1|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -3430 ((-549) |#1| |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| "value")) (-15 -3826 (|#2| |#1|)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -2126 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773)))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4226 ((|#1| $) 66)) (-4228 (($ $) 68)) (-2372 (((-1275) $ (-549) (-549)) 98 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 53 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 57 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) 55 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 59 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 118 (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) 87 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 103)) (-4227 ((|#1| $) 67)) (-4156 (($) 7 T CONST)) (-2468 (($ $) 125)) (-4230 (($ $) 74) (($ $ (-773)) 72)) (-1440 (($ $) 100 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 101 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 104)) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1684 ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 88)) (-3866 (((-112) $) 84)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-2467 (((-773) $) 124)) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) 109)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 96 (|has| (-549) (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 95 (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-2470 (($ $) 127)) (-2471 (((-112) $) 128)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 71) (($ $ (-773)) 69)) (-2449 (($ $ $ (-549)) 117) (($ |#1| $ (-549)) 116)) (-2377 (((-643 (-549)) $) 93)) (-2378 (((-112) (-549) $) 92)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2469 ((|#1| $) 126)) (-4232 ((|#1| $) 77) (($ $ (-773)) 75)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2373 (($ $ |#1|) 97 (|has| $ (-6 -4426)))) (-4200 (($ $ (-549)) 123)) (-3867 (((-112) $) 85)) (-2472 (((-112) $) 129)) (-2473 (((-112) $) 130)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 91)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1236 (-549))) 113) ((|#1| $ (-549)) 90) ((|#1| $ (-549) |#1|) 89)) (-3430 (((-549) $ $) 45)) (-2450 (($ $ (-1236 (-549))) 115) (($ $ (-549)) 114)) (-4065 (((-112) $) 47)) (-4223 (($ $) 63)) (-4221 (($ $) 60 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 64)) (-4225 (($ $) 65)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 99 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 108)) (-4222 (($ $ $) 62 (|has| $ (-6 -4426))) (($ $ |#1|) 61 (|has| $ (-6 -4426)))) (-4233 (($ $ $) 79) (($ |#1| $) 78) (($ (-643 $)) 111) (($ $ |#1|) 110)) (-3292 (($ $) 122)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-676 |#1|) (-140) (-1219)) (T -676)) +((-3830 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) (-4142 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2470 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219))))) +(-13 (-1152 |t#1|) (-10 -8 (-15 -3830 ($ (-1 (-112) |t#1|) $)) (-15 -4142 ($ (-1 (-112) |t#1|) $)) (-15 -2473 ((-112) $)) (-15 -2472 ((-112) $)) (-15 -2471 ((-112) $)) (-15 -2470 ($ $)) (-15 -2469 (|t#1| $)) (-15 -2468 ($ $)) (-15 -2467 ((-773) $)) (-15 -4200 ($ $ (-549))) (-15 -3292 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1152 |#1|) . T) ((-1219) . T) ((-1258 |#1|) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2479 (($ (-773) (-773) (-773)) 55 (|has| |#1| (-1052)))) (-1309 (((-112) $ (-773)) NIL)) (-2476 ((|#1| $ (-773) (-773) (-773) |#1|) 49)) (-4156 (($) NIL T CONST)) (-2477 (($ $ $) 60 (|has| |#1| (-1052)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2474 (((-1269 (-773)) $) 12)) (-2475 (($ (-1180) $ $) 37)) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2478 (($ (-773)) 57 (|has| |#1| (-1052)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-773) (-773) (-773)) 46)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-3953 (($ (-643 (-643 (-643 |#1|)))) 70)) (-4378 (($ (-961 (-961 (-961 |#1|)))) 23) (((-961 (-961 (-961 |#1|))) $) 19) (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-677 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1052)) (PROGN (-15 -2479 ($ (-773) (-773) (-773))) (-15 -2478 ($ (-773))) (-15 -2477 ($ $ $))) |%noBranch|) (-15 -3953 ($ (-643 (-643 (-643 |#1|))))) (-15 -4231 (|#1| $ (-773) (-773) (-773))) (-15 -2476 (|#1| $ (-773) (-773) (-773) |#1|)) (-15 -4378 ($ (-961 (-961 (-961 |#1|))))) (-15 -4378 ((-961 (-961 (-961 |#1|))) $)) (-15 -2475 ($ (-1180) $ $)) (-15 -2474 ((-1269 (-773)) $)))) (-1104)) (T -677)) +((-2479 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-677 *3)) (-4 *3 (-1052)) (-4 *3 (-1104)))) (-2478 (*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-677 *3)) (-4 *3 (-1052)) (-4 *3 (-1104)))) (-2477 (*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1052)) (-4 *2 (-1104)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-643 *3)))) (-4 *3 (-1104)) (-5 *1 (-677 *3)))) (-4231 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-773)) (-5 *1 (-677 *2)) (-4 *2 (-1104)))) (-2476 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-677 *2)) (-4 *2 (-1104)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-961 (-961 (-961 *3)))) (-4 *3 (-1104)) (-5 *1 (-677 *3)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-961 (-961 (-961 *3)))) (-5 *1 (-677 *3)) (-4 *3 (-1104)))) (-2475 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-677 *3)) (-4 *3 (-1104)))) (-2474 (*1 *2 *1) (-12 (-5 *2 (-1269 (-773))) (-5 *1 (-677 *3)) (-4 *3 (-1104))))) +(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1052)) (PROGN (-15 -2479 ($ (-773) (-773) (-773))) (-15 -2478 ($ (-773))) (-15 -2477 ($ $ $))) |%noBranch|) (-15 -3953 ($ (-643 (-643 (-643 |#1|))))) (-15 -4231 (|#1| $ (-773) (-773) (-773))) (-15 -2476 (|#1| $ (-773) (-773) (-773) |#1|)) (-15 -4378 ($ (-961 (-961 (-961 |#1|))))) (-15 -4378 ((-961 (-961 (-961 |#1|))) $)) (-15 -2475 ($ (-1180) $ $)) (-15 -2474 ((-1269 (-773)) $)))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3598 (((-486) $) 10)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 19) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-678) (-13 (-1086) (-10 -8 (-15 -3598 ((-486) $)) (-15 -3653 ((-1138) $))))) (T -678)) +((-3598 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-678)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-678))))) +(-13 (-1086) (-10 -8 (-15 -3598 ((-486) $)) (-15 -3653 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) 15)) (-3541 (($ $) 19)) (-3065 (((-112) $) 20)) (-3577 (((-3 |#1| "failed") $) 23)) (-3576 ((|#1| $) 21)) (-4230 (($ $) 37)) (-4368 (($ $) 25)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-2839 (((-112) $ $) 47)) (-4265 (((-922) $) 40)) (-3542 (($ $) 18)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 ((|#1| $) 36)) (-4378 (((-865) $) 32) (($ |#1|) 24) (((-821 |#1|) $) 28)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 13)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-679 |#1|) (-13 (-852) (-1041 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4378 ((-821 |#1|) $)) (-15 -4232 (|#1| $)) (-15 -3542 ($ $)) (-15 -4265 ((-922) $)) (-15 -2839 ((-112) $ $)) (-15 -4368 ($ $)) (-15 -4230 ($ $)) (-15 -3065 ((-112) $)) (-15 -3541 ($ $)) (-15 -4366 ((-643 |#1|) $)))) (-852)) (T -679)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) (-4232 (*1 *2 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) (-2839 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) (-4368 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) (-3541 (*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-679 *3)) (-4 *3 (-852))))) +(-13 (-852) (-1041 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4378 ((-821 |#1|) $)) (-15 -4232 (|#1| $)) (-15 -3542 ($ $)) (-15 -4265 ((-922) $)) (-15 -2839 ((-112) $ $)) (-15 -4368 ($ $)) (-15 -4230 ($ $)) (-15 -3065 ((-112) $)) (-15 -3541 ($ $)) (-15 -4366 ((-643 |#1|) $)))) +((-2488 ((|#1| (-1 |#1| (-773) |#1|) (-773) |#1|) 14)) (-2480 ((|#1| (-1 |#1| |#1|) (-773) |#1|) 12))) +(((-680 |#1|) (-10 -7 (-15 -2480 (|#1| (-1 |#1| |#1|) (-773) |#1|)) (-15 -2488 (|#1| (-1 |#1| (-773) |#1|) (-773) |#1|))) (-1104)) (T -680)) +((-2488 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-773) *2)) (-5 *4 (-773)) (-4 *2 (-1104)) (-5 *1 (-680 *2)))) (-2480 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-773)) (-4 *2 (-1104)) (-5 *1 (-680 *2))))) +(-10 -7 (-15 -2480 (|#1| (-1 |#1| |#1|) (-773) |#1|)) (-15 -2488 (|#1| (-1 |#1| (-773) |#1|) (-773) |#1|))) +((-2482 ((|#2| |#1| |#2|) 9)) (-2481 ((|#1| |#1| |#2|) 8))) +(((-681 |#1| |#2|) (-10 -7 (-15 -2481 (|#1| |#1| |#2|)) (-15 -2482 (|#2| |#1| |#2|))) (-1104) (-1104)) (T -681)) +((-2482 (*1 *2 *3 *2) (-12 (-5 *1 (-681 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *1 (-681 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) +(-10 -7 (-15 -2481 (|#1| |#1| |#2|)) (-15 -2482 (|#2| |#1| |#2|))) +((-2483 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-682 |#1| |#2| |#3|) (-10 -7 (-15 -2483 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1104) (-1104) (-1104)) (T -682)) +((-2483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)) (-5 *1 (-682 *5 *6 *2))))) +(-10 -7 (-15 -2483 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2968 (((-112) $ $) NIL)) (-3739 (((-1220) $) 21)) (-3738 (((-643 (-1220)) $) 19)) (-2484 (($ (-643 (-1220)) (-1220)) 14)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 29) (($ (-1185)) NIL) (((-1185) $) NIL) (((-1220) $) 22) (($ (-1118)) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-683) (-13 (-1086) (-615 (-1220)) (-10 -8 (-15 -4378 ($ (-1118))) (-15 -2484 ($ (-643 (-1220)) (-1220))) (-15 -3738 ((-643 (-1220)) $)) (-15 -3739 ((-1220) $))))) (T -683)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-683)))) (-2484 (*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1220))) (-5 *3 (-1220)) (-5 *1 (-683)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-683)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-683))))) +(-13 (-1086) (-615 (-1220)) (-10 -8 (-15 -4378 ($ (-1118))) (-15 -2484 ($ (-643 (-1220)) (-1220))) (-15 -3738 ((-643 (-1220)) $)) (-15 -3739 ((-1220) $)))) +((-2488 (((-1 |#1| (-773) |#1|) (-1 |#1| (-773) |#1|)) 29)) (-2485 (((-1 |#1|) |#1|) 8)) (-2487 ((|#1| |#1|) 23)) (-2486 (((-643 |#1|) (-1 (-643 |#1|) (-643 |#1|)) (-549)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4378 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-773)) 26))) +(((-684 |#1|) (-10 -7 (-15 -2485 ((-1 |#1|) |#1|)) (-15 -4378 ((-1 |#1|) |#1|)) (-15 -2486 (|#1| (-1 |#1| |#1|))) (-15 -2486 ((-643 |#1|) (-1 (-643 |#1|) (-643 |#1|)) (-549))) (-15 -2487 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-773))) (-15 -2488 ((-1 |#1| (-773) |#1|) (-1 |#1| (-773) |#1|)))) (-1104)) (T -684)) +((-2488 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-773) *3)) (-4 *3 (-1104)) (-5 *1 (-684 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *4 (-1104)) (-5 *1 (-684 *4)))) (-2487 (*1 *2 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1104)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-643 *5) (-643 *5))) (-5 *4 (-549)) (-5 *2 (-643 *5)) (-5 *1 (-684 *5)) (-4 *5 (-1104)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-684 *2)) (-4 *2 (-1104)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1104)))) (-2485 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1104))))) +(-10 -7 (-15 -2485 ((-1 |#1|) |#1|)) (-15 -4378 ((-1 |#1|) |#1|)) (-15 -2486 (|#1| (-1 |#1| |#1|))) (-15 -2486 ((-643 |#1|) (-1 (-643 |#1|) (-643 |#1|)) (-549))) (-15 -2487 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-773))) (-15 -2488 ((-1 |#1| (-773) |#1|) (-1 |#1| (-773) |#1|)))) +((-2491 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2490 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4384 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2489 (((-1 |#2| |#1|) |#2|) 11))) +(((-685 |#1| |#2|) (-10 -7 (-15 -2489 ((-1 |#2| |#1|) |#2|)) (-15 -2490 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4384 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2491 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1104) (-1104)) (T -685)) +((-2491 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *4)) (-5 *1 (-685 *4 *5)))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *4)) (-5 *1 (-685 *4 *5)) (-4 *4 (-1104)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1 *5)) (-5 *1 (-685 *4 *5)))) (-2489 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-685 *4 *3)) (-4 *4 (-1104)) (-4 *3 (-1104))))) +(-10 -7 (-15 -2489 ((-1 |#2| |#1|) |#2|)) (-15 -2490 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4384 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2491 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2496 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2492 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2493 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2494 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2495 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-686 |#1| |#2| |#3|) (-10 -7 (-15 -2492 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2493 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2494 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2495 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2496 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1104) (-1104) (-1104)) (T -686)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-1 *7 *5)) (-5 *1 (-686 *5 *6 *7)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-686 *4 *5 *6)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-686 *4 *5 *6)) (-4 *4 (-1104)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-686 *4 *5 *6)) (-4 *5 (-1104)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5)) (-5 *1 (-686 *4 *5 *6)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1104)) (-4 *4 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5)) (-5 *1 (-686 *5 *4 *6))))) +(-10 -7 (-15 -2492 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2493 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2494 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2495 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2496 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-4270 (($ (-773) (-773)) 43)) (-2501 (($ $ $) 71)) (-3838 (($ |#3|) 66) (($ $) 67)) (-3525 (((-112) $) 38)) (-2500 (($ $ (-549) (-549)) 82)) (-2499 (($ $ (-549) (-549)) 83)) (-2498 (($ $ (-549) (-549) (-549) (-549)) 88)) (-2503 (($ $) 69)) (-3527 (((-112) $) 15)) (-2497 (($ $ (-549) (-549) $) 89)) (-4219 ((|#2| $ (-549) (-549) |#2|) NIL) (($ $ (-643 (-549)) (-643 (-549)) $) 87)) (-3757 (($ (-773) |#2|) 53)) (-3528 (($ (-643 (-643 |#2|))) 51)) (-4025 (((-643 (-643 |#2|)) $) 78)) (-2502 (($ $ $) 70)) (-3889 (((-3 $ "failed") $ |#2|) 121)) (-4231 ((|#2| $ (-549) (-549)) NIL) ((|#2| $ (-549) (-549) |#2|) NIL) (($ $ (-643 (-549)) (-643 (-549))) 86)) (-3756 (($ (-643 |#2|)) 54) (($ (-643 $)) 56)) (-3526 (((-112) $) 28)) (-4378 (($ |#4|) 61) (((-865) $) NIL)) (-3524 (((-112) $) 40)) (-4381 (($ $ |#2|) 123)) (-4269 (($ $ $) 93) (($ $) 96)) (-4271 (($ $ $) 91)) (** (($ $ (-773)) 110) (($ $ (-549)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-549) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) +(((-687 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -4381 (|#1| |#1| |#2|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-773))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| (-549) (-549) |#1|)) (-15 -2498 (|#1| |#1| (-549) (-549) (-549) (-549))) (-15 -2499 (|#1| |#1| (-549) (-549))) (-15 -2500 (|#1| |#1| (-549) (-549))) (-15 -4219 (|#1| |#1| (-643 (-549)) (-643 (-549)) |#1|)) (-15 -4231 (|#1| |#1| (-643 (-549)) (-643 (-549)))) (-15 -4025 ((-643 (-643 |#2|)) |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 -2503 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| |#3|)) (-15 -4378 (|#1| |#4|)) (-15 -3756 (|#1| (-643 |#1|))) (-15 -3756 (|#1| (-643 |#2|))) (-15 -3757 (|#1| (-773) |#2|)) (-15 -3528 (|#1| (-643 (-643 |#2|)))) (-15 -4270 (|#1| (-773) (-773))) (-15 -3524 ((-112) |#1|)) (-15 -3525 ((-112) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|)) (-15 -4219 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549)))) (-688 |#2| |#3| |#4|) (-1052) (-374 |#2|) (-374 |#2|)) (T -687)) +NIL +(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -4381 (|#1| |#1| |#2|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-773))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| (-549) (-549) |#1|)) (-15 -2498 (|#1| |#1| (-549) (-549) (-549) (-549))) (-15 -2499 (|#1| |#1| (-549) (-549))) (-15 -2500 (|#1| |#1| (-549) (-549))) (-15 -4219 (|#1| |#1| (-643 (-549)) (-643 (-549)) |#1|)) (-15 -4231 (|#1| |#1| (-643 (-549)) (-643 (-549)))) (-15 -4025 ((-643 (-643 |#2|)) |#1|)) (-15 -2501 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1| |#1|)) (-15 -2503 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| |#3|)) (-15 -4378 (|#1| |#4|)) (-15 -3756 (|#1| (-643 |#1|))) (-15 -3756 (|#1| (-643 |#2|))) (-15 -3757 (|#1| (-773) |#2|)) (-15 -3528 (|#1| (-643 (-643 |#2|)))) (-15 -4270 (|#1| (-773) (-773))) (-15 -3524 ((-112) |#1|)) (-15 -3525 ((-112) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|)) (-15 -4219 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) (-549)))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-4270 (($ (-773) (-773)) 98)) (-2501 (($ $ $) 88)) (-3838 (($ |#2|) 92) (($ $) 91)) (-3525 (((-112) $) 100)) (-2500 (($ $ (-549) (-549)) 84)) (-2499 (($ $ (-549) (-549)) 83)) (-2498 (($ $ (-549) (-549) (-549) (-549)) 82)) (-2503 (($ $) 90)) (-3527 (((-112) $) 102)) (-1309 (((-112) $ (-773)) 8)) (-2497 (($ $ (-549) (-549) $) 81)) (-4219 ((|#1| $ (-549) (-549) |#1|) 45) (($ $ (-643 (-549)) (-643 (-549)) $) 85)) (-1345 (($ $ (-549) |#2|) 43)) (-1344 (($ $ (-549) |#3|) 42)) (-3757 (($ (-773) |#1|) 96)) (-4156 (($) 7 T CONST)) (-3514 (($ $) 68 (|has| |#1| (-308)))) (-3516 ((|#2| $ (-549)) 47)) (-3513 (((-773) $) 67 (|has| |#1| (-560)))) (-1684 ((|#1| $ (-549) (-549) |#1|) 44)) (-3517 ((|#1| $ (-549) (-549)) 49)) (-2124 (((-643 |#1|) $) 31)) (-3512 (((-773) $) 66 (|has| |#1| (-560)))) (-3511 (((-643 |#3|) $) 65 (|has| |#1| (-560)))) (-3519 (((-773) $) 52)) (-4046 (($ (-773) (-773) |#1|) 58)) (-3518 (((-773) $) 51)) (-4151 (((-112) $ (-773)) 9)) (-3751 ((|#1| $) 63 (|has| |#1| (-6 (-4427 #1="*"))))) (-3523 (((-549) $) 56)) (-3521 (((-549) $) 54)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3522 (((-549) $) 55)) (-3520 (((-549) $) 53)) (-3528 (($ (-643 (-643 |#1|))) 97)) (-2128 (($ (-1 |#1| |#1|) $) 35)) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4025 (((-643 (-643 |#1|)) $) 87)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4021 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-2502 (($ $ $) 89)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) 57)) (-3889 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-560)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) (-549)) 50) ((|#1| $ (-549) (-549) |#1|) 48) (($ $ (-643 (-549)) (-643 (-549))) 86)) (-3756 (($ (-643 |#1|)) 95) (($ (-643 $)) 94)) (-3526 (((-112) $) 101)) (-3752 ((|#1| $) 64 (|has| |#1| (-6 (-4427 #1#))))) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-3515 ((|#3| $ (-549)) 46)) (-4378 (($ |#3|) 93) (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3524 (((-112) $) 99)) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-4269 (($ $ $) 79) (($ $) 78)) (-4271 (($ $ $) 80)) (** (($ $ (-773)) 71) (($ $ (-549)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-549) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-688 |#1| |#2| |#3|) (-140) (-1052) (-374 |t#1|) (-374 |t#1|)) (T -688)) +((-3527 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-112)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-112)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-112)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-112)))) (-4270 (*1 *1 *2 *2) (-12 (-5 *2 (-773)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3757 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4378 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-374 *3)) (-4 *2 (-374 *3)))) (-3838 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-374 *3)) (-4 *4 (-374 *3)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-2503 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-2502 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-2501 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-643 (-643 *3))))) (-4231 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4219 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-643 (-549))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2500 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2499 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2498 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-2497 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (-4269 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *2 (-374 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1052)) (-4 *2 (-374 *3)) (-4 *4 (-374 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (-4 *2 (-560)))) (-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (-4 *2 (-365)))) (-3514 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (-4 *2 (-308)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-773)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-773)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-643 *5)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (|has| *2 (-6 (-4427 #1="*"))) (-4 *2 (-1052)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (|has| *2 (-6 (-4427 #1#))) (-4 *2 (-1052)))) (-4021 (*1 *1 *1) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-4 *3 (-365))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -3527 ((-112) $)) (-15 -3526 ((-112) $)) (-15 -3525 ((-112) $)) (-15 -3524 ((-112) $)) (-15 -4270 ($ (-773) (-773))) (-15 -3528 ($ (-643 (-643 |t#1|)))) (-15 -3757 ($ (-773) |t#1|)) (-15 -3756 ($ (-643 |t#1|))) (-15 -3756 ($ (-643 $))) (-15 -4378 ($ |t#3|)) (-15 -3838 ($ |t#2|)) (-15 -3838 ($ $)) (-15 -2503 ($ $)) (-15 -2502 ($ $ $)) (-15 -2501 ($ $ $)) (-15 -4025 ((-643 (-643 |t#1|)) $)) (-15 -4231 ($ $ (-643 (-549)) (-643 (-549)))) (-15 -4219 ($ $ (-643 (-549)) (-643 (-549)) $)) (-15 -2500 ($ $ (-549) (-549))) (-15 -2499 ($ $ (-549) (-549))) (-15 -2498 ($ $ (-549) (-549) (-549) (-549))) (-15 -2497 ($ $ (-549) (-549) $)) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4269 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-549) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-773))) (IF (|has| |t#1| (-560)) (-15 -3889 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -4381 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -3514 ($ $)) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-15 -3513 ((-773) $)) (-15 -3512 ((-773) $)) (-15 -3511 ((-643 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4427 "*"))) (PROGN (-15 -3752 (|t#1| $)) (-15 -3751 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -4021 ((-3 $ "failed") $)) (-15 ** ($ $ (-549)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-57 |#1| |#2| |#3|) . T) ((-1219) . T)) +((-4274 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4390 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-689 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4390 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4390 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4274 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1052) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|) (-1052) (-374 |#5|) (-374 |#5|) (-688 |#5| |#6| |#7|)) (T -689)) +((-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1052)) (-4 *2 (-1052)) (-4 *6 (-374 *5)) (-4 *7 (-374 *5)) (-4 *8 (-374 *2)) (-4 *9 (-374 *2)) (-5 *1 (-689 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) (-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-374 *5)) (-4 *7 (-374 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-689 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-374 *8)) (-4 *10 (-374 *8)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-374 *5)) (-4 *7 (-374 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-689 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-374 *8)) (-4 *10 (-374 *8))))) +(-10 -7 (-15 -4390 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4390 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4274 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3514 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-3513 (((-773) |#4|) 125 (|has| |#1| (-560)))) (-3512 (((-773) |#4|) 101 (|has| |#1| (-560)))) (-3511 (((-643 |#3|) |#4|) 108 (|has| |#1| (-560)))) (-2542 (((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-3751 ((|#1| |#4|) 57)) (-2508 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-560)))) (-4021 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-2507 ((|#4| |#4|) 93 (|has| |#1| (-560)))) (-2505 ((|#4| |#4| |#1| (-549) (-549)) 65)) (-2504 ((|#4| |#4| (-549) (-549)) 60)) (-2506 ((|#4| |#4| |#1| (-549) (-549)) 70)) (-3752 ((|#1| |#4|) 103)) (-2920 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-560))))) +(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3752 (|#1| |#4|)) (-15 -3751 (|#1| |#4|)) (-15 -2504 (|#4| |#4| (-549) (-549))) (-15 -2505 (|#4| |#4| |#1| (-549) (-549))) (-15 -2506 (|#4| |#4| |#1| (-549) (-549))) (IF (|has| |#1| (-560)) (PROGN (-15 -3513 ((-773) |#4|)) (-15 -3512 ((-773) |#4|)) (-15 -3511 ((-643 |#3|) |#4|)) (-15 -2507 (|#4| |#4|)) (-15 -2508 ((-3 |#4| "failed") |#4|)) (-15 -2920 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3514 (|#4| |#4|)) (-15 -2542 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4021 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|)) (T -690)) +((-4021 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2542 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-690 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) (-3514 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2920 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2508 (*1 *2 *2) (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-560)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-643 *6)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3512 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3513 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2506 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-549)) (-4 *3 (-172)) (-4 *5 (-374 *3)) (-4 *6 (-374 *3)) (-5 *1 (-690 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-2505 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-549)) (-4 *3 (-172)) (-4 *5 (-374 *3)) (-4 *6 (-374 *3)) (-5 *1 (-690 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-2504 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-549)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *1 (-690 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6)))) (-3751 (*1 *2 *3) (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-172)) (-5 *1 (-690 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-172)) (-5 *1 (-690 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))) +(-10 -7 (-15 -3752 (|#1| |#4|)) (-15 -3751 (|#1| |#4|)) (-15 -2504 (|#4| |#4| (-549) (-549))) (-15 -2505 (|#4| |#4| |#1| (-549) (-549))) (-15 -2506 (|#4| |#4| |#1| (-549) (-549))) (IF (|has| |#1| (-560)) (PROGN (-15 -3513 ((-773) |#4|)) (-15 -3512 ((-773) |#4|)) (-15 -3511 ((-643 |#3|) |#4|)) (-15 -2507 (|#4| |#4|)) (-15 -2508 ((-3 |#4| "failed") |#4|)) (-15 -2920 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3514 (|#4| |#4|)) (-15 -2542 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4021 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773) (-773)) 64)) (-2501 (($ $ $) NIL)) (-3838 (($ (-1269 |#1|)) NIL) (($ $) NIL)) (-3525 (((-112) $) NIL)) (-2500 (($ $ (-549) (-549)) 22)) (-2499 (($ $ (-549) (-549)) NIL)) (-2498 (($ $ (-549) (-549) (-549) (-549)) NIL)) (-2503 (($ $) NIL)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-2497 (($ $ (-549) (-549) $) NIL)) (-4219 ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549)) $) NIL)) (-1345 (($ $ (-549) (-1269 |#1|)) NIL)) (-1344 (($ $ (-549) (-1269 |#1|)) NIL)) (-3757 (($ (-773) |#1|) 37)) (-4156 (($) NIL T CONST)) (-3514 (($ $) 46 (|has| |#1| (-308)))) (-3516 (((-1269 |#1|) $ (-549)) NIL)) (-3513 (((-773) $) 48 (|has| |#1| (-560)))) (-1684 ((|#1| $ (-549) (-549) |#1|) 69)) (-3517 ((|#1| $ (-549) (-549)) NIL)) (-2124 (((-643 |#1|) $) NIL)) (-3512 (((-773) $) 50 (|has| |#1| (-560)))) (-3511 (((-643 (-1269 |#1|)) $) 53 (|has| |#1| (-560)))) (-3519 (((-773) $) 32)) (-4046 (($ (-773) (-773) |#1|) 28)) (-3518 (((-773) $) 33)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#1| $) 44 (|has| |#1| (-6 (-4427 #1="*"))))) (-3523 (((-549) $) 10)) (-3521 (((-549) $) 11)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3522 (((-549) $) 14)) (-3520 (((-549) $) 65)) (-3528 (($ (-643 (-643 |#1|))) NIL)) (-2128 (($ (-1 |#1| |#1|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4025 (((-643 (-643 |#1|)) $) 76)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4021 (((-3 $ #2="failed") $) 60 (|has| |#1| (-365)))) (-2502 (($ $ $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2373 (($ $ |#1|) NIL)) (-3889 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-560)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) (-549)) NIL) ((|#1| $ (-549) (-549) |#1|) NIL) (($ $ (-643 (-549)) (-643 (-549))) NIL)) (-3756 (($ (-643 |#1|)) NIL) (($ (-643 $)) NIL) (($ (-1269 |#1|)) 70)) (-3526 (((-112) $) NIL)) (-3752 ((|#1| $) 42 (|has| |#1| (-6 (-4427 #1#))))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3515 (((-1269 |#1|) $ (-549)) NIL)) (-4378 (($ (-1269 |#1|)) NIL) (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $ $) NIL) (($ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) 38) (($ $ (-549)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-549) $) NIL) (((-1269 |#1|) $ (-1269 |#1|)) NIL) (((-1269 |#1|) (-1269 |#1|) $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-691 |#1|) (-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 -3756 ($ (-1269 |#1|))) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4021 ((-3 $ "failed") $)) |%noBranch|))) (-1052)) (T -691)) +((-4021 (*1 *1 *1) (|partial| -12 (-5 *1 (-691 *2)) (-4 *2 (-365)) (-4 *2 (-1052)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1052)) (-5 *1 (-691 *3))))) +(-13 (-688 |#1| (-1269 |#1|) (-1269 |#1|)) (-10 -8 (-15 -3756 ($ (-1269 |#1|))) (IF (|has| |#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4021 ((-3 $ "failed") $)) |%noBranch|))) +((-2514 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|)) 37)) (-2513 (((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|) 34)) (-2515 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-773)) 43)) (-2510 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|)) 27)) (-2511 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|)) 31) (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 29)) (-2512 (((-691 |#1|) (-691 |#1|) |#1| (-691 |#1|)) 33)) (-2509 (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 25)) (** (((-691 |#1|) (-691 |#1|) (-773)) 46))) +(((-692 |#1|) (-10 -7 (-15 -2509 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2510 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2511 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2511 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2512 ((-691 |#1|) (-691 |#1|) |#1| (-691 |#1|))) (-15 -2513 ((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|)) (-15 -2514 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2515 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-773))) (-15 ** ((-691 |#1|) (-691 |#1|) (-773)))) (-1052)) (T -692)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-691 *4)) (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-692 *4)))) (-2515 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-691 *4)) (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-692 *4)))) (-2514 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2513 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2512 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2511 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2511 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2510 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) (-2509 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) +(-10 -7 (-15 -2509 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2510 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2511 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2511 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2512 ((-691 |#1|) (-691 |#1|) |#1| (-691 |#1|))) (-15 -2513 ((-691 |#1|) (-691 |#1|) (-691 |#1|) |#1|)) (-15 -2514 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -2515 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-691 |#1|) (-773))) (-15 ** ((-691 |#1|) (-691 |#1|) (-773)))) +((-3577 (((-3 |#1| "failed") $) 18)) (-3576 ((|#1| $) NIL)) (-2516 (($) 7 T CONST)) (-2517 (($ |#1|) 8)) (-4378 (($ |#1|) 16) (((-865) $) 23)) (-3997 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2516)) 11)) (-4003 ((|#1| $) 15))) +(((-693 |#1|) (-13 (-1265) (-1041 |#1|) (-615 (-865)) (-10 -8 (-15 -2517 ($ |#1|)) (-15 -3997 ((-112) $ (|[\|\|]| |#1|))) (-15 -3997 ((-112) $ (|[\|\|]| -2516))) (-15 -4003 (|#1| $)) (-15 -2516 ($) -4384))) (-615 (-865))) (T -693)) +((-2517 (*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865))))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-615 (-865))) (-5 *2 (-112)) (-5 *1 (-693 *4)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2516)) (-5 *2 (-112)) (-5 *1 (-693 *4)) (-4 *4 (-615 (-865))))) (-4003 (*1 *2 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865))))) (-2516 (*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865)))))) +(-13 (-1265) (-1041 |#1|) (-615 (-865)) (-10 -8 (-15 -2517 ($ |#1|)) (-15 -3997 ((-112) $ (|[\|\|]| |#1|))) (-15 -3997 ((-112) $ (|[\|\|]| -2516))) (-15 -4003 (|#1| $)) (-15 -2516 ($) -4384))) +((-2520 ((|#2| |#2| |#4|) 33)) (-2523 (((-691 |#2|) |#3| |#4|) 39)) (-2521 (((-691 |#2|) |#2| |#4|) 38)) (-2518 (((-1269 |#2|) |#2| |#4|) 16)) (-2519 ((|#2| |#3| |#4|) 32)) (-2524 (((-691 |#2|) |#3| |#4| (-773) (-773)) 48)) (-2522 (((-691 |#2|) |#2| |#4| (-773)) 47))) +(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2518 ((-1269 |#2|) |#2| |#4|)) (-15 -2519 (|#2| |#3| |#4|)) (-15 -2520 (|#2| |#2| |#4|)) (-15 -2521 ((-691 |#2|) |#2| |#4|)) (-15 -2522 ((-691 |#2|) |#2| |#4| (-773))) (-15 -2523 ((-691 |#2|) |#3| |#4|)) (-15 -2524 ((-691 |#2|) |#3| |#4| (-773) (-773)))) (-1104) (-903 |#1|) (-374 |#2|) (-13 (-374 |#1|) (-10 -7 (-6 -4425)))) (T -694)) +((-2524 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-773)) (-4 *6 (-1104)) (-4 *7 (-903 *6)) (-5 *2 (-691 *7)) (-5 *1 (-694 *6 *7 *3 *4)) (-4 *3 (-374 *7)) (-4 *4 (-13 (-374 *6) (-10 -7 (-6 -4425)))))) (-2523 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *6 (-903 *5)) (-5 *2 (-691 *6)) (-5 *1 (-694 *5 *6 *3 *4)) (-4 *3 (-374 *6)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425)))))) (-2522 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-1104)) (-4 *3 (-903 *6)) (-5 *2 (-691 *3)) (-5 *1 (-694 *6 *3 *7 *4)) (-4 *7 (-374 *3)) (-4 *4 (-13 (-374 *6) (-10 -7 (-6 -4425)))))) (-2521 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *3 (-903 *5)) (-5 *2 (-691 *3)) (-5 *1 (-694 *5 *3 *6 *4)) (-4 *6 (-374 *3)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425)))))) (-2520 (*1 *2 *2 *3) (-12 (-4 *4 (-1104)) (-4 *2 (-903 *4)) (-5 *1 (-694 *4 *2 *5 *3)) (-4 *5 (-374 *2)) (-4 *3 (-13 (-374 *4) (-10 -7 (-6 -4425)))))) (-2519 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *2 (-903 *5)) (-5 *1 (-694 *5 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425)))))) (-2518 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *3 (-903 *5)) (-5 *2 (-1269 *3)) (-5 *1 (-694 *5 *3 *6 *4)) (-4 *6 (-374 *3)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) +(-10 -7 (-15 -2518 ((-1269 |#2|) |#2| |#4|)) (-15 -2519 (|#2| |#3| |#4|)) (-15 -2520 (|#2| |#2| |#4|)) (-15 -2521 ((-691 |#2|) |#2| |#4|)) (-15 -2522 ((-691 |#2|) |#2| |#4| (-773))) (-15 -2523 ((-691 |#2|) |#3| |#4|)) (-15 -2524 ((-691 |#2|) |#3| |#4| (-773) (-773)))) +((-4173 (((-2 (|:| |num| (-691 |#1|)) (|:| |den| |#1|)) (-691 |#2|)) 20)) (-4171 ((|#1| (-691 |#2|)) 9)) (-4172 (((-691 |#1|) (-691 |#2|)) 18))) +(((-695 |#1| |#2|) (-10 -7 (-15 -4171 (|#1| (-691 |#2|))) (-15 -4172 ((-691 |#1|) (-691 |#2|))) (-15 -4173 ((-2 (|:| |num| (-691 |#1|)) (|:| |den| |#1|)) (-691 |#2|)))) (-560) (-994 |#1|)) (T -695)) +((-4173 (*1 *2 *3) (-12 (-5 *3 (-691 *5)) (-4 *5 (-994 *4)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |num| (-691 *4)) (|:| |den| *4))) (-5 *1 (-695 *4 *5)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-691 *5)) (-4 *5 (-994 *4)) (-4 *4 (-560)) (-5 *2 (-691 *4)) (-5 *1 (-695 *4 *5)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-691 *4)) (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-695 *2 *4))))) +(-10 -7 (-15 -4171 (|#1| (-691 |#2|))) (-15 -4172 ((-691 |#1|) (-691 |#2|))) (-15 -4173 ((-2 (|:| |num| (-691 |#1|)) (|:| |den| |#1|)) (-691 |#2|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1957 (((-691 (-701))) NIL) (((-691 (-701)) (-1269 $)) NIL)) (-3754 (((-701) $) NIL)) (-3915 (($ $) NIL (|has| (-701) (-1205)))) (-4071 (($ $) NIL (|has| (-701) (-1205)))) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-701) (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-701) (-308)) (|has| (-701) (-913))))) (-4206 (($ $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| (-701) (-913))) (|has| (-701) (-365))))) (-4401 (((-408 $) $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| (-701) (-913))) (|has| (-701) (-365))))) (-3438 (($ $) NIL (-12 (|has| (-701) (-1005)) (|has| (-701) (-1205))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-701) (-308)) (|has| (-701) (-913))))) (-1753 (((-112) $ $) NIL (|has| (-701) (-308)))) (-3540 (((-773)) NIL (|has| (-701) (-370)))) (-3913 (($ $) NIL (|has| (-701) (-1205)))) (-4070 (($ $) NIL (|has| (-701) (-1205)))) (-3917 (($ $) NIL (|has| (-701) (-1205)))) (-4069 (($ $) NIL (|has| (-701) (-1205)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) NIL) (((-3 (-701) #2#) $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-701) (-1041 (-410 (-549)))))) (-3576 (((-549) $) NIL) (((-701) $) NIL) (((-410 (-549)) $) NIL (|has| (-701) (-1041 (-410 (-549)))))) (-1967 (($ (-1269 (-701))) NIL) (($ (-1269 (-701)) (-1269 $)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-701) (-352)))) (-2964 (($ $ $) NIL (|has| (-701) (-308)))) (-1956 (((-691 (-701)) $) NIL) (((-691 (-701)) $ (-1269 $)) NIL)) (-2427 (((-691 (-701)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-701))) (|:| |vec| (-1269 (-701)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-701) (-641 (-549)))) (((-691 (-549)) (-691 $)) NIL (|has| (-701) (-641 (-549))))) (-4274 (((-3 $ "failed") (-410 (-1174 (-701)))) NIL (|has| (-701) (-365))) (($ (-1174 (-701))) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4075 (((-701) $) 29)) (-3425 (((-3 (-410 (-549)) #3="failed") $) NIL (|has| (-701) (-548)))) (-3424 (((-112) $) NIL (|has| (-701) (-548)))) (-3423 (((-410 (-549)) $) NIL (|has| (-701) (-548)))) (-3513 (((-922)) NIL)) (-3395 (($) NIL (|has| (-701) (-370)))) (-2963 (($ $ $) NIL (|has| (-701) (-308)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| (-701) (-308)))) (-3236 (($) NIL (|has| (-701) (-352)))) (-1848 (((-112) $) NIL (|has| (-701) (-352)))) (-1941 (($ $) NIL (|has| (-701) (-352))) (($ $ (-773)) NIL (|has| (-701) (-352)))) (-4155 (((-112) $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| (-701) (-913))) (|has| (-701) (-365))))) (-1462 (((-2 (|:| |r| (-701)) (|:| |phi| (-701))) $) NIL (-12 (|has| (-701) (-1063)) (|has| (-701) (-1205))))) (-4059 (($) NIL (|has| (-701) (-1205)))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-701) (-889 (-380)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-701) (-889 (-549))))) (-4203 (((-834 (-922)) $) NIL (|has| (-701) (-352))) (((-922) $) NIL (|has| (-701) (-352)))) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (-12 (|has| (-701) (-1005)) (|has| (-701) (-1205))))) (-3536 (((-701) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-701) (-352)))) (-1750 (((-3 (-643 $) #4="failed") (-643 $) $) NIL (|has| (-701) (-308)))) (-2192 (((-1174 (-701)) $) NIL (|has| (-701) (-365)))) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4390 (($ (-1 (-701) (-701)) $) NIL)) (-2188 (((-922) $) NIL (|has| (-701) (-370)))) (-4374 (($ $) NIL (|has| (-701) (-1205)))) (-3481 (((-1174 (-701)) $) NIL)) (-2069 (($ (-643 $)) NIL (|has| (-701) (-308))) (($ $ $) NIL (|has| (-701) (-308)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| (-701) (-365)))) (-3869 (($) NIL (|has| (-701) (-352)) CONST)) (-2563 (($ (-922)) NIL (|has| (-701) (-370)))) (-1464 (($) NIL)) (-4076 (((-701) $) 31)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-701) (-308)))) (-3564 (($ (-643 $)) NIL (|has| (-701) (-308))) (($ $ $) NIL (|has| (-701) (-308)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-701) (-352)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-701) (-308)) (|has| (-701) (-913))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-701) (-308)) (|has| (-701) (-913))))) (-4164 (((-408 $) $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| (-701) (-913))) (|has| (-701) (-365))))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-701) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| (-701) (-308)))) (-3889 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-701)) NIL (|has| (-701) (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| (-701) (-308)))) (-4375 (($ $) NIL (|has| (-701) (-1205)))) (-4199 (($ $ (-1180) (-701)) NIL (|has| (-701) (-517 (-1180) (-701)))) (($ $ (-643 (-1180)) (-643 (-701))) NIL (|has| (-701) (-517 (-1180) (-701)))) (($ $ (-643 (-294 (-701)))) NIL (|has| (-701) (-310 (-701)))) (($ $ (-294 (-701))) NIL (|has| (-701) (-310 (-701)))) (($ $ (-701) (-701)) NIL (|has| (-701) (-310 (-701)))) (($ $ (-643 (-701)) (-643 (-701))) NIL (|has| (-701) (-310 (-701))))) (-1752 (((-773) $) NIL (|has| (-701) (-308)))) (-4231 (($ $ (-701)) NIL (|has| (-701) (-287 (-701) (-701))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| (-701) (-308)))) (-4189 (((-701)) NIL) (((-701) (-1269 $)) NIL)) (-1942 (((-3 (-773) "failed") $ $) NIL (|has| (-701) (-352))) (((-773) $) NIL (|has| (-701) (-352)))) (-4242 (($ $ (-1 (-701) (-701))) NIL) (($ $ (-1 (-701) (-701)) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-1180)) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-773)) NIL (|has| (-701) (-233))) (($ $) NIL (|has| (-701) (-233)))) (-2571 (((-691 (-701)) (-1269 $) (-1 (-701) (-701))) NIL (|has| (-701) (-365)))) (-3605 (((-1174 (-701))) NIL)) (-3918 (($ $) NIL (|has| (-701) (-1205)))) (-4068 (($ $) NIL (|has| (-701) (-1205)))) (-1842 (($) NIL (|has| (-701) (-352)))) (-3916 (($ $) NIL (|has| (-701) (-1205)))) (-4067 (($ $) NIL (|has| (-701) (-1205)))) (-3914 (($ $) NIL (|has| (-701) (-1205)))) (-4066 (($ $) NIL (|has| (-701) (-1205)))) (-3644 (((-691 (-701)) (-1269 $)) NIL) (((-1269 (-701)) $) NIL) (((-691 (-701)) (-1269 $) (-1269 $)) NIL) (((-1269 (-701)) $ (-1269 $)) NIL)) (-4402 (((-538) $) NIL (|has| (-701) (-616 (-538)))) (((-168 (-225)) $) NIL (|has| (-701) (-1023))) (((-168 (-380)) $) NIL (|has| (-701) (-1023))) (((-893 (-380)) $) NIL (|has| (-701) (-616 (-893 (-380))))) (((-893 (-549)) $) NIL (|has| (-701) (-616 (-893 (-549))))) (($ (-1174 (-701))) NIL) (((-1174 (-701)) $) NIL) (($ (-1269 (-701))) NIL) (((-1269 (-701)) $) NIL)) (-3410 (($ $) NIL)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| $ (-145)) (|has| (-701) (-913))) (|has| (-701) (-352))))) (-1463 (($ (-701) (-701)) 12)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-549)) NIL) (($ (-701)) NIL) (($ (-168 (-380))) 13) (($ (-168 (-549))) 19) (($ (-168 (-701))) 28) (($ (-168 (-703))) 25) (((-168 (-380)) $) 33) (($ (-410 (-549))) NIL (-3960 (|has| (-701) (-365)) (|has| (-701) (-1041 (-410 (-549))))))) (-3105 (($ $) NIL (|has| (-701) (-352))) (((-3 $ #1#) $) NIL (-3960 (-12 (|has| (-701) (-308)) (|has| $ (-145)) (|has| (-701) (-913))) (|has| (-701) (-145))))) (-2770 (((-1174 (-701)) $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL)) (-3921 (($ $) NIL (|has| (-701) (-1205)))) (-3909 (($ $) NIL (|has| (-701) (-1205)))) (-2240 (((-112) $ $) NIL)) (-3919 (($ $) NIL (|has| (-701) (-1205)))) (-3907 (($ $) NIL (|has| (-701) (-1205)))) (-3923 (($ $) NIL (|has| (-701) (-1205)))) (-3911 (($ $) NIL (|has| (-701) (-1205)))) (-2385 (((-701) $) NIL (|has| (-701) (-1205)))) (-3924 (($ $) NIL (|has| (-701) (-1205)))) (-3912 (($ $) NIL (|has| (-701) (-1205)))) (-3922 (($ $) NIL (|has| (-701) (-1205)))) (-3910 (($ $) NIL (|has| (-701) (-1205)))) (-3920 (($ $) NIL (|has| (-701) (-1205)))) (-3908 (($ $) NIL (|has| (-701) (-1205)))) (-3807 (($ $) NIL (|has| (-701) (-1063)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1 (-701) (-701))) NIL) (($ $ (-1 (-701) (-701)) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-1180)) NIL (|has| (-701) (-903 (-1180)))) (($ $ (-773)) NIL (|has| (-701) (-233))) (($ $) NIL (|has| (-701) (-233)))) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL (|has| (-701) (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ $) NIL (|has| (-701) (-1205))) (($ $ (-410 (-549))) NIL (-12 (|has| (-701) (-1005)) (|has| (-701) (-1205)))) (($ $ (-549)) NIL (|has| (-701) (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ (-701) $) NIL) (($ $ (-701)) NIL) (($ (-410 (-549)) $) NIL (|has| (-701) (-365))) (($ $ (-410 (-549))) NIL (|has| (-701) (-365))))) +(((-696) (-13 (-390) (-166 (-701)) (-10 -8 (-15 -4378 ($ (-168 (-380)))) (-15 -4378 ($ (-168 (-549)))) (-15 -4378 ($ (-168 (-701)))) (-15 -4378 ($ (-168 (-703)))) (-15 -4378 ((-168 (-380)) $))))) (T -696)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-696)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-168 (-549))) (-5 *1 (-696)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-168 (-701))) (-5 *1 (-696)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-168 (-703))) (-5 *1 (-696)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-696))))) +(-13 (-390) (-166 (-701)) (-10 -8 (-15 -4378 ($ (-168 (-380)))) (-15 -4378 ($ (-168 (-549)))) (-15 -4378 ($ (-168 (-701)))) (-15 -4378 ($ (-168 (-703)))) (-15 -4378 ((-168 (-380)) $)))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2526 (($ $) 63)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41) (($ |#1| $ (-773)) 64)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 62)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-697 |#1|) (-140) (-1104)) (T -697)) +((-4039 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-697 *2)) (-4 *2 (-1104)))) (-2526 (*1 *1 *1) (-12 (-4 *1 (-697 *2)) (-4 *2 (-1104)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-697 *3)) (-4 *3 (-1104)) (-5 *2 (-643 (-2 (|:| -2254 *3) (|:| -2125 (-773)))))))) +(-13 (-235 |t#1|) (-10 -8 (-15 -4039 ($ |t#1| $ (-773))) (-15 -2526 ($ $)) (-15 -2525 ((-643 (-2 (|:| -2254 |t#1|) (|:| -2125 (-773)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2529 (((-643 |#1|) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) (-549)) 65)) (-2527 ((|#1| |#1| (-549)) 62)) (-3564 ((|#1| |#1| |#1| (-549)) 46)) (-4164 (((-643 |#1|) |#1| (-549)) 49)) (-2530 ((|#1| |#1| (-549) |#1| (-549)) 40)) (-2528 (((-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) |#1| (-549)) 61))) +(((-698 |#1|) (-10 -7 (-15 -3564 (|#1| |#1| |#1| (-549))) (-15 -2527 (|#1| |#1| (-549))) (-15 -4164 ((-643 |#1|) |#1| (-549))) (-15 -2528 ((-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) |#1| (-549))) (-15 -2529 ((-643 |#1|) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) (-549))) (-15 -2530 (|#1| |#1| (-549) |#1| (-549)))) (-1245 (-549))) (T -698)) +((-2530 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| -4164 *5) (|:| -4380 (-549))))) (-5 *4 (-549)) (-4 *5 (-1245 *4)) (-5 *2 (-643 *5)) (-5 *1 (-698 *5)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-643 (-2 (|:| -4164 *3) (|:| -4380 *4)))) (-5 *1 (-698 *3)) (-4 *3 (-1245 *4)))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-643 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1245 *4)))) (-2527 (*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3)))) (-3564 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3))))) +(-10 -7 (-15 -3564 (|#1| |#1| |#1| (-549))) (-15 -2527 (|#1| |#1| (-549))) (-15 -4164 ((-643 |#1|) |#1| (-549))) (-15 -2528 ((-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) |#1| (-549))) (-15 -2529 ((-643 |#1|) (-643 (-2 (|:| -4164 |#1|) (|:| -4380 (-549)))) (-549))) (-15 -2530 (|#1| |#1| (-549) |#1| (-549)))) +((-2534 (((-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2531 (((-1136 (-225)) (-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262))) 56) (((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262))) 58) (((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1092 (-225)) (-1092 (-225)) (-643 (-262))) 60)) (-2533 (((-1136 (-225)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-643 (-262))) NIL)) (-2532 (((-1136 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1092 (-225)) (-1092 (-225)) (-643 (-262))) 61))) +(((-699) (-10 -7 (-15 -2531 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2531 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2531 ((-1136 (-225)) (-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2532 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2533 ((-1136 (-225)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2534 ((-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -699)) +((-2534 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-946 (-225)) (-225) (-225))) (-5 *1 (-699)))) (-2533 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699)))) (-2532 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined")) (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699)))) (-2531 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-225))) (-5 *5 (-643 (-262))) (-5 *1 (-699)))) (-2531 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-225))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699)))) (-2531 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) #1#)) (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699))))) +(-10 -7 (-15 -2531 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1="undefined") (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2531 ((-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2531 ((-1136 (-225)) (-1136 (-225)) (-1 (-946 (-225)) (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2532 ((-1136 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) #1#) (-1092 (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2533 ((-1136 (-225)) (-315 (-549)) (-315 (-549)) (-315 (-549)) (-1 (-225) (-225)) (-1092 (-225)) (-643 (-262)))) (-15 -2534 ((-1 (-946 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-4164 (((-408 (-1174 |#4|)) (-1174 |#4|)) 86) (((-408 |#4|) |#4|) 269))) +(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4|)) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|)))) (-852) (-795) (-352) (-953 |#3| |#2| |#1|)) (T -700)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-352)) (-4 *7 (-953 *6 *5 *4)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-700 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4))))) +(-10 -7 (-15 -4164 ((-408 |#4|) |#4|)) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 97)) (-3533 (((-549) $) 34)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4202 (($ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL)) (-4156 (($) NIL T CONST)) (-3531 (($ $) NIL)) (-3577 (((-3 (-549) #1="failed") $) 85) (((-3 (-410 (-549)) #1#) $) 28) (((-3 (-380) #1#) $) 82)) (-3576 (((-549) $) 87) (((-410 (-549)) $) 79) (((-380) $) 80)) (-2964 (($ $ $) 109)) (-3890 (((-3 $ "failed") $) 100)) (-2963 (($ $ $) 108)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2537 (((-922)) 89) (((-922) (-922)) 88)) (-3606 (((-112) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL)) (-4203 (((-549) $) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL)) (-3536 (($ $) NIL)) (-3607 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL)) (-2535 (((-549) (-549)) 94) (((-549)) 95)) (-2934 (($ $ $) NIL) (($) NIL (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-2536 (((-549) (-549)) 92) (((-549)) 93)) (-3260 (($ $ $) NIL) (($) NIL (-12 (-3746 (|has| $ (-6 -4408))) (-3746 (|has| $ (-6 -4416)))))) (-2538 (((-549) $) 17)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 104)) (-1944 (((-922) (-549)) NIL (|has| $ (-6 -4416)))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL)) (-3534 (($ $) NIL)) (-3675 (($ (-549) (-549)) NIL) (($ (-549) (-549) (-922)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) 105)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2564 (((-549) $) 24)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 107)) (-3015 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-1943 (((-922) (-549)) NIL (|has| $ (-6 -4416)))) (-4402 (((-380) $) NIL) (((-225) $) NIL) (((-893 (-380)) $) NIL)) (-4378 (((-865) $) 63) (($ (-549)) 75) (($ $) NIL) (($ (-410 (-549))) 78) (($ (-549)) 75) (($ (-410 (-549))) 78) (($ (-380)) 72) (((-380) $) 61) (($ (-703)) 66)) (-3530 (((-773)) 119 T CONST)) (-3348 (($ (-549) (-549) (-922)) 54)) (-3535 (($ $) NIL)) (-1945 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4416)))) (-3662 (((-112) $ $) NIL)) (-3097 (((-922)) 91) (((-922) (-922)) 90)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL)) (-3510 (($) 37 T CONST)) (-3067 (($) 18 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 96)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 118)) (-4381 (($ $ $) 77)) (-4269 (($ $) 115) (($ $ $) 116)) (-4271 (($ $ $) 114)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL) (($ $ (-410 (-549))) 103)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 110) (($ $ $) 101) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) +(((-701) (-13 (-407) (-390) (-365) (-1041 (-380)) (-1041 (-410 (-549))) (-147) (-10 -8 (-15 -2537 ((-922) (-922))) (-15 -2537 ((-922))) (-15 -3097 ((-922) (-922))) (-15 -2536 ((-549) (-549))) (-15 -2536 ((-549))) (-15 -2535 ((-549) (-549))) (-15 -2535 ((-549))) (-15 -4378 ((-380) $)) (-15 -4378 ($ (-703))) (-15 -2538 ((-549) $)) (-15 -2564 ((-549) $)) (-15 -3348 ($ (-549) (-549) (-922)))))) (T -701)) +((-2564 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2537 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) (-2536 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2536 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-2535 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-380)) (-5 *1 (-701)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-701)))) (-3348 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-922)) (-5 *1 (-701))))) +(-13 (-407) (-390) (-365) (-1041 (-380)) (-1041 (-410 (-549))) (-147) (-10 -8 (-15 -2537 ((-922) (-922))) (-15 -2537 ((-922))) (-15 -3097 ((-922) (-922))) (-15 -2536 ((-549) (-549))) (-15 -2536 ((-549))) (-15 -2535 ((-549) (-549))) (-15 -2535 ((-549))) (-15 -4378 ((-380) $)) (-15 -4378 ($ (-703))) (-15 -2538 ((-549) $)) (-15 -2564 ((-549) $)) (-15 -3348 ($ (-549) (-549) (-922))))) +((-2541 (((-691 |#1|) (-691 |#1|) |#1| |#1|) 88)) (-3514 (((-691 |#1|) (-691 |#1|) |#1|) 67)) (-2540 (((-691 |#1|) (-691 |#1|) |#1|) 89)) (-2539 (((-691 |#1|) (-691 |#1|)) 68)) (-2542 (((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 87))) +(((-702 |#1|) (-10 -7 (-15 -2539 ((-691 |#1|) (-691 |#1|))) (-15 -3514 ((-691 |#1|) (-691 |#1|) |#1|)) (-15 -2540 ((-691 |#1|) (-691 |#1|) |#1|)) (-15 -2541 ((-691 |#1|) (-691 |#1|) |#1| |#1|)) (-15 -2542 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) (-308)) (T -702)) +((-2542 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-702 *3)) (-4 *3 (-308)))) (-2541 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3)))) (-2540 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3)))) (-3514 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3))))) +(-10 -7 (-15 -2539 ((-691 |#1|) (-691 |#1|))) (-15 -3514 ((-691 |#1|) (-691 |#1|) |#1|)) (-15 -2540 ((-691 |#1|) (-691 |#1|) |#1|)) (-15 -2541 ((-691 |#1|) (-691 |#1|) |#1| |#1|)) (-15 -2542 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2225 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2220 (($ $ $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL)) (-2762 (($ $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) "failed") $) 31)) (-3576 (((-549) $) 29)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL)) (-3424 (((-112) $) NIL)) (-3423 (((-410 (-549)) $) NIL)) (-3395 (($ $) NIL) (($) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2218 (($ $ $ $) NIL)) (-2226 (($ $ $) NIL)) (-3606 (((-112) $) NIL)) (-1456 (($ $ $) NIL)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL)) (-2573 (((-112) $) NIL)) (-3076 (((-112) $) NIL)) (-3868 (((-3 $ "failed") $) NIL)) (-3607 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2219 (($ $ $ $) NIL)) (-2934 (($ $ $) NIL)) (-2543 (((-922) (-922)) 10) (((-922)) 9)) (-3260 (($ $ $) NIL)) (-2222 (($ $) NIL)) (-4265 (($ $) NIL)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2217 (($ $ $) NIL)) (-3869 (($) NIL T CONST)) (-2224 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-1454 (($ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL) (($ $ (-773)) NIL)) (-2223 (($ $) NIL)) (-3824 (($ $) NIL)) (-4402 (((-225) $) NIL) (((-380) $) NIL) (((-893 (-549)) $) NIL) (((-538) $) NIL) (((-549) $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) 28) (($ $) NIL) (($ (-549)) 28) (((-315 $) (-315 (-549))) 18)) (-3530 (((-773)) NIL T CONST)) (-2227 (((-112) $ $) NIL)) (-3505 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3097 (($) NIL)) (-2240 (((-112) $ $) NIL)) (-2221 (($ $ $ $) NIL)) (-3807 (($ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL) (($ $ (-773)) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL))) +(((-703) (-13 (-390) (-548) (-10 -8 (-15 -2543 ((-922) (-922))) (-15 -2543 ((-922))) (-15 -4378 ((-315 $) (-315 (-549))))))) (T -703)) +((-2543 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-703)))) (-2543 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-703)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-315 (-549))) (-5 *2 (-315 (-703))) (-5 *1 (-703))))) +(-13 (-390) (-548) (-10 -8 (-15 -2543 ((-922) (-922))) (-15 -2543 ((-922))) (-15 -4378 ((-315 $) (-315 (-549)))))) +((-2549 (((-1 |#4| |#2| |#3|) |#1| (-1180) (-1180)) 19)) (-2544 (((-1 |#4| |#2| |#3|) (-1180)) 12))) +(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2544 ((-1 |#4| |#2| |#3|) (-1180))) (-15 -2549 ((-1 |#4| |#2| |#3|) |#1| (-1180) (-1180)))) (-616 (-538)) (-1219) (-1219) (-1219)) (T -704)) +((-2549 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-704 *3 *5 *6 *7)) (-4 *3 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-704 *4 *5 *6 *7)) (-4 *4 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219))))) +(-10 -7 (-15 -2544 ((-1 |#4| |#2| |#3|) (-1180))) (-15 -2549 ((-1 |#4| |#2| |#3|) |#1| (-1180) (-1180)))) +((-2545 (((-1 (-225) (-225) (-225)) |#1| (-1180) (-1180)) 43) (((-1 (-225) (-225)) |#1| (-1180)) 48))) +(((-705 |#1|) (-10 -7 (-15 -2545 ((-1 (-225) (-225)) |#1| (-1180))) (-15 -2545 ((-1 (-225) (-225) (-225)) |#1| (-1180) (-1180)))) (-616 (-538))) (T -705)) +((-2545 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-705 *3)) (-4 *3 (-616 (-538))))) (-2545 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-705 *3)) (-4 *3 (-616 (-538)))))) +(-10 -7 (-15 -2545 ((-1 (-225) (-225)) |#1| (-1180))) (-15 -2545 ((-1 (-225) (-225) (-225)) |#1| (-1180) (-1180)))) +((-2546 (((-1180) |#1| (-1180) (-643 (-1180))) 10) (((-1180) |#1| (-1180) (-1180) (-1180)) 13) (((-1180) |#1| (-1180) (-1180)) 12) (((-1180) |#1| (-1180)) 11))) +(((-706 |#1|) (-10 -7 (-15 -2546 ((-1180) |#1| (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-1180) (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-643 (-1180))))) (-616 (-538))) (T -706)) +((-2546 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-643 (-1180))) (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) (-2546 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) (-2546 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) (-2546 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538)))))) +(-10 -7 (-15 -2546 ((-1180) |#1| (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-1180) (-1180))) (-15 -2546 ((-1180) |#1| (-1180) (-643 (-1180))))) +((-2547 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-707 |#1| |#2|) (-10 -7 (-15 -2547 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1219) (-1219)) (T -707)) +((-2547 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-707 *3 *4)) (-4 *3 (-1219)) (-4 *4 (-1219))))) +(-10 -7 (-15 -2547 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2548 (((-1 |#3| |#2|) (-1180)) 11)) (-2549 (((-1 |#3| |#2|) |#1| (-1180)) 21))) +(((-708 |#1| |#2| |#3|) (-10 -7 (-15 -2548 ((-1 |#3| |#2|) (-1180))) (-15 -2549 ((-1 |#3| |#2|) |#1| (-1180)))) (-616 (-538)) (-1219) (-1219)) (T -708)) +((-2549 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-708 *3 *5 *6)) (-4 *3 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-708 *4 *5 *6)) (-4 *4 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219))))) +(-10 -7 (-15 -2548 ((-1 |#3| |#2|) (-1180))) (-15 -2549 ((-1 |#3| |#2|) |#1| (-1180)))) +((-2552 (((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#4|)) (-643 |#3|) (-643 |#4|) (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#4|)))) (-643 (-773)) (-1269 (-643 (-1174 |#3|))) |#3|) 95)) (-2551 (((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#3|)) (-643 |#3|) (-643 |#4|) (-643 (-773)) |#3|) 113)) (-2550 (((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 |#3|) (-643 (-773)) (-643 (-1174 |#4|)) (-1269 (-643 (-1174 |#3|))) |#3|) 47))) +(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2550 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 |#3|) (-643 (-773)) (-643 (-1174 |#4|)) (-1269 (-643 (-1174 |#3|))) |#3|)) (-15 -2551 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#3|)) (-643 |#3|) (-643 |#4|) (-643 (-773)) |#3|)) (-15 -2552 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#4|)) (-643 |#3|) (-643 |#4|) (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#4|)))) (-643 (-773)) (-1269 (-643 (-1174 |#3|))) |#3|))) (-795) (-852) (-308) (-953 |#3| |#1| |#2|)) (T -709)) +((-2552 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-643 (-1174 *13))) (-5 *3 (-1174 *13)) (-5 *4 (-643 *12)) (-5 *5 (-643 *10)) (-5 *6 (-643 *13)) (-5 *7 (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| *13))))) (-5 *8 (-643 (-773))) (-5 *9 (-1269 (-643 (-1174 *10)))) (-4 *12 (-852)) (-4 *10 (-308)) (-4 *13 (-953 *10 *11 *12)) (-4 *11 (-795)) (-5 *1 (-709 *11 *12 *10 *13)))) (-2551 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-643 *11)) (-5 *5 (-643 (-1174 *9))) (-5 *6 (-643 *9)) (-5 *7 (-643 *12)) (-5 *8 (-643 (-773))) (-4 *11 (-852)) (-4 *9 (-308)) (-4 *12 (-953 *9 *10 *11)) (-4 *10 (-795)) (-5 *2 (-643 (-1174 *12))) (-5 *1 (-709 *10 *11 *9 *12)) (-5 *3 (-1174 *12)))) (-2550 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-643 (-1174 *11))) (-5 *3 (-1174 *11)) (-5 *4 (-643 *10)) (-5 *5 (-643 *8)) (-5 *6 (-643 (-773))) (-5 *7 (-1269 (-643 (-1174 *8)))) (-4 *10 (-852)) (-4 *8 (-308)) (-4 *11 (-953 *8 *9 *10)) (-4 *9 (-795)) (-5 *1 (-709 *9 *10 *8 *11))))) +(-10 -7 (-15 -2550 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 |#3|) (-643 (-773)) (-643 (-1174 |#4|)) (-1269 (-643 (-1174 |#3|))) |#3|)) (-15 -2551 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#3|)) (-643 |#3|) (-643 |#4|) (-643 (-773)) |#3|)) (-15 -2552 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-643 |#2|) (-643 (-1174 |#4|)) (-643 |#3|) (-643 |#4|) (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#4|)))) (-643 (-773)) (-1269 (-643 (-1174 |#3|))) |#3|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4391 (($ $) 48)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3294 (($ |#1| (-773)) 46)) (-3223 (((-773) $) 50)) (-3594 ((|#1| $) 49)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4380 (((-773) $) 51)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-4109 ((|#1| $ (-773)) 47)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-710 |#1|) (-140) (-1052)) (T -710)) +((-4380 (*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-710 *2)) (-4 *2 (-1052)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-710 *2)) (-4 *2 (-1052)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-710 *2)) (-4 *2 (-1052)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-710 *2)) (-4 *2 (-1052))))) +(-13 (-1052) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4380 ((-773) $)) (-15 -3223 ((-773) $)) (-15 -3594 (|t#1| $)) (-15 -4391 ($ $)) (-15 -4109 (|t#1| $ (-773))) (-15 -3294 ($ |t#1| (-773))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-4390 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-711 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4390 (|#6| (-1 |#4| |#1|) |#3|))) (-560) (-1245 |#1|) (-1245 (-410 |#2|)) (-560) (-1245 |#4|) (-1245 (-410 |#5|))) (T -711)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-560)) (-4 *7 (-560)) (-4 *6 (-1245 *5)) (-4 *2 (-1245 (-410 *8))) (-5 *1 (-711 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1245 (-410 *6))) (-4 *8 (-1245 *7))))) +(-10 -7 (-15 -4390 (|#6| (-1 |#4| |#1|) |#3|))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2553 (((-1162) (-865)) 38)) (-4049 (((-1275) (-1162)) 31)) (-2555 (((-1162) (-865)) 28)) (-2554 (((-1162) (-865)) 29)) (-4378 (((-865) $) NIL) (((-1162) (-865)) 27)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-712) (-13 (-1104) (-10 -7 (-15 -4378 ((-1162) (-865))) (-15 -2555 ((-1162) (-865))) (-15 -2554 ((-1162) (-865))) (-15 -2553 ((-1162) (-865))) (-15 -4049 ((-1275) (-1162)))))) (T -712)) +((-4378 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-712))))) +(-13 (-1104) (-10 -7 (-15 -4378 ((-1162) (-865))) (-15 -2555 ((-1162) (-865))) (-15 -2554 ((-1162) (-865))) (-15 -2553 ((-1162) (-865))) (-15 -4049 ((-1275) (-1162))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL)) (-4274 (($ |#1| |#2|) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 ((|#2| $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-2565 (((-3 $ "failed") $ $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) ((|#1| $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) +(((-713 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -3014 (|#2| $)) (-15 -4378 (|#1| $)) (-15 -4274 ($ |#1| |#2|)) (-15 -2565 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -713)) +((-3014 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-713 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4378 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4274 (*1 *1 *2 *3) (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2565 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-365) (-10 -8 (-15 -3014 (|#2| $)) (-15 -4378 (|#1| $)) (-15 -4274 ($ |#1| |#2|)) (-15 -2565 ((-3 $ "failed") $ $)))) +((-2968 (((-112) $ $) 90)) (-3608 (((-112) $) 36)) (-4198 (((-1269 |#1|) $ (-773)) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4196 (($ (-1174 |#1|)) NIL)) (-3487 (((-1174 $) $ (-1085)) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4187 (($ $ $) NIL (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3540 (((-773)) 56 (|has| |#1| (-370)))) (-4192 (($ $ (-773)) NIL)) (-4191 (($ $ (-773)) NIL)) (-2562 ((|#2| |#2|) 52)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1085) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1085) $) NIL)) (-4188 (($ $ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) 40)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-4274 (($ |#2|) 50)) (-3890 (((-3 $ "failed") $) 100)) (-3395 (($) 61 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4190 (($ $ $) NIL)) (-4185 (($ $ $) NIL (|has| |#1| (-560)))) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-2558 (((-961 $)) 92)) (-1769 (($ $ |#1| (-773) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1085) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1085) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ $) NIL (|has| |#1| (-560)))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3488 (($ (-1174 |#1|) (-1085)) NIL) (($ (-1174 $) (-1085)) NIL)) (-4208 (($ $ (-773)) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) 88) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) NIL) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3014 ((|#2|) 53)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-1770 (($ (-1 (-773) (-773)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4197 (((-1174 |#1|) $) NIL)) (-3486 (((-3 (-1085) #4="failed") $) NIL)) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-3481 ((|#2| $) 49)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) 34)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) NIL)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) NIL)) (-4244 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (|has| |#1| (-1154)) CONST)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2556 (($ $) 91 (|has| |#1| (-352)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#1|) NIL) (($ $ (-643 (-1085)) (-643 |#1|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-643 (-1085)) (-643 $)) NIL)) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-560))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-560)))) (-4195 (((-3 $ #5="failed") $ (-773)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 101 (|has| |#1| (-365)))) (-4189 (($ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4380 (((-773) $) 38) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1085) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-2557 (((-961 $)) 42)) (-4186 (((-3 $ #5#) $ $) NIL (|has| |#1| (-560))) (((-3 (-410 $) #5#) (-410 $) $) NIL (|has| |#1| (-560)))) (-4378 (((-865) $) 71) (($ (-549)) NIL) (($ |#1|) 68) (($ (-1085)) NIL) (($ |#2|) 78) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) 73) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 25 T CONST)) (-2561 (((-1269 |#1|) $) 86)) (-2560 (($ (-1269 |#1|)) 60)) (-3067 (($) 8 T CONST)) (-3072 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2559 (((-1269 |#1|) $) NIL)) (-3455 (((-112) $ $) 79)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) 82) (($ $ $) NIL)) (-4271 (($ $ $) 39)) (** (($ $ (-922)) NIL) (($ $ (-773)) 95)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 67) (($ $ $) 85) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) +(((-714 |#1| |#2|) (-13 (-1245 |#1|) (-618 |#2|) (-10 -8 (-15 -2562 (|#2| |#2|)) (-15 -3014 (|#2|)) (-15 -4274 ($ |#2|)) (-15 -3481 (|#2| $)) (-15 -2561 ((-1269 |#1|) $)) (-15 -2560 ($ (-1269 |#1|))) (-15 -2559 ((-1269 |#1|) $)) (-15 -2558 ((-961 $))) (-15 -2557 ((-961 $))) (IF (|has| |#1| (-352)) (-15 -2556 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1052) (-1245 |#1|)) (T -714)) +((-2562 (*1 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-714 *3 *2)) (-4 *2 (-1245 *3)))) (-3014 (*1 *2) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1052)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-714 *3 *2)) (-4 *2 (-1245 *3)))) (-3481 (*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1052)))) (-2561 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-1269 *3)) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1052)) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2559 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-1269 *3)) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2558 (*1 *2) (-12 (-4 *3 (-1052)) (-5 *2 (-961 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2557 (*1 *2) (-12 (-4 *3 (-1052)) (-5 *2 (-961 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *4 (-1245 *3)))) (-2556 (*1 *1 *1) (-12 (-4 *2 (-352)) (-4 *2 (-1052)) (-5 *1 (-714 *2 *3)) (-4 *3 (-1245 *2))))) +(-13 (-1245 |#1|) (-618 |#2|) (-10 -8 (-15 -2562 (|#2| |#2|)) (-15 -3014 (|#2|)) (-15 -4274 ($ |#2|)) (-15 -3481 (|#2| $)) (-15 -2561 ((-1269 |#1|) $)) (-15 -2560 ($ (-1269 |#1|))) (-15 -2559 ((-1269 |#1|) $)) (-15 -2558 ((-961 $))) (-15 -2557 ((-961 $))) (IF (|has| |#1| (-352)) (-15 -2556 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 ((|#1| $) 13)) (-3664 (((-1123) $) NIL)) (-2564 ((|#2| $) 12)) (-3953 (($ |#1| |#2|) 16)) (-4378 (((-865) $) NIL) (($ (-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) 15) (((-2 (|:| -2563 |#1|) (|:| -2564 |#2|)) $) 14)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 11))) +(((-715 |#1| |#2| |#3|) (-13 (-852) (-493 (-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) (-10 -8 (-15 -2564 (|#2| $)) (-15 -2563 (|#1| $)) (-15 -3953 ($ |#1| |#2|)))) (-852) (-1104) (-1 (-112) (-2 (|:| -2563 |#1|) (|:| -2564 |#2|)) (-2 (|:| -2563 |#1|) (|:| -2564 |#2|)))) (T -715)) +((-2564 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-715 *3 *2 *4)) (-4 *3 (-852)) (-14 *4 (-1 (-112) (-2 (|:| -2563 *3) (|:| -2564 *2)) (-2 (|:| -2563 *3) (|:| -2564 *2)))))) (-2563 (*1 *2 *1) (-12 (-4 *2 (-852)) (-5 *1 (-715 *2 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *3)) (-2 (|:| -2563 *2) (|:| -2564 *3)))))) (-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-715 *2 *3 *4)) (-4 *2 (-852)) (-4 *3 (-1104)) (-14 *4 (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *3)) (-2 (|:| -2563 *2) (|:| -2564 *3))))))) +(-13 (-852) (-493 (-2 (|:| -2563 |#1|) (|:| -2564 |#2|))) (-10 -8 (-15 -2564 (|#2| $)) (-15 -2563 (|#1| $)) (-15 -3953 ($ |#1| |#2|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 66)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #1="failed") $) 105) (((-3 (-113) #1#) $) 111)) (-3576 ((|#1| $) NIL) (((-113) $) 39)) (-3890 (((-3 $ "failed") $) 106)) (-2916 ((|#2| (-113) |#2|) 93)) (-2573 (((-112) $) NIL)) (-2915 (($ |#1| (-363 (-113))) 14)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2917 (($ $ (-1 |#2| |#2|)) 65)) (-2918 (($ $ (-1 |#2| |#2|)) 44)) (-4231 ((|#2| $ |#2|) 33)) (-2919 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-4378 (((-865) $) 73) (($ (-549)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 37 T CONST)) (-3662 (((-112) $ $) NIL)) (-2920 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-3510 (($) 21 T CONST)) (-3067 (($) 9 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) 48) (($ $ $) NIL)) (-4271 (($ $ $) 83)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ (-113) (-549)) NIL) (($ $ (-549)) 64)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) +(((-716 |#1| |#2|) (-13 (-1052) (-1041 |#1|) (-1041 (-113)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2920 ($ $)) (-15 -2920 ($ $ $)) (-15 -2919 (|#1| |#1|))) |%noBranch|) (-15 -2918 ($ $ (-1 |#2| |#2|))) (-15 -2917 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-549))) (-15 ** ($ $ (-549))) (-15 -2916 (|#2| (-113) |#2|)) (-15 -2915 ($ |#1| (-363 (-113)))))) (-1052) (-650 |#1|)) (T -716)) +((-2920 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) (-2920 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) (-2919 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) (-2918 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-650 *3)) (-4 *3 (-1052)) (-5 *1 (-716 *3 *4)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-650 *3)) (-4 *3 (-1052)) (-5 *1 (-716 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-716 *4 *5)) (-4 *5 (-650 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *3 (-1052)) (-5 *1 (-716 *3 *4)) (-4 *4 (-650 *3)))) (-2916 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1052)) (-5 *1 (-716 *4 *2)) (-4 *2 (-650 *4)))) (-2915 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-113))) (-4 *2 (-1052)) (-5 *1 (-716 *2 *4)) (-4 *4 (-650 *2))))) +(-13 (-1052) (-1041 |#1|) (-1041 (-113)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2920 ($ $)) (-15 -2920 ($ $ $)) (-15 -2919 (|#1| |#1|))) |%noBranch|) (-15 -2918 ($ $ (-1 |#2| |#2|))) (-15 -2917 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-549))) (-15 ** ($ $ (-549))) (-15 -2916 (|#2| (-113) |#2|)) (-15 -2915 ($ |#1| (-363 (-113)))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 33)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4274 (($ |#1| |#2|) 25)) (-3890 (((-3 $ "failed") $) 51)) (-2573 (((-112) $) 35)) (-3014 ((|#2| $) 12)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 52)) (-3664 (((-1123) $) NIL)) (-2565 (((-3 $ "failed") $ $) 50)) (-4378 (((-865) $) 24) (($ (-549)) 19) ((|#1| $) 13)) (-3530 (((-773)) 28 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 16 T CONST)) (-3067 (($) 30 T CONST)) (-3455 (((-112) $ $) 41)) (-4269 (($ $) 46) (($ $ $) 40)) (-4271 (($ $ $) 43)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 21) (($ $ $) 20))) +(((-717 |#1| |#2| |#3| |#4| |#5|) (-13 (-1052) (-10 -8 (-15 -3014 (|#2| $)) (-15 -4378 (|#1| $)) (-15 -4274 ($ |#1| |#2|)) (-15 -2565 ((-3 $ "failed") $ $)) (-15 -3890 ((-3 $ "failed") $)) (-15 -2806 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -717)) +((-3890 (*1 *1 *1) (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3014 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-717 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4378 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4274 (*1 *1 *2 *3) (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2565 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2806 (*1 *1 *1) (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-1052) (-10 -8 (-15 -3014 (|#2| $)) (-15 -4378 (|#1| $)) (-15 -4274 ($ |#1| |#2|)) (-15 -2565 ((-3 $ "failed") $ $)) (-15 -3890 ((-3 $ "failed") $)) (-15 -2806 ($ $)))) +((* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-718 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-719 |#2|) (-172)) (T -718)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-719 |#1|) (-140) (-172)) (T -719)) +NIL +(-13 (-111 |t#1| |t#1|) (-642 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-2762 (($ |#1|) 17) (($ $ |#1|) 20)) (-4279 (($ |#1|) 18) (($ $ |#1|) 21)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2573 (((-112) $) NIL)) (-2566 (($ |#1| |#1| |#1| |#1|) 8)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 16)) (-3664 (((-1123) $) NIL)) (-4199 ((|#1| $ |#1|) 24) (((-834 |#1|) $ (-834 |#1|)) 32)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-4378 (((-865) $) 39)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 9 T CONST)) (-3455 (((-112) $ $) 48)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 14))) +(((-720 |#1|) (-13 (-476) (-10 -8 (-15 -2566 ($ |#1| |#1| |#1| |#1|)) (-15 -2762 ($ |#1|)) (-15 -4279 ($ |#1|)) (-15 -3890 ($)) (-15 -2762 ($ $ |#1|)) (-15 -4279 ($ $ |#1|)) (-15 -3890 ($ $)) (-15 -4199 (|#1| $ |#1|)) (-15 -4199 ((-834 |#1|) $ (-834 |#1|))))) (-365)) (T -720)) +((-2566 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-2762 (*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-4279 (*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-3890 (*1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-2762 (*1 *1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-4279 (*1 *1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-3890 (*1 *1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-4199 (*1 *2 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) (-4199 (*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-720 *3))))) +(-13 (-476) (-10 -8 (-15 -2566 ($ |#1| |#1| |#1| |#1|)) (-15 -2762 ($ |#1|)) (-15 -4279 ($ |#1|)) (-15 -3890 ($)) (-15 -2762 ($ $ |#1|)) (-15 -4279 ($ $ |#1|)) (-15 -3890 ($ $)) (-15 -4199 (|#1| $ |#1|)) (-15 -4199 ((-834 |#1|) $ (-834 |#1|))))) +((-2570 (($ $ (-922)) 21)) (-2569 (($ $ (-922)) 22)) (** (($ $ (-922)) 10))) +(((-721 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-922))) (-15 -2569 (|#1| |#1| (-922))) (-15 -2570 (|#1| |#1| (-922)))) (-722)) (T -721)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-922))) (-15 -2569 (|#1| |#1| (-922))) (-15 -2570 (|#1| |#1| (-922)))) +((-2968 (((-112) $ $) 7)) (-2570 (($ $ (-922)) 16)) (-2569 (($ $ (-922)) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6)) (** (($ $ (-922)) 14)) (* (($ $ $) 17))) +(((-722) (-140)) (T -722)) +((* (*1 *1 *1 *1) (-4 *1 (-722))) (-2570 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) (-2569 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922))))) +(-13 (-1104) (-10 -8 (-15 * ($ $ $)) (-15 -2570 ($ $ (-922))) (-15 -2569 ($ $ (-922))) (-15 ** ($ $ (-922))))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2570 (($ $ (-922)) NIL) (($ $ (-773)) 21)) (-2573 (((-112) $) 10)) (-2569 (($ $ (-922)) NIL) (($ $ (-773)) 22)) (** (($ $ (-922)) NIL) (($ $ (-773)) 16))) +(((-723 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-773))) (-15 -2569 (|#1| |#1| (-773))) (-15 -2570 (|#1| |#1| (-773))) (-15 -2573 ((-112) |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -2569 (|#1| |#1| (-922))) (-15 -2570 (|#1| |#1| (-922)))) (-724)) (T -723)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-773))) (-15 -2569 (|#1| |#1| (-773))) (-15 -2570 (|#1| |#1| (-773))) (-15 -2573 ((-112) |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -2569 (|#1| |#1| (-922))) (-15 -2570 (|#1| |#1| (-922)))) +((-2968 (((-112) $ $) 7)) (-2567 (((-3 $ "failed") $) 18)) (-2570 (($ $ (-922)) 16) (($ $ (-773)) 23)) (-3890 (((-3 $ "failed") $) 20)) (-2573 (((-112) $) 24)) (-2568 (((-3 $ "failed") $) 19)) (-2569 (($ $ (-922)) 15) (($ $ (-773)) 22)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 25 T CONST)) (-3455 (((-112) $ $) 6)) (** (($ $ (-922)) 14) (($ $ (-773)) 21)) (* (($ $ $) 17))) +(((-724) (-140)) (T -724)) +((-3067 (*1 *1) (-4 *1 (-724))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-724)) (-5 *2 (-112)))) (-2570 (*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773)))) (-2569 (*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773)))) (-3890 (*1 *1 *1) (|partial| -4 *1 (-724))) (-2568 (*1 *1 *1) (|partial| -4 *1 (-724))) (-2567 (*1 *1 *1) (|partial| -4 *1 (-724)))) +(-13 (-722) (-10 -8 (-15 (-3067) ($) -4384) (-15 -2573 ((-112) $)) (-15 -2570 ($ $ (-773))) (-15 -2569 ($ $ (-773))) (-15 ** ($ $ (-773))) (-15 -3890 ((-3 $ "failed") $)) (-15 -2568 ((-3 $ "failed") $)) (-15 -2567 ((-3 $ "failed") $)))) +(((-102) . T) ((-615 (-865)) . T) ((-722) . T) ((-1104) . T)) +((-3540 (((-773)) 42)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 26)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#2| $) 23)) (-4274 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) 52)) (-3890 (((-3 $ "failed") $) 72)) (-3395 (($) 46)) (-3536 ((|#2| $) 21)) (-2572 (($) 18)) (-4242 (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-2571 (((-691 |#2|) (-1269 $) (-1 |#2| |#2|)) 67)) (-4402 (((-1269 |#2|) $) NIL) (($ (-1269 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2770 ((|#3| $) 39)) (-2190 (((-1269 $)) 36))) +(((-725 |#1| |#2| |#3|) (-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3395 (|#1|)) (-15 -3540 ((-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -2571 ((-691 |#2|) (-1269 |#1|) (-1 |#2| |#2|))) (-15 -4274 ((-3 |#1| "failed") (-410 |#3|))) (-15 -4402 (|#1| |#3|)) (-15 -4274 (|#1| |#3|)) (-15 -2572 (|#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 (|#3| |#1|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -2190 ((-1269 |#1|))) (-15 -2770 (|#3| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|))) (-726 |#2| |#3|) (-172) (-1245 |#2|)) (T -725)) +((-3540 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-773)) (-5 *1 (-725 *3 *4 *5)) (-4 *3 (-726 *4 *5))))) +(-10 -8 (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -3395 (|#1|)) (-15 -3540 ((-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -2571 ((-691 |#2|) (-1269 |#1|) (-1 |#2| |#2|))) (-15 -4274 ((-3 |#1| "failed") (-410 |#3|))) (-15 -4402 (|#1| |#3|)) (-15 -4274 (|#1| |#3|)) (-15 -2572 (|#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4402 (|#3| |#1|)) (-15 -4402 (|#1| (-1269 |#2|))) (-15 -4402 ((-1269 |#2|) |#1|)) (-15 -2190 ((-1269 |#1|))) (-15 -2770 (|#3| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3890 ((-3 |#1| "failed") |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-2241 (($ $) 103 (|has| |#1| (-365)))) (-2239 (((-112) $) 105 (|has| |#1| (-365)))) (-1957 (((-691 |#1|) (-1269 $)) 53) (((-691 |#1|)) 68)) (-3754 ((|#1| $) 59)) (-1843 (((-1192 (-922) (-773)) (-549)) 155 (|has| |#1| (-352)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 122 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 123 (|has| |#1| (-365)))) (-1753 (((-112) $ $) 113 (|has| |#1| (-365)))) (-3540 (((-773)) 96 (|has| |#1| (-370)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 178 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 176 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 173)) (-3576 (((-549) $) 177 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 175 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 174)) (-1967 (($ (-1269 |#1|) (-1269 $)) 55) (($ (-1269 |#1|)) 71)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-352)))) (-2964 (($ $ $) 117 (|has| |#1| (-365)))) (-1956 (((-691 |#1|) $ (-1269 $)) 60) (((-691 |#1|) $) 66)) (-2427 (((-691 (-549)) (-691 $)) 172 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 171 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 170) (((-691 |#1|) (-691 $)) 169)) (-4274 (($ |#2|) 166) (((-3 $ "failed") (-410 |#2|)) 163 (|has| |#1| (-365)))) (-3890 (((-3 $ "failed") $) 37)) (-3513 (((-922)) 61)) (-3395 (($) 99 (|has| |#1| (-370)))) (-2963 (($ $ $) 116 (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 111 (|has| |#1| (-365)))) (-3236 (($) 157 (|has| |#1| (-352)))) (-1848 (((-112) $) 158 (|has| |#1| (-352)))) (-1941 (($ $ (-773)) 149 (|has| |#1| (-352))) (($ $) 148 (|has| |#1| (-352)))) (-4155 (((-112) $) 124 (|has| |#1| (-365)))) (-4203 (((-922) $) 160 (|has| |#1| (-352))) (((-834 (-922)) $) 146 (|has| |#1| (-352)))) (-2573 (((-112) $) 35)) (-3536 ((|#1| $) 58)) (-3868 (((-3 $ "failed") $) 150 (|has| |#1| (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 120 (|has| |#1| (-365)))) (-2192 ((|#2| $) 51 (|has| |#1| (-365)))) (-2188 (((-922) $) 98 (|has| |#1| (-370)))) (-3481 ((|#2| $) 164)) (-2069 (($ (-643 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 125 (|has| |#1| (-365)))) (-3869 (($) 151 (|has| |#1| (-352)) CONST)) (-2563 (($ (-922)) 97 (|has| |#1| (-370)))) (-3664 (((-1123) $) 11)) (-2572 (($) 168)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 110 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) 154 (|has| |#1| (-352)))) (-4164 (((-408 $) $) 121 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 118 (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 112 (|has| |#1| (-365)))) (-1752 (((-773) $) 114 (|has| |#1| (-365)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 115 (|has| |#1| (-365)))) (-4189 ((|#1| (-1269 $)) 54) ((|#1|) 67)) (-1942 (((-773) $) 159 (|has| |#1| (-352))) (((-3 (-773) "failed") $ $) 147 (|has| |#1| (-352)))) (-4242 (($ $) 145 (-3960 (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-773)) 143 (-3960 (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-1180)) 141 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-643 (-1180))) 140 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-1180) (-773)) 139 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 (-773))) 138 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-773)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-2571 (((-691 |#1|) (-1269 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-3605 ((|#2|) 167)) (-1842 (($) 156 (|has| |#1| (-352)))) (-3644 (((-1269 |#1|) $ (-1269 $)) 57) (((-691 |#1|) (-1269 $) (-1269 $)) 56) (((-1269 |#1|) $) 73) (((-691 |#1|) (-1269 $)) 72)) (-4402 (((-1269 |#1|) $) 70) (($ (-1269 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 153 (|has| |#1| (-352)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-410 (-549))) 95 (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (($ $) 152 (|has| |#1| (-352))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-2770 ((|#2| $) 52)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2190 (((-1269 $)) 74)) (-2240 (((-112) $ $) 104 (|has| |#1| (-365)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $) 144 (-3960 (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-773)) 142 (-3960 (-3256 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-1180)) 137 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-643 (-1180))) 136 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-1180) (-773)) 135 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 (-773))) 134 (-3256 (|has| |#1| (-903 (-1180))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-773)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 129 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 126 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-549)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-549))) 127 (|has| |#1| (-365))))) +(((-726 |#1| |#2|) (-140) (-172) (-1245 |t#1|)) (T -726)) +((-2572 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-726 *2 *3)) (-4 *3 (-1245 *2)))) (-3605 (*1 *2) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-4274 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-726 *3 *2)) (-4 *2 (-1245 *3)))) (-4402 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-726 *3 *2)) (-4 *2 (-1245 *3)))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) (-4274 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-726 *3 *4)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1269 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-726 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1245 *5)) (-5 *2 (-691 *5))))) +(-13 (-413 |t#1| |t#2|) (-172) (-616 |t#2|) (-415 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2572 ($)) (-15 -3605 (|t#2|)) (-15 -4274 ($ |t#2|)) (-15 -4402 ($ |t#2|)) (-15 -3481 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -4274 ((-3 $ "failed") (-410 |t#2|))) (-15 -2571 ((-691 |t#1|) (-1269 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-352)) (-6 (-352)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| |#1| (-352)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-352)) (|has| |#1| (-365))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) . T) ((-616 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -3960 (|has| |#1| (-352)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-291) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-308) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-365) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-405) |has| |#1| (-352)) ((-370) -3960 (|has| |#1| (-352)) (|has| |#1| (-370))) ((-352) |has| |#1| (-352)) ((-372 |#1| |#2|) . T) ((-413 |#1| |#2|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-560) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-648 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-642 |#1|) . T) ((-642 $) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-719 |#1|) . T) ((-719 $) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180)))) ((-924) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) -3960 (|has| |#1| (-352)) (|has| |#1| (-365))) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-352)) ((-1224) -3960 (|has| |#1| (-352)) (|has| |#1| (-365)))) +((-4156 (($) 11)) (-3890 (((-3 $ "failed") $) 14)) (-2573 (((-112) $) 10)) (** (($ $ (-922)) NIL) (($ $ (-773)) 20))) +(((-727 |#1|) (-10 -8 (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 -2573 ((-112) |#1|)) (-15 -4156 (|#1|)) (-15 ** (|#1| |#1| (-922)))) (-728)) (T -727)) +NIL +(-10 -8 (-15 -3890 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-773))) (-15 -2573 ((-112) |#1|)) (-15 -4156 (|#1|)) (-15 ** (|#1| |#1| (-922)))) +((-2968 (((-112) $ $) 7)) (-4156 (($) 19 T CONST)) (-3890 (((-3 $ "failed") $) 16)) (-2573 (((-112) $) 18)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 20 T CONST)) (-3455 (((-112) $ $) 6)) (** (($ $ (-922)) 14) (($ $ (-773)) 17)) (* (($ $ $) 15))) +(((-728) (-140)) (T -728)) +((-3067 (*1 *1) (-4 *1 (-728))) (-4156 (*1 *1) (-4 *1 (-728))) (-2573 (*1 *2 *1) (-12 (-4 *1 (-728)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-773)))) (-3890 (*1 *1 *1) (|partial| -4 *1 (-728)))) +(-13 (-1115) (-10 -8 (-15 (-3067) ($) -4384) (-15 -4156 ($) -4384) (-15 -2573 ((-112) $)) (-15 ** ($ $ (-773))) (-15 -3890 ((-3 $ "failed") $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1115) . T) ((-1104) . T)) +((-2574 (((-2 (|:| -3493 (-408 |#2|)) (|:| |special| (-408 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3842 (((-2 (|:| -3493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2575 ((|#2| (-410 |#2|) (-1 |#2| |#2|)) 13)) (-3859 (((-2 (|:| |poly| |#2|) (|:| -3493 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)) 48))) +(((-729 |#1| |#2|) (-10 -7 (-15 -3842 ((-2 (|:| -3493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2574 ((-2 (|:| -3493 (-408 |#2|)) (|:| |special| (-408 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2575 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -3859 ((-2 (|:| |poly| |#2|) (|:| -3493 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1245 |#1|)) (T -729)) +((-3859 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3493 (-410 *6)) (|:| |special| (-410 *6)))) (-5 *1 (-729 *5 *6)) (-5 *3 (-410 *6)))) (-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-729 *5 *2)) (-4 *5 (-365)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3493 (-408 *3)) (|:| |special| (-408 *3)))) (-5 *1 (-729 *5 *3)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3493 *3) (|:| |special| *3))) (-5 *1 (-729 *5 *3))))) +(-10 -7 (-15 -3842 ((-2 (|:| -3493 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2574 ((-2 (|:| -3493 (-408 |#2|)) (|:| |special| (-408 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2575 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -3859 ((-2 (|:| |poly| |#2|) (|:| -3493 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) +((-2576 ((|#7| (-643 |#5|) |#6|) NIL)) (-4390 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-730 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4390 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2576 (|#7| (-643 |#5|) |#6|))) (-852) (-795) (-795) (-1052) (-1052) (-953 |#4| |#2| |#1|) (-953 |#5| |#3| |#1|)) (T -730)) +((-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *9)) (-4 *9 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) (-4 *8 (-1052)) (-4 *2 (-953 *9 *7 *5)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-795)) (-4 *4 (-953 *8 *6 *5)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1052)) (-4 *9 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) (-4 *2 (-953 *9 *7 *5)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-795)) (-4 *4 (-953 *8 *6 *5))))) +(-10 -7 (-15 -4390 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2576 (|#7| (-643 |#5|) |#6|))) +((-4390 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-731 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4390 (|#7| (-1 |#2| |#1|) |#6|))) (-852) (-852) (-795) (-795) (-1052) (-953 |#5| |#3| |#1|) (-953 |#5| |#4| |#2|)) (T -731)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-852)) (-4 *6 (-852)) (-4 *7 (-795)) (-4 *9 (-1052)) (-4 *2 (-953 *9 *8 *6)) (-5 *1 (-731 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-795)) (-4 *4 (-953 *9 *7 *5))))) +(-10 -7 (-15 -4390 (|#7| (-1 |#2| |#1|) |#6|))) +((-4164 (((-408 |#4|) |#4|) 42))) +(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4|))) (-795) (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180))))) (-308) (-953 (-949 |#3|) |#1| |#2|)) (T -732)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-953 (-949 *6) *4 *5))))) +(-10 -7 (-15 -4164 ((-408 |#4|) |#4|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-866 |#1|)) $) NIL)) (-3487 (((-1174 $) $ (-866 |#1|)) NIL) (((-1174 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-866 |#1|))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-866 |#1|) #2#) $) NIL)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-866 |#1|) $) NIL)) (-4188 (($ $ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| (-534 (-866 |#1|)) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-866 |#1|) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#2|) (-866 |#1|)) NIL) (($ (-1174 $) (-866 |#1|)) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#2| (-534 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-866 |#1|)) NIL)) (-3223 (((-534 (-866 |#1|)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-1770 (($ (-1 (-534 (-866 |#1|)) (-534 (-866 |#1|))) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-3486 (((-3 (-866 |#1|) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-866 |#1|)) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#2| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-866 |#1|) |#2|) NIL) (($ $ (-643 (-866 |#1|)) (-643 |#2|)) NIL) (($ $ (-866 |#1|) $) NIL) (($ $ (-643 (-866 |#1|)) (-643 $)) NIL)) (-4189 (($ $ (-866 |#1|)) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-4380 (((-534 (-866 |#1|)) $) NIL) (((-773) $ (-866 |#1|)) NIL) (((-643 (-773)) $ (-643 (-866 |#1|))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-866 |#1|) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-866 |#1|) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-866 |#1|)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-866 |#1|)) NIL) (($ $) NIL (|has| |#2| (-560))) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549))))))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-534 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-866 |#1|)) NIL) (($ $ (-643 (-866 |#1|))) NIL) (($ $ (-866 |#1|) (-773)) NIL) (($ $ (-643 (-866 |#1|)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-733 |#1| |#2|) (-953 |#2| (-534 (-866 |#1|)) (-866 |#1|)) (-643 (-1180)) (-1052)) (T -733)) +NIL +(-953 |#2| (-534 (-866 |#1|)) (-866 |#1|)) +((-2577 (((-2 (|:| -2805 (-949 |#3|)) (|:| -2236 (-949 |#3|))) |#4|) 14)) (-3387 ((|#4| |#4| |#2|) 33)) (-2580 ((|#4| (-410 (-949 |#3|)) |#2|) 64)) (-2579 ((|#4| (-1174 (-949 |#3|)) |#2|) 77)) (-2578 ((|#4| (-1174 |#4|) |#2|) 51)) (-3386 ((|#4| |#4| |#2|) 54)) (-4164 (((-408 |#4|) |#4|) 40))) +(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2577 ((-2 (|:| -2805 (-949 |#3|)) (|:| -2236 (-949 |#3|))) |#4|)) (-15 -3386 (|#4| |#4| |#2|)) (-15 -2578 (|#4| (-1174 |#4|) |#2|)) (-15 -3387 (|#4| |#4| |#2|)) (-15 -2579 (|#4| (-1174 (-949 |#3|)) |#2|)) (-15 -2580 (|#4| (-410 (-949 |#3|)) |#2|)) (-15 -4164 ((-408 |#4|) |#4|))) (-795) (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)))) (-560) (-953 (-410 (-949 |#3|)) |#1| |#2|)) (T -734)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *6 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-953 (-410 (-949 *6)) *4 *5)))) (-2580 (*1 *2 *3 *4) (-12 (-4 *6 (-560)) (-4 *2 (-953 *3 *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) (-5 *3 (-410 (-949 *6))) (-4 *5 (-795)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))))) (-2579 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 (-949 *6))) (-4 *6 (-560)) (-4 *2 (-953 (-410 (-949 *6)) *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) (-4 *5 (-795)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))))) (-3387 (*1 *2 *2 *3) (-12 (-4 *4 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *5 (-560)) (-5 *1 (-734 *4 *3 *5 *2)) (-4 *2 (-953 (-410 (-949 *5)) *4 *3)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *3 (-1174 *2)) (-4 *2 (-953 (-410 (-949 *6)) *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) (-4 *5 (-795)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *6 (-560)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *4 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *5 (-560)) (-5 *1 (-734 *4 *3 *5 *2)) (-4 *2 (-953 (-410 (-949 *5)) *4 *3)))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *6 (-560)) (-5 *2 (-2 (|:| -2805 (-949 *6)) (|:| -2236 (-949 *6)))) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-953 (-410 (-949 *6)) *4 *5))))) +(-10 -7 (-15 -2577 ((-2 (|:| -2805 (-949 |#3|)) (|:| -2236 (-949 |#3|))) |#4|)) (-15 -3386 (|#4| |#4| |#2|)) (-15 -2578 (|#4| (-1174 |#4|) |#2|)) (-15 -3387 (|#4| |#4| |#2|)) (-15 -2579 (|#4| (-1174 (-949 |#3|)) |#2|)) (-15 -2580 (|#4| (-410 (-949 |#3|)) |#2|)) (-15 -4164 ((-408 |#4|) |#4|))) +((-4164 (((-408 |#4|) |#4|) 54))) +(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4|))) (-795) (-852) (-13 (-308) (-147)) (-953 (-410 |#3|) |#1| |#2|)) (T -735)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-953 (-410 *6) *4 *5))))) +(-10 -7 (-15 -4164 ((-408 |#4|) |#4|))) +((-4390 (((-737 |#2| |#3|) (-1 |#2| |#1|) (-737 |#1| |#3|)) 18))) +(((-736 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-737 |#2| |#3|) (-1 |#2| |#1|) (-737 |#1| |#3|)))) (-1052) (-1052) (-728)) (T -736)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-737 *5 *7)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *7 (-728)) (-5 *2 (-737 *6 *7)) (-5 *1 (-736 *5 *6 *7))))) +(-10 -7 (-15 -4390 ((-737 |#2| |#3|) (-1 |#2| |#1|) (-737 |#1| |#3|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 38)) (-4205 (((-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))) $) 39)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #1="failed") $) 78) (((-3 |#1| #1#) $) 81)) (-3576 ((|#2| $) NIL) ((|#1| $) NIL)) (-4391 (($ $) 104 (|has| |#2| (-852)))) (-3890 (((-3 $ "failed") $) 87)) (-3395 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) 72)) (-3224 (((-643 $) $) 54)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| |#2|) 17)) (-4390 (($ (-1 |#1| |#1|) $) 70)) (-2188 (((-922) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3295 ((|#2| $) 103 (|has| |#2| (-852)))) (-3594 ((|#1| $) 102 (|has| |#2| (-852)))) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 101) (($ (-549)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|)))) 11)) (-4249 (((-643 |#1|) $) 56)) (-4109 ((|#1| $ |#2|) 117)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 12 T CONST)) (-3067 (($) 46 T CONST)) (-3455 (((-112) $ $) 107)) (-4269 (($ $) 63) (($ $ $) NIL)) (-4271 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-737 |#1| |#2|) (-13 (-1052) (-1041 |#2|) (-1041 |#1|) (-10 -8 (-15 -3294 ($ |#1| |#2|)) (-15 -4109 (|#1| $ |#2|)) (-15 -4378 ($ (-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))))) (-15 -4205 ((-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))) $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (-15 -4369 ((-112) $)) (-15 -4249 ((-643 |#1|) $)) (-15 -3224 ((-643 $) $)) (-15 -2581 ((-773) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-852)) (PROGN (-15 -3295 (|#2| $)) (-15 -3594 (|#1| $)) (-15 -4391 ($ $))) |%noBranch|))) (-1052) (-728)) (T -737)) +((-3294 (*1 *1 *2 *3) (-12 (-5 *1 (-737 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-728)))) (-4109 (*1 *2 *1 *3) (-12 (-4 *2 (-1052)) (-5 *1 (-737 *2 *3)) (-4 *3 (-728)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4386 *3) (|:| -4370 *4)))) (-4 *3 (-1052)) (-4 *4 (-728)) (-5 *1 (-737 *3 *4)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| -4386 *3) (|:| -4370 *4)))) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-737 *3 *4)) (-4 *4 (-728)))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-4249 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-643 (-737 *3 *4))) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) (-3295 (*1 *2 *1) (-12 (-4 *2 (-728)) (-4 *2 (-852)) (-5 *1 (-737 *3 *2)) (-4 *3 (-1052)))) (-3594 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-737 *2 *3)) (-4 *3 (-852)) (-4 *3 (-728)))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-737 *2 *3)) (-4 *3 (-852)) (-4 *2 (-1052)) (-4 *3 (-728))))) +(-13 (-1052) (-1041 |#2|) (-1041 |#1|) (-10 -8 (-15 -3294 ($ |#1| |#2|)) (-15 -4109 (|#1| $ |#2|)) (-15 -4378 ($ (-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))))) (-15 -4205 ((-643 (-2 (|:| -4386 |#1|) (|:| -4370 |#2|))) $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (-15 -4369 ((-112) $)) (-15 -4249 ((-643 |#1|) $)) (-15 -3224 ((-643 $) $)) (-15 -2581 ((-773) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-852)) (PROGN (-15 -3295 (|#2| $)) (-15 -3594 (|#1| $)) (-15 -4391 ($ $))) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-3654 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3656 (($ $ $) 99)) (-3655 (((-112) $ $) 107)) (-1309 (((-112) $ (-773)) NIL)) (-3659 (($ (-643 |#1|)) 26) (($) 17)) (-1678 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2526 (($ $) 85)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) 70 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4425))) (($ |#1| $ (-549)) 75) (($ (-1 (-112) |#1|) $ (-549)) 78)) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (($ |#1| $ (-549)) 80) (($ (-1 (-112) |#1|) $ (-549)) 81)) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 32 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 106)) (-2582 (($) 15) (($ |#1|) 28) (($ (-643 |#1|)) 23)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) 38)) (-3666 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 89)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3658 (($ $ $) 97)) (-1369 ((|#1| $) 62)) (-4039 (($ |#1| $) 63) (($ |#1| $ (-773)) 86)) (-3664 (((-1123) $) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1370 ((|#1| $) 61)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 56)) (-3996 (($) 14)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 55)) (-3657 (($ $ |#1|) NIL) (($ $ $) 98)) (-1567 (($) 16) (($ (-643 |#1|)) 25)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) 68 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 79)) (-4402 (((-538) $) 36 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 22)) (-4378 (((-865) $) 49)) (-3660 (($ (-643 |#1|)) 27) (($) 18)) (-3662 (((-112) $ $) NIL)) (-1371 (($ (-643 |#1|)) 24)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 103)) (-4389 (((-773) $) 67 (|has| $ (-6 -4425))))) +(((-738 |#1|) (-13 (-739 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -2582 ($)) (-15 -2582 ($ |#1|)) (-15 -2582 ($ (-643 |#1|))) (-15 -3008 ((-643 |#1|) $)) (-15 -3830 ($ |#1| $ (-549))) (-15 -3830 ($ (-1 (-112) |#1|) $ (-549))) (-15 -3829 ($ |#1| $ (-549))) (-15 -3829 ($ (-1 (-112) |#1|) $ (-549))))) (-1104)) (T -738)) +((-2582 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1104)))) (-2582 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1104)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-738 *3)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1104)))) (-3830 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-738 *2)) (-4 *2 (-1104)))) (-3830 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1104)) (-5 *1 (-738 *4)))) (-3829 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-738 *2)) (-4 *2 (-1104)))) (-3829 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1104)) (-5 *1 (-738 *4))))) +(-13 (-739 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -2582 ($)) (-15 -2582 ($ |#1|)) (-15 -2582 ($ (-643 |#1|))) (-15 -3008 ((-643 |#1|) $)) (-15 -3830 ($ |#1| $ (-549))) (-15 -3830 ($ (-1 (-112) |#1|) $ (-549))) (-15 -3829 ($ |#1| $ (-549))) (-15 -3829 ($ (-1 (-112) |#1|) $ (-549))))) +((-2968 (((-112) $ $) 19)) (-3654 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3656 (($ $ $) 73)) (-3655 (((-112) $ $) 74)) (-1309 (((-112) $ (-773)) 8)) (-3659 (($ (-643 |#1|)) 69) (($) 68)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2526 (($ $) 63)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 65)) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22)) (-3658 (($ $ $) 70)) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41) (($ |#1| $ (-773)) 64)) (-3664 (((-1123) $) 21)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 62)) (-3657 (($ $ |#1|) 72) (($ $ $) 71)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18)) (-3660 (($ (-643 |#1|)) 67) (($) 66)) (-3662 (((-112) $ $) 23)) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-739 |#1|) (-140) (-1104)) (T -739)) +NIL +(-13 (-697 |t#1|) (-1102 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-697 |#1|) . T) ((-1102 |#1|) . T) ((-1104) . T) ((-1219) . T)) +((-2583 (((-1275) (-1162)) 8))) +(((-740) (-10 -7 (-15 -2583 ((-1275) (-1162))))) (T -740)) +((-2583 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-740))))) +(-10 -7 (-15 -2583 ((-1275) (-1162)))) +((-2584 (((-643 |#1|) (-643 |#1|) (-643 |#1|)) 15))) +(((-741 |#1|) (-10 -7 (-15 -2584 ((-643 |#1|) (-643 |#1|) (-643 |#1|)))) (-852)) (T -741)) +((-2584 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-741 *3))))) +(-10 -7 (-15 -2584 ((-643 |#1|) (-643 |#1|) (-643 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 |#2|) $) 148)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 141 (|has| |#1| (-560)))) (-2241 (($ $) 140 (|has| |#1| (-560)))) (-2239 (((-112) $) 138 (|has| |#1| (-560)))) (-3915 (($ $) 97 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 80 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-3438 (($ $) 79 (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) 96 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 81 (|has| |#1| (-38 (-410 (-549)))))) (-3917 (($ $) 95 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 82 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-4391 (($ $) 132)) (-3890 (((-3 $ "failed") $) 37)) (-4246 (((-949 |#1|) $ (-773)) 110) (((-949 |#1|) $ (-773) (-773)) 109)) (-3293 (((-112) $) 149)) (-4059 (($) 107 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $ |#2|) 112) (((-773) $ |#2| (-773)) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 78 (|has| |#1| (-38 (-410 (-549)))))) (-4369 (((-112) $) 130)) (-3294 (($ $ (-643 |#2|) (-643 (-534 |#2|))) 147) (($ $ |#2| (-534 |#2|)) 146) (($ |#1| (-534 |#2|)) 131) (($ $ |#2| (-773)) 114) (($ $ (-643 |#2|) (-643 (-773))) 113)) (-4390 (($ (-1 |#1| |#1|) $) 129)) (-4374 (($ $) 104 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 127)) (-3594 ((|#1| $) 126)) (-3663 (((-1162) $) 10)) (-4244 (($ $ |#2|) 108 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) 11)) (-4200 (($ $ (-773)) 115)) (-3889 (((-3 $ "failed") $ $) 142 (|has| |#1| (-560)))) (-4375 (($ $) 105 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (($ $ |#2| $) 123) (($ $ (-643 |#2|) (-643 $)) 122) (($ $ (-643 (-294 $))) 121) (($ $ (-294 $)) 120) (($ $ $ $) 119) (($ $ (-643 $) (-643 $)) 118)) (-4242 (($ $ |#2|) 46) (($ $ (-643 |#2|)) 45) (($ $ |#2| (-773)) 44) (($ $ (-643 |#2|) (-643 (-773))) 43)) (-4380 (((-534 |#2|) $) 128)) (-3918 (($ $) 94 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 83 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 93 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 84 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 92 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 85 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 150)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-560))) (($ (-410 (-549))) 135 (|has| |#1| (-38 (-410 (-549)))))) (-4109 ((|#1| $ (-534 |#2|)) 133) (($ $ |#2| (-773)) 117) (($ $ (-643 |#2|) (-643 (-773))) 116)) (-3105 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 103 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 91 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 139 (|has| |#1| (-560)))) (-3919 (($ $) 102 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 90 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 101 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 89 (|has| |#1| (-38 (-410 (-549)))))) (-3924 (($ $) 100 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 88 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 99 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 87 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 98 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 86 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ |#2|) 42) (($ $ (-643 |#2|)) 41) (($ $ |#2| (-773)) 40) (($ $ (-643 |#2|) (-643 (-773))) 39)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ $) 106 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 77 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 137 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 136 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 125) (($ $ |#1|) 124))) +(((-742 |#1| |#2|) (-140) (-1052) (-852)) (T -742)) +((-4109 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-852)))) (-4109 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *5)) (-5 *3 (-643 (-773))) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-742 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-852)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-852)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *5)) (-5 *3 (-643 (-773))) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)))) (-4203 (*1 *2 *1 *3) (-12 (-4 *1 (-742 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-852)) (-5 *2 (-773)))) (-4203 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-773)) (-4 *1 (-742 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-852)))) (-4246 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)) (-5 *2 (-949 *4)))) (-4246 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)) (-5 *2 (-949 *4)))) (-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-742 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-852)) (-4 *3 (-38 (-410 (-549))))))) +(-13 (-903 |t#2|) (-976 |t#1| (-534 |t#2|) |t#2|) (-517 |t#2| $) (-310 $) (-10 -8 (-15 -4109 ($ $ |t#2| (-773))) (-15 -4109 ($ $ (-643 |t#2|) (-643 (-773)))) (-15 -4200 ($ $ (-773))) (-15 -3294 ($ $ |t#2| (-773))) (-15 -3294 ($ $ (-643 |t#2|) (-643 (-773)))) (-15 -4203 ((-773) $ |t#2|)) (-15 -4203 ((-773) $ |t#2| (-773))) (-15 -4246 ((-949 |t#1|) $ (-773))) (-15 -4246 ((-949 |t#1|) $ (-773) (-773))) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ |t#2|)) (-6 (-1005)) (-6 (-1205))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-534 |#2|)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-291) |has| |#1| (-560)) ((-310 $) . T) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-517 |#2| $) . T) ((-517 $ $) . T) ((-560) |has| |#1| (-560)) ((-648 #2#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #2#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-903 |#2|) . T) ((-976 |#1| #1# |#2|) . T) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1054 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549))))) +((-4164 (((-408 (-1174 |#4|)) (-1174 |#4|)) 30) (((-408 |#4|) |#4|) 26))) +(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 |#4|) |#4|)) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|)))) (-852) (-795) (-13 (-308) (-147)) (-953 |#3| |#2| |#1|)) (T -743)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-953 *6 *5 *4)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4))))) +(-10 -7 (-15 -4164 ((-408 |#4|) |#4|)) (-15 -4164 ((-408 (-1174 |#4|)) (-1174 |#4|)))) +((-2587 (((-408 |#4|) |#4| |#2|) 142)) (-2585 (((-408 |#4|) |#4|) NIL)) (-4401 (((-408 (-1174 |#4|)) (-1174 |#4|)) 127) (((-408 |#4|) |#4|) 52)) (-2589 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 |#4|)) (|:| -2564 (-549)))))) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|))) 81)) (-2593 (((-1174 |#3|) (-1174 |#3|) (-549)) 168)) (-2592 (((-643 (-773)) (-1174 |#4|) (-643 |#2|) (-773)) 75)) (-3481 (((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-643 |#2|) (-643 (-773)) (-643 |#3|)) 79)) (-2590 (((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-643 |#3|)) (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|))) 27)) (-2588 (((-2 (|:| -2182 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-549)) 72)) (-2586 (((-549) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) 164)) (-2591 ((|#4| (-549) (-408 |#4|)) 73)) (-3781 (((-112) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) NIL))) +(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4401 ((-408 |#4|) |#4|)) (-15 -4401 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -2585 ((-408 |#4|) |#4|)) (-15 -2586 ((-549) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))))) (-15 -2587 ((-408 |#4|) |#4| |#2|)) (-15 -2588 ((-2 (|:| -2182 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-549))) (-15 -2589 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 |#4|)) (|:| -2564 (-549)))))) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|)))) (-15 -2590 ((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-643 |#3|)) (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|)))) (-15 -2591 (|#4| (-549) (-408 |#4|))) (-15 -3781 ((-112) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))))) (-15 -3481 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-643 |#2|) (-643 (-773)) (-643 |#3|))) (-15 -2592 ((-643 (-773)) (-1174 |#4|) (-643 |#2|) (-773))) (-15 -2593 ((-1174 |#3|) (-1174 |#3|) (-549)))) (-795) (-852) (-308) (-953 |#3| |#1| |#2|)) (T -744)) +((-2593 (*1 *2 *2 *3) (-12 (-5 *2 (-1174 *6)) (-5 *3 (-549)) (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-2592 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-4 *7 (-852)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-4 *8 (-308)) (-5 *2 (-643 (-773))) (-5 *1 (-744 *6 *7 *8 *9)) (-5 *5 (-773)))) (-3481 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1174 *11)) (-5 *6 (-643 *10)) (-5 *7 (-643 (-773))) (-5 *8 (-643 *11)) (-4 *10 (-852)) (-4 *11 (-308)) (-4 *9 (-795)) (-4 *5 (-953 *11 *9 *10)) (-5 *2 (-643 (-1174 *5))) (-5 *1 (-744 *9 *10 *11 *5)) (-5 *3 (-1174 *5)))) (-3781 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-2 (|:| -4164 (-1174 *6)) (|:| -2564 (-549))))) (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-408 *2)) (-4 *2 (-953 *7 *5 *6)) (-5 *1 (-744 *5 *6 *7 *2)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-308)))) (-2590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-5 *5 (-643 (-643 *8))) (-4 *7 (-852)) (-4 *8 (-308)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-5 *2 (-2 (|:| |upol| (-1174 *8)) (|:| |Lval| (-643 *8)) (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 *8)) (|:| -2564 (-549))))) (|:| |ctpol| *8))) (-5 *1 (-744 *6 *7 *8 *9)))) (-2589 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-643 *7)) (-5 *5 (-643 (-643 *8))) (-4 *7 (-852)) (-4 *8 (-308)) (-4 *6 (-795)) (-4 *9 (-953 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 *9)) (|:| -2564 (-549))))))) (-5 *1 (-744 *6 *7 *8 *9)) (-5 *3 (-1174 *9)))) (-2588 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-549)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-308)) (-4 *9 (-953 *8 *6 *7)) (-5 *2 (-2 (|:| -2182 (-1174 *9)) (|:| |polval| (-1174 *8)))) (-5 *1 (-744 *6 *7 *8 *9)) (-5 *3 (-1174 *9)) (-5 *4 (-1174 *8)))) (-2587 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-744 *5 *4 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -4164 (-1174 *6)) (|:| -2564 (-549))))) (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-549)) (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-2585 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-953 *6 *4 *5)))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-744 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-953 *6 *4 *5))))) +(-10 -7 (-15 -4401 ((-408 |#4|) |#4|)) (-15 -4401 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -2585 ((-408 |#4|) |#4|)) (-15 -2586 ((-549) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))))) (-15 -2587 ((-408 |#4|) |#4| |#2|)) (-15 -2588 ((-2 (|:| -2182 (-1174 |#4|)) (|:| |polval| (-1174 |#3|))) (-1174 |#4|) (-1174 |#3|) (-549))) (-15 -2589 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 |#4|)) (|:| -2564 (-549)))))) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|)))) (-15 -2590 ((-2 (|:| |upol| (-1174 |#3|)) (|:| |Lval| (-643 |#3|)) (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549))))) (|:| |ctpol| |#3|)) (-1174 |#4|) (-643 |#2|) (-643 (-643 |#3|)))) (-15 -2591 (|#4| (-549) (-408 |#4|))) (-15 -3781 ((-112) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))) (-643 (-2 (|:| -4164 (-1174 |#3|)) (|:| -2564 (-549)))))) (-15 -3481 ((-3 (-643 (-1174 |#4|)) "failed") (-1174 |#4|) (-1174 |#3|) (-1174 |#3|) |#4| (-643 |#2|) (-643 (-773)) (-643 |#3|))) (-15 -2592 ((-643 (-773)) (-1174 |#4|) (-643 |#2|) (-773))) (-15 -2593 ((-1174 |#3|) (-1174 |#3|) (-549)))) +((-2594 (($ $ (-922)) 17))) +(((-745 |#1| |#2|) (-10 -8 (-15 -2594 (|#1| |#1| (-922)))) (-746 |#2|) (-172)) (T -745)) +NIL +(-10 -8 (-15 -2594 (|#1| |#1| (-922)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2570 (($ $ (-922)) 31)) (-2594 (($ $ (-922)) 38)) (-2569 (($ $ (-922)) 32)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-2756 (($ $ $) 28)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2757 (($ $ $ $) 29)) (-2755 (($ $ $) 27)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-746 |#1|) (-140) (-172)) (T -746)) +((-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-746 *3)) (-4 *3 (-172))))) +(-13 (-763) (-719 |t#1|) (-10 -8 (-15 -2594 ($ $ (-922))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-722) . T) ((-763) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) +((-2596 (((-1038) (-691 (-225)) (-549) (-112) (-549)) 25)) (-2595 (((-1038) (-691 (-225)) (-549) (-112) (-549)) 24))) +(((-747) (-10 -7 (-15 -2595 ((-1038) (-691 (-225)) (-549) (-112) (-549))) (-15 -2596 ((-1038) (-691 (-225)) (-549) (-112) (-549))))) (T -747)) +((-2596 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1038)) (-5 *1 (-747)))) (-2595 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1038)) (-5 *1 (-747))))) +(-10 -7 (-15 -2595 ((-1038) (-691 (-225)) (-549) (-112) (-549))) (-15 -2596 ((-1038) (-691 (-225)) (-549) (-112) (-549)))) +((-2599 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) 43)) (-2598 (((-1038) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) 39)) (-2597 (((-1038) (-225) (-225) (-225) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 32))) +(((-748) (-10 -7 (-15 -2597 ((-1038) (-225) (-225) (-225) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2598 ((-1038) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -2599 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))) (T -748)) +((-2599 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1038)) (-5 *1 (-748)))) (-2598 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1038)) (-5 *1 (-748)))) (-2597 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) (-5 *1 (-748))))) +(-10 -7 (-15 -2597 ((-1038) (-225) (-225) (-225) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2598 ((-1038) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -2599 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))))) +((-2611 (((-1038) (-549) (-549) (-691 (-225)) (-549)) 34)) (-2610 (((-1038) (-549) (-549) (-691 (-225)) (-549)) 33)) (-2609 (((-1038) (-549) (-691 (-225)) (-549)) 32)) (-2608 (((-1038) (-549) (-691 (-225)) (-549)) 31)) (-2607 (((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 30)) (-2606 (((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 29)) (-2605 (((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549)) 28)) (-2604 (((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549)) 27)) (-2603 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 24)) (-2602 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549)) 23)) (-2601 (((-1038) (-549) (-691 (-225)) (-549)) 22)) (-2600 (((-1038) (-549) (-691 (-225)) (-549)) 21))) +(((-749) (-10 -7 (-15 -2600 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2601 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2602 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2603 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2604 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2605 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2606 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2607 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2608 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2609 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2610 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2611 ((-1038) (-549) (-549) (-691 (-225)) (-549))))) (T -749)) +((-2611 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2610 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2609 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2608 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2607 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2606 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2605 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2604 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2603 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2602 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2601 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749)))) (-2600 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(-10 -7 (-15 -2600 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2601 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2602 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2603 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2604 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2605 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2606 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2607 ((-1038) (-549) (-549) (-1162) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2608 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2609 ((-1038) (-549) (-691 (-225)) (-549))) (-15 -2610 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2611 ((-1038) (-549) (-549) (-691 (-225)) (-549)))) +((-2623 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) 52)) (-2622 (((-1038) (-691 (-225)) (-691 (-225)) (-549) (-549)) 51)) (-2621 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) 50)) (-2620 (((-1038) (-225) (-225) (-549) (-549) (-549) (-549)) 46)) (-2619 (((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) 45)) (-2618 (((-1038) (-225) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) 44)) (-2617 (((-1038) (-225) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) 43)) (-2616 (((-1038) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) 42)) (-2615 (((-1038) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 38)) (-2614 (((-1038) (-225) (-225) (-549) (-691 (-225)) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 37)) (-2613 (((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 33)) (-2612 (((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) 32))) +(((-750) (-10 -7 (-15 -2612 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2613 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2614 ((-1038) (-225) (-225) (-549) (-691 (-225)) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2615 ((-1038) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2616 ((-1038) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2617 ((-1038) (-225) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2618 ((-1038) (-225) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2619 ((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2620 ((-1038) (-225) (-225) (-549) (-549) (-549) (-549))) (-15 -2621 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN))))) (-15 -2622 ((-1038) (-691 (-225)) (-691 (-225)) (-549) (-549))) (-15 -2623 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN))))))) (T -750)) +((-2623 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2622 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2621 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2620 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2619 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2618 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2617 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2616 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2615 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2614 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2613 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) (-5 *1 (-750)))) (-2612 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) (-5 *1 (-750))))) +(-10 -7 (-15 -2612 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2613 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2614 ((-1038) (-225) (-225) (-549) (-691 (-225)) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2615 ((-1038) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496))))) (-15 -2616 ((-1038) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2617 ((-1038) (-225) (-225) (-225) (-225) (-549) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2618 ((-1038) (-225) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2619 ((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G))))) (-15 -2620 ((-1038) (-225) (-225) (-549) (-549) (-549) (-549))) (-15 -2621 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN))))) (-15 -2622 ((-1038) (-691 (-225)) (-691 (-225)) (-549) (-549))) (-15 -2623 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-225) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))))) +((-2631 (((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76)) (-2630 (((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))) (-391) (-391)) 69) (((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) 68)) (-2629 (((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG)))) 57)) (-2628 (((-1038) (-691 (-225)) (-691 (-225)) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) 50)) (-2627 (((-1038) (-225) (-549) (-549) (-1162) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) 49)) (-2626 (((-1038) (-225) (-549) (-549) (-225) (-1162) (-225) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) 45)) (-2625 (((-1038) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) 42)) (-2624 (((-1038) (-225) (-549) (-549) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) 38))) +(((-751) (-10 -7 (-15 -2624 ((-1038) (-225) (-549) (-549) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2625 ((-1038) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))))) (-15 -2626 ((-1038) (-225) (-549) (-549) (-225) (-1162) (-225) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2627 ((-1038) (-225) (-549) (-549) (-1162) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2628 ((-1038) (-691 (-225)) (-691 (-225)) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))))) (-15 -2629 ((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG))))) (-15 -2630 ((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))))) (-15 -2630 ((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))) (-391) (-391))) (-15 -2631 ((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -751)) +((-2631 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2630 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-391)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2630 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2629 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2628 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2627 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-691 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2626 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-691 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2625 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751)))) (-2624 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-751))))) +(-10 -7 (-15 -2624 ((-1038) (-225) (-549) (-549) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2625 ((-1038) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))))) (-15 -2626 ((-1038) (-225) (-549) (-549) (-225) (-1162) (-225) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2627 ((-1038) (-225) (-549) (-549) (-1162) (-549) (-225) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT))))) (-15 -2628 ((-1038) (-691 (-225)) (-691 (-225)) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN))))) (-15 -2629 ((-1038) (-225) (-225) (-549) (-225) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG))))) (-15 -2630 ((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))))) (-15 -2630 ((-1038) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL))) (-391) (-391))) (-15 -2631 ((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP)))))) +((-2634 (((-1038) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-677 (-225)) (-549)) 45)) (-2633 (((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-1162) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY)))) 41)) (-2632 (((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 23))) +(((-752) (-10 -7 (-15 -2632 ((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2633 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-1162) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY))))) (-15 -2634 ((-1038) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-677 (-225)) (-549))))) (T -752)) +((-2634 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-677 (-225))) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-752)))) (-2633 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1038)) (-5 *1 (-752)))) (-2632 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-752))))) +(-10 -7 (-15 -2632 ((-1038) (-549) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2633 ((-1038) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-1162) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY))))) (-15 -2634 ((-1038) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-677 (-225)) (-549)))) +((-2644 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-691 (-225)) (-225) (-225) (-549)) 35)) (-2643 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-225) (-225) (-549)) 34)) (-2642 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-691 (-225)) (-225) (-225) (-549)) 33)) (-2641 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 29)) (-2640 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 28)) (-2639 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549)) 27)) (-2638 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549)) 24)) (-2637 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549)) 23)) (-2636 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549)) 22)) (-2635 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549)) 21))) +(((-753) (-10 -7 (-15 -2635 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))) (-15 -2636 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2637 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2638 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2639 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549))) (-15 -2640 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2641 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2642 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-691 (-225)) (-225) (-225) (-549))) (-15 -2643 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-225) (-225) (-549))) (-15 -2644 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-691 (-225)) (-225) (-225) (-549))))) (T -753)) +((-2644 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2643 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2642 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *6 (-225)) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2641 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2640 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2639 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2638 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2637 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2636 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753)))) (-2635 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) +(-10 -7 (-15 -2635 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))) (-15 -2636 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2637 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2638 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2639 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-225) (-549))) (-15 -2640 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2641 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2642 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-691 (-225)) (-225) (-225) (-549))) (-15 -2643 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-225) (-225) (-549))) (-15 -2644 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-691 (-225)) (-225) (-225) (-549)))) +((-2662 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549)) 45)) (-2661 (((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-549)) 44)) (-2660 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549)) 43)) (-2659 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 42)) (-2658 (((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549)) 41)) (-2657 (((-1038) (-1162) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549)) 40)) (-2656 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549) (-549) (-549) (-225) (-691 (-225)) (-549)) 39)) (-2655 (((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549))) 38)) (-2654 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549)) 35)) (-2653 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549)) 34)) (-2652 (((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549)) 33)) (-2651 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 32)) (-2650 (((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549)) 31)) (-2649 (((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-549)) 30)) (-2648 (((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-549) (-549) (-549)) 29)) (-2647 (((-1038) (-549) (-549) (-549) (-225) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-549)) (-549) (-549) (-549)) 28)) (-2646 (((-1038) (-549) (-691 (-225)) (-225) (-549)) 24)) (-2645 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 21))) +(((-754) (-10 -7 (-15 -2645 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2646 ((-1038) (-549) (-691 (-225)) (-225) (-549))) (-15 -2647 ((-1038) (-549) (-549) (-549) (-225) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-549)) (-549) (-549) (-549))) (-15 -2648 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-549) (-549) (-549))) (-15 -2649 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-549))) (-15 -2650 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549))) (-15 -2651 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2652 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549))) (-15 -2653 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549))) (-15 -2654 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2655 ((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)))) (-15 -2656 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549) (-549) (-549) (-225) (-691 (-225)) (-549))) (-15 -2657 ((-1038) (-1162) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549))) (-15 -2658 ((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2659 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2660 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))) (-15 -2661 ((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2662 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))))) (T -754)) +((-2662 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2661 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2660 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2659 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2658 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2657 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) (-5 *7 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2656 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *6 (-225)) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2655 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) (-5 *7 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2654 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2653 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2652 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2651 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2650 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2649 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2648 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2647 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) (-5 *3 (-549)) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2646 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) (-5 *1 (-754)))) (-2645 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) +(-10 -7 (-15 -2645 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2646 ((-1038) (-549) (-691 (-225)) (-225) (-549))) (-15 -2647 ((-1038) (-549) (-549) (-549) (-225) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-549)) (-549) (-549) (-549))) (-15 -2648 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-549) (-549) (-549))) (-15 -2649 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549) (-549) (-549))) (-15 -2650 ((-1038) (-549) (-225) (-225) (-691 (-225)) (-549) (-549) (-225) (-549))) (-15 -2651 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2652 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549))) (-15 -2653 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549))) (-15 -2654 ((-1038) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2655 ((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)))) (-15 -2656 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549) (-549) (-549) (-225) (-691 (-225)) (-549))) (-15 -2657 ((-1038) (-1162) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549))) (-15 -2658 ((-1038) (-1162) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2659 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2660 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549))) (-15 -2661 ((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2662 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549) (-691 (-225)) (-691 (-225)) (-549) (-549) (-549)))) +((-2670 (((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-549) (-691 (-225)) (-549)) 63)) (-2669 (((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-112) (-225) (-549) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-549) (-549) (-549) (-549) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) 62)) (-2668 (((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-112) (-112) (-549) (-549) (-691 (-225)) (-691 (-549)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) 58)) (-2667 (((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-549) (-549) (-691 (-225)) (-549)) 51)) (-2666 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2665 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2)))) 46)) (-2664 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2663 (((-1038) (-549) (-225) (-225) (-549) (-225) (-112) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) 38))) +(((-755) (-10 -7 (-15 -2663 ((-1038) (-549) (-225) (-225) (-549) (-225) (-112) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN))))) (-15 -2664 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2665 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2))))) (-15 -2666 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -2667 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-549) (-549) (-691 (-225)) (-549))) (-15 -2668 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-112) (-112) (-549) (-549) (-691 (-225)) (-691 (-549)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2669 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-112) (-225) (-549) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-549) (-549) (-549) (-549) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN))))) (-15 -2670 ((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-549) (-691 (-225)) (-549))))) (T -755)) +((-2670 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2669 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-691 (-549))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2668 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-691 (-225))) (-5 *6 (-112)) (-5 *7 (-691 (-549))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-549)) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2667 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2666 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2665 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2664 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1038)) (-5 *1 (-755)))) (-2663 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-691 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-755))))) +(-10 -7 (-15 -2663 ((-1038) (-549) (-225) (-225) (-549) (-225) (-112) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN))))) (-15 -2664 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -2665 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2))))) (-15 -2666 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -2667 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-549) (-549) (-691 (-225)) (-549))) (-15 -2668 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-225) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-112) (-112) (-112) (-549) (-549) (-691 (-225)) (-691 (-549)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -2669 ((-1038) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-549) (-112) (-225) (-549) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-549) (-549) (-549) (-549) (-549) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-549) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN))))) (-15 -2670 ((-1038) (-549) (-549) (-549) (-225) (-691 (-225)) (-549) (-691 (-225)) (-549)))) +((-2680 (((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549)) 47)) (-2679 (((-1038) (-1162) (-1162) (-549) (-549) (-691 (-168 (-225))) (-549) (-691 (-168 (-225))) (-549) (-549) (-691 (-168 (-225))) (-549)) 46)) (-2678 (((-1038) (-549) (-549) (-549) (-691 (-168 (-225))) (-549)) 45)) (-2677 (((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 40)) (-2676 (((-1038) (-1162) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-691 (-225)) (-549)) 39)) (-2675 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-549)) 36)) (-2674 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549)) 35)) (-2673 (((-1038) (-549) (-549) (-549) (-549) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-225) (-225) (-549)) 34)) (-2672 (((-1038) (-549) (-549) (-549) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-112) (-225) (-112) (-691 (-549)) (-691 (-225)) (-549)) 33)) (-2671 (((-1038) (-549) (-549) (-549) (-549) (-225) (-112) (-112) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-549)) 32))) +(((-756) (-10 -7 (-15 -2671 ((-1038) (-549) (-549) (-549) (-549) (-225) (-112) (-112) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-549))) (-15 -2672 ((-1038) (-549) (-549) (-549) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-112) (-225) (-112) (-691 (-549)) (-691 (-225)) (-549))) (-15 -2673 ((-1038) (-549) (-549) (-549) (-549) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-225) (-225) (-549))) (-15 -2674 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549))) (-15 -2675 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-549))) (-15 -2676 ((-1038) (-1162) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-691 (-225)) (-549))) (-15 -2677 ((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2678 ((-1038) (-549) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2679 ((-1038) (-1162) (-1162) (-549) (-549) (-691 (-168 (-225))) (-549) (-691 (-168 (-225))) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2680 ((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549))))) (T -756)) +((-2680 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2679 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2678 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2677 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2676 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2675 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2674 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2673 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-643 (-112))) (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) (-5 *7 (-225)) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2672 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-691 (-549))) (-5 *5 (-112)) (-5 *7 (-691 (-225))) (-5 *3 (-549)) (-5 *6 (-225)) (-5 *2 (-1038)) (-5 *1 (-756)))) (-2671 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-643 (-112))) (-5 *7 (-691 (-225))) (-5 *8 (-691 (-549))) (-5 *3 (-549)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1038)) (-5 *1 (-756))))) +(-10 -7 (-15 -2671 ((-1038) (-549) (-549) (-549) (-549) (-225) (-112) (-112) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-549))) (-15 -2672 ((-1038) (-549) (-549) (-549) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-691 (-549)) (-112) (-225) (-112) (-691 (-549)) (-691 (-225)) (-549))) (-15 -2673 ((-1038) (-549) (-549) (-549) (-549) (-643 (-112)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-225) (-225) (-549))) (-15 -2674 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549))) (-15 -2675 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-549))) (-15 -2676 ((-1038) (-1162) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-691 (-225)) (-549))) (-15 -2677 ((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2678 ((-1038) (-549) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2679 ((-1038) (-1162) (-1162) (-549) (-549) (-691 (-168 (-225))) (-549) (-691 (-168 (-225))) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2680 ((-1038) (-1162) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549)))) +((-2695 (((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549)) 79)) (-2694 (((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549)) 68)) (-2693 (((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391)) 56) (((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) 55)) (-2692 (((-1038) (-549) (-549) (-549) (-225) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549)) 37)) (-2691 (((-1038) (-549) (-549) (-225) (-225) (-549) (-549) (-691 (-225)) (-549)) 33)) (-2690 (((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549) (-549)) 30)) (-2689 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 29)) (-2688 (((-1038) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 28)) (-2687 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 27)) (-2686 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549)) 26)) (-2685 (((-1038) (-549) (-549) (-691 (-225)) (-549)) 25)) (-2684 (((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 24)) (-2683 (((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549)) 23)) (-2682 (((-1038) (-691 (-225)) (-549) (-549) (-549) (-549)) 22)) (-2681 (((-1038) (-549) (-549) (-691 (-225)) (-549)) 21))) +(((-757) (-10 -7 (-15 -2681 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2682 ((-1038) (-691 (-225)) (-549) (-549) (-549) (-549))) (-15 -2683 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2684 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2685 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2686 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549))) (-15 -2687 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2688 ((-1038) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2689 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2690 ((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549) (-549))) (-15 -2691 ((-1038) (-549) (-549) (-225) (-225) (-549) (-549) (-691 (-225)) (-549))) (-15 -2692 ((-1038) (-549) (-549) (-549) (-225) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2693 ((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2693 ((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -2694 ((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2695 ((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549))))) (T -757)) +((-2695 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2694 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2693 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2693 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2692 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2691 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2690 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2689 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2688 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2687 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2686 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2685 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2684 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2683 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2682 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-757)))) (-2681 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(-10 -7 (-15 -2681 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2682 ((-1038) (-691 (-225)) (-549) (-549) (-549) (-549))) (-15 -2683 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2684 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2685 ((-1038) (-549) (-549) (-691 (-225)) (-549))) (-15 -2686 ((-1038) (-549) (-549) (-549) (-549) (-691 (-225)) (-549))) (-15 -2687 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2688 ((-1038) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2689 ((-1038) (-549) (-549) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2690 ((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549) (-549))) (-15 -2691 ((-1038) (-549) (-549) (-225) (-225) (-549) (-549) (-691 (-225)) (-549))) (-15 -2692 ((-1038) (-549) (-549) (-549) (-225) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2693 ((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -2693 ((-1038) (-549) (-549) (-225) (-549) (-549) (-549) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -2694 ((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2695 ((-1038) (-549) (-549) (-549) (-549) (-549) (-112) (-549) (-112) (-549) (-691 (-168 (-225))) (-691 (-168 (-225))) (-549)))) +((-2706 (((-1038) (-549) (-549) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) 64)) (-2705 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549)) 60)) (-2704 (((-1038) (-549) (-691 (-225)) (-112) (-225) (-549) (-549) (-549) (-549) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2703 (((-1038) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549)) 37)) (-2702 (((-1038) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-549)) 36)) (-2701 (((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549)) 33)) (-2700 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225))) 32)) (-2699 (((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549)) 28)) (-2698 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549)) 27)) (-2697 (((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549)) 26)) (-2696 (((-1038) (-549) (-691 (-168 (-225))) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-549)) 22))) +(((-758) (-10 -7 (-15 -2696 ((-1038) (-549) (-691 (-168 (-225))) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2697 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2698 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2699 ((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549))) (-15 -2700 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)))) (-15 -2701 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2702 ((-1038) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2703 ((-1038) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549))) (-15 -2704 ((-1038) (-549) (-691 (-225)) (-112) (-225) (-549) (-549) (-549) (-549) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2705 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549))) (-15 -2706 ((-1038) (-549) (-549) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))) (T -758)) +((-2706 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2705 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2704 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2703 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2702 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2701 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2700 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2699 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2698 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2697 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758)))) (-2696 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-168 (-225)))) (-5 *2 (-1038)) (-5 *1 (-758))))) +(-10 -7 (-15 -2696 ((-1038) (-549) (-691 (-168 (-225))) (-549) (-549) (-549) (-549) (-691 (-168 (-225))) (-549))) (-15 -2697 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2698 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-549))) (-15 -2699 ((-1038) (-691 (-225)) (-549) (-691 (-225)) (-549) (-549) (-549))) (-15 -2700 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-549)) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)))) (-15 -2701 ((-1038) (-549) (-549) (-691 (-225)) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2702 ((-1038) (-549) (-549) (-549) (-225) (-549) (-691 (-225)) (-691 (-225)) (-549))) (-15 -2703 ((-1038) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-549)) (-691 (-225)) (-691 (-549)) (-691 (-549)) (-691 (-225)) (-691 (-225)) (-691 (-549)) (-549))) (-15 -2704 ((-1038) (-549) (-691 (-225)) (-112) (-225) (-549) (-549) (-549) (-549) (-225) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -2705 ((-1038) (-549) (-691 (-225)) (-549) (-691 (-225)) (-691 (-549)) (-549) (-691 (-225)) (-549) (-549) (-549) (-549))) (-15 -2706 ((-1038) (-549) (-549) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-691 (-225)) (-549) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))))) +((-2710 (((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-549) (-691 (-225))) 29)) (-2709 (((-1038) (-1162) (-549) (-549) (-691 (-225))) 28)) (-2708 (((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-225))) 27)) (-2707 (((-1038) (-549) (-549) (-549) (-691 (-225))) 21))) +(((-759) (-10 -7 (-15 -2707 ((-1038) (-549) (-549) (-549) (-691 (-225)))) (-15 -2708 ((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-225)))) (-15 -2709 ((-1038) (-1162) (-549) (-549) (-691 (-225)))) (-15 -2710 ((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-549) (-691 (-225)))))) (T -759)) +((-2710 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-759)))) (-2709 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-759)))) (-2708 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-759)))) (-2707 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-759))))) +(-10 -7 (-15 -2707 ((-1038) (-549) (-549) (-549) (-691 (-225)))) (-15 -2708 ((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-691 (-549)) (-549) (-691 (-225)))) (-15 -2709 ((-1038) (-1162) (-549) (-549) (-691 (-225)))) (-15 -2710 ((-1038) (-1162) (-549) (-549) (-691 (-225)) (-549) (-549) (-691 (-225))))) +((-2748 (((-1038) (-225) (-225) (-225) (-225) (-549)) 62)) (-2747 (((-1038) (-225) (-225) (-225) (-549)) 61)) (-2746 (((-1038) (-225) (-225) (-225) (-549)) 60)) (-2745 (((-1038) (-225) (-225) (-549)) 59)) (-2744 (((-1038) (-225) (-549)) 58)) (-2743 (((-1038) (-225) (-549)) 57)) (-2742 (((-1038) (-225) (-549)) 56)) (-2741 (((-1038) (-225) (-549)) 55)) (-2740 (((-1038) (-225) (-549)) 54)) (-2739 (((-1038) (-225) (-549)) 53)) (-2738 (((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549)) 52)) (-2737 (((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549)) 51)) (-2736 (((-1038) (-225) (-549)) 50)) (-2735 (((-1038) (-225) (-549)) 49)) (-2734 (((-1038) (-225) (-549)) 48)) (-2733 (((-1038) (-225) (-549)) 47)) (-2732 (((-1038) (-549) (-225) (-168 (-225)) (-549) (-1162) (-549)) 46)) (-2731 (((-1038) (-1162) (-168 (-225)) (-1162) (-549)) 45)) (-2730 (((-1038) (-1162) (-168 (-225)) (-1162) (-549)) 44)) (-2729 (((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549)) 43)) (-2728 (((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549)) 42)) (-2727 (((-1038) (-225) (-549)) 39)) (-2726 (((-1038) (-225) (-549)) 38)) (-2725 (((-1038) (-225) (-549)) 37)) (-2724 (((-1038) (-225) (-549)) 36)) (-2723 (((-1038) (-225) (-549)) 35)) (-2722 (((-1038) (-225) (-549)) 34)) (-2721 (((-1038) (-225) (-549)) 33)) (-2720 (((-1038) (-225) (-549)) 32)) (-2719 (((-1038) (-225) (-549)) 31)) (-2718 (((-1038) (-225) (-549)) 30)) (-2717 (((-1038) (-225) (-225) (-225) (-549)) 29)) (-2716 (((-1038) (-225) (-549)) 28)) (-2715 (((-1038) (-225) (-549)) 27)) (-2714 (((-1038) (-225) (-549)) 26)) (-2713 (((-1038) (-225) (-549)) 25)) (-2712 (((-1038) (-225) (-549)) 24)) (-2711 (((-1038) (-168 (-225)) (-549)) 21))) +(((-760) (-10 -7 (-15 -2711 ((-1038) (-168 (-225)) (-549))) (-15 -2712 ((-1038) (-225) (-549))) (-15 -2713 ((-1038) (-225) (-549))) (-15 -2714 ((-1038) (-225) (-549))) (-15 -2715 ((-1038) (-225) (-549))) (-15 -2716 ((-1038) (-225) (-549))) (-15 -2717 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2718 ((-1038) (-225) (-549))) (-15 -2719 ((-1038) (-225) (-549))) (-15 -2720 ((-1038) (-225) (-549))) (-15 -2721 ((-1038) (-225) (-549))) (-15 -2722 ((-1038) (-225) (-549))) (-15 -2723 ((-1038) (-225) (-549))) (-15 -2724 ((-1038) (-225) (-549))) (-15 -2725 ((-1038) (-225) (-549))) (-15 -2726 ((-1038) (-225) (-549))) (-15 -2727 ((-1038) (-225) (-549))) (-15 -2728 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2729 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2730 ((-1038) (-1162) (-168 (-225)) (-1162) (-549))) (-15 -2731 ((-1038) (-1162) (-168 (-225)) (-1162) (-549))) (-15 -2732 ((-1038) (-549) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2733 ((-1038) (-225) (-549))) (-15 -2734 ((-1038) (-225) (-549))) (-15 -2735 ((-1038) (-225) (-549))) (-15 -2736 ((-1038) (-225) (-549))) (-15 -2737 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2738 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2739 ((-1038) (-225) (-549))) (-15 -2740 ((-1038) (-225) (-549))) (-15 -2741 ((-1038) (-225) (-549))) (-15 -2742 ((-1038) (-225) (-549))) (-15 -2743 ((-1038) (-225) (-549))) (-15 -2744 ((-1038) (-225) (-549))) (-15 -2745 ((-1038) (-225) (-225) (-549))) (-15 -2746 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2747 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2748 ((-1038) (-225) (-225) (-225) (-225) (-549))))) (T -760)) +((-2748 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2747 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2746 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2745 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2738 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2737 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2734 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2732 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-549)) (-5 *5 (-168 (-225))) (-5 *6 (-1162)) (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2731 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1162)) (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2730 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1162)) (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2729 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2728 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2723 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2720 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2718 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2717 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2713 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2712 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760)))) (-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-168 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(-10 -7 (-15 -2711 ((-1038) (-168 (-225)) (-549))) (-15 -2712 ((-1038) (-225) (-549))) (-15 -2713 ((-1038) (-225) (-549))) (-15 -2714 ((-1038) (-225) (-549))) (-15 -2715 ((-1038) (-225) (-549))) (-15 -2716 ((-1038) (-225) (-549))) (-15 -2717 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2718 ((-1038) (-225) (-549))) (-15 -2719 ((-1038) (-225) (-549))) (-15 -2720 ((-1038) (-225) (-549))) (-15 -2721 ((-1038) (-225) (-549))) (-15 -2722 ((-1038) (-225) (-549))) (-15 -2723 ((-1038) (-225) (-549))) (-15 -2724 ((-1038) (-225) (-549))) (-15 -2725 ((-1038) (-225) (-549))) (-15 -2726 ((-1038) (-225) (-549))) (-15 -2727 ((-1038) (-225) (-549))) (-15 -2728 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2729 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2730 ((-1038) (-1162) (-168 (-225)) (-1162) (-549))) (-15 -2731 ((-1038) (-1162) (-168 (-225)) (-1162) (-549))) (-15 -2732 ((-1038) (-549) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2733 ((-1038) (-225) (-549))) (-15 -2734 ((-1038) (-225) (-549))) (-15 -2735 ((-1038) (-225) (-549))) (-15 -2736 ((-1038) (-225) (-549))) (-15 -2737 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2738 ((-1038) (-225) (-168 (-225)) (-549) (-1162) (-549))) (-15 -2739 ((-1038) (-225) (-549))) (-15 -2740 ((-1038) (-225) (-549))) (-15 -2741 ((-1038) (-225) (-549))) (-15 -2742 ((-1038) (-225) (-549))) (-15 -2743 ((-1038) (-225) (-549))) (-15 -2744 ((-1038) (-225) (-549))) (-15 -2745 ((-1038) (-225) (-225) (-549))) (-15 -2746 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2747 ((-1038) (-225) (-225) (-225) (-549))) (-15 -2748 ((-1038) (-225) (-225) (-225) (-225) (-549)))) +((-2754 (((-1275)) 20)) (-2750 (((-1162)) 31)) (-2749 (((-1162)) 30)) (-2752 (((-1106) (-1180) (-691 (-549))) 45) (((-1106) (-1180) (-691 (-225))) 41)) (-2753 (((-112)) 19)) (-2751 (((-1162) (-1162)) 34))) +(((-761) (-10 -7 (-15 -2749 ((-1162))) (-15 -2750 ((-1162))) (-15 -2751 ((-1162) (-1162))) (-15 -2752 ((-1106) (-1180) (-691 (-225)))) (-15 -2752 ((-1106) (-1180) (-691 (-549)))) (-15 -2753 ((-112))) (-15 -2754 ((-1275))))) (T -761)) +((-2754 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-761)))) (-2753 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-761)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-691 (-549))) (-5 *2 (-1106)) (-5 *1 (-761)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-691 (-225))) (-5 *2 (-1106)) (-5 *1 (-761)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761)))) (-2750 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761)))) (-2749 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761))))) +(-10 -7 (-15 -2749 ((-1162))) (-15 -2750 ((-1162))) (-15 -2751 ((-1162) (-1162))) (-15 -2752 ((-1106) (-1180) (-691 (-225)))) (-15 -2752 ((-1106) (-1180) (-691 (-549)))) (-15 -2753 ((-112))) (-15 -2754 ((-1275)))) +((-2756 (($ $ $) 10)) (-2757 (($ $ $ $) 9)) (-2755 (($ $ $) 12))) +(((-762 |#1|) (-10 -8 (-15 -2755 (|#1| |#1| |#1|)) (-15 -2756 (|#1| |#1| |#1|)) (-15 -2757 (|#1| |#1| |#1| |#1|))) (-763)) (T -762)) +NIL +(-10 -8 (-15 -2755 (|#1| |#1| |#1|)) (-15 -2756 (|#1| |#1| |#1|)) (-15 -2757 (|#1| |#1| |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2570 (($ $ (-922)) 31)) (-2569 (($ $ (-922)) 32)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-2756 (($ $ $) 28)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2757 (($ $ $ $) 29)) (-2755 (($ $ $) 27)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30))) +(((-763) (-140)) (T -763)) +((-2757 (*1 *1 *1 *1 *1) (-4 *1 (-763))) (-2756 (*1 *1 *1 *1) (-4 *1 (-763))) (-2755 (*1 *1 *1 *1) (-4 *1 (-763)))) +(-13 (-21) (-722) (-10 -8 (-15 -2757 ($ $ $ $)) (-15 -2756 ($ $ $)) (-15 -2755 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-722) . T) ((-1104) . T)) +((-4378 (((-865) $) NIL) (($ (-549)) 10))) +(((-764 |#1|) (-10 -8 (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-765)) (T -764)) +NIL +(-10 -8 (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2567 (((-3 $ #1="failed") $) 43)) (-2570 (($ $ (-922)) 31) (($ $ (-773)) 38)) (-3890 (((-3 $ #1#) $) 41)) (-2573 (((-112) $) 37)) (-2568 (((-3 $ #1#) $) 42)) (-2569 (($ $ (-922)) 32) (($ $ (-773)) 39)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-2756 (($ $ $) 28)) (-4378 (((-865) $) 12) (($ (-549)) 34)) (-3530 (((-773)) 35 T CONST)) (-3662 (((-112) $ $) 9)) (-2757 (($ $ $ $) 29)) (-2755 (($ $ $) 27)) (-3510 (($) 19 T CONST)) (-3067 (($) 36 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 33) (($ $ (-773)) 40)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 30))) +(((-765) (-140)) (T -765)) +((-3530 (*1 *2) (-12 (-4 *1 (-765)) (-5 *2 (-773)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-765))))) +(-13 (-763) (-724) (-10 -8 (-15 -3530 ((-773)) -4384) (-15 -4378 ($ (-549))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-722) . T) ((-724) . T) ((-763) . T) ((-1104) . T)) +((-2759 (((-643 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 (-168 |#1|)))))) (-691 (-168 (-410 (-549)))) |#1|) 33)) (-2758 (((-643 (-168 |#1|)) (-691 (-168 (-410 (-549)))) |#1|) 23)) (-2770 (((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))) (-1180)) 20) (((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549))))) 19))) +(((-766 |#1|) (-10 -7 (-15 -2770 ((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))))) (-15 -2770 ((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))) (-1180))) (-15 -2758 ((-643 (-168 |#1|)) (-691 (-168 (-410 (-549)))) |#1|)) (-15 -2759 ((-643 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 (-168 |#1|)))))) (-691 (-168 (-410 (-549)))) |#1|))) (-13 (-365) (-850))) (T -766)) +((-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-643 (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 (-168 *4))))))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850))))) (-2758 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-643 (-168 *4))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *4 (-1180)) (-5 *2 (-949 (-168 (-410 (-549))))) (-5 *1 (-766 *5)) (-4 *5 (-13 (-365) (-850))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-949 (-168 (-410 (-549))))) (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850)))))) +(-10 -7 (-15 -2770 ((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))))) (-15 -2770 ((-949 (-168 (-410 (-549)))) (-691 (-168 (-410 (-549)))) (-1180))) (-15 -2758 ((-643 (-168 |#1|)) (-691 (-168 (-410 (-549)))) |#1|)) (-15 -2759 ((-643 (-2 (|:| |outval| (-168 |#1|)) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 (-168 |#1|)))))) (-691 (-168 (-410 (-549)))) |#1|))) +((-3016 (((-174 (-549)) |#1|) 27))) +(((-767 |#1|) (-10 -7 (-15 -3016 ((-174 (-549)) |#1|))) (-407)) (T -767)) +((-3016 (*1 *2 *3) (-12 (-5 *2 (-174 (-549))) (-5 *1 (-767 *3)) (-4 *3 (-407))))) +(-10 -7 (-15 -3016 ((-174 (-549)) |#1|))) +((-2945 ((|#1| |#1| |#1|) 28)) (-2946 ((|#1| |#1| |#1|) 27)) (-2935 ((|#1| |#1| |#1|) 38)) (-2943 ((|#1| |#1| |#1|) 34)) (-2944 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2951 (((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 26))) +(((-768 |#1| |#2|) (-10 -7 (-15 -2951 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2944 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|))) (-710 |#2|) (-365)) (T -768)) +((-2935 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2943 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2944 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2945 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2946 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) (-2951 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-768 *3 *4)) (-4 *3 (-710 *4))))) +(-10 -7 (-15 -2951 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2944 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|))) +((-2958 (((-693 (-1228)) $ (-1228)) 26)) (-2959 (((-693 (-553)) $ (-553)) 25)) (-2957 (((-773) $ (-129)) 27)) (-2960 (((-693 (-128)) $ (-128)) 24)) (-2178 (((-693 (-1228)) $) 12)) (-2174 (((-693 (-1226)) $) 8)) (-2176 (((-693 (-1225)) $) 10)) (-2179 (((-693 (-553)) $) 13)) (-2175 (((-693 (-551)) $) 9)) (-2177 (((-693 (-550)) $) 11)) (-2173 (((-773) $ (-129)) 7)) (-2180 (((-693 (-128)) $) 14)) (-2760 (((-112) $) 31)) (-2761 (((-693 $) |#1| (-957)) 32)) (-1868 (($ $) 6))) +(((-769 |#1|) (-140) (-1104)) (T -769)) +((-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-957)) (-4 *3 (-1104)) (-5 *2 (-693 *1)) (-4 *1 (-769 *3)))) (-2760 (*1 *2 *1) (-12 (-4 *1 (-769 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(-13 (-579) (-10 -8 (-15 -2761 ((-693 $) |t#1| (-957))) (-15 -2760 ((-112) $)))) +(((-173) . T) ((-530) . T) ((-579) . T) ((-863) . T)) +((-4351 (((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))) (-549)) 71)) (-4350 (((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549))))) 69)) (-4189 (((-549)) 85))) +(((-770 |#1| |#2|) (-10 -7 (-15 -4189 ((-549))) (-15 -4350 ((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))))) (-15 -4351 ((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))) (-549)))) (-1245 (-549)) (-413 (-549) |#1|)) (T -770)) +((-4351 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-770 *4 *5)) (-4 *5 (-413 *3 *4)))) (-4350 (*1 *2) (-12 (-4 *3 (-1245 (-549))) (-5 *2 (-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549))))) (-5 *1 (-770 *3 *4)) (-4 *4 (-413 (-549) *3)))) (-4189 (*1 *2) (-12 (-4 *3 (-1245 *2)) (-5 *2 (-549)) (-5 *1 (-770 *3 *4)) (-4 *4 (-413 *2 *3))))) +(-10 -7 (-15 -4189 ((-549))) (-15 -4350 ((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))))) (-15 -4351 ((-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) (|:| |basisInv| (-691 (-549)))) (-549)))) +((-2968 (((-112) $ $) NIL)) (-3576 (((-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20) (($ (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-771) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4378 ($ (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4378 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3576 ((-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -771)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-771)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-771)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-771)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-771))))) +(-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4378 ($ (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4378 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3576 ((-3 (|:| |nia| (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) +((-2836 (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|))) 18) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180))) 17)) (-4004 (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|))) 20) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180))) 19))) +(((-772 |#1|) (-10 -7 (-15 -2836 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -2836 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|))))) (-560)) (T -772)) +((-4004 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-772 *4)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-772 *5)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-772 *4)))) (-2836 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-772 *5))))) +(-10 -7 (-15 -2836 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -2836 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-949 |#1|))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2805 (($ $ $) 10)) (-1407 (((-3 $ "failed") $ $) 15)) (-2762 (($ $ (-549)) 11)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($ $) NIL)) (-2963 (($ $ $) NIL)) (-2573 (((-112) $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3564 (($ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 6 T CONST)) (-3067 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ $ $) NIL))) +(((-773) (-13 (-795) (-728) (-10 -8 (-15 -2963 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -3564 ($ $ $)) (-15 -3282 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -3889 ((-3 $ "failed") $ $)) (-15 -2762 ($ $ (-549))) (-15 -3395 ($ $)) (-6 (-4427 "*"))))) (T -773)) +((-2963 (*1 *1 *1 *1) (-5 *1 (-773))) (-2964 (*1 *1 *1 *1) (-5 *1 (-773))) (-3564 (*1 *1 *1 *1) (-5 *1 (-773))) (-3282 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2152 (-773)) (|:| -3303 (-773)))) (-5 *1 (-773)))) (-3889 (*1 *1 *1 *1) (|partial| -5 *1 (-773))) (-2762 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-773)))) (-3395 (*1 *1 *1) (-5 *1 (-773)))) +(-13 (-795) (-728) (-10 -8 (-15 -2963 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -3564 ($ $ $)) (-15 -3282 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -3889 ((-3 $ "failed") $ $)) (-15 -2762 ($ $ (-549))) (-15 -3395 ($ $)) (-6 (-4427 "*")))) ((|Integer|) (>= |#1| 0)) -((-2510 (((-3 |#2| "failed") |#2| |#2| (-114) (-1179)) 37))) -(((-773 |#1| |#2|) (-10 -7 (-15 -2510 ((-3 |#2| "failed") |#2| |#2| (-114) (-1179)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961))) (T -773)) -((-2510 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1204) (-961)))))) -(-10 -7 (-15 -2510 ((-3 |#2| "failed") |#2| |#2| (-114) (-1179)))) -((-2504 (((-775) |#1|) 8))) -(((-774 |#1|) (-10 -7 (-15 -2504 ((-775) |#1|))) (-1219)) (T -774)) -((-2504 (*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1219))))) -(-10 -7 (-15 -2504 ((-775) |#1|))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 7)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 9))) -(((-775) (-1102)) (T -775)) -NIL -(-1102) -((-2013 ((|#2| |#4|) 35))) -(((-776 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2013 (|#2| |#4|))) (-455) (-1245 |#1|) (-725 |#1| |#2|) (-1245 |#3|)) (T -776)) -((-2013 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -2013 (|#2| |#4|))) -((-1377 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3685 (((-1274) (-1161) (-1161) |#4| |#5|) 33)) (-3058 ((|#4| |#4| |#5|) 74)) (-1488 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|) 79)) (-1795 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|) 16))) -(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1377 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3058 (|#4| |#4| |#5|)) (-15 -1488 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3685 ((-1274) (-1161) (-1161) |#4| |#5|)) (-15 -1795 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -777)) -((-1795 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3685 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1161)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *4 (-1067 *6 *7 *8)) (-5 *2 (-1274)) (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1073 *6 *7 *8 *4)))) (-1488 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3058 (*1 *2 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *2 (-1067 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) (-4 *3 (-1073 *4 *5 *6 *2)))) (-1377 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(-10 -7 (-15 -1377 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3058 (|#4| |#4| |#5|)) (-15 -1488 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3685 ((-1274) (-1161) (-1161) |#4| |#5|)) (-15 -1795 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|))) -((-4275 (((-3 (-1175 (-1175 |#1|)) "failed") |#4|) 53)) (-1436 (((-645 |#4|) |#4|) 24)) (-1620 ((|#4| |#4|) 19))) -(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1436 ((-645 |#4|) |#4|)) (-15 -4275 ((-3 (-1175 (-1175 |#1|)) "failed") |#4|)) (-15 -1620 (|#4| |#4|))) (-351) (-330 |#1|) (-1245 |#2|) (-1245 |#3|) (-923)) (T -778)) -((-1620 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1245 *4)) (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1245 *5)) (-14 *6 (-923)))) (-4275 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-1175 (-1175 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-923)))) (-1436 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-923))))) -(-10 -7 (-15 -1436 ((-645 |#4|) |#4|)) (-15 -4275 ((-3 (-1175 (-1175 |#1|)) "failed") |#4|)) (-15 -1620 (|#4| |#4|))) -((-1369 (((-2 (|:| |deter| (-645 (-1175 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1175 |#5|) (-645 |#1|) (-645 |#5|)) 75)) (-3713 (((-645 (-772)) |#1|) 20))) -(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1369 ((-2 (|:| |deter| (-645 (-1175 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1175 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -3713 ((-645 (-772)) |#1|))) (-1245 |#4|) (-794) (-851) (-308) (-951 |#4| |#2| |#3|)) (T -779)) -((-3713 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *6)) (-4 *7 (-951 *6 *4 *5)))) (-1369 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1245 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) (-4 *10 (-951 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-645 (-1175 *10))) (|:| |dterm| (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| *10))))) (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1175 *10)) (-5 *4 (-645 *6)) (-5 *5 (-645 *10))))) -(-10 -7 (-15 -1369 ((-2 (|:| |deter| (-645 (-1175 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1175 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -3713 ((-645 (-772)) |#1|))) -((-3266 (((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|) 31)) (-3694 (((-645 |#1|) (-690 (-410 (-567))) |#1|) 21)) (-4019 (((-954 (-410 (-567))) (-690 (-410 (-567))) (-1179)) 18) (((-954 (-410 (-567))) (-690 (-410 (-567)))) 17))) -(((-780 |#1|) (-10 -7 (-15 -4019 ((-954 (-410 (-567))) (-690 (-410 (-567))))) (-15 -4019 ((-954 (-410 (-567))) (-690 (-410 (-567))) (-1179))) (-15 -3694 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -3266 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) (-13 (-365) (-849))) (T -780)) -((-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 (-2 (|:| |outval| *4) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *4)))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-4019 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1179)) (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *5)) (-4 *5 (-13 (-365) (-849))))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))) -(-10 -7 (-15 -4019 ((-954 (-410 (-567))) (-690 (-410 (-567))))) (-15 -4019 ((-954 (-410 (-567))) (-690 (-410 (-567))) (-1179))) (-15 -3694 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -3266 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 36)) (-3783 (((-645 |#2|) $) NIL)) (-3633 (((-1175 $) $ |#2|) NIL) (((-1175 |#1|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 |#2|)) NIL)) (-1493 (($ $) 30)) (-3760 (((-112) $ $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2717 (($ $ $) 110 (|has| |#1| (-559)))) (-2855 (((-645 $) $ $) 123 (|has| |#1| (-559)))) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))))) (((-3 $ "failed") (-954 (-567))) NIL (-2836 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179)))))) (((-3 $ "failed") (-954 |#1|)) NIL (-2836 (-12 (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-38 (-410 (-567))))) (-1736 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-38 (-410 (-567))))) (-1736 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-994 (-567))))))) (((-3 (-1127 |#1| |#2|) "failed") $) 21)) (-3094 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#2| $) NIL) (($ (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))))) (($ (-954 (-567))) NIL (-2836 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179)))))) (($ (-954 |#1|)) NIL (-2836 (-12 (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-38 (-410 (-567))))) (-1736 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-38 (-410 (-567))))) (-1736 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-994 (-567))))))) (((-1127 |#1| |#2|) $) NIL)) (-2304 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-559)))) (-1833 (($ $) NIL) (($ $ |#2|) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4115 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3460 (((-112) $) NIL)) (-3207 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 81)) (-2330 (($ $) 136 (|has| |#1| (-455)))) (-1873 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-3042 (($ $) NIL (|has| |#1| (-559)))) (-1904 (($ $) NIL (|has| |#1| (-559)))) (-2291 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1934 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1978 (($ $ |#1| (-534 |#2|) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4384 (((-112) $) 57)) (-1921 (((-772) $) NIL)) (-3463 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-3439 (($ $ $ $ $) 107 (|has| |#1| (-559)))) (-3066 ((|#2| $) 22)) (-3772 (($ (-1175 |#1|) |#2|) NIL) (($ (-1175 $) |#2|) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 38) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3381 (($ $ $) 63)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ |#2|) NIL)) (-2847 (((-112) $) NIL)) (-1562 (((-534 |#2|) $) NIL) (((-772) $ |#2|) NIL) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-3704 (((-772) $) 23)) (-2972 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2047 (((-3 |#2| "failed") $) NIL)) (-3688 (($ $) NIL (|has| |#1| (-455)))) (-3078 (($ $) NIL (|has| |#1| (-455)))) (-4148 (((-645 $) $) NIL)) (-2960 (($ $) 39)) (-1323 (($ $) NIL (|has| |#1| (-455)))) (-2575 (((-645 $) $) 43)) (-2287 (($ $) 41)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3840 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3987 (-772))) $ $) 96)) (-3235 (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $) 78) (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $ |#2|) NIL)) (-2442 (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -2642 $)) $ $) NIL) (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -2642 $)) $ $ |#2|) NIL)) (-2713 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2716 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1812 (((-1161) $) NIL)) (-4316 (($ $ $) 125 (|has| |#1| (-559)))) (-1626 (((-645 $) $) 32)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| |#2|) (|:| -2618 (-772))) "failed") $) NIL)) (-1737 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-2763 (($ $ $) NIL)) (-2221 (($ $) 24)) (-4009 (((-112) $ $) NIL)) (-1927 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-3893 (($ $ $) NIL)) (-2404 (($ $) 26)) (-3479 (((-1122) $) NIL)) (-1788 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-559)))) (-3653 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-559)))) (-1762 (((-112) $) 56)) (-1774 ((|#1| $) 58)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-1870 ((|#1| |#1| $) 133 (|has| |#1| (-455))) (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-911)))) (-1314 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-559)))) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-559)))) (-1529 (($ $ |#1|) 129 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2493 (($ $ |#1|) 128 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-645 |#2|) (-645 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-645 |#2|) (-645 $)) NIL)) (-2254 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3592 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3380 (((-534 |#2|) $) NIL) (((-772) $ |#2|) 45) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-2858 (($ $) NIL)) (-3217 (($ $) 35)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) (($ (-954 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179))))) (($ (-954 (-567))) NIL (-2836 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1179))) (-1736 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1179)))))) (($ (-954 |#1|)) NIL (|has| |#2| (-615 (-1179)))) (((-1161) $) NIL (-12 (|has| |#1| (-1040 (-567))) (|has| |#2| (-615 (-1179))))) (((-954 |#1|) $) NIL (|has| |#2| (-615 (-1179))))) (-1390 ((|#1| $) 132 (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-954 |#1|) $) NIL (|has| |#2| (-615 (-1179)))) (((-1127 |#1| |#2|) $) 18) (($ (-1127 |#1| |#2|)) 19) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) 47) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) 13 T CONST)) (-1858 (((-3 (-112) "failed") $ $) NIL)) (-1820 (($) 37 T CONST)) (-1334 (($ $ $ $ (-772)) 105 (|has| |#1| (-559)))) (-3835 (($ $ $ (-772)) 104 (|has| |#1| (-559)))) (-2856 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) 75)) (-3045 (($ $ $) 85)) (** (($ $ (-923)) NIL) (($ $ (-772)) 70)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 62) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-781 |#1| |#2|) (-13 (-1067 |#1| (-534 |#2|) |#2|) (-614 (-1127 |#1| |#2|)) (-1040 (-1127 |#1| |#2|))) (-1051) (-851)) (T -781)) -NIL -(-13 (-1067 |#1| (-534 |#2|) |#2|) (-614 (-1127 |#1| |#2|)) (-1040 (-1127 |#1| |#2|))) -((-4364 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13))) -(((-782 |#1| |#2|) (-10 -7 (-15 -4364 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1051) (-1051)) (T -782)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6))))) -(-10 -7 (-15 -4364 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 12)) (-1995 (((-1269 |#1|) $ (-772)) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-3678 (($ (-1175 |#1|)) NIL)) (-3633 (((-1175 $) $ (-1084)) NIL) (((-1175 |#1|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-4313 (((-645 $) $ $) 54 (|has| |#1| (-559)))) (-2717 (($ $ $) 50 (|has| |#1| (-559)))) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1863 (($ $ (-772)) NIL)) (-1751 (($ $ (-772)) NIL)) (-2170 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL) (((-3 (-1175 |#1|) "failed") $) 10)) (-3094 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL) (((-1175 |#1|) $) NIL)) (-2304 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-2497 (($ $ $) NIL)) (-4228 (($ $ $) 87 (|has| |#1| (-559)))) (-3207 (((-2 (|:| -1344 |#1|) (|:| -3693 $) (|:| -2642 $)) $ $) 86 (|has| |#1| (-559)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1873 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-1978 (($ $ |#1| (-772) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3905 (((-772) $ $) NIL (|has| |#1| (-559)))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3772 (($ (-1175 |#1|) (-1084)) NIL) (($ (-1175 $) (-1084)) NIL)) (-2240 (($ $ (-772)) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-3381 (($ $ $) 27)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-1084)) NIL) (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-1562 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-2972 (($ (-1 (-772) (-772)) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-4163 (((-1175 |#1|) $) NIL)) (-2047 (((-3 (-1084) "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3840 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3987 (-772))) $ $) 37)) (-2644 (($ $ $) 41)) (-2540 (($ $ $) 47)) (-3235 (((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $) 46)) (-1812 (((-1161) $) NIL)) (-4316 (($ $ $) 56 (|has| |#1| (-559)))) (-3287 (((-2 (|:| -3693 $) (|:| -2642 $)) $ (-772)) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-1084)) (|:| -2618 (-772))) "failed") $) NIL)) (-3670 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2221 (($) NIL (|has| |#1| (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-1788 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-559)))) (-3653 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-559)))) (-1700 (((-2 (|:| -2304 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-559)))) (-1969 (((-2 (|:| -2304 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-559)))) (-1762 (((-112) $) 13)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2755 (($ $ (-772) |#1| $) 26)) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-911)))) (-1314 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-559)))) (-3321 (((-2 (|:| -2304 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-559)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2462 (((-3 $ "failed") $ (-772)) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-2254 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3592 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3380 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2557 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1084)) NIL) (((-1175 |#1|) $) 7) (($ (-1175 |#1|)) 8) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) 28 T CONST)) (-1820 (($) 32 T CONST)) (-2856 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) 40) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-783 |#1|) (-13 (-1245 |#1|) (-614 (-1175 |#1|)) (-1040 (-1175 |#1|)) (-10 -8 (-15 -2755 ($ $ (-772) |#1| $)) (-15 -3381 ($ $ $)) (-15 -3840 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3987 (-772))) $ $)) (-15 -2644 ($ $ $)) (-15 -3235 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -2540 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -4313 ((-645 $) $ $)) (-15 -4316 ($ $ $)) (-15 -1314 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3653 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -1788 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -3321 ((-2 (|:| -2304 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1969 ((-2 (|:| -2304 |#1|) (|:| |coef1| $)) $ $)) (-15 -1700 ((-2 (|:| -2304 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1051)) (T -783)) -((-2755 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-3381 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-3840 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -3987 (-772)))) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-2644 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-3235 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1344 *3) (|:| |gap| (-772)) (|:| -3693 (-783 *3)) (|:| -2642 (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) (-2540 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) (-4313 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-4316 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1051)))) (-1314 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-3653 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-783 *3)) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-1788 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-3321 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2304 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-1969 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2304 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) (-1700 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2304 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) -(-13 (-1245 |#1|) (-614 (-1175 |#1|)) (-1040 (-1175 |#1|)) (-10 -8 (-15 -2755 ($ $ (-772) |#1| $)) (-15 -3381 ($ $ $)) (-15 -3840 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3987 (-772))) $ $)) (-15 -2644 ($ $ $)) (-15 -3235 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -2540 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -4313 ((-645 $) $ $)) (-15 -4316 ($ $ $)) (-15 -1314 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3653 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -1788 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -3321 ((-2 (|:| -2304 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1969 ((-2 (|:| -2304 |#1|) (|:| |coef1| $)) $ $)) (-15 -1700 ((-2 (|:| -2304 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4381 ((|#1| (-772) |#1|) 33 (|has| |#1| (-38 (-410 (-567)))))) (-2988 ((|#1| (-772) |#1|) 23)) (-2859 ((|#1| (-772) |#1|) 35 (|has| |#1| (-38 (-410 (-567))))))) -(((-784 |#1|) (-10 -7 (-15 -2988 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2859 (|#1| (-772) |#1|)) (-15 -4381 (|#1| (-772) |#1|))) |%noBranch|)) (-172)) (T -784)) -((-4381 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-2859 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-2988 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -2988 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2859 (|#1| (-772) |#1|)) (-15 -4381 (|#1| (-772) |#1|))) |%noBranch|)) -((-2487 (((-112) $ $) 7)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) 86)) (-3148 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-3783 (((-645 |#3|) $) 34)) (-2643 (((-112) $) 27)) (-2720 (((-112) $) 18 (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) 102) (((-112) $) 98)) (-2688 ((|#4| |#4| $) 93)) (-3864 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| $) 127)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) 28)) (-1555 (((-112) $ (-772)) 45)) (-1316 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3758 (($) 46 T CONST)) (-3731 (((-112) $) 23 (|has| |#1| (-559)))) (-4301 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4089 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3937 (((-112) $) 26 (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2160 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) 37)) (-3094 (($ (-645 |#4|)) 36)) (-3447 (((-3 $ "failed") $) 83)) (-2903 ((|#4| |#4| $) 90)) (-3470 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1861 ((|#4| |#4| $) 88)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) 106)) (-2940 (((-112) |#4| $) 137)) (-2708 (((-112) |#4| $) 134)) (-2600 (((-112) |#4| $) 138) (((-112) $) 135)) (-3468 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-3753 (((-112) $ (-772)) 44)) (-4200 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 48)) (-3870 (((-645 |#3|) $) 33)) (-2415 (((-112) |#3| $) 32)) (-3421 (((-112) $ (-772)) 43)) (-1812 (((-1161) $) 10)) (-1434 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-4316 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| |#4| $) 128)) (-1725 (((-3 |#4| "failed") $) 84)) (-2920 (((-645 $) |#4| $) 130)) (-4264 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3972 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3873 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-4214 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2290 (((-645 |#4|) $) 108)) (-1737 (((-112) |#4| $) 100) (((-112) $) 96)) (-2763 ((|#4| |#4| $) 91)) (-4009 (((-112) $ $) 111)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) 101) (((-112) $) 97)) (-3893 ((|#4| |#4| $) 92)) (-3479 (((-1122) $) 11)) (-3436 (((-3 |#4| "failed") $) 85)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2806 (((-3 $ "failed") $ |#4|) 79)) (-1678 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-1430 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) 39)) (-2319 (((-112) $) 42)) (-2973 (($) 41)) (-3380 (((-772) $) 107)) (-3486 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-3846 (($ $) 40)) (-1322 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 61)) (-1582 (($ $ |#3|) 29)) (-2746 (($ $ |#3|) 31)) (-2012 (($ $) 89)) (-3975 (($ $ |#3|) 30)) (-2504 (((-863) $) 12) (((-645 |#4|) $) 38)) (-3312 (((-772) $) 77 (|has| |#3| (-370)))) (-3858 (((-112) $ $) 9)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3259 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-3450 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) 82)) (-3961 (((-112) |#4| $) 136)) (-3392 (((-112) |#3| $) 81)) (-2968 (((-112) $ $) 6)) (-2498 (((-772) $) 47 (|has| $ (-6 -4422))))) -(((-785 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -785)) -NIL -(-13 (-1073 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1212 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) -((-2758 (((-3 (-381) "failed") (-317 |#1|) (-923)) 62 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-410 (-954 |#1|)) (-923)) 41 (|has| |#1| (-559))) (((-3 (-381) "failed") (-410 (-954 |#1|))) 40 (|has| |#1| (-559))) (((-3 (-381) "failed") (-954 |#1|) (-923)) 31 (|has| |#1| (-1051))) (((-3 (-381) "failed") (-954 |#1|)) 30 (|has| |#1| (-1051)))) (-3366 (((-381) (-317 |#1|) (-923)) 99 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-410 (-954 |#1|)) (-923)) 91 (|has| |#1| (-559))) (((-381) (-410 (-954 |#1|))) 90 (|has| |#1| (-559))) (((-381) (-954 |#1|) (-923)) 86 (|has| |#1| (-1051))) (((-381) (-954 |#1|)) 85 (|has| |#1| (-1051))) (((-381) |#1| (-923)) 76) (((-381) |#1|) 22)) (-4026 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)) 71 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-923)) 63 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923)) 46 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|)))) 45 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923)) 39 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-954 |#1|))) 38 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)) 28 (|has| |#1| (-1051))) (((-3 (-169 (-381)) "failed") (-954 |#1|)) 26 (|has| |#1| (-1051))) (((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-954 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-3577 (((-169 (-381)) (-317 (-169 |#1|)) (-923)) 102 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|) (-923)) 100 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923)) 93 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 (-169 |#1|)))) 92 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 |#1|)) (-923)) 89 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-954 |#1|))) 88 (|has| |#1| (-559))) (((-169 (-381)) (-954 |#1|) (-923)) 84 (|has| |#1| (-1051))) (((-169 (-381)) (-954 |#1|)) 83 (|has| |#1| (-1051))) (((-169 (-381)) (-954 (-169 |#1|)) (-923)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-954 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-923)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-923)) 27) (((-169 (-381)) |#1|) 25))) -(((-786 |#1|) (-10 -7 (-15 -3366 ((-381) |#1|)) (-15 -3366 ((-381) |#1| (-923))) (-15 -3577 ((-169 (-381)) |#1|)) (-15 -3577 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-172)) (PROGN (-15 -3577 ((-169 (-381)) (-169 |#1|))) (-15 -3577 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -3577 ((-169 (-381)) (-954 (-169 |#1|)))) (-15 -3577 ((-169 (-381)) (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3366 ((-381) (-954 |#1|))) (-15 -3366 ((-381) (-954 |#1|) (-923))) (-15 -3577 ((-169 (-381)) (-954 |#1|))) (-15 -3577 ((-169 (-381)) (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3366 ((-381) (-410 (-954 |#1|)))) (-15 -3366 ((-381) (-410 (-954 |#1|)) (-923))) (-15 -3577 ((-169 (-381)) (-410 (-954 |#1|)))) (-15 -3577 ((-169 (-381)) (-410 (-954 |#1|)) (-923))) (-15 -3577 ((-169 (-381)) (-410 (-954 (-169 |#1|))))) (-15 -3577 ((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3366 ((-381) (-317 |#1|))) (-15 -3366 ((-381) (-317 |#1|) (-923))) (-15 -3577 ((-169 (-381)) (-317 |#1|))) (-15 -3577 ((-169 (-381)) (-317 |#1|) (-923))) (-15 -3577 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -3577 ((-169 (-381)) (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -4026 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -2758 ((-3 (-381) "failed") (-954 |#1|))) (-15 -2758 ((-3 (-381) "failed") (-954 |#1|) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-954 |#1|))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -2758 ((-3 (-381) "failed") (-410 (-954 |#1|)))) (-15 -2758 ((-3 (-381) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -2758 ((-3 (-381) "failed") (-317 |#1|))) (-15 -2758 ((-3 (-381) "failed") (-317 |#1|) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|)) (-615 (-381))) (T -786)) -((-4026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4026 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-4026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4026 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2758 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-2758 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4026 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-4026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4026 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2758 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-2758 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4026 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2758 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-2758 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-4026 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-4026 (*1 *2 *3) (|partial| -12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3366 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3366 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3366 (*1 *2 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-923)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-3577 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-3366 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) (-3366 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2))))) -(-10 -7 (-15 -3366 ((-381) |#1|)) (-15 -3366 ((-381) |#1| (-923))) (-15 -3577 ((-169 (-381)) |#1|)) (-15 -3577 ((-169 (-381)) |#1| (-923))) (IF (|has| |#1| (-172)) (PROGN (-15 -3577 ((-169 (-381)) (-169 |#1|))) (-15 -3577 ((-169 (-381)) (-169 |#1|) (-923))) (-15 -3577 ((-169 (-381)) (-954 (-169 |#1|)))) (-15 -3577 ((-169 (-381)) (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -3366 ((-381) (-954 |#1|))) (-15 -3366 ((-381) (-954 |#1|) (-923))) (-15 -3577 ((-169 (-381)) (-954 |#1|))) (-15 -3577 ((-169 (-381)) (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3366 ((-381) (-410 (-954 |#1|)))) (-15 -3366 ((-381) (-410 (-954 |#1|)) (-923))) (-15 -3577 ((-169 (-381)) (-410 (-954 |#1|)))) (-15 -3577 ((-169 (-381)) (-410 (-954 |#1|)) (-923))) (-15 -3577 ((-169 (-381)) (-410 (-954 (-169 |#1|))))) (-15 -3577 ((-169 (-381)) (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -3366 ((-381) (-317 |#1|))) (-15 -3366 ((-381) (-317 |#1|) (-923))) (-15 -3577 ((-169 (-381)) (-317 |#1|))) (-15 -3577 ((-169 (-381)) (-317 |#1|) (-923))) (-15 -3577 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -3577 ((-169 (-381)) (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -4026 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-954 (-169 |#1|)) (-923)))) |%noBranch|) (IF (|has| |#1| (-1051)) (PROGN (-15 -2758 ((-3 (-381) "failed") (-954 |#1|))) (-15 -2758 ((-3 (-381) "failed") (-954 |#1|) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-954 |#1|))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-954 |#1|) (-923)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -2758 ((-3 (-381) "failed") (-410 (-954 |#1|)))) (-15 -2758 ((-3 (-381) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-410 (-954 |#1|)) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-410 (-954 (-169 |#1|))) (-923))) (IF (|has| |#1| (-851)) (PROGN (-15 -2758 ((-3 (-381) "failed") (-317 |#1|))) (-15 -2758 ((-3 (-381) "failed") (-317 |#1|) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-923))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -4026 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-923)))) |%noBranch|)) |%noBranch|)) -((-1462 (((-923) (-1161)) 92)) (-2143 (((-3 (-381) "failed") (-1161)) 36)) (-3715 (((-381) (-1161)) 34)) (-1971 (((-923) (-1161)) 63)) (-2088 (((-1161) (-923)) 75)) (-3623 (((-1161) (-923)) 62))) -(((-787) (-10 -7 (-15 -3623 ((-1161) (-923))) (-15 -1971 ((-923) (-1161))) (-15 -2088 ((-1161) (-923))) (-15 -1462 ((-923) (-1161))) (-15 -3715 ((-381) (-1161))) (-15 -2143 ((-3 (-381) "failed") (-1161))))) (T -787)) -((-2143 (*1 *2 *3) (|partial| -12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-787)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-787)))) (-1462 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-923)) (-5 *1 (-787)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1161)) (-5 *1 (-787)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-923)) (-5 *1 (-787)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1161)) (-5 *1 (-787))))) -(-10 -7 (-15 -3623 ((-1161) (-923))) (-15 -1971 ((-923) (-1161))) (-15 -2088 ((-1161) (-923))) (-15 -1462 ((-923) (-1161))) (-15 -3715 ((-381) (-1161))) (-15 -2143 ((-3 (-381) "failed") (-1161)))) -((-2487 (((-112) $ $) 7)) (-3021 (((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 16) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037)) 14)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-788) (-140)) (T -788)) -((-4201 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037)))))) (-3021 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1037)) (-5 *3 (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-4201 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037)))))) (-3021 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1037)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(-13 (-1102) (-10 -7 (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3021 ((-1037) (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) (|:| |extra| (-1037))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3021 ((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1037))))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-1590 (((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381))) 55) (((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))) 52)) (-3141 (((-1274) (-1269 (-381)) (-567) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))) 61)) (-3548 (((-1274) (-1269 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))) 50)) (-3612 (((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381))) 63) (((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))) 62))) -(((-789) (-10 -7 (-15 -3612 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -3612 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)))) (-15 -3548 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -1590 ((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -1590 ((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)))) (-15 -3141 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))))) (T -789)) -((-3141 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-1590 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381)))) (-5 *7 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-1590 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381)))) (-5 *7 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-3548 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-3612 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789)))) (-3612 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) (-5 *1 (-789))))) -(-10 -7 (-15 -3612 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -3612 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)))) (-15 -3548 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -1590 ((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)))) (-15 -1590 ((-1274) (-1269 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381))) (-381) (-1269 (-381)) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)) (-1269 (-381)))) (-15 -3141 ((-1274) (-1269 (-381)) (-567) (-381) (-381) (-567) (-1 (-1274) (-1269 (-381)) (-1269 (-381)) (-381))))) -((-2212 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 66)) (-3686 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 42)) (-4321 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 65)) (-4095 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 40)) (-1892 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 64)) (-3171 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 26)) (-2952 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 43)) (-1899 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 41)) (-3169 (((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 39))) -(((-790) (-10 -7 (-15 -3169 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -1899 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -2952 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3171 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4095 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3686 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1892 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4321 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2212 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))) (T -790)) -((-2212 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4321 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1892 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3686 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4095 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3171 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2952 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1899 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3169 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567))))) -(-10 -7 (-15 -3169 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -1899 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -2952 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3171 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4095 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -3686 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1892 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4321 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2212 ((-2 (|:| -2233 (-381)) (|:| -3554 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)))) -((-3637 (((-1214 |#1|) |#1| (-225) (-567)) 69))) -(((-791 |#1|) (-10 -7 (-15 -3637 ((-1214 |#1|) |#1| (-225) (-567)))) (-976)) (T -791)) -((-3637 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1214 *3)) (-5 *1 (-791 *3)) (-4 *3 (-976))))) -(-10 -7 (-15 -3637 ((-1214 |#1|) |#1| (-225) (-567)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 25)) (-2932 (((-3 $ "failed") $ $) 27)) (-3758 (($) 24 T CONST)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 23 T CONST)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (-3054 (($ $ $) 31) (($ $) 30)) (-3045 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26) (($ (-567) $) 29))) -(((-792) (-140)) (T -792)) -NIL -(-13 (-796) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 25)) (-3758 (($) 24 T CONST)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 23 T CONST)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (-3045 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26))) +((-4004 (((-3 |#2| "failed") |#2| |#2| (-113) (-1180)) 37))) +(((-774 |#1| |#2|) (-10 -7 (-15 -4004 ((-3 |#2| "failed") |#2| |#2| (-113) (-1180)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963))) (T -774)) +((-4004 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-774 *5 *2)) (-4 *2 (-13 (-29 *5) (-1205) (-963)))))) +(-10 -7 (-15 -4004 ((-3 |#2| "failed") |#2| |#2| (-113) (-1180)))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 7)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9))) +(((-775) (-1104)) (T -775)) +NIL +(-1104) +((-4378 (((-775) |#1|) 8))) +(((-776 |#1|) (-10 -7 (-15 -4378 ((-775) |#1|))) (-1219)) (T -776)) +((-4378 (*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-776 *3)) (-4 *3 (-1219))))) +(-10 -7 (-15 -4378 ((-775) |#1|))) +((-3536 ((|#2| |#4|) 35))) +(((-777 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3536 (|#2| |#4|))) (-455) (-1245 |#1|) (-726 |#1| |#2|) (-1245 |#3|)) (T -777)) +((-3536 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-726 *4 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-777 *4 *2 *5 *3)) (-4 *3 (-1245 *5))))) +(-10 -7 (-15 -3536 (|#2| |#4|))) +((-3890 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2765 (((-1275) (-1162) (-1162) |#4| |#5|) 33)) (-2763 ((|#4| |#4| |#5|) 74)) (-2764 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|) 79)) (-2766 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 16))) +(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3890 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2763 (|#4| |#4| |#5|)) (-15 -2764 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -2765 ((-1275) (-1162) (-1162) |#4| |#5|)) (-15 -2766 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -778)) +((-2766 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-2765 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1162)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *4 (-1068 *6 *7 *8)) (-5 *2 (-1275)) (-5 *1 (-778 *6 *7 *8 *4 *5)) (-4 *5 (-1074 *6 *7 *8 *4)))) (-2764 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-2763 (*1 *2 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *2 (-1068 *4 *5 *6)) (-5 *1 (-778 *4 *5 *6 *2 *3)) (-4 *3 (-1074 *4 *5 *6 *2)))) (-3890 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(-10 -7 (-15 -3890 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2763 (|#4| |#4| |#5|)) (-15 -2764 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -2765 ((-1275) (-1162) (-1162) |#4| |#5|)) (-15 -2766 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|))) +((-3577 (((-3 (-1174 (-1174 |#1|)) "failed") |#4|) 53)) (-2767 (((-643 |#4|) |#4|) 24)) (-4360 ((|#4| |#4|) 19))) +(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2767 ((-643 |#4|) |#4|)) (-15 -3577 ((-3 (-1174 (-1174 |#1|)) "failed") |#4|)) (-15 -4360 (|#4| |#4|))) (-352) (-330 |#1|) (-1245 |#2|) (-1245 |#3|) (-922)) (T -779)) +((-4360 (*1 *2 *2) (-12 (-4 *3 (-352)) (-4 *4 (-330 *3)) (-4 *5 (-1245 *4)) (-5 *1 (-779 *3 *4 *5 *2 *6)) (-4 *2 (-1245 *5)) (-14 *6 (-922)))) (-3577 (*1 *2 *3) (|partial| -12 (-4 *4 (-352)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-779 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-922)))) (-2767 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-643 *3)) (-5 *1 (-779 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-922))))) +(-10 -7 (-15 -2767 ((-643 |#4|) |#4|)) (-15 -3577 ((-3 (-1174 (-1174 |#1|)) "failed") |#4|)) (-15 -4360 (|#4| |#4|))) +((-2768 (((-2 (|:| |deter| (-643 (-1174 |#5|))) (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-643 |#1|)) (|:| |nlead| (-643 |#5|))) (-1174 |#5|) (-643 |#1|) (-643 |#5|)) 75)) (-2769 (((-643 (-773)) |#1|) 20))) +(((-780 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2768 ((-2 (|:| |deter| (-643 (-1174 |#5|))) (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-643 |#1|)) (|:| |nlead| (-643 |#5|))) (-1174 |#5|) (-643 |#1|) (-643 |#5|))) (-15 -2769 ((-643 (-773)) |#1|))) (-1245 |#4|) (-795) (-852) (-308) (-953 |#4| |#2| |#3|)) (T -780)) +((-2769 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-643 (-773))) (-5 *1 (-780 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *6)) (-4 *7 (-953 *6 *4 *5)))) (-2768 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1245 *9)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-308)) (-4 *10 (-953 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-643 (-1174 *10))) (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| *10))))) (|:| |nfacts| (-643 *6)) (|:| |nlead| (-643 *10)))) (-5 *1 (-780 *6 *7 *8 *9 *10)) (-5 *3 (-1174 *10)) (-5 *4 (-643 *6)) (-5 *5 (-643 *10))))) +(-10 -7 (-15 -2768 ((-2 (|:| |deter| (-643 (-1174 |#5|))) (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-643 |#1|)) (|:| |nlead| (-643 |#5|))) (-1174 |#5|) (-643 |#1|) (-643 |#5|))) (-15 -2769 ((-643 (-773)) |#1|))) +((-2772 (((-643 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#1|))))) (-691 (-410 (-549))) |#1|) 31)) (-2771 (((-643 |#1|) (-691 (-410 (-549))) |#1|) 21)) (-2770 (((-949 (-410 (-549))) (-691 (-410 (-549))) (-1180)) 18) (((-949 (-410 (-549))) (-691 (-410 (-549)))) 17))) +(((-781 |#1|) (-10 -7 (-15 -2770 ((-949 (-410 (-549))) (-691 (-410 (-549))))) (-15 -2770 ((-949 (-410 (-549))) (-691 (-410 (-549))) (-1180))) (-15 -2771 ((-643 |#1|) (-691 (-410 (-549))) |#1|)) (-15 -2772 ((-643 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#1|))))) (-691 (-410 (-549))) |#1|))) (-13 (-365) (-850))) (T -781)) +((-2772 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-643 (-2 (|:| |outval| *4) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 *4)))))) (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850))))) (-2771 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-643 *4)) (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *4 (-1180)) (-5 *2 (-949 (-410 (-549)))) (-5 *1 (-781 *5)) (-4 *5 (-13 (-365) (-850))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-949 (-410 (-549)))) (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850)))))) +(-10 -7 (-15 -2770 ((-949 (-410 (-549))) (-691 (-410 (-549))))) (-15 -2770 ((-949 (-410 (-549))) (-691 (-410 (-549))) (-1180))) (-15 -2771 ((-643 |#1|) (-691 (-410 (-549))) |#1|)) (-15 -2772 ((-643 (-2 (|:| |outval| |#1|) (|:| |outmult| (-549)) (|:| |outvect| (-643 (-691 |#1|))))) (-691 (-410 (-549))) |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 36)) (-3485 (((-643 |#2|) $) NIL)) (-3487 (((-1174 $) $ |#2|) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 |#2|)) NIL)) (-4228 (($ $) 30)) (-3586 (((-112) $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4187 (($ $ $) 110 (|has| |#1| (-560)))) (-3568 (((-643 $) $ $) 123 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-949 (-410 (-549)))) NIL (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))))) (((-3 $ #3#) (-949 (-549))) NIL (-3960 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549)))))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180)))))) (((-3 $ #3#) (-949 |#1|)) NIL (-3960 (-12 (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-38 (-549))))) (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-994 (-549))))))) (((-3 (-1128 |#1| |#2|) #2#) $) 21)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) ((|#2| $) NIL) (($ (-949 (-410 (-549)))) NIL (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))))) (($ (-949 (-549))) NIL (-3960 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549)))))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180)))))) (($ (-949 |#1|)) NIL (-3960 (-12 (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-38 (-549))))) (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-994 (-549))))))) (((-1128 |#1| |#2|) $) NIL)) (-4188 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-560)))) (-4391 (($ $) NIL) (($ $ |#2|) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-4126 (((-112) $ $) NIL) (((-112) $ (-643 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3592 (((-112) $) NIL)) (-4184 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 81)) (-3563 (($ $) 136 (|has| |#1| (-455)))) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-3574 (($ $) NIL (|has| |#1| (-560)))) (-3575 (($ $) NIL (|has| |#1| (-560)))) (-3585 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3584 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1769 (($ $ |#1| (-534 |#2|) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| |#1| (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| |#1| (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) 57)) (-2581 (((-773) $) NIL)) (-4127 (((-112) $ $) NIL) (((-112) $ (-643 $)) NIL)) (-3565 (($ $ $ $ $) 107 (|has| |#1| (-560)))) (-3600 ((|#2| $) 22)) (-3488 (($ (-1174 |#1|) |#2|) NIL) (($ (-1174 $) |#2|) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-773)) 38) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3579 (($ $ $) 63)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#2|) NIL)) (-3593 (((-112) $) NIL)) (-3223 (((-534 |#2|) $) NIL) (((-773) $ |#2|) NIL) (((-643 (-773)) $ (-643 |#2|)) NIL)) (-3599 (((-773) $) 23)) (-1770 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3486 (((-3 |#2| #4="failed") $) NIL)) (-3560 (($ $) NIL (|has| |#1| (-455)))) (-3561 (($ $) NIL (|has| |#1| (-455)))) (-3588 (((-643 $) $) NIL)) (-3591 (($ $) 39)) (-3562 (($ $) NIL (|has| |#1| (-455)))) (-3589 (((-643 $) $) 43)) (-3590 (($ $) 41)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3578 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3904 (-773))) $ $) 96)) (-3580 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $) 78) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $ |#2|) NIL)) (-3581 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $) NIL) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $ |#2|) NIL)) (-3583 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3582 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3663 (((-1162) $) NIL)) (-3610 (($ $ $) 125 (|has| |#1| (-560)))) (-3596 (((-643 $) $) 32)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-773))) #4#) $) NIL)) (-4123 (((-112) $ $) NIL) (((-112) $ (-643 $)) NIL)) (-4118 (($ $ $) NIL)) (-3869 (($ $) 24)) (-4131 (((-112) $ $) NIL)) (-4124 (((-112) $ $) NIL) (((-112) $ (-643 $)) NIL)) (-4119 (($ $ $) NIL)) (-3598 (($ $) 26)) (-3664 (((-1123) $) NIL)) (-3569 (((-2 (|:| -3564 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-560)))) (-3570 (((-2 (|:| -3564 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-560)))) (-1972 (((-112) $) 56)) (-1971 ((|#1| $) 58)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 ((|#1| |#1| $) 133 (|has| |#1| (-455))) (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3571 (((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-560)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-560)))) (-3572 (($ $ |#1|) 129 (|has| |#1| (-560))) (($ $ $) NIL (|has| |#1| (-560)))) (-3573 (($ $ |#1|) 128 (|has| |#1| (-560))) (($ $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-643 |#2|) (-643 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-643 |#2|) (-643 $)) NIL)) (-4189 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4242 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4380 (((-534 |#2|) $) NIL) (((-773) $ |#2|) 45) (((-643 (-773)) $ (-643 |#2|)) NIL)) (-3597 (($ $) NIL)) (-3595 (($ $) 35)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| |#1| (-616 (-538))) (|has| |#2| (-616 (-538))))) (($ (-949 (-410 (-549)))) NIL (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180))))) (($ (-949 (-549))) NIL (-3960 (-12 (|has| |#1| (-38 (-549))) (|has| |#2| (-616 (-1180))) (-3746 (|has| |#1| (-38 (-410 (-549)))))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#2| (-616 (-1180)))))) (($ (-949 |#1|)) NIL (|has| |#2| (-616 (-1180)))) (((-1162) $) NIL (-12 (|has| |#1| (-1041 (-549))) (|has| |#2| (-616 (-1180))))) (((-949 |#1|) $) NIL (|has| |#2| (-616 (-1180))))) (-3220 ((|#1| $) 132 (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-949 |#1|) $) NIL (|has| |#2| (-616 (-1180)))) (((-1128 |#1| |#2|) $) 18) (($ (-1128 |#1| |#2|)) 19) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-773)) 47) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 13 T CONST)) (-3587 (((-3 (-112) #3#) $ $) NIL)) (-3067 (($) 37 T CONST)) (-3566 (($ $ $ $ (-773)) 105 (|has| |#1| (-560)))) (-3567 (($ $ $ (-773)) 104 (|has| |#1| (-560)))) (-3072 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) 75)) (-4271 (($ $ $) 85)) (** (($ $ (-922)) NIL) (($ $ (-773)) 70)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 62) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-782 |#1| |#2|) (-13 (-1068 |#1| (-534 |#2|) |#2|) (-615 (-1128 |#1| |#2|)) (-1041 (-1128 |#1| |#2|))) (-1052) (-852)) (T -782)) +NIL +(-13 (-1068 |#1| (-534 |#2|) |#2|) (-615 (-1128 |#1| |#2|)) (-1041 (-1128 |#1| |#2|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 12)) (-4198 (((-1269 |#1|) $ (-773)) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4196 (($ (-1174 |#1|)) NIL)) (-3487 (((-1174 $) $ (-1085)) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2776 (((-643 $) $ $) 54 (|has| |#1| (-560)))) (-4187 (($ $ $) 50 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4192 (($ $ (-773)) NIL)) (-4191 (($ $ (-773)) NIL)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1085) #2#) $) NIL) (((-3 (-1174 |#1|) #2#) $) 10)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1085) $) NIL) (((-1174 |#1|) $) NIL)) (-4188 (($ $ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4190 (($ $ $) NIL)) (-4185 (($ $ $) 87 (|has| |#1| (-560)))) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 $) (|:| -3303 $)) $ $) 86 (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-773) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1085) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1085) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ $) NIL (|has| |#1| (-560)))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3488 (($ (-1174 |#1|) (-1085)) NIL) (($ (-1174 $) (-1085)) NIL)) (-4208 (($ $ (-773)) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3579 (($ $ $) 27)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) NIL) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-1770 (($ (-1 (-773) (-773)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4197 (((-1174 |#1|) $) NIL)) (-3486 (((-3 (-1085) #4="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3578 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3904 (-773))) $ $) 37)) (-2778 (($ $ $) 41)) (-2777 (($ $ $) 47)) (-3580 (((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $) 46)) (-3663 (((-1162) $) NIL)) (-3610 (($ $ $) 56 (|has| |#1| (-560)))) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) NIL)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) NIL)) (-4244 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3569 (((-2 (|:| -3564 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-560)))) (-3570 (((-2 (|:| -3564 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-560)))) (-2773 (((-2 (|:| -4188 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-560)))) (-2774 (((-2 (|:| -4188 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-560)))) (-1972 (((-112) $) 13)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-4170 (($ $ (-773) |#1| $) 26)) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3571 (((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-560)))) (-2775 (((-2 (|:| -4188 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-560)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#1|) NIL) (($ $ (-643 (-1085)) (-643 |#1|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-643 (-1085)) (-643 $)) NIL)) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-560))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-560)))) (-4195 (((-3 $ #5="failed") $ (-773)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 (($ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4380 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1085) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4186 (((-3 $ #5#) $ $) NIL (|has| |#1| (-560))) (((-3 (-410 $) #5#) (-410 $) $) NIL (|has| |#1| (-560)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1085)) NIL) (((-1174 |#1|) $) 7) (($ (-1174 |#1|)) 8) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 28 T CONST)) (-3067 (($) 32 T CONST)) (-3072 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) 40) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-783 |#1|) (-13 (-1245 |#1|) (-615 (-1174 |#1|)) (-1041 (-1174 |#1|)) (-10 -8 (-15 -4170 ($ $ (-773) |#1| $)) (-15 -3579 ($ $ $)) (-15 -3578 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3904 (-773))) $ $)) (-15 -2778 ($ $ $)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2777 ($ $ $)) (IF (|has| |#1| (-560)) (PROGN (-15 -2776 ((-643 $) $ $)) (-15 -3610 ($ $ $)) (-15 -3571 ((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3570 ((-2 (|:| -3564 $) (|:| |coef1| $)) $ $)) (-15 -3569 ((-2 (|:| -3564 $) (|:| |coef2| $)) $ $)) (-15 -2775 ((-2 (|:| -4188 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2774 ((-2 (|:| -4188 |#1|) (|:| |coef1| $)) $ $)) (-15 -2773 ((-2 (|:| -4188 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1052)) (T -783)) +((-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-783 *3)) (-4 *3 (-1052)))) (-3579 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052)))) (-3578 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -3904 (-773)))) (-5 *1 (-783 *3)) (-4 *3 (-1052)))) (-2778 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052)))) (-3580 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4386 *3) (|:| |gap| (-773)) (|:| -2152 (-783 *3)) (|:| -3303 (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-1052)))) (-2777 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052)))) (-2776 (*1 *2 *1 *1) (-12 (-5 *2 (-643 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-3610 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-560)) (-4 *2 (-1052)))) (-3571 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-3570 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-3569 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-2775 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-2774 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) (-2773 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052))))) +(-13 (-1245 |#1|) (-615 (-1174 |#1|)) (-1041 (-1174 |#1|)) (-10 -8 (-15 -4170 ($ $ (-773) |#1| $)) (-15 -3579 ($ $ $)) (-15 -3578 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3904 (-773))) $ $)) (-15 -2778 ($ $ $)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2777 ($ $ $)) (IF (|has| |#1| (-560)) (PROGN (-15 -2776 ((-643 $) $ $)) (-15 -3610 ($ $ $)) (-15 -3571 ((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3570 ((-2 (|:| -3564 $) (|:| |coef1| $)) $ $)) (-15 -3569 ((-2 (|:| -3564 $) (|:| |coef2| $)) $ $)) (-15 -2775 ((-2 (|:| -4188 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2774 ((-2 (|:| -4188 |#1|) (|:| |coef1| $)) $ $)) (-15 -2773 ((-2 (|:| -4188 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4390 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13))) +(((-784 |#1| |#2|) (-10 -7 (-15 -4390 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1052) (-1052)) (T -784)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-783 *6)) (-5 *1 (-784 *5 *6))))) +(-10 -7 (-15 -4390 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) +((-2780 ((|#1| (-773) |#1|) 33 (|has| |#1| (-38 (-410 (-549)))))) (-3204 ((|#1| (-773) |#1|) 23)) (-2779 ((|#1| (-773) |#1|) 35 (|has| |#1| (-38 (-410 (-549))))))) +(((-785 |#1|) (-10 -7 (-15 -3204 (|#1| (-773) |#1|)) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -2779 (|#1| (-773) |#1|)) (-15 -2780 (|#1| (-773) |#1|))) |%noBranch|)) (-172)) (T -785)) +((-2780 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-172)))) (-2779 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-172)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -3204 (|#1| (-773) |#1|)) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -2779 (|#1| (-773) |#1|)) (-15 -2780 (|#1| (-773) |#1|))) |%noBranch|)) +((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87) (((-643 $) (-643 |#4|) (-112)) 112)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 127)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ #1#) $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-3617 (((-112) |#4| $) 137)) (-3615 (((-112) |#4| $) 134)) (-3618 (((-112) |#4| $) 138) (((-112) $) 135)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) 129)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 128)) (-4229 (((-3 |#4| #1#) $) 84)) (-3612 (((-643 $) |#4| $) 130)) (-3614 (((-3 (-112) (-643 $)) |#4| $) 133)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3658 (((-643 $) |#4| $) 126) (((-643 $) (-643 |#4|) $) 125) (((-643 $) (-643 |#4|) (-643 $)) 124) (((-643 $) |#4| (-643 $)) 123)) (-3864 (($ |#4| $) 118) (($ (-643 |#4|) $) 117)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| #1#) $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ #1#) $ |#4|) 79)) (-4200 (($ $ |#4|) 78) (((-643 $) |#4| $) 116) (((-643 $) |#4| (-643 $)) 115) (((-643 $) (-643 |#4|) $) 114) (((-643 $) (-643 |#4|) (-643 $)) 113)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-3609 (((-643 $) |#4| $) 122) (((-643 $) |#4| (-643 $)) 121) (((-643 $) (-643 |#4|) $) 120) (((-643 $) (-643 |#4|) (-643 $)) 119)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-3616 (((-112) |#4| $) 136)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) +(((-786 |#1| |#2| |#3| |#4|) (-140) (-455) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -786)) +NIL +(-13 (-1074 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1074 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1214 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) +((-2783 (((-3 (-380) "failed") (-315 |#1|) (-922)) 62 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-380) "failed") (-315 |#1|)) 54 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-380) "failed") (-410 (-949 |#1|)) (-922)) 41 (|has| |#1| (-560))) (((-3 (-380) "failed") (-410 (-949 |#1|))) 40 (|has| |#1| (-560))) (((-3 (-380) "failed") (-949 |#1|) (-922)) 31 (|has| |#1| (-1052))) (((-3 (-380) "failed") (-949 |#1|)) 30 (|has| |#1| (-1052)))) (-2781 (((-380) (-315 |#1|) (-922)) 99 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-380) (-315 |#1|)) 94 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-380) (-410 (-949 |#1|)) (-922)) 91 (|has| |#1| (-560))) (((-380) (-410 (-949 |#1|))) 90 (|has| |#1| (-560))) (((-380) (-949 |#1|) (-922)) 86 (|has| |#1| (-1052))) (((-380) (-949 |#1|)) 85 (|has| |#1| (-1052))) (((-380) |#1| (-922)) 76) (((-380) |#1|) 22)) (-2784 (((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)) (-922)) 71 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-168 (-380)) "failed") (-315 (-168 |#1|))) 70 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-168 (-380)) "failed") (-315 |#1|) (-922)) 63 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-168 (-380)) "failed") (-315 |#1|)) 61 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))) (-922)) 46 (|has| |#1| (-560))) (((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|)))) 45 (|has| |#1| (-560))) (((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)) (-922)) 39 (|has| |#1| (-560))) (((-3 (-168 (-380)) "failed") (-410 (-949 |#1|))) 38 (|has| |#1| (-560))) (((-3 (-168 (-380)) "failed") (-949 |#1|) (-922)) 28 (|has| |#1| (-1052))) (((-3 (-168 (-380)) "failed") (-949 |#1|)) 26 (|has| |#1| (-1052))) (((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)) (-922)) 18 (|has| |#1| (-172))) (((-3 (-168 (-380)) "failed") (-949 (-168 |#1|))) 15 (|has| |#1| (-172)))) (-2782 (((-168 (-380)) (-315 (-168 |#1|)) (-922)) 102 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-168 (-380)) (-315 (-168 |#1|))) 101 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-168 (-380)) (-315 |#1|) (-922)) 100 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-168 (-380)) (-315 |#1|)) 98 (-12 (|has| |#1| (-560)) (|has| |#1| (-852)))) (((-168 (-380)) (-410 (-949 (-168 |#1|))) (-922)) 93 (|has| |#1| (-560))) (((-168 (-380)) (-410 (-949 (-168 |#1|)))) 92 (|has| |#1| (-560))) (((-168 (-380)) (-410 (-949 |#1|)) (-922)) 89 (|has| |#1| (-560))) (((-168 (-380)) (-410 (-949 |#1|))) 88 (|has| |#1| (-560))) (((-168 (-380)) (-949 |#1|) (-922)) 84 (|has| |#1| (-1052))) (((-168 (-380)) (-949 |#1|)) 83 (|has| |#1| (-1052))) (((-168 (-380)) (-949 (-168 |#1|)) (-922)) 78 (|has| |#1| (-172))) (((-168 (-380)) (-949 (-168 |#1|))) 77 (|has| |#1| (-172))) (((-168 (-380)) (-168 |#1|) (-922)) 80 (|has| |#1| (-172))) (((-168 (-380)) (-168 |#1|)) 79 (|has| |#1| (-172))) (((-168 (-380)) |#1| (-922)) 27) (((-168 (-380)) |#1|) 25))) +(((-787 |#1|) (-10 -7 (-15 -2781 ((-380) |#1|)) (-15 -2781 ((-380) |#1| (-922))) (-15 -2782 ((-168 (-380)) |#1|)) (-15 -2782 ((-168 (-380)) |#1| (-922))) (IF (|has| |#1| (-172)) (PROGN (-15 -2782 ((-168 (-380)) (-168 |#1|))) (-15 -2782 ((-168 (-380)) (-168 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-949 (-168 |#1|)))) (-15 -2782 ((-168 (-380)) (-949 (-168 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-15 -2781 ((-380) (-949 |#1|))) (-15 -2781 ((-380) (-949 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-949 |#1|))) (-15 -2782 ((-168 (-380)) (-949 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-560)) (PROGN (-15 -2781 ((-380) (-410 (-949 |#1|)))) (-15 -2781 ((-380) (-410 (-949 |#1|)) (-922))) (-15 -2782 ((-168 (-380)) (-410 (-949 |#1|)))) (-15 -2782 ((-168 (-380)) (-410 (-949 |#1|)) (-922))) (-15 -2782 ((-168 (-380)) (-410 (-949 (-168 |#1|))))) (-15 -2782 ((-168 (-380)) (-410 (-949 (-168 |#1|))) (-922))) (IF (|has| |#1| (-852)) (PROGN (-15 -2781 ((-380) (-315 |#1|))) (-15 -2781 ((-380) (-315 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-315 |#1|))) (-15 -2782 ((-168 (-380)) (-315 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-315 (-168 |#1|)))) (-15 -2782 ((-168 (-380)) (-315 (-168 |#1|)) (-922)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-949 |#1|))) (-15 -2783 ((-3 (-380) "failed") (-949 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 |#1|))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-560)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-410 (-949 |#1|)))) (-15 -2783 ((-3 (-380) "failed") (-410 (-949 |#1|)) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))) (-922))) (IF (|has| |#1| (-852)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-315 |#1|))) (-15 -2783 ((-3 (-380) "failed") (-315 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 |#1|))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)) (-922)))) |%noBranch|)) |%noBranch|)) (-616 (-380))) (T -787)) +((-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2783 (*1 *2 *3) (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-949 (-168 *5)))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 (-168 *4)))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2783 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2783 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2783 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2784 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2784 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 (-168 *5)))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 (-168 *4)))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) (-2781 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-949 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-168 *5)) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-168 *4)) (-4 *4 (-172)) (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-168 (-380))) (-5 *1 (-787 *3)) (-4 *3 (-616 (-380))))) (-2782 (*1 *2 *3) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-787 *3)) (-4 *3 (-616 (-380))))) (-2781 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-380)) (-5 *1 (-787 *3)) (-4 *3 (-616 *2)))) (-2781 (*1 *2 *3) (-12 (-5 *2 (-380)) (-5 *1 (-787 *3)) (-4 *3 (-616 *2))))) +(-10 -7 (-15 -2781 ((-380) |#1|)) (-15 -2781 ((-380) |#1| (-922))) (-15 -2782 ((-168 (-380)) |#1|)) (-15 -2782 ((-168 (-380)) |#1| (-922))) (IF (|has| |#1| (-172)) (PROGN (-15 -2782 ((-168 (-380)) (-168 |#1|))) (-15 -2782 ((-168 (-380)) (-168 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-949 (-168 |#1|)))) (-15 -2782 ((-168 (-380)) (-949 (-168 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-15 -2781 ((-380) (-949 |#1|))) (-15 -2781 ((-380) (-949 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-949 |#1|))) (-15 -2782 ((-168 (-380)) (-949 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-560)) (PROGN (-15 -2781 ((-380) (-410 (-949 |#1|)))) (-15 -2781 ((-380) (-410 (-949 |#1|)) (-922))) (-15 -2782 ((-168 (-380)) (-410 (-949 |#1|)))) (-15 -2782 ((-168 (-380)) (-410 (-949 |#1|)) (-922))) (-15 -2782 ((-168 (-380)) (-410 (-949 (-168 |#1|))))) (-15 -2782 ((-168 (-380)) (-410 (-949 (-168 |#1|))) (-922))) (IF (|has| |#1| (-852)) (PROGN (-15 -2781 ((-380) (-315 |#1|))) (-15 -2781 ((-380) (-315 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-315 |#1|))) (-15 -2782 ((-168 (-380)) (-315 |#1|) (-922))) (-15 -2782 ((-168 (-380)) (-315 (-168 |#1|)))) (-15 -2782 ((-168 (-380)) (-315 (-168 |#1|)) (-922)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 (-168 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1052)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-949 |#1|))) (-15 -2783 ((-3 (-380) "failed") (-949 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 |#1|))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-949 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-560)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-410 (-949 |#1|)))) (-15 -2783 ((-3 (-380) "failed") (-410 (-949 |#1|)) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 |#1|)) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-410 (-949 (-168 |#1|))) (-922))) (IF (|has| |#1| (-852)) (PROGN (-15 -2783 ((-3 (-380) "failed") (-315 |#1|))) (-15 -2783 ((-3 (-380) "failed") (-315 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 |#1|))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 |#1|) (-922))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)))) (-15 -2784 ((-3 (-168 (-380)) "failed") (-315 (-168 |#1|)) (-922)))) |%noBranch|)) |%noBranch|)) +((-2788 (((-922) (-1162)) 92)) (-2790 (((-3 (-380) "failed") (-1162)) 36)) (-2789 (((-380) (-1162)) 34)) (-2786 (((-922) (-1162)) 63)) (-2787 (((-1162) (-922)) 75)) (-2785 (((-1162) (-922)) 62))) +(((-788) (-10 -7 (-15 -2785 ((-1162) (-922))) (-15 -2786 ((-922) (-1162))) (-15 -2787 ((-1162) (-922))) (-15 -2788 ((-922) (-1162))) (-15 -2789 ((-380) (-1162))) (-15 -2790 ((-3 (-380) "failed") (-1162))))) (T -788)) +((-2790 (*1 *2 *3) (|partial| -12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-788)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-788)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-922)) (-5 *1 (-788)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1162)) (-5 *1 (-788)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-922)) (-5 *1 (-788)))) (-2785 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1162)) (-5 *1 (-788))))) +(-10 -7 (-15 -2785 ((-1162) (-922))) (-15 -2786 ((-922) (-1162))) (-15 -2787 ((-1162) (-922))) (-15 -2788 ((-922) (-1162))) (-15 -2789 ((-380) (-1162))) (-15 -2790 ((-3 (-380) "failed") (-1162)))) +((-2968 (((-112) $ $) 7)) (-2791 (((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 16) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038)) 14)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-789) (-140)) (T -789)) +((-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-789)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038)))))) (-2791 (*1 *2 *3 *2) (-12 (-4 *1 (-789)) (-5 *2 (-1038)) (-5 *3 (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-789)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038)))))) (-2791 (*1 *2 *3 *2) (-12 (-4 *1 (-789)) (-5 *2 (-1038)) (-5 *3 (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(-13 (-1104) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2791 ((-1038) (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) (|:| |extra| (-1038))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2791 ((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1038))))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2794 (((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380))) 55) (((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))) 52)) (-2795 (((-1275) (-1269 (-380)) (-549) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))) 61)) (-2793 (((-1275) (-1269 (-380)) (-549) (-380) (-380) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))) 50)) (-2792 (((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380))) 63) (((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))) 62))) +(((-790) (-10 -7 (-15 -2792 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2792 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)))) (-15 -2793 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2794 ((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2794 ((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)))) (-15 -2795 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))))) (T -790)) +((-2795 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2794 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-549)) (-5 *6 (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380)))) (-5 *7 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2794 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-549)) (-5 *6 (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380)))) (-5 *7 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2793 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2792 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) (-2792 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) +(-10 -7 (-15 -2792 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2792 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)))) (-15 -2793 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2794 ((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)))) (-15 -2794 ((-1275) (-1269 (-380)) (-549) (-380) (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380))) (-380) (-1269 (-380)) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)) (-1269 (-380)))) (-15 -2795 ((-1275) (-1269 (-380)) (-549) (-380) (-380) (-549) (-1 (-1275) (-1269 (-380)) (-1269 (-380)) (-380))))) +((-2804 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 66)) (-2801 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 42)) (-2803 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 65)) (-2800 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 40)) (-2802 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 64)) (-2799 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)) 26)) (-2798 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549)) 43)) (-2797 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549)) 41)) (-2796 (((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549)) 39))) +(((-791) (-10 -7 (-15 -2796 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2797 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2798 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2799 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2800 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2801 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2802 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2803 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2804 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))))) (T -791)) +((-2804 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2803 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2802 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2801 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2800 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2799 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2798 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2797 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549)))) (-2796 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) (-5 *2 (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) (|:| |success| (-112)))) (-5 *1 (-791)) (-5 *5 (-549))))) +(-10 -7 (-15 -2796 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2797 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2798 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549) (-549))) (-15 -2799 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2800 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2801 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2802 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2803 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549))) (-15 -2804 ((-2 (|:| -3826 (-380)) (|:| -1704 (-380)) (|:| |totalpts| (-549)) (|:| |success| (-112))) (-1 (-380) (-380)) (-380) (-380) (-380) (-380) (-549) (-549)))) +((-4137 (((-1215 |#1|) |#1| (-225) (-549)) 69))) +(((-792 |#1|) (-10 -7 (-15 -4137 ((-1215 |#1|) |#1| (-225) (-549)))) (-977)) (T -792)) +((-4137 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-549)) (-5 *2 (-1215 *3)) (-5 *1 (-792 *3)) (-4 *3 (-977))))) +(-10 -7 (-15 -4137 ((-1215 |#1|) |#1| (-225) (-549)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-1407 (((-3 $ "failed") $ $) 27)) (-4156 (($) 24 T CONST)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4269 (($ $ $) 31) (($ $) 30)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-773) $) 26) (($ (-549) $) 29))) (((-793) (-140)) (T -793)) NIL -(-13 (-795) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-795) . T) ((-851) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 25)) (-1992 (($ $ $) 28)) (-2932 (((-3 $ "failed") $ $) 27)) (-3758 (($) 24 T CONST)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 23 T CONST)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (-3045 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26))) +(-13 (-799) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-852) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-4156 (($) 24 T CONST)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-773) $) 26))) (((-794) (-140)) (T -794)) -((-1992 (*1 *1 *1 *1) (-4 *1 (-794)))) -(-13 (-796) (-10 -8 (-15 -1992 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 7)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (-3045 (($ $ $) 21)) (* (($ (-923) $) 22))) -(((-795) (-140)) (T -795)) NIL -(-13 (-851) (-25)) -(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 25)) (-2932 (((-3 $ "failed") $ $) 27)) (-3758 (($) 24 T CONST)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 23 T CONST)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (-3045 (($ $ $) 21)) (* (($ (-923) $) 22) (($ (-772) $) 26))) +(-13 (-796) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-796) . T) ((-852) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-2805 (($ $ $) 28)) (-1407 (((-3 $ "failed") $ $) 27)) (-4156 (($) 24 T CONST)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-773) $) 26))) +(((-795) (-140)) (T -795)) +((-2805 (*1 *1 *1 *1) (-4 *1 (-795)))) +(-13 (-799) (-10 -8 (-15 -2805 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-852) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22))) (((-796) (-140)) (T -796)) NIL -(-13 (-793) (-131)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-851) . T) ((-1102) . T)) -((-2684 (((-112) $) 42)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3094 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 43)) (-3810 (((-3 (-410 (-567)) "failed") $) 78)) (-1527 (((-112) $) 72)) (-2485 (((-410 (-567)) $) 76)) (-2013 ((|#2| $) 26)) (-4364 (($ (-1 |#2| |#2|) $) 23)) (-1752 (($ $) 58)) (-1322 (((-539) $) 67)) (-3307 (($ $) 21)) (-2504 (((-863) $) 53) (($ (-567)) 40) (($ |#2|) 38) (($ (-410 (-567))) NIL)) (-2214 (((-772)) 10)) (-1368 ((|#2| $) 71)) (-2968 (((-112) $ $) 30)) (-2986 (((-112) $ $) 69)) (-3054 (($ $) 32) (($ $ $) NIL)) (-3045 (($ $ $) 31)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-797 |#1| |#2|) (-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -1368 (|#2| |#1|)) (-15 -2013 (|#2| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2684 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) (-798 |#2|) (-172)) (T -797)) -((-2214 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4))))) -(-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -1368 (|#2| |#1|)) (-15 -2013 (|#2| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2684 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3404 (((-772)) 58 (|has| |#1| (-370)))) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 94)) (-3094 (((-567) $) 99 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 96 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 95)) (-1377 (((-3 $ "failed") $) 37)) (-3680 ((|#1| $) 84)) (-3810 (((-3 (-410 (-567)) "failed") $) 71 (|has| |#1| (-548)))) (-1527 (((-112) $) 73 (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) 72 (|has| |#1| (-548)))) (-2119 (($) 61 (|has| |#1| (-370)))) (-4384 (((-112) $) 35)) (-1501 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2013 ((|#1| $) 76)) (-2727 (($ $ $) 67 (|has| |#1| (-851)))) (-1446 (($ $ $) 66 (|has| |#1| (-851)))) (-4364 (($ (-1 |#1| |#1|) $) 86)) (-2667 (((-923) $) 60 (|has| |#1| (-370)))) (-1812 (((-1161) $) 10)) (-1752 (($ $) 70 (|has| |#1| (-365)))) (-2188 (($ (-923)) 59 (|has| |#1| (-370)))) (-2311 ((|#1| $) 81)) (-3926 ((|#1| $) 82)) (-3356 ((|#1| $) 83)) (-2857 ((|#1| $) 77)) (-4362 ((|#1| $) 78)) (-3707 ((|#1| $) 79)) (-4091 ((|#1| $) 80)) (-3479 (((-1122) $) 11)) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 88 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) 87 (|has| |#1| (-517 (-1179) |#1|)))) (-1882 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-1322 (((-539) $) 68 (|has| |#1| (-615 (-539))))) (-3307 (($ $) 85)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 98 (|has| |#1| (-1040 (-410 (-567)))))) (-2318 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1368 ((|#1| $) 74 (|has| |#1| (-1062)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-3016 (((-112) $ $) 64 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 63 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 65 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 62 (|has| |#1| (-851)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(-13 (-852) (-25)) +(((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-852) . T) ((-1104) . T)) +((-3608 (((-112) $) 42)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#2| $) 43)) (-3425 (((-3 (-410 (-549)) "failed") $) 78)) (-3424 (((-112) $) 72)) (-3423 (((-410 (-549)) $) 76)) (-3536 ((|#2| $) 26)) (-4390 (($ (-1 |#2| |#2|) $) 23)) (-2806 (($ $) 58)) (-4402 (((-538) $) 67)) (-3410 (($ $) 21)) (-4378 (((-865) $) 53) (($ (-549)) 40) (($ |#2|) 38) (($ (-410 (-549))) NIL)) (-3530 (((-773)) 10)) (-3807 ((|#2| $) 71)) (-3455 (((-112) $ $) 30)) (-3088 (((-112) $ $) 69)) (-4269 (($ $) 32) (($ $ $) NIL)) (-4271 (($ $ $) 31)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-797 |#1| |#2|) (-10 -8 (-15 -3088 ((-112) |#1| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-798 |#2|) (-172)) (T -797)) +((-3530 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4))))) +(-10 -8 (-15 -3088 ((-112) |#1| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-3540 (((-773)) 58 (|has| |#1| (-370)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 100 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 97 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 94)) (-3576 (((-549) $) 99 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 96 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 95)) (-3890 (((-3 $ "failed") $) 37)) (-4075 ((|#1| $) 84)) (-3425 (((-3 (-410 (-549)) "failed") $) 71 (|has| |#1| (-548)))) (-3424 (((-112) $) 73 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 72 (|has| |#1| (-548)))) (-3395 (($) 61 (|has| |#1| (-370)))) (-2573 (((-112) $) 35)) (-2811 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3536 ((|#1| $) 76)) (-2934 (($ $ $) 67 (|has| |#1| (-852)))) (-3260 (($ $ $) 66 (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) 86)) (-2188 (((-922) $) 60 (|has| |#1| (-370)))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 70 (|has| |#1| (-365)))) (-2563 (($ (-922)) 59 (|has| |#1| (-370)))) (-2808 ((|#1| $) 81)) (-2809 ((|#1| $) 82)) (-2810 ((|#1| $) 83)) (-3407 ((|#1| $) 77)) (-3408 ((|#1| $) 78)) (-3409 ((|#1| $) 79)) (-2807 ((|#1| $) 80)) (-3664 (((-1123) $) 11)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 88 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) 87 (|has| |#1| (-517 (-1180) |#1|)))) (-4231 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-4402 (((-538) $) 68 (|has| |#1| (-616 (-538))))) (-3410 (($ $) 85)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44) (($ (-410 (-549))) 98 (|has| |#1| (-1041 (-410 (-549)))))) (-3105 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3807 ((|#1| $) 74 (|has| |#1| (-1063)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 64 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 63 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 65 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 62 (|has| |#1| (-852)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-798 |#1|) (-140) (-172)) (T -798)) -((-3307 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1501 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-1752 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(-13 (-38 |t#1|) (-414 |t#1|) (-340 |t#1|) (-10 -8 (-15 -3307 ($ $)) (-15 -3680 (|t#1| $)) (-15 -3356 (|t#1| $)) (-15 -3926 (|t#1| $)) (-15 -2311 (|t#1| $)) (-15 -4091 (|t#1| $)) (-15 -3707 (|t#1| $)) (-15 -4362 (|t#1| $)) (-15 -2857 (|t#1| $)) (-15 -2013 (|t#1| $)) (-15 -1501 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -1368 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -1752 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-4364 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-799 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#3| (-1 |#4| |#2|) |#1|))) (-798 |#2|) (-172) (-798 |#4|) (-172)) (T -799)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5))))) -(-10 -7 (-15 -4364 (|#3| (-1 |#4| |#2|) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3404 (((-772)) NIL (|has| |#1| (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-1001 |#1|) "failed") $) 35) (((-3 (-567) "failed") $) NIL (-2836 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL (-2836 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-3094 ((|#1| $) NIL) (((-1001 |#1|) $) 33) (((-567) $) NIL (-2836 (|has| (-1001 |#1|) (-1040 (-567))) (|has| |#1| (-1040 (-567))))) (((-410 (-567)) $) NIL (-2836 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-1377 (((-3 $ "failed") $) NIL)) (-3680 ((|#1| $) 16)) (-3810 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1527 (((-112) $) NIL (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-2119 (($) NIL (|has| |#1| (-370)))) (-4384 (((-112) $) NIL)) (-1501 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1001 |#1|) (-1001 |#1|)) 29)) (-2013 ((|#1| $) NIL)) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2667 (((-923) $) NIL (|has| |#1| (-370)))) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-2188 (($ (-923)) NIL (|has| |#1| (-370)))) (-2311 ((|#1| $) 22)) (-3926 ((|#1| $) 20)) (-3356 ((|#1| $) 18)) (-2857 ((|#1| $) 26)) (-4362 ((|#1| $) 25)) (-3707 ((|#1| $) 24)) (-4091 ((|#1| $) 23)) (-3479 (((-1122) $) NIL)) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|)))) (-1882 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-3307 (($ $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1001 |#1|)) 30) (($ (-410 (-567))) NIL (-2836 (|has| (-1001 |#1|) (-1040 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1368 ((|#1| $) NIL (|has| |#1| (-1062)))) (-1807 (($) 8 T CONST)) (-1820 (($) 12 T CONST)) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-800 |#1|) (-13 (-798 |#1|) (-414 (-1001 |#1|)) (-10 -8 (-15 -1501 ($ (-1001 |#1|) (-1001 |#1|))))) (-172)) (T -800)) -((-1501 (*1 *1 *2 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) -(-13 (-798 |#1|) (-414 (-1001 |#1|)) (-10 -8 (-15 -1501 ($ (-1001 |#1|) (-1001 |#1|))))) -((-2487 (((-112) $ $) 7)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3073 (((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2968 (((-112) $ $) 6))) -(((-801) (-140)) (T -801)) -((-4201 (*1 *2 *3 *4) (-12 (-4 *1 (-801)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)))))) (-3073 (*1 *2 *3) (-12 (-4 *1 (-801)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1037))))) -(-13 (-1102) (-10 -7 (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3073 ((-1037) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-3936 (((-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#3| |#2| (-1179)) 19))) -(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -3936 ((-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#3| |#2| (-1179)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961)) (-657 |#2|)) (T -802)) -((-3936 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1179)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1204) (-961))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4374 (-645 *4)))) (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4))))) -(-10 -7 (-15 -3936 ((-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#3| |#2| (-1179)))) -((-2510 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1179)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1179)) 18) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1179)) 24) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1179)) 26) (((-3 (-645 (-1269 |#2|)) "failed") (-690 |#2|) (-1179)) 37) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-690 |#2|) (-1269 |#2|) (-1179)) 35))) -(((-803 |#1| |#2|) (-10 -7 (-15 -2510 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-690 |#2|) (-1269 |#2|) (-1179))) (-15 -2510 ((-3 (-645 (-1269 |#2|)) "failed") (-690 |#2|) (-1179))) (-15 -2510 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1179))) (-15 -2510 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1179))) (-15 -2510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1179))) (-15 -2510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1179))) (-15 -2510 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -2510 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961))) (T -803)) -((-2510 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-803 *6 *2)))) (-2510 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1204) (-961))) (-5 *1 (-803 *6 *2)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))))) (-2510 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1179)) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4374 (-645 *3))) *3 "failed")) (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1204) (-961))))) (-2510 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4374 (-645 *7))) *7 "failed")) (-5 *1 (-803 *6 *7)))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -4374 (-645 (-1269 *7))))) (-5 *1 (-803 *6 *7)))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -4374 (-645 (-1269 *7))))) (-5 *1 (-803 *6 *7)))) (-2510 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1179)) (-4 *6 (-13 (-29 *5) (-1204) (-961))) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-1269 *6))) (-5 *1 (-803 *5 *6)))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -4374 (-645 (-1269 *7))))) (-5 *1 (-803 *6 *7)) (-5 *4 (-1269 *7))))) -(-10 -7 (-15 -2510 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-690 |#2|) (-1269 |#2|) (-1179))) (-15 -2510 ((-3 (-645 (-1269 |#2|)) "failed") (-690 |#2|) (-1179))) (-15 -2510 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1179))) (-15 -2510 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -4374 (-645 (-1269 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1179))) (-15 -2510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1179))) (-15 -2510 ((-3 (-2 (|:| |particular| |#2|) (|:| -4374 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1179))) (-15 -2510 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -2510 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) -((-2543 (($) 9)) (-1631 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1512 (((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-3636 (($ (-2 (|:| -2025 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-1480 (($ (-645 (-2 (|:| -2025 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-3899 (((-1274)) 12))) -(((-804) (-10 -8 (-15 -2543 ($)) (-15 -3899 ((-1274))) (-15 -1512 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1480 ($ (-645 (-2 (|:| -2025 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -3636 ($ (-2 (|:| -2025 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -1631 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -804)) -((-1631 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-804)))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2025 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-804)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -2025 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-804)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-804)))) (-3899 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-804)))) (-2543 (*1 *1) (-5 *1 (-804)))) -(-10 -8 (-15 -2543 ($)) (-15 -3899 ((-1274))) (-15 -1512 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1480 ($ (-645 (-2 (|:| -2025 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -3636 ($ (-2 (|:| -2025 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2265 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -1631 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2371 ((|#2| |#2| (-1179)) 17)) (-4318 ((|#2| |#2| (-1179)) 56)) (-2078 (((-1 |#2| |#2|) (-1179)) 11))) -(((-805 |#1| |#2|) (-10 -7 (-15 -2371 (|#2| |#2| (-1179))) (-15 -4318 (|#2| |#2| (-1179))) (-15 -2078 ((-1 |#2| |#2|) (-1179)))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1204) (-961))) (T -805)) -((-2078 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) (-4 *5 (-13 (-29 *4) (-1204) (-961))))) (-4318 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1204) (-961))))) (-2371 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1204) (-961)))))) -(-10 -7 (-15 -2371 (|#2| |#2| (-1179))) (-15 -4318 (|#2| |#2| (-1179))) (-15 -2078 ((-1 |#2| |#2|) (-1179)))) -((-2510 (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381)) 131) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381)) 132) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381)) 134) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381)) 136) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381)) 137) (((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381))) 139) (((-1037) (-809) (-1065)) 123) (((-1037) (-809)) 124)) (-4201 (((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809) (-1065)) 83) (((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809)) 85))) -(((-806) (-10 -7 (-15 -2510 ((-1037) (-809))) (-15 -2510 ((-1037) (-809) (-1065))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809) (-1065))))) (T -806)) -((-4201 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-806)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-806)))) (-2510 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2510 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2510 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2510 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2510 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2510 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-806)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1037)) (-5 *1 (-806))))) -(-10 -7 (-15 -2510 ((-1037) (-809))) (-15 -2510 ((-1037) (-809) (-1065))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -2510 ((-1037) (-1269 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-809) (-1065)))) -((-2660 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4374 (-645 |#4|))) (-654 |#4|) |#4|) 35))) -(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2660 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4374 (-645 |#4|))) (-654 |#4|) |#4|))) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -807)) -((-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) (-5 *1 (-807 *5 *6 *7 *4))))) -(-10 -7 (-15 -2660 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4374 (-645 |#4|))) (-654 |#4|) |#4|))) -((-2985 (((-2 (|:| -4178 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))) 53)) (-3101 (((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#4| |#2|) 62) (((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#4|) 61) (((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#3| |#2|) 20) (((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#3|) 21)) (-1522 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2438 ((|#2| |#3| (-645 (-410 |#2|))) 113) (((-3 |#2| "failed") |#3| (-410 |#2|)) 109))) -(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2438 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -2438 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -3101 ((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#3|)) (-15 -3101 ((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#3| |#2|)) (-15 -1522 (|#2| |#3| |#1|)) (-15 -3101 ((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#4|)) (-15 -3101 ((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#4| |#2|)) (-15 -1522 (|#2| |#4| |#1|)) (-15 -2985 ((-2 (|:| -4178 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-410 (-567)))) (-1245 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -808)) -((-2985 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-2 (|:| -4178 *7) (|:| |rh| (-645 (-410 *6))))) (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) (-1522 (*1 *2 *3 *4) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-808 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-657 *2)) (-4 *3 (-657 (-410 *2))))) (-3101 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *4 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -3118 *4) (|:| -3382 *4)))) (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) (-4 *3 (-657 (-410 *4))))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| -3118 *5) (|:| -3382 *5)))) (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 (-410 *5))))) (-1522 (*1 *2 *3 *4) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-808 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))) (-3101 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *4 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -3118 *4) (|:| -3382 *4)))) (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) (-4 *6 (-657 (-410 *4))))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| -3118 *5) (|:| -3382 *5)))) (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-2438 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 (-410 *2))))) (-2438 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 *4))))) -(-10 -7 (-15 -2438 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -2438 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -3101 ((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#3|)) (-15 -3101 ((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#3| |#2|)) (-15 -1522 (|#2| |#3| |#1|)) (-15 -3101 ((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#4|)) (-15 -3101 ((-645 (-2 (|:| -3118 |#2|) (|:| -3382 |#2|))) |#4| |#2|)) (-15 -1522 (|#2| |#4| |#1|)) (-15 -2985 ((-2 (|:| -4178 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) -((-2487 (((-112) $ $) NIL)) (-3094 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-809) (-13 (-1102) (-10 -8 (-15 -2504 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3094 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -809)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809))))) -(-13 (-1102) (-10 -8 (-15 -2504 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3094 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) -((-3536 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -4178 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1175 |#2|)) (-1 (-421 |#2|) |#2|)) 157)) (-4296 (((-645 (-2 (|:| |poly| |#2|) (|:| -4178 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 56)) (-3947 (((-645 (-2 (|:| |deg| (-772)) (|:| -4178 |#2|))) |#3|) 127)) (-1827 ((|#2| |#3|) 45)) (-1797 (((-645 (-2 (|:| -3562 |#1|) (|:| -4178 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 105)) (-2868 ((|#3| |#3| (-410 |#2|)) 76) ((|#3| |#3| |#2|) 102))) -(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1827 (|#2| |#3|)) (-15 -3947 ((-645 (-2 (|:| |deg| (-772)) (|:| -4178 |#2|))) |#3|)) (-15 -1797 ((-645 (-2 (|:| -3562 |#1|) (|:| -4178 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -4296 ((-645 (-2 (|:| |poly| |#2|) (|:| -4178 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3536 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -4178 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1175 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2868 (|#3| |#3| |#2|)) (-15 -2868 (|#3| |#3| (-410 |#2|)))) (-13 (-365) (-147) (-1040 (-410 (-567)))) (-1245 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -810)) -((-2868 (*1 *2 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))) (-2868 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-1245 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) (-4 *5 (-657 (-410 *3))))) (-3536 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-645 *7) *7 (-1175 *7))) (-5 *5 (-1 (-421 *7) *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -4178 *3)))) (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) (-4 *8 (-657 (-410 *7))))) (-4296 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -4178 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -3562 *5) (|:| -4178 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -4178 *5)))) (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-1827 (*1 *2 *3) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-810 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2)))))) -(-10 -7 (-15 -1827 (|#2| |#3|)) (-15 -3947 ((-645 (-2 (|:| |deg| (-772)) (|:| -4178 |#2|))) |#3|)) (-15 -1797 ((-645 (-2 (|:| -3562 |#1|) (|:| -4178 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -4296 ((-645 (-2 (|:| |poly| |#2|) (|:| -4178 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3536 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -4178 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1175 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2868 (|#3| |#3| |#2|)) (-15 -2868 (|#3| |#3| (-410 |#2|)))) -((-1786 (((-2 (|:| -4374 (-645 (-410 |#2|))) (|:| -2434 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|))) 149) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -4374 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|)) 148) (((-2 (|:| -4374 (-645 (-410 |#2|))) (|:| -2434 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|))) 143) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -4374 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|)) 141)) (-2101 ((|#2| (-655 |#2| (-410 |#2|))) 89) ((|#2| (-654 (-410 |#2|))) 92))) -(((-811 |#1| |#2|) (-10 -7 (-15 -1786 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -4374 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -1786 ((-2 (|:| -4374 (-645 (-410 |#2|))) (|:| -2434 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -1786 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -4374 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -1786 ((-2 (|:| -4374 (-645 (-410 |#2|))) (|:| -2434 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -2101 (|#2| (-654 (-410 |#2|)))) (-15 -2101 (|#2| (-655 |#2| (-410 |#2|))))) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -811)) -((-2101 (*1 *2 *3) (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| -4374 (-645 (-410 *6))) (|:| -2434 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) (-5 *1 (-811 *5 *6)))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| -4374 (-645 (-410 *6))) (|:| -2434 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) (-5 *1 (-811 *5 *6))))) -(-10 -7 (-15 -1786 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -4374 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -1786 ((-2 (|:| -4374 (-645 (-410 |#2|))) (|:| -2434 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -1786 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -4374 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -1786 ((-2 (|:| -4374 (-645 (-410 |#2|))) (|:| -2434 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -2101 (|#2| (-654 (-410 |#2|)))) (-15 -2101 (|#2| (-655 |#2| (-410 |#2|))))) -((-2896 (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|) 52))) -(((-812 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2896 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|))) (-365) (-657 |#1|) (-1245 |#1|) (-725 |#1| |#3|) (-657 |#4|)) (T -812)) -((-2896 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1245 *5)) (-4 *4 (-725 *5 *7)) (-5 *2 (-2 (|:| -2434 (-690 *6)) (|:| |vec| (-1269 *5)))) (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4))))) -(-10 -7 (-15 -2896 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|))) -((-3536 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -4178 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 47)) (-2201 (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|))) 168 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|))) 170 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 38) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 39) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 36) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 37)) (-4296 (((-645 (-2 (|:| |poly| |#2|) (|:| -4178 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 99))) -(((-813 |#1| |#2|) (-10 -7 (-15 -2201 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -2201 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -2201 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -2201 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3536 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -4178 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -4296 ((-645 (-2 (|:| |poly| |#2|) (|:| -4178 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2201 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -2201 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2201 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -2201 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))) (-1245 |#1|)) (T -813)) -((-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-4296 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -4178 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *6)) (|:| -4178 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-2201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *7 (-1245 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-2201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *7 (-1245 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))) -(-10 -7 (-15 -2201 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -2201 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -2201 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -2201 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3536 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -4178 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -4296 ((-645 (-2 (|:| |poly| |#2|) (|:| -4178 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2201 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -2201 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -2201 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -2201 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) -((-1306 (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) (-690 |#2|) (-1269 |#1|)) 110) (((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -4178 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1269 |#1|)) 15)) (-2158 (((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-690 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4374 (-645 |#1|))) |#2| |#1|)) 116)) (-2510 (((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -4374 (-690 |#1|))) "failed") (-690 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-645 |#1|))) "failed") |#2| |#1|)) 52))) -(((-814 |#1| |#2|) (-10 -7 (-15 -1306 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -4178 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1269 |#1|))) (-15 -1306 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) (-690 |#2|) (-1269 |#1|))) (-15 -2510 ((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -4374 (-690 |#1|))) "failed") (-690 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -2158 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-690 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4374 (-645 |#1|))) |#2| |#1|)))) (-365) (-657 |#1|)) (T -814)) -((-2158 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4374 (-645 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *6) "failed")) (|:| -4374 (-645 (-1269 *6))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1269 *6)))) (-2510 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4374 (-645 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-1269 *6)) (|:| -4374 (-690 *6)))) (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1269 *6)))) (-1306 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) (-5 *2 (-2 (|:| -2434 (-690 *6)) (|:| |vec| (-1269 *5)))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1269 *5)))) (-1306 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-690 *5)) (|:| |eqs| (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1269 *5)) (|:| -4178 *6) (|:| |rh| *5)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *6 (-657 *5))))) -(-10 -7 (-15 -1306 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -4178 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1269 |#1|))) (-15 -1306 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#1|))) (-690 |#2|) (-1269 |#1|))) (-15 -2510 ((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -4374 (-690 |#1|))) "failed") (-690 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4374 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -2158 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -4374 (-645 (-1269 |#1|)))) (-690 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4374 (-645 |#1|))) |#2| |#1|)))) -((-4295 (((-690 |#1|) (-645 |#1|) (-772)) 14) (((-690 |#1|) (-645 |#1|)) 15)) (-3590 (((-3 (-1269 |#1|) "failed") |#2| |#1| (-645 |#1|)) 39)) (-1342 (((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)) 46))) -(((-815 |#1| |#2|) (-10 -7 (-15 -4295 ((-690 |#1|) (-645 |#1|))) (-15 -4295 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -3590 ((-3 (-1269 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -1342 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -815)) -((-1342 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) (-3590 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1269 *4)) (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))) (-4295 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))) (-4295 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4))))) -(-10 -7 (-15 -4295 ((-690 |#1|) (-645 |#1|))) (-15 -4295 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -3590 ((-3 (-1269 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -1342 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) -((-2487 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-2684 (((-112) $) NIL (|has| |#2| (-131)))) (-1771 (($ (-923)) NIL (|has| |#2| (-1051)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1992 (($ $ $) NIL (|has| |#2| (-794)))) (-2932 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1555 (((-112) $ (-772)) NIL)) (-3404 (((-772)) NIL (|has| |#2| (-370)))) (-2777 (((-567) $) NIL (|has| |#2| (-849)))) (-3824 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1102)))) (-3094 (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) ((|#2| $) NIL (|has| |#2| (-1102)))) (-2690 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1051)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL (|has| |#2| (-1051))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1051)))) (-1377 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-2119 (($) NIL (|has| |#2| (-370)))) (-2036 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ (-567)) NIL)) (-3635 (((-112) $) NIL (|has| |#2| (-849)))) (-3468 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4384 (((-112) $) NIL (|has| |#2| (-727)))) (-2585 (((-112) $) NIL (|has| |#2| (-849)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-4200 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2021 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-2667 (((-923) $) NIL (|has| |#2| (-370)))) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#2| (-1102)))) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-2188 (($ (-923)) NIL (|has| |#2| (-370)))) (-3479 (((-1122) $) NIL (|has| |#2| (-1102)))) (-3436 ((|#2| $) NIL (|has| (-567) (-851)))) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-1336 ((|#2| $ $) NIL (|has| |#2| (-1051)))) (-3700 (($ (-1269 |#2|)) NIL)) (-2589 (((-134)) NIL (|has| |#2| (-365)))) (-3592 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3486 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-1269 |#2|) $) NIL) (($ (-567)) NIL (-2836 (-12 (|has| |#2| (-1040 (-567))) (|has| |#2| (-1102))) (|has| |#2| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1040 (-410 (-567)))) (|has| |#2| (-1102)))) (($ |#2|) NIL (|has| |#2| (-1102))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2214 (((-772)) NIL (|has| |#2| (-1051)) CONST)) (-3858 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3450 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-1368 (($ $) NIL (|has| |#2| (-849)))) (-1807 (($) NIL (|has| |#2| (-131)) CONST)) (-1820 (($) NIL (|has| |#2| (-727)) CONST)) (-2856 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#2| (-902 (-1179))) (|has| |#2| (-1051)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1051))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1051)))) (-3016 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2996 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2968 (((-112) $ $) NIL (|has| |#2| (-1102)))) (-3006 (((-112) $ $) NIL (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-2986 (((-112) $ $) 11 (-2836 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $ $) NIL (|has| |#2| (-1051))) (($ $) NIL (|has| |#2| (-1051)))) (-3045 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-923)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1051))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-923) $) NIL (|has| |#2| (-25)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-816 |#1| |#2| |#3|) (-238 |#1| |#2|) (-772) (-794) (-1 (-112) (-1269 |#2|) (-1269 |#2|))) (T -816)) +((-3410 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2809 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2808 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2811 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) (-2806 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(-13 (-38 |t#1|) (-415 |t#1|) (-340 |t#1|) (-10 -8 (-15 -3410 ($ $)) (-15 -4075 (|t#1| $)) (-15 -2810 (|t#1| $)) (-15 -2809 (|t#1| $)) (-15 -2808 (|t#1| $)) (-15 -2807 (|t#1| $)) (-15 -3409 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3536 (|t#1| $)) (-15 -2811 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1063)) (-15 -3807 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2806 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1=(-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-415 |#1|) . T) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-728) . T) ((-852) |has| |#1| (-852)) ((-1041 #1#) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-1407 (((-3 $ "failed") $ $) 27)) (-4156 (($) 24 T CONST)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4271 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-773) $) 26))) +(((-799) (-140)) (T -799)) +NIL +(-13 (-794) (-131)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-794) . T) ((-796) . T) ((-852) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #1="failed") $) NIL) (((-3 (-999 |#1|) #1#) $) 35) (((-3 (-549) #1#) $) NIL (-3960 (|has| (-999 |#1|) (-1041 (-549))) (|has| |#1| (-1041 (-549))))) (((-3 (-410 (-549)) #1#) $) NIL (-3960 (|has| (-999 |#1|) (-1041 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-3576 ((|#1| $) NIL) (((-999 |#1|) $) 33) (((-549) $) NIL (-3960 (|has| (-999 |#1|) (-1041 (-549))) (|has| |#1| (-1041 (-549))))) (((-410 (-549)) $) NIL (-3960 (|has| (-999 |#1|) (-1041 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-3890 (((-3 $ "failed") $) NIL)) (-4075 ((|#1| $) 16)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL (|has| |#1| (-548)))) (-3424 (((-112) $) NIL (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) NIL (|has| |#1| (-548)))) (-3395 (($) NIL (|has| |#1| (-370)))) (-2573 (((-112) $) NIL)) (-2811 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-999 |#1|) (-999 |#1|)) 29)) (-3536 ((|#1| $) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-2808 ((|#1| $) 22)) (-2809 ((|#1| $) 20)) (-2810 ((|#1| $) 18)) (-3407 ((|#1| $) 26)) (-3408 ((|#1| $) 25)) (-3409 ((|#1| $) 24)) (-2807 ((|#1| $) 23)) (-3664 (((-1123) $) NIL)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|)))) (-4231 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3410 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-999 |#1|)) 30) (($ (-410 (-549))) NIL (-3960 (|has| (-999 |#1|) (-1041 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-1063)))) (-3510 (($) 8 T CONST)) (-3067 (($) 12 T CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-800 |#1|) (-13 (-798 |#1|) (-415 (-999 |#1|)) (-10 -8 (-15 -2811 ($ (-999 |#1|) (-999 |#1|))))) (-172)) (T -800)) +((-2811 (*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) +(-13 (-798 |#1|) (-415 (-999 |#1|)) (-10 -8 (-15 -2811 ($ (-999 |#1|) (-999 |#1|))))) +((-4390 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-801 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) (-798 |#2|) (-172) (-798 |#4|) (-172)) (T -801)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-801 *4 *5 *2 *6)) (-4 *4 (-798 *5))))) +(-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) +((-2968 (((-112) $ $) 7)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2812 (((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3455 (((-112) $ $) 6))) +(((-802) (-140)) (T -802)) +((-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-802)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) (-2812 (*1 *2 *3) (-12 (-4 *1 (-802)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1038))))) +(-13 (-1104) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2812 ((-1038) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2813 (((-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#3| |#2| (-1180)) 19))) +(((-803 |#1| |#2| |#3|) (-10 -7 (-15 -2813 ((-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#3| |#2| (-1180)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963)) (-660 |#2|)) (T -803)) +((-2813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1180)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-4 *4 (-13 (-29 *6) (-1205) (-963))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2190 (-643 *4)))) (-5 *1 (-803 *6 *4 *3)) (-4 *3 (-660 *4))))) +(-10 -7 (-15 -2813 ((-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#3| |#2| (-1180)))) +((-4004 (((-3 |#2| #1="failed") |#2| (-113) (-294 |#2|) (-643 |#2|)) 28) (((-3 |#2| #1#) (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #2="failed") |#2| (-113) (-1180)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #2#) (-294 |#2|) (-113) (-1180)) 18) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 |#2|) (-643 (-113)) (-1180)) 24) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 (-294 |#2|)) (-643 (-113)) (-1180)) 26) (((-3 (-643 (-1269 |#2|)) "failed") (-691 |#2|) (-1180)) 37) (((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-691 |#2|) (-1269 |#2|) (-1180)) 35))) +(((-804 |#1| |#2|) (-10 -7 (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-691 |#2|) (-1269 |#2|) (-1180))) (-15 -4004 ((-3 (-643 (-1269 |#2|)) "failed") (-691 |#2|) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 (-294 |#2|)) (-643 (-113)) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 |#2|) (-643 (-113)) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #1="failed") (-294 |#2|) (-113) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #1#) |#2| (-113) (-1180))) (-15 -4004 ((-3 |#2| #2="failed") (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|))) (-15 -4004 ((-3 |#2| #2#) |#2| (-113) (-294 |#2|) (-643 |#2|)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963))) (T -804)) +((-4004 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-294 *2)) (-5 *5 (-643 *2)) (-4 *2 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-804 *6 *2)))) (-4004 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-113)) (-5 *5 (-643 *2)) (-4 *2 (-13 (-29 *6) (-1205) (-963))) (-5 *1 (-804 *6 *2)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))))) (-4004 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1180)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2190 (-643 *3))) *3 #1="failed")) (-5 *1 (-804 *6 *3)) (-4 *3 (-13 (-29 *6) (-1205) (-963))))) (-4004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-113)) (-5 *5 (-1180)) (-4 *7 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2190 (-643 *7))) *7 #1#)) (-5 *1 (-804 *6 *7)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-643 *7)) (-5 *4 (-643 (-113))) (-5 *5 (-1180)) (-4 *7 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) (-5 *1 (-804 *6 *7)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-643 (-294 *7))) (-5 *4 (-643 (-113))) (-5 *5 (-1180)) (-4 *7 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) (-5 *1 (-804 *6 *7)))) (-4004 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-691 *6)) (-5 *4 (-1180)) (-4 *6 (-13 (-29 *5) (-1205) (-963))) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-1269 *6))) (-5 *1 (-804 *5 *6)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-691 *7)) (-5 *5 (-1180)) (-4 *7 (-13 (-29 *6) (-1205) (-963))) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) (-5 *1 (-804 *6 *7)) (-5 *4 (-1269 *7))))) +(-10 -7 (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-691 |#2|) (-1269 |#2|) (-1180))) (-15 -4004 ((-3 (-643 (-1269 |#2|)) "failed") (-691 |#2|) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 (-294 |#2|)) (-643 (-113)) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#2|)) (|:| -2190 (-643 (-1269 |#2|)))) "failed") (-643 |#2|) (-643 (-113)) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #1="failed") (-294 |#2|) (-113) (-1180))) (-15 -4004 ((-3 (-2 (|:| |particular| |#2|) (|:| -2190 (-643 |#2|))) |#2| #1#) |#2| (-113) (-1180))) (-15 -4004 ((-3 |#2| #2="failed") (-294 |#2|) (-113) (-294 |#2|) (-643 |#2|))) (-15 -4004 ((-3 |#2| #2#) |#2| (-113) (-294 |#2|) (-643 |#2|)))) +((-2814 (($) 9)) (-2818 (((-3 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 30)) (-2816 (((-643 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 27)) (-4039 (($ (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))))) 24)) (-2817 (($ (-643 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))))) 22)) (-2815 (((-1275)) 11))) +(((-805) (-10 -8 (-15 -2814 ($)) (-15 -2815 ((-1275))) (-15 -2816 ((-643 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2817 ($ (-643 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))))))) (-15 -4039 ($ (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))))) (-15 -2818 ((-3 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -805)) +((-2818 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))) (-5 *1 (-805)))) (-4039 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))))) (-5 *1 (-805)))) (-2817 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))))) (-5 *1 (-805)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-805)))) (-2815 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-805)))) (-2814 (*1 *1) (-5 *1 (-805)))) +(-10 -8 (-15 -2814 ($)) (-15 -2815 ((-1275))) (-15 -2816 ((-643 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2817 ($ (-643 (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380)))))))) (-15 -4039 ($ (-2 (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2254 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))))))) (-15 -2818 ((-3 (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) (|:| |expense| (-380)) (|:| |accuracy| (-380)) (|:| |intermediateResults| (-380))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-3893 ((|#2| |#2| (-1180)) 17)) (-2819 ((|#2| |#2| (-1180)) 56)) (-2820 (((-1 |#2| |#2|) (-1180)) 11))) +(((-806 |#1| |#2|) (-10 -7 (-15 -3893 (|#2| |#2| (-1180))) (-15 -2819 (|#2| |#2| (-1180))) (-15 -2820 ((-1 |#2| |#2|) (-1180)))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147)) (-13 (-29 |#1|) (-1205) (-963))) (T -806)) +((-2820 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-806 *4 *5)) (-4 *5 (-13 (-29 *4) (-1205) (-963))))) (-2819 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-806 *4 *2)) (-4 *2 (-13 (-29 *4) (-1205) (-963))))) (-3893 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *1 (-806 *4 *2)) (-4 *2 (-13 (-29 *4) (-1205) (-963)))))) +(-10 -7 (-15 -3893 (|#2| |#2| (-1180))) (-15 -2819 (|#2| |#2| (-1180))) (-15 -2820 ((-1 |#2| |#2|) (-1180)))) +((-4004 (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380) (-380)) 131) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380)) 132) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-643 (-380)) (-380)) 134) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-380)) 136) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-380)) 137) (((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380))) 139) (((-1038) (-810) (-1066)) 123) (((-1038) (-810)) 124)) (-3071 (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810) (-1066)) 83) (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810)) 85))) +(((-807) (-10 -7 (-15 -4004 ((-1038) (-810))) (-15 -4004 ((-1038) (-810) (-1066))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380) (-380))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810) (-1066))))) (T -807)) +((-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-810)) (-5 *4 (-1066)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-807)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-810)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-810)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-807)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1038)) (-5 *1 (-807))))) +(-10 -7 (-15 -4004 ((-1038) (-810))) (-15 -4004 ((-1038) (-810) (-1066))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380))) (-15 -4004 ((-1038) (-1269 (-315 (-380))) (-380) (-380) (-643 (-380)) (-315 (-380)) (-643 (-380)) (-380) (-380))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-810) (-1066)))) +((-2821 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2190 (-643 |#4|))) (-657 |#4|) |#4|) 33))) +(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2821 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2190 (-643 |#4|))) (-657 |#4|) |#4|))) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -808)) +((-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-808 *5 *6 *7 *4))))) +(-10 -7 (-15 -2821 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2190 (-643 |#4|))) (-657 |#4|) |#4|))) +((-4173 (((-2 (|:| -3687 |#3|) (|:| |rh| (-643 (-410 |#2|)))) |#4| (-643 (-410 |#2|))) 53)) (-2823 (((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4| |#2|) 62) (((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4|) 61) (((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3| |#2|) 20) (((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3|) 21)) (-2824 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2822 ((|#2| |#3| (-643 (-410 |#2|))) 111) (((-3 |#2| "failed") |#3| (-410 |#2|)) 107))) +(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2822 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -2822 (|#2| |#3| (-643 (-410 |#2|)))) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3| |#2|)) (-15 -2824 (|#2| |#3| |#1|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4| |#2|)) (-15 -2824 (|#2| |#4| |#1|)) (-15 -4173 ((-2 (|:| -3687 |#3|) (|:| |rh| (-643 (-410 |#2|)))) |#4| (-643 (-410 |#2|))))) (-13 (-365) (-147) (-1041 (-410 (-549)))) (-1245 |#1|) (-660 |#2|) (-660 (-410 |#2|))) (T -809)) +((-4173 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-2 (|:| -3687 *7) (|:| |rh| (-643 (-410 *6))))) (-5 *1 (-809 *5 *6 *7 *3)) (-5 *4 (-643 (-410 *6))) (-4 *7 (-660 *6)) (-4 *3 (-660 (-410 *6))))) (-2824 (*1 *2 *3 *4) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-809 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-660 *2)) (-4 *3 (-660 (-410 *2))))) (-2823 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *4 (-1245 *5)) (-5 *2 (-643 (-2 (|:| -4204 *4) (|:| -3646 *4)))) (-5 *1 (-809 *5 *4 *6 *3)) (-4 *6 (-660 *4)) (-4 *3 (-660 (-410 *4))))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-2 (|:| -4204 *5) (|:| -3646 *5)))) (-5 *1 (-809 *4 *5 *6 *3)) (-4 *6 (-660 *5)) (-4 *3 (-660 (-410 *5))))) (-2824 (*1 *2 *3 *4) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-809 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) (-4 *5 (-660 (-410 *2))))) (-2823 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *4 (-1245 *5)) (-5 *2 (-643 (-2 (|:| -4204 *4) (|:| -3646 *4)))) (-5 *1 (-809 *5 *4 *3 *6)) (-4 *3 (-660 *4)) (-4 *6 (-660 (-410 *4))))) (-2823 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-2 (|:| -4204 *5) (|:| -3646 *5)))) (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-660 (-410 *5))))) (-2822 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-809 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) (-4 *6 (-660 (-410 *2))))) (-2822 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-809 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) (-4 *6 (-660 *4))))) +(-10 -7 (-15 -2822 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -2822 (|#2| |#3| (-643 (-410 |#2|)))) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#3| |#2|)) (-15 -2824 (|#2| |#3| |#1|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4|)) (-15 -2823 ((-643 (-2 (|:| -4204 |#2|) (|:| -3646 |#2|))) |#4| |#2|)) (-15 -2824 (|#2| |#4| |#1|)) (-15 -4173 ((-2 (|:| -3687 |#3|) (|:| |rh| (-643 (-410 |#2|)))) |#4| (-643 (-410 |#2|))))) +((-2968 (((-112) $ $) NIL)) (-3576 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-810) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3576 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -810)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-810)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-810))))) +(-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3576 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) +((-2832 (((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 |#3|))) |#3| (-1 (-643 |#2|) |#2| (-1174 |#2|)) (-1 (-408 |#2|) |#2|)) 157)) (-2833 (((-643 (-2 (|:| |poly| |#2|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|)) 54)) (-2826 (((-643 (-2 (|:| |deg| (-773)) (|:| -3687 |#2|))) |#3|) 126)) (-2825 ((|#2| |#3|) 45)) (-2827 (((-643 (-2 (|:| -4384 |#1|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|)) 103)) (-2828 ((|#3| |#3| (-410 |#2|)) 74) ((|#3| |#3| |#2|) 100))) +(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2825 (|#2| |#3|)) (-15 -2826 ((-643 (-2 (|:| |deg| (-773)) (|:| -3687 |#2|))) |#3|)) (-15 -2827 ((-643 (-2 (|:| -4384 |#1|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|))) (-15 -2833 ((-643 (-2 (|:| |poly| |#2|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|))) (-15 -2832 ((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 |#3|))) |#3| (-1 (-643 |#2|) |#2| (-1174 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2828 (|#3| |#3| |#2|)) (-15 -2828 (|#3| |#3| (-410 |#2|)))) (-13 (-365) (-147) (-1041 (-410 (-549)))) (-1245 |#1|) (-660 |#2|) (-660 (-410 |#2|))) (T -811)) +((-2828 (*1 *2 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *1 (-811 *4 *5 *2 *6)) (-4 *2 (-660 *5)) (-4 *6 (-660 *3)))) (-2828 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-1245 *4)) (-5 *1 (-811 *4 *3 *2 *5)) (-4 *2 (-660 *3)) (-4 *5 (-660 (-410 *3))))) (-2832 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-643 *7) *7 (-1174 *7))) (-5 *5 (-1 (-408 *7) *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-5 *2 (-643 (-2 (|:| |frac| (-410 *7)) (|:| -3687 *3)))) (-5 *1 (-811 *6 *7 *3 *8)) (-4 *3 (-660 *7)) (-4 *8 (-660 (-410 *7))))) (-2833 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-2 (|:| |poly| *6) (|:| -3687 *3)))) (-5 *1 (-811 *5 *6 *3 *7)) (-4 *3 (-660 *6)) (-4 *7 (-660 (-410 *6))))) (-2827 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-2 (|:| -4384 *5) (|:| -3687 *3)))) (-5 *1 (-811 *5 *6 *3 *7)) (-4 *3 (-660 *6)) (-4 *7 (-660 (-410 *6))))) (-2826 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-2 (|:| |deg| (-773)) (|:| -3687 *5)))) (-5 *1 (-811 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-660 (-410 *5))))) (-2825 (*1 *2 *3) (-12 (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) (-4 *5 (-660 (-410 *2)))))) +(-10 -7 (-15 -2825 (|#2| |#3|)) (-15 -2826 ((-643 (-2 (|:| |deg| (-773)) (|:| -3687 |#2|))) |#3|)) (-15 -2827 ((-643 (-2 (|:| -4384 |#1|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|))) (-15 -2833 ((-643 (-2 (|:| |poly| |#2|) (|:| -3687 |#3|))) |#3| (-1 (-643 |#1|) |#2|))) (-15 -2832 ((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 |#3|))) |#3| (-1 (-643 |#2|) |#2| (-1174 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2828 (|#3| |#3| |#2|)) (-15 -2828 (|#3| |#3| (-410 |#2|)))) +((-2829 (((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-658 |#2| (-410 |#2|)) (-643 (-410 |#2|))) 149) (((-2 (|:| |particular| (-3 (-410 |#2|) #1="failed")) (|:| -2190 (-643 (-410 |#2|)))) (-658 |#2| (-410 |#2|)) (-410 |#2|)) 148) (((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-657 (-410 |#2|)) (-643 (-410 |#2|))) 143) (((-2 (|:| |particular| (-3 (-410 |#2|) #1#)) (|:| -2190 (-643 (-410 |#2|)))) (-657 (-410 |#2|)) (-410 |#2|)) 141)) (-2830 ((|#2| (-658 |#2| (-410 |#2|))) 89) ((|#2| (-657 (-410 |#2|))) 92))) +(((-812 |#1| |#2|) (-10 -7 (-15 -2829 ((-2 (|:| |particular| (-3 (-410 |#2|) #1="failed")) (|:| -2190 (-643 (-410 |#2|)))) (-657 (-410 |#2|)) (-410 |#2|))) (-15 -2829 ((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-657 (-410 |#2|)) (-643 (-410 |#2|)))) (-15 -2829 ((-2 (|:| |particular| (-3 (-410 |#2|) #1#)) (|:| -2190 (-643 (-410 |#2|)))) (-658 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -2829 ((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-658 |#2| (-410 |#2|)) (-643 (-410 |#2|)))) (-15 -2830 (|#2| (-657 (-410 |#2|)))) (-15 -2830 (|#2| (-658 |#2| (-410 |#2|))))) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -812)) +((-2830 (*1 *2 *3) (-12 (-5 *3 (-658 *2 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-812 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))))) (-2830 (*1 *2 *3) (-12 (-5 *3 (-657 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-812 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *6 (-410 *6))) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-2 (|:| -2190 (-643 (-410 *6))) (|:| -1748 (-691 *5)))) (-5 *1 (-812 *5 *6)) (-5 *4 (-643 (-410 *6))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-812 *5 *6)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-410 *6))) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-2 (|:| -2190 (-643 (-410 *6))) (|:| -1748 (-691 *5)))) (-5 *1 (-812 *5 *6)) (-5 *4 (-643 (-410 *6))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) (-5 *1 (-812 *5 *6))))) +(-10 -7 (-15 -2829 ((-2 (|:| |particular| (-3 (-410 |#2|) #1="failed")) (|:| -2190 (-643 (-410 |#2|)))) (-657 (-410 |#2|)) (-410 |#2|))) (-15 -2829 ((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-657 (-410 |#2|)) (-643 (-410 |#2|)))) (-15 -2829 ((-2 (|:| |particular| (-3 (-410 |#2|) #1#)) (|:| -2190 (-643 (-410 |#2|)))) (-658 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -2829 ((-2 (|:| -2190 (-643 (-410 |#2|))) (|:| -1748 (-691 |#1|))) (-658 |#2| (-410 |#2|)) (-643 (-410 |#2|)))) (-15 -2830 (|#2| (-657 (-410 |#2|)))) (-15 -2830 (|#2| (-658 |#2| (-410 |#2|))))) +((-2831 (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|) 52))) +(((-813 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2831 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|))) (-365) (-660 |#1|) (-1245 |#1|) (-726 |#1| |#3|) (-660 |#4|)) (T -813)) +((-2831 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1245 *5)) (-4 *4 (-726 *5 *7)) (-5 *2 (-2 (|:| -1748 (-691 *6)) (|:| |vec| (-1269 *5)))) (-5 *1 (-813 *5 *6 *7 *4 *3)) (-4 *6 (-660 *5)) (-4 *3 (-660 *4))))) +(-10 -7 (-15 -2831 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) |#5| |#4|))) +((-2832 (((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|)) 47)) (-2834 (((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|))) 168 (|has| |#1| (-27))) (((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-408 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-643 (-410 |#2|)) (-657 (-410 |#2|))) 170 (|has| |#1| (-27))) (((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|)) 38) (((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|)) 39) (((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|)) 36) (((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|)) 37)) (-2833 (((-643 (-2 (|:| |poly| |#2|) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|)) 99))) +(((-814 |#1| |#2|) (-10 -7 (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|))) (-15 -2832 ((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2833 ((-643 (-2 (|:| |poly| |#2|) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)))) (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))) (-1245 |#1|)) (T -814)) +((-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-658 *5 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-410 *5))) (-5 *1 (-814 *4 *5)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-657 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-410 *5))) (-5 *1 (-814 *4 *5)))) (-2833 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-2 (|:| |poly| *6) (|:| -3687 (-658 *6 (-410 *6)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-658 *6 (-410 *6))))) (-2832 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-5 *2 (-643 (-2 (|:| |frac| (-410 *6)) (|:| -3687 (-658 *6 (-410 *6)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-658 *6 (-410 *6))))) (-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-658 *7 (-410 *7))) (-5 *4 (-1 (-643 *6) *7)) (-5 *5 (-1 (-408 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *7 (-1245 *6)) (-5 *2 (-643 (-410 *7))) (-5 *1 (-814 *6 *7)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) (-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-410 *7))) (-5 *4 (-1 (-643 *6) *7)) (-5 *5 (-1 (-408 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *7 (-1245 *6)) (-5 *2 (-643 (-410 *7))) (-5 *1 (-814 *6 *7)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-1 (-643 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6))))) +(-10 -7 (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|) (-1 (-408 |#2|) |#2|))) (-15 -2832 ((-643 (-2 (|:| |frac| (-410 |#2|)) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2833 ((-643 (-2 (|:| |poly| |#2|) (|:| -3687 (-658 |#2| (-410 |#2|))))) (-658 |#2| (-410 |#2|)) (-1 (-643 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)))) (-15 -2834 ((-643 (-410 |#2|)) (-657 (-410 |#2|)) (-1 (-408 |#2|) |#2|))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)))) (-15 -2834 ((-643 (-410 |#2|)) (-658 |#2| (-410 |#2|)) (-1 (-408 |#2|) |#2|)))) |%noBranch|)) +((-2835 (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) (-691 |#2|) (-1269 |#1|)) 110) (((-2 (|:| A (-691 |#1|)) (|:| |eqs| (-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3687 |#2|) (|:| |rh| |#1|))))) (-691 |#1|) (-1269 |#1|)) 15)) (-2836 (((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2190 (-643 |#1|))) |#2| |#1|)) 116)) (-4004 (((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2190 (-691 |#1|))) "failed") (-691 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) "failed") |#2| |#1|)) 52))) +(((-815 |#1| |#2|) (-10 -7 (-15 -2835 ((-2 (|:| A (-691 |#1|)) (|:| |eqs| (-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3687 |#2|) (|:| |rh| |#1|))))) (-691 |#1|) (-1269 |#1|))) (-15 -2835 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) (-691 |#2|) (-1269 |#1|))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2190 (-691 |#1|))) "failed") (-691 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) "failed") |#2| |#1|))) (-15 -2836 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2190 (-643 |#1|))) |#2| |#1|)))) (-365) (-660 |#1|)) (T -815)) +((-2836 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2190 (-643 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-660 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *6) "failed")) (|:| -2190 (-643 (-1269 *6))))) (-5 *1 (-815 *6 *7)) (-5 *4 (-1269 *6)))) (-4004 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2190 (-643 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-660 *6)) (-5 *2 (-2 (|:| |particular| (-1269 *6)) (|:| -2190 (-691 *6)))) (-5 *1 (-815 *6 *7)) (-5 *3 (-691 *6)) (-5 *4 (-1269 *6)))) (-2835 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-660 *5)) (-5 *2 (-2 (|:| -1748 (-691 *6)) (|:| |vec| (-1269 *5)))) (-5 *1 (-815 *5 *6)) (-5 *3 (-691 *6)) (-5 *4 (-1269 *5)))) (-2835 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-691 *5)) (|:| |eqs| (-643 (-2 (|:| C (-691 *5)) (|:| |g| (-1269 *5)) (|:| -3687 *6) (|:| |rh| *5)))))) (-5 *1 (-815 *5 *6)) (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *6 (-660 *5))))) +(-10 -7 (-15 -2835 ((-2 (|:| A (-691 |#1|)) (|:| |eqs| (-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)) (|:| -3687 |#2|) (|:| |rh| |#1|))))) (-691 |#1|) (-1269 |#1|))) (-15 -2835 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#1|))) (-691 |#2|) (-1269 |#1|))) (-15 -4004 ((-3 (-2 (|:| |particular| (-1269 |#1|)) (|:| -2190 (-691 |#1|))) "failed") (-691 |#1|) (-1269 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2190 (-643 |#1|))) "failed") |#2| |#1|))) (-15 -2836 ((-2 (|:| |particular| (-3 (-1269 |#1|) "failed")) (|:| -2190 (-643 (-1269 |#1|)))) (-691 |#2|) (-1269 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2190 (-643 |#1|))) |#2| |#1|)))) +((-2837 (((-691 |#1|) (-643 |#1|) (-773)) 14) (((-691 |#1|) (-643 |#1|)) 15)) (-2838 (((-3 (-1269 |#1|) "failed") |#2| |#1| (-643 |#1|)) 39)) (-3764 (((-3 |#1| "failed") |#2| |#1| (-643 |#1|) (-1 |#1| |#1|)) 46))) +(((-816 |#1| |#2|) (-10 -7 (-15 -2837 ((-691 |#1|) (-643 |#1|))) (-15 -2837 ((-691 |#1|) (-643 |#1|) (-773))) (-15 -2838 ((-3 (-1269 |#1|) "failed") |#2| |#1| (-643 |#1|))) (-15 -3764 ((-3 |#1| "failed") |#2| |#1| (-643 |#1|) (-1 |#1| |#1|)))) (-365) (-660 |#1|)) (T -816)) +((-3764 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-643 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-816 *2 *3)) (-4 *3 (-660 *2)))) (-2838 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-643 *4)) (-4 *4 (-365)) (-5 *2 (-1269 *4)) (-5 *1 (-816 *4 *3)) (-4 *3 (-660 *4)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-773)) (-4 *5 (-365)) (-5 *2 (-691 *5)) (-5 *1 (-816 *5 *6)) (-4 *6 (-660 *5)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-365)) (-5 *2 (-691 *4)) (-5 *1 (-816 *4 *5)) (-4 *5 (-660 *4))))) +(-10 -7 (-15 -2837 ((-691 |#1|) (-643 |#1|))) (-15 -2837 ((-691 |#1|) (-643 |#1|) (-773))) (-15 -2838 ((-3 (-1269 |#1|) "failed") |#2| |#1| (-643 |#1|))) (-15 -3764 ((-3 |#1| "failed") |#2| |#1| (-643 |#1|) (-1 |#1| |#1|)))) +((-2968 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3608 (((-112) $) NIL (|has| |#2| (-131)))) (-4139 (($ (-922)) NIL (|has| |#2| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#2| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#2| (-370)))) (-4055 (((-549) $) NIL (|has| |#2| (-850)))) (-4219 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1104)))) (-3576 (((-549) $) NIL (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) ((|#2| $) NIL (|has| |#2| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#2| (-641 (-549))) (|has| |#2| (-1052)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL (|has| |#2| (-1052))) (((-691 |#2|) (-691 $)) NIL (|has| |#2| (-1052)))) (-3890 (((-3 $ "failed") $) NIL (|has| |#2| (-728)))) (-3395 (($) NIL (|has| |#2| (-370)))) (-1684 ((|#2| $ (-549) |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ (-549)) NIL)) (-3606 (((-112) $) NIL (|has| |#2| (-850)))) (-2124 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (|has| |#2| (-728)))) (-3607 (((-112) $) NIL (|has| |#2| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#2| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#2| (-1104)))) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#2| (-370)))) (-3664 (((-1123) $) NIL (|has| |#2| (-1104)))) (-4232 ((|#2| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) |#2|) NIL) ((|#2| $ (-549)) NIL)) (-4268 ((|#2| $ $) NIL (|has| |#2| (-1052)))) (-1569 (($ (-1269 |#2|)) NIL)) (-4343 (((-134)) NIL (|has| |#2| (-365)))) (-4242 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#2|) $) NIL) (($ (-549)) NIL (-3960 (-12 (|has| |#2| (-1041 (-549))) (|has| |#2| (-1104))) (|has| |#2| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#2| (-1041 (-410 (-549)))) (|has| |#2| (-1104)))) (($ |#2|) NIL (|has| |#2| (-1104))) (((-865) $) NIL (|has| |#2| (-615 (-865))))) (-3530 (((-773)) NIL (|has| |#2| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#2| (-850)))) (-3510 (($) NIL (|has| |#2| (-131)) CONST)) (-3067 (($) NIL (|has| |#2| (-728)) CONST)) (-3072 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#2| (-903 (-1180))) (|has| |#2| (-1052)))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#2| (-1052))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1052)))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3455 (((-112) $ $) NIL (|has| |#2| (-1104)))) (-3087 (((-112) $ $) NIL (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-3088 (((-112) $ $) 11 (-3960 (|has| |#2| (-795)) (|has| |#2| (-850))))) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $ $) NIL (|has| |#2| (-1052))) (($ $) NIL (|has| |#2| (-1052)))) (-4271 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-773)) NIL (|has| |#2| (-728))) (($ $ (-922)) NIL (|has| |#2| (-728)))) (* (($ (-549) $) NIL (|has| |#2| (-1052))) (($ $ $) NIL (|has| |#2| (-728))) (($ $ |#2|) NIL (|has| |#2| (-728))) (($ |#2| $) NIL (|has| |#2| (-728))) (($ (-773) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-817 |#1| |#2| |#3|) (-238 |#1| |#2|) (-773) (-795) (-1 (-112) (-1269 |#2|) (-1269 |#2|))) (T -817)) NIL (-238 |#1| |#2|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3466 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1179)) NIL)) (-1895 (((-772) $) NIL) (((-772) $ (-1179)) NIL)) (-3783 (((-645 (-819 (-1179))) $) NIL)) (-3633 (((-1175 $) $ (-819 (-1179))) NIL) (((-1175 |#1|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-819 (-1179)))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-1309 (($ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-819 (-1179)) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL) (((-3 (-1127 |#1| (-1179)) "failed") $) NIL)) (-3094 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-819 (-1179)) $) NIL) (((-1179) $) NIL) (((-1127 |#1| (-1179)) $) NIL)) (-2304 (($ $ $ (-819 (-1179))) NIL (|has| |#1| (-172)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1179))) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-1978 (($ $ |#1| (-534 (-819 (-1179))) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-819 (-1179)) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-819 (-1179)) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3905 (((-772) $ (-1179)) NIL) (((-772) $) NIL)) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3772 (($ (-1175 |#1|) (-819 (-1179))) NIL) (($ (-1175 $) (-819 (-1179))) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-534 (-819 (-1179)))) NIL) (($ $ (-819 (-1179)) (-772)) NIL) (($ $ (-645 (-819 (-1179))) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-819 (-1179))) NIL)) (-1562 (((-534 (-819 (-1179))) $) NIL) (((-772) $ (-819 (-1179))) NIL) (((-645 (-772)) $ (-645 (-819 (-1179)))) NIL)) (-2972 (($ (-1 (-534 (-819 (-1179))) (-534 (-819 (-1179)))) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3973 (((-1 $ (-772)) (-1179)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-2047 (((-3 (-819 (-1179)) "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-3459 (((-819 (-1179)) $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1812 (((-1161) $) NIL)) (-3773 (((-112) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-819 (-1179))) (|:| -2618 (-772))) "failed") $) NIL)) (-1413 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-819 (-1179)) |#1|) NIL) (($ $ (-645 (-819 (-1179))) (-645 |#1|)) NIL) (($ $ (-819 (-1179)) $) NIL) (($ $ (-645 (-819 (-1179))) (-645 $)) NIL) (($ $ (-1179) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1179)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-2254 (($ $ (-819 (-1179))) NIL (|has| |#1| (-172)))) (-3592 (($ $ (-819 (-1179))) NIL) (($ $ (-645 (-819 (-1179)))) NIL) (($ $ (-819 (-1179)) (-772)) NIL) (($ $ (-645 (-819 (-1179))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4022 (((-645 (-1179)) $) NIL)) (-3380 (((-534 (-819 (-1179))) $) NIL) (((-772) $ (-819 (-1179))) NIL) (((-645 (-772)) $ (-645 (-819 (-1179)))) NIL) (((-772) $ (-1179)) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-819 (-1179)) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-819 (-1179)) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-819 (-1179)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1179))) NIL (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-819 (-1179))) NIL) (($ (-1179)) NIL) (($ (-1127 |#1| (-1179))) NIL) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-534 (-819 (-1179)))) NIL) (($ $ (-819 (-1179)) (-772)) NIL) (($ $ (-645 (-819 (-1179))) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-819 (-1179))) NIL) (($ $ (-645 (-819 (-1179)))) NIL) (($ $ (-819 (-1179)) (-772)) NIL) (($ $ (-645 (-819 (-1179))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-817 |#1|) (-13 (-254 |#1| (-1179) (-819 (-1179)) (-534 (-819 (-1179)))) (-1040 (-1127 |#1| (-1179)))) (-1051)) (T -817)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1589 (((-643 (-773)) $) NIL) (((-643 (-773)) $ (-1180)) NIL)) (-1623 (((-773) $) NIL) (((-773) $ (-1180)) NIL)) (-3485 (((-643 (-820 (-1180))) $) NIL)) (-3487 (((-1174 $) $ (-820 (-1180))) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-820 (-1180)))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1585 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-820 (-1180)) #2#) $) NIL) (((-3 (-1180) #2#) $) NIL) (((-3 (-1128 |#1| (-1180)) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-820 (-1180)) $) NIL) (((-1180) $) NIL) (((-1128 |#1| (-1180)) $) NIL)) (-4188 (($ $ $ (-820 (-1180))) NIL (|has| |#1| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-820 (-1180))) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 (-820 (-1180))) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-820 (-1180)) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-820 (-1180)) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ (-1180)) NIL) (((-773) $) NIL)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#1|) (-820 (-1180))) NIL) (($ (-1174 $) (-820 (-1180))) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 (-820 (-1180)))) NIL) (($ $ (-820 (-1180)) (-773)) NIL) (($ $ (-643 (-820 (-1180))) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-820 (-1180))) NIL)) (-3223 (((-534 (-820 (-1180))) $) NIL) (((-773) $ (-820 (-1180))) NIL) (((-643 (-773)) $ (-643 (-820 (-1180)))) NIL)) (-1770 (($ (-1 (-534 (-820 (-1180))) (-534 (-820 (-1180)))) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1624 (((-1 $ (-773)) (-1180)) NIL) (((-1 $ (-773)) $) NIL (|has| |#1| (-233)))) (-3486 (((-3 (-820 (-1180)) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-1587 (((-820 (-1180)) $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-1588 (((-112) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-820 (-1180))) (|:| -2564 (-773))) #3#) $) NIL)) (-1586 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-820 (-1180)) |#1|) NIL) (($ $ (-643 (-820 (-1180))) (-643 |#1|)) NIL) (($ $ (-820 (-1180)) $) NIL) (($ $ (-643 (-820 (-1180))) (-643 $)) NIL) (($ $ (-1180) $) NIL (|has| |#1| (-233))) (($ $ (-643 (-1180)) (-643 $)) NIL (|has| |#1| (-233))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-233))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-233)))) (-4189 (($ $ (-820 (-1180))) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-820 (-1180))) NIL) (($ $ (-643 (-820 (-1180)))) NIL) (($ $ (-820 (-1180)) (-773)) NIL) (($ $ (-643 (-820 (-1180))) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1590 (((-643 (-1180)) $) NIL)) (-4380 (((-534 (-820 (-1180))) $) NIL) (((-773) $ (-820 (-1180))) NIL) (((-643 (-773)) $ (-643 (-820 (-1180)))) NIL) (((-773) $ (-1180)) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-820 (-1180)) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-820 (-1180)) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-820 (-1180)) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-820 (-1180))) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-820 (-1180))) NIL) (($ (-1180)) NIL) (($ (-1128 |#1| (-1180))) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 (-820 (-1180)))) NIL) (($ $ (-820 (-1180)) (-773)) NIL) (($ $ (-643 (-820 (-1180))) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-820 (-1180))) NIL) (($ $ (-643 (-820 (-1180)))) NIL) (($ $ (-820 (-1180)) (-773)) NIL) (($ $ (-643 (-820 (-1180))) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-818 |#1|) (-13 (-254 |#1| (-1180) (-820 (-1180)) (-534 (-820 (-1180)))) (-1041 (-1128 |#1| (-1180)))) (-1052)) (T -818)) NIL -(-13 (-254 |#1| (-1179) (-819 (-1179)) (-534 (-819 (-1179)))) (-1040 (-1127 |#1| (-1179)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-1987 (($ $) NIL (|has| |#2| (-365)))) (-3342 (((-112) $) NIL (|has| |#2| (-365)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| |#2| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#2| (-365)))) (-4175 (((-112) $ $) NIL (|has| |#2| (-365)))) (-3758 (($) NIL T CONST)) (-2432 (($ $ $) NIL (|has| |#2| (-365)))) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL (|has| |#2| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-2946 (((-112) $) NIL (|has| |#2| (-365)))) (-4384 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-1831 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 20 (|has| |#2| (-365)))) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-3661 (((-421 $) $) NIL (|has| |#2| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#2| (-365)))) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2465 (((-772) $) NIL (|has| |#2| (-365)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#2| (-365)))) (-3592 (($ $ (-772)) NIL) (($ $) 13)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-410 (-567))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) 15 (|has| |#2| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL) (($ $ (-567)) 18 (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) NIL (|has| |#2| (-365))) (($ $ (-410 (-567))) NIL (|has| |#2| (-365))))) -(((-818 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1102) (-902 |#1|) |#1|) (T -818)) +(-13 (-254 |#1| (-1180) (-820 (-1180)) (-534 (-820 (-1180)))) (-1041 (-1128 |#1| (-1180)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-2241 (($ $) NIL (|has| |#2| (-365)))) (-2239 (((-112) $) NIL (|has| |#2| (-365)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#2| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-365)))) (-1753 (((-112) $ $) NIL (|has| |#2| (-365)))) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL (|has| |#2| (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#2| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#2| (-365)))) (-4155 (((-112) $) NIL (|has| |#2| (-365)))) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL (|has| |#2| (-365)))) (-2069 (($ (-643 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 20 (|has| |#2| (-365)))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#2| (-365)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#2| (-365)))) (-1752 (((-773) $) NIL (|has| |#2| (-365)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-365)))) (-4242 (($ $ (-773)) NIL) (($ $) 13)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-410 (-549))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-365)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) 15 (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL) (($ $ (-549)) 18 (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-410 (-549)) $) NIL (|has| |#2| (-365))) (($ $ (-410 (-549))) NIL (|has| |#2| (-365))))) +(((-819 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1104) (-903 |#1|) |#1|) (T -819)) NIL (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-1895 (((-772) $) NIL)) (-2722 ((|#1| $) 10)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3905 (((-772) $) 11)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-3973 (($ |#1| (-772)) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3592 (($ $) NIL) (($ $ (-772)) NIL)) (-2504 (((-863) $) NIL) (($ |#1|) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-819 |#1|) (-267 |#1|) (-851)) (T -819)) +((-2968 (((-112) $ $) NIL)) (-1623 (((-773) $) NIL)) (-4263 ((|#1| $) 10)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-4203 (((-773) $) 11)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-1624 (($ |#1| (-773)) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4242 (($ $) NIL) (($ $ (-773)) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-820 |#1|) (-267 |#1|) (-852)) (T -820)) NIL (-267 |#1|) -((-2487 (((-112) $ $) NIL)) (-3055 (((-645 |#1|) $) 38)) (-3404 (((-772) $) NIL)) (-3758 (($) NIL T CONST)) (-3917 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3447 (($ $) 42)) (-1377 (((-3 $ "failed") $) NIL)) (-4180 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4384 (((-112) $) NIL)) (-3102 ((|#1| $ (-567)) NIL)) (-2889 (((-772) $ (-567)) NIL)) (-2247 (($ $) 54)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-3786 (($ (-1 |#1| |#1|) $) NIL)) (-2430 (($ (-1 (-772) (-772)) $) NIL)) (-4040 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2553 (((-112) $ $) 51)) (-3613 (((-772) $) 34)) (-1812 (((-1161) $) NIL)) (-1940 (($ $ $) NIL)) (-3867 (($ $ $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 ((|#1| $) 41)) (-1444 (((-645 (-2 (|:| |gen| |#1|) (|:| -4272 (-772)))) $) NIL)) (-2401 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2467 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2504 (((-863) $) NIL) (($ |#1|) NIL)) (-3858 (((-112) $ $) NIL)) (-1820 (($) 20 T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 53)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-820 |#1|) (-13 (-388 |#1|) (-847) (-10 -8 (-15 -3436 (|#1| $)) (-15 -3447 ($ $)) (-15 -2247 ($ $)) (-15 -2553 ((-112) $ $)) (-15 -4040 ((-3 $ "failed") $ |#1|)) (-15 -3917 ((-3 $ "failed") $ |#1|)) (-15 -2467 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3613 ((-772) $)) (-15 -3055 ((-645 |#1|) $)))) (-851)) (T -820)) -((-3436 (*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-3447 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2247 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2553 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-4040 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-3917 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2467 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851))))) -(-13 (-388 |#1|) (-847) (-10 -8 (-15 -3436 (|#1| $)) (-15 -3447 ($ $)) (-15 -2247 ($ $)) (-15 -2553 ((-112) $ $)) (-15 -4040 ((-3 $ "failed") $ |#1|)) (-15 -3917 ((-3 $ "failed") $ |#1|)) (-15 -2467 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3613 ((-772) $)) (-15 -3055 ((-645 |#1|) $)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-2777 (((-567) $) 59)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-3635 (((-112) $) 57)) (-4384 (((-112) $) 35)) (-2585 (((-112) $) 58)) (-2727 (($ $ $) 56)) (-1446 (($ $ $) 55)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ $) 48)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1368 (($ $) 60)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-3016 (((-112) $ $) 53)) (-2996 (((-112) $ $) 52)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 54)) (-2986 (((-112) $ $) 51)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-821) (-140)) (T -821)) -NIL -(-13 (-559) (-849)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-3716 (($ (-1122)) 7)) (-2312 (((-112) $ (-1161) (-1122)) 15)) (-3588 (((-823) $) 12)) (-1755 (((-823) $) 11)) (-3669 (((-1274) $) 9)) (-1318 (((-112) $ (-1122)) 16))) -(((-822) (-10 -8 (-15 -3716 ($ (-1122))) (-15 -3669 ((-1274) $)) (-15 -1755 ((-823) $)) (-15 -3588 ((-823) $)) (-15 -2312 ((-112) $ (-1161) (-1122))) (-15 -1318 ((-112) $ (-1122))))) (T -822)) -((-1318 (*1 *2 *1 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))) (-2312 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-822)))) (-3588 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-1755 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-822)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-822))))) -(-10 -8 (-15 -3716 ($ (-1122))) (-15 -3669 ((-1274) $)) (-15 -1755 ((-823) $)) (-15 -3588 ((-823) $)) (-15 -2312 ((-112) $ (-1161) (-1122))) (-15 -1318 ((-112) $ (-1122)))) -((-1769 (((-1274) $ (-824)) 12)) (-1531 (((-1274) $ (-1179)) 32)) (-1469 (((-1274) $ (-1161) (-1161)) 34)) (-2911 (((-1274) $ (-1161)) 33)) (-1558 (((-1274) $) 19)) (-1467 (((-1274) $ (-567)) 28)) (-3891 (((-1274) $ (-225)) 30)) (-2196 (((-1274) $) 18)) (-3924 (((-1274) $) 26)) (-3405 (((-1274) $) 25)) (-3395 (((-1274) $) 23)) (-4044 (((-1274) $) 24)) (-3493 (((-1274) $) 22)) (-3386 (((-1274) $) 21)) (-3708 (((-1274) $) 20)) (-2849 (((-1274) $) 16)) (-4196 (((-1274) $) 17)) (-2661 (((-1274) $) 15)) (-2272 (((-1274) $) 14)) (-1508 (((-1274) $) 13)) (-1688 (($ (-1161) (-824)) 9)) (-4251 (($ (-1161) (-1161) (-824)) 8)) (-2108 (((-1179) $) 51)) (-4130 (((-1179) $) 55)) (-2607 (((-2 (|:| |cd| (-1161)) (|:| -1646 (-1161))) $) 54)) (-1604 (((-1161) $) 52)) (-2095 (((-1274) $) 41)) (-3651 (((-567) $) 49)) (-1834 (((-225) $) 50)) (-1320 (((-1274) $) 40)) (-2590 (((-1274) $) 48)) (-4101 (((-1274) $) 47)) (-3648 (((-1274) $) 45)) (-1844 (((-1274) $) 46)) (-2689 (((-1274) $) 44)) (-3510 (((-1274) $) 43)) (-1900 (((-1274) $) 42)) (-1428 (((-1274) $) 38)) (-1994 (((-1274) $) 39)) (-3375 (((-1274) $) 37)) (-3791 (((-1274) $) 36)) (-2298 (((-1274) $) 35)) (-3752 (((-1274) $) 11))) -(((-823) (-10 -8 (-15 -4251 ($ (-1161) (-1161) (-824))) (-15 -1688 ($ (-1161) (-824))) (-15 -3752 ((-1274) $)) (-15 -1769 ((-1274) $ (-824))) (-15 -1508 ((-1274) $)) (-15 -2272 ((-1274) $)) (-15 -2661 ((-1274) $)) (-15 -2849 ((-1274) $)) (-15 -4196 ((-1274) $)) (-15 -2196 ((-1274) $)) (-15 -1558 ((-1274) $)) (-15 -3708 ((-1274) $)) (-15 -3386 ((-1274) $)) (-15 -3493 ((-1274) $)) (-15 -3395 ((-1274) $)) (-15 -4044 ((-1274) $)) (-15 -3405 ((-1274) $)) (-15 -3924 ((-1274) $)) (-15 -1467 ((-1274) $ (-567))) (-15 -3891 ((-1274) $ (-225))) (-15 -1531 ((-1274) $ (-1179))) (-15 -2911 ((-1274) $ (-1161))) (-15 -1469 ((-1274) $ (-1161) (-1161))) (-15 -2298 ((-1274) $)) (-15 -3791 ((-1274) $)) (-15 -3375 ((-1274) $)) (-15 -1428 ((-1274) $)) (-15 -1994 ((-1274) $)) (-15 -1320 ((-1274) $)) (-15 -2095 ((-1274) $)) (-15 -1900 ((-1274) $)) (-15 -3510 ((-1274) $)) (-15 -2689 ((-1274) $)) (-15 -3648 ((-1274) $)) (-15 -1844 ((-1274) $)) (-15 -4101 ((-1274) $)) (-15 -2590 ((-1274) $)) (-15 -3651 ((-567) $)) (-15 -1834 ((-225) $)) (-15 -2108 ((-1179) $)) (-15 -1604 ((-1161) $)) (-15 -2607 ((-2 (|:| |cd| (-1161)) (|:| -1646 (-1161))) $)) (-15 -4130 ((-1179) $)))) (T -823)) -((-4130 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-823)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1161)) (|:| -1646 (-1161)))) (-5 *1 (-823)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-823)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-823)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))) (-2590 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1469 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-2911 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-1531 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-3891 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-1467 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-2272 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1769 (*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1274)) (-5 *1 (-823)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823)))) (-1688 (*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-824)) (-5 *1 (-823)))) (-4251 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-824)) (-5 *1 (-823))))) -(-10 -8 (-15 -4251 ($ (-1161) (-1161) (-824))) (-15 -1688 ($ (-1161) (-824))) (-15 -3752 ((-1274) $)) (-15 -1769 ((-1274) $ (-824))) (-15 -1508 ((-1274) $)) (-15 -2272 ((-1274) $)) (-15 -2661 ((-1274) $)) (-15 -2849 ((-1274) $)) (-15 -4196 ((-1274) $)) (-15 -2196 ((-1274) $)) (-15 -1558 ((-1274) $)) (-15 -3708 ((-1274) $)) (-15 -3386 ((-1274) $)) (-15 -3493 ((-1274) $)) (-15 -3395 ((-1274) $)) (-15 -4044 ((-1274) $)) (-15 -3405 ((-1274) $)) (-15 -3924 ((-1274) $)) (-15 -1467 ((-1274) $ (-567))) (-15 -3891 ((-1274) $ (-225))) (-15 -1531 ((-1274) $ (-1179))) (-15 -2911 ((-1274) $ (-1161))) (-15 -1469 ((-1274) $ (-1161) (-1161))) (-15 -2298 ((-1274) $)) (-15 -3791 ((-1274) $)) (-15 -3375 ((-1274) $)) (-15 -1428 ((-1274) $)) (-15 -1994 ((-1274) $)) (-15 -1320 ((-1274) $)) (-15 -2095 ((-1274) $)) (-15 -1900 ((-1274) $)) (-15 -3510 ((-1274) $)) (-15 -2689 ((-1274) $)) (-15 -3648 ((-1274) $)) (-15 -1844 ((-1274) $)) (-15 -4101 ((-1274) $)) (-15 -2590 ((-1274) $)) (-15 -3651 ((-567) $)) (-15 -1834 ((-225) $)) (-15 -2108 ((-1179) $)) (-15 -1604 ((-1161) $)) (-15 -2607 ((-2 (|:| |cd| (-1161)) (|:| -1646 (-1161))) $)) (-15 -4130 ((-1179) $))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 13)) (-3858 (((-112) $ $) NIL)) (-2554 (($) 16)) (-3437 (($) 14)) (-2825 (($) 17)) (-4160 (($) 15)) (-2968 (((-112) $ $) 9))) -(((-824) (-13 (-1102) (-10 -8 (-15 -3437 ($)) (-15 -2554 ($)) (-15 -2825 ($)) (-15 -4160 ($))))) (T -824)) -((-3437 (*1 *1) (-5 *1 (-824))) (-2554 (*1 *1) (-5 *1 (-824))) (-2825 (*1 *1) (-5 *1 (-824))) (-4160 (*1 *1) (-5 *1 (-824)))) -(-13 (-1102) (-10 -8 (-15 -3437 ($)) (-15 -2554 ($)) (-15 -2825 ($)) (-15 -4160 ($)))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 23) (($ (-1179)) 19)) (-3858 (((-112) $ $) NIL)) (-4166 (((-112) $) 10)) (-4192 (((-112) $) 9)) (-1888 (((-112) $) 11)) (-3000 (((-112) $) 8)) (-2968 (((-112) $ $) 21))) -(((-825) (-13 (-1102) (-10 -8 (-15 -2504 ($ (-1179))) (-15 -3000 ((-112) $)) (-15 -4192 ((-112) $)) (-15 -4166 ((-112) $)) (-15 -1888 ((-112) $))))) (T -825)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-825)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) -(-13 (-1102) (-10 -8 (-15 -2504 ($ (-1179))) (-15 -3000 ((-112) $)) (-15 -4192 ((-112) $)) (-15 -4166 ((-112) $)) (-15 -1888 ((-112) $)))) -((-2487 (((-112) $ $) NIL)) (-2638 (($ (-825) (-645 (-1179))) 32)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1514 (((-825) $) 33)) (-4194 (((-645 (-1179)) $) 34)) (-2504 (((-863) $) 31)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-826) (-13 (-1102) (-10 -8 (-15 -1514 ((-825) $)) (-15 -4194 ((-645 (-1179)) $)) (-15 -2638 ($ (-825) (-645 (-1179))))))) (T -826)) -((-1514 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-826)))) (-2638 (*1 *1 *2 *3) (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1179))) (-5 *1 (-826))))) -(-13 (-1102) (-10 -8 (-15 -1514 ((-825) $)) (-15 -4194 ((-645 (-1179)) $)) (-15 -2638 ($ (-825) (-645 (-1179)))))) -((-2166 (((-1274) (-823) (-317 |#1|) (-112)) 24) (((-1274) (-823) (-317 |#1|)) 90) (((-1161) (-317 |#1|) (-112)) 89) (((-1161) (-317 |#1|)) 88))) -(((-827 |#1|) (-10 -7 (-15 -2166 ((-1161) (-317 |#1|))) (-15 -2166 ((-1161) (-317 |#1|) (-112))) (-15 -2166 ((-1274) (-823) (-317 |#1|))) (-15 -2166 ((-1274) (-823) (-317 |#1|) (-112)))) (-13 (-829) (-1051))) (T -827)) -((-2166 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-829) (-1051))) (-5 *2 (-1274)) (-5 *1 (-827 *6)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1051))) (-5 *2 (-1274)) (-5 *1 (-827 *5)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1051))) (-5 *2 (-1161)) (-5 *1 (-827 *5)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1051))) (-5 *2 (-1161)) (-5 *1 (-827 *4))))) -(-10 -7 (-15 -2166 ((-1161) (-317 |#1|))) (-15 -2166 ((-1161) (-317 |#1|) (-112))) (-15 -2166 ((-1274) (-823) (-317 |#1|))) (-15 -2166 ((-1274) (-823) (-317 |#1|) (-112)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1616 ((|#1| $) 10)) (-3788 (($ |#1|) 9)) (-4384 (((-112) $) NIL)) (-3764 (($ |#2| (-772)) NIL)) (-1562 (((-772) $) NIL)) (-1809 ((|#2| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3592 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3380 (((-772) $) NIL)) (-2504 (((-863) $) 17) (($ (-567)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-4038 ((|#2| $ (-772)) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-828 |#1| |#2|) (-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3788 ($ |#1|)) (-15 -1616 (|#1| $)))) (-709 |#2|) (-1051)) (T -828)) -((-3788 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3)))) (-1616 (*1 *2 *1) (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1051))))) -(-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3788 ($ |#1|)) (-15 -1616 (|#1| $)))) -((-2166 (((-1274) (-823) $ (-112)) 9) (((-1274) (-823) $) 8) (((-1161) $ (-112)) 7) (((-1161) $) 6))) -(((-829) (-140)) (T -829)) -((-2166 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1274)))) (-2166 (*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1274)))) (-2166 (*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1161)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1161))))) -(-13 (-10 -8 (-15 -2166 ((-1161) $)) (-15 -2166 ((-1161) $ (-112))) (-15 -2166 ((-1274) (-823) $)) (-15 -2166 ((-1274) (-823) $ (-112))))) -((-2581 (((-313) (-1161) (-1161)) 12)) (-2888 (((-112) (-1161) (-1161)) 34)) (-3263 (((-112) (-1161)) 33)) (-3267 (((-52) (-1161)) 25)) (-2453 (((-52) (-1161)) 23)) (-2079 (((-52) (-823)) 17)) (-2028 (((-645 (-1161)) (-1161)) 28)) (-3387 (((-645 (-1161))) 27))) -(((-830) (-10 -7 (-15 -2079 ((-52) (-823))) (-15 -2453 ((-52) (-1161))) (-15 -3267 ((-52) (-1161))) (-15 -3387 ((-645 (-1161)))) (-15 -2028 ((-645 (-1161)) (-1161))) (-15 -3263 ((-112) (-1161))) (-15 -2888 ((-112) (-1161) (-1161))) (-15 -2581 ((-313) (-1161) (-1161))))) (T -830)) -((-2581 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-830)))) (-2888 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-112)) (-5 *1 (-830)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-112)) (-5 *1 (-830)))) (-2028 (*1 *2 *3) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-830)) (-5 *3 (-1161)))) (-3387 (*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-830)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-830)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-830)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830))))) -(-10 -7 (-15 -2079 ((-52) (-823))) (-15 -2453 ((-52) (-1161))) (-15 -3267 ((-52) (-1161))) (-15 -3387 ((-645 (-1161)))) (-15 -2028 ((-645 (-1161)) (-1161))) (-15 -3263 ((-112) (-1161))) (-15 -2888 ((-112) (-1161) (-1161))) (-15 -2581 ((-313) (-1161) (-1161)))) -((-2487 (((-112) $ $) 19)) (-3855 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-1321 (($ $ $) 73)) (-3103 (((-112) $ $) 74)) (-1555 (((-112) $ (-772)) 8)) (-4191 (($ (-645 |#1|)) 69) (($) 68)) (-2105 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3048 (($ $) 63)) (-3470 (($ $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ |#1| $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4422)))) (-1695 (($ |#1| $) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4422)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-2117 (((-112) $ $) 65)) (-3753 (((-112) $ (-772)) 9)) (-2727 ((|#1| $) 79)) (-3196 (($ $ $) 82)) (-1315 (($ $ $) 81)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1446 ((|#1| $) 80)) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22)) (-3873 (($ $ $) 70)) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3479 (((-1122) $) 21)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-4043 (((-645 (-2 (|:| -2265 |#1|) (|:| -3486 (-772)))) $) 62)) (-2828 (($ $ |#1|) 72) (($ $ $) 71)) (-2730 (($) 50) (($ (-645 |#1|)) 49)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 51)) (-2504 (((-863) $) 18)) (-3719 (($ (-645 |#1|)) 67) (($) 66)) (-3858 (((-112) $ $) 23)) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20)) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-831 |#1|) (-140) (-851)) (T -831)) -((-2727 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851))))) -(-13 (-737 |t#1|) (-970 |t#1|) (-10 -8 (-15 -2727 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-696 |#1|) . T) ((-737 |#1|) . T) ((-970 |#1|) . T) ((-1100 |#1|) . T) ((-1102) . T) ((-1219) . T)) -((-1689 (((-1274) (-1122) (-1122)) 48)) (-1823 (((-1274) (-822) (-52)) 45)) (-1438 (((-52) (-822)) 16))) -(((-832) (-10 -7 (-15 -1438 ((-52) (-822))) (-15 -1823 ((-1274) (-822) (-52))) (-15 -1689 ((-1274) (-1122) (-1122))))) (T -832)) -((-1689 (*1 *2 *3 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-1274)) (-5 *1 (-832)))) (-1823 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1274)) (-5 *1 (-832)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832))))) -(-10 -7 (-15 -1438 ((-52) (-822))) (-15 -1823 ((-1274) (-822) (-52))) (-15 -1689 ((-1274) (-1122) (-1122)))) -((-4364 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)) 12) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 13))) -(((-833 |#1| |#2|) (-10 -7 (-15 -4364 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -4364 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) (-1102) (-1102)) (T -833)) -((-4364 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-833 *5 *6)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6))))) -(-10 -7 (-15 -4364 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -4364 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL (|has| |#1| (-21)))) (-2932 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2777 (((-567) $) NIL (|has| |#1| (-849)))) (-3758 (($) NIL (|has| |#1| (-21)) CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 15)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 9)) (-1377 (((-3 $ "failed") $) 42 (|has| |#1| (-849)))) (-3810 (((-3 (-410 (-567)) "failed") $) 52 (|has| |#1| (-548)))) (-1527 (((-112) $) 46 (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) 49 (|has| |#1| (-548)))) (-3635 (((-112) $) NIL (|has| |#1| (-849)))) (-4384 (((-112) $) NIL (|has| |#1| (-849)))) (-2585 (((-112) $) NIL (|has| |#1| (-849)))) (-2727 (($ $ $) NIL (|has| |#1| (-849)))) (-1446 (($ $ $) NIL (|has| |#1| (-849)))) (-1812 (((-1161) $) NIL)) (-4339 (($) 13)) (-2194 (((-112) $) 12)) (-3479 (((-1122) $) NIL)) (-3563 (((-112) $) 11)) (-2504 (((-863) $) 18) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2836 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))))) (-2214 (((-772)) 36 (|has| |#1| (-849)) CONST)) (-3858 (((-112) $ $) 54)) (-1368 (($ $) NIL (|has| |#1| (-849)))) (-1807 (($) 23 (|has| |#1| (-21)) CONST)) (-1820 (($) 33 (|has| |#1| (-849)) CONST)) (-3016 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2968 (((-112) $ $) 21)) (-3006 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2986 (((-112) $ $) 45 (|has| |#1| (-849)))) (-3054 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3045 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 39 (|has| |#1| (-849))) (($ (-567) $) 27 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21))))) -(((-834 |#1|) (-13 (-1102) (-414 |#1|) (-10 -8 (-15 -4339 ($)) (-15 -3563 ((-112) $)) (-15 -2194 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1102)) (T -834)) -((-4339 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1102)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102))))) -(-13 (-1102) (-414 |#1|) (-10 -8 (-15 -4339 ($)) (-15 -3563 ((-112) $)) (-15 -2194 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) -((-2208 (((-112) $ |#2|) 14)) (-2504 (((-863) $) 11))) -(((-835 |#1| |#2|) (-10 -8 (-15 -2208 ((-112) |#1| |#2|)) (-15 -2504 ((-863) |#1|))) (-836 |#2|) (-1102)) (T -835)) -NIL -(-10 -8 (-15 -2208 ((-112) |#1| |#2|)) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-1646 ((|#1| $) 16)) (-1812 (((-1161) $) 10)) (-2208 (((-112) $ |#1|) 14)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2619 (((-55) $) 15)) (-2968 (((-112) $ $) 6))) -(((-836 |#1|) (-140) (-1102)) (T -836)) -((-1646 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1102)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-55)))) (-2208 (*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(-13 (-1102) (-10 -8 (-15 -1646 (|t#1| $)) (-15 -2619 ((-55) $)) (-15 -2208 ((-112) $ |t#1|)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3094 ((|#1| $) NIL) (((-114) $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1958 ((|#1| (-114) |#1|) NIL)) (-4384 (((-112) $) NIL)) (-3529 (($ |#1| (-363 (-114))) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1739 (($ $ (-1 |#1| |#1|)) NIL)) (-1484 (($ $ (-1 |#1| |#1|)) NIL)) (-1882 ((|#1| $ |#1|) NIL)) (-3160 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-837 |#1|) (-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3766 ($ $)) (-15 -3766 ($ $ $)) (-15 -3160 (|#1| |#1|))) |%noBranch|) (-15 -1484 ($ $ (-1 |#1| |#1|))) (-15 -1739 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1958 (|#1| (-114) |#1|)) (-15 -3529 ($ |#1| (-363 (-114)))))) (-1051)) (T -837)) -((-3766 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-3766 (*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-3160 (*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) (-1484 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))) (-1739 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1051)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1051)))) (-1958 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1051)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1051))))) -(-13 (-1051) (-1040 |#1|) (-1040 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -3766 ($ $)) (-15 -3766 ($ $ $)) (-15 -3160 (|#1| |#1|))) |%noBranch|) (-15 -1484 ($ $ (-1 |#1| |#1|))) (-15 -1739 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -1958 (|#1| (-114) |#1|)) (-15 -3529 ($ |#1| (-363 (-114)))))) -((-2350 (((-214 (-505)) (-1161)) 9))) -(((-838) (-10 -7 (-15 -2350 ((-214 (-505)) (-1161))))) (T -838)) -((-2350 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-214 (-505))) (-5 *1 (-838))))) -(-10 -7 (-15 -2350 ((-214 (-505)) (-1161)))) -((-2487 (((-112) $ $) NIL)) (-4261 (((-1120) $) 10)) (-1646 (((-509) $) 9)) (-1812 (((-1161) $) NIL)) (-2208 (((-112) $ (-509)) NIL)) (-3479 (((-1122) $) NIL)) (-2516 (($ (-509) (-1120)) 8)) (-2504 (((-863) $) 25)) (-3858 (((-112) $ $) NIL)) (-2619 (((-55) $) 20)) (-2968 (((-112) $ $) 12))) -(((-839) (-13 (-836 (-509)) (-10 -8 (-15 -4261 ((-1120) $)) (-15 -2516 ($ (-509) (-1120)))))) (T -839)) -((-4261 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-839)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-839))))) -(-13 (-836 (-509)) (-10 -8 (-15 -4261 ((-1120) $)) (-15 -2516 ($ (-509) (-1120))))) -((-2487 (((-112) $ $) 7)) (-3478 (((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 15) (((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 17) (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 16)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-840) (-140)) (T -840)) -((-4201 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)))))) (-4201 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)))))) (-3478 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) (-5 *2 (-1037)))) (-3478 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-1037))))) -(-13 (-1102) (-10 -7 (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) (-15 -3478 ((-1037) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) (-15 -3478 ((-1037) (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2933 (((-1037) (-645 (-317 (-381))) (-645 (-381))) 169) (((-1037) (-317 (-381)) (-645 (-381))) 167) (((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381)))) 165) (((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381)))) 163) (((-1037) (-842)) 128) (((-1037) (-842) (-1065)) 127)) (-4201 (((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842) (-1065)) 88) (((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842)) 90)) (-3211 (((-1037) (-645 (-317 (-381))) (-645 (-381))) 170) (((-1037) (-842)) 153))) -(((-841) (-10 -7 (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842) (-1065))) (-15 -2933 ((-1037) (-842) (-1065))) (-15 -2933 ((-1037) (-842))) (-15 -3211 ((-1037) (-842))) (-15 -2933 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2933 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2933 ((-1037) (-317 (-381)) (-645 (-381)))) (-15 -2933 ((-1037) (-645 (-317 (-381))) (-645 (-381)))) (-15 -3211 ((-1037) (-645 (-317 (-381))) (-645 (-381)))))) (T -841)) -((-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2933 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2933 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1037)) (-5 *1 (-841)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-841)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-841)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-841))))) -(-10 -7 (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-842) (-1065))) (-15 -2933 ((-1037) (-842) (-1065))) (-15 -2933 ((-1037) (-842))) (-15 -3211 ((-1037) (-842))) (-15 -2933 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2933 ((-1037) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2933 ((-1037) (-317 (-381)) (-645 (-381)))) (-15 -2933 ((-1037) (-645 (-317 (-381))) (-645 (-381)))) (-15 -3211 ((-1037) (-645 (-317 (-381))) (-645 (-381))))) -((-2487 (((-112) $ $) NIL)) (-3094 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) $) 21)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14) (($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))))) 18)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-842) (-13 (-1102) (-10 -8 (-15 -2504 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -2504 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) (-15 -2504 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))))) (-15 -3094 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) $))))) (T -842)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-842)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) (-5 *1 (-842)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))))) (-5 *1 (-842)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))))) (-5 *1 (-842))))) -(-13 (-1102) (-10 -8 (-15 -2504 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -2504 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) (-15 -2504 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))))) (-15 -3094 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225)))))) $)))) -((-4364 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)) 13) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 14))) -(((-843 |#1| |#2|) (-10 -7 (-15 -4364 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -4364 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) (-1102) (-1102)) (T -843)) -((-4364 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-843 *5 *6)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6))))) -(-10 -7 (-15 -4364 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -4364 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL (|has| |#1| (-21)))) (-2427 (((-1122) $) 31)) (-2932 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2777 (((-567) $) NIL (|has| |#1| (-849)))) (-3758 (($) NIL (|has| |#1| (-21)) CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 18)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 9)) (-1377 (((-3 $ "failed") $) 58 (|has| |#1| (-849)))) (-3810 (((-3 (-410 (-567)) "failed") $) 65 (|has| |#1| (-548)))) (-1527 (((-112) $) 60 (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) 63 (|has| |#1| (-548)))) (-3635 (((-112) $) NIL (|has| |#1| (-849)))) (-2007 (($) 14)) (-4384 (((-112) $) NIL (|has| |#1| (-849)))) (-2585 (((-112) $) NIL (|has| |#1| (-849)))) (-2019 (($) 16)) (-2727 (($ $ $) NIL (|has| |#1| (-849)))) (-1446 (($ $ $) NIL (|has| |#1| (-849)))) (-1812 (((-1161) $) NIL)) (-2194 (((-112) $) 12)) (-3479 (((-1122) $) NIL)) (-3563 (((-112) $) 11)) (-2504 (((-863) $) 24) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2836 (|has| |#1| (-849)) (|has| |#1| (-1040 (-567)))))) (-2214 (((-772)) 51 (|has| |#1| (-849)) CONST)) (-3858 (((-112) $ $) NIL)) (-1368 (($ $) NIL (|has| |#1| (-849)))) (-1807 (($) 37 (|has| |#1| (-21)) CONST)) (-1820 (($) 48 (|has| |#1| (-849)) CONST)) (-3016 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2968 (((-112) $ $) 35)) (-3006 (((-112) $ $) NIL (|has| |#1| (-849)))) (-2986 (((-112) $ $) 59 (|has| |#1| (-849)))) (-3054 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3045 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-923)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 55 (|has| |#1| (-849))) (($ (-567) $) 42 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-923) $) NIL (|has| |#1| (-21))))) -(((-844 |#1|) (-13 (-1102) (-414 |#1|) (-10 -8 (-15 -2007 ($)) (-15 -2019 ($)) (-15 -3563 ((-112) $)) (-15 -2194 ((-112) $)) (-15 -2427 ((-1122) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1102)) (T -844)) -((-2007 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))) (-2019 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-844 *3)) (-4 *3 (-1102)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) (-3810 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102))))) -(-13 (-1102) (-414 |#1|) (-10 -8 (-15 -2007 ($)) (-15 -2019 ($)) (-15 -3563 ((-112) $)) (-15 -2194 ((-112) $)) (-15 -2427 ((-1122) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) -((-2487 (((-112) $ $) 7)) (-3404 (((-772)) 23)) (-2119 (($) 26)) (-2727 (($ $ $) 14) (($) 22 T CONST)) (-1446 (($ $ $) 15) (($) 21 T CONST)) (-2667 (((-923) $) 25)) (-1812 (((-1161) $) 10)) (-2188 (($ (-923)) 24)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19))) -(((-845) (-140)) (T -845)) -((-2727 (*1 *1) (-4 *1 (-845))) (-1446 (*1 *1) (-4 *1 (-845)))) -(-13 (-851) (-370) (-10 -8 (-15 -2727 ($) -3562) (-15 -1446 ($) -3562))) -(((-102) . T) ((-614 (-863)) . T) ((-370) . T) ((-851) . T) ((-1102) . T)) -((-4109 (((-112) (-1269 |#2|) (-1269 |#2|)) 23)) (-2376 (((-112) (-1269 |#2|) (-1269 |#2|)) 24)) (-2683 (((-112) (-1269 |#2|) (-1269 |#2|)) 20))) -(((-846 |#1| |#2|) (-10 -7 (-15 -2683 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -4109 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2376 ((-112) (-1269 |#2|) (-1269 |#2|)))) (-772) (-793)) (T -846)) -((-2376 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-4109 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-2683 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) -(-10 -7 (-15 -2683 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -4109 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2376 ((-112) (-1269 |#2|) (-1269 |#2|)))) -((-2487 (((-112) $ $) 7)) (-3758 (($) 24 T CONST)) (-1377 (((-3 $ "failed") $) 27)) (-4384 (((-112) $) 25)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1820 (($) 23 T CONST)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (** (($ $ (-923)) 22) (($ $ (-772)) 26)) (* (($ $ $) 21))) -(((-847) (-140)) (T -847)) -NIL -(-13 (-858) (-727)) -(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-858) . T) ((-851) . T) ((-1114) . T) ((-1102) . T)) -((-2777 (((-567) $) 21)) (-3635 (((-112) $) 10)) (-2585 (((-112) $) 12)) (-1368 (($ $) 23))) -(((-848 |#1|) (-10 -8 (-15 -1368 (|#1| |#1|)) (-15 -2777 ((-567) |#1|)) (-15 -2585 ((-112) |#1|)) (-15 -3635 ((-112) |#1|))) (-849)) (T -848)) -NIL -(-10 -8 (-15 -1368 (|#1| |#1|)) (-15 -2777 ((-567) |#1|)) (-15 -2585 ((-112) |#1|)) (-15 -3635 ((-112) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 25)) (-2932 (((-3 $ "failed") $ $) 27)) (-2777 (((-567) $) 37)) (-3758 (($) 24 T CONST)) (-1377 (((-3 $ "failed") $) 42)) (-3635 (((-112) $) 39)) (-4384 (((-112) $) 44)) (-2585 (((-112) $) 38)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 46)) (-2214 (((-772)) 47 T CONST)) (-3858 (((-112) $ $) 9)) (-1368 (($ $) 36)) (-1807 (($) 23 T CONST)) (-1820 (($) 45 T CONST)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (-3054 (($ $ $) 31) (($ $) 30)) (-3045 (($ $ $) 21)) (** (($ $ (-772)) 43) (($ $ (-923)) 40)) (* (($ (-923) $) 22) (($ (-772) $) 26) (($ (-567) $) 29) (($ $ $) 41))) -(((-849) (-140)) (T -849)) -((-3635 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-2585 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) (-1368 (*1 *1 *1) (-4 *1 (-849)))) -(-13 (-792) (-1051) (-727) (-10 -8 (-15 -3635 ((-112) $)) (-15 -2585 ((-112) $)) (-15 -2777 ((-567) $)) (-15 -1368 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2727 (($ $ $) 12)) (-1446 (($ $ $) 11)) (-3858 (((-112) $ $) 9)) (-3016 (((-112) $ $) 15)) (-2996 (((-112) $ $) 13)) (-3006 (((-112) $ $) 16))) -(((-850 |#1|) (-10 -8 (-15 -2727 (|#1| |#1| |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -3016 ((-112) |#1| |#1|)) (-15 -2996 ((-112) |#1| |#1|)) (-15 -3858 ((-112) |#1| |#1|))) (-851)) (T -850)) -NIL -(-10 -8 (-15 -2727 (|#1| |#1| |#1|)) (-15 -1446 (|#1| |#1| |#1|)) (-15 -3006 ((-112) |#1| |#1|)) (-15 -3016 ((-112) |#1| |#1|)) (-15 -2996 ((-112) |#1| |#1|)) (-15 -3858 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19))) -(((-851) (-140)) (T -851)) -((-2986 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-2996 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-3016 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-3006 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-1446 (*1 *1 *1 *1) (-4 *1 (-851))) (-2727 (*1 *1 *1 *1) (-4 *1 (-851)))) -(-13 (-1102) (-10 -8 (-15 -2986 ((-112) $ $)) (-15 -2996 ((-112) $ $)) (-15 -3016 ((-112) $ $)) (-15 -3006 ((-112) $ $)) (-15 -1446 ($ $ $)) (-15 -2727 ($ $ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-3454 (($ $ $) 49)) (-4332 (($ $ $) 48)) (-1989 (($ $ $) 46)) (-1705 (($ $ $) 55)) (-3538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 50)) (-3666 (((-3 $ "failed") $ $) 53)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1873 (($ $) 39)) (-3119 (($ $ $) 43)) (-3049 (($ $ $) 42)) (-2669 (($ $ $) 51)) (-1874 (($ $ $) 57)) (-4082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 45)) (-2535 (((-3 $ "failed") $ $) 52)) (-2478 (((-3 $ "failed") $ |#2|) 32)) (-1390 ((|#2| $) 36)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#2|) 13)) (-1516 (((-645 |#2|) $) 21)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-852 |#1| |#2|) (-10 -8 (-15 -2669 (|#1| |#1| |#1|)) (-15 -3538 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -1705 (|#1| |#1| |#1|)) (-15 -3666 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3454 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1| |#1|)) (-15 -1989 (|#1| |#1| |#1|)) (-15 -4082 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -2535 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3119 (|#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1516 ((-645 |#2|) |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2504 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -2504 ((-863) |#1|))) (-853 |#2|) (-1051)) (T -852)) -NIL -(-10 -8 (-15 -2669 (|#1| |#1| |#1|)) (-15 -3538 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -1705 (|#1| |#1| |#1|)) (-15 -3666 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3454 (|#1| |#1| |#1|)) (-15 -4332 (|#1| |#1| |#1|)) (-15 -1989 (|#1| |#1| |#1|)) (-15 -4082 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -1874 (|#1| |#1| |#1|)) (-15 -2535 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3119 (|#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -2478 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1516 ((-645 |#2|) |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2504 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-3454 (($ $ $) 50 (|has| |#1| (-365)))) (-4332 (($ $ $) 51 (|has| |#1| (-365)))) (-1989 (($ $ $) 53 (|has| |#1| (-365)))) (-1705 (($ $ $) 48 (|has| |#1| (-365)))) (-3538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 47 (|has| |#1| (-365)))) (-3666 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-3233 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 52 (|has| |#1| (-365)))) (-4275 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-3094 (((-567) $) 79 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 75)) (-1833 (($ $) 69)) (-1377 (((-3 $ "failed") $) 37)) (-1873 (($ $) 60 (|has| |#1| (-455)))) (-4384 (((-112) $) 35)) (-3764 (($ |#1| (-772)) 67)) (-4007 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 62 (|has| |#1| (-559)))) (-4045 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63 (|has| |#1| (-559)))) (-1562 (((-772) $) 71)) (-3119 (($ $ $) 57 (|has| |#1| (-365)))) (-3049 (($ $ $) 58 (|has| |#1| (-365)))) (-2669 (($ $ $) 46 (|has| |#1| (-365)))) (-1874 (($ $ $) 55 (|has| |#1| (-365)))) (-4082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 54 (|has| |#1| (-365)))) (-2535 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-4240 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 59 (|has| |#1| (-365)))) (-1809 ((|#1| $) 70)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-3380 (((-772) $) 72)) (-1390 ((|#1| $) 61 (|has| |#1| (-455)))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) 73)) (-1516 (((-645 |#1|) $) 66)) (-4038 ((|#1| $ (-772)) 68)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3384 ((|#1| $ |#1| |#1|) 65)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-853 |#1|) (-140) (-1051)) (T -853)) -((-3380 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-1833 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-3764 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-645 *3)))) (-3384 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) (-2478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-4045 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-853 *3)))) (-4007 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-853 *3)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-1873 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) (-4240 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-853 *3)))) (-3049 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3119 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-2535 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-1874 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-4082 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) (-4 *1 (-853 *3)))) (-1989 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3233 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-853 *3)))) (-4332 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3454 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3666 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-1705 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3538 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) (-4 *1 (-853 *3)))) (-2669 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(-13 (-1051) (-111 |t#1| |t#1|) (-414 |t#1|) (-10 -8 (-15 -3380 ((-772) $)) (-15 -1562 ((-772) $)) (-15 -1809 (|t#1| $)) (-15 -1833 ($ $)) (-15 -4038 (|t#1| $ (-772))) (-15 -3764 ($ |t#1| (-772))) (-15 -1516 ((-645 |t#1|) $)) (-15 -3384 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2478 ((-3 $ "failed") $ |t#1|)) (-15 -4045 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -4007 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -1390 (|t#1| $)) (-15 -1873 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -4240 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -3049 ($ $ $)) (-15 -3119 ($ $ $)) (-15 -2535 ((-3 $ "failed") $ $)) (-15 -1874 ($ $ $)) (-15 -4082 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $)) (-15 -1989 ($ $ $)) (-15 -3233 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -4332 ($ $ $)) (-15 -3454 ($ $ $)) (-15 -3666 ((-3 $ "failed") $ $)) (-15 -1705 ($ $ $)) (-15 -3538 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $)) (-15 -2669 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1040 #0#) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-3209 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3233 (((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-4007 (((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-559)))) (-4045 (((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-559)))) (-4240 (((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-3384 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) -(((-854 |#1| |#2|) (-10 -7 (-15 -3209 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3384 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -4045 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4007 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -4240 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3233 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1051) (-853 |#1|)) (T -854)) -((-3233 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-4240 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-4007 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-4045 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-3384 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1051)) (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2)))) (-3209 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1051)) (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5))))) -(-10 -7 (-15 -3209 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3384 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -4045 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4007 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -4240 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3233 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-3454 (($ $ $) NIL (|has| |#1| (-365)))) (-4332 (($ $ $) NIL (|has| |#1| (-365)))) (-1989 (($ $ $) NIL (|has| |#1| (-365)))) (-1705 (($ $ $) NIL (|has| |#1| (-365)))) (-3538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-3666 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3233 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 34 (|has| |#1| (-365)))) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455)))) (-2112 (((-863) $ (-863)) NIL)) (-4384 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) NIL)) (-4007 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 30 (|has| |#1| (-559)))) (-4045 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 28 (|has| |#1| (-559)))) (-1562 (((-772) $) NIL)) (-3119 (($ $ $) NIL (|has| |#1| (-365)))) (-3049 (($ $ $) NIL (|has| |#1| (-365)))) (-2669 (($ $ $) NIL (|has| |#1| (-365)))) (-1874 (($ $ $) NIL (|has| |#1| (-365)))) (-4082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2535 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4240 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 32 (|has| |#1| (-365)))) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3380 (((-772) $) NIL)) (-1390 ((|#1| $) NIL (|has| |#1| (-455)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1040 (-410 (-567))))) (($ |#1|) NIL)) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-772)) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3384 ((|#1| $ |#1| |#1|) 15)) (-1807 (($) NIL T CONST)) (-1820 (($) 23 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) 19) (($ $ (-772)) 24)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-855 |#1| |#2| |#3|) (-13 (-853 |#1|) (-10 -8 (-15 -2112 ((-863) $ (-863))))) (-1051) (-99 |#1|) (-1 |#1| |#1|)) (T -855)) -((-2112 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-853 |#1|) (-10 -8 (-15 -2112 ((-863) $ (-863))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-3454 (($ $ $) NIL (|has| |#2| (-365)))) (-4332 (($ $ $) NIL (|has| |#2| (-365)))) (-1989 (($ $ $) NIL (|has| |#2| (-365)))) (-1705 (($ $ $) NIL (|has| |#2| (-365)))) (-3538 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#2| (-365)))) (-3666 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3233 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#2| (-365)))) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#2| (-455)))) (-4384 (((-112) $) NIL)) (-3764 (($ |#2| (-772)) 17)) (-4007 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#2| (-559)))) (-4045 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#2| (-559)))) (-1562 (((-772) $) NIL)) (-3119 (($ $ $) NIL (|has| |#2| (-365)))) (-3049 (($ $ $) NIL (|has| |#2| (-365)))) (-2669 (($ $ $) NIL (|has| |#2| (-365)))) (-1874 (($ $ $) NIL (|has| |#2| (-365)))) (-4082 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#2| (-365)))) (-2535 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-4240 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#2| (-365)))) (-1809 ((|#2| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3380 (((-772) $) NIL)) (-1390 ((|#2| $) NIL (|has| |#2| (-455)))) (-2504 (((-863) $) 24) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (($ (-1265 |#1|)) 19)) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ (-772)) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3384 ((|#2| $ |#2| |#2|) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) 13 T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-856 |#1| |#2| |#3| |#4|) (-13 (-853 |#2|) (-617 (-1265 |#1|))) (-1179) (-1051) (-99 |#2|) (-1 |#2| |#2|)) (T -856)) -NIL -(-13 (-853 |#2|) (-617 (-1265 |#1|))) -((-2006 ((|#1| (-772) |#1|) 48 (|has| |#1| (-38 (-410 (-567)))))) (-1497 ((|#1| (-772) (-772) |#1|) 39) ((|#1| (-772) |#1|) 27)) (-1942 ((|#1| (-772) |#1|) 43)) (-4123 ((|#1| (-772) |#1|) 41)) (-1530 ((|#1| (-772) |#1|) 40))) -(((-857 |#1|) (-10 -7 (-15 -1530 (|#1| (-772) |#1|)) (-15 -4123 (|#1| (-772) |#1|)) (-15 -1942 (|#1| (-772) |#1|)) (-15 -1497 (|#1| (-772) |#1|)) (-15 -1497 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2006 (|#1| (-772) |#1|)) |%noBranch|)) (-172)) (T -857)) -((-2006 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-1497 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-1497 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-1942 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-4123 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-1530 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -1530 (|#1| (-772) |#1|)) (-15 -4123 (|#1| (-772) |#1|)) (-15 -1942 (|#1| (-772) |#1|)) (-15 -1497 (|#1| (-772) |#1|)) (-15 -1497 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2006 (|#1| (-772) |#1|)) |%noBranch|)) -((-2487 (((-112) $ $) 7)) (-2727 (($ $ $) 14)) (-1446 (($ $ $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3016 (((-112) $ $) 17)) (-2996 (((-112) $ $) 18)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 16)) (-2986 (((-112) $ $) 19)) (** (($ $ (-923)) 22)) (* (($ $ $) 21))) -(((-858) (-140)) (T -858)) -NIL -(-13 (-851) (-1114)) -(((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2233 (((-567) $) 14)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 20) (($ (-567)) 13)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 9)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 11))) -(((-859) (-13 (-851) (-10 -8 (-15 -2504 ($ (-567))) (-15 -2233 ((-567) $))))) (T -859)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859))))) -(-13 (-851) (-10 -8 (-15 -2504 ($ (-567))) (-15 -2233 ((-567) $)))) -((-3532 (((-692 (-1227)) $ (-1227)) 15)) (-2787 (((-692 (-552)) $ (-552)) 12)) (-1465 (((-772) $ (-128)) 30))) -(((-860 |#1|) (-10 -8 (-15 -1465 ((-772) |#1| (-128))) (-15 -3532 ((-692 (-1227)) |#1| (-1227))) (-15 -2787 ((-692 (-552)) |#1| (-552)))) (-861)) (T -860)) -NIL -(-10 -8 (-15 -1465 ((-772) |#1| (-128))) (-15 -3532 ((-692 (-1227)) |#1| (-1227))) (-15 -2787 ((-692 (-552)) |#1| (-552)))) -((-3532 (((-692 (-1227)) $ (-1227)) 8)) (-2787 (((-692 (-552)) $ (-552)) 9)) (-1465 (((-772) $ (-128)) 7)) (-2980 (((-692 (-129)) $ (-129)) 10)) (-4023 (($ $) 6))) -(((-861) (-140)) (T -861)) -((-2980 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))) (-3532 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1227))) (-5 *3 (-1227)))) (-1465 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772))))) -(-13 (-173) (-10 -8 (-15 -2980 ((-692 (-129)) $ (-129))) (-15 -2787 ((-692 (-552)) $ (-552))) (-15 -3532 ((-692 (-1227)) $ (-1227))) (-15 -1465 ((-772) $ (-128))))) +((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) 38)) (-3540 (((-773) $) NIL)) (-4156 (($) NIL T CONST)) (-4371 (((-3 $ #1="failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-4230 (($ $) 42)) (-3890 (((-3 $ "failed") $) NIL)) (-1918 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2573 (((-112) $) NIL)) (-2444 ((|#1| $ (-549)) NIL)) (-2445 (((-773) $ (-549)) NIL)) (-4368 (($ $) 54)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-2436 (($ (-1 |#1| |#1|) $) NIL)) (-2437 (($ (-1 (-773) (-773)) $) NIL)) (-4372 (((-3 $ #1#) $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2839 (((-112) $ $) 51)) (-4265 (((-773) $) 34)) (-3663 (((-1162) $) NIL)) (-1919 (($ $ $) NIL)) (-1920 (($ $ $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 ((|#1| $) 41)) (-1954 (((-643 (-2 (|:| |gen| |#1|) (|:| -4375 (-773)))) $) NIL)) (-3282 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL)) (-2965 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 20 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 53)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ |#1| (-773)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-821 |#1|) (-13 (-388 |#1|) (-848) (-10 -8 (-15 -4232 (|#1| $)) (-15 -4230 ($ $)) (-15 -4368 ($ $)) (-15 -2839 ((-112) $ $)) (-15 -4372 ((-3 $ "failed") $ |#1|)) (-15 -4371 ((-3 $ "failed") $ |#1|)) (-15 -2965 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4265 ((-773) $)) (-15 -4366 ((-643 |#1|) $)))) (-852)) (T -821)) +((-4232 (*1 *2 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-4368 (*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-2839 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821 *3)) (-4 *3 (-852)))) (-4372 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-4371 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) (-2965 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-821 *3)) (|:| |rm| (-821 *3)))) (-5 *1 (-821 *3)) (-4 *3 (-852)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-821 *3)) (-4 *3 (-852)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-821 *3)) (-4 *3 (-852))))) +(-13 (-388 |#1|) (-848) (-10 -8 (-15 -4232 (|#1| $)) (-15 -4230 ($ $)) (-15 -4368 ($ $)) (-15 -2839 ((-112) $ $)) (-15 -4372 ((-3 $ "failed") $ |#1|)) (-15 -4371 ((-3 $ "failed") $ |#1|)) (-15 -2965 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4265 ((-773) $)) (-15 -4366 ((-643 |#1|) $)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4055 (((-549) $) 59)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-3606 (((-112) $) 57)) (-2573 (((-112) $) 35)) (-3607 (((-112) $) 58)) (-2934 (($ $ $) 56)) (-3260 (($ $ $) 55)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3807 (($ $) 60)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 53)) (-2967 (((-112) $ $) 52)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 54)) (-3088 (((-112) $ $) 51)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-822) (-140)) (T -822)) +NIL +(-13 (-560) (-850)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-850) . T) ((-852) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2900 (((-1275) (-825) $ (-112)) 9) (((-1275) (-825) $) 8) (((-1162) $ (-112)) 7) (((-1162) $) 6))) +(((-823) (-140)) (T -823)) +((-2900 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-823)) (-5 *3 (-825)) (-5 *4 (-112)) (-5 *2 (-1275)))) (-2900 (*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-825)) (-5 *2 (-1275)))) (-2900 (*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-112)) (-5 *2 (-1162)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1162))))) +(-13 (-10 -8 (-15 -2900 ((-1162) $)) (-15 -2900 ((-1162) $ (-112))) (-15 -2900 ((-1275) (-825) $)) (-15 -2900 ((-1275) (-825) $ (-112))))) +((-2840 (($ (-1123)) 7)) (-2844 (((-112) $ (-1162) (-1123)) 15)) (-2843 (((-825) $) 12)) (-2842 (((-825) $) 11)) (-2841 (((-1275) $) 9)) (-2845 (((-112) $ (-1123)) 16))) +(((-824) (-10 -8 (-15 -2840 ($ (-1123))) (-15 -2841 ((-1275) $)) (-15 -2842 ((-825) $)) (-15 -2843 ((-825) $)) (-15 -2844 ((-112) $ (-1162) (-1123))) (-15 -2845 ((-112) $ (-1123))))) (T -824)) +((-2845 (*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-112)) (-5 *1 (-824)))) (-2844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-1123)) (-5 *2 (-112)) (-5 *1 (-824)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-824)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-824)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-824)))) (-2840 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-824))))) +(-10 -8 (-15 -2840 ($ (-1123))) (-15 -2841 ((-1275) $)) (-15 -2842 ((-825) $)) (-15 -2843 ((-825) $)) (-15 -2844 ((-112) $ (-1162) (-1123))) (-15 -2845 ((-112) $ (-1123)))) +((-2849 (((-1275) $ (-826)) 12)) (-2866 (((-1275) $ (-1180)) 32)) (-2868 (((-1275) $ (-1162) (-1162)) 34)) (-2867 (((-1275) $ (-1162)) 33)) (-2856 (((-1275) $) 19)) (-2864 (((-1275) $ (-549)) 28)) (-2865 (((-1275) $ (-225)) 30)) (-2855 (((-1275) $) 18)) (-2863 (((-1275) $) 26)) (-2862 (((-1275) $) 25)) (-2860 (((-1275) $) 23)) (-2861 (((-1275) $) 24)) (-2859 (((-1275) $) 22)) (-2858 (((-1275) $) 21)) (-2857 (((-1275) $) 20)) (-2853 (((-1275) $) 16)) (-2854 (((-1275) $) 17)) (-2852 (((-1275) $) 15)) (-2851 (((-1275) $) 14)) (-2850 (((-1275) $) 13)) (-2847 (($ (-1162) (-826)) 9)) (-2846 (($ (-1162) (-1162) (-826)) 8)) (-2885 (((-1180) $) 51)) (-2888 (((-1180) $) 55)) (-2887 (((-2 (|:| |cd| (-1162)) (|:| -3973 (-1162))) $) 54)) (-2886 (((-1162) $) 52)) (-2875 (((-1275) $) 41)) (-2883 (((-549) $) 49)) (-2884 (((-225) $) 50)) (-2874 (((-1275) $) 40)) (-2882 (((-1275) $) 48)) (-2881 (((-1275) $) 47)) (-2879 (((-1275) $) 45)) (-2880 (((-1275) $) 46)) (-2878 (((-1275) $) 44)) (-2877 (((-1275) $) 43)) (-2876 (((-1275) $) 42)) (-2872 (((-1275) $) 38)) (-2873 (((-1275) $) 39)) (-2871 (((-1275) $) 37)) (-2870 (((-1275) $) 36)) (-2869 (((-1275) $) 35)) (-2848 (((-1275) $) 11))) +(((-825) (-10 -8 (-15 -2846 ($ (-1162) (-1162) (-826))) (-15 -2847 ($ (-1162) (-826))) (-15 -2848 ((-1275) $)) (-15 -2849 ((-1275) $ (-826))) (-15 -2850 ((-1275) $)) (-15 -2851 ((-1275) $)) (-15 -2852 ((-1275) $)) (-15 -2853 ((-1275) $)) (-15 -2854 ((-1275) $)) (-15 -2855 ((-1275) $)) (-15 -2856 ((-1275) $)) (-15 -2857 ((-1275) $)) (-15 -2858 ((-1275) $)) (-15 -2859 ((-1275) $)) (-15 -2860 ((-1275) $)) (-15 -2861 ((-1275) $)) (-15 -2862 ((-1275) $)) (-15 -2863 ((-1275) $)) (-15 -2864 ((-1275) $ (-549))) (-15 -2865 ((-1275) $ (-225))) (-15 -2866 ((-1275) $ (-1180))) (-15 -2867 ((-1275) $ (-1162))) (-15 -2868 ((-1275) $ (-1162) (-1162))) (-15 -2869 ((-1275) $)) (-15 -2870 ((-1275) $)) (-15 -2871 ((-1275) $)) (-15 -2872 ((-1275) $)) (-15 -2873 ((-1275) $)) (-15 -2874 ((-1275) $)) (-15 -2875 ((-1275) $)) (-15 -2876 ((-1275) $)) (-15 -2877 ((-1275) $)) (-15 -2878 ((-1275) $)) (-15 -2879 ((-1275) $)) (-15 -2880 ((-1275) $)) (-15 -2881 ((-1275) $)) (-15 -2882 ((-1275) $)) (-15 -2883 ((-549) $)) (-15 -2884 ((-225) $)) (-15 -2885 ((-1180) $)) (-15 -2886 ((-1162) $)) (-15 -2887 ((-2 (|:| |cd| (-1162)) (|:| -3973 (-1162))) $)) (-15 -2888 ((-1180) $)))) (T -825)) +((-2888 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-825)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1162)) (|:| -3973 (-1162)))) (-5 *1 (-825)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-825)))) (-2885 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-825)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-825)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-825)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2868 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2866 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2865 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2864 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2852 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2849 (*1 *2 *1 *3) (-12 (-5 *3 (-826)) (-5 *2 (-1275)) (-5 *1 (-825)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825)))) (-2847 (*1 *1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-826)) (-5 *1 (-825)))) (-2846 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-826)) (-5 *1 (-825))))) +(-10 -8 (-15 -2846 ($ (-1162) (-1162) (-826))) (-15 -2847 ($ (-1162) (-826))) (-15 -2848 ((-1275) $)) (-15 -2849 ((-1275) $ (-826))) (-15 -2850 ((-1275) $)) (-15 -2851 ((-1275) $)) (-15 -2852 ((-1275) $)) (-15 -2853 ((-1275) $)) (-15 -2854 ((-1275) $)) (-15 -2855 ((-1275) $)) (-15 -2856 ((-1275) $)) (-15 -2857 ((-1275) $)) (-15 -2858 ((-1275) $)) (-15 -2859 ((-1275) $)) (-15 -2860 ((-1275) $)) (-15 -2861 ((-1275) $)) (-15 -2862 ((-1275) $)) (-15 -2863 ((-1275) $)) (-15 -2864 ((-1275) $ (-549))) (-15 -2865 ((-1275) $ (-225))) (-15 -2866 ((-1275) $ (-1180))) (-15 -2867 ((-1275) $ (-1162))) (-15 -2868 ((-1275) $ (-1162) (-1162))) (-15 -2869 ((-1275) $)) (-15 -2870 ((-1275) $)) (-15 -2871 ((-1275) $)) (-15 -2872 ((-1275) $)) (-15 -2873 ((-1275) $)) (-15 -2874 ((-1275) $)) (-15 -2875 ((-1275) $)) (-15 -2876 ((-1275) $)) (-15 -2877 ((-1275) $)) (-15 -2878 ((-1275) $)) (-15 -2879 ((-1275) $)) (-15 -2880 ((-1275) $)) (-15 -2881 ((-1275) $)) (-15 -2882 ((-1275) $)) (-15 -2883 ((-549) $)) (-15 -2884 ((-225) $)) (-15 -2885 ((-1180) $)) (-15 -2886 ((-1162) $)) (-15 -2887 ((-2 (|:| |cd| (-1162)) (|:| -3973 (-1162))) $)) (-15 -2888 ((-1180) $))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 13)) (-3662 (((-112) $ $) NIL)) (-2891 (($) 16)) (-2892 (($) 14)) (-2890 (($) 17)) (-2889 (($) 15)) (-3455 (((-112) $ $) 9))) +(((-826) (-13 (-1104) (-10 -8 (-15 -2892 ($)) (-15 -2891 ($)) (-15 -2890 ($)) (-15 -2889 ($))))) (T -826)) +((-2892 (*1 *1) (-5 *1 (-826))) (-2891 (*1 *1) (-5 *1 (-826))) (-2890 (*1 *1) (-5 *1 (-826))) (-2889 (*1 *1) (-5 *1 (-826)))) +(-13 (-1104) (-10 -8 (-15 -2892 ($)) (-15 -2891 ($)) (-15 -2890 ($)) (-15 -2889 ($)))) +((-2968 (((-112) $ $) NIL)) (-2893 (($ (-828) (-643 (-1180))) 32)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2895 (((-828) $) 33)) (-2894 (((-643 (-1180)) $) 34)) (-4378 (((-865) $) 31)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-827) (-13 (-1104) (-10 -8 (-15 -2895 ((-828) $)) (-15 -2894 ((-643 (-1180)) $)) (-15 -2893 ($ (-828) (-643 (-1180))))))) (T -827)) +((-2895 (*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-827)))) (-2893 (*1 *1 *2 *3) (-12 (-5 *2 (-828)) (-5 *3 (-643 (-1180))) (-5 *1 (-827))))) +(-13 (-1104) (-10 -8 (-15 -2895 ((-828) $)) (-15 -2894 ((-643 (-1180)) $)) (-15 -2893 ($ (-828) (-643 (-1180)))))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 23) (($ (-1180)) 19)) (-3662 (((-112) $ $) NIL)) (-2897 (((-112) $) 10)) (-2898 (((-112) $) 9)) (-2896 (((-112) $) 11)) (-2899 (((-112) $) 8)) (-3455 (((-112) $ $) 21))) +(((-828) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-1180))) (-15 -2899 ((-112) $)) (-15 -2898 ((-112) $)) (-15 -2897 ((-112) $)) (-15 -2896 ((-112) $))))) (T -828)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-828)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) +(-13 (-1104) (-10 -8 (-15 -4378 ($ (-1180))) (-15 -2899 ((-112) $)) (-15 -2898 ((-112) $)) (-15 -2897 ((-112) $)) (-15 -2896 ((-112) $)))) +((-2900 (((-1275) (-825) (-315 |#1|) (-112)) 23) (((-1275) (-825) (-315 |#1|)) 89) (((-1162) (-315 |#1|) (-112)) 88) (((-1162) (-315 |#1|)) 87))) +(((-829 |#1|) (-10 -7 (-15 -2900 ((-1162) (-315 |#1|))) (-15 -2900 ((-1162) (-315 |#1|) (-112))) (-15 -2900 ((-1275) (-825) (-315 |#1|))) (-15 -2900 ((-1275) (-825) (-315 |#1|) (-112)))) (-13 (-823) (-1052))) (T -829)) +((-2900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-825)) (-5 *4 (-315 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-823) (-1052))) (-5 *2 (-1275)) (-5 *1 (-829 *6)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-825)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-823) (-1052))) (-5 *2 (-1275)) (-5 *1 (-829 *5)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-1052))) (-5 *2 (-1162)) (-5 *1 (-829 *5)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-823) (-1052))) (-5 *2 (-1162)) (-5 *1 (-829 *4))))) +(-10 -7 (-15 -2900 ((-1162) (-315 |#1|))) (-15 -2900 ((-1162) (-315 |#1|) (-112))) (-15 -2900 ((-1275) (-825) (-315 |#1|))) (-15 -2900 ((-1275) (-825) (-315 |#1|) (-112)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2901 ((|#1| $) 10)) (-2902 (($ |#1|) 9)) (-2573 (((-112) $) NIL)) (-3294 (($ |#2| (-773)) NIL)) (-3223 (((-773) $) NIL)) (-3594 ((|#2| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4242 (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-4380 (((-773) $) NIL)) (-4378 (((-865) $) 17) (($ (-549)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-4109 ((|#2| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-830 |#1| |#2|) (-13 (-710 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2902 ($ |#1|)) (-15 -2901 (|#1| $)))) (-710 |#2|) (-1052)) (T -830)) +((-2902 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-830 *2 *3)) (-4 *2 (-710 *3)))) (-2901 (*1 *2 *1) (-12 (-4 *2 (-710 *3)) (-5 *1 (-830 *2 *3)) (-4 *3 (-1052))))) +(-13 (-710 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2902 ($ |#1|)) (-15 -2901 (|#1| $)))) +((-2910 (((-312) (-1162) (-1162)) 12)) (-2909 (((-112) (-1162) (-1162)) 34)) (-2908 (((-112) (-1162)) 33)) (-2905 (((-51) (-1162)) 25)) (-2904 (((-51) (-1162)) 23)) (-2903 (((-51) (-825)) 17)) (-2907 (((-643 (-1162)) (-1162)) 28)) (-2906 (((-643 (-1162))) 27))) +(((-831) (-10 -7 (-15 -2903 ((-51) (-825))) (-15 -2904 ((-51) (-1162))) (-15 -2905 ((-51) (-1162))) (-15 -2906 ((-643 (-1162)))) (-15 -2907 ((-643 (-1162)) (-1162))) (-15 -2908 ((-112) (-1162))) (-15 -2909 ((-112) (-1162) (-1162))) (-15 -2910 ((-312) (-1162) (-1162))))) (T -831)) +((-2910 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-831)))) (-2909 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-112)) (-5 *1 (-831)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-112)) (-5 *1 (-831)))) (-2907 (*1 *2 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-831)) (-5 *3 (-1162)))) (-2906 (*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-831)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-831)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-831)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-51)) (-5 *1 (-831))))) +(-10 -7 (-15 -2903 ((-51) (-825))) (-15 -2904 ((-51) (-1162))) (-15 -2905 ((-51) (-1162))) (-15 -2906 ((-643 (-1162)))) (-15 -2907 ((-643 (-1162)) (-1162))) (-15 -2908 ((-112) (-1162))) (-15 -2909 ((-112) (-1162) (-1162))) (-15 -2910 ((-312) (-1162) (-1162)))) +((-2968 (((-112) $ $) 19)) (-3654 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3656 (($ $ $) 73)) (-3655 (((-112) $ $) 74)) (-1309 (((-112) $ (-773)) 8)) (-3659 (($ (-643 |#1|)) 69) (($) 68)) (-1678 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2526 (($ $) 63)) (-1440 (($ $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ |#1| $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 65)) (-4151 (((-112) $ (-773)) 9)) (-2934 ((|#1| $) 79)) (-3259 (($ $ $) 82)) (-3941 (($ $ $) 81)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3260 ((|#1| $) 80)) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22)) (-3658 (($ $ $) 70)) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41) (($ |#1| $ (-773)) 64)) (-3664 (((-1123) $) 21)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2525 (((-643 (-2 (|:| -2254 |#1|) (|:| -2125 (-773)))) $) 62)) (-3657 (($ $ |#1|) 72) (($ $ $) 71)) (-1567 (($) 50) (($ (-643 |#1|)) 49)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 51)) (-4378 (((-865) $) 18)) (-3660 (($ (-643 |#1|)) 67) (($) 66)) (-3662 (((-112) $ $) 23)) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20)) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-832 |#1|) (-140) (-852)) (T -832)) +((-2934 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-852))))) +(-13 (-739 |t#1|) (-971 |t#1|) (-10 -8 (-15 -2934 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-697 |#1|) . T) ((-739 |#1|) . T) ((-971 |#1|) . T) ((-1102 |#1|) . T) ((-1104) . T) ((-1219) . T)) +((-2913 (((-1275) (-1123) (-1123)) 48)) (-2912 (((-1275) (-824) (-51)) 45)) (-2911 (((-51) (-824)) 16))) +(((-833) (-10 -7 (-15 -2911 ((-51) (-824))) (-15 -2912 ((-1275) (-824) (-51))) (-15 -2913 ((-1275) (-1123) (-1123))))) (T -833)) +((-2913 (*1 *2 *3 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1275)) (-5 *1 (-833)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-51)) (-5 *2 (-1275)) (-5 *1 (-833)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-51)) (-5 *1 (-833))))) +(-10 -7 (-15 -2911 ((-51) (-824))) (-15 -2912 ((-1275) (-824) (-51))) (-15 -2913 ((-1275) (-1123) (-1123)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL (|has| |#1| (-21)))) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4055 (((-549) $) NIL (|has| |#1| (-850)))) (-4156 (($) NIL (|has| |#1| (-21)) CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 15)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 9)) (-3890 (((-3 $ "failed") $) 42 (|has| |#1| (-850)))) (-3425 (((-3 (-410 (-549)) "failed") $) 52 (|has| |#1| (-548)))) (-3424 (((-112) $) 46 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 49 (|has| |#1| (-548)))) (-3606 (((-112) $) NIL (|has| |#1| (-850)))) (-2573 (((-112) $) NIL (|has| |#1| (-850)))) (-3607 (((-112) $) NIL (|has| |#1| (-850)))) (-2934 (($ $ $) NIL (|has| |#1| (-850)))) (-3260 (($ $ $) NIL (|has| |#1| (-850)))) (-3663 (((-1162) $) NIL)) (-2914 (($) 13)) (-2927 (((-112) $) 12)) (-3664 (((-1123) $) NIL)) (-2928 (((-112) $) 11)) (-4378 (((-865) $) 18) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 8) (($ (-549)) NIL (-3960 (|has| |#1| (-850)) (|has| |#1| (-1041 (-549)))))) (-3530 (((-773)) 36 (|has| |#1| (-850)) CONST)) (-3662 (((-112) $ $) 54)) (-3807 (($ $) NIL (|has| |#1| (-850)))) (-3510 (($) 23 (|has| |#1| (-21)) CONST)) (-3067 (($) 33 (|has| |#1| (-850)) CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3455 (((-112) $ $) 21)) (-3087 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3088 (((-112) $ $) 45 (|has| |#1| (-850)))) (-4269 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4271 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-922)) NIL (|has| |#1| (-850))) (($ $ (-773)) NIL (|has| |#1| (-850)))) (* (($ $ $) 39 (|has| |#1| (-850))) (($ (-549) $) 27 (|has| |#1| (-21))) (($ (-773) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-21))))) +(((-834 |#1|) (-13 (-1104) (-415 |#1|) (-10 -8 (-15 -2914 ($)) (-15 -2928 ((-112) $)) (-15 -2927 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) (-1104)) (T -834)) +((-2914 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1104)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1104)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1104)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104))))) +(-13 (-1104) (-415 |#1|) (-10 -8 (-15 -2914 ($)) (-15 -2928 ((-112) $)) (-15 -2927 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) +((-4390 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)) 12) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 13))) +(((-835 |#1| |#2|) (-10 -7 (-15 -4390 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -4390 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) (-1104) (-1104)) (T -835)) +((-4390 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *1 (-835 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-834 *6)) (-5 *1 (-835 *5 *6))))) +(-10 -7 (-15 -4390 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -4390 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3576 ((|#1| $) NIL) (((-113) $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2916 ((|#1| (-113) |#1|) NIL)) (-2573 (((-112) $) NIL)) (-2915 (($ |#1| (-363 (-113))) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-2917 (($ $ (-1 |#1| |#1|)) NIL)) (-2918 (($ $ (-1 |#1| |#1|)) NIL)) (-4231 ((|#1| $ |#1|) NIL)) (-2919 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2920 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ (-113) (-549)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-836 |#1|) (-13 (-1052) (-1041 |#1|) (-1041 (-113)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2920 ($ $)) (-15 -2920 ($ $ $)) (-15 -2919 (|#1| |#1|))) |%noBranch|) (-15 -2918 ($ $ (-1 |#1| |#1|))) (-15 -2917 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-549))) (-15 ** ($ $ (-549))) (-15 -2916 (|#1| (-113) |#1|)) (-15 -2915 ($ |#1| (-363 (-113)))))) (-1052)) (T -836)) +((-2920 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052)))) (-2920 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052)))) (-2919 (*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052)))) (-2918 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-836 *3)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-836 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-549)) (-5 *1 (-836 *4)) (-4 *4 (-1052)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-836 *3)) (-4 *3 (-1052)))) (-2916 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-836 *2)) (-4 *2 (-1052)))) (-2915 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-113))) (-5 *1 (-836 *2)) (-4 *2 (-1052))))) +(-13 (-1052) (-1041 |#1|) (-1041 (-113)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2920 ($ $)) (-15 -2920 ($ $ $)) (-15 -2919 (|#1| |#1|))) |%noBranch|) (-15 -2918 ($ $ (-1 |#1| |#1|))) (-15 -2917 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-549))) (-15 ** ($ $ (-549))) (-15 -2916 (|#1| (-113) |#1|)) (-15 -2915 ($ |#1| (-363 (-113)))))) +((-3035 (((-112) $ |#2|) 14)) (-4378 (((-865) $) 11))) +(((-837 |#1| |#2|) (-10 -8 (-15 -3035 ((-112) |#1| |#2|)) (-15 -4378 ((-865) |#1|))) (-838 |#2|) (-1104)) (T -837)) +NIL +(-10 -8 (-15 -3035 ((-112) |#1| |#2|)) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3973 ((|#1| $) 16)) (-3663 (((-1162) $) 10)) (-3035 (((-112) $ |#1|) 14)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2921 (((-55) $) 15)) (-3455 (((-112) $ $) 6))) +(((-838 |#1|) (-140) (-1104)) (T -838)) +((-3973 (*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1104)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1104)) (-5 *2 (-55)))) (-3035 (*1 *2 *1 *3) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(-13 (-1104) (-10 -8 (-15 -3973 (|t#1| $)) (-15 -2921 ((-55) $)) (-15 -3035 ((-112) $ |t#1|)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2922 (((-214 (-505)) (-1162)) 9))) +(((-839) (-10 -7 (-15 -2922 ((-214 (-505)) (-1162))))) (T -839)) +((-2922 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-214 (-505))) (-5 *1 (-839))))) +(-10 -7 (-15 -2922 ((-214 (-505)) (-1162)))) +((-2968 (((-112) $ $) NIL)) (-3740 (((-1118) $) 10)) (-3973 (((-509) $) 9)) (-3663 (((-1162) $) NIL)) (-3035 (((-112) $ (-509)) NIL)) (-3664 (((-1123) $) NIL)) (-3953 (($ (-509) (-1118)) 8)) (-4378 (((-865) $) 25)) (-3662 (((-112) $ $) NIL)) (-2921 (((-55) $) 20)) (-3455 (((-112) $ $) 12))) +(((-840) (-13 (-838 (-509)) (-10 -8 (-15 -3740 ((-1118) $)) (-15 -3953 ($ (-509) (-1118)))))) (T -840)) +((-3740 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-840)))) (-3953 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-840))))) +(-13 (-838 (-509)) (-10 -8 (-15 -3740 ((-1118) $)) (-15 -3953 ($ (-509) (-1118))))) +((-2968 (((-112) $ $) 7)) (-2923 (((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 15) (((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 14)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 17) (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 16)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-841) (-140)) (T -841)) +((-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-841)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) (-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-841)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) (-2923 (*1 *2 *3) (-12 (-4 *1 (-841)) (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *2 (-1038)))) (-2923 (*1 *2 *3) (-12 (-4 *1 (-841)) (-5 *3 (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (-5 *2 (-1038))))) +(-13 (-1104) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -2923 ((-1038) (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -2923 ((-1038) (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2924 (((-1038) (-643 (-315 (-380))) (-643 (-380))) 169) (((-1038) (-315 (-380)) (-643 (-380))) 167) (((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-844 (-380)))) 165) (((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-315 (-380))) (-643 (-844 (-380)))) 163) (((-1038) (-843)) 128) (((-1038) (-843) (-1066)) 127)) (-3071 (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843) (-1066)) 88) (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843)) 90)) (-2925 (((-1038) (-643 (-315 (-380))) (-643 (-380))) 170) (((-1038) (-843)) 153))) +(((-842) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843) (-1066))) (-15 -2924 ((-1038) (-843) (-1066))) (-15 -2924 ((-1038) (-843))) (-15 -2925 ((-1038) (-843))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-315 (-380))) (-643 (-844 (-380))))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-844 (-380))))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)))) (-15 -2924 ((-1038) (-643 (-315 (-380))) (-643 (-380)))) (-15 -2925 ((-1038) (-643 (-315 (-380))) (-643 (-380)))))) (T -842)) +((-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-315 (-380)))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-315 (-380)))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-380))) (-5 *5 (-643 (-844 (-380)))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-643 (-380))) (-5 *5 (-643 (-844 (-380)))) (-5 *6 (-643 (-315 (-380)))) (-5 *3 (-315 (-380))) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1038)) (-5 *1 (-842)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-842)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1066)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-842)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-842))))) +(-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-843) (-1066))) (-15 -2924 ((-1038) (-843) (-1066))) (-15 -2924 ((-1038) (-843))) (-15 -2925 ((-1038) (-843))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-315 (-380))) (-643 (-844 (-380))))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)) (-643 (-844 (-380))) (-643 (-844 (-380))))) (-15 -2924 ((-1038) (-315 (-380)) (-643 (-380)))) (-15 -2924 ((-1038) (-643 (-315 (-380))) (-643 (-380)))) (-15 -2925 ((-1038) (-643 (-315 (-380))) (-643 (-380))))) +((-2968 (((-112) $ $) NIL)) (-3576 (((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) $) 21)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20) (($ (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) 14) (($ (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-843) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -4378 ($ (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -4378 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))))) (-15 -3576 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) $))))) (T -843)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (-5 *1 (-843)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) (-5 *1 (-843)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) (-5 *1 (-843)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) (-5 *1 (-843))))) +(-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225))))))) (-15 -4378 ($ (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) (-15 -4378 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))))) (-15 -3576 ((-3 (|:| |noa| (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225)))))) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL (|has| |#1| (-21)))) (-2926 (((-1123) $) 31)) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4055 (((-549) $) NIL (|has| |#1| (-850)))) (-4156 (($) NIL (|has| |#1| (-21)) CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 18)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 9)) (-3890 (((-3 $ "failed") $) 58 (|has| |#1| (-850)))) (-3425 (((-3 (-410 (-549)) "failed") $) 65 (|has| |#1| (-548)))) (-3424 (((-112) $) 60 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 63 (|has| |#1| (-548)))) (-3606 (((-112) $) NIL (|has| |#1| (-850)))) (-2930 (($) 14)) (-2573 (((-112) $) NIL (|has| |#1| (-850)))) (-3607 (((-112) $) NIL (|has| |#1| (-850)))) (-2929 (($) 16)) (-2934 (($ $ $) NIL (|has| |#1| (-850)))) (-3260 (($ $ $) NIL (|has| |#1| (-850)))) (-3663 (((-1162) $) NIL)) (-2927 (((-112) $) 12)) (-3664 (((-1123) $) NIL)) (-2928 (((-112) $) 11)) (-4378 (((-865) $) 24) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 8) (($ (-549)) NIL (-3960 (|has| |#1| (-850)) (|has| |#1| (-1041 (-549)))))) (-3530 (((-773)) 51 (|has| |#1| (-850)) CONST)) (-3662 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| |#1| (-850)))) (-3510 (($) 37 (|has| |#1| (-21)) CONST)) (-3067 (($) 48 (|has| |#1| (-850)) CONST)) (-2966 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3455 (((-112) $ $) 35)) (-3087 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3088 (((-112) $ $) 59 (|has| |#1| (-850)))) (-4269 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4271 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-922)) NIL (|has| |#1| (-850))) (($ $ (-773)) NIL (|has| |#1| (-850)))) (* (($ $ $) 55 (|has| |#1| (-850))) (($ (-549) $) 42 (|has| |#1| (-21))) (($ (-773) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-21))))) +(((-844 |#1|) (-13 (-1104) (-415 |#1|) (-10 -8 (-15 -2930 ($)) (-15 -2929 ($)) (-15 -2928 ((-112) $)) (-15 -2927 ((-112) $)) (-15 -2926 ((-1123) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) (-1104)) (T -844)) +((-2930 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1104)))) (-2929 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1104)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1104)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1104)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-844 *3)) (-4 *3 (-1104)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104))))) +(-13 (-1104) (-415 |#1|) (-10 -8 (-15 -2930 ($)) (-15 -2929 ($)) (-15 -2928 ((-112) $)) (-15 -2927 ((-112) $)) (-15 -2926 ((-1123) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) +((-4390 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)) 13) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 14))) +(((-845 |#1| |#2|) (-10 -7 (-15 -4390 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -4390 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) (-1104) (-1104)) (T -845)) +((-4390 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *1 (-845 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-844 *6)) (-5 *1 (-845 *5 *6))))) +(-10 -7 (-15 -4390 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -4390 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) +((-2968 (((-112) $ $) 7)) (-3540 (((-773)) 23)) (-3395 (($) 26)) (-2934 (($ $ $) 14) (($) 22 T CONST)) (-3260 (($ $ $) 15) (($) 21 T CONST)) (-2188 (((-922) $) 25)) (-3663 (((-1162) $) 10)) (-2563 (($ (-922)) 24)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19))) +(((-846) (-140)) (T -846)) +((-2934 (*1 *1) (-4 *1 (-846))) (-3260 (*1 *1) (-4 *1 (-846)))) +(-13 (-852) (-370) (-10 -8 (-15 -2934 ($) -4384) (-15 -3260 ($) -4384))) +(((-102) . T) ((-615 (-865)) . T) ((-370) . T) ((-852) . T) ((-1104) . T)) +((-2932 (((-112) (-1269 |#2|) (-1269 |#2|)) 23)) (-2933 (((-112) (-1269 |#2|) (-1269 |#2|)) 24)) (-2931 (((-112) (-1269 |#2|) (-1269 |#2|)) 20))) +(((-847 |#1| |#2|) (-10 -7 (-15 -2931 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2932 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2933 ((-112) (-1269 |#2|) (-1269 |#2|)))) (-773) (-794)) (T -847)) +((-2933 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) (-14 *4 (-773)))) (-2932 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) (-14 *4 (-773)))) (-2931 (*1 *2 *3 *3) (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) (-14 *4 (-773))))) +(-10 -7 (-15 -2931 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2932 ((-112) (-1269 |#2|) (-1269 |#2|))) (-15 -2933 ((-112) (-1269 |#2|) (-1269 |#2|)))) +((-2968 (((-112) $ $) 7)) (-4156 (($) 24 T CONST)) (-3890 (((-3 $ "failed") $) 27)) (-2573 (((-112) $) 25)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 23 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (** (($ $ (-922)) 22) (($ $ (-773)) 26)) (* (($ $ $) 21))) +(((-848) (-140)) (T -848)) +NIL +(-13 (-859) (-728)) +(((-102) . T) ((-615 (-865)) . T) ((-728) . T) ((-859) . T) ((-852) . T) ((-1115) . T) ((-1104) . T)) +((-4055 (((-549) $) 21)) (-3606 (((-112) $) 10)) (-3607 (((-112) $) 12)) (-3807 (($ $) 23))) +(((-849 |#1|) (-10 -8 (-15 -3807 (|#1| |#1|)) (-15 -4055 ((-549) |#1|)) (-15 -3607 ((-112) |#1|)) (-15 -3606 ((-112) |#1|))) (-850)) (T -849)) +NIL +(-10 -8 (-15 -3807 (|#1| |#1|)) (-15 -4055 ((-549) |#1|)) (-15 -3607 ((-112) |#1|)) (-15 -3606 ((-112) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 25)) (-1407 (((-3 $ "failed") $ $) 27)) (-4055 (((-549) $) 37)) (-4156 (($) 24 T CONST)) (-3890 (((-3 $ "failed") $) 42)) (-3606 (((-112) $) 39)) (-2573 (((-112) $) 44)) (-3607 (((-112) $) 38)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 46)) (-3530 (((-773)) 47 T CONST)) (-3662 (((-112) $ $) 9)) (-3807 (($ $) 36)) (-3510 (($) 23 T CONST)) (-3067 (($) 45 T CONST)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (-4269 (($ $ $) 31) (($ $) 30)) (-4271 (($ $ $) 21)) (** (($ $ (-773)) 43) (($ $ (-922)) 40)) (* (($ (-922) $) 22) (($ (-773) $) 26) (($ (-549) $) 29) (($ $ $) 41))) +(((-850) (-140)) (T -850)) +((-3606 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-549)))) (-3807 (*1 *1 *1) (-4 *1 (-850)))) +(-13 (-793) (-1052) (-728) (-10 -8 (-15 -3606 ((-112) $)) (-15 -3607 ((-112) $)) (-15 -4055 ((-549) $)) (-15 -3807 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-852) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2934 (($ $ $) 12)) (-3260 (($ $ $) 11)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 15)) (-2967 (((-112) $ $) 13)) (-3087 (((-112) $ $) 16))) +(((-851 |#1|) (-10 -8 (-15 -2934 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3087 ((-112) |#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2967 ((-112) |#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|))) (-852)) (T -851)) +NIL +(-10 -8 (-15 -2934 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3087 ((-112) |#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2967 ((-112) |#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19))) +(((-852) (-140)) (T -852)) +((-3088 (*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) (-2967 (*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) (-2966 (*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) (-3087 (*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) (-3260 (*1 *1 *1 *1) (-4 *1 (-852))) (-2934 (*1 *1 *1 *1) (-4 *1 (-852)))) +(-13 (-1104) (-10 -8 (-15 -3088 ((-112) $ $)) (-15 -2967 ((-112) $ $)) (-15 -2966 ((-112) $ $)) (-15 -3087 ((-112) $ $)) (-15 -3260 ($ $ $)) (-15 -2934 ($ $ $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2939 (($ $ $) 49)) (-2940 (($ $ $) 48)) (-2941 (($ $ $) 46)) (-2937 (($ $ $) 55)) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 50)) (-2938 (((-3 $ "failed") $ $) 53)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 29)) (-3926 (($ $) 39)) (-2945 (($ $ $) 43)) (-2946 (($ $ $) 42)) (-2935 (($ $ $) 51)) (-2943 (($ $ $) 57)) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 45)) (-2944 (((-3 $ "failed") $ $) 52)) (-3889 (((-3 $ "failed") $ |#2|) 32)) (-3220 ((|#2| $) 36)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ |#2|) 13)) (-4249 (((-643 |#2|) $) 21)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-853 |#1| |#2|) (-10 -8 (-15 -2935 (|#1| |#1| |#1|)) (-15 -2936 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2938 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2942 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2944 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4249 ((-643 |#2|) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4378 ((-865) |#1|))) (-854 |#2|) (-1052)) (T -853)) +NIL +(-10 -8 (-15 -2935 (|#1| |#1| |#1|)) (-15 -2936 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2938 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2942 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2572 |#1|)) |#1| |#1|)) (-15 -2943 (|#1| |#1| |#1|)) (-15 -2944 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2945 (|#1| |#1| |#1|)) (-15 -2946 (|#1| |#1| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3889 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4249 ((-643 |#2|) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-2939 (($ $ $) 50 (|has| |#1| (-365)))) (-2940 (($ $ $) 51 (|has| |#1| (-365)))) (-2941 (($ $ $) 53 (|has| |#1| (-365)))) (-2937 (($ $ $) 48 (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 47 (|has| |#1| (-365)))) (-2938 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 52 (|has| |#1| (-365)))) (-3577 (((-3 (-549) #1="failed") $) 80 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 77 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 74)) (-3576 (((-549) $) 79 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 76 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 75)) (-4391 (($ $) 69)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 60 (|has| |#1| (-455)))) (-2573 (((-112) $) 35)) (-3294 (($ |#1| (-773)) 67)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 62 (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63 (|has| |#1| (-560)))) (-3223 (((-773) $) 71)) (-2945 (($ $ $) 57 (|has| |#1| (-365)))) (-2946 (($ $ $) 58 (|has| |#1| (-365)))) (-2935 (($ $ $) 46 (|has| |#1| (-365)))) (-2943 (($ $ $) 55 (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 54 (|has| |#1| (-365)))) (-2944 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 59 (|has| |#1| (-365)))) (-3594 ((|#1| $) 70)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-560)))) (-4380 (((-773) $) 72)) (-3220 ((|#1| $) 61 (|has| |#1| (-455)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 78 (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) 73)) (-4249 (((-643 |#1|) $) 66)) (-4109 ((|#1| $ (-773)) 68)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2948 ((|#1| $ |#1| |#1|) 65)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-854 |#1|) (-140) (-1052)) (T -854)) +((-4380 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3594 (*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-643 *3)))) (-2948 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) (-2949 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) (-2950 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-455)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-455)))) (-2951 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) (-2946 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2945 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2944 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2943 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2942 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) (-4 *1 (-854 *3)))) (-2941 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) (-2940 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2939 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2938 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2937 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-2936 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) (-4 *1 (-854 *3)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(-13 (-1052) (-111 |t#1| |t#1|) (-415 |t#1|) (-10 -8 (-15 -4380 ((-773) $)) (-15 -3223 ((-773) $)) (-15 -3594 (|t#1| $)) (-15 -4391 ($ $)) (-15 -4109 (|t#1| $ (-773))) (-15 -3294 ($ |t#1| (-773))) (-15 -4249 ((-643 |t#1|) $)) (-15 -2948 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-15 -3889 ((-3 $ "failed") $ |t#1|)) (-15 -2949 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2950 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -3220 (|t#1| $)) (-15 -3926 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -2951 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2946 ($ $ $)) (-15 -2945 ($ $ $)) (-15 -2944 ((-3 $ "failed") $ $)) (-15 -2943 ($ $ $)) (-15 -2942 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $)) (-15 -2941 ($ $ $)) (-15 -2952 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -2940 ($ $ $)) (-15 -2939 ($ $ $)) (-15 -2938 ((-3 $ "failed") $ $)) (-15 -2937 ($ $ $)) (-15 -2936 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $)) (-15 -2935 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 #1=(-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-415 |#1|) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-728) . T) ((-1041 #1#) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2947 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2952 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-2950 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-560)))) (-2951 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-2948 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) +(((-855 |#1| |#2|) (-10 -7 (-15 -2947 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2948 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-560)) (PROGN (-15 -2949 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2950 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2951 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2952 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1052) (-854 |#1|)) (T -855)) +((-2952 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) (-4 *3 (-854 *5)))) (-2951 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) (-4 *3 (-854 *5)))) (-2950 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-560)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) (-4 *3 (-854 *5)))) (-2949 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-560)) (-4 *5 (-1052)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) (-4 *3 (-854 *5)))) (-2948 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-855 *2 *3)) (-4 *3 (-854 *2)))) (-2947 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1052)) (-5 *1 (-855 *5 *2)) (-4 *2 (-854 *5))))) +(-10 -7 (-15 -2947 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2948 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-560)) (PROGN (-15 -2949 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2950 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2951 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2952 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#1| (-365)))) (-2940 (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $ $) NIL (|has| |#1| (-365)))) (-2937 (($ $ $) NIL (|has| |#1| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 34 (|has| |#1| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-3956 (((-865) $ (-865)) NIL)) (-2573 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) NIL)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 30 (|has| |#1| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 28 (|has| |#1| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#1| (-365)))) (-2946 (($ $ $) NIL (|has| |#1| (-365)))) (-2935 (($ $ $) NIL (|has| |#1| (-365)))) (-2943 (($ $ $) NIL (|has| |#1| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#1| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 32 (|has| |#1| (-365)))) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-560)))) (-4380 (((-773) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-1041 (-410 (-549))))) (($ |#1|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#1| $ |#1| |#1|) 15)) (-3510 (($) NIL T CONST)) (-3067 (($) 23 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) 19) (($ $ (-773)) 24)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-856 |#1| |#2| |#3|) (-13 (-854 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-865))))) (-1052) (-99 |#1|) (-1 |#1| |#1|)) (T -856)) +((-3956 (*1 *2 *1 *2) (-12 (-5 *2 (-865)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-854 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-865))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-2939 (($ $ $) NIL (|has| |#2| (-365)))) (-2940 (($ $ $) NIL (|has| |#2| (-365)))) (-2941 (($ $ $) NIL (|has| |#2| (-365)))) (-2937 (($ $ $) NIL (|has| |#2| (-365)))) (-2936 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#2| (-365)))) (-2938 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-365)))) (-2952 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-365)))) (-3577 (((-3 (-549) #2="failed") $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 |#2| #2#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) ((|#2| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#2| (-455)))) (-2573 (((-112) $) NIL)) (-3294 (($ |#2| (-773)) 17)) (-2950 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-560)))) (-2949 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-560)))) (-3223 (((-773) $) NIL)) (-2945 (($ $ $) NIL (|has| |#2| (-365)))) (-2946 (($ $ $) NIL (|has| |#2| (-365)))) (-2935 (($ $ $) NIL (|has| |#2| (-365)))) (-2943 (($ $ $) NIL (|has| |#2| (-365)))) (-2942 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#2| (-365)))) (-2944 (((-3 $ #1#) $ $) NIL (|has| |#2| (-365)))) (-2951 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-365)))) (-3594 ((|#2| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-560)))) (-4380 (((-773) $) NIL)) (-3220 ((|#2| $) NIL (|has| |#2| (-455)))) (-4378 (((-865) $) 24) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#2| (-1041 (-410 (-549))))) (($ |#2|) NIL) (($ (-1266 |#1|)) 19)) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-773)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2948 ((|#2| $ |#2| |#2|) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) 13 T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-857 |#1| |#2| |#3| |#4|) (-13 (-854 |#2|) (-618 (-1266 |#1|))) (-1180) (-1052) (-99 |#2|) (-1 |#2| |#2|)) (T -857)) +NIL +(-13 (-854 |#2|) (-618 (-1266 |#1|))) +((-2955 ((|#1| (-773) |#1|) 48 (|has| |#1| (-38 (-410 (-549)))))) (-2954 ((|#1| (-773) (-773) |#1|) 39) ((|#1| (-773) |#1|) 27)) (-2953 ((|#1| (-773) |#1|) 43)) (-3203 ((|#1| (-773) |#1|) 41)) (-3202 ((|#1| (-773) |#1|) 40))) +(((-858 |#1|) (-10 -7 (-15 -3202 (|#1| (-773) |#1|)) (-15 -3203 (|#1| (-773) |#1|)) (-15 -2953 (|#1| (-773) |#1|)) (-15 -2954 (|#1| (-773) |#1|)) (-15 -2954 (|#1| (-773) (-773) |#1|)) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -2955 (|#1| (-773) |#1|)) |%noBranch|)) (-172)) (T -858)) +((-2955 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-172)))) (-2954 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) (-2954 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) (-2953 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) (-3203 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) (-3202 (*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -3202 (|#1| (-773) |#1|)) (-15 -3203 (|#1| (-773) |#1|)) (-15 -2953 (|#1| (-773) |#1|)) (-15 -2954 (|#1| (-773) |#1|)) (-15 -2954 (|#1| (-773) (-773) |#1|)) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -2955 (|#1| (-773) |#1|)) |%noBranch|)) +((-2968 (((-112) $ $) 7)) (-2934 (($ $ $) 14)) (-3260 (($ $ $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2966 (((-112) $ $) 17)) (-2967 (((-112) $ $) 18)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 16)) (-3088 (((-112) $ $) 19)) (** (($ $ (-922)) 22)) (* (($ $ $) 21))) +(((-859) (-140)) (T -859)) +NIL +(-13 (-852) (-1115)) +(((-102) . T) ((-615 (-865)) . T) ((-852) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3826 (((-549) $) 14)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 20) (($ (-549)) 13)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 9)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 11))) +(((-860) (-13 (-852) (-10 -8 (-15 -4378 ($ (-549))) (-15 -3826 ((-549) $))))) (T -860)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-860)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-860))))) +(-13 (-852) (-10 -8 (-15 -4378 ($ (-549))) (-15 -3826 ((-549) $)))) +((-2956 (((-1275) (-643 (-51))) 23)) (-3883 (((-1275) (-1162) (-865)) 13) (((-1275) (-865)) 8) (((-1275) (-1162)) 10))) +(((-861) (-10 -7 (-15 -3883 ((-1275) (-1162))) (-15 -3883 ((-1275) (-865))) (-15 -3883 ((-1275) (-1162) (-865))) (-15 -2956 ((-1275) (-643 (-51)))))) (T -861)) +((-2956 (*1 *2 *3) (-12 (-5 *3 (-643 (-51))) (-5 *2 (-1275)) (-5 *1 (-861)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-865)) (-5 *2 (-1275)) (-5 *1 (-861)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-861)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-861))))) +(-10 -7 (-15 -3883 ((-1275) (-1162))) (-15 -3883 ((-1275) (-865))) (-15 -3883 ((-1275) (-1162) (-865))) (-15 -2956 ((-1275) (-643 (-51))))) +((-2958 (((-693 (-1228)) $ (-1228)) 15)) (-2959 (((-693 (-553)) $ (-553)) 12)) (-2957 (((-773) $ (-129)) 30))) +(((-862 |#1|) (-10 -8 (-15 -2957 ((-773) |#1| (-129))) (-15 -2958 ((-693 (-1228)) |#1| (-1228))) (-15 -2959 ((-693 (-553)) |#1| (-553)))) (-863)) (T -862)) +NIL +(-10 -8 (-15 -2957 ((-773) |#1| (-129))) (-15 -2958 ((-693 (-1228)) |#1| (-1228))) (-15 -2959 ((-693 (-553)) |#1| (-553)))) +((-2958 (((-693 (-1228)) $ (-1228)) 8)) (-2959 (((-693 (-553)) $ (-553)) 9)) (-2957 (((-773) $ (-129)) 7)) (-2960 (((-693 (-128)) $ (-128)) 10)) (-1868 (($ $) 6))) +(((-863) (-140)) (T -863)) +((-2960 (*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-128))) (-5 *3 (-128)))) (-2959 (*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-553))) (-5 *3 (-553)))) (-2958 (*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-1228))) (-5 *3 (-1228)))) (-2957 (*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *3 (-129)) (-5 *2 (-773))))) +(-13 (-173) (-10 -8 (-15 -2960 ((-693 (-128)) $ (-128))) (-15 -2959 ((-693 (-553)) $ (-553))) (-15 -2958 ((-693 (-1228)) $ (-1228))) (-15 -2957 ((-773) $ (-129))))) (((-173) . T)) -((-3532 (((-692 (-1227)) $ (-1227)) NIL)) (-2787 (((-692 (-552)) $ (-552)) NIL)) (-1465 (((-772) $ (-128)) NIL)) (-2980 (((-692 (-129)) $ (-129)) 22)) (-2357 (($ (-391)) 12) (($ (-1161)) 14)) (-3142 (((-112) $) 19)) (-2504 (((-863) $) 26)) (-4023 (($ $) 23))) -(((-862) (-13 (-861) (-614 (-863)) (-10 -8 (-15 -2357 ($ (-391))) (-15 -2357 ($ (-1161))) (-15 -3142 ((-112) $))))) (T -862)) -((-2357 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))) (-2357 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-862)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) -(-13 (-861) (-614 (-863)) (-10 -8 (-15 -2357 ($ (-391))) (-15 -2357 ($ (-1161))) (-15 -3142 ((-112) $)))) -((-2487 (((-112) $ $) NIL) (($ $ $) 85)) (-2390 (($ $ $) 125)) (-3412 (((-567) $) 31) (((-567)) 36)) (-2189 (($ (-567)) 53)) (-1600 (($ $ $) 54) (($ (-645 $)) 84)) (-3727 (($ $ (-645 $)) 82)) (-2294 (((-567) $) 34)) (-3285 (($ $ $) 73)) (-3112 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-4156 (((-567) $) 33)) (-3774 (($ $ $) 72)) (-3322 (($ $) 114)) (-3136 (($ $ $) 129)) (-1770 (($ (-645 $)) 61)) (-3624 (($ $ (-645 $)) 79)) (-1442 (($ (-567) (-567)) 55)) (-4153 (($ $) 126) (($ $ $) 127)) (-4347 (($ $ (-567)) 43) (($ $) 46)) (-2432 (($ $ $) 97)) (-3593 (($ $ $) 132)) (-3976 (($ $) 115)) (-2443 (($ $ $) 98)) (-2742 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2944 (((-1274) $) 10)) (-2070 (($ $) 118) (($ $ (-772)) 122)) (-2156 (($ $ $) 75)) (-3928 (($ $ $) 74)) (-4181 (($ $ (-645 $)) 110)) (-4189 (($ $ $) 113)) (-1398 (($ (-645 $)) 59)) (-2998 (($ $) 70) (($ (-645 $)) 71)) (-2100 (($ $ $) 123)) (-3424 (($ $) 116)) (-4220 (($ $ $) 128)) (-2112 (($ (-567)) 21) (($ (-1179)) 23) (($ (-1161)) 30) (($ (-225)) 25)) (-1763 (($ $ $) 101)) (-1736 (($ $) 102)) (-3781 (((-1274) (-1161)) 15)) (-1777 (($ (-1161)) 14)) (-2446 (($ (-645 (-645 $))) 58)) (-4335 (($ $ (-567)) 42) (($ $) 45)) (-1812 (((-1161) $) NIL)) (-1470 (($ $ $) 131)) (-2371 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-1776 (((-112) $) 108)) (-2924 (($ $ (-645 $)) 111) (($ $ $ $) 112)) (-4287 (($ (-567)) 39)) (-1337 (((-567) $) 32) (((-567)) 35)) (-2405 (($ $ $) 40) (($ (-645 $)) 83)) (-3479 (((-1122) $) NIL)) (-2478 (($ $ $) 99)) (-2973 (($) 13)) (-1882 (($ $ (-645 $)) 109)) (-3367 (((-1161) (-1161)) 8)) (-1336 (($ $) 117) (($ $ (-772)) 121)) (-2467 (($ $ $) 96)) (-3592 (($ $ (-772)) 139)) (-3552 (($ (-645 $)) 60)) (-2504 (((-863) $) 19)) (-3118 (($ $ (-567)) 41) (($ $) 44)) (-2048 (($ $) 68) (($ (-645 $)) 69)) (-3719 (($ $) 66) (($ (-645 $)) 67)) (-2130 (($ $) 124)) (-1532 (($ (-645 $)) 65)) (-3040 (($ $ $) 105)) (-3858 (((-112) $ $) NIL)) (-2204 (($ $ $) 130)) (-1750 (($ $ $) 100)) (-3553 (($ $ $) 103) (($ $) 104)) (-3016 (($ $ $) 89)) (-2996 (($ $ $) 87)) (-2968 (((-112) $ $) 16) (($ $ $) 17)) (-3006 (($ $ $) 88)) (-2986 (($ $ $) 86)) (-3064 (($ $ $) 94)) (-3054 (($ $ $) 91) (($ $) 92)) (-3045 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-863) (-13 (-1102) (-10 -8 (-15 -2944 ((-1274) $)) (-15 -1777 ($ (-1161))) (-15 -3781 ((-1274) (-1161))) (-15 -2112 ($ (-567))) (-15 -2112 ($ (-1179))) (-15 -2112 ($ (-1161))) (-15 -2112 ($ (-225))) (-15 -2973 ($)) (-15 -3367 ((-1161) (-1161))) (-15 -3412 ((-567) $)) (-15 -1337 ((-567) $)) (-15 -3412 ((-567))) (-15 -1337 ((-567))) (-15 -4156 ((-567) $)) (-15 -2294 ((-567) $)) (-15 -4287 ($ (-567))) (-15 -2189 ($ (-567))) (-15 -1442 ($ (-567) (-567))) (-15 -4335 ($ $ (-567))) (-15 -4347 ($ $ (-567))) (-15 -3118 ($ $ (-567))) (-15 -4335 ($ $)) (-15 -4347 ($ $)) (-15 -3118 ($ $)) (-15 -2405 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -2405 ($ (-645 $))) (-15 -1600 ($ (-645 $))) (-15 -4181 ($ $ (-645 $))) (-15 -2924 ($ $ (-645 $))) (-15 -2924 ($ $ $ $)) (-15 -4189 ($ $ $)) (-15 -1776 ((-112) $)) (-15 -1882 ($ $ (-645 $))) (-15 -3322 ($ $)) (-15 -1470 ($ $ $)) (-15 -2130 ($ $)) (-15 -2446 ($ (-645 (-645 $)))) (-15 -2390 ($ $ $)) (-15 -4153 ($ $)) (-15 -4153 ($ $ $)) (-15 -4220 ($ $ $)) (-15 -3136 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -3593 ($ $ $)) (-15 -3592 ($ $ (-772))) (-15 -3040 ($ $ $)) (-15 -3774 ($ $ $)) (-15 -3285 ($ $ $)) (-15 -3928 ($ $ $)) (-15 -2156 ($ $ $)) (-15 -3624 ($ $ (-645 $))) (-15 -3727 ($ $ (-645 $))) (-15 -3976 ($ $)) (-15 -1336 ($ $)) (-15 -1336 ($ $ (-772))) (-15 -2070 ($ $)) (-15 -2070 ($ $ (-772))) (-15 -3424 ($ $)) (-15 -2100 ($ $ $)) (-15 -3112 ($ $)) (-15 -3112 ($ $ $)) (-15 -3112 ($ $ $ $)) (-15 -2742 ($ $)) (-15 -2742 ($ $ $)) (-15 -2742 ($ $ $ $)) (-15 -2371 ($ $)) (-15 -2371 ($ $ $)) (-15 -2371 ($ $ $ $)) (-15 -3719 ($ $)) (-15 -3719 ($ (-645 $))) (-15 -2048 ($ $)) (-15 -2048 ($ (-645 $))) (-15 -2998 ($ $)) (-15 -2998 ($ (-645 $))) (-15 -1398 ($ (-645 $))) (-15 -3552 ($ (-645 $))) (-15 -1770 ($ (-645 $))) (-15 -1532 ($ (-645 $))) (-15 -2968 ($ $ $)) (-15 -2487 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2996 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -3016 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3054 ($ $)) (-15 * ($ $ $)) (-15 -3064 ($ $ $)) (-15 ** ($ $ $)) (-15 -2467 ($ $ $)) (-15 -2432 ($ $ $)) (-15 -2443 ($ $ $)) (-15 -2478 ($ $ $)) (-15 -1750 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -1736 ($ $)) (-15 -3553 ($ $ $)) (-15 -3553 ($ $))))) (T -863)) -((-2944 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-863)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-863)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-863)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) (-2973 (*1 *1) (-5 *1 (-863))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3412 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1337 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2294 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-1442 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4335 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4347 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4335 (*1 *1 *1) (-5 *1 (-863))) (-4347 (*1 *1 *1) (-5 *1 (-863))) (-3118 (*1 *1 *1) (-5 *1 (-863))) (-2405 (*1 *1 *1 *1) (-5 *1 (-863))) (-1600 (*1 *1 *1 *1) (-5 *1 (-863))) (-2405 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-4181 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2924 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-4189 (*1 *1 *1 *1) (-5 *1 (-863))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3322 (*1 *1 *1) (-5 *1 (-863))) (-1470 (*1 *1 *1 *1) (-5 *1 (-863))) (-2130 (*1 *1 *1) (-5 *1 (-863))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863)))) (-2390 (*1 *1 *1 *1) (-5 *1 (-863))) (-4153 (*1 *1 *1) (-5 *1 (-863))) (-4153 (*1 *1 *1 *1) (-5 *1 (-863))) (-4220 (*1 *1 *1 *1) (-5 *1 (-863))) (-3136 (*1 *1 *1 *1) (-5 *1 (-863))) (-2204 (*1 *1 *1 *1) (-5 *1 (-863))) (-3593 (*1 *1 *1 *1) (-5 *1 (-863))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-3040 (*1 *1 *1 *1) (-5 *1 (-863))) (-3774 (*1 *1 *1 *1) (-5 *1 (-863))) (-3285 (*1 *1 *1 *1) (-5 *1 (-863))) (-3928 (*1 *1 *1 *1) (-5 *1 (-863))) (-2156 (*1 *1 *1 *1) (-5 *1 (-863))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3727 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3976 (*1 *1 *1) (-5 *1 (-863))) (-1336 (*1 *1 *1) (-5 *1 (-863))) (-1336 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-2070 (*1 *1 *1) (-5 *1 (-863))) (-2070 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-3424 (*1 *1 *1) (-5 *1 (-863))) (-2100 (*1 *1 *1 *1) (-5 *1 (-863))) (-3112 (*1 *1 *1) (-5 *1 (-863))) (-3112 (*1 *1 *1 *1) (-5 *1 (-863))) (-3112 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2742 (*1 *1 *1) (-5 *1 (-863))) (-2742 (*1 *1 *1 *1) (-5 *1 (-863))) (-2742 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2371 (*1 *1 *1) (-5 *1 (-863))) (-2371 (*1 *1 *1 *1) (-5 *1 (-863))) (-2371 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-3719 (*1 *1 *1) (-5 *1 (-863))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2048 (*1 *1 *1) (-5 *1 (-863))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2998 (*1 *1 *1) (-5 *1 (-863))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1398 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3552 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2968 (*1 *1 *1 *1) (-5 *1 (-863))) (-2487 (*1 *1 *1 *1) (-5 *1 (-863))) (-2986 (*1 *1 *1 *1) (-5 *1 (-863))) (-2996 (*1 *1 *1 *1) (-5 *1 (-863))) (-3006 (*1 *1 *1 *1) (-5 *1 (-863))) (-3016 (*1 *1 *1 *1) (-5 *1 (-863))) (-3045 (*1 *1 *1 *1) (-5 *1 (-863))) (-3054 (*1 *1 *1 *1) (-5 *1 (-863))) (-3054 (*1 *1 *1) (-5 *1 (-863))) (* (*1 *1 *1 *1) (-5 *1 (-863))) (-3064 (*1 *1 *1 *1) (-5 *1 (-863))) (** (*1 *1 *1 *1) (-5 *1 (-863))) (-2467 (*1 *1 *1 *1) (-5 *1 (-863))) (-2432 (*1 *1 *1 *1) (-5 *1 (-863))) (-2443 (*1 *1 *1 *1) (-5 *1 (-863))) (-2478 (*1 *1 *1 *1) (-5 *1 (-863))) (-1750 (*1 *1 *1 *1) (-5 *1 (-863))) (-1763 (*1 *1 *1 *1) (-5 *1 (-863))) (-1736 (*1 *1 *1) (-5 *1 (-863))) (-3553 (*1 *1 *1 *1) (-5 *1 (-863))) (-3553 (*1 *1 *1) (-5 *1 (-863)))) -(-13 (-1102) (-10 -8 (-15 -2944 ((-1274) $)) (-15 -1777 ($ (-1161))) (-15 -3781 ((-1274) (-1161))) (-15 -2112 ($ (-567))) (-15 -2112 ($ (-1179))) (-15 -2112 ($ (-1161))) (-15 -2112 ($ (-225))) (-15 -2973 ($)) (-15 -3367 ((-1161) (-1161))) (-15 -3412 ((-567) $)) (-15 -1337 ((-567) $)) (-15 -3412 ((-567))) (-15 -1337 ((-567))) (-15 -4156 ((-567) $)) (-15 -2294 ((-567) $)) (-15 -4287 ($ (-567))) (-15 -2189 ($ (-567))) (-15 -1442 ($ (-567) (-567))) (-15 -4335 ($ $ (-567))) (-15 -4347 ($ $ (-567))) (-15 -3118 ($ $ (-567))) (-15 -4335 ($ $)) (-15 -4347 ($ $)) (-15 -3118 ($ $)) (-15 -2405 ($ $ $)) (-15 -1600 ($ $ $)) (-15 -2405 ($ (-645 $))) (-15 -1600 ($ (-645 $))) (-15 -4181 ($ $ (-645 $))) (-15 -2924 ($ $ (-645 $))) (-15 -2924 ($ $ $ $)) (-15 -4189 ($ $ $)) (-15 -1776 ((-112) $)) (-15 -1882 ($ $ (-645 $))) (-15 -3322 ($ $)) (-15 -1470 ($ $ $)) (-15 -2130 ($ $)) (-15 -2446 ($ (-645 (-645 $)))) (-15 -2390 ($ $ $)) (-15 -4153 ($ $)) (-15 -4153 ($ $ $)) (-15 -4220 ($ $ $)) (-15 -3136 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -3593 ($ $ $)) (-15 -3592 ($ $ (-772))) (-15 -3040 ($ $ $)) (-15 -3774 ($ $ $)) (-15 -3285 ($ $ $)) (-15 -3928 ($ $ $)) (-15 -2156 ($ $ $)) (-15 -3624 ($ $ (-645 $))) (-15 -3727 ($ $ (-645 $))) (-15 -3976 ($ $)) (-15 -1336 ($ $)) (-15 -1336 ($ $ (-772))) (-15 -2070 ($ $)) (-15 -2070 ($ $ (-772))) (-15 -3424 ($ $)) (-15 -2100 ($ $ $)) (-15 -3112 ($ $)) (-15 -3112 ($ $ $)) (-15 -3112 ($ $ $ $)) (-15 -2742 ($ $)) (-15 -2742 ($ $ $)) (-15 -2742 ($ $ $ $)) (-15 -2371 ($ $)) (-15 -2371 ($ $ $)) (-15 -2371 ($ $ $ $)) (-15 -3719 ($ $)) (-15 -3719 ($ (-645 $))) (-15 -2048 ($ $)) (-15 -2048 ($ (-645 $))) (-15 -2998 ($ $)) (-15 -2998 ($ (-645 $))) (-15 -1398 ($ (-645 $))) (-15 -3552 ($ (-645 $))) (-15 -1770 ($ (-645 $))) (-15 -1532 ($ (-645 $))) (-15 -2968 ($ $ $)) (-15 -2487 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2996 ($ $ $)) (-15 -3006 ($ $ $)) (-15 -3016 ($ $ $)) (-15 -3045 ($ $ $)) (-15 -3054 ($ $ $)) (-15 -3054 ($ $)) (-15 * ($ $ $)) (-15 -3064 ($ $ $)) (-15 ** ($ $ $)) (-15 -2467 ($ $ $)) (-15 -2432 ($ $ $)) (-15 -2443 ($ $ $)) (-15 -2478 ($ $ $)) (-15 -1750 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -1736 ($ $)) (-15 -3553 ($ $ $)) (-15 -3553 ($ $)))) -((-2827 (((-1274) (-645 (-52))) 24)) (-1822 (((-1274) (-1161) (-863)) 14) (((-1274) (-863)) 9) (((-1274) (-1161)) 11))) -(((-864) (-10 -7 (-15 -1822 ((-1274) (-1161))) (-15 -1822 ((-1274) (-863))) (-15 -1822 ((-1274) (-1161) (-863))) (-15 -2827 ((-1274) (-645 (-52)))))) (T -864)) -((-2827 (*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1274)) (-5 *1 (-864)))) (-1822 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-863)) (-5 *2 (-1274)) (-5 *1 (-864)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-864)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-864))))) -(-10 -7 (-15 -1822 ((-1274) (-1161))) (-15 -1822 ((-1274) (-863))) (-15 -1822 ((-1274) (-1161) (-863))) (-15 -2827 ((-1274) (-645 (-52))))) -((-2487 (((-112) $ $) NIL)) (-2722 (((-3 $ "failed") (-1179)) 39)) (-3404 (((-772)) 32)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) 29)) (-1812 (((-1161) $) 46)) (-2188 (($ (-923)) 28)) (-3479 (((-1122) $) NIL)) (-1322 (((-1179) $) 13) (((-539) $) 19) (((-894 (-381)) $) 26) (((-894 (-567)) $) 22)) (-2504 (((-863) $) 16)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 43)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 41))) -(((-865 |#1|) (-13 (-845) (-615 (-1179)) (-615 (-539)) (-615 (-894 (-381))) (-615 (-894 (-567))) (-10 -8 (-15 -2722 ((-3 $ "failed") (-1179))))) (-645 (-1179))) (T -865)) -((-2722 (*1 *1 *2) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2))))) -(-13 (-845) (-615 (-1179)) (-615 (-539)) (-615 (-894 (-381))) (-615 (-894 (-567))) (-10 -8 (-15 -2722 ((-3 $ "failed") (-1179))))) -((-2487 (((-112) $ $) NIL)) (-1646 (((-509) $) 9)) (-4200 (((-645 (-442)) $) 13)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 21)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 16))) -(((-866) (-13 (-1102) (-10 -8 (-15 -1646 ((-509) $)) (-15 -4200 ((-645 (-442)) $))))) (T -866)) -((-1646 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) (-4200 (*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866))))) -(-13 (-1102) (-10 -8 (-15 -1646 ((-509) $)) (-15 -4200 ((-645 (-442)) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-954 |#1|)) NIL) (((-954 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-2214 (((-772)) NIL T CONST)) (-3008 (((-1274) (-772)) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3064 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-867 |#1| |#2| |#3| |#4|) (-13 (-1051) (-493 (-954 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3064 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3008 ((-1274) (-772))))) (-1051) (-645 (-1179)) (-645 (-772)) (-772)) (T -867)) -((-3064 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-772))) (-14 *5 (-772)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *4 (-1051)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 *3)) (-14 *7 *3)))) -(-13 (-1051) (-493 (-954 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3064 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3008 ((-1274) (-772))))) -((-4319 (((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|) 43)) (-3065 (((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|) 34))) -(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3065 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -4319 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) (-365) (-1260 |#1|) (-1245 |#1|)) (T -868)) -((-4319 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1260 *5)) (-4 *6 (-1245 *5)))) (-3065 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1260 *5)) (-4 *6 (-1245 *5))))) -(-10 -7 (-15 -3065 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -4319 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) -((-3065 (((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|)) 30) (((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) 28))) -(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -3065 ((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) (-15 -3065 ((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|)))) (-365) (-1179) |#1|) (T -869)) -((-3065 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1261 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1179)) (-14 *7 *5) (-5 *2 (-410 (-1242 *6 *5))) (-5 *1 (-869 *5 *6 *7)))) (-3065 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1261 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1179)) (-14 *7 *5) (-5 *2 (-410 (-1242 *6 *5))) (-5 *1 (-869 *5 *6 *7))))) -(-10 -7 (-15 -3065 ((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) (-15 -3065 ((-3 (-410 (-1242 |#2| |#1|)) "failed") (-772) (-772) (-1261 |#1| |#2| |#3|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3671 (($ $ (-567)) 68)) (-4175 (((-112) $ $) 65)) (-3758 (($) 18 T CONST)) (-4153 (($ (-1175 (-567)) (-567)) 67)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-3999 (($ $) 70)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-3905 (((-772) $) 75)) (-4384 (((-112) $) 35)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-4190 (((-567)) 72)) (-4104 (((-567) $) 71)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1678 (($ $ (-567)) 74)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2872 (((-1159 (-567)) $) 76)) (-4314 (($ $) 73)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-3092 (((-567) $ (-567)) 69)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-870 |#1|) (-140) (-567)) (T -870)) -((-2872 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1159 (-567))))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) (-1678 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-4314 (*1 *1 *1) (-4 *1 (-870 *2))) (-4190 (*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-3999 (*1 *1 *1) (-4 *1 (-870 *2))) (-3092 (*1 *2 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-3671 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-4153 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4))))) -(-13 (-308) (-147) (-10 -8 (-15 -2872 ((-1159 (-567)) $)) (-15 -3905 ((-772) $)) (-15 -1678 ($ $ (-567))) (-15 -4314 ($ $)) (-15 -4190 ((-567))) (-15 -4104 ((-567) $)) (-15 -3999 ($ $)) (-15 -3092 ((-567) $ (-567))) (-15 -3671 ($ $ (-567))) (-15 -4153 ($ (-1175 (-567)) (-567))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3671 (($ $ (-567)) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-4153 (($ (-1175 (-567)) (-567)) NIL)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3999 (($ $) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3905 (((-772) $) NIL)) (-4384 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4190 (((-567)) NIL)) (-4104 (((-567) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1678 (($ $ (-567)) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2872 (((-1159 (-567)) $) NIL)) (-4314 (($ $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-3092 (((-567) $ (-567)) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) -(((-871 |#1|) (-870 |#1|) (-567)) (T -871)) -NIL -(-870 |#1|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-871 |#1|) (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-871 |#1|) (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| (-871 |#1|) (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-871 |#1|) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-871 |#1|) (-1040 (-567))))) (-3094 (((-871 |#1|) $) NIL) (((-1179) $) NIL (|has| (-871 |#1|) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-871 |#1|) (-1040 (-567)))) (((-567) $) NIL (|has| (-871 |#1|) (-1040 (-567))))) (-1881 (($ $) NIL) (($ (-567) $) NIL)) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-871 |#1|))) (|:| |vec| (-1269 (-871 |#1|)))) (-690 $) (-1269 $)) NIL) (((-690 (-871 |#1|)) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-871 |#1|) (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-871 |#1|) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-871 |#1|) (-888 (-381))))) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL)) (-4294 (((-871 |#1|) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| (-871 |#1|) (-1154)))) (-2585 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-1446 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-4364 (($ (-1 (-871 |#1|) (-871 |#1|)) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-871 |#1|) (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| (-871 |#1|) (-308)))) (-1952 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-871 |#1|) (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-871 |#1|) (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 (-871 |#1|)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-871 |#1|) (-871 |#1|)) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-295 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-295 (-871 |#1|)))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-1179)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-517 (-1179) (-871 |#1|)))) (($ $ (-1179) (-871 |#1|)) NIL (|has| (-871 |#1|) (-517 (-1179) (-871 |#1|))))) (-2465 (((-772) $) NIL)) (-1882 (($ $ (-871 |#1|)) NIL (|has| (-871 |#1|) (-287 (-871 |#1|) (-871 |#1|))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1179)) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-2964 (($ $) NIL)) (-4306 (((-871 |#1|) $) NIL)) (-1322 (((-894 (-567)) $) NIL (|has| (-871 |#1|) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-871 |#1|) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-871 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-871 |#1|) (-1024))) (((-225) $) NIL (|has| (-871 |#1|) (-1024)))) (-3617 (((-174 (-410 (-567))) $) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-871 |#1|)) NIL) (($ (-1179)) NIL (|has| (-871 |#1|) (-1040 (-1179))))) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-911))) (|has| (-871 |#1|) (-145))))) (-2214 (((-772)) NIL T CONST)) (-3471 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-3092 (((-410 (-567)) $ (-567)) NIL)) (-1368 (($ $) NIL (|has| (-871 |#1|) (-821)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1179)) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-871 |#1|) (-902 (-1179)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-3016 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3064 (($ $ $) NIL) (($ (-871 |#1|) (-871 |#1|)) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-871 |#1|) $) NIL) (($ $ (-871 |#1|)) NIL))) -(((-872 |#1|) (-13 (-994 (-871 |#1|)) (-10 -8 (-15 -3092 ((-410 (-567)) $ (-567))) (-15 -3617 ((-174 (-410 (-567))) $)) (-15 -1881 ($ $)) (-15 -1881 ($ (-567) $)))) (-567)) (T -872)) -((-3092 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-872 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) (-1881 (*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) (-1881 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2)))) -(-13 (-994 (-871 |#1|)) (-10 -8 (-15 -3092 ((-410 (-567)) $ (-567))) (-15 -3617 ((-174 (-410 (-567))) $)) (-15 -1881 ($ $)) (-15 -1881 ($ (-567) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 ((|#2| $) NIL (|has| |#2| (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| |#2| (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (|has| |#2| (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567))))) (-3094 ((|#2| $) NIL) (((-1179) $) NIL (|has| |#2| (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-567)))) (((-567) $) NIL (|has| |#2| (-1040 (-567))))) (-1881 (($ $) 35) (($ (-567) $) 38)) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) 64)) (-2119 (($) NIL (|has| |#2| (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) NIL (|has| |#2| (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| |#2| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| |#2| (-888 (-381))))) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL)) (-4294 ((|#2| $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| |#2| (-1154)))) (-2585 (((-112) $) NIL (|has| |#2| (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| |#2| (-851)))) (-1446 (($ $ $) NIL (|has| |#2| (-851)))) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 60)) (-2221 (($) NIL (|has| |#2| (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| |#2| (-308)))) (-1952 ((|#2| $) NIL (|has| |#2| (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 |#2|) (-645 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-1179)) (-645 |#2|)) NIL (|has| |#2| (-517 (-1179) |#2|))) (($ $ (-1179) |#2|) NIL (|has| |#2| (-517 (-1179) |#2|)))) (-2465 (((-772) $) NIL)) (-1882 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2964 (($ $) NIL)) (-4306 ((|#2| $) NIL)) (-1322 (((-894 (-567)) $) NIL (|has| |#2| (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| |#2| (-615 (-894 (-381))))) (((-539) $) NIL (|has| |#2| (-615 (-539)))) (((-381) $) NIL (|has| |#2| (-1024))) (((-225) $) NIL (|has| |#2| (-1024)))) (-3617 (((-174 (-410 (-567))) $) 78)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-2504 (((-863) $) 108) (($ (-567)) 20) (($ $) NIL) (($ (-410 (-567))) 25) (($ |#2|) 19) (($ (-1179)) NIL (|has| |#2| (-1040 (-1179))))) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3471 ((|#2| $) NIL (|has| |#2| (-548)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-3092 (((-410 (-567)) $ (-567)) 71)) (-1368 (($ $) NIL (|has| |#2| (-821)))) (-1807 (($) 15 T CONST)) (-1820 (($) 17 T CONST)) (-2856 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3016 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2968 (((-112) $ $) 46)) (-3006 (((-112) $ $) NIL (|has| |#2| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3064 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3054 (($ $) 50) (($ $ $) 52)) (-3045 (($ $ $) 48)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 61)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 53) (($ $ $) 55) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-873 |#1| |#2|) (-13 (-994 |#2|) (-10 -8 (-15 -3092 ((-410 (-567)) $ (-567))) (-15 -3617 ((-174 (-410 (-567))) $)) (-15 -1881 ($ $)) (-15 -1881 ($ (-567) $)))) (-567) (-870 |#1|)) (T -873)) -((-3092 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5)) (-5 *3 (-567)) (-4 *5 (-870 *4)))) (-3617 (*1 *2 *1) (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))) (-1881 (*1 *1 *1) (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) (-1881 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3))))) -(-13 (-994 |#2|) (-10 -8 (-15 -3092 ((-410 (-567)) $ (-567))) (-15 -3617 ((-174 (-410 (-567))) $)) (-15 -1881 ($ $)) (-15 -1881 ($ (-567) $)))) -((-2487 (((-112) $ $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-2574 ((|#2| $) 12)) (-2226 (($ |#1| |#2|) 9)) (-1812 (((-1161) $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-3479 (((-1122) $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-3436 ((|#1| $) 11)) (-2516 (($ |#1| |#2|) 10)) (-2504 (((-863) $) 18 (-2836 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))))) (-3858 (((-112) $ $) NIL (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102))))) (-2968 (((-112) $ $) 23 (-12 (|has| |#1| (-1102)) (|has| |#2| (-1102)))))) -(((-874 |#1| |#2|) (-13 (-1219) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1102)) (IF (|has| |#2| (-1102)) (-6 (-1102)) |%noBranch|) |%noBranch|) (-15 -2226 ($ |#1| |#2|)) (-15 -2516 ($ |#1| |#2|)) (-15 -3436 (|#1| $)) (-15 -2574 (|#2| $)))) (-1219) (-1219)) (T -874)) -((-2226 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) (-3436 (*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1219)))) (-2574 (*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1219))))) -(-13 (-1219) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1102)) (IF (|has| |#2| (-1102)) (-6 (-1102)) |%noBranch|) |%noBranch|) (-15 -2226 ($ |#1| |#2|)) (-15 -2516 ($ |#1| |#2|)) (-15 -3436 (|#1| $)) (-15 -2574 (|#2| $)))) -((-2487 (((-112) $ $) NIL)) (-3565 (((-567) $) 16)) (-2745 (($ (-157)) 13)) (-2912 (($ (-157)) 14)) (-1812 (((-1161) $) NIL)) (-2676 (((-157) $) 15)) (-3479 (((-1122) $) NIL)) (-2424 (($ (-157)) 11)) (-2791 (($ (-157)) 10)) (-2504 (((-863) $) 24) (($ (-157)) 17)) (-2295 (($ (-157)) 12)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-875) (-13 (-1102) (-10 -8 (-15 -2791 ($ (-157))) (-15 -2424 ($ (-157))) (-15 -2295 ($ (-157))) (-15 -2745 ($ (-157))) (-15 -2912 ($ (-157))) (-15 -2676 ((-157) $)) (-15 -3565 ((-567) $)) (-15 -2504 ($ (-157)))))) (T -875)) -((-2791 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2295 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2912 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(-13 (-1102) (-10 -8 (-15 -2791 ($ (-157))) (-15 -2424 ($ (-157))) (-15 -2295 ($ (-157))) (-15 -2745 ($ (-157))) (-15 -2912 ($ (-157))) (-15 -2676 ((-157) $)) (-15 -3565 ((-567) $)) (-15 -2504 ($ (-157))))) -((-2504 (((-317 (-567)) (-410 (-954 (-48)))) 23) (((-317 (-567)) (-954 (-48))) 18))) -(((-876) (-10 -7 (-15 -2504 ((-317 (-567)) (-954 (-48)))) (-15 -2504 ((-317 (-567)) (-410 (-954 (-48))))))) (T -876)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 (-48)))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-954 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876))))) -(-10 -7 (-15 -2504 ((-317 (-567)) (-954 (-48)))) (-15 -2504 ((-317 (-567)) (-410 (-954 (-48)))))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 18) (($ (-1184)) NIL) (((-1184) $) NIL)) (-1794 (((-112) $ (|[\|\|]| (-509))) 9) (((-112) $ (|[\|\|]| (-1161))) 13)) (-3858 (((-112) $ $) NIL)) (-3879 (((-509) $) 10) (((-1161) $) 14)) (-2968 (((-112) $ $) 15))) -(((-877) (-13 (-1085) (-1264) (-10 -8 (-15 -1794 ((-112) $ (|[\|\|]| (-509)))) (-15 -3879 ((-509) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1161)))) (-15 -3879 ((-1161) $))))) (T -877)) -((-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-877)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-877)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)) (-5 *1 (-877)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-877))))) -(-13 (-1085) (-1264) (-10 -8 (-15 -1794 ((-112) $ (|[\|\|]| (-509)))) (-15 -3879 ((-509) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1161)))) (-15 -3879 ((-1161) $)))) -((-4364 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15))) -(((-878 |#1| |#2|) (-10 -7 (-15 -4364 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1219) (-1219)) (T -878)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))) -(-10 -7 (-15 -4364 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) -((-1875 (($ |#1| |#1|) 8)) (-3076 ((|#1| $ (-772)) 15))) -(((-879 |#1|) (-10 -8 (-15 -1875 ($ |#1| |#1|)) (-15 -3076 (|#1| $ (-772)))) (-1219)) (T -879)) -((-3076 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-879 *2)) (-4 *2 (-1219)))) (-1875 (*1 *1 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1219))))) -(-10 -8 (-15 -1875 ($ |#1| |#1|)) (-15 -3076 (|#1| $ (-772)))) -((-4364 (((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)) 15))) -(((-880 |#1| |#2|) (-10 -7 (-15 -4364 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) (-1219) (-1219)) (T -880)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6))))) -(-10 -7 (-15 -4364 ((-881 |#2|) (-1 |#2| |#1|) (-881 |#1|)))) -((-1875 (($ |#1| |#1| |#1|) 8)) (-3076 ((|#1| $ (-772)) 15))) -(((-881 |#1|) (-10 -8 (-15 -1875 ($ |#1| |#1| |#1|)) (-15 -3076 (|#1| $ (-772)))) (-1219)) (T -881)) -((-3076 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-881 *2)) (-4 *2 (-1219)))) (-1875 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1219))))) -(-10 -8 (-15 -1875 ($ |#1| |#1| |#1|)) (-15 -3076 (|#1| $ (-772)))) -((-2816 (((-645 (-1184)) (-1161)) 9))) -(((-882) (-10 -7 (-15 -2816 ((-645 (-1184)) (-1161))))) (T -882)) -((-2816 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-645 (-1184))) (-5 *1 (-882))))) -(-10 -7 (-15 -2816 ((-645 (-1184)) (-1161)))) -((-4364 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 15))) -(((-883 |#1| |#2|) (-10 -7 (-15 -4364 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-1219) (-1219)) (T -883)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6))))) -(-10 -7 (-15 -4364 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) -((-4305 (($ |#1| |#1| |#1|) 8)) (-3076 ((|#1| $ (-772)) 15))) -(((-884 |#1|) (-10 -8 (-15 -4305 ($ |#1| |#1| |#1|)) (-15 -3076 (|#1| $ (-772)))) (-1219)) (T -884)) -((-3076 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-884 *2)) (-4 *2 (-1219)))) (-4305 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1219))))) -(-10 -8 (-15 -4305 ($ |#1| |#1| |#1|)) (-15 -3076 (|#1| $ (-772)))) -((-4097 (((-1159 (-645 (-567))) (-645 (-567)) (-1159 (-645 (-567)))) 48)) (-2512 (((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567))) 44)) (-1819 (((-1159 (-645 (-567))) (-645 (-567))) 58) (((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567))) 56)) (-3738 (((-1159 (-645 (-567))) (-567)) 59)) (-3498 (((-1159 (-645 (-567))) (-567) (-567)) 34) (((-1159 (-645 (-567))) (-567)) 23) (((-1159 (-645 (-567))) (-567) (-567) (-567)) 19)) (-3057 (((-1159 (-645 (-567))) (-1159 (-645 (-567)))) 42)) (-3307 (((-645 (-567)) (-645 (-567))) 41))) -(((-885) (-10 -7 (-15 -3498 ((-1159 (-645 (-567))) (-567) (-567) (-567))) (-15 -3498 ((-1159 (-645 (-567))) (-567))) (-15 -3498 ((-1159 (-645 (-567))) (-567) (-567))) (-15 -3307 ((-645 (-567)) (-645 (-567)))) (-15 -3057 ((-1159 (-645 (-567))) (-1159 (-645 (-567))))) (-15 -2512 ((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4097 ((-1159 (-645 (-567))) (-645 (-567)) (-1159 (-645 (-567))))) (-15 -1819 ((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -1819 ((-1159 (-645 (-567))) (-645 (-567)))) (-15 -3738 ((-1159 (-645 (-567))) (-567))))) (T -885)) -((-3738 (*1 *2 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-1819 (*1 *2 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-1819 (*1 *2 *3 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-4097 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *3 (-645 (-567))) (-5 *1 (-885)))) (-2512 (*1 *2 *3 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-645 (-567))))) (-3057 (*1 *2 *2) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-885)))) (-3498 (*1 *2 *3 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-3498 (*1 *2 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) (-3498 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))) -(-10 -7 (-15 -3498 ((-1159 (-645 (-567))) (-567) (-567) (-567))) (-15 -3498 ((-1159 (-645 (-567))) (-567))) (-15 -3498 ((-1159 (-645 (-567))) (-567) (-567))) (-15 -3307 ((-645 (-567)) (-645 (-567)))) (-15 -3057 ((-1159 (-645 (-567))) (-1159 (-645 (-567))))) (-15 -2512 ((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -4097 ((-1159 (-645 (-567))) (-645 (-567)) (-1159 (-645 (-567))))) (-15 -1819 ((-1159 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -1819 ((-1159 (-645 (-567))) (-645 (-567)))) (-15 -3738 ((-1159 (-645 (-567))) (-567)))) -((-1322 (((-894 (-381)) $) 9 (|has| |#1| (-615 (-894 (-381))))) (((-894 (-567)) $) 8 (|has| |#1| (-615 (-894 (-567))))))) -(((-886 |#1|) (-140) (-1219)) (T -886)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-615 (-894 (-567)))) (-6 (-615 (-894 (-567)))) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-381)))) (-6 (-615 (-894 (-381)))) |%noBranch|))) -(((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567))))) -((-2487 (((-112) $ $) NIL)) (-4223 (($) 14)) (-3913 (($ (-891 |#1| |#2|) (-891 |#1| |#3|)) 28)) (-1556 (((-891 |#1| |#3|) $) 16)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3682 (((-112) $) 22)) (-2595 (($) 19)) (-2504 (((-863) $) 31)) (-3858 (((-112) $ $) NIL)) (-3292 (((-891 |#1| |#2|) $) 15)) (-2968 (((-112) $ $) 26))) -(((-887 |#1| |#2| |#3|) (-13 (-1102) (-10 -8 (-15 -3682 ((-112) $)) (-15 -2595 ($)) (-15 -4223 ($)) (-15 -3913 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -3292 ((-891 |#1| |#2|) $)) (-15 -1556 ((-891 |#1| |#3|) $)))) (-1102) (-1102) (-667 |#2|)) (T -887)) -((-3682 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))) (-2595 (*1 *1) (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) (-4223 (*1 *1) (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) (-4 *4 (-667 *3)))) (-3913 (*1 *1 *2 *3) (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-667 *5)) (-5 *1 (-887 *4 *5 *6)))) (-3292 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *4)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4)))) (-1556 (*1 *2 *1) (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *5)) (-5 *1 (-887 *3 *4 *5)) (-4 *3 (-1102)) (-4 *5 (-667 *4))))) -(-13 (-1102) (-10 -8 (-15 -3682 ((-112) $)) (-15 -2595 ($)) (-15 -4223 ($)) (-15 -3913 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -3292 ((-891 |#1| |#2|) $)) (-15 -1556 ((-891 |#1| |#3|) $)))) -((-2487 (((-112) $ $) 7)) (-2959 (((-891 |#1| $) $ (-894 |#1|) (-891 |#1| $)) 14)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-888 |#1|) (-140) (-1102)) (T -888)) -((-2959 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-888 *4)) (-4 *4 (-1102))))) -(-13 (-1102) (-10 -8 (-15 -2959 ((-891 |t#1| $) $ (-894 |t#1|) (-891 |t#1| $))))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2208 (((-112) (-645 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1968 (((-891 |#1| |#2|) |#2| |#3|) 45 (-12 (-1736 (|has| |#2| (-1040 (-1179)))) (-1736 (|has| |#2| (-1051))))) (((-645 (-295 (-954 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1051)) (-1736 (|has| |#2| (-1040 (-1179)))))) (((-645 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1040 (-1179)))) (((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|) 21))) -(((-889 |#1| |#2| |#3|) (-10 -7 (-15 -2208 ((-112) |#2| |#3|)) (-15 -2208 ((-112) (-645 |#2|) |#3|)) (-15 -1968 ((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1040 (-1179))) (-15 -1968 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1051)) (-15 -1968 ((-645 (-295 (-954 |#2|))) |#2| |#3|)) (-15 -1968 ((-891 |#1| |#2|) |#2| |#3|))))) (-1102) (-888 |#1|) (-615 (-894 |#1|))) (T -889)) -((-1968 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-891 *5 *3)) (-5 *1 (-889 *5 *3 *4)) (-1736 (-4 *3 (-1040 (-1179)))) (-1736 (-4 *3 (-1051))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-1968 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 (-954 *3)))) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1051)) (-1736 (-4 *3 (-1040 (-1179)))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-1968 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1040 (-1179))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) (-1968 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-5 *2 (-887 *5 *6 (-645 *6))) (-5 *1 (-889 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-894 *5))))) (-2208 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-4 *6 (-888 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *6 *4)) (-4 *4 (-615 (-894 *5))))) (-2208 (*1 *2 *3 *4) (-12 (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5)))))) -(-10 -7 (-15 -2208 ((-112) |#2| |#3|)) (-15 -2208 ((-112) (-645 |#2|) |#3|)) (-15 -1968 ((-887 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1040 (-1179))) (-15 -1968 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1051)) (-15 -1968 ((-645 (-295 (-954 |#2|))) |#2| |#3|)) (-15 -1968 ((-891 |#1| |#2|) |#2| |#3|))))) -((-4364 (((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)) 22))) -(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -4364 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) (-1102) (-1102) (-1102)) (T -890)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-891 *5 *7)) (-5 *1 (-890 *5 *6 *7))))) -(-10 -7 (-15 -4364 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) -((-2487 (((-112) $ $) NIL)) (-3855 (($ $ $) 40)) (-1986 (((-3 (-112) "failed") $ (-894 |#1|)) 37)) (-4223 (($) 12)) (-1812 (((-1161) $) NIL)) (-3110 (($ (-894 |#1|) |#2| $) 20)) (-3479 (((-1122) $) NIL)) (-2154 (((-3 |#2| "failed") (-894 |#1|) $) 51)) (-3682 (((-112) $) 15)) (-2595 (($) 13)) (-3729 (((-645 (-2 (|:| -2025 (-1179)) (|:| -2265 |#2|))) $) 25)) (-2516 (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 |#2|)))) 23)) (-2504 (((-863) $) 45)) (-3858 (((-112) $ $) NIL)) (-3069 (($ (-894 |#1|) |#2| $ |#2|) 49)) (-1357 (($ (-894 |#1|) |#2| $) 48)) (-2968 (((-112) $ $) 42))) -(((-891 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3682 ((-112) $)) (-15 -2595 ($)) (-15 -4223 ($)) (-15 -3855 ($ $ $)) (-15 -2154 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -1357 ($ (-894 |#1|) |#2| $)) (-15 -3110 ($ (-894 |#1|) |#2| $)) (-15 -3069 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -3729 ((-645 (-2 (|:| -2025 (-1179)) (|:| -2265 |#2|))) $)) (-15 -2516 ($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 |#2|))))) (-15 -1986 ((-3 (-112) "failed") $ (-894 |#1|))))) (-1102) (-1102)) (T -891)) -((-3682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2595 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4223 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-3855 (*1 *1 *1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2154 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) (-5 *1 (-891 *4 *2)))) (-1357 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-3110 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-3069 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1102)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 *4)))) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2516 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 *4)))) (-4 *4 (-1102)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)))) (-1986 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1102))))) -(-13 (-1102) (-10 -8 (-15 -3682 ((-112) $)) (-15 -2595 ($)) (-15 -4223 ($)) (-15 -3855 ($ $ $)) (-15 -2154 ((-3 |#2| "failed") (-894 |#1|) $)) (-15 -1357 ($ (-894 |#1|) |#2| $)) (-15 -3110 ($ (-894 |#1|) |#2| $)) (-15 -3069 ($ (-894 |#1|) |#2| $ |#2|)) (-15 -3729 ((-645 (-2 (|:| -2025 (-1179)) (|:| -2265 |#2|))) $)) (-15 -2516 ($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 |#2|))))) (-15 -1986 ((-3 (-112) "failed") $ (-894 |#1|))))) -((-1612 (((-894 |#1|) (-894 |#1|) (-645 (-1179)) (-1 (-112) (-645 |#2|))) 32) (((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|))) 46) (((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|)) 35)) (-1986 (((-112) (-645 |#2|) (-894 |#1|)) 42) (((-112) |#2| (-894 |#1|)) 36)) (-2301 (((-1 (-112) |#2|) (-894 |#1|)) 16)) (-1601 (((-645 |#2|) (-894 |#1|)) 24)) (-4198 (((-894 |#1|) (-894 |#1|) |#2|) 20))) -(((-892 |#1| |#2|) (-10 -7 (-15 -1612 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -1612 ((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -1612 ((-894 |#1|) (-894 |#1|) (-645 (-1179)) (-1 (-112) (-645 |#2|)))) (-15 -2301 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -1986 ((-112) |#2| (-894 |#1|))) (-15 -1986 ((-112) (-645 |#2|) (-894 |#1|))) (-15 -4198 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -1601 ((-645 |#2|) (-894 |#1|)))) (-1102) (-1219)) (T -892)) -((-1601 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-645 *5)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1219)))) (-4198 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1219)))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *2 (-112)) (-5 *1 (-892 *5 *6)))) (-1986 (*1 *2 *3 *4) (-12 (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-892 *5 *3)) (-4 *3 (-1219)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1219)))) (-1612 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-894 *5)) (-5 *3 (-645 (-1179))) (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *1 (-892 *5 *6)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1102)) (-4 *5 (-1219)) (-5 *1 (-892 *4 *5)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1102)) (-4 *5 (-1219)) (-5 *1 (-892 *4 *5))))) -(-10 -7 (-15 -1612 ((-894 |#1|) (-894 |#1|) (-1 (-112) |#2|))) (-15 -1612 ((-894 |#1|) (-894 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -1612 ((-894 |#1|) (-894 |#1|) (-645 (-1179)) (-1 (-112) (-645 |#2|)))) (-15 -2301 ((-1 (-112) |#2|) (-894 |#1|))) (-15 -1986 ((-112) |#2| (-894 |#1|))) (-15 -1986 ((-112) (-645 |#2|) (-894 |#1|))) (-15 -4198 ((-894 |#1|) (-894 |#1|) |#2|)) (-15 -1601 ((-645 |#2|) (-894 |#1|)))) -((-4364 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 19))) -(((-893 |#1| |#2|) (-10 -7 (-15 -4364 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1102) (-1102)) (T -893)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))) -(-10 -7 (-15 -4364 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) -((-2487 (((-112) $ $) NIL)) (-3576 (($ $ (-645 (-52))) 74)) (-3783 (((-645 $) $) 138)) (-1894 (((-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52))) $) 30)) (-2507 (((-112) $) 35)) (-2853 (($ $ (-645 (-1179)) (-52)) 31)) (-1808 (($ $ (-645 (-52))) 73)) (-4275 (((-3 |#1| "failed") $) 71) (((-3 (-1179) "failed") $) 162)) (-3094 ((|#1| $) 68) (((-1179) $) NIL)) (-3942 (($ $) 126)) (-2977 (((-112) $) 55)) (-1410 (((-645 (-52)) $) 50)) (-1982 (($ (-1179) (-112) (-112) (-112)) 75)) (-1479 (((-3 (-645 $) "failed") (-645 $)) 82)) (-2680 (((-112) $) 58)) (-4013 (((-112) $) 57)) (-1812 (((-1161) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) 41)) (-4375 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1415 (((-3 (-2 (|:| |val| $) (|:| -2618 $)) "failed") $) 97)) (-3655 (((-3 (-645 $) "failed") $) 40)) (-1563 (((-3 (-645 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -3788 (-114)) (|:| |arg| (-645 $))) "failed") $) 107)) (-4388 (((-3 (-645 $) "failed") $) 42)) (-2873 (((-3 (-2 (|:| |val| $) (|:| -2618 (-772))) "failed") $) 45)) (-2916 (((-112) $) 34)) (-3479 (((-1122) $) NIL)) (-2305 (((-112) $) 28)) (-2602 (((-112) $) 52)) (-1800 (((-645 (-52)) $) 130)) (-3288 (((-112) $) 56)) (-1882 (($ (-114) (-645 $)) 104)) (-2772 (((-772) $) 33)) (-3846 (($ $) 72)) (-1322 (($ (-645 $)) 69)) (-2622 (((-112) $) 32)) (-2504 (((-863) $) 63) (($ |#1|) 23) (($ (-1179)) 76)) (-3858 (((-112) $ $) NIL)) (-4198 (($ $ (-52)) 129)) (-1807 (($) 103 T CONST)) (-1820 (($) 83 T CONST)) (-2968 (((-112) $ $) 93)) (-3064 (($ $ $) 117)) (-3045 (($ $ $) 121)) (** (($ $ (-772)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-894 |#1|) (-13 (-1102) (-1040 |#1|) (-1040 (-1179)) (-10 -8 (-15 0 ($) -3562) (-15 1 ($) -3562) (-15 -3655 ((-3 (-645 $) "failed") $)) (-15 -4056 ((-3 (-645 $) "failed") $)) (-15 -1563 ((-3 (-645 $) "failed") $ (-114))) (-15 -1563 ((-3 (-2 (|:| -3788 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -2873 ((-3 (-2 (|:| |val| $) (|:| -2618 (-772))) "failed") $)) (-15 -4375 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4388 ((-3 (-645 $) "failed") $)) (-15 -1415 ((-3 (-2 (|:| |val| $) (|:| -2618 $)) "failed") $)) (-15 -1882 ($ (-114) (-645 $))) (-15 -3045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3064 ($ $ $)) (-15 -2772 ((-772) $)) (-15 -1322 ($ (-645 $))) (-15 -3846 ($ $)) (-15 -2916 ((-112) $)) (-15 -2977 ((-112) $)) (-15 -2507 ((-112) $)) (-15 -2622 ((-112) $)) (-15 -3288 ((-112) $)) (-15 -4013 ((-112) $)) (-15 -2680 ((-112) $)) (-15 -2602 ((-112) $)) (-15 -1410 ((-645 (-52)) $)) (-15 -1808 ($ $ (-645 (-52)))) (-15 -3576 ($ $ (-645 (-52)))) (-15 -1982 ($ (-1179) (-112) (-112) (-112))) (-15 -2853 ($ $ (-645 (-1179)) (-52))) (-15 -1894 ((-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52))) $)) (-15 -2305 ((-112) $)) (-15 -3942 ($ $)) (-15 -4198 ($ $ (-52))) (-15 -1800 ((-645 (-52)) $)) (-15 -3783 ((-645 $) $)) (-15 -1479 ((-3 (-645 $) "failed") (-645 $))))) (-1102)) (T -894)) -((-1807 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-1820 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3655 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4056 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1563 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-1563 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3788 (-114)) (|:| |arg| (-645 (-894 *3))))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2873 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -2618 (-772)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4375 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4388 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1415 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -2618 (-894 *3)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1882 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-894 *4))) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-3045 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-3064 (*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3846 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-4013 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1410 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3576 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1982 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-112)) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-2853 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-52)) (-5 *1 (-894 *4)) (-4 *4 (-1102)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52)))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-2305 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3942 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) (-1479 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(-13 (-1102) (-1040 |#1|) (-1040 (-1179)) (-10 -8 (-15 (-1807) ($) -3562) (-15 (-1820) ($) -3562) (-15 -3655 ((-3 (-645 $) "failed") $)) (-15 -4056 ((-3 (-645 $) "failed") $)) (-15 -1563 ((-3 (-645 $) "failed") $ (-114))) (-15 -1563 ((-3 (-2 (|:| -3788 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -2873 ((-3 (-2 (|:| |val| $) (|:| -2618 (-772))) "failed") $)) (-15 -4375 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -4388 ((-3 (-645 $) "failed") $)) (-15 -1415 ((-3 (-2 (|:| |val| $) (|:| -2618 $)) "failed") $)) (-15 -1882 ($ (-114) (-645 $))) (-15 -3045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3064 ($ $ $)) (-15 -2772 ((-772) $)) (-15 -1322 ($ (-645 $))) (-15 -3846 ($ $)) (-15 -2916 ((-112) $)) (-15 -2977 ((-112) $)) (-15 -2507 ((-112) $)) (-15 -2622 ((-112) $)) (-15 -3288 ((-112) $)) (-15 -4013 ((-112) $)) (-15 -2680 ((-112) $)) (-15 -2602 ((-112) $)) (-15 -1410 ((-645 (-52)) $)) (-15 -1808 ($ $ (-645 (-52)))) (-15 -3576 ($ $ (-645 (-52)))) (-15 -1982 ($ (-1179) (-112) (-112) (-112))) (-15 -2853 ($ $ (-645 (-1179)) (-52))) (-15 -1894 ((-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52))) $)) (-15 -2305 ((-112) $)) (-15 -3942 ($ $)) (-15 -4198 ($ $ (-52))) (-15 -1800 ((-645 (-52)) $)) (-15 -3783 ((-645 $) $)) (-15 -1479 ((-3 (-645 $) "failed") (-645 $))))) -((-2487 (((-112) $ $) NIL)) (-3055 (((-645 |#1|) $) 19)) (-2110 (((-112) $) 49)) (-4275 (((-3 (-673 |#1|) "failed") $) 56)) (-3094 (((-673 |#1|) $) 54)) (-3447 (($ $) 23)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-3613 (((-772) $) 61)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-673 |#1|) $) 21)) (-2504 (((-863) $) 47) (($ (-673 |#1|)) 26) (((-820 |#1|) $) 36) (($ |#1|) 25)) (-3858 (((-112) $ $) NIL)) (-1820 (($) 9 T CONST)) (-1848 (((-645 (-673 |#1|)) $) 28)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 12)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 67))) -(((-895 |#1|) (-13 (-851) (-1040 (-673 |#1|)) (-10 -8 (-15 1 ($) -3562) (-15 -2504 ((-820 |#1|) $)) (-15 -2504 ($ |#1|)) (-15 -3436 ((-673 |#1|) $)) (-15 -3613 ((-772) $)) (-15 -1848 ((-645 (-673 |#1|)) $)) (-15 -3447 ($ $)) (-15 -2110 ((-112) $)) (-15 -3055 ((-645 |#1|) $)))) (-851)) (T -895)) -((-1820 (*1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-2504 (*1 *1 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-3436 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-3447 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851))))) -(-13 (-851) (-1040 (-673 |#1|)) (-10 -8 (-15 (-1820) ($) -3562) (-15 -2504 ((-820 |#1|) $)) (-15 -2504 ($ |#1|)) (-15 -3436 ((-673 |#1|) $)) (-15 -3613 ((-772) $)) (-15 -1848 ((-645 (-673 |#1|)) $)) (-15 -3447 ($ $)) (-15 -2110 ((-112) $)) (-15 -3055 ((-645 |#1|) $)))) -((-1639 ((|#1| |#1| |#1|) 19))) -(((-896 |#1| |#2|) (-10 -7 (-15 -1639 (|#1| |#1| |#1|))) (-1245 |#2|) (-1051)) (T -896)) -((-1639 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1245 *3))))) -(-10 -7 (-15 -1639 (|#1| |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-4201 (((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2520 (((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 14)) (-2968 (((-112) $ $) 6))) -(((-897) (-140)) (T -897)) -((-4201 (*1 *2 *3 *4) (-12 (-4 *1 (-897)) (-5 *3 (-1065)) (-5 *4 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)))))) (-2520 (*1 *2 *3) (-12 (-4 *1 (-897)) (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *2 (-1037))))) -(-13 (-1102) (-10 -7 (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| |explanations| (-1161))) (-1065) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))) (-15 -2520 ((-1037) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2444 ((|#1| |#1| (-772)) 29)) (-2546 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2289 (((-3 (-2 (|:| -4335 |#1|) (|:| -4347 |#1|)) "failed") |#1| (-772) (-772)) 32) (((-645 |#1|) |#1|) 39))) -(((-898 |#1| |#2|) (-10 -7 (-15 -2289 ((-645 |#1|) |#1|)) (-15 -2289 ((-3 (-2 (|:| -4335 |#1|) (|:| -4347 |#1|)) "failed") |#1| (-772) (-772))) (-15 -2546 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2444 (|#1| |#1| (-772)))) (-1245 |#2|) (-365)) (T -898)) -((-2444 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-898 *2 *4)) (-4 *2 (-1245 *4)))) (-2546 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-898 *2 *3)) (-4 *2 (-1245 *3)))) (-2289 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -4335 *3) (|:| -4347 *3))) (-5 *1 (-898 *3 *5)) (-4 *3 (-1245 *5)))) (-2289 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-898 *3 *4)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -2289 ((-645 |#1|) |#1|)) (-15 -2289 ((-3 (-2 (|:| -4335 |#1|) (|:| -4347 |#1|)) "failed") |#1| (-772) (-772))) (-15 -2546 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2444 (|#1| |#1| (-772)))) -((-2510 (((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161)) 106) (((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161) (-225)) 102) (((-1037) (-900) (-1065)) 94) (((-1037) (-900)) 95)) (-4201 (((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900) (-1065)) 65) (((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900)) 67))) -(((-899) (-10 -7 (-15 -2510 ((-1037) (-900))) (-15 -2510 ((-1037) (-900) (-1065))) (-15 -2510 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161) (-225))) (-15 -2510 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900) (-1065))))) (T -899)) -((-4201 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-899)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161))))) (-5 *1 (-899)))) (-2510 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1161)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-2510 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1161)) (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-899)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1037)) (-5 *1 (-899))))) -(-10 -7 (-15 -2510 ((-1037) (-900))) (-15 -2510 ((-1037) (-900) (-1065))) (-15 -2510 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161) (-225))) (-15 -2510 ((-1037) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1161))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900))) (-15 -4201 ((-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) (|:| |explanations| (-645 (-1161)))) (-900) (-1065)))) -((-2487 (((-112) $ $) NIL)) (-3094 (((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))) $) 19)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 21) (($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) 18)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-900) (-13 (-1102) (-10 -8 (-15 -2504 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))) (-15 -3094 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))) $))))) (T -900)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *1 (-900)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225)))) (-5 *1 (-900))))) -(-13 (-1102) (-10 -8 (-15 -2504 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))))) (-15 -3094 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) (|:| |tol| (-225))) $)))) -((-3592 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) 10) (($ $ |#2| (-772)) 15) (($ $ (-645 |#2|) (-645 (-772))) 18)) (-2856 (($ $ |#2|) 19) (($ $ (-645 |#2|)) 21) (($ $ |#2| (-772)) 22) (($ $ (-645 |#2|) (-645 (-772))) 24))) -(((-901 |#1| |#2|) (-10 -8 (-15 -2856 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2856 (|#1| |#1| |#2| (-772))) (-15 -2856 (|#1| |#1| (-645 |#2|))) (-15 -2856 (|#1| |#1| |#2|)) (-15 -3592 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -3592 (|#1| |#1| |#2| (-772))) (-15 -3592 (|#1| |#1| (-645 |#2|))) (-15 -3592 (|#1| |#1| |#2|))) (-902 |#2|) (-1102)) (T -901)) -NIL -(-10 -8 (-15 -2856 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2856 (|#1| |#1| |#2| (-772))) (-15 -2856 (|#1| |#1| (-645 |#2|))) (-15 -2856 (|#1| |#1| |#2|)) (-15 -3592 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -3592 (|#1| |#1| |#2| (-772))) (-15 -3592 (|#1| |#1| (-645 |#2|))) (-15 -3592 (|#1| |#1| |#2|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3592 (($ $ |#1|) 46) (($ $ (-645 |#1|)) 45) (($ $ |#1| (-772)) 44) (($ $ (-645 |#1|) (-645 (-772))) 43)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ |#1|) 42) (($ $ (-645 |#1|)) 41) (($ $ |#1| (-772)) 40) (($ $ (-645 |#1|) (-645 (-772))) 39)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-902 |#1|) (-140) (-1102)) (T -902)) -((-3592 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) (-3592 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-3592 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) (-4 *4 (-1102)))) (-2856 (*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-2856 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) (-2856 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) (-2856 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) (-4 *4 (-1102))))) -(-13 (-1051) (-10 -8 (-15 -3592 ($ $ |t#1|)) (-15 -3592 ($ $ (-645 |t#1|))) (-15 -3592 ($ $ |t#1| (-772))) (-15 -3592 ($ $ (-645 |t#1|) (-645 (-772)))) (-15 -2856 ($ $ |t#1|)) (-15 -2856 ($ $ (-645 |t#1|))) (-15 -2856 ($ $ |t#1| (-772))) (-15 -2856 ($ $ (-645 |t#1|) (-645 (-772)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) 26)) (-1555 (((-112) $ (-772)) NIL)) (-3647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-2797 (($ $ $) NIL (|has| $ (-6 -4423)))) (-2009 (($ $ $) NIL (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) (($ $ "left" $) NIL (|has| $ (-6 -4423))) (($ $ "right" $) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4347 (($ $) 25)) (-3711 (($ |#1|) 12) (($ $ $) 17)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-4335 (($ $) 23)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) 20)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2721 (((-567) $ $) NIL)) (-3625 (((-112) $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-1205 |#1|) $) 9) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 21 (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-903 |#1|) (-13 (-119 |#1|) (-614 (-1205 |#1|)) (-10 -8 (-15 -3711 ($ |#1|)) (-15 -3711 ($ $ $)))) (-1102)) (T -903)) -((-3711 (*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))) (-3711 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102))))) -(-13 (-119 |#1|) (-614 (-1205 |#1|)) (-10 -8 (-15 -3711 ($ |#1|)) (-15 -3711 ($ $ $)))) -((-1473 ((|#2| (-1144 |#1| |#2|)) 53))) -(((-904 |#1| |#2|) (-10 -7 (-15 -1473 (|#2| (-1144 |#1| |#2|)))) (-923) (-13 (-1051) (-10 -7 (-6 (-4424 "*"))))) (T -904)) -((-1473 (*1 *2 *3) (-12 (-5 *3 (-1144 *4 *2)) (-14 *4 (-923)) (-4 *2 (-13 (-1051) (-10 -7 (-6 (-4424 "*"))))) (-5 *1 (-904 *4 *2))))) -(-10 -7 (-15 -1473 (|#2| (-1144 |#1| |#2|)))) -((-2487 (((-112) $ $) 7)) (-3758 (($) 19 T CONST)) (-1377 (((-3 $ "failed") $) 16)) (-1643 (((-1104 |#1|) $ |#1|) 33)) (-4384 (((-112) $) 18)) (-2727 (($ $ $) 31 (-2836 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-1446 (($ $ $) 30 (-2836 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-1812 (((-1161) $) 10)) (-1752 (($ $) 25)) (-3479 (((-1122) $) 11)) (-2913 ((|#1| $ |#1|) 35)) (-1882 ((|#1| $ |#1|) 34)) (-1451 (($ (-645 (-645 |#1|))) 36)) (-2321 (($ (-645 |#1|)) 37)) (-3307 (($ $ $) 22)) (-4033 (($ $ $) 21)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1820 (($) 20 T CONST)) (-3016 (((-112) $ $) 28 (-2836 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2996 (((-112) $ $) 27 (-2836 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 29 (-2836 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2986 (((-112) $ $) 32)) (-3064 (($ $ $) 24)) (** (($ $ (-923)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15))) -(((-905 |#1|) (-140) (-1102)) (T -905)) -((-2321 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-905 *3)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-4 *1 (-905 *3)))) (-2913 (*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) (-1882 (*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) (-1643 (*1 *2 *1 *3) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-1104 *3)))) (-2986 (*1 *2 *1 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(-13 (-476) (-10 -8 (-15 -2321 ($ (-645 |t#1|))) (-15 -1451 ($ (-645 (-645 |t#1|)))) (-15 -2913 (|t#1| $ |t#1|)) (-15 -1882 (|t#1| $ |t#1|)) (-15 -1643 ((-1104 |t#1|) $ |t#1|)) (-15 -2986 ((-112) $ $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-851)) |%noBranch|))) -(((-102) . T) ((-614 (-863)) . T) ((-476) . T) ((-727) . T) ((-851) -2836 (|has| |#1| (-851)) (|has| |#1| (-370))) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2041 (((-645 (-645 (-772))) $) 165)) (-2243 (((-645 (-772)) (-907 |#1|) $) 193)) (-2264 (((-645 (-772)) (-907 |#1|) $) 194)) (-4015 (((-645 (-907 |#1|)) $) 154)) (-2119 (((-907 |#1|) $ (-567)) 159) (((-907 |#1|) $) 160)) (-2740 (($ (-645 (-907 |#1|))) 167)) (-3905 (((-772) $) 161)) (-3749 (((-1104 (-1104 |#1|)) $) 191)) (-1643 (((-1104 |#1|) $ |#1|) 182) (((-1104 (-1104 |#1|)) $ (-1104 |#1|)) 202) (((-1104 (-645 |#1|)) $ (-645 |#1|)) 205)) (-2927 (((-1104 |#1|) $) 157)) (-2203 (((-112) (-907 |#1|) $) 143)) (-1812 (((-1161) $) NIL)) (-1384 (((-1274) $) 147) (((-1274) $ (-567) (-567)) 206)) (-3479 (((-1122) $) NIL)) (-2532 (((-645 (-907 |#1|)) $) 148)) (-1882 (((-907 |#1|) $ (-772)) 155)) (-3380 (((-772) $) 162)) (-2504 (((-863) $) 179) (((-645 (-907 |#1|)) $) 28) (($ (-645 (-907 |#1|))) 166)) (-3858 (((-112) $ $) NIL)) (-3140 (((-645 |#1|) $) 164)) (-2968 (((-112) $ $) 199)) (-3006 (((-112) $ $) 197)) (-2986 (((-112) $ $) 196))) -(((-906 |#1|) (-13 (-1102) (-10 -8 (-15 -2504 ((-645 (-907 |#1|)) $)) (-15 -2532 ((-645 (-907 |#1|)) $)) (-15 -1882 ((-907 |#1|) $ (-772))) (-15 -2119 ((-907 |#1|) $ (-567))) (-15 -2119 ((-907 |#1|) $)) (-15 -3905 ((-772) $)) (-15 -3380 ((-772) $)) (-15 -3140 ((-645 |#1|) $)) (-15 -4015 ((-645 (-907 |#1|)) $)) (-15 -2041 ((-645 (-645 (-772))) $)) (-15 -2504 ($ (-645 (-907 |#1|)))) (-15 -2740 ($ (-645 (-907 |#1|)))) (-15 -1643 ((-1104 |#1|) $ |#1|)) (-15 -3749 ((-1104 (-1104 |#1|)) $)) (-15 -1643 ((-1104 (-1104 |#1|)) $ (-1104 |#1|))) (-15 -1643 ((-1104 (-645 |#1|)) $ (-645 |#1|))) (-15 -2203 ((-112) (-907 |#1|) $)) (-15 -2243 ((-645 (-772)) (-907 |#1|) $)) (-15 -2264 ((-645 (-772)) (-907 |#1|) $)) (-15 -2927 ((-1104 |#1|) $)) (-15 -2986 ((-112) $ $)) (-15 -3006 ((-112) $ $)) (-15 -1384 ((-1274) $)) (-15 -1384 ((-1274) $ (-567) (-567))))) (-1102)) (T -906)) -((-2504 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))) (-2119 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) (-4 *4 (-1102)))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-907 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-4015 (*1 *2 *1) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) (-1643 (*1 *2 *1 *3) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-1104 (-1104 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1643 (*1 *2 *1 *3) (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-1104 *4))) (-5 *1 (-906 *4)) (-5 *3 (-1104 *4)))) (-1643 (*1 *2 *1 *3) (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-645 *4))) (-5 *1 (-906 *4)) (-5 *3 (-645 *4)))) (-2203 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-906 *4)))) (-2243 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) (-5 *1 (-906 *4)))) (-2264 (*1 *2 *3 *1) (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) (-5 *1 (-906 *4)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-2986 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-3006 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) (-1384 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-906 *4)) (-4 *4 (-1102))))) -(-13 (-1102) (-10 -8 (-15 -2504 ((-645 (-907 |#1|)) $)) (-15 -2532 ((-645 (-907 |#1|)) $)) (-15 -1882 ((-907 |#1|) $ (-772))) (-15 -2119 ((-907 |#1|) $ (-567))) (-15 -2119 ((-907 |#1|) $)) (-15 -3905 ((-772) $)) (-15 -3380 ((-772) $)) (-15 -3140 ((-645 |#1|) $)) (-15 -4015 ((-645 (-907 |#1|)) $)) (-15 -2041 ((-645 (-645 (-772))) $)) (-15 -2504 ($ (-645 (-907 |#1|)))) (-15 -2740 ($ (-645 (-907 |#1|)))) (-15 -1643 ((-1104 |#1|) $ |#1|)) (-15 -3749 ((-1104 (-1104 |#1|)) $)) (-15 -1643 ((-1104 (-1104 |#1|)) $ (-1104 |#1|))) (-15 -1643 ((-1104 (-645 |#1|)) $ (-645 |#1|))) (-15 -2203 ((-112) (-907 |#1|) $)) (-15 -2243 ((-645 (-772)) (-907 |#1|) $)) (-15 -2264 ((-645 (-772)) (-907 |#1|) $)) (-15 -2927 ((-1104 |#1|) $)) (-15 -2986 ((-112) $ $)) (-15 -3006 ((-112) $ $)) (-15 -1384 ((-1274) $)) (-15 -1384 ((-1274) $ (-567) (-567))))) -((-2487 (((-112) $ $) NIL)) (-2080 (((-645 $) (-645 $)) 105)) (-2777 (((-567) $) 86)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-3905 (((-772) $) 83)) (-1643 (((-1104 |#1|) $ |#1|) 74)) (-4384 (((-112) $) NIL)) (-3807 (((-112) $) 90)) (-2544 (((-772) $) 87)) (-2927 (((-1104 |#1|) $) 63)) (-2727 (($ $ $) NIL (-2836 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-1446 (($ $ $) NIL (-2836 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2641 (((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $) 58)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 133)) (-3479 (((-1122) $) NIL)) (-3574 (((-1104 |#1|) $) 141 (|has| |#1| (-370)))) (-1359 (((-112) $) 84)) (-2913 ((|#1| $ |#1|) 72)) (-1882 ((|#1| $ |#1|) 135)) (-3380 (((-772) $) 65)) (-1451 (($ (-645 (-645 |#1|))) 120)) (-2834 (((-973) $) 78)) (-2321 (($ (-645 |#1|)) 35)) (-3307 (($ $ $) NIL)) (-4033 (($ $ $) NIL)) (-2205 (($ (-645 (-645 |#1|))) 60)) (-1403 (($ (-645 (-645 |#1|))) 125)) (-2037 (($ (-645 |#1|)) 137)) (-2504 (((-863) $) 119) (($ (-645 (-645 |#1|))) 93) (($ (-645 |#1|)) 94)) (-3858 (((-112) $ $) NIL)) (-1820 (($) 27 T CONST)) (-3016 (((-112) $ $) NIL (-2836 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2996 (((-112) $ $) NIL (-2836 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2968 (((-112) $ $) 70)) (-3006 (((-112) $ $) NIL (-2836 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-2986 (((-112) $ $) 92)) (-3064 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 36))) -(((-907 |#1|) (-13 (-905 |#1|) (-10 -8 (-15 -2641 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -2205 ($ (-645 (-645 |#1|)))) (-15 -2504 ($ (-645 (-645 |#1|)))) (-15 -2504 ($ (-645 |#1|))) (-15 -1403 ($ (-645 (-645 |#1|)))) (-15 -3380 ((-772) $)) (-15 -2927 ((-1104 |#1|) $)) (-15 -2834 ((-973) $)) (-15 -3905 ((-772) $)) (-15 -2544 ((-772) $)) (-15 -2777 ((-567) $)) (-15 -1359 ((-112) $)) (-15 -3807 ((-112) $)) (-15 -2080 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -3574 ((-1104 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -2037 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -2037 ($ (-645 |#1|))) |%noBranch|)))) (-1102)) (T -907)) -((-2641 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-973)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-370)) (-4 *3 (-1102)))) (-2037 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3))))) -(-13 (-905 |#1|) (-10 -8 (-15 -2641 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -2205 ($ (-645 (-645 |#1|)))) (-15 -2504 ($ (-645 (-645 |#1|)))) (-15 -2504 ($ (-645 |#1|))) (-15 -1403 ($ (-645 (-645 |#1|)))) (-15 -3380 ((-772) $)) (-15 -2927 ((-1104 |#1|) $)) (-15 -2834 ((-973) $)) (-15 -3905 ((-772) $)) (-15 -2544 ((-772) $)) (-15 -2777 ((-567) $)) (-15 -1359 ((-112) $)) (-15 -3807 ((-112) $)) (-15 -2080 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -3574 ((-1104 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -2037 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -2037 ($ (-645 |#1|))) |%noBranch|)))) -((-4235 (((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|)) 159)) (-1805 ((|#1|) 97)) (-2353 (((-421 (-1175 |#4|)) (-1175 |#4|)) 168)) (-3638 (((-421 (-1175 |#4|)) (-645 |#3|) (-1175 |#4|)) 84)) (-4169 (((-421 (-1175 |#4|)) (-1175 |#4|)) 178)) (-2061 (((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|) |#3|) 113))) -(((-908 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4235 ((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|))) (-15 -4169 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -2353 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -1805 (|#1|)) (-15 -2061 ((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|) |#3|)) (-15 -3638 ((-421 (-1175 |#4|)) (-645 |#3|) (-1175 |#4|)))) (-911) (-794) (-851) (-951 |#1| |#2| |#3|)) (T -908)) -((-3638 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-911)) (-4 *6 (-794)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-421 (-1175 *8))) (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-1175 *8)))) (-2061 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-645 (-1175 *7))) (-5 *3 (-1175 *7)) (-4 *7 (-951 *5 *6 *4)) (-4 *5 (-911)) (-4 *6 (-794)) (-4 *4 (-851)) (-5 *1 (-908 *5 *6 *4 *7)))) (-1805 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) (-5 *1 (-908 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1175 *7))) (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) (-4235 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *7))) (-5 *3 (-1175 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-908 *4 *5 *6 *7))))) -(-10 -7 (-15 -4235 ((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|))) (-15 -4169 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -2353 ((-421 (-1175 |#4|)) (-1175 |#4|))) (-15 -1805 (|#1|)) (-15 -2061 ((-3 (-645 (-1175 |#4|)) "failed") (-645 (-1175 |#4|)) (-1175 |#4|) |#3|)) (-15 -3638 ((-421 (-1175 |#4|)) (-645 |#3|) (-1175 |#4|)))) -((-4235 (((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|)) 41)) (-1805 ((|#1|) 75)) (-2353 (((-421 (-1175 |#2|)) (-1175 |#2|)) 124)) (-3638 (((-421 (-1175 |#2|)) (-1175 |#2|)) 108)) (-4169 (((-421 (-1175 |#2|)) (-1175 |#2|)) 135))) -(((-909 |#1| |#2|) (-10 -7 (-15 -4235 ((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|))) (-15 -4169 ((-421 (-1175 |#2|)) (-1175 |#2|))) (-15 -2353 ((-421 (-1175 |#2|)) (-1175 |#2|))) (-15 -1805 (|#1|)) (-15 -3638 ((-421 (-1175 |#2|)) (-1175 |#2|)))) (-911) (-1245 |#1|)) (T -909)) -((-3638 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))) (-1805 (*1 *2) (-12 (-4 *2 (-911)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1245 *2)))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5)))) (-4235 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *5))) (-5 *3 (-1175 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-911)) (-5 *1 (-909 *4 *5))))) -(-10 -7 (-15 -4235 ((-3 (-645 (-1175 |#2|)) "failed") (-645 (-1175 |#2|)) (-1175 |#2|))) (-15 -4169 ((-421 (-1175 |#2|)) (-1175 |#2|))) (-15 -2353 ((-421 (-1175 |#2|)) (-1175 |#2|))) (-15 -1805 (|#1|)) (-15 -3638 ((-421 (-1175 |#2|)) (-1175 |#2|)))) -((-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 42)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 18)) (-2318 (((-3 $ "failed") $) 36))) -(((-910 |#1|) (-10 -8 (-15 -2318 ((-3 |#1| "failed") |#1|)) (-15 -1621 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) (-911)) (T -910)) -NIL -(-10 -8 (-15 -2318 ((-3 |#1| "failed") |#1|)) (-15 -1621 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-2701 (((-421 (-1175 $)) (-1175 $)) 66)) (-3864 (($ $) 57)) (-1466 (((-421 $) $) 58)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 63)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-2946 (((-112) $) 59)) (-4384 (((-112) $) 35)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-2273 (((-421 (-1175 $)) (-1175 $)) 64)) (-2579 (((-421 (-1175 $)) (-1175 $)) 65)) (-3661 (((-421 $) $) 56)) (-2478 (((-3 $ "failed") $ $) 48)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 62 (|has| $ (-145)))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2318 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-911) (-140)) (T -911)) -((-3857 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-911)))) (-2701 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))) (-2579 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))) (-2273 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1)))) (-1621 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1175 *1))) (-5 *3 (-1175 *1)) (-4 *1 (-911)))) (-3369 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-911)) (-5 *2 (-1269 *1)))) (-2318 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-911))))) -(-13 (-1223) (-10 -8 (-15 -2701 ((-421 (-1175 $)) (-1175 $))) (-15 -2579 ((-421 (-1175 $)) (-1175 $))) (-15 -2273 ((-421 (-1175 $)) (-1175 $))) (-15 -3857 ((-1175 $) (-1175 $) (-1175 $))) (-15 -1621 ((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $))) (IF (|has| $ (-145)) (PROGN (-15 -3369 ((-3 (-1269 $) "failed") (-690 $))) (-15 -2318 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2784 (((-112) $) NIL)) (-3261 (((-772)) NIL)) (-3132 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-2694 (((-1192 (-923) (-772)) (-567)) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 $ "failed") $) NIL)) (-3094 (($ $) NIL)) (-3431 (($ (-1269 $)) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-3882 (($) NIL)) (-1816 (((-112) $) NIL)) (-2559 (($ $) NIL) (($ $ (-772)) NIL)) (-2946 (((-112) $) NIL)) (-3905 (((-834 (-923)) $) NIL) (((-923) $) NIL)) (-4384 (((-112) $) NIL)) (-2075 (($) NIL (|has| $ (-370)))) (-3739 (((-112) $) NIL (|has| $ (-370)))) (-2013 (($ $ (-923)) NIL (|has| $ (-370))) (($ $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3908 (((-1175 $) $ (-923)) NIL (|has| $ (-370))) (((-1175 $) $) NIL)) (-2667 (((-923) $) NIL)) (-4066 (((-1175 $) $) NIL (|has| $ (-370)))) (-2710 (((-3 (-1175 $) "failed") $ $) NIL (|has| $ (-370))) (((-1175 $) $) NIL (|has| $ (-370)))) (-1951 (($ $ (-1175 $)) NIL (|has| $ (-370)))) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL T CONST)) (-2188 (($ (-923)) NIL)) (-3626 (((-112) $) NIL)) (-3479 (((-1122) $) NIL)) (-2335 (($) NIL (|has| $ (-370)))) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL)) (-3661 (((-421 $) $) NIL)) (-1884 (((-923)) NIL) (((-834 (-923))) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2943 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-2589 (((-134)) NIL)) (-3592 (($ $ (-772)) NIL) (($ $) NIL)) (-3380 (((-923) $) NIL) (((-834 (-923)) $) NIL)) (-2783 (((-1175 $)) NIL)) (-1876 (($) NIL)) (-4006 (($) NIL (|has| $ (-370)))) (-3237 (((-690 $) (-1269 $)) NIL) (((-1269 $) $) NIL)) (-1322 (((-567) $) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL)) (-2318 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $) (-923)) NIL) (((-1269 $)) NIL)) (-3269 (((-112) $ $) NIL)) (-3392 (((-112) $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-1620 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-912 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-923)) (T -912)) -NIL -(-13 (-351) (-330 $) (-615 (-567))) -((-3511 (((-3 (-2 (|:| -3905 (-772)) (|:| -2894 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-3654 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-3905 (((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|)) 15))) -(((-913 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3905 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -3654 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -3511 ((-3 (-2 (|:| -3905 (-772)) (|:| -2894 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-559) (-1040 (-567))) (-433 |#1|) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -913)) -((-3511 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-2 (|:| -3905 (-772)) (|:| -2894 *8))) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) (-5 *1 (-913 *4 *5 *6 *7 *8)))) (-3905 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3905 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -3654 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -3511 ((-3 (-2 (|:| -3905 (-772)) (|:| -2894 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) -((-3511 (((-3 (-2 (|:| -3905 (-772)) (|:| -2894 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 64)) (-3654 (((-112) (-338 (-410 (-567)) |#1| |#2| |#3|)) 16)) (-3905 (((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 14))) -(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -3905 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -3654 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -3511 ((-3 (-2 (|:| -3905 (-772)) (|:| -2894 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) (-1245 (-410 (-567))) (-1245 (-410 |#1|)) (-344 (-410 (-567)) |#1| |#2|)) (T -914)) -((-3511 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-2 (|:| -3905 (-772)) (|:| -2894 *6))) (-5 *1 (-914 *4 *5 *6)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6)))) (-3905 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) (-5 *1 (-914 *4 *5 *6))))) -(-10 -7 (-15 -3905 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -3654 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -3511 ((-3 (-2 (|:| -3905 (-772)) (|:| -2894 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) -((-3842 ((|#2| |#2|) 26)) (-2796 (((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) 15)) (-3388 (((-923) (-567)) 38)) (-3029 (((-567) |#2|) 45)) (-1702 (((-567) |#2|) 21) (((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|) 20))) -(((-915 |#1| |#2|) (-10 -7 (-15 -3388 ((-923) (-567))) (-15 -1702 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -1702 ((-567) |#2|)) (-15 -2796 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3029 ((-567) |#2|)) (-15 -3842 (|#2| |#2|))) (-1245 (-410 (-567))) (-1245 (-410 |#1|))) (T -915)) -((-3842 (*1 *2 *2) (-12 (-4 *3 (-1245 (-410 (-567)))) (-5 *1 (-915 *3 *2)) (-4 *2 (-1245 (-410 *3))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1245 (-410 *4))))) (-1702 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-1702 (*1 *2 *3) (-12 (-4 *3 (-1245 (-410 (-567)))) (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) (-5 *1 (-915 *3 *4)) (-4 *4 (-1245 (-410 *3))))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1245 (-410 *3))) (-5 *2 (-923)) (-5 *1 (-915 *4 *5)) (-4 *5 (-1245 (-410 *4)))))) -(-10 -7 (-15 -3388 ((-923) (-567))) (-15 -1702 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -1702 ((-567) |#2|)) (-15 -2796 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -3029 ((-567) |#2|)) (-15 -3842 (|#2| |#2|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 ((|#1| $) 100)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-2432 (($ $ $) NIL)) (-1377 (((-3 $ "failed") $) 94)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3793 (($ |#1| (-421 |#1|)) 92)) (-4053 (((-1175 |#1|) |#1| |#1|) 53)) (-2178 (($ $) 61)) (-4384 (((-112) $) NIL)) (-2165 (((-567) $) 97)) (-2866 (($ $ (-567)) 99)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3881 ((|#1| $) 96)) (-2284 (((-421 |#1|) $) 95)) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) 93)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-1828 (($ $) 50)) (-2504 (((-863) $) 124) (($ (-567)) 73) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 41) (((-410 |#1|) $) 78) (($ (-410 (-421 |#1|))) 86)) (-2214 (((-772)) 71 T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) 26 T CONST)) (-1820 (($) 15 T CONST)) (-2968 (((-112) $ $) 87)) (-3064 (($ $ $) NIL)) (-3054 (($ $) 108) (($ $ $) NIL)) (-3045 (($ $ $) 49)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 110) (($ $ $) 48) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-916 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -2504 ((-410 |#1|) $)) (-15 -2504 ($ (-410 (-421 |#1|)))) (-15 -1828 ($ $)) (-15 -2284 ((-421 |#1|) $)) (-15 -3881 (|#1| $)) (-15 -2866 ($ $ (-567))) (-15 -2165 ((-567) $)) (-15 -4053 ((-1175 |#1|) |#1| |#1|)) (-15 -2178 ($ $)) (-15 -3793 ($ |#1| (-421 |#1|))) (-15 -4199 (|#1| $)))) (-308)) (T -916)) -((-2504 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-916 *3)))) (-1828 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-3881 (*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-2866 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-2165 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-4053 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) (-3793 (*1 *1 *2 *3) (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-916 *2)))) (-4199 (*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))) -(-13 (-365) (-38 |#1|) (-10 -8 (-15 -2504 ((-410 |#1|) $)) (-15 -2504 ($ (-410 (-421 |#1|)))) (-15 -1828 ($ $)) (-15 -2284 ((-421 |#1|) $)) (-15 -3881 (|#1| $)) (-15 -2866 ($ $ (-567))) (-15 -2165 ((-567) $)) (-15 -4053 ((-1175 |#1|) |#1| |#1|)) (-15 -2178 ($ $)) (-15 -3793 ($ |#1| (-421 |#1|))) (-15 -4199 (|#1| $)))) -((-3793 (((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1179)) 17) (((-52) (-410 (-954 |#1|)) (-1179)) 18))) -(((-917 |#1|) (-10 -7 (-15 -3793 ((-52) (-410 (-954 |#1|)) (-1179))) (-15 -3793 ((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1179)))) (-13 (-308) (-147))) (T -917)) -((-3793 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-421 (-954 *6))) (-5 *5 (-1179)) (-5 *3 (-954 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *6)))) (-3793 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *5))))) -(-10 -7 (-15 -3793 ((-52) (-410 (-954 |#1|)) (-1179))) (-15 -3793 ((-52) (-954 |#1|) (-421 (-954 |#1|)) (-1179)))) -((-3368 ((|#4| (-645 |#4|)) 149) (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-1870 (((-1175 |#4|) (-645 (-1175 |#4|))) 142) (((-1175 |#4|) (-1175 |#4|) (-1175 |#4|)) 63) ((|#4| (-645 |#4|)) 71) ((|#4| |#4| |#4|) 109))) -(((-918 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 (|#4| |#4| |#4|)) (-15 -1870 (|#4| (-645 |#4|))) (-15 -1870 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -1870 ((-1175 |#4|) (-645 (-1175 |#4|)))) (-15 -3368 (|#4| |#4| |#4|)) (-15 -3368 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -3368 (|#4| (-645 |#4|)))) (-794) (-851) (-308) (-951 |#3| |#1| |#2|)) (T -918)) -((-3368 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-3368 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) (-3368 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-645 (-1175 *7))) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-1175 *7)) (-5 *1 (-918 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) (-1870 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-1870 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4))))) -(-10 -7 (-15 -1870 (|#4| |#4| |#4|)) (-15 -1870 (|#4| (-645 |#4|))) (-15 -1870 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -1870 ((-1175 |#4|) (-645 (-1175 |#4|)))) (-15 -3368 (|#4| |#4| |#4|)) (-15 -3368 ((-1175 |#4|) (-1175 |#4|) (-1175 |#4|))) (-15 -3368 (|#4| (-645 |#4|)))) -((-2736 (((-906 (-567)) (-973)) 38) (((-906 (-567)) (-645 (-567))) 35)) (-3632 (((-906 (-567)) (-645 (-567))) 70) (((-906 (-567)) (-923)) 71)) (-2753 (((-906 (-567))) 39)) (-3024 (((-906 (-567))) 55) (((-906 (-567)) (-645 (-567))) 54)) (-3839 (((-906 (-567))) 53) (((-906 (-567)) (-645 (-567))) 52)) (-1533 (((-906 (-567))) 51) (((-906 (-567)) (-645 (-567))) 50)) (-2584 (((-906 (-567))) 49) (((-906 (-567)) (-645 (-567))) 48)) (-1932 (((-906 (-567))) 47) (((-906 (-567)) (-645 (-567))) 46)) (-2185 (((-906 (-567))) 57) (((-906 (-567)) (-645 (-567))) 56)) (-3218 (((-906 (-567)) (-645 (-567))) 75) (((-906 (-567)) (-923)) 77)) (-3391 (((-906 (-567)) (-645 (-567))) 72) (((-906 (-567)) (-923)) 73)) (-2038 (((-906 (-567)) (-645 (-567))) 68) (((-906 (-567)) (-923)) 69)) (-3691 (((-906 (-567)) (-645 (-923))) 60))) -(((-919) (-10 -7 (-15 -3632 ((-906 (-567)) (-923))) (-15 -3632 ((-906 (-567)) (-645 (-567)))) (-15 -2038 ((-906 (-567)) (-923))) (-15 -2038 ((-906 (-567)) (-645 (-567)))) (-15 -3691 ((-906 (-567)) (-645 (-923)))) (-15 -3391 ((-906 (-567)) (-923))) (-15 -3391 ((-906 (-567)) (-645 (-567)))) (-15 -3218 ((-906 (-567)) (-923))) (-15 -3218 ((-906 (-567)) (-645 (-567)))) (-15 -1932 ((-906 (-567)) (-645 (-567)))) (-15 -1932 ((-906 (-567)))) (-15 -2584 ((-906 (-567)) (-645 (-567)))) (-15 -2584 ((-906 (-567)))) (-15 -1533 ((-906 (-567)) (-645 (-567)))) (-15 -1533 ((-906 (-567)))) (-15 -3839 ((-906 (-567)) (-645 (-567)))) (-15 -3839 ((-906 (-567)))) (-15 -3024 ((-906 (-567)) (-645 (-567)))) (-15 -3024 ((-906 (-567)))) (-15 -2185 ((-906 (-567)) (-645 (-567)))) (-15 -2185 ((-906 (-567)))) (-15 -2753 ((-906 (-567)))) (-15 -2736 ((-906 (-567)) (-645 (-567)))) (-15 -2736 ((-906 (-567)) (-973))))) (T -919)) -((-2736 (*1 *2 *3) (-12 (-5 *3 (-973)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2753 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2185 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3024 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3839 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1533 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2584 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1932 (*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-645 (-923))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(-10 -7 (-15 -3632 ((-906 (-567)) (-923))) (-15 -3632 ((-906 (-567)) (-645 (-567)))) (-15 -2038 ((-906 (-567)) (-923))) (-15 -2038 ((-906 (-567)) (-645 (-567)))) (-15 -3691 ((-906 (-567)) (-645 (-923)))) (-15 -3391 ((-906 (-567)) (-923))) (-15 -3391 ((-906 (-567)) (-645 (-567)))) (-15 -3218 ((-906 (-567)) (-923))) (-15 -3218 ((-906 (-567)) (-645 (-567)))) (-15 -1932 ((-906 (-567)) (-645 (-567)))) (-15 -1932 ((-906 (-567)))) (-15 -2584 ((-906 (-567)) (-645 (-567)))) (-15 -2584 ((-906 (-567)))) (-15 -1533 ((-906 (-567)) (-645 (-567)))) (-15 -1533 ((-906 (-567)))) (-15 -3839 ((-906 (-567)) (-645 (-567)))) (-15 -3839 ((-906 (-567)))) (-15 -3024 ((-906 (-567)) (-645 (-567)))) (-15 -3024 ((-906 (-567)))) (-15 -2185 ((-906 (-567)) (-645 (-567)))) (-15 -2185 ((-906 (-567)))) (-15 -2753 ((-906 (-567)))) (-15 -2736 ((-906 (-567)) (-645 (-567)))) (-15 -2736 ((-906 (-567)) (-973)))) -((-1523 (((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179))) 14)) (-3502 (((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179))) 13))) -(((-920 |#1|) (-10 -7 (-15 -3502 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -1523 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179))))) (-455)) (T -920)) -((-1523 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1179))) (-4 *4 (-455)) (-5 *1 (-920 *4)))) (-3502 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1179))) (-4 *4 (-455)) (-5 *1 (-920 *4))))) -(-10 -7 (-15 -3502 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -1523 ((-645 (-954 |#1|)) (-645 (-954 |#1|)) (-645 (-1179))))) -((-2504 (((-317 |#1|) (-480)) 16))) -(((-921 |#1|) (-10 -7 (-15 -2504 ((-317 |#1|) (-480)))) (-559)) (T -921)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-921 *4)) (-4 *4 (-559))))) -(-10 -7 (-15 -2504 ((-317 |#1|) (-480)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-4384 (((-112) $) 35)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-922) (-140)) (T -922)) -((-3393 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *2 (-2 (|:| -1344 (-645 *1)) (|:| -2335 *1))) (-5 *3 (-645 *1)))) (-2897 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-922))))) -(-13 (-455) (-10 -8 (-15 -3393 ((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $))) (-15 -2897 ((-3 (-645 $) "failed") (-645 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1870 (($ $ $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-1820 (($) NIL T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ $ $) NIL))) -(((-923) (-13 (-795) (-727) (-10 -8 (-15 -1870 ($ $ $)) (-6 (-4424 "*"))))) (T -923)) -((-1870 (*1 *1 *1 *1) (-5 *1 (-923)))) -(-13 (-795) (-727) (-10 -8 (-15 -1870 ($ $ $)) (-6 (-4424 "*")))) +((-2958 (((-693 (-1228)) $ (-1228)) NIL)) (-2959 (((-693 (-553)) $ (-553)) NIL)) (-2957 (((-773) $ (-129)) NIL)) (-2960 (((-693 (-128)) $ (-128)) 22)) (-2962 (($ (-391)) 12) (($ (-1162)) 14)) (-2961 (((-112) $) 19)) (-4378 (((-865) $) 26)) (-1868 (($ $) 23))) +(((-864) (-13 (-863) (-615 (-865)) (-10 -8 (-15 -2962 ($ (-391))) (-15 -2962 ($ (-1162))) (-15 -2961 ((-112) $))))) (T -864)) +((-2962 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-864)))) (-2962 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-864)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864))))) +(-13 (-863) (-615 (-865)) (-10 -8 (-15 -2962 ($ (-391))) (-15 -2962 ($ (-1162))) (-15 -2961 ((-112) $)))) +((-2968 (((-112) $ $) NIL) (($ $ $) 85)) (-2989 (($ $ $) 125)) (-3004 (((-549) $) 31) (((-549)) 36)) (-2999 (($ (-549)) 53)) (-2996 (($ $ $) 54) (($ (-643 $)) 84)) (-2980 (($ $ (-643 $)) 82)) (-3001 (((-549) $) 34)) (-2983 (($ $ $) 73)) (-3955 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3002 (((-549) $) 33)) (-2984 (($ $ $) 72)) (-3966 (($ $) 114)) (-2987 (($ $ $) 129)) (-2970 (($ (-643 $)) 61)) (-3971 (($ $ (-643 $)) 79)) (-2998 (($ (-549) (-549)) 55)) (-3011 (($ $) 126) (($ $ $) 127)) (-3541 (($ $ (-549)) 43) (($ $) 46)) (-2964 (($ $ $) 97)) (-2985 (($ $ $) 132)) (-2979 (($ $) 115)) (-2963 (($ $ $) 98)) (-2975 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3240 (((-1275) $) 10)) (-2978 (($ $) 118) (($ $ (-773)) 122)) (-2981 (($ $ $) 75)) (-2982 (($ $ $) 74)) (-2995 (($ $ (-643 $)) 110)) (-2993 (($ $ $) 113)) (-2972 (($ (-643 $)) 59)) (-2973 (($ $) 70) (($ (-643 $)) 71)) (-2976 (($ $ $) 123)) (-2977 (($ $) 116)) (-2988 (($ $ $) 128)) (-3956 (($ (-549)) 21) (($ (-1180)) 23) (($ (-1162)) 30) (($ (-225)) 25)) (-3255 (($ $ $) 101)) (-3746 (($ $) 102)) (-3006 (((-1275) (-1162)) 15)) (-3007 (($ (-1162)) 14)) (-3528 (($ (-643 (-643 $))) 58)) (-3542 (($ $ (-549)) 42) (($ $) 45)) (-3663 (((-1162) $) NIL)) (-2991 (($ $ $) 131)) (-3893 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2992 (((-112) $) 108)) (-2994 (($ $ (-643 $)) 111) (($ $ $ $) 112)) (-3000 (($ (-549)) 39)) (-3003 (((-549) $) 32) (((-549)) 35)) (-2997 (($ $ $) 40) (($ (-643 $)) 83)) (-3664 (((-1123) $) NIL)) (-3889 (($ $ $) 99)) (-3996 (($) 13)) (-4231 (($ $ (-643 $)) 109)) (-3005 (((-1162) (-1162)) 8)) (-4268 (($ $) 117) (($ $ (-773)) 121)) (-2965 (($ $ $) 96)) (-4242 (($ $ (-773)) 139)) (-2971 (($ (-643 $)) 60)) (-4378 (((-865) $) 19)) (-4204 (($ $ (-549)) 41) (($ $) 44)) (-2974 (($ $) 68) (($ (-643 $)) 69)) (-3660 (($ $) 66) (($ (-643 $)) 67)) (-2990 (($ $) 124)) (-2969 (($ (-643 $)) 65)) (-3505 (($ $ $) 105)) (-3662 (((-112) $ $) NIL)) (-2986 (($ $ $) 130)) (-3256 (($ $ $) 100)) (-4169 (($ $ $) 103) (($ $) 104)) (-2966 (($ $ $) 89)) (-2967 (($ $ $) 87)) (-3455 (((-112) $ $) 16) (($ $ $) 17)) (-3087 (($ $ $) 88)) (-3088 (($ $ $) 86)) (-4381 (($ $ $) 94)) (-4269 (($ $ $) 91) (($ $) 92)) (-4271 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-865) (-13 (-1104) (-10 -8 (-15 -3240 ((-1275) $)) (-15 -3007 ($ (-1162))) (-15 -3006 ((-1275) (-1162))) (-15 -3956 ($ (-549))) (-15 -3956 ($ (-1180))) (-15 -3956 ($ (-1162))) (-15 -3956 ($ (-225))) (-15 -3996 ($)) (-15 -3005 ((-1162) (-1162))) (-15 -3004 ((-549) $)) (-15 -3003 ((-549) $)) (-15 -3004 ((-549))) (-15 -3003 ((-549))) (-15 -3002 ((-549) $)) (-15 -3001 ((-549) $)) (-15 -3000 ($ (-549))) (-15 -2999 ($ (-549))) (-15 -2998 ($ (-549) (-549))) (-15 -3542 ($ $ (-549))) (-15 -3541 ($ $ (-549))) (-15 -4204 ($ $ (-549))) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -4204 ($ $)) (-15 -2997 ($ $ $)) (-15 -2996 ($ $ $)) (-15 -2997 ($ (-643 $))) (-15 -2996 ($ (-643 $))) (-15 -2995 ($ $ (-643 $))) (-15 -2994 ($ $ (-643 $))) (-15 -2994 ($ $ $ $)) (-15 -2993 ($ $ $)) (-15 -2992 ((-112) $)) (-15 -4231 ($ $ (-643 $))) (-15 -3966 ($ $)) (-15 -2991 ($ $ $)) (-15 -2990 ($ $)) (-15 -3528 ($ (-643 (-643 $)))) (-15 -2989 ($ $ $)) (-15 -3011 ($ $)) (-15 -3011 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -4242 ($ $ (-773))) (-15 -3505 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3971 ($ $ (-643 $))) (-15 -2980 ($ $ (-643 $))) (-15 -2979 ($ $)) (-15 -4268 ($ $)) (-15 -4268 ($ $ (-773))) (-15 -2978 ($ $)) (-15 -2978 ($ $ (-773))) (-15 -2977 ($ $)) (-15 -2976 ($ $ $)) (-15 -3955 ($ $)) (-15 -3955 ($ $ $)) (-15 -3955 ($ $ $ $)) (-15 -2975 ($ $)) (-15 -2975 ($ $ $)) (-15 -2975 ($ $ $ $)) (-15 -3893 ($ $)) (-15 -3893 ($ $ $)) (-15 -3893 ($ $ $ $)) (-15 -3660 ($ $)) (-15 -3660 ($ (-643 $))) (-15 -2974 ($ $)) (-15 -2974 ($ (-643 $))) (-15 -2973 ($ $)) (-15 -2973 ($ (-643 $))) (-15 -2972 ($ (-643 $))) (-15 -2971 ($ (-643 $))) (-15 -2970 ($ (-643 $))) (-15 -2969 ($ (-643 $))) (-15 -3455 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3088 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4269 ($ $)) (-15 * ($ $ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ $)) (-15 -2965 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)) (-15 -3746 ($ $)) (-15 -4169 ($ $ $)) (-15 -4169 ($ $))))) (T -865)) +((-3240 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-865)))) (-3007 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-865)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-865)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865)))) (-3956 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-865)))) (-3996 (*1 *1) (-5 *1 (-865))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3004 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3003 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3000 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-2998 (*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-4204 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) (-3542 (*1 *1 *1) (-5 *1 (-865))) (-3541 (*1 *1 *1) (-5 *1 (-865))) (-4204 (*1 *1 *1) (-5 *1 (-865))) (-2997 (*1 *1 *1 *1) (-5 *1 (-865))) (-2996 (*1 *1 *1 *1) (-5 *1 (-865))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2994 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2994 (*1 *1 *1 *1 *1) (-5 *1 (-865))) (-2993 (*1 *1 *1 *1) (-5 *1 (-865))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-3966 (*1 *1 *1) (-5 *1 (-865))) (-2991 (*1 *1 *1 *1) (-5 *1 (-865))) (-2990 (*1 *1 *1) (-5 *1 (-865))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-865)))) (-5 *1 (-865)))) (-2989 (*1 *1 *1 *1) (-5 *1 (-865))) (-3011 (*1 *1 *1) (-5 *1 (-865))) (-3011 (*1 *1 *1 *1) (-5 *1 (-865))) (-2988 (*1 *1 *1 *1) (-5 *1 (-865))) (-2987 (*1 *1 *1 *1) (-5 *1 (-865))) (-2986 (*1 *1 *1 *1) (-5 *1 (-865))) (-2985 (*1 *1 *1 *1) (-5 *1 (-865))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) (-3505 (*1 *1 *1 *1) (-5 *1 (-865))) (-2984 (*1 *1 *1 *1) (-5 *1 (-865))) (-2983 (*1 *1 *1 *1) (-5 *1 (-865))) (-2982 (*1 *1 *1 *1) (-5 *1 (-865))) (-2981 (*1 *1 *1 *1) (-5 *1 (-865))) (-3971 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2979 (*1 *1 *1) (-5 *1 (-865))) (-4268 (*1 *1 *1) (-5 *1 (-865))) (-4268 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) (-2978 (*1 *1 *1) (-5 *1 (-865))) (-2978 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) (-2977 (*1 *1 *1) (-5 *1 (-865))) (-2976 (*1 *1 *1 *1) (-5 *1 (-865))) (-3955 (*1 *1 *1) (-5 *1 (-865))) (-3955 (*1 *1 *1 *1) (-5 *1 (-865))) (-3955 (*1 *1 *1 *1 *1) (-5 *1 (-865))) (-2975 (*1 *1 *1) (-5 *1 (-865))) (-2975 (*1 *1 *1 *1) (-5 *1 (-865))) (-2975 (*1 *1 *1 *1 *1) (-5 *1 (-865))) (-3893 (*1 *1 *1) (-5 *1 (-865))) (-3893 (*1 *1 *1 *1) (-5 *1 (-865))) (-3893 (*1 *1 *1 *1 *1) (-5 *1 (-865))) (-3660 (*1 *1 *1) (-5 *1 (-865))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2974 (*1 *1 *1) (-5 *1 (-865))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2973 (*1 *1 *1) (-5 *1 (-865))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2972 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) (-3455 (*1 *1 *1 *1) (-5 *1 (-865))) (-2968 (*1 *1 *1 *1) (-5 *1 (-865))) (-3088 (*1 *1 *1 *1) (-5 *1 (-865))) (-2967 (*1 *1 *1 *1) (-5 *1 (-865))) (-3087 (*1 *1 *1 *1) (-5 *1 (-865))) (-2966 (*1 *1 *1 *1) (-5 *1 (-865))) (-4271 (*1 *1 *1 *1) (-5 *1 (-865))) (-4269 (*1 *1 *1 *1) (-5 *1 (-865))) (-4269 (*1 *1 *1) (-5 *1 (-865))) (* (*1 *1 *1 *1) (-5 *1 (-865))) (-4381 (*1 *1 *1 *1) (-5 *1 (-865))) (** (*1 *1 *1 *1) (-5 *1 (-865))) (-2965 (*1 *1 *1 *1) (-5 *1 (-865))) (-2964 (*1 *1 *1 *1) (-5 *1 (-865))) (-2963 (*1 *1 *1 *1) (-5 *1 (-865))) (-3889 (*1 *1 *1 *1) (-5 *1 (-865))) (-3256 (*1 *1 *1 *1) (-5 *1 (-865))) (-3255 (*1 *1 *1 *1) (-5 *1 (-865))) (-3746 (*1 *1 *1) (-5 *1 (-865))) (-4169 (*1 *1 *1 *1) (-5 *1 (-865))) (-4169 (*1 *1 *1) (-5 *1 (-865)))) +(-13 (-1104) (-10 -8 (-15 -3240 ((-1275) $)) (-15 -3007 ($ (-1162))) (-15 -3006 ((-1275) (-1162))) (-15 -3956 ($ (-549))) (-15 -3956 ($ (-1180))) (-15 -3956 ($ (-1162))) (-15 -3956 ($ (-225))) (-15 -3996 ($)) (-15 -3005 ((-1162) (-1162))) (-15 -3004 ((-549) $)) (-15 -3003 ((-549) $)) (-15 -3004 ((-549))) (-15 -3003 ((-549))) (-15 -3002 ((-549) $)) (-15 -3001 ((-549) $)) (-15 -3000 ($ (-549))) (-15 -2999 ($ (-549))) (-15 -2998 ($ (-549) (-549))) (-15 -3542 ($ $ (-549))) (-15 -3541 ($ $ (-549))) (-15 -4204 ($ $ (-549))) (-15 -3542 ($ $)) (-15 -3541 ($ $)) (-15 -4204 ($ $)) (-15 -2997 ($ $ $)) (-15 -2996 ($ $ $)) (-15 -2997 ($ (-643 $))) (-15 -2996 ($ (-643 $))) (-15 -2995 ($ $ (-643 $))) (-15 -2994 ($ $ (-643 $))) (-15 -2994 ($ $ $ $)) (-15 -2993 ($ $ $)) (-15 -2992 ((-112) $)) (-15 -4231 ($ $ (-643 $))) (-15 -3966 ($ $)) (-15 -2991 ($ $ $)) (-15 -2990 ($ $)) (-15 -3528 ($ (-643 (-643 $)))) (-15 -2989 ($ $ $)) (-15 -3011 ($ $)) (-15 -3011 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -4242 ($ $ (-773))) (-15 -3505 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3971 ($ $ (-643 $))) (-15 -2980 ($ $ (-643 $))) (-15 -2979 ($ $)) (-15 -4268 ($ $)) (-15 -4268 ($ $ (-773))) (-15 -2978 ($ $)) (-15 -2978 ($ $ (-773))) (-15 -2977 ($ $)) (-15 -2976 ($ $ $)) (-15 -3955 ($ $)) (-15 -3955 ($ $ $)) (-15 -3955 ($ $ $ $)) (-15 -2975 ($ $)) (-15 -2975 ($ $ $)) (-15 -2975 ($ $ $ $)) (-15 -3893 ($ $)) (-15 -3893 ($ $ $)) (-15 -3893 ($ $ $ $)) (-15 -3660 ($ $)) (-15 -3660 ($ (-643 $))) (-15 -2974 ($ $)) (-15 -2974 ($ (-643 $))) (-15 -2973 ($ $)) (-15 -2973 ($ (-643 $))) (-15 -2972 ($ (-643 $))) (-15 -2971 ($ (-643 $))) (-15 -2970 ($ (-643 $))) (-15 -2969 ($ (-643 $))) (-15 -3455 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3088 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -4271 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4269 ($ $)) (-15 * ($ $ $)) (-15 -4381 ($ $ $)) (-15 ** ($ $ $)) (-15 -2965 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)) (-15 -3746 ($ $)) (-15 -4169 ($ $ $)) (-15 -4169 ($ $)))) +((-2968 (((-112) $ $) NIL)) (-4263 (((-3 $ "failed") (-1180)) 39)) (-3540 (((-773)) 32)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) 29)) (-3663 (((-1162) $) 46)) (-2563 (($ (-922)) 28)) (-3664 (((-1123) $) NIL)) (-4402 (((-1180) $) 13) (((-538) $) 19) (((-893 (-380)) $) 26) (((-893 (-549)) $) 22)) (-4378 (((-865) $) 16)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 43)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 41))) +(((-866 |#1|) (-13 (-846) (-616 (-1180)) (-616 (-538)) (-616 (-893 (-380))) (-616 (-893 (-549))) (-10 -8 (-15 -4263 ((-3 $ "failed") (-1180))))) (-643 (-1180))) (T -866)) +((-4263 (*1 *1 *2) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-866 *3)) (-14 *3 (-643 *2))))) +(-13 (-846) (-616 (-1180)) (-616 (-538)) (-616 (-893 (-380))) (-616 (-893 (-549))) (-10 -8 (-15 -4263 ((-3 $ "failed") (-1180))))) +((-2968 (((-112) $ $) NIL)) (-3973 (((-509) $) 9)) (-3008 (((-643 (-442)) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 21)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 16))) +(((-867) (-13 (-1104) (-10 -8 (-15 -3973 ((-509) $)) (-15 -3008 ((-643 (-442)) $))))) (T -867)) +((-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-867)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-643 (-442))) (-5 *1 (-867))))) +(-13 (-1104) (-10 -8 (-15 -3973 ((-509) $)) (-15 -3008 ((-643 (-442)) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-949 |#1|)) NIL) (((-949 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3530 (((-773)) NIL T CONST)) (-4355 (((-1275) (-773)) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-868 |#1| |#2| |#3| |#4|) (-13 (-1052) (-493 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4381 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4355 ((-1275) (-773))))) (-1052) (-643 (-1180)) (-643 (-773)) (-773)) (T -868)) +((-4381 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-868 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-773))) (-14 *5 (-773)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-868 *4 *5 *6 *7)) (-4 *4 (-1052)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 *3)) (-14 *7 *3)))) +(-13 (-1052) (-493 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4381 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4355 ((-1275) (-773))))) +((-3009 (((-3 (-174 |#3|) "failed") (-773) (-773) |#2| |#2|) 43)) (-3010 (((-3 (-410 |#3|) "failed") (-773) (-773) |#2| |#2|) 34))) +(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -3010 ((-3 (-410 |#3|) "failed") (-773) (-773) |#2| |#2|)) (-15 -3009 ((-3 (-174 |#3|) "failed") (-773) (-773) |#2| |#2|))) (-365) (-1262 |#1|) (-1245 |#1|)) (T -869)) +((-3009 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-773)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-869 *5 *4 *6)) (-4 *4 (-1262 *5)) (-4 *6 (-1245 *5)))) (-3010 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-773)) (-4 *5 (-365)) (-5 *2 (-410 *6)) (-5 *1 (-869 *5 *4 *6)) (-4 *4 (-1262 *5)) (-4 *6 (-1245 *5))))) +(-10 -7 (-15 -3010 ((-3 (-410 |#3|) "failed") (-773) (-773) |#2| |#2|)) (-15 -3009 ((-3 (-174 |#3|) "failed") (-773) (-773) |#2| |#2|))) +((-3010 (((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|)) 30) (((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) 28))) +(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -3010 ((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (-15 -3010 ((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|)))) (-365) (-1180) |#1|) (T -870)) +((-3010 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-773)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1180)) (-14 *7 *5) (-5 *2 (-410 (-1238 *6 *5))) (-5 *1 (-870 *5 *6 *7)))) (-3010 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-773)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1180)) (-14 *7 *5) (-5 *2 (-410 (-1238 *6 *5))) (-5 *1 (-870 *5 *6 *7))))) +(-10 -7 (-15 -3010 ((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (-15 -3010 ((-3 (-410 (-1238 |#2| |#1|)) "failed") (-773) (-773) (-1259 |#1| |#2| |#3|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $ (-549)) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3011 (($ (-1174 (-549)) (-549)) NIL)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3012 (($ $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4203 (((-773) $) NIL)) (-2573 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-3014 (((-549)) NIL)) (-3013 (((-549) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4200 (($ $ (-549)) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3015 (((-1157 (-549)) $) NIL)) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-549) $ (-549)) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL))) +(((-871 |#1|) (-872 |#1|) (-549)) (T -871)) +NIL +(-872 |#1|) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-3438 (($ $ (-549)) 68)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-3011 (($ (-1174 (-549)) (-549)) 67)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-3012 (($ $) 70)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4203 (((-773) $) 75)) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-3014 (((-549)) 72)) (-3013 (((-549) $) 71)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-4200 (($ $ (-549)) 74)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-3015 (((-1157 (-549)) $) 76)) (-3292 (($ $) 73)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-4201 (((-549) $ (-549)) 69)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-872 |#1|) (-140) (-549)) (T -872)) +((-3015 (*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-1157 (-549))))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-773)))) (-4200 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3292 (*1 *1 *1) (-4 *1 (-872 *2))) (-3014 (*1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3012 (*1 *1 *1) (-4 *1 (-872 *2))) (-4201 (*1 *2 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3438 (*1 *1 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) (-3011 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *3 (-549)) (-4 *1 (-872 *4))))) +(-13 (-308) (-147) (-10 -8 (-15 -3015 ((-1157 (-549)) $)) (-15 -4203 ((-773) $)) (-15 -4200 ($ $ (-549))) (-15 -3292 ($ $)) (-15 -3014 ((-549))) (-15 -3013 ((-549) $)) (-15 -3012 ($ $)) (-15 -4201 ((-549) $ (-549))) (-15 -3438 ($ $ (-549))) (-15 -3011 ($ (-1174 (-549)) (-549))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-871 |#1|) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-871 |#1|) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| (-871 |#1|) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| (-871 |#1|) (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| (-871 |#1|) (-1041 (-549))))) (-3576 (((-871 |#1|) $) NIL) (((-1180) $) NIL (|has| (-871 |#1|) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-871 |#1|) (-1041 (-549)))) (((-549) $) NIL (|has| (-871 |#1|) (-1041 (-549))))) (-4162 (($ $) NIL) (($ (-549) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-871 |#1|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-871 |#1|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-871 |#1|))) (|:| |vec| (-1269 (-871 |#1|)))) (-691 $) (-1269 $)) NIL) (((-691 (-871 |#1|)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-871 |#1|) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| (-871 |#1|) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-871 |#1|) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-871 |#1|) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-871 |#1|) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| (-871 |#1|) (-1154)))) (-3607 (((-112) $) NIL (|has| (-871 |#1|) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-871 |#1|) (-852)))) (-3260 (($ $ $) NIL (|has| (-871 |#1|) (-852)))) (-4390 (($ (-1 (-871 |#1|) (-871 |#1|)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-871 |#1|) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-871 |#1|) (-308)))) (-3534 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-871 |#1|) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-871 |#1|)) (-643 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-871 |#1|) (-871 |#1|)) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-294 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-643 (-294 (-871 |#1|)))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-643 (-1180)) (-643 (-871 |#1|))) NIL (|has| (-871 |#1|) (-517 (-1180) (-871 |#1|)))) (($ $ (-1180) (-871 |#1|)) NIL (|has| (-871 |#1|) (-517 (-1180) (-871 |#1|))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-871 |#1|)) NIL (|has| (-871 |#1|) (-287 (-871 |#1|) (-871 |#1|))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-773)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1180)) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-773)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-871 |#1|) $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| (-871 |#1|) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-871 |#1|) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-871 |#1|) (-616 (-538)))) (((-380) $) NIL (|has| (-871 |#1|) (-1023))) (((-225) $) NIL (|has| (-871 |#1|) (-1023)))) (-3016 (((-174 (-410 (-549))) $) NIL)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL) (($ (-871 |#1|)) NIL) (($ (-1180)) NIL (|has| (-871 |#1|) (-1041 (-1180))))) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-913))) (|has| (-871 |#1|) (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-410 (-549)) $ (-549)) NIL)) (-3807 (($ $) NIL (|has| (-871 |#1|) (-822)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-773)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1180)) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-871 |#1|) (-903 (-1180)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-773)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-871 |#1|) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-871 |#1|) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-871 |#1|) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-871 |#1|) (-852)))) (-4381 (($ $ $) NIL) (($ (-871 |#1|) (-871 |#1|)) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-871 |#1|) $) NIL) (($ $ (-871 |#1|)) NIL))) +(((-873 |#1|) (-13 (-994 (-871 |#1|)) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) (-549)) (T -873)) +((-4201 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-873 *4)) (-14 *4 *3) (-5 *3 (-549)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-873 *3)) (-14 *3 (-549)))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-14 *2 (-549)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-873 *3)) (-14 *3 *2)))) +(-13 (-994 (-871 |#1|)) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 ((|#2| $) NIL (|has| |#2| (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| |#2| (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (|has| |#2| (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549))))) (-3576 ((|#2| $) NIL) (((-1180) $) NIL (|has| |#2| (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-549)))) (((-549) $) NIL (|has| |#2| (-1041 (-549))))) (-4162 (($ $) 35) (($ (-549) $) 38)) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) 64)) (-3395 (($) NIL (|has| |#2| (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) NIL (|has| |#2| (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| |#2| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| |#2| (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 ((|#2| $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#2| (-1154)))) (-3607 (((-112) $) NIL (|has| |#2| (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| |#2| (-852)))) (-3260 (($ $ $) NIL (|has| |#2| (-852)))) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 60)) (-3869 (($) NIL (|has| |#2| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| |#2| (-308)))) (-3534 ((|#2| $) NIL (|has| |#2| (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 |#2|) (-643 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-643 (-294 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-643 (-1180)) (-643 |#2|)) NIL (|has| |#2| (-517 (-1180) |#2|))) (($ $ (-1180) |#2|) NIL (|has| |#2| (-517 (-1180) |#2|)))) (-1752 (((-773) $) NIL)) (-4231 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) NIL (|has| |#2| (-233))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3396 (($ $) NIL)) (-3398 ((|#2| $) NIL)) (-4402 (((-893 (-549)) $) NIL (|has| |#2| (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| |#2| (-616 (-893 (-380))))) (((-538) $) NIL (|has| |#2| (-616 (-538)))) (((-380) $) NIL (|has| |#2| (-1023))) (((-225) $) NIL (|has| |#2| (-1023)))) (-3016 (((-174 (-410 (-549))) $) 78)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4378 (((-865) $) 108) (($ (-549)) 20) (($ $) NIL) (($ (-410 (-549))) 25) (($ |#2|) 19) (($ (-1180)) NIL (|has| |#2| (-1041 (-1180))))) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-3535 ((|#2| $) NIL (|has| |#2| (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-410 (-549)) $ (-549)) 71)) (-3807 (($ $) NIL (|has| |#2| (-822)))) (-3510 (($) 15 T CONST)) (-3067 (($) 17 T CONST)) (-3072 (($ $) NIL (|has| |#2| (-233))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2966 (((-112) $ $) NIL (|has| |#2| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#2| (-852)))) (-3455 (((-112) $ $) 46)) (-3087 (((-112) $ $) NIL (|has| |#2| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#2| (-852)))) (-4381 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4269 (($ $) 50) (($ $ $) 52)) (-4271 (($ $ $) 48)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) 61)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 53) (($ $ $) 55) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-874 |#1| |#2|) (-13 (-994 |#2|) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) (-549) (-872 |#1|)) (T -874)) +((-4201 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-549))) (-5 *1 (-874 *4 *5)) (-5 *3 (-549)) (-4 *5 (-872 *4)))) (-3016 (*1 *2 *1) (-12 (-14 *3 (-549)) (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-874 *3 *4)) (-4 *4 (-872 *3)))) (-4162 (*1 *1 *1) (-12 (-14 *2 (-549)) (-5 *1 (-874 *2 *3)) (-4 *3 (-872 *2)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-14 *3 *2) (-5 *1 (-874 *3 *4)) (-4 *4 (-872 *3))))) +(-13 (-994 |#2|) (-10 -8 (-15 -4201 ((-410 (-549)) $ (-549))) (-15 -3016 ((-174 (-410 (-549))) $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)))) +((-2968 (((-112) $ $) NIL (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) (-4227 ((|#2| $) 12)) (-3017 (($ |#1| |#2|) 9)) (-3663 (((-1162) $) NIL (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) (-3664 (((-1123) $) NIL (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#1| $) 11)) (-3953 (($ |#1| |#2|) 10)) (-4378 (((-865) $) 18 (-3960 (-12 (|has| |#1| (-615 (-865))) (|has| |#2| (-615 (-865)))) (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104)))))) (-3662 (((-112) $ $) NIL (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104))))) (-3455 (((-112) $ $) 23 (-12 (|has| |#1| (-1104)) (|has| |#2| (-1104)))))) +(((-875 |#1| |#2|) (-13 (-1219) (-10 -8 (IF (|has| |#1| (-615 (-865))) (IF (|has| |#2| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1104)) (IF (|has| |#2| (-1104)) (-6 (-1104)) |%noBranch|) |%noBranch|) (-15 -3017 ($ |#1| |#2|)) (-15 -3953 ($ |#1| |#2|)) (-15 -4232 (|#1| $)) (-15 -4227 (|#2| $)))) (-1219) (-1219)) (T -875)) +((-3017 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) (-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) (-4232 (*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1219)))) (-4227 (*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1219))))) +(-13 (-1219) (-10 -8 (IF (|has| |#1| (-615 (-865))) (IF (|has| |#2| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1104)) (IF (|has| |#2| (-1104)) (-6 (-1104)) |%noBranch|) |%noBranch|) (-15 -3017 ($ |#1| |#2|)) (-15 -3953 ($ |#1| |#2|)) (-15 -4232 (|#1| $)) (-15 -4227 (|#2| $)))) +((-2968 (((-112) $ $) NIL)) (-3358 (((-549) $) 16)) (-3019 (($ (-157)) 13)) (-3018 (($ (-157)) 14)) (-3663 (((-1162) $) NIL)) (-3357 (((-157) $) 15)) (-3664 (((-1123) $) NIL)) (-3021 (($ (-157)) 11)) (-3022 (($ (-157)) 10)) (-4378 (((-865) $) 24) (($ (-157)) 17)) (-3020 (($ (-157)) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-876) (-13 (-1104) (-10 -8 (-15 -3022 ($ (-157))) (-15 -3021 ($ (-157))) (-15 -3020 ($ (-157))) (-15 -3019 ($ (-157))) (-15 -3018 ($ (-157))) (-15 -3357 ((-157) $)) (-15 -3358 ((-549) $)) (-15 -4378 ($ (-157)))))) (T -876)) +((-3022 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-876)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) +(-13 (-1104) (-10 -8 (-15 -3022 ($ (-157))) (-15 -3021 ($ (-157))) (-15 -3020 ($ (-157))) (-15 -3019 ($ (-157))) (-15 -3018 ($ (-157))) (-15 -3357 ((-157) $)) (-15 -3358 ((-549) $)) (-15 -4378 ($ (-157))))) +((-4378 (((-315 (-549)) (-410 (-949 (-48)))) 23) (((-315 (-549)) (-949 (-48))) 18))) +(((-877) (-10 -7 (-15 -4378 ((-315 (-549)) (-949 (-48)))) (-15 -4378 ((-315 (-549)) (-410 (-949 (-48))))))) (T -877)) +((-4378 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 (-48)))) (-5 *2 (-315 (-549))) (-5 *1 (-877)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-949 (-48))) (-5 *2 (-315 (-549))) (-5 *1 (-877))))) +(-10 -7 (-15 -4378 ((-315 (-549)) (-949 (-48)))) (-15 -4378 ((-315 (-549)) (-410 (-949 (-48)))))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 18) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3997 (((-112) $ (|[\|\|]| (-509))) 9) (((-112) $ (|[\|\|]| (-1162))) 13)) (-3662 (((-112) $ $) NIL)) (-4003 (((-509) $) 10) (((-1162) $) 14)) (-3455 (((-112) $ $) 15))) +(((-878) (-13 (-1086) (-1265) (-10 -8 (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -4003 ((-509) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1162)))) (-15 -4003 ((-1162) $))))) (T -878)) +((-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-878)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-878)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)) (-5 *1 (-878)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-878))))) +(-13 (-1086) (-1265) (-10 -8 (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -4003 ((-509) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1162)))) (-15 -4003 ((-1162) $)))) +((-4390 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 15))) +(((-879 |#1| |#2|) (-10 -7 (-15 -4390 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-1219) (-1219)) (T -879)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6))))) +(-10 -7 (-15 -4390 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) +((-3795 (($ |#1| |#1|) 8)) (-3025 ((|#1| $ (-773)) 15))) +(((-880 |#1|) (-10 -8 (-15 -3795 ($ |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) (-1219)) (T -880)) +((-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-880 *2)) (-4 *2 (-1219)))) (-3795 (*1 *1 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1219))))) +(-10 -8 (-15 -3795 ($ |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) +((-4390 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 15))) +(((-881 |#1| |#2|) (-10 -7 (-15 -4390 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-1219) (-1219)) (T -881)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6))))) +(-10 -7 (-15 -4390 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) +((-3795 (($ |#1| |#1| |#1|) 8)) (-3025 ((|#1| $ (-773)) 15))) +(((-882 |#1|) (-10 -8 (-15 -3795 ($ |#1| |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) (-1219)) (T -882)) +((-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-882 *2)) (-4 *2 (-1219)))) (-3795 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1219))))) +(-10 -8 (-15 -3795 ($ |#1| |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) +((-3023 (((-643 (-1185)) (-1162)) 9))) +(((-883) (-10 -7 (-15 -3023 ((-643 (-1185)) (-1162))))) (T -883)) +((-3023 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-643 (-1185))) (-5 *1 (-883))))) +(-10 -7 (-15 -3023 ((-643 (-1185)) (-1162)))) +((-4390 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 15))) +(((-884 |#1| |#2|) (-10 -7 (-15 -4390 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1219) (-1219)) (T -884)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))) +(-10 -7 (-15 -4390 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) +((-3024 (($ |#1| |#1| |#1|) 8)) (-3025 ((|#1| $ (-773)) 15))) +(((-885 |#1|) (-10 -8 (-15 -3024 ($ |#1| |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) (-1219)) (T -885)) +((-3025 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-885 *2)) (-4 *2 (-1219)))) (-3024 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1219))))) +(-10 -8 (-15 -3024 ($ |#1| |#1| |#1|)) (-15 -3025 (|#1| $ (-773)))) +((-3029 (((-1157 (-643 (-549))) (-643 (-549)) (-1157 (-643 (-549)))) 48)) (-3028 (((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549))) 44)) (-3030 (((-1157 (-643 (-549))) (-643 (-549))) 58) (((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549))) 56)) (-3031 (((-1157 (-643 (-549))) (-549)) 59)) (-3026 (((-1157 (-643 (-549))) (-549) (-549)) 34) (((-1157 (-643 (-549))) (-549)) 23) (((-1157 (-643 (-549))) (-549) (-549) (-549)) 19)) (-3027 (((-1157 (-643 (-549))) (-1157 (-643 (-549)))) 42)) (-3410 (((-643 (-549)) (-643 (-549))) 41))) +(((-886) (-10 -7 (-15 -3026 ((-1157 (-643 (-549))) (-549) (-549) (-549))) (-15 -3026 ((-1157 (-643 (-549))) (-549))) (-15 -3026 ((-1157 (-643 (-549))) (-549) (-549))) (-15 -3410 ((-643 (-549)) (-643 (-549)))) (-15 -3027 ((-1157 (-643 (-549))) (-1157 (-643 (-549))))) (-15 -3028 ((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549)))) (-15 -3029 ((-1157 (-643 (-549))) (-643 (-549)) (-1157 (-643 (-549))))) (-15 -3030 ((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549)))) (-15 -3030 ((-1157 (-643 (-549))) (-643 (-549)))) (-15 -3031 ((-1157 (-643 (-549))) (-549))))) (T -886)) +((-3031 (*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) (-3030 (*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549))))) (-3030 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549))))) (-3029 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *3 (-643 (-549))) (-5 *1 (-886)))) (-3028 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549))))) (-3027 (*1 *2 *2) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)))) (-3410 (*1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-886)))) (-3026 (*1 *2 *3 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) (-3026 (*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) (-3026 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549))))) +(-10 -7 (-15 -3026 ((-1157 (-643 (-549))) (-549) (-549) (-549))) (-15 -3026 ((-1157 (-643 (-549))) (-549))) (-15 -3026 ((-1157 (-643 (-549))) (-549) (-549))) (-15 -3410 ((-643 (-549)) (-643 (-549)))) (-15 -3027 ((-1157 (-643 (-549))) (-1157 (-643 (-549))))) (-15 -3028 ((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549)))) (-15 -3029 ((-1157 (-643 (-549))) (-643 (-549)) (-1157 (-643 (-549))))) (-15 -3030 ((-1157 (-643 (-549))) (-643 (-549)) (-643 (-549)))) (-15 -3030 ((-1157 (-643 (-549))) (-643 (-549)))) (-15 -3031 ((-1157 (-643 (-549))) (-549)))) +((-4402 (((-893 (-380)) $) 9 (|has| |#1| (-616 (-893 (-380))))) (((-893 (-549)) $) 8 (|has| |#1| (-616 (-893 (-549))))))) +(((-887 |#1|) (-140) (-1219)) (T -887)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-616 (-893 (-549)))) (-6 (-616 (-893 (-549)))) |%noBranch|) (IF (|has| |t#1| (-616 (-893 (-380)))) (-6 (-616 (-893 (-380)))) |%noBranch|))) +(((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549))))) +((-2968 (((-112) $ $) NIL)) (-4046 (($) 14)) (-3034 (($ (-891 |#1| |#2|) (-891 |#1| |#3|)) 28)) (-3032 (((-891 |#1| |#3|) $) 16)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3042 (((-112) $) 22)) (-3041 (($) 19)) (-4378 (((-865) $) 31)) (-3662 (((-112) $ $) NIL)) (-3033 (((-891 |#1| |#2|) $) 15)) (-3455 (((-112) $ $) 26))) +(((-888 |#1| |#2| |#3|) (-13 (-1104) (-10 -8 (-15 -3042 ((-112) $)) (-15 -3041 ($)) (-15 -4046 ($)) (-15 -3034 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -3033 ((-891 |#1| |#2|) $)) (-15 -3032 ((-891 |#1| |#3|) $)))) (-1104) (-1104) (-668 |#2|)) (T -888)) +((-3042 (*1 *2 *1) (-12 (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-888 *3 *4 *5)) (-4 *3 (-1104)) (-4 *5 (-668 *4)))) (-3041 (*1 *1) (-12 (-4 *3 (-1104)) (-5 *1 (-888 *2 *3 *4)) (-4 *2 (-1104)) (-4 *4 (-668 *3)))) (-4046 (*1 *1) (-12 (-4 *3 (-1104)) (-5 *1 (-888 *2 *3 *4)) (-4 *2 (-1104)) (-4 *4 (-668 *3)))) (-3034 (*1 *1 *2 *3) (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-668 *5)) (-5 *1 (-888 *4 *5 *6)))) (-3033 (*1 *2 *1) (-12 (-4 *4 (-1104)) (-5 *2 (-891 *3 *4)) (-5 *1 (-888 *3 *4 *5)) (-4 *3 (-1104)) (-4 *5 (-668 *4)))) (-3032 (*1 *2 *1) (-12 (-4 *4 (-1104)) (-5 *2 (-891 *3 *5)) (-5 *1 (-888 *3 *4 *5)) (-4 *3 (-1104)) (-4 *5 (-668 *4))))) +(-13 (-1104) (-10 -8 (-15 -3042 ((-112) $)) (-15 -3041 ($)) (-15 -4046 ($)) (-15 -3034 ($ (-891 |#1| |#2|) (-891 |#1| |#3|))) (-15 -3033 ((-891 |#1| |#2|) $)) (-15 -3032 ((-891 |#1| |#3|) $)))) +((-2968 (((-112) $ $) 7)) (-3199 (((-891 |#1| $) $ (-893 |#1|) (-891 |#1| $)) 14)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-889 |#1|) (-140) (-1104)) (T -889)) +((-3199 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-893 *4)) (-4 *1 (-889 *4)) (-4 *4 (-1104))))) +(-13 (-1104) (-10 -8 (-15 -3199 ((-891 |t#1| $) $ (-893 |t#1|) (-891 |t#1| $))))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-3035 (((-112) (-643 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3036 (((-891 |#1| |#2|) |#2| |#3|) 45 (-12 (-3746 (|has| |#2| (-1041 (-1180)))) (-3746 (|has| |#2| (-1052))))) (((-643 (-294 (-949 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1052)) (-3746 (|has| |#2| (-1041 (-1180)))))) (((-643 (-294 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1041 (-1180)))) (((-888 |#1| |#2| (-643 |#2|)) (-643 |#2|) |#3|) 21))) +(((-890 |#1| |#2| |#3|) (-10 -7 (-15 -3035 ((-112) |#2| |#3|)) (-15 -3035 ((-112) (-643 |#2|) |#3|)) (-15 -3036 ((-888 |#1| |#2| (-643 |#2|)) (-643 |#2|) |#3|)) (IF (|has| |#2| (-1041 (-1180))) (-15 -3036 ((-643 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1052)) (-15 -3036 ((-643 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -3036 ((-891 |#1| |#2|) |#2| |#3|))))) (-1104) (-889 |#1|) (-616 (-893 |#1|))) (T -890)) +((-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-5 *2 (-891 *5 *3)) (-5 *1 (-890 *5 *3 *4)) (-3746 (-4 *3 (-1041 (-1180)))) (-3746 (-4 *3 (-1052))) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-5 *2 (-643 (-294 (-949 *3)))) (-5 *1 (-890 *5 *3 *4)) (-4 *3 (-1052)) (-3746 (-4 *3 (-1041 (-1180)))) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-5 *2 (-643 (-294 *3))) (-5 *1 (-890 *5 *3 *4)) (-4 *3 (-1041 (-1180))) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-4 *6 (-889 *5)) (-5 *2 (-888 *5 *6 (-643 *6))) (-5 *1 (-890 *5 *6 *4)) (-5 *3 (-643 *6)) (-4 *4 (-616 (-893 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-4 *6 (-889 *5)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6 *4)) (-4 *4 (-616 (-893 *5))))) (-3035 (*1 *2 *3 *4) (-12 (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-890 *5 *3 *4)) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5)))))) +(-10 -7 (-15 -3035 ((-112) |#2| |#3|)) (-15 -3035 ((-112) (-643 |#2|) |#3|)) (-15 -3036 ((-888 |#1| |#2| (-643 |#2|)) (-643 |#2|) |#3|)) (IF (|has| |#2| (-1041 (-1180))) (-15 -3036 ((-643 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1052)) (-15 -3036 ((-643 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -3036 ((-891 |#1| |#2|) |#2| |#3|))))) +((-2968 (((-112) $ $) NIL)) (-3654 (($ $ $) 40)) (-3062 (((-3 (-112) "failed") $ (-893 |#1|)) 37)) (-4046 (($) 12)) (-3663 (((-1162) $) NIL)) (-3038 (($ (-893 |#1|) |#2| $) 20)) (-3664 (((-1123) $) NIL)) (-3040 (((-3 |#2| "failed") (-893 |#1|) $) 51)) (-3042 (((-112) $) 15)) (-3041 (($) 13)) (-3678 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))) $) 25)) (-3953 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|)))) 23)) (-4378 (((-865) $) 45)) (-3662 (((-112) $ $) NIL)) (-3037 (($ (-893 |#1|) |#2| $ |#2|) 49)) (-3039 (($ (-893 |#1|) |#2| $) 48)) (-3455 (((-112) $ $) 42))) +(((-891 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -3042 ((-112) $)) (-15 -3041 ($)) (-15 -4046 ($)) (-15 -3654 ($ $ $)) (-15 -3040 ((-3 |#2| "failed") (-893 |#1|) $)) (-15 -3039 ($ (-893 |#1|) |#2| $)) (-15 -3038 ($ (-893 |#1|) |#2| $)) (-15 -3037 ($ (-893 |#1|) |#2| $ |#2|)) (-15 -3678 ((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))) $)) (-15 -3953 ($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))))) (-15 -3062 ((-3 (-112) "failed") $ (-893 |#1|))))) (-1104) (-1104)) (T -891)) +((-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-3041 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-4046 (*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3654 (*1 *1 *1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3040 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-4 *2 (-1104)) (-5 *1 (-891 *4 *2)))) (-3039 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104)))) (-3038 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104)))) (-3037 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 *4)))) (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 *4)))) (-4 *4 (-1104)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)))) (-3062 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1104))))) +(-13 (-1104) (-10 -8 (-15 -3042 ((-112) $)) (-15 -3041 ($)) (-15 -4046 ($)) (-15 -3654 ($ $ $)) (-15 -3040 ((-3 |#2| "failed") (-893 |#1|) $)) (-15 -3039 ($ (-893 |#1|) |#2| $)) (-15 -3038 ($ (-893 |#1|) |#2| $)) (-15 -3037 ($ (-893 |#1|) |#2| $ |#2|)) (-15 -3678 ((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))) $)) (-15 -3953 ($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 |#2|))))) (-15 -3062 ((-3 (-112) "failed") $ (-893 |#1|))))) +((-4390 (((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)) 22))) +(((-892 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) (-1104) (-1104) (-1104)) (T -892)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-891 *5 *7)) (-5 *1 (-892 *5 *6 *7))))) +(-10 -7 (-15 -4390 ((-891 |#1| |#3|) (-1 |#3| |#2|) (-891 |#1| |#2|)))) +((-2968 (((-112) $ $) NIL)) (-3050 (($ $ (-643 (-51))) 74)) (-3485 (((-643 $) $) 138)) (-3047 (((-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51))) $) 30)) (-3681 (((-112) $) 35)) (-3048 (($ $ (-643 (-1180)) (-51)) 31)) (-3051 (($ $ (-643 (-51))) 73)) (-3577 (((-3 |#1| #1="failed") $) 71) (((-3 (-1180) #1#) $) 162)) (-3576 ((|#1| $) 68) (((-1180) $) NIL)) (-3045 (($ $) 126)) (-3057 (((-112) $) 55)) (-3052 (((-643 (-51)) $) 50)) (-3049 (($ (-1180) (-112) (-112) (-112)) 75)) (-3043 (((-3 (-643 $) "failed") (-643 $)) 82)) (-3054 (((-112) $) 58)) (-3055 (((-112) $) 57)) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) "failed") $) 41)) (-3060 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $) 97)) (-3225 (((-3 (-643 $) "failed") $) 40)) (-3061 (((-3 (-643 $) "failed") $ (-113)) 124) (((-3 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 $))) "failed") $) 107)) (-3059 (((-3 (-643 $) "failed") $) 42)) (-3227 (((-3 (-2 (|:| |val| $) (|:| -2564 (-773))) "failed") $) 45)) (-3058 (((-112) $) 34)) (-3664 (((-1123) $) NIL)) (-3046 (((-112) $) 28)) (-3053 (((-112) $) 52)) (-3044 (((-643 (-51)) $) 130)) (-3056 (((-112) $) 56)) (-4231 (($ (-113) (-643 $)) 104)) (-3747 (((-773) $) 33)) (-3824 (($ $) 72)) (-4402 (($ (-643 $)) 69)) (-4385 (((-112) $) 32)) (-4378 (((-865) $) 63) (($ |#1|) 23) (($ (-1180)) 76)) (-3662 (((-112) $ $) NIL)) (-3063 (($ $ (-51)) 129)) (-3510 (($) 103 T CONST)) (-3067 (($) 83 T CONST)) (-3455 (((-112) $ $) 93)) (-4381 (($ $ $) 117)) (-4271 (($ $ $) 121)) (** (($ $ (-773)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-893 |#1|) (-13 (-1104) (-1041 |#1|) (-1041 (-1180)) (-10 -8 (-15 0 ($) -4384) (-15 1 ($) -4384) (-15 -3225 ((-3 (-643 $) "failed") $)) (-15 -3226 ((-3 (-643 $) "failed") $)) (-15 -3061 ((-3 (-643 $) "failed") $ (-113))) (-15 -3061 ((-3 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 $))) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |val| $) (|:| -2564 (-773))) "failed") $)) (-15 -3060 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3059 ((-3 (-643 $) "failed") $)) (-15 -3228 ((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $)) (-15 -4231 ($ (-113) (-643 $))) (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773))) (-15 ** ($ $ $)) (-15 -4381 ($ $ $)) (-15 -3747 ((-773) $)) (-15 -4402 ($ (-643 $))) (-15 -3824 ($ $)) (-15 -3058 ((-112) $)) (-15 -3057 ((-112) $)) (-15 -3681 ((-112) $)) (-15 -4385 ((-112) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3054 ((-112) $)) (-15 -3053 ((-112) $)) (-15 -3052 ((-643 (-51)) $)) (-15 -3051 ($ $ (-643 (-51)))) (-15 -3050 ($ $ (-643 (-51)))) (-15 -3049 ($ (-1180) (-112) (-112) (-112))) (-15 -3048 ($ $ (-643 (-1180)) (-51))) (-15 -3047 ((-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51))) $)) (-15 -3046 ((-112) $)) (-15 -3045 ($ $)) (-15 -3063 ($ $ (-51))) (-15 -3044 ((-643 (-51)) $)) (-15 -3485 ((-643 $) $)) (-15 -3043 ((-3 (-643 $) "failed") (-643 $))))) (-1104)) (T -893)) +((-3510 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3067 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3225 (*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3226 (*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3061 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-643 (-893 *4))) (-5 *1 (-893 *4)) (-4 *4 (-1104)))) (-3061 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 (-893 *3))))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3227 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -2564 (-773)))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3060 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-893 *3)) (|:| |den| (-893 *3)))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3059 (*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3228 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -2564 (-893 *3)))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-4231 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 (-893 *4))) (-5 *1 (-893 *4)) (-4 *4 (-1104)))) (-4271 (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-4381 (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3824 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3050 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3049 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-112)) (-5 *1 (-893 *4)) (-4 *4 (-1104)))) (-3048 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-51)) (-5 *1 (-893 *4)) (-4 *4 (-1104)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51)))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3045 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) (-3063 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) (-3043 (*1 *2 *2) (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(-13 (-1104) (-1041 |#1|) (-1041 (-1180)) (-10 -8 (-15 (-3510) ($) -4384) (-15 (-3067) ($) -4384) (-15 -3225 ((-3 (-643 $) "failed") $)) (-15 -3226 ((-3 (-643 $) "failed") $)) (-15 -3061 ((-3 (-643 $) "failed") $ (-113))) (-15 -3061 ((-3 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 $))) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |val| $) (|:| -2564 (-773))) "failed") $)) (-15 -3060 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3059 ((-3 (-643 $) "failed") $)) (-15 -3228 ((-3 (-2 (|:| |val| $) (|:| -2564 $)) "failed") $)) (-15 -4231 ($ (-113) (-643 $))) (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773))) (-15 ** ($ $ $)) (-15 -4381 ($ $ $)) (-15 -3747 ((-773) $)) (-15 -4402 ($ (-643 $))) (-15 -3824 ($ $)) (-15 -3058 ((-112) $)) (-15 -3057 ((-112) $)) (-15 -3681 ((-112) $)) (-15 -4385 ((-112) $)) (-15 -3056 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -3054 ((-112) $)) (-15 -3053 ((-112) $)) (-15 -3052 ((-643 (-51)) $)) (-15 -3051 ($ $ (-643 (-51)))) (-15 -3050 ($ $ (-643 (-51)))) (-15 -3049 ($ (-1180) (-112) (-112) (-112))) (-15 -3048 ($ $ (-643 (-1180)) (-51))) (-15 -3047 ((-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51))) $)) (-15 -3046 ((-112) $)) (-15 -3045 ($ $)) (-15 -3063 ($ $ (-51))) (-15 -3044 ((-643 (-51)) $)) (-15 -3485 ((-643 $) $)) (-15 -3043 ((-3 (-643 $) "failed") (-643 $))))) +((-3629 (((-893 |#1|) (-893 |#1|) (-643 (-1180)) (-1 (-112) (-643 |#2|))) 32) (((-893 |#1|) (-893 |#1|) (-643 (-1 (-112) |#2|))) 46) (((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|)) 35)) (-3062 (((-112) (-643 |#2|) (-893 |#1|)) 42) (((-112) |#2| (-893 |#1|)) 36)) (-3954 (((-1 (-112) |#2|) (-893 |#1|)) 16)) (-3064 (((-643 |#2|) (-893 |#1|)) 24)) (-3063 (((-893 |#1|) (-893 |#1|) |#2|) 20))) +(((-894 |#1| |#2|) (-10 -7 (-15 -3629 ((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|))) (-15 -3629 ((-893 |#1|) (-893 |#1|) (-643 (-1 (-112) |#2|)))) (-15 -3629 ((-893 |#1|) (-893 |#1|) (-643 (-1180)) (-1 (-112) (-643 |#2|)))) (-15 -3954 ((-1 (-112) |#2|) (-893 |#1|))) (-15 -3062 ((-112) |#2| (-893 |#1|))) (-15 -3062 ((-112) (-643 |#2|) (-893 |#1|))) (-15 -3063 ((-893 |#1|) (-893 |#1|) |#2|)) (-15 -3064 ((-643 |#2|) (-893 |#1|)))) (-1104) (-1219)) (T -894)) +((-3064 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-643 *5)) (-5 *1 (-894 *4 *5)) (-4 *5 (-1219)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1219)))) (-3062 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *2 (-112)) (-5 *1 (-894 *5 *6)))) (-3062 (*1 *2 *3 *4) (-12 (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-894 *5 *3)) (-4 *3 (-1219)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-894 *4 *5)) (-4 *5 (-1219)))) (-3629 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-893 *5)) (-5 *3 (-643 (-1180))) (-5 *4 (-1 (-112) (-643 *6))) (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *1 (-894 *5 *6)))) (-3629 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-5 *3 (-643 (-1 (-112) *5))) (-4 *4 (-1104)) (-4 *5 (-1219)) (-5 *1 (-894 *4 *5)))) (-3629 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1104)) (-4 *5 (-1219)) (-5 *1 (-894 *4 *5))))) +(-10 -7 (-15 -3629 ((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|))) (-15 -3629 ((-893 |#1|) (-893 |#1|) (-643 (-1 (-112) |#2|)))) (-15 -3629 ((-893 |#1|) (-893 |#1|) (-643 (-1180)) (-1 (-112) (-643 |#2|)))) (-15 -3954 ((-1 (-112) |#2|) (-893 |#1|))) (-15 -3062 ((-112) |#2| (-893 |#1|))) (-15 -3062 ((-112) (-643 |#2|) (-893 |#1|))) (-15 -3063 ((-893 |#1|) (-893 |#1|) |#2|)) (-15 -3064 ((-643 |#2|) (-893 |#1|)))) +((-4390 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 19))) +(((-895 |#1| |#2|) (-10 -7 (-15 -4390 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1104) (-1104)) (T -895)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-893 *6)) (-5 *1 (-895 *5 *6))))) +(-10 -7 (-15 -4390 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) +((-2968 (((-112) $ $) NIL)) (-4366 (((-643 |#1|) $) 19)) (-3065 (((-112) $) 49)) (-3577 (((-3 (-674 |#1|) "failed") $) 56)) (-3576 (((-674 |#1|) $) 54)) (-4230 (($ $) 23)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-4265 (((-773) $) 61)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-674 |#1|) $) 21)) (-4378 (((-865) $) 47) (($ (-674 |#1|)) 26) (((-821 |#1|) $) 36) (($ |#1|) 25)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 9 T CONST)) (-3066 (((-643 (-674 |#1|)) $) 28)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 12)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 67))) +(((-896 |#1|) (-13 (-852) (-1041 (-674 |#1|)) (-10 -8 (-15 1 ($) -4384) (-15 -4378 ((-821 |#1|) $)) (-15 -4378 ($ |#1|)) (-15 -4232 ((-674 |#1|) $)) (-15 -4265 ((-773) $)) (-15 -3066 ((-643 (-674 |#1|)) $)) (-15 -4230 ($ $)) (-15 -3065 ((-112) $)) (-15 -4366 ((-643 |#1|) $)))) (-852)) (T -896)) +((-3067 (*1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-4378 (*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-674 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-643 (-674 *3))) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852))))) +(-13 (-852) (-1041 (-674 |#1|)) (-10 -8 (-15 (-3067) ($) -4384) (-15 -4378 ((-821 |#1|) $)) (-15 -4378 ($ |#1|)) (-15 -4232 ((-674 |#1|) $)) (-15 -4265 ((-773) $)) (-15 -3066 ((-643 (-674 |#1|)) $)) (-15 -4230 ($ $)) (-15 -3065 ((-112) $)) (-15 -4366 ((-643 |#1|) $)))) +((-3897 ((|#1| |#1| |#1|) 19))) +(((-897 |#1| |#2|) (-10 -7 (-15 -3897 (|#1| |#1| |#1|))) (-1245 |#2|) (-1052)) (T -897)) +((-3897 (*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-897 *2 *3)) (-4 *2 (-1245 *3))))) +(-10 -7 (-15 -3897 (|#1| |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3071 (((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3068 (((-1038) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 14)) (-3455 (((-112) $ $) 6))) +(((-898) (-140)) (T -898)) +((-3071 (*1 *2 *3 *4) (-12 (-4 *1 (-898)) (-5 *3 (-1066)) (-5 *4 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) (-3068 (*1 *2 *3) (-12 (-4 *1 (-898)) (-5 *3 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *2 (-1038))))) +(-13 (-1104) (-10 -7 (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| |explanations| (-1162))) (-1066) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))) (-15 -3068 ((-1038) (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-3070 ((|#1| |#1| (-773)) 29)) (-3069 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3859 (((-3 (-2 (|:| -3542 |#1|) (|:| -3541 |#1|)) "failed") |#1| (-773) (-773)) 32) (((-643 |#1|) |#1|) 39))) +(((-899 |#1| |#2|) (-10 -7 (-15 -3859 ((-643 |#1|) |#1|)) (-15 -3859 ((-3 (-2 (|:| -3542 |#1|) (|:| -3541 |#1|)) "failed") |#1| (-773) (-773))) (-15 -3069 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3070 (|#1| |#1| (-773)))) (-1245 |#2|) (-365)) (T -899)) +((-3070 (*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-365)) (-5 *1 (-899 *2 *4)) (-4 *2 (-1245 *4)))) (-3069 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-899 *2 *3)) (-4 *2 (-1245 *3)))) (-3859 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-773)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3542 *3) (|:| -3541 *3))) (-5 *1 (-899 *3 *5)) (-4 *3 (-1245 *5)))) (-3859 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-899 *3 *4)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -3859 ((-643 |#1|) |#1|)) (-15 -3859 ((-3 (-2 (|:| -3542 |#1|) (|:| -3541 |#1|)) "failed") |#1| (-773) (-773))) (-15 -3069 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3070 (|#1| |#1| (-773)))) +((-4004 (((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162)) 106) (((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162) (-225)) 102) (((-1038) (-901) (-1066)) 94) (((-1038) (-901)) 95)) (-3071 (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901) (-1066)) 65) (((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901)) 67))) +(((-900) (-10 -7 (-15 -4004 ((-1038) (-901))) (-15 -4004 ((-1038) (-901) (-1066))) (-15 -4004 ((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162) (-225))) (-15 -4004 ((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901) (-1066))))) (T -900)) +((-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-901)) (-5 *4 (-1066)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-900)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162))))) (-5 *1 (-900)))) (-4004 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-773)) (-5 *6 (-643 (-643 (-315 *3)))) (-5 *7 (-1162)) (-5 *5 (-643 (-315 (-380)))) (-5 *3 (-380)) (-5 *2 (-1038)) (-5 *1 (-900)))) (-4004 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-773)) (-5 *6 (-643 (-643 (-315 *3)))) (-5 *7 (-1162)) (-5 *8 (-225)) (-5 *5 (-643 (-315 (-380)))) (-5 *3 (-380)) (-5 *2 (-1038)) (-5 *1 (-900)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-901)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-900)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-1038)) (-5 *1 (-900))))) +(-10 -7 (-15 -4004 ((-1038) (-901))) (-15 -4004 ((-1038) (-901) (-1066))) (-15 -4004 ((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162) (-225))) (-15 -4004 ((-1038) (-380) (-380) (-380) (-380) (-773) (-773) (-643 (-315 (-380))) (-643 (-643 (-315 (-380)))) (-1162))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901))) (-15 -3071 ((-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) (|:| |explanations| (-643 (-1162)))) (-901) (-1066)))) +((-2968 (((-112) $ $) NIL)) (-3576 (((-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))) $) 19)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 21) (($ (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) 18)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-901) (-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))) (-15 -3576 ((-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))) $))))) (T -901)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *1 (-901)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) (-5 *1 (-901))))) +(-13 (-1104) (-10 -8 (-15 -4378 ($ (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))))) (-15 -3576 ((-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| (-643 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) (|:| |dFinish| (-691 (-225)))))) (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225))) $)))) +((-4242 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) 10) (($ $ |#2| (-773)) 15) (($ $ (-643 |#2|) (-643 (-773))) 18)) (-3072 (($ $ |#2|) 19) (($ $ (-643 |#2|)) 21) (($ $ |#2| (-773)) 22) (($ $ (-643 |#2|) (-643 (-773))) 24))) +(((-902 |#1| |#2|) (-10 -8 (-15 -3072 (|#1| |#1| (-643 |#2|) (-643 (-773)))) (-15 -3072 (|#1| |#1| |#2| (-773))) (-15 -3072 (|#1| |#1| (-643 |#2|))) (-15 -3072 (|#1| |#1| |#2|)) (-15 -4242 (|#1| |#1| (-643 |#2|) (-643 (-773)))) (-15 -4242 (|#1| |#1| |#2| (-773))) (-15 -4242 (|#1| |#1| (-643 |#2|))) (-15 -4242 (|#1| |#1| |#2|))) (-903 |#2|) (-1104)) (T -902)) +NIL +(-10 -8 (-15 -3072 (|#1| |#1| (-643 |#2|) (-643 (-773)))) (-15 -3072 (|#1| |#1| |#2| (-773))) (-15 -3072 (|#1| |#1| (-643 |#2|))) (-15 -3072 (|#1| |#1| |#2|)) (-15 -4242 (|#1| |#1| (-643 |#2|) (-643 (-773)))) (-15 -4242 (|#1| |#1| |#2| (-773))) (-15 -4242 (|#1| |#1| (-643 |#2|))) (-15 -4242 (|#1| |#1| |#2|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4242 (($ $ |#1|) 46) (($ $ (-643 |#1|)) 45) (($ $ |#1| (-773)) 44) (($ $ (-643 |#1|) (-643 (-773))) 43)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ |#1|) 42) (($ $ (-643 |#1|)) 41) (($ $ |#1| (-773)) 40) (($ $ (-643 |#1|) (-643 (-773))) 39)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-903 |#1|) (-140) (-1104)) (T -903)) +((-4242 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1104)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-903 *3)) (-4 *3 (-1104)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-903 *2)) (-4 *2 (-1104)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 (-773))) (-4 *1 (-903 *4)) (-4 *4 (-1104)))) (-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1104)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-903 *3)) (-4 *3 (-1104)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-903 *2)) (-4 *2 (-1104)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 (-773))) (-4 *1 (-903 *4)) (-4 *4 (-1104))))) +(-13 (-1052) (-10 -8 (-15 -4242 ($ $ |t#1|)) (-15 -4242 ($ $ (-643 |t#1|))) (-15 -4242 ($ $ |t#1| (-773))) (-15 -4242 ($ $ (-643 |t#1|) (-643 (-773)))) (-15 -3072 ($ $ |t#1|)) (-15 -3072 ($ $ (-643 |t#1|))) (-15 -3072 ($ $ |t#1| (-773))) (-15 -3072 ($ $ (-643 |t#1|) (-643 (-773)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 26)) (-1309 (((-112) $ (-773)) NIL)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-1388 (($ $ $) NIL (|has| $ (-6 -4426)))) (-1389 (($ $ $) NIL (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) (($ $ #2="left" $) NIL (|has| $ (-6 -4426))) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3541 (($ $) 25)) (-3073 (($ |#1|) 12) (($ $ $) 17)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3542 (($ $) 23)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) 20)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1206 |#1|) $) 9) (((-865) $) 29 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 21 (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-904 |#1|) (-13 (-119 |#1|) (-615 (-1206 |#1|)) (-10 -8 (-15 -3073 ($ |#1|)) (-15 -3073 ($ $ $)))) (-1104)) (T -904)) +((-3073 (*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1104)))) (-3073 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1104))))) +(-13 (-119 |#1|) (-615 (-1206 |#1|)) (-10 -8 (-15 -3073 ($ |#1|)) (-15 -3073 ($ $ $)))) +((-2968 (((-112) $ $) NIL)) (-3310 (((-643 $) (-643 $)) 103)) (-4055 (((-549) $) 84)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-4203 (((-773) $) 81)) (-3093 (((-1100 |#1|) $ |#1|) 72)) (-2573 (((-112) $) NIL)) (-3076 (((-112) $) 88)) (-3078 (((-773) $) 85)) (-3089 (((-1100 |#1|) $) 61)) (-2934 (($ $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-3260 (($ $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-3082 (((-2 (|:| |preimage| (-643 |#1|)) (|:| |image| (-643 |#1|))) $) 56)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 131)) (-3664 (((-1123) $) NIL)) (-3075 (((-1100 |#1|) $) 139 (|has| |#1| (-370)))) (-3077 (((-112) $) 82)) (-4199 ((|#1| $ |#1|) 70)) (-4231 ((|#1| $ |#1|) 133)) (-4380 (((-773) $) 63)) (-3084 (($ (-643 (-643 |#1|))) 118)) (-3079 (((-974) $) 76)) (-3085 (($ (-643 |#1|)) 33)) (-3410 (($ $ $) NIL)) (-2756 (($ $ $) NIL)) (-3081 (($ (-643 (-643 |#1|))) 58)) (-3080 (($ (-643 (-643 |#1|))) 123)) (-3074 (($ (-643 |#1|)) 135)) (-4378 (((-865) $) 117) (($ (-643 (-643 |#1|))) 91) (($ (-643 |#1|)) 92)) (-3662 (((-112) $ $) NIL)) (-3067 (($) 24 T CONST)) (-2966 (((-112) $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-3455 (((-112) $ $) 68)) (-3087 (((-112) $ $) NIL (-3960 (|has| |#1| (-370)) (|has| |#1| (-852))))) (-3088 (((-112) $ $) 90)) (-4381 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ $ $) 34))) +(((-905 |#1|) (-13 (-907 |#1|) (-10 -8 (-15 -3082 ((-2 (|:| |preimage| (-643 |#1|)) (|:| |image| (-643 |#1|))) $)) (-15 -3081 ($ (-643 (-643 |#1|)))) (-15 -4378 ($ (-643 (-643 |#1|)))) (-15 -4378 ($ (-643 |#1|))) (-15 -3080 ($ (-643 (-643 |#1|)))) (-15 -4380 ((-773) $)) (-15 -3089 ((-1100 |#1|) $)) (-15 -3079 ((-974) $)) (-15 -4203 ((-773) $)) (-15 -3078 ((-773) $)) (-15 -4055 ((-549) $)) (-15 -3077 ((-112) $)) (-15 -3076 ((-112) $)) (-15 -3310 ((-643 $) (-643 $))) (IF (|has| |#1| (-370)) (-15 -3075 ((-1100 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -3074 ($ (-643 |#1|))) (IF (|has| |#1| (-370)) (-15 -3074 ($ (-643 |#1|))) |%noBranch|)))) (-1104)) (T -905)) +((-3082 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-643 *3)) (|:| |image| (-643 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) (-3080 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-974)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3310 (*1 *2 *2) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) (-4 *3 (-1104)))) (-3074 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-905 *3))))) +(-13 (-907 |#1|) (-10 -8 (-15 -3082 ((-2 (|:| |preimage| (-643 |#1|)) (|:| |image| (-643 |#1|))) $)) (-15 -3081 ($ (-643 (-643 |#1|)))) (-15 -4378 ($ (-643 (-643 |#1|)))) (-15 -4378 ($ (-643 |#1|))) (-15 -3080 ($ (-643 (-643 |#1|)))) (-15 -4380 ((-773) $)) (-15 -3089 ((-1100 |#1|) $)) (-15 -3079 ((-974) $)) (-15 -4203 ((-773) $)) (-15 -3078 ((-773) $)) (-15 -4055 ((-549) $)) (-15 -3077 ((-112) $)) (-15 -3076 ((-112) $)) (-15 -3310 ((-643 $) (-643 $))) (IF (|has| |#1| (-370)) (-15 -3075 ((-1100 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -3074 ($ (-643 |#1|))) (IF (|has| |#1| (-370)) (-15 -3074 ($ (-643 |#1|))) |%noBranch|)))) +((-3083 ((|#2| (-1145 |#1| |#2|)) 50))) +(((-906 |#1| |#2|) (-10 -7 (-15 -3083 (|#2| (-1145 |#1| |#2|)))) (-922) (-13 (-1052) (-10 -7 (-6 (-4427 "*"))))) (T -906)) +((-3083 (*1 *2 *3) (-12 (-5 *3 (-1145 *4 *2)) (-14 *4 (-922)) (-4 *2 (-13 (-1052) (-10 -7 (-6 (-4427 "*"))))) (-5 *1 (-906 *4 *2))))) +(-10 -7 (-15 -3083 (|#2| (-1145 |#1| |#2|)))) +((-2968 (((-112) $ $) 7)) (-4156 (($) 19 T CONST)) (-3890 (((-3 $ "failed") $) 16)) (-3093 (((-1100 |#1|) $ |#1|) 33)) (-2573 (((-112) $) 18)) (-2934 (($ $ $) 31 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-3260 (($ $ $) 30 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 25)) (-3664 (((-1123) $) 11)) (-4199 ((|#1| $ |#1|) 35)) (-4231 ((|#1| $ |#1|) 34)) (-3084 (($ (-643 (-643 |#1|))) 36)) (-3085 (($ (-643 |#1|)) 37)) (-3410 (($ $ $) 22)) (-2756 (($ $ $) 21)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3067 (($) 20 T CONST)) (-2966 (((-112) $ $) 28 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-2967 (((-112) $ $) 27 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 29 (-3960 (|has| |#1| (-852)) (|has| |#1| (-370))))) (-3088 (((-112) $ $) 32)) (-4381 (($ $ $) 24)) (** (($ $ (-922)) 14) (($ $ (-773)) 17) (($ $ (-549)) 23)) (* (($ $ $) 15))) +(((-907 |#1|) (-140) (-1104)) (T -907)) +((-3085 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-907 *3)))) (-3084 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-4 *1 (-907 *3)))) (-4199 (*1 *2 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1104)))) (-4231 (*1 *2 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1104)))) (-3093 (*1 *2 *1 *3) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1104)) (-5 *2 (-1100 *3)))) (-3088 (*1 *2 *1 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(-13 (-476) (-10 -8 (-15 -3085 ($ (-643 |t#1|))) (-15 -3084 ($ (-643 (-643 |t#1|)))) (-15 -4199 (|t#1| $ |t#1|)) (-15 -4231 (|t#1| $ |t#1|)) (-15 -3093 ((-1100 |t#1|) $ |t#1|)) (-15 -3088 ((-112) $ $)) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-852)) |%noBranch|))) +(((-102) . T) ((-615 (-865)) . T) ((-476) . T) ((-728) . T) ((-852) -3960 (|has| |#1| (-852)) (|has| |#1| (-370))) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3095 (((-643 (-643 (-773))) $) 164)) (-3091 (((-643 (-773)) (-905 |#1|) $) 192)) (-3090 (((-643 (-773)) (-905 |#1|) $) 193)) (-3096 (((-643 (-905 |#1|)) $) 153)) (-3395 (((-905 |#1|) $ (-549)) 158) (((-905 |#1|) $) 159)) (-3094 (($ (-643 (-905 |#1|))) 166)) (-4203 (((-773) $) 160)) (-3092 (((-1100 (-1100 |#1|)) $) 190)) (-3093 (((-1100 |#1|) $ |#1|) 181) (((-1100 (-1100 |#1|)) $ (-1100 |#1|)) 201) (((-1100 (-643 |#1|)) $ (-643 |#1|)) 204)) (-3089 (((-1100 |#1|) $) 156)) (-3666 (((-112) (-905 |#1|) $) 141)) (-3663 (((-1162) $) NIL)) (-3086 (((-1275) $) 146) (((-1275) $ (-549) (-549)) 205)) (-3664 (((-1123) $) NIL)) (-3098 (((-643 (-905 |#1|)) $) 147)) (-4231 (((-905 |#1|) $ (-773)) 154)) (-4380 (((-773) $) 161)) (-4378 (((-865) $) 178) (((-643 (-905 |#1|)) $) 28) (($ (-643 (-905 |#1|))) 165)) (-3662 (((-112) $ $) NIL)) (-3097 (((-643 |#1|) $) 163)) (-3455 (((-112) $ $) 198)) (-3087 (((-112) $ $) 196)) (-3088 (((-112) $ $) 195))) +(((-908 |#1|) (-13 (-1104) (-10 -8 (-15 -4378 ((-643 (-905 |#1|)) $)) (-15 -3098 ((-643 (-905 |#1|)) $)) (-15 -4231 ((-905 |#1|) $ (-773))) (-15 -3395 ((-905 |#1|) $ (-549))) (-15 -3395 ((-905 |#1|) $)) (-15 -4203 ((-773) $)) (-15 -4380 ((-773) $)) (-15 -3097 ((-643 |#1|) $)) (-15 -3096 ((-643 (-905 |#1|)) $)) (-15 -3095 ((-643 (-643 (-773))) $)) (-15 -4378 ($ (-643 (-905 |#1|)))) (-15 -3094 ($ (-643 (-905 |#1|)))) (-15 -3093 ((-1100 |#1|) $ |#1|)) (-15 -3092 ((-1100 (-1100 |#1|)) $)) (-15 -3093 ((-1100 (-1100 |#1|)) $ (-1100 |#1|))) (-15 -3093 ((-1100 (-643 |#1|)) $ (-643 |#1|))) (-15 -3666 ((-112) (-905 |#1|) $)) (-15 -3091 ((-643 (-773)) (-905 |#1|) $)) (-15 -3090 ((-643 (-773)) (-905 |#1|) $)) (-15 -3089 ((-1100 |#1|) $)) (-15 -3088 ((-112) $ $)) (-15 -3087 ((-112) $ $)) (-15 -3086 ((-1275) $)) (-15 -3086 ((-1275) $ (-549) (-549))))) (-1104)) (T -908)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-905 *4)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-905 *4)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3097 (*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-773)))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-643 (-905 *3))) (-4 *3 (-1104)) (-5 *1 (-908 *3)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-643 (-905 *3))) (-4 *3 (-1104)) (-5 *1 (-908 *3)))) (-3093 (*1 *2 *1 *3) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-1100 (-1100 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3093 (*1 *2 *1 *3) (-12 (-4 *4 (-1104)) (-5 *2 (-1100 (-1100 *4))) (-5 *1 (-908 *4)) (-5 *3 (-1100 *4)))) (-3093 (*1 *2 *1 *3) (-12 (-4 *4 (-1104)) (-5 *2 (-1100 (-643 *4))) (-5 *1 (-908 *4)) (-5 *3 (-643 *4)))) (-3666 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-908 *4)))) (-3091 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-643 (-773))) (-5 *1 (-908 *4)))) (-3090 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-643 (-773))) (-5 *1 (-908 *4)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3088 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3087 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) (-3086 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-908 *4)) (-4 *4 (-1104))))) +(-13 (-1104) (-10 -8 (-15 -4378 ((-643 (-905 |#1|)) $)) (-15 -3098 ((-643 (-905 |#1|)) $)) (-15 -4231 ((-905 |#1|) $ (-773))) (-15 -3395 ((-905 |#1|) $ (-549))) (-15 -3395 ((-905 |#1|) $)) (-15 -4203 ((-773) $)) (-15 -4380 ((-773) $)) (-15 -3097 ((-643 |#1|) $)) (-15 -3096 ((-643 (-905 |#1|)) $)) (-15 -3095 ((-643 (-643 (-773))) $)) (-15 -4378 ($ (-643 (-905 |#1|)))) (-15 -3094 ($ (-643 (-905 |#1|)))) (-15 -3093 ((-1100 |#1|) $ |#1|)) (-15 -3092 ((-1100 (-1100 |#1|)) $)) (-15 -3093 ((-1100 (-1100 |#1|)) $ (-1100 |#1|))) (-15 -3093 ((-1100 (-643 |#1|)) $ (-643 |#1|))) (-15 -3666 ((-112) (-905 |#1|) $)) (-15 -3091 ((-643 (-773)) (-905 |#1|) $)) (-15 -3090 ((-643 (-773)) (-905 |#1|) $)) (-15 -3089 ((-1100 |#1|) $)) (-15 -3088 ((-112) $ $)) (-15 -3087 ((-112) $ $)) (-15 -3086 ((-1275) $)) (-15 -3086 ((-1275) $ (-549) (-549))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-4364 (((-112) $) NIL)) (-4361 (((-773)) NIL)) (-3754 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-1843 (((-1192 (-922) (-773)) (-549)) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 $ "failed") $) NIL)) (-3576 (($ $) NIL)) (-1967 (($ (-1269 $)) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-3236 (($) NIL)) (-1848 (((-112) $) NIL)) (-1941 (($ $) NIL) (($ $ (-773)) NIL)) (-4155 (((-112) $) NIL)) (-4203 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2573 (((-112) $) NIL)) (-2191 (($) NIL (|has| $ (-370)))) (-2189 (((-112) $) NIL (|has| $ (-370)))) (-3536 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-3868 (((-3 $ "failed") $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2192 (((-1174 $) $ (-922)) NIL (|has| $ (-370))) (((-1174 $) $) NIL)) (-2188 (((-922) $) NIL)) (-1772 (((-1174 $) $) NIL (|has| $ (-370)))) (-1771 (((-3 (-1174 $) "failed") $ $) NIL (|has| $ (-370))) (((-1174 $) $) NIL (|has| $ (-370)))) (-1773 (($ $ (-1174 $)) NIL (|has| $ (-370)))) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL T CONST)) (-2563 (($ (-922)) NIL)) (-4363 (((-112) $) NIL)) (-3664 (((-1123) $) NIL)) (-2572 (($) NIL (|has| $ (-370)))) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL)) (-4164 (((-408 $) $) NIL)) (-4362 (((-922)) NIL) (((-834 (-922))) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-1942 (((-3 (-773) "failed") $ $) NIL) (((-773) $) NIL)) (-4343 (((-134)) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-4380 (((-922) $) NIL) (((-834 (-922)) $) NIL)) (-3605 (((-1174 $)) NIL)) (-1842 (($) NIL)) (-1774 (($) NIL (|has| $ (-370)))) (-3644 (((-691 $) (-1269 $)) NIL) (((-1269 $) $) NIL)) (-4402 (((-549) $) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $) (-922)) NIL) (((-1269 $)) NIL)) (-2240 (((-112) $ $) NIL)) (-4365 (((-112) $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-4360 (($ $ (-773)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) +(((-909 |#1|) (-13 (-352) (-330 $) (-616 (-549))) (-922)) (T -909)) +NIL +(-13 (-352) (-330 $) (-616 (-549))) +((-3100 (((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|)) 159)) (-3103 ((|#1|) 97)) (-3102 (((-408 (-1174 |#4|)) (-1174 |#4|)) 168)) (-3104 (((-408 (-1174 |#4|)) (-643 |#3|) (-1174 |#4|)) 84)) (-3101 (((-408 (-1174 |#4|)) (-1174 |#4|)) 178)) (-3099 (((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|) |#3|) 113))) +(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3100 ((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|))) (-15 -3101 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -3102 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -3103 (|#1|)) (-15 -3099 ((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|) |#3|)) (-15 -3104 ((-408 (-1174 |#4|)) (-643 |#3|) (-1174 |#4|)))) (-913) (-795) (-852) (-953 |#1| |#2| |#3|)) (T -910)) +((-3104 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *7)) (-4 *7 (-852)) (-4 *5 (-913)) (-4 *6 (-795)) (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-408 (-1174 *8))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-1174 *8)))) (-3099 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-643 (-1174 *7))) (-5 *3 (-1174 *7)) (-4 *7 (-953 *5 *6 *4)) (-4 *5 (-913)) (-4 *6 (-795)) (-4 *4 (-852)) (-5 *1 (-910 *5 *6 *4 *7)))) (-3103 (*1 *2) (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-913)) (-5 *1 (-910 *2 *3 *4 *5)) (-4 *5 (-953 *2 *3 *4)))) (-3102 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) (-3100 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *7))) (-5 *3 (-1174 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-910 *4 *5 *6 *7))))) +(-10 -7 (-15 -3100 ((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|))) (-15 -3101 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -3102 ((-408 (-1174 |#4|)) (-1174 |#4|))) (-15 -3103 (|#1|)) (-15 -3099 ((-3 (-643 (-1174 |#4|)) "failed") (-643 (-1174 |#4|)) (-1174 |#4|) |#3|)) (-15 -3104 ((-408 (-1174 |#4|)) (-643 |#3|) (-1174 |#4|)))) +((-3100 (((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|)) 41)) (-3103 ((|#1|) 75)) (-3102 (((-408 (-1174 |#2|)) (-1174 |#2|)) 124)) (-3104 (((-408 (-1174 |#2|)) (-1174 |#2|)) 108)) (-3101 (((-408 (-1174 |#2|)) (-1174 |#2|)) 135))) +(((-911 |#1| |#2|) (-10 -7 (-15 -3100 ((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|))) (-15 -3101 ((-408 (-1174 |#2|)) (-1174 |#2|))) (-15 -3102 ((-408 (-1174 |#2|)) (-1174 |#2|))) (-15 -3103 (|#1|)) (-15 -3104 ((-408 (-1174 |#2|)) (-1174 |#2|)))) (-913) (-1245 |#1|)) (T -911)) +((-3104 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5)))) (-3103 (*1 *2) (-12 (-4 *2 (-913)) (-5 *1 (-911 *2 *3)) (-4 *3 (-1245 *2)))) (-3102 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5)))) (-3101 (*1 *2 *3) (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5)))) (-3100 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-913)) (-5 *1 (-911 *4 *5))))) +(-10 -7 (-15 -3100 ((-3 (-643 (-1174 |#2|)) "failed") (-643 (-1174 |#2|)) (-1174 |#2|))) (-15 -3101 ((-408 (-1174 |#2|)) (-1174 |#2|))) (-15 -3102 ((-408 (-1174 |#2|)) (-1174 |#2|))) (-15 -3103 (|#1|)) (-15 -3104 ((-408 (-1174 |#2|)) (-1174 |#2|)))) +((-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 42)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 18)) (-3105 (((-3 $ "failed") $) 36))) +(((-912 |#1|) (-10 -8 (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) (-913)) (T -912)) +NIL +(-10 -8 (-15 -3105 ((-3 |#1| "failed") |#1|)) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 66)) (-4206 (($ $) 57)) (-4401 (((-408 $) $) 58)) (-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 63)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-4155 (((-112) $) 59)) (-2573 (((-112) $) 35)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3108 (((-408 (-1174 $)) (-1174 $)) 64)) (-3109 (((-408 (-1174 $)) (-1174 $)) 65)) (-4164 (((-408 $) $) 56)) (-3889 (((-3 $ "failed") $ $) 48)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) 62 (|has| $ (-145)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3105 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-913) (-140)) (T -913)) +((-3111 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-913)))) (-3110 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3109 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3108 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1)))) (-3107 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-643 (-1174 *1))) (-5 *3 (-1174 *1)) (-4 *1 (-913)))) (-3106 (*1 *2 *3) (|partial| -12 (-5 *3 (-691 *1)) (-4 *1 (-145)) (-4 *1 (-913)) (-5 *2 (-1269 *1)))) (-3105 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-913))))) +(-13 (-1224) (-10 -8 (-15 -3110 ((-408 (-1174 $)) (-1174 $))) (-15 -3109 ((-408 (-1174 $)) (-1174 $))) (-15 -3108 ((-408 (-1174 $)) (-1174 $))) (-15 -3111 ((-1174 $) (-1174 $) (-1174 $))) (-15 -3107 ((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $))) (IF (|has| $ (-145)) (PROGN (-15 -3106 ((-3 (-1269 $) "failed") (-691 $))) (-15 -3105 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) +((-3113 (((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)) 77)) (-3112 (((-112) (-335 |#2| |#3| |#4| |#5|)) 17)) (-4203 (((-3 (-773) "failed") (-335 |#2| |#3| |#4| |#5|)) 15))) +(((-914 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4203 ((-3 (-773) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3112 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3113 ((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) (-13 (-560) (-1041 (-549))) (-424 |#1|) (-1245 |#2|) (-1245 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -914)) +((-3113 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-2 (|:| -4203 (-773)) (|:| -2546 *8))) (-5 *1 (-914 *4 *5 *6 *7 *8)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-112)) (-5 *1 (-914 *4 *5 *6 *7 *8)))) (-4203 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-773)) (-5 *1 (-914 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4203 ((-3 (-773) "failed") (-335 |#2| |#3| |#4| |#5|))) (-15 -3112 ((-112) (-335 |#2| |#3| |#4| |#5|))) (-15 -3113 ((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#5|)) "failed") (-335 |#2| |#3| |#4| |#5|)))) +((-3113 (((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#3|)) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|)) 64)) (-3112 (((-112) (-335 (-410 (-549)) |#1| |#2| |#3|)) 16)) (-4203 (((-3 (-773) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|)) 14))) +(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -4203 ((-3 (-773) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|))) (-15 -3112 ((-112) (-335 (-410 (-549)) |#1| |#2| |#3|))) (-15 -3113 ((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#3|)) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|)))) (-1245 (-410 (-549))) (-1245 (-410 |#1|)) (-344 (-410 (-549)) |#1| |#2|)) (T -915)) +((-3113 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-2 (|:| -4203 (-773)) (|:| -2546 *6))) (-5 *1 (-915 *4 *5 *6)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-915 *4 *5 *6)))) (-4203 (*1 *2 *3) (|partial| -12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-773)) (-5 *1 (-915 *4 *5 *6))))) +(-10 -7 (-15 -4203 ((-3 (-773) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|))) (-15 -3112 ((-112) (-335 (-410 (-549)) |#1| |#2| |#3|))) (-15 -3113 ((-3 (-2 (|:| -4203 (-773)) (|:| -2546 |#3|)) "failed") (-335 (-410 (-549)) |#1| |#2| |#3|)))) +((-3118 ((|#2| |#2|) 26)) (-3116 (((-549) (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) 15)) (-3114 (((-922) (-549)) 38)) (-3117 (((-549) |#2|) 45)) (-3115 (((-549) |#2|) 21) (((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|) 20))) +(((-916 |#1| |#2|) (-10 -7 (-15 -3114 ((-922) (-549))) (-15 -3115 ((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|)) (-15 -3115 ((-549) |#2|)) (-15 -3116 ((-549) (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))) (-15 -3117 ((-549) |#2|)) (-15 -3118 (|#2| |#2|))) (-1245 (-410 (-549))) (-1245 (-410 |#1|))) (T -916)) +((-3118 (*1 *2 *2) (-12 (-4 *3 (-1245 (-410 (-549)))) (-5 *1 (-916 *3 *2)) (-4 *2 (-1245 (-410 *3))))) (-3117 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1245 (-410 *4))))) (-3115 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1245 (-410 *4))))) (-3115 (*1 *2 *3) (-12 (-4 *3 (-1245 (-410 (-549)))) (-5 *2 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))) (-5 *1 (-916 *3 *4)) (-4 *4 (-1245 (-410 *3))))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-549)) (-4 *4 (-1245 (-410 *3))) (-5 *2 (-922)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1245 (-410 *4)))))) +(-10 -7 (-15 -3114 ((-922) (-549))) (-15 -3115 ((-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))) |#1|)) (-15 -3115 ((-549) |#2|)) (-15 -3116 ((-549) (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))))) (-15 -3117 ((-549) |#2|)) (-15 -3118 (|#2| |#2|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 ((|#1| $) 100)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-2964 (($ $ $) NIL)) (-3890 (((-3 $ "failed") $) 94)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3126 (($ |#1| (-408 |#1|)) 92)) (-3120 (((-1174 |#1|) |#1| |#1|) 53)) (-3119 (($ $) 61)) (-2573 (((-112) $) NIL)) (-3121 (((-549) $) 97)) (-3122 (($ $ (-549)) 99)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3123 ((|#1| $) 96)) (-3124 (((-408 |#1|) $) 95)) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) 93)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3125 (($ $) 50)) (-4378 (((-865) $) 124) (($ (-549)) 73) (($ $) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 41) (((-410 |#1|) $) 78) (($ (-410 (-408 |#1|))) 86)) (-3530 (((-773)) 71 T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) 26 T CONST)) (-3067 (($) 15 T CONST)) (-3455 (((-112) $ $) 87)) (-4381 (($ $ $) NIL)) (-4269 (($ $) 108) (($ $ $) NIL)) (-4271 (($ $ $) 49)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 110) (($ $ $) 48) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-917 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -4378 ((-410 |#1|) $)) (-15 -4378 ($ (-410 (-408 |#1|)))) (-15 -3125 ($ $)) (-15 -3124 ((-408 |#1|) $)) (-15 -3123 (|#1| $)) (-15 -3122 ($ $ (-549))) (-15 -3121 ((-549) $)) (-15 -3120 ((-1174 |#1|) |#1| |#1|)) (-15 -3119 ($ $)) (-15 -3126 ($ |#1| (-408 |#1|))) (-15 -3533 (|#1| $)))) (-308)) (T -917)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-410 (-408 *3))) (-4 *3 (-308)) (-5 *1 (-917 *3)))) (-3125 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-408 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-3123 (*1 *2 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-3120 (*1 *2 *3 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308)))) (-3126 (*1 *1 *2 *3) (-12 (-5 *3 (-408 *2)) (-4 *2 (-308)) (-5 *1 (-917 *2)))) (-3533 (*1 *2 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308))))) +(-13 (-365) (-38 |#1|) (-10 -8 (-15 -4378 ((-410 |#1|) $)) (-15 -4378 ($ (-410 (-408 |#1|)))) (-15 -3125 ($ $)) (-15 -3124 ((-408 |#1|) $)) (-15 -3123 (|#1| $)) (-15 -3122 ($ $ (-549))) (-15 -3121 ((-549) $)) (-15 -3120 ((-1174 |#1|) |#1| |#1|)) (-15 -3119 ($ $)) (-15 -3126 ($ |#1| (-408 |#1|))) (-15 -3533 (|#1| $)))) +((-3126 (((-51) (-949 |#1|) (-408 (-949 |#1|)) (-1180)) 17) (((-51) (-410 (-949 |#1|)) (-1180)) 18))) +(((-918 |#1|) (-10 -7 (-15 -3126 ((-51) (-410 (-949 |#1|)) (-1180))) (-15 -3126 ((-51) (-949 |#1|) (-408 (-949 |#1|)) (-1180)))) (-13 (-308) (-147))) (T -918)) +((-3126 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-408 (-949 *6))) (-5 *5 (-1180)) (-5 *3 (-949 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-51)) (-5 *1 (-918 *6)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-51)) (-5 *1 (-918 *5))))) +(-10 -7 (-15 -3126 ((-51) (-410 (-949 |#1|)) (-1180))) (-15 -3126 ((-51) (-949 |#1|) (-408 (-949 |#1|)) (-1180)))) +((-3127 ((|#4| (-643 |#4|)) 149) (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-3564 (((-1174 |#4|) (-643 (-1174 |#4|))) 142) (((-1174 |#4|) (-1174 |#4|) (-1174 |#4|)) 63) ((|#4| (-643 |#4|)) 71) ((|#4| |#4| |#4|) 109))) +(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3564 (|#4| |#4| |#4|)) (-15 -3564 (|#4| (-643 |#4|))) (-15 -3564 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3564 ((-1174 |#4|) (-643 (-1174 |#4|)))) (-15 -3127 (|#4| |#4| |#4|)) (-15 -3127 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3127 (|#4| (-643 |#4|)))) (-795) (-852) (-308) (-953 |#3| |#1| |#2|)) (T -919)) +((-3127 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *6 *4 *5)) (-5 *1 (-919 *4 *5 *6 *2)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)))) (-3127 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3127 (*1 *2 *2 *2) (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *2 (-953 *5 *3 *4)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-643 (-1174 *7))) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-1174 *7)) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) (-3564 (*1 *2 *2 *2) (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *6 *4 *5)) (-5 *1 (-919 *4 *5 *6 *2)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)))) (-3564 (*1 *2 *2 *2) (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *2 (-953 *5 *3 *4))))) +(-10 -7 (-15 -3564 (|#4| |#4| |#4|)) (-15 -3564 (|#4| (-643 |#4|))) (-15 -3564 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3564 ((-1174 |#4|) (-643 (-1174 |#4|)))) (-15 -3127 (|#4| |#4| |#4|)) (-15 -3127 ((-1174 |#4|) (-1174 |#4|) (-1174 |#4|))) (-15 -3127 (|#4| (-643 |#4|)))) +((-3140 (((-908 (-549)) (-974)) 38) (((-908 (-549)) (-643 (-549))) 35)) (-3128 (((-908 (-549)) (-643 (-549))) 70) (((-908 (-549)) (-922)) 71)) (-3139 (((-908 (-549))) 39)) (-3137 (((-908 (-549))) 55) (((-908 (-549)) (-643 (-549))) 54)) (-3136 (((-908 (-549))) 53) (((-908 (-549)) (-643 (-549))) 52)) (-3135 (((-908 (-549))) 51) (((-908 (-549)) (-643 (-549))) 50)) (-3134 (((-908 (-549))) 49) (((-908 (-549)) (-643 (-549))) 48)) (-3133 (((-908 (-549))) 47) (((-908 (-549)) (-643 (-549))) 46)) (-3138 (((-908 (-549))) 57) (((-908 (-549)) (-643 (-549))) 56)) (-3132 (((-908 (-549)) (-643 (-549))) 75) (((-908 (-549)) (-922)) 77)) (-3131 (((-908 (-549)) (-643 (-549))) 72) (((-908 (-549)) (-922)) 73)) (-3129 (((-908 (-549)) (-643 (-549))) 68) (((-908 (-549)) (-922)) 69)) (-3130 (((-908 (-549)) (-643 (-922))) 60))) +(((-920) (-10 -7 (-15 -3128 ((-908 (-549)) (-922))) (-15 -3128 ((-908 (-549)) (-643 (-549)))) (-15 -3129 ((-908 (-549)) (-922))) (-15 -3129 ((-908 (-549)) (-643 (-549)))) (-15 -3130 ((-908 (-549)) (-643 (-922)))) (-15 -3131 ((-908 (-549)) (-922))) (-15 -3131 ((-908 (-549)) (-643 (-549)))) (-15 -3132 ((-908 (-549)) (-922))) (-15 -3132 ((-908 (-549)) (-643 (-549)))) (-15 -3133 ((-908 (-549)) (-643 (-549)))) (-15 -3133 ((-908 (-549)))) (-15 -3134 ((-908 (-549)) (-643 (-549)))) (-15 -3134 ((-908 (-549)))) (-15 -3135 ((-908 (-549)) (-643 (-549)))) (-15 -3135 ((-908 (-549)))) (-15 -3136 ((-908 (-549)) (-643 (-549)))) (-15 -3136 ((-908 (-549)))) (-15 -3137 ((-908 (-549)) (-643 (-549)))) (-15 -3137 ((-908 (-549)))) (-15 -3138 ((-908 (-549)) (-643 (-549)))) (-15 -3138 ((-908 (-549)))) (-15 -3139 ((-908 (-549)))) (-15 -3140 ((-908 (-549)) (-643 (-549)))) (-15 -3140 ((-908 (-549)) (-974))))) (T -920)) +((-3140 (*1 *2 *3) (-12 (-5 *3 (-974)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3139 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3138 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3137 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3136 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3135 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3134 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3133 (*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-643 (-922))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(-10 -7 (-15 -3128 ((-908 (-549)) (-922))) (-15 -3128 ((-908 (-549)) (-643 (-549)))) (-15 -3129 ((-908 (-549)) (-922))) (-15 -3129 ((-908 (-549)) (-643 (-549)))) (-15 -3130 ((-908 (-549)) (-643 (-922)))) (-15 -3131 ((-908 (-549)) (-922))) (-15 -3131 ((-908 (-549)) (-643 (-549)))) (-15 -3132 ((-908 (-549)) (-922))) (-15 -3132 ((-908 (-549)) (-643 (-549)))) (-15 -3133 ((-908 (-549)) (-643 (-549)))) (-15 -3133 ((-908 (-549)))) (-15 -3134 ((-908 (-549)) (-643 (-549)))) (-15 -3134 ((-908 (-549)))) (-15 -3135 ((-908 (-549)) (-643 (-549)))) (-15 -3135 ((-908 (-549)))) (-15 -3136 ((-908 (-549)) (-643 (-549)))) (-15 -3136 ((-908 (-549)))) (-15 -3137 ((-908 (-549)) (-643 (-549)))) (-15 -3137 ((-908 (-549)))) (-15 -3138 ((-908 (-549)) (-643 (-549)))) (-15 -3138 ((-908 (-549)))) (-15 -3139 ((-908 (-549)))) (-15 -3140 ((-908 (-549)) (-643 (-549)))) (-15 -3140 ((-908 (-549)) (-974)))) +((-3142 (((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180))) 14)) (-3141 (((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180))) 13))) +(((-921 |#1|) (-10 -7 (-15 -3141 ((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -3142 ((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180))))) (-455)) (T -921)) +((-3142 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-949 *4))) (-5 *3 (-643 (-1180))) (-4 *4 (-455)) (-5 *1 (-921 *4)))) (-3141 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-949 *4))) (-5 *3 (-643 (-1180))) (-4 *4 (-455)) (-5 *1 (-921 *4))))) +(-10 -7 (-15 -3141 ((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -3142 ((-643 (-949 |#1|)) (-643 (-949 |#1|)) (-643 (-1180))))) +((-2968 (((-112) $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3564 (($ $ $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3067 (($) NIL T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ $ $) NIL))) +(((-922) (-13 (-796) (-728) (-10 -8 (-15 -3564 ($ $ $)) (-6 (-4427 "*"))))) (T -922)) +((-3564 (*1 *1 *1 *1) (-5 *1 (-922)))) +(-13 (-796) (-728) (-10 -8 (-15 -3564 ($ $ $)) (-6 (-4427 "*")))) ((|NonNegativeInteger|) (> |#1| 0)) -((-2573 ((|#2| (-645 |#1|) (-645 |#1|)) 29))) -(((-924 |#1| |#2|) (-10 -7 (-15 -2573 (|#2| (-645 |#1|) (-645 |#1|)))) (-365) (-1245 |#1|)) (T -924)) -((-2573 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1245 *4)) (-5 *1 (-924 *4 *2))))) -(-10 -7 (-15 -2573 (|#2| (-645 |#1|) (-645 |#1|)))) -((-3759 (((-1175 |#2|) (-645 |#2|) (-645 |#2|)) 17) (((-1242 |#1| |#2|) (-1242 |#1| |#2|) (-645 |#2|) (-645 |#2|)) 13))) -(((-925 |#1| |#2|) (-10 -7 (-15 -3759 ((-1242 |#1| |#2|) (-1242 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -3759 ((-1175 |#2|) (-645 |#2|) (-645 |#2|)))) (-1179) (-365)) (T -925)) -((-3759 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1175 *5)) (-5 *1 (-925 *4 *5)) (-14 *4 (-1179)))) (-3759 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1242 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1179)) (-4 *5 (-365)) (-5 *1 (-925 *4 *5))))) -(-10 -7 (-15 -3759 ((-1242 |#1| |#2|) (-1242 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -3759 ((-1175 |#2|) (-645 |#2|) (-645 |#2|)))) -((-2931 (((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161)) 177)) (-3336 ((|#4| |#4|) 196)) (-1821 (((-645 (-410 (-954 |#1|))) (-645 (-1179))) 149)) (-3603 (((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567)) 88)) (-4021 (((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-645 |#4|)) 69)) (-2308 (((-690 |#4|) (-690 |#4|) (-645 |#4|)) 65)) (-3052 (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161)) 189)) (-4154 (((-567) (-690 |#4|) (-923) (-1161)) 169) (((-567) (-690 |#4|) (-645 (-1179)) (-923) (-1161)) 168) (((-567) (-690 |#4|) (-645 |#4|) (-923) (-1161)) 167) (((-567) (-690 |#4|) (-1161)) 157) (((-567) (-690 |#4|) (-645 (-1179)) (-1161)) 156) (((-567) (-690 |#4|) (-645 |#4|) (-1161)) 155) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923)) 154) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)) (-923)) 153) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923)) 152) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|)) 151) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179))) 150) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|)) 146)) (-1886 ((|#4| (-954 |#1|)) 80)) (-2939 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 193)) (-3031 (((-645 (-645 (-567))) (-567) (-567)) 162)) (-4063 (((-645 (-645 |#4|)) (-645 (-645 |#4|))) 107)) (-3185 (((-772) (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 102)) (-2220 (((-772) (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 101)) (-2705 (((-112) (-645 (-954 |#1|))) 19) (((-112) (-645 |#4|)) 15)) (-3837 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|)) 84)) (-1525 (((-645 |#4|) |#4|) 57)) (-3607 (((-645 (-410 (-954 |#1|))) (-645 |#4|)) 145) (((-690 (-410 (-954 |#1|))) (-690 |#4|)) 66) (((-410 (-954 |#1|)) |#4|) 142)) (-3598 (((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1161) (-567)) 113)) (-3602 (((-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772)) 100)) (-2961 (((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772)) 124)) (-1832 (((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| -2434 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1471 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) 56))) -(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)) (-923))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923))) (-15 -4154 ((-567) (-690 |#4|) (-645 |#4|) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-645 (-1179)) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-645 |#4|) (-923) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-645 (-1179)) (-923) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-923) (-1161))) (-15 -2931 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161))) (-15 -3052 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161))) (-15 -3598 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1161) (-567))) (-15 -3607 ((-410 (-954 |#1|)) |#4|)) (-15 -3607 ((-690 (-410 (-954 |#1|))) (-690 |#4|))) (-15 -3607 ((-645 (-410 (-954 |#1|))) (-645 |#4|))) (-15 -1821 ((-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -1886 (|#4| (-954 |#1|))) (-15 -3837 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -3602 ((-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -4021 ((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-645 |#4|))) (-15 -1832 ((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| -2434 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1471 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -1525 ((-645 |#4|) |#4|)) (-15 -2220 ((-772) (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -3185 ((-772) (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -4063 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -3031 ((-645 (-645 (-567))) (-567) (-567))) (-15 -2939 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -2961 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -2308 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -3603 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -3336 (|#4| |#4|)) (-15 -2705 ((-112) (-645 |#4|))) (-15 -2705 ((-112) (-645 (-954 |#1|))))) (-13 (-308) (-147)) (-13 (-851) (-615 (-1179))) (-794) (-951 |#1| |#3| |#2|)) (T -926)) -((-2705 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1179)))) (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-951 *3 *5 *4)))) (-3603 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-954 *9)))) (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-951 *9 *11 *10)) (-4 *10 (-13 (-851) (-615 (-1179)))) (-4 *11 (-794)) (-5 *2 (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) (|:| |wcond| (-645 (-954 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *9)))) (|:| -4374 (-645 (-1269 (-410 (-954 *9))))))))) (-5 *1 (-926 *9 *10 *11 *12)))) (-2308 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *5 *6 *7 *8)))) (-3031 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *6 *5)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-951 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1179)))) (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *6)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-926 *4 *5 *6 *7)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-926 *4 *5 *6 *7)))) (-1525 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-926 *4 *5 *6 *3)) (-4 *3 (-951 *4 *6 *5)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2434 (-690 (-410 (-954 *4)))) (|:| |vec| (-645 (-410 (-954 *4)))) (|:| -1471 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) (|:| -4374 (-645 (-1269 (-410 (-954 *4))))))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-4021 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) (|:| -4374 (-645 (-1269 (-410 (-954 *4))))))) (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-951 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7)))) (-3602 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *8))))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-772)))) (-3837 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-4 *7 (-951 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-951 *4 *6 *5)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)))) (-1821 (*1 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-690 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)))) (-3607 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-410 (-954 *4))) (-5 *1 (-926 *4 *5 *6 *3)) (-4 *3 (-951 *4 *6 *5)))) (-3598 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-954 *8)))) (-5 *5 (-772)) (-5 *6 (-1161)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-951 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1179)))) (-4 *10 (-794)) (-5 *2 (-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) (|:| |wcond| (-645 (-954 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *8)))) (|:| -4374 (-645 (-1269 (-410 (-954 *8)))))))))) (|:| |rgsz| (-567)))) (-5 *1 (-926 *8 *9 *10 *11)) (-5 *7 (-567)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-954 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) (|:| -4374 (-645 (-1269 (-410 (-954 *4)))))))))) (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) (|:| -4374 (-645 (-1269 (-410 (-954 *5)))))))))) (-5 *4 (-1161)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-951 *5 *7 *6)) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) (-4154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-923)) (-5 *5 (-1161)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-4154 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1179))) (-5 *5 (-923)) (-5 *6 (-1161)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1179)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *7 *8 *9 *10)))) (-4154 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-923)) (-5 *6 (-1161)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1179)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *7 *8 *9 *10)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-1161)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) (-4154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1179))) (-5 *5 (-1161)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-4154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1161)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *6 *7 *8 *9)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-923)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) (|:| -4374 (-645 (-1269 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-4154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1179))) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-954 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *6)))) (|:| -4374 (-645 (-1269 (-410 (-954 *6)))))))))) (-5 *1 (-926 *6 *7 *8 *9)))) (-4154 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-954 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *6)))) (|:| -4374 (-645 (-1269 (-410 (-954 *6)))))))))) (-5 *1 (-926 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-954 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) (|:| -4374 (-645 (-1269 (-410 (-954 *4)))))))))) (-5 *1 (-926 *4 *5 *6 *7)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1179))) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) (|:| -4374 (-645 (-1269 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-954 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) (|:| -4374 (-645 (-1269 (-410 (-954 *5)))))))))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) -(-10 -7 (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-923))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-645 (-1179)) (-923))) (-15 -4154 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-690 |#4|) (-923))) (-15 -4154 ((-567) (-690 |#4|) (-645 |#4|) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-645 (-1179)) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-645 |#4|) (-923) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-645 (-1179)) (-923) (-1161))) (-15 -4154 ((-567) (-690 |#4|) (-923) (-1161))) (-15 -2931 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161))) (-15 -3052 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|))))))))) (-1161))) (-15 -3598 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-772) (-1161) (-567))) (-15 -3607 ((-410 (-954 |#1|)) |#4|)) (-15 -3607 ((-690 (-410 (-954 |#1|))) (-690 |#4|))) (-15 -3607 ((-645 (-410 (-954 |#1|))) (-645 |#4|))) (-15 -1821 ((-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -1886 (|#4| (-954 |#1|))) (-15 -3837 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -3602 ((-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -4021 ((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-645 |#4|))) (-15 -1832 ((-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))) (-2 (|:| -2434 (-690 (-410 (-954 |#1|)))) (|:| |vec| (-645 (-410 (-954 |#1|)))) (|:| -1471 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -1525 ((-645 |#4|) |#4|)) (-15 -2220 ((-772) (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -3185 ((-772) (-645 (-2 (|:| -1471 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -4063 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -3031 ((-645 (-645 (-567))) (-567) (-567))) (-15 -2939 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -2961 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -2308 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -3603 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-954 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-954 |#1|)))) (|:| -4374 (-645 (-1269 (-410 (-954 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-954 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -3336 (|#4| |#4|)) (-15 -2705 ((-112) (-645 |#4|))) (-15 -2705 ((-112) (-645 (-954 |#1|))))) -((-3499 (((-929) |#1| (-1179)) 17) (((-929) |#1| (-1179) (-1096 (-225))) 21)) (-3792 (((-929) |#1| |#1| (-1179) (-1096 (-225))) 19) (((-929) |#1| (-1179) (-1096 (-225))) 15))) -(((-927 |#1|) (-10 -7 (-15 -3792 ((-929) |#1| (-1179) (-1096 (-225)))) (-15 -3792 ((-929) |#1| |#1| (-1179) (-1096 (-225)))) (-15 -3499 ((-929) |#1| (-1179) (-1096 (-225)))) (-15 -3499 ((-929) |#1| (-1179)))) (-615 (-539))) (T -927)) -((-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-3499 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-3792 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) (-3792 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) (-5 *1 (-927 *3)) (-4 *3 (-615 (-539)))))) -(-10 -7 (-15 -3792 ((-929) |#1| (-1179) (-1096 (-225)))) (-15 -3792 ((-929) |#1| |#1| (-1179) (-1096 (-225)))) (-15 -3499 ((-929) |#1| (-1179) (-1096 (-225)))) (-15 -3499 ((-929) |#1| (-1179)))) -((-3935 (($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 123)) (-2014 (((-1096 (-225)) $) 64)) (-2002 (((-1096 (-225)) $) 63)) (-1991 (((-1096 (-225)) $) 62)) (-2814 (((-645 (-645 (-225))) $) 69)) (-1519 (((-1096 (-225)) $) 65)) (-4390 (((-567) (-567)) 57)) (-1340 (((-567) (-567)) 52)) (-1655 (((-567) (-567)) 55)) (-3834 (((-112) (-112)) 59)) (-4041 (((-567)) 56)) (-2548 (($ $ (-1096 (-225))) 126) (($ $) 127)) (-2064 (($ (-1 (-945 (-225)) (-225)) (-1096 (-225))) 133) (($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 134)) (-3792 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 137) (($ $ (-1096 (-225))) 129)) (-2433 (((-567)) 60)) (-3379 (((-567)) 50)) (-3782 (((-567)) 53)) (-1502 (((-645 (-645 (-945 (-225)))) $) 153)) (-3357 (((-112) (-112)) 61)) (-2504 (((-863) $) 151)) (-2879 (((-112)) 58))) -(((-928) (-13 (-976) (-10 -8 (-15 -2064 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2064 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -3792 ($ $ (-1096 (-225)))) (-15 -3935 ($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2548 ($ $ (-1096 (-225)))) (-15 -2548 ($ $)) (-15 -1519 ((-1096 (-225)) $)) (-15 -2814 ((-645 (-645 (-225))) $)) (-15 -3379 ((-567))) (-15 -1340 ((-567) (-567))) (-15 -3782 ((-567))) (-15 -1655 ((-567) (-567))) (-15 -4041 ((-567))) (-15 -4390 ((-567) (-567))) (-15 -2879 ((-112))) (-15 -3834 ((-112) (-112))) (-15 -2433 ((-567))) (-15 -3357 ((-112) (-112)))))) (T -928)) -((-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-2064 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-3792 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-3792 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-928)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-3935 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2548 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2548 (*1 *1 *1) (-5 *1 (-928))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-928)))) (-3379 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1340 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3782 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-4041 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2879 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-2433 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3357 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(-13 (-976) (-10 -8 (-15 -2064 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2064 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -3792 ($ $ (-1096 (-225)))) (-15 -3935 ($ $ (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2548 ($ $ (-1096 (-225)))) (-15 -2548 ($ $)) (-15 -1519 ((-1096 (-225)) $)) (-15 -2814 ((-645 (-645 (-225))) $)) (-15 -3379 ((-567))) (-15 -1340 ((-567) (-567))) (-15 -3782 ((-567))) (-15 -1655 ((-567) (-567))) (-15 -4041 ((-567))) (-15 -4390 ((-567) (-567))) (-15 -2879 ((-112))) (-15 -3834 ((-112) (-112))) (-15 -2433 ((-567))) (-15 -3357 ((-112) (-112))))) -((-3935 (($ $ (-1096 (-225))) 124) (($ $ (-1096 (-225)) (-1096 (-225))) 125)) (-2002 (((-1096 (-225)) $) 73)) (-1991 (((-1096 (-225)) $) 72)) (-1519 (((-1096 (-225)) $) 74)) (-2361 (((-567) (-567)) 66)) (-2345 (((-567) (-567)) 61)) (-2883 (((-567) (-567)) 64)) (-3524 (((-112) (-112)) 68)) (-4081 (((-567)) 65)) (-2548 (($ $ (-1096 (-225))) 128) (($ $) 129)) (-2064 (($ (-1 (-945 (-225)) (-225)) (-1096 (-225))) 143) (($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 144)) (-3499 (($ (-1 (-225) (-225)) (-1096 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-3792 (($ (-1 (-225) (-225)) (-1096 (-225))) 139) (($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225))) 140) (($ (-645 (-1 (-225) (-225))) (-1096 (-225))) 148) (($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225))) 142) (($ $ (-1096 (-225))) 130)) (-3543 (((-112) $) 69)) (-3697 (((-567)) 70)) (-3537 (((-567)) 59)) (-2469 (((-567)) 62)) (-1502 (((-645 (-645 (-945 (-225)))) $) 35)) (-2846 (((-112) (-112)) 71)) (-2504 (((-863) $) 169)) (-2314 (((-112)) 67))) -(((-929) (-13 (-957) (-10 -8 (-15 -3792 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -3792 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)))) (-15 -3792 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2064 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2064 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -3499 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -3499 ($ (-1 (-225) (-225)))) (-15 -3792 ($ $ (-1096 (-225)))) (-15 -3543 ((-112) $)) (-15 -3935 ($ $ (-1096 (-225)))) (-15 -3935 ($ $ (-1096 (-225)) (-1096 (-225)))) (-15 -2548 ($ $ (-1096 (-225)))) (-15 -2548 ($ $)) (-15 -1519 ((-1096 (-225)) $)) (-15 -3537 ((-567))) (-15 -2345 ((-567) (-567))) (-15 -2469 ((-567))) (-15 -2883 ((-567) (-567))) (-15 -4081 ((-567))) (-15 -2361 ((-567) (-567))) (-15 -2314 ((-112))) (-15 -3524 ((-112) (-112))) (-15 -3697 ((-567))) (-15 -2846 ((-112) (-112)))))) (T -929)) -((-3792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-3792 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-3792 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-3792 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-3792 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-3792 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2064 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-2064 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) (-5 *1 (-929)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-929)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-3935 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2548 (*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-2548 (*1 *1 *1) (-5 *1 (-929))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) (-3537 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2345 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2469 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2883 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-4081 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2314 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3524 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929)))) (-3697 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929)))) (-2846 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) -(-13 (-957) (-10 -8 (-15 -3792 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -3792 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)))) (-15 -3792 ($ (-645 (-1 (-225) (-225))) (-1096 (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)))) (-15 -3792 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -2064 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)))) (-15 -2064 ($ (-1 (-945 (-225)) (-225)) (-1096 (-225)) (-1096 (-225)) (-1096 (-225)))) (-15 -3499 ($ (-1 (-225) (-225)) (-1096 (-225)))) (-15 -3499 ($ (-1 (-225) (-225)))) (-15 -3792 ($ $ (-1096 (-225)))) (-15 -3543 ((-112) $)) (-15 -3935 ($ $ (-1096 (-225)))) (-15 -3935 ($ $ (-1096 (-225)) (-1096 (-225)))) (-15 -2548 ($ $ (-1096 (-225)))) (-15 -2548 ($ $)) (-15 -1519 ((-1096 (-225)) $)) (-15 -3537 ((-567))) (-15 -2345 ((-567) (-567))) (-15 -2469 ((-567))) (-15 -2883 ((-567) (-567))) (-15 -4081 ((-567))) (-15 -2361 ((-567) (-567))) (-15 -2314 ((-112))) (-15 -3524 ((-112) (-112))) (-15 -3697 ((-567))) (-15 -2846 ((-112) (-112))))) -((-2419 (((-645 (-1096 (-225))) (-645 (-645 (-945 (-225))))) 34))) -(((-930) (-10 -7 (-15 -2419 ((-645 (-1096 (-225))) (-645 (-645 (-945 (-225)))))))) (T -930)) -((-2419 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-1096 (-225)))) (-5 *1 (-930))))) -(-10 -7 (-15 -2419 ((-645 (-1096 (-225))) (-645 (-645 (-945 (-225))))))) -((-3489 ((|#2| |#2|) 28)) (-1528 ((|#2| |#2|) 29)) (-3562 ((|#2| |#2|) 27)) (-3567 ((|#2| |#2| (-509)) 26))) -(((-931 |#1| |#2|) (-10 -7 (-15 -3567 (|#2| |#2| (-509))) (-15 -3562 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -1528 (|#2| |#2|))) (-1102) (-433 |#1|)) (T -931)) -((-1528 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-3562 (*1 *2 *2) (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) (-3567 (*1 *2 *2 *3) (-12 (-5 *3 (-509)) (-4 *4 (-1102)) (-5 *1 (-931 *4 *2)) (-4 *2 (-433 *4))))) -(-10 -7 (-15 -3567 (|#2| |#2| (-509))) (-15 -3562 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -1528 (|#2| |#2|))) -((-3489 (((-317 (-567)) (-1179)) 16)) (-1528 (((-317 (-567)) (-1179)) 14)) (-3562 (((-317 (-567)) (-1179)) 12)) (-3567 (((-317 (-567)) (-1179) (-509)) 19))) -(((-932) (-10 -7 (-15 -3567 ((-317 (-567)) (-1179) (-509))) (-15 -3562 ((-317 (-567)) (-1179))) (-15 -3489 ((-317 (-567)) (-1179))) (-15 -1528 ((-317 (-567)) (-1179))))) (T -932)) -((-1528 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) (-5 *1 (-932))))) -(-10 -7 (-15 -3567 ((-317 (-567)) (-1179) (-509))) (-15 -3562 ((-317 (-567)) (-1179))) (-15 -3489 ((-317 (-567)) (-1179))) (-15 -1528 ((-317 (-567)) (-1179)))) -((-2959 (((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)) 25)) (-2801 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -2801 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2959 ((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-888 |#1|) (-13 (-1102) (-1040 |#2|))) (T -933)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-13 (-1102) (-1040 *3))) (-4 *3 (-888 *5)) (-5 *1 (-933 *5 *3 *6)))) (-2801 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1102) (-1040 *5))) (-4 *5 (-888 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-933 *4 *5 *6))))) -(-10 -7 (-15 -2801 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2959 ((-891 |#1| |#3|) |#2| (-894 |#1|) (-891 |#1| |#3|)))) -((-2959 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 30))) -(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -2959 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-13 (-559) (-888 |#1|)) (-13 (-433 |#2|) (-615 (-894 |#1|)) (-888 |#1|) (-1040 (-613 $)))) (T -934)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-13 (-433 *6) (-615 *4) (-888 *5) (-1040 (-613 $)))) (-5 *4 (-894 *5)) (-4 *6 (-13 (-559) (-888 *5))) (-5 *1 (-934 *5 *6 *3))))) -(-10 -7 (-15 -2959 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) -((-2959 (((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)) 13))) -(((-935 |#1|) (-10 -7 (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)))) (-548)) (T -935)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 (-567) *3)) (-5 *4 (-894 (-567))) (-4 *3 (-548)) (-5 *1 (-935 *3))))) -(-10 -7 (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|)))) -((-2959 (((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)) 57))) -(((-936 |#1| |#2|) (-10 -7 (-15 -2959 ((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)))) (-1102) (-13 (-1102) (-1040 (-613 $)) (-615 (-894 |#1|)) (-888 |#1|))) (T -936)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1102)) (-4 *6 (-13 (-1102) (-1040 (-613 $)) (-615 *4) (-888 *5))) (-5 *4 (-894 *5)) (-5 *1 (-936 *5 *6))))) -(-10 -7 (-15 -2959 ((-891 |#1| |#2|) (-613 |#2|) (-894 |#1|) (-891 |#1| |#2|)))) -((-2959 (((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)) 17))) -(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -2959 ((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)))) (-1102) (-888 |#1|) (-667 |#2|)) (T -937)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-887 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-4 *3 (-667 *6)) (-5 *1 (-937 *5 *6 *3))))) -(-10 -7 (-15 -2959 ((-887 |#1| |#2| |#3|) |#3| (-894 |#1|) (-887 |#1| |#2| |#3|)))) -((-2959 (((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|)) 17 (|has| |#3| (-888 |#1|))) (((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|))) 16))) -(((-938 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2959 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-888 |#1|)) (-15 -2959 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|))) |%noBranch|)) (-1102) (-794) (-851) (-13 (-1051) (-888 |#1|)) (-13 (-951 |#4| |#2| |#3|) (-615 (-894 |#1|)))) (T -938)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-13 (-951 *8 *6 *7) (-615 *4))) (-5 *4 (-894 *5)) (-4 *7 (-888 *5)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-13 (-1051) (-888 *5))) (-5 *1 (-938 *5 *6 *7 *8 *3)))) (-2959 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-894 *6) (-891 *6 *3))) (-4 *8 (-851)) (-5 *2 (-891 *6 *3)) (-5 *4 (-894 *6)) (-4 *6 (-1102)) (-4 *3 (-13 (-951 *9 *7 *8) (-615 *4))) (-4 *7 (-794)) (-4 *9 (-13 (-1051) (-888 *6))) (-5 *1 (-938 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2959 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-894 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-888 |#1|)) (-15 -2959 ((-891 |#1| |#5|) |#5| (-894 |#1|) (-891 |#1| |#5|))) |%noBranch|)) -((-1612 ((|#2| |#2| (-645 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -1612 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1612 (|#2| |#2| (-645 (-1 (-112) |#3|))))) (-1102) (-433 |#1|) (-1219)) (T -939)) -((-1612 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1219)) (-4 *4 (-1102)) (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))) (-1612 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1219)) (-4 *4 (-1102)) (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4))))) -(-10 -7 (-15 -1612 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1612 (|#2| |#2| (-645 (-1 (-112) |#3|))))) -((-1612 (((-317 (-567)) (-1179) (-645 (-1 (-112) |#1|))) 18) (((-317 (-567)) (-1179) (-1 (-112) |#1|)) 15))) -(((-940 |#1|) (-10 -7 (-15 -1612 ((-317 (-567)) (-1179) (-1 (-112) |#1|))) (-15 -1612 ((-317 (-567)) (-1179) (-645 (-1 (-112) |#1|))))) (-1219)) (T -940)) -((-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1219)) (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1219)) (-5 *2 (-317 (-567))) (-5 *1 (-940 *5))))) -(-10 -7 (-15 -1612 ((-317 (-567)) (-1179) (-1 (-112) |#1|))) (-15 -1612 ((-317 (-567)) (-1179) (-645 (-1 (-112) |#1|))))) -((-2959 (((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)) 25))) -(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -2959 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-1102) (-13 (-559) (-888 |#1|) (-615 (-894 |#1|))) (-994 |#2|)) (T -941)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-994 *6)) (-4 *6 (-13 (-559) (-888 *5) (-615 *4))) (-5 *4 (-894 *5)) (-5 *1 (-941 *5 *6 *3))))) -(-10 -7 (-15 -2959 ((-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) -((-2959 (((-891 |#1| (-1179)) (-1179) (-894 |#1|) (-891 |#1| (-1179))) 18))) -(((-942 |#1|) (-10 -7 (-15 -2959 ((-891 |#1| (-1179)) (-1179) (-894 |#1|) (-891 |#1| (-1179))))) (-1102)) (T -942)) -((-2959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 (-1179))) (-5 *3 (-1179)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *1 (-942 *5))))) -(-10 -7 (-15 -2959 ((-891 |#1| (-1179)) (-1179) (-894 |#1|) (-891 |#1| (-1179))))) -((-1690 (((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) 34)) (-2959 (((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))) 33))) -(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -2959 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-15 -1690 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))) (-1102) (-1051) (-13 (-1051) (-615 (-894 |#1|)) (-1040 |#2|))) (T -943)) -((-1690 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-894 *6))) (-5 *5 (-1 (-891 *6 *8) *8 (-894 *6) (-891 *6 *8))) (-4 *6 (-1102)) (-4 *8 (-13 (-1051) (-615 (-894 *6)) (-1040 *7))) (-5 *2 (-891 *6 *8)) (-4 *7 (-1051)) (-5 *1 (-943 *6 *7 *8)))) (-2959 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-645 (-894 *7))) (-5 *5 (-1 *9 (-645 *9))) (-5 *6 (-1 (-891 *7 *9) *9 (-894 *7) (-891 *7 *9))) (-4 *7 (-1102)) (-4 *9 (-13 (-1051) (-615 (-894 *7)) (-1040 *8))) (-5 *2 (-891 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1051)) (-5 *1 (-943 *7 *8 *9))))) -(-10 -7 (-15 -2959 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-1 |#3| (-645 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|)))) (-15 -1690 ((-891 |#1| |#3|) (-645 |#3|) (-645 (-894 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-894 |#1|) (-891 |#1| |#3|))))) -((-4248 (((-1175 (-410 (-567))) (-567)) 81)) (-1553 (((-1175 (-567)) (-567)) 84)) (-2246 (((-1175 (-567)) (-567)) 78)) (-2362 (((-567) (-1175 (-567))) 74)) (-3996 (((-1175 (-410 (-567))) (-567)) 65)) (-2988 (((-1175 (-567)) (-567)) 49)) (-4123 (((-1175 (-567)) (-567)) 86)) (-1530 (((-1175 (-567)) (-567)) 85)) (-4002 (((-1175 (-410 (-567))) (-567)) 67))) -(((-944) (-10 -7 (-15 -4002 ((-1175 (-410 (-567))) (-567))) (-15 -1530 ((-1175 (-567)) (-567))) (-15 -4123 ((-1175 (-567)) (-567))) (-15 -2988 ((-1175 (-567)) (-567))) (-15 -3996 ((-1175 (-410 (-567))) (-567))) (-15 -2362 ((-567) (-1175 (-567)))) (-15 -2246 ((-1175 (-567)) (-567))) (-15 -1553 ((-1175 (-567)) (-567))) (-15 -4248 ((-1175 (-410 (-567))) (-567))))) (T -944)) -((-4248 (*1 *2 *3) (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))) (-1553 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2246 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-1175 (-567))) (-5 *2 (-567)) (-5 *1 (-944)))) (-3996 (*1 *2 *3) (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567)))) (-2988 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-4123 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-1530 (*1 *2 *3) (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) (-4002 (*1 *2 *3) (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567))))) -(-10 -7 (-15 -4002 ((-1175 (-410 (-567))) (-567))) (-15 -1530 ((-1175 (-567)) (-567))) (-15 -4123 ((-1175 (-567)) (-567))) (-15 -2988 ((-1175 (-567)) (-567))) (-15 -3996 ((-1175 (-410 (-567))) (-567))) (-15 -2362 ((-567) (-1175 (-567)))) (-15 -2246 ((-1175 (-567)) (-567))) (-15 -1553 ((-1175 (-567)) (-567))) (-15 -4248 ((-1175 (-410 (-567))) (-567)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3398 (($ (-772)) NIL (|has| |#1| (-23)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3932 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-2657 (($ (-645 |#1|)) 9)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-1896 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-4223 (($ (-772) |#1|) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4207 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-3421 (((-112) $ (-772)) NIL)) (-3613 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) NIL (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1678 (($ $ (-645 |#1|)) 25)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 18) (($ $ (-1236 (-567))) NIL)) (-1336 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-2589 (((-923) $) 13)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-2934 (($ $ $) 23)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 14)) (-2516 (($ (-645 |#1|)) NIL)) (-3644 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3054 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3045 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2498 (((-772) $) 11 (|has| $ (-6 -4422))))) -(((-945 |#1|) (-982 |#1|) (-1051)) (T -945)) -NIL -(-982 |#1|) -((-2482 (((-484 |#1| |#2|) (-954 |#2|)) 22)) (-1333 (((-247 |#1| |#2|) (-954 |#2|)) 35)) (-3798 (((-954 |#2|) (-484 |#1| |#2|)) 27)) (-4186 (((-247 |#1| |#2|) (-484 |#1| |#2|)) 57)) (-3519 (((-954 |#2|) (-247 |#1| |#2|)) 32)) (-2990 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 48))) -(((-946 |#1| |#2|) (-10 -7 (-15 -2990 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -4186 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -2482 ((-484 |#1| |#2|) (-954 |#2|))) (-15 -3798 ((-954 |#2|) (-484 |#1| |#2|))) (-15 -3519 ((-954 |#2|) (-247 |#1| |#2|))) (-15 -1333 ((-247 |#1| |#2|) (-954 |#2|)))) (-645 (-1179)) (-1051)) (T -946)) -((-1333 (*1 *2 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1179))))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1179))))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5))))) -(-10 -7 (-15 -2990 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -4186 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -2482 ((-484 |#1| |#2|) (-954 |#2|))) (-15 -3798 ((-954 |#2|) (-484 |#1| |#2|))) (-15 -3519 ((-954 |#2|) (-247 |#1| |#2|))) (-15 -1333 ((-247 |#1| |#2|) (-954 |#2|)))) -((-3848 (((-645 |#2|) |#2| |#2|) 10)) (-1743 (((-772) (-645 |#1|)) 48 (|has| |#1| (-849)))) (-3449 (((-645 |#2|) |#2|) 11)) (-4279 (((-772) (-645 |#1|) (-567) (-567)) 52 (|has| |#1| (-849)))) (-2377 ((|#1| |#2|) 38 (|has| |#1| (-849))))) -(((-947 |#1| |#2|) (-10 -7 (-15 -3848 ((-645 |#2|) |#2| |#2|)) (-15 -3449 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -2377 (|#1| |#2|)) (-15 -1743 ((-772) (-645 |#1|))) (-15 -4279 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) (-365) (-1245 |#1|)) (T -947)) -((-4279 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-947 *5 *6)) (-4 *6 (-1245 *5)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-947 *4 *5)) (-4 *5 (-1245 *4)))) (-2377 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-947 *2 *3)) (-4 *3 (-1245 *2)))) (-3449 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) (-4 *3 (-1245 *4)))) (-3848 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3848 ((-645 |#2|) |#2| |#2|)) (-15 -3449 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -2377 (|#1| |#2|)) (-15 -1743 ((-772) (-645 |#1|))) (-15 -4279 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) -((-4364 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 19))) -(((-948 |#1| |#2|) (-10 -7 (-15 -4364 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1051) (-1051)) (T -948)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-954 *6)) (-5 *1 (-948 *5 *6))))) -(-10 -7 (-15 -4364 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) -((-3633 (((-1242 |#1| (-954 |#2|)) (-954 |#2|) (-1265 |#1|)) 18))) -(((-949 |#1| |#2|) (-10 -7 (-15 -3633 ((-1242 |#1| (-954 |#2|)) (-954 |#2|) (-1265 |#1|)))) (-1179) (-1051)) (T -949)) -((-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-1265 *5)) (-14 *5 (-1179)) (-4 *6 (-1051)) (-5 *2 (-1242 *5 (-954 *6))) (-5 *1 (-949 *5 *6)) (-5 *3 (-954 *6))))) -(-10 -7 (-15 -3633 ((-1242 |#1| (-954 |#2|)) (-954 |#2|) (-1265 |#1|)))) -((-3153 (((-772) $) 88) (((-772) $ (-645 |#4|)) 93)) (-3864 (($ $) 203)) (-1466 (((-421 $) $) 195)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 141)) (-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3094 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) 73)) (-2304 (($ $ $ |#4|) 95)) (-2690 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 131) (((-690 |#2|) (-690 $)) 121)) (-1873 (($ $) 210) (($ $ |#4|) 213)) (-1818 (((-645 $) $) 77)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 229) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 222)) (-2615 (((-645 $) $) 34)) (-3764 (($ |#2| |#3|) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) 71)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ |#4|) 192)) (-4056 (((-3 (-645 $) "failed") $) 52)) (-3655 (((-3 (-645 $) "failed") $) 39)) (-2873 (((-3 (-2 (|:| |var| |#4|) (|:| -2618 (-772))) "failed") $) 57)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 134)) (-2273 (((-421 (-1175 $)) (-1175 $)) 147)) (-2579 (((-421 (-1175 $)) (-1175 $)) 145)) (-3661 (((-421 $) $) 165)) (-2913 (($ $ (-645 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL)) (-2254 (($ $ |#4|) 97)) (-1322 (((-894 (-381)) $) 243) (((-894 (-567)) $) 236) (((-539) $) 251)) (-1390 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 184)) (-4038 ((|#2| $ |#3|) NIL) (($ $ |#4| (-772)) 62) (($ $ (-645 |#4|) (-645 (-772))) 69)) (-2318 (((-3 $ "failed") $) 186)) (-3858 (((-112) $ $) 216))) -(((-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -2318 ((-3 |#1| "failed") |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -2959 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -2579 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2273 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -1621 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -3369 ((-3 (-1269 |#1|) "failed") (-690 |#1|))) (-15 -1873 (|#1| |#1| |#4|)) (-15 -1390 (|#1| |#1| |#4|)) (-15 -2254 (|#1| |#1| |#4|)) (-15 -2304 (|#1| |#1| |#1| |#4|)) (-15 -1818 ((-645 |#1|) |#1|)) (-15 -3153 ((-772) |#1| (-645 |#4|))) (-15 -3153 ((-772) |#1|)) (-15 -2873 ((-3 (-2 (|:| |var| |#4|) (|:| -2618 (-772))) "failed") |#1|)) (-15 -4056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3655 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3764 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -3764 (|#1| |#1| |#4| (-772))) (-15 -2177 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1| |#4|)) (-15 -2615 ((-645 |#1|) |#1|)) (-15 -4038 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -4038 (|#1| |#1| |#4| (-772))) (-15 -2690 ((-690 |#2|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -4275 ((-3 |#4| "failed") |#1|)) (-15 -3094 (|#4| |#1|)) (-15 -2913 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#4| |#1|)) (-15 -2913 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#4| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3764 (|#1| |#2| |#3|)) (-15 -4038 (|#2| |#1| |#3|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -3858 ((-112) |#1| |#1|))) (-951 |#2| |#3| |#4|) (-1051) (-794) (-851)) (T -950)) -NIL -(-10 -8 (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -2318 ((-3 |#1| "failed") |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -2959 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -2579 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2273 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -1621 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -3369 ((-3 (-1269 |#1|) "failed") (-690 |#1|))) (-15 -1873 (|#1| |#1| |#4|)) (-15 -1390 (|#1| |#1| |#4|)) (-15 -2254 (|#1| |#1| |#4|)) (-15 -2304 (|#1| |#1| |#1| |#4|)) (-15 -1818 ((-645 |#1|) |#1|)) (-15 -3153 ((-772) |#1| (-645 |#4|))) (-15 -3153 ((-772) |#1|)) (-15 -2873 ((-3 (-2 (|:| |var| |#4|) (|:| -2618 (-772))) "failed") |#1|)) (-15 -4056 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3655 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3764 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -3764 (|#1| |#1| |#4| (-772))) (-15 -2177 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1| |#4|)) (-15 -2615 ((-645 |#1|) |#1|)) (-15 -4038 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -4038 (|#1| |#1| |#4| (-772))) (-15 -2690 ((-690 |#2|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -4275 ((-3 |#4| "failed") |#1|)) (-15 -3094 (|#4| |#1|)) (-15 -2913 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#4| |#1|)) (-15 -2913 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -2913 (|#1| |#1| |#4| |#2|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3764 (|#1| |#2| |#3|)) (-15 -4038 (|#2| |#1| |#3|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -1873 (|#1| |#1|)) (-15 -3858 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 |#3|) $) 112)) (-3633 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-1987 (($ $) 90 (|has| |#1| (-559)))) (-3342 (((-112) $) 92 (|has| |#1| (-559)))) (-3153 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-2932 (((-3 $ "failed") $ $) 20)) (-2701 (((-421 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-911)))) (-3864 (($ $) 100 (|has| |#1| (-455)))) (-1466 (((-421 $) $) 99 (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-911)))) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138)) (-3094 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139)) (-2304 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-1833 (($ $) 156)) (-2690 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-1377 (((-3 $ "failed") $) 37)) (-1873 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-1818 (((-645 $) $) 111)) (-2946 (((-112) $) 98 (|has| |#1| (-911)))) (-1978 (($ $ |#1| |#2| $) 174)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-112) $) 35)) (-1921 (((-772) $) 171)) (-3772 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-2615 (((-645 $) $) 128)) (-3615 (((-112) $) 154)) (-3764 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ |#3|) 122)) (-1562 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-2972 (($ (-1 |#2| |#2|) $) 173)) (-4364 (($ (-1 |#1| |#1|) $) 153)) (-2047 (((-3 |#3| "failed") $) 125)) (-1796 (($ $) 151)) (-1809 ((|#1| $) 150)) (-1831 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1812 (((-1161) $) 10)) (-4056 (((-3 (-645 $) "failed") $) 116)) (-3655 (((-3 (-645 $) "failed") $) 117)) (-2873 (((-3 (-2 (|:| |var| |#3|) (|:| -2618 (-772))) "failed") $) 115)) (-3479 (((-1122) $) 11)) (-1762 (((-112) $) 168)) (-1774 ((|#1| $) 169)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-455)))) (-1870 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-911)))) (-3661 (((-421 $) $) 101 (|has| |#1| (-911)))) (-2478 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-2254 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3592 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3380 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-1322 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 106 (-1750 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-559))) (($ (-410 (-567))) 80 (-2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-1516 (((-645 |#1|) $) 170)) (-4038 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-2318 (((-3 $ "failed") $) 81 (-2836 (-1750 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) 32 T CONST)) (-3852 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-951 |#1| |#2| |#3|) (-140) (-1051) (-794) (-851)) (T -951)) -((-1873 (*1 *1 *1) (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3380 (*1 *2 *1 *3) (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3380 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-4038 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) (-4038 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2615 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-3633 (*1 *2 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1175 *1)) (-4 *1 (-951 *4 *5 *3)))) (-3633 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1175 *3)))) (-2047 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1562 (*1 *2 *1 *3) (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-1562 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-2177 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-951 *4 *5 *3)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *2 (-851)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) (-3772 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *4)) (-4 *4 (-1051)) (-4 *1 (-951 *4 *5 *3)) (-4 *5 (-794)) (-4 *3 (-851)))) (-3772 (*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)))) (-3655 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-4056 (*1 *2 *1) (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2873 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -2618 (-772)))))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-3153 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-1818 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) (-2304 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-2254 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-1390 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-1873 (*1 *1 *1 *2) (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-3864 (*1 *1 *1) (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-1466 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-421 *1)) (-4 *1 (-951 *3 *4 *5))))) -(-13 (-902 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-517 |t#3| |t#1|) (-517 |t#3| $) (-1040 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3380 ((-772) $ |t#3|)) (-15 -3380 ((-645 (-772)) $ (-645 |t#3|))) (-15 -4038 ($ $ |t#3| (-772))) (-15 -4038 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2615 ((-645 $) $)) (-15 -3633 ((-1175 $) $ |t#3|)) (-15 -3633 ((-1175 |t#1|) $)) (-15 -2047 ((-3 |t#3| "failed") $)) (-15 -1562 ((-772) $ |t#3|)) (-15 -1562 ((-645 (-772)) $ (-645 |t#3|))) (-15 -2177 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $ |t#3|)) (-15 -3764 ($ $ |t#3| (-772))) (-15 -3764 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -3772 ($ (-1175 |t#1|) |t#3|)) (-15 -3772 ($ (-1175 $) |t#3|)) (-15 -3655 ((-3 (-645 $) "failed") $)) (-15 -4056 ((-3 (-645 $) "failed") $)) (-15 -2873 ((-3 (-2 (|:| |var| |t#3|) (|:| -2618 (-772))) "failed") $)) (-15 -3153 ((-772) $)) (-15 -3153 ((-772) $ (-645 |t#3|))) (-15 -3783 ((-645 |t#3|) $)) (-15 -1818 ((-645 $) $)) (IF (|has| |t#1| (-615 (-539))) (IF (|has| |t#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-567)))) (IF (|has| |t#3| (-615 (-894 (-567)))) (-6 (-615 (-894 (-567)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-894 (-381)))) (IF (|has| |t#3| (-615 (-894 (-381)))) (-6 (-615 (-894 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-888 (-567))) (IF (|has| |t#3| (-888 (-567))) (-6 (-888 (-567))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-888 (-381))) (IF (|has| |t#3| (-888 (-381))) (-6 (-888 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2304 ($ $ $ |t#3|)) (-15 -2254 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-6 (-455)) (-15 -1390 ($ $ |t#3|)) (-15 -1873 ($ $)) (-15 -1873 ($ $ |t#3|)) (-15 -1466 ((-421 $) $)) (-15 -3864 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4420)) (-6 -4420) |%noBranch|) (IF (|has| |t#1| (-911)) (-6 (-911)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-291) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2836 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) |has| |#1| (-911))) -((-3783 (((-645 |#2|) |#5|) 40)) (-3633 (((-1175 |#5|) |#5| |#2| (-1175 |#5|)) 23) (((-410 (-1175 |#5|)) |#5| |#2|) 16)) (-3772 ((|#5| (-410 (-1175 |#5|)) |#2|) 30)) (-2047 (((-3 |#2| "failed") |#5|) 71)) (-4056 (((-3 (-645 |#5|) "failed") |#5|) 65)) (-1415 (((-3 (-2 (|:| |val| |#5|) (|:| -2618 (-567))) "failed") |#5|) 53)) (-3655 (((-3 (-645 |#5|) "failed") |#5|) 67)) (-2873 (((-3 (-2 (|:| |var| |#2|) (|:| -2618 (-567))) "failed") |#5|) 57))) -(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3783 ((-645 |#2|) |#5|)) (-15 -2047 ((-3 |#2| "failed") |#5|)) (-15 -3633 ((-410 (-1175 |#5|)) |#5| |#2|)) (-15 -3772 (|#5| (-410 (-1175 |#5|)) |#2|)) (-15 -3633 ((-1175 |#5|) |#5| |#2| (-1175 |#5|))) (-15 -3655 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -4056 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2873 ((-3 (-2 (|:| |var| |#2|) (|:| -2618 (-567))) "failed") |#5|)) (-15 -1415 ((-3 (-2 (|:| |val| |#5|) (|:| -2618 (-567))) "failed") |#5|))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2504 ($ |#4|)) (-15 -4294 (|#4| $)) (-15 -4306 (|#4| $))))) (T -952)) -((-1415 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2618 (-567)))) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))))) (-2873 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2618 (-567)))) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))))) (-4056 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))))) (-3655 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))))) (-3633 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))) (-4 *7 (-951 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-5 *1 (-952 *5 *4 *6 *7 *3)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1175 *2))) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-4 *2 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))) (-5 *1 (-952 *5 *4 *6 *7 *2)) (-4 *7 (-951 *6 *5 *4)))) (-3633 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-410 (-1175 *3))) (-5 *1 (-952 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))))) (-2047 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1051)) (-4 *6 (-951 *5 *4 *2)) (-4 *2 (-851)) (-5 *1 (-952 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *6)) (-15 -4294 (*6 $)) (-15 -4306 (*6 $))))))) (-3783 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *5)) (-5 *1 (-952 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $)))))))) -(-10 -7 (-15 -3783 ((-645 |#2|) |#5|)) (-15 -2047 ((-3 |#2| "failed") |#5|)) (-15 -3633 ((-410 (-1175 |#5|)) |#5| |#2|)) (-15 -3772 (|#5| (-410 (-1175 |#5|)) |#2|)) (-15 -3633 ((-1175 |#5|) |#5| |#2| (-1175 |#5|))) (-15 -3655 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -4056 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2873 ((-3 (-2 (|:| |var| |#2|) (|:| -2618 (-567))) "failed") |#5|)) (-15 -1415 ((-3 (-2 (|:| |val| |#5|) (|:| -2618 (-567))) "failed") |#5|))) -((-4364 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4364 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-794) (-851) (-1051) (-951 |#3| |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -3045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (T -953)) -((-4364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *6 (-794)) (-4 *2 (-13 (-1102) (-10 -8 (-15 -3045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (-5 *1 (-953 *6 *7 *8 *5 *2)) (-4 *5 (-951 *8 *6 *7))))) -(-10 -7 (-15 -4364 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-1179)) $) 16)) (-3633 (((-1175 $) $ (-1179)) 21) (((-1175 |#1|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-1179))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) 8) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1179) "failed") $) NIL)) (-3094 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1179) $) NIL)) (-2304 (($ $ $ (-1179)) NIL (|has| |#1| (-172)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1179)) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-1978 (($ $ |#1| (-534 (-1179)) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1179) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1179) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3772 (($ (-1175 |#1|) (-1179)) NIL) (($ (-1175 $) (-1179)) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-534 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-1179)) NIL)) (-1562 (((-534 (-1179)) $) NIL) (((-772) $ (-1179)) NIL) (((-645 (-772)) $ (-645 (-1179))) NIL)) (-2972 (($ (-1 (-534 (-1179)) (-534 (-1179))) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2047 (((-3 (-1179) "failed") $) 19)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1812 (((-1161) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-1179)) (|:| -2618 (-772))) "failed") $) NIL)) (-3670 (($ $ (-1179)) 29 (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1179) |#1|) NIL) (($ $ (-645 (-1179)) (-645 |#1|)) NIL) (($ $ (-1179) $) NIL) (($ $ (-645 (-1179)) (-645 $)) NIL)) (-2254 (($ $ (-1179)) NIL (|has| |#1| (-172)))) (-3592 (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-3380 (((-534 (-1179)) $) NIL) (((-772) $ (-1179)) NIL) (((-645 (-772)) $ (-645 (-1179))) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-1179) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1179) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1179) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1179)) NIL (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) 25) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1179)) 27) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-534 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-954 |#1|) (-13 (-951 |#1| (-534 (-1179)) (-1179)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1179))) |%noBranch|))) (-1051)) (T -954)) -((-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-954 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051))))) -(-13 (-951 |#1| (-534 (-1179)) (-1179)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1179))) |%noBranch|))) -((-2278 (((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) |#3| (-772)) 49)) (-4315 (((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772)) 44)) (-4399 (((-2 (|:| -2618 (-772)) (|:| -1344 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)) 65)) (-2042 (((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) |#5| (-772)) 74 (|has| |#3| (-455))))) -(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2278 ((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -4315 ((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -2042 ((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -4399 ((-2 (|:| -2618 (-772)) (|:| -1344 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) (-794) (-851) (-559) (-951 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2504 ($ |#4|)) (-15 -4294 (|#4| $)) (-15 -4306 (|#4| $))))) (T -955)) -((-4399 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *3 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *3) (|:| |radicand| (-645 *3)))) (-5 *1 (-955 *5 *6 *7 *3 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2504 ($ *3)) (-15 -4294 (*3 $)) (-15 -4306 (*3 $))))))) (-2042 (*1 *2 *3 *4) (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *3) (|:| |radicand| *3))) (-5 *1 (-955 *5 *6 *7 *8 *3)) (-5 *4 (-772)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2504 ($ *8)) (-15 -4294 (*8 $)) (-15 -4306 (*8 $))))))) (-4315 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *9) (|:| |radicand| *9))) (-5 *1 (-955 *5 *6 *7 *8 *9)) (-5 *4 (-772)) (-4 *9 (-13 (-365) (-10 -8 (-15 -2504 ($ *8)) (-15 -4294 (*8 $)) (-15 -4306 (*8 $))))))) (-2278 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) (-4 *7 (-951 *3 *5 *6)) (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *8) (|:| |radicand| *8))) (-5 *1 (-955 *5 *6 *3 *7 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $)))))))) -(-10 -7 (-15 -2278 ((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -4315 ((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -2042 ((-2 (|:| -2618 (-772)) (|:| -1344 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -4399 ((-2 (|:| -2618 (-772)) (|:| -1344 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) -((-2487 (((-112) $ $) NIL)) (-3558 (($ (-1122)) 8)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 15) (((-1122) $) 12)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 11))) -(((-956) (-13 (-1102) (-614 (-1122)) (-10 -8 (-15 -3558 ($ (-1122)))))) (T -956)) -((-3558 (*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-956))))) -(-13 (-1102) (-614 (-1122)) (-10 -8 (-15 -3558 ($ (-1122))))) -((-2002 (((-1096 (-225)) $) 8)) (-1991 (((-1096 (-225)) $) 9)) (-1502 (((-645 (-645 (-945 (-225)))) $) 10)) (-2504 (((-863) $) 6))) -(((-957) (-140)) (T -957)) -((-1502 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-645 (-645 (-945 (-225))))))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225)))))) -(-13 (-614 (-863)) (-10 -8 (-15 -1502 ((-645 (-645 (-945 (-225)))) $)) (-15 -1991 ((-1096 (-225)) $)) (-15 -2002 ((-1096 (-225)) $)))) -(((-614 (-863)) . T)) -((-2530 (((-3 (-690 |#1|) "failed") |#2| (-923)) 18))) -(((-958 |#1| |#2|) (-10 -7 (-15 -2530 ((-3 (-690 |#1|) "failed") |#2| (-923)))) (-559) (-657 |#1|)) (T -958)) -((-2530 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-923)) (-4 *5 (-559)) (-5 *2 (-690 *5)) (-5 *1 (-958 *5 *3)) (-4 *3 (-657 *5))))) -(-10 -7 (-15 -2530 ((-3 (-690 |#1|) "failed") |#2| (-923)))) -((-4309 (((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|) 16)) (-2617 ((|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|) 18)) (-4364 (((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)) 13))) -(((-959 |#1| |#2|) (-10 -7 (-15 -4309 ((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -2617 (|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -4364 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) (-1219) (-1219)) (T -959)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-960 *6)) (-5 *1 (-959 *5 *6)))) (-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-960 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-959 *5 *2)))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-960 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-960 *5)) (-5 *1 (-959 *6 *5))))) -(-10 -7 (-15 -4309 ((-960 |#2|) (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -2617 (|#2| (-1 |#2| |#1| |#2|) (-960 |#1|) |#2|)) (-15 -4364 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) |#1|) 19 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) 18 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 16)) (-3932 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-4223 (($ (-772) |#1|) 15)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) 11 (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) NIL (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) 20 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 17) (($ $ (-1236 (-567))) NIL)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) 21)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 14)) (-3644 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2498 (((-772) $) 8 (|has| $ (-6 -4422))))) -(((-960 |#1|) (-19 |#1|) (-1219)) (T -960)) +((-4378 (((-315 |#1|) (-480)) 16))) +(((-923 |#1|) (-10 -7 (-15 -4378 ((-315 |#1|) (-480)))) (-560)) (T -923)) +((-4378 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-315 *4)) (-5 *1 (-923 *4)) (-4 *4 (-560))))) +(-10 -7 (-15 -4378 ((-315 |#1|) (-480)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-2573 (((-112) $) 35)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-924) (-140)) (T -924)) +((-3144 (*1 *2 *3) (-12 (-4 *1 (-924)) (-5 *2 (-2 (|:| -4386 (-643 *1)) (|:| -2572 *1))) (-5 *3 (-643 *1)))) (-3143 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-643 *1)) (-4 *1 (-924))))) +(-13 (-455) (-10 -8 (-15 -3144 ((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $))) (-15 -3143 ((-3 (-643 $) "failed") (-643 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-3509 (((-1174 |#2|) (-643 |#2|) (-643 |#2|)) 17) (((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-643 |#2|) (-643 |#2|)) 13))) +(((-925 |#1| |#2|) (-10 -7 (-15 -3509 ((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-643 |#2|) (-643 |#2|))) (-15 -3509 ((-1174 |#2|) (-643 |#2|) (-643 |#2|)))) (-1180) (-365)) (T -925)) +((-3509 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *5)) (-4 *5 (-365)) (-5 *2 (-1174 *5)) (-5 *1 (-925 *4 *5)) (-14 *4 (-1180)))) (-3509 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1238 *4 *5)) (-5 *3 (-643 *5)) (-14 *4 (-1180)) (-4 *5 (-365)) (-5 *1 (-925 *4 *5))))) +(-10 -7 (-15 -3509 ((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-643 |#2|) (-643 |#2|))) (-15 -3509 ((-1174 |#2|) (-643 |#2|) (-643 |#2|)))) +((-3145 ((|#2| (-643 |#1|) (-643 |#1|)) 29))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3145 (|#2| (-643 |#1|) (-643 |#1|)))) (-365) (-1245 |#1|)) (T -926)) +((-3145 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-365)) (-4 *2 (-1245 *4)) (-5 *1 (-926 *4 *2))))) +(-10 -7 (-15 -3145 (|#2| (-643 |#1|) (-643 |#1|)))) +((-3147 (((-549) (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162)) 177)) (-3166 ((|#4| |#4|) 196)) (-3151 (((-643 (-410 (-949 |#1|))) (-643 (-1180))) 149)) (-3165 (((-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-643 (-643 |#4|)) (-773) (-773) (-549)) 88)) (-3155 (((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-643 |#4|)) 69)) (-3164 (((-691 |#4|) (-691 |#4|) (-643 |#4|)) 65)) (-3148 (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162)) 189)) (-3146 (((-549) (-691 |#4|) (-922) (-1162)) 169) (((-549) (-691 |#4|) (-643 (-1180)) (-922) (-1162)) 168) (((-549) (-691 |#4|) (-643 |#4|) (-922) (-1162)) 167) (((-549) (-691 |#4|) (-1162)) 157) (((-549) (-691 |#4|) (-643 (-1180)) (-1162)) 156) (((-549) (-691 |#4|) (-643 |#4|) (-1162)) 155) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-922)) 154) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)) (-922)) 153) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|) (-922)) 152) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|)) 151) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180))) 150) (((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|)) 146)) (-3152 ((|#4| (-949 |#1|)) 80)) (-3162 (((-112) (-643 |#4|) (-643 (-643 |#4|))) 193)) (-3161 (((-643 (-643 (-549))) (-549) (-549)) 162)) (-3160 (((-643 (-643 |#4|)) (-643 (-643 |#4|))) 107)) (-3159 (((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|))))) 102)) (-3158 (((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|))))) 101)) (-3167 (((-112) (-643 (-949 |#1|))) 19) (((-112) (-643 |#4|)) 15)) (-3153 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-643 |#4|)) (|:| |n0| (-643 |#4|))) (-643 |#4|) (-643 |#4|)) 84)) (-3157 (((-643 |#4|) |#4|) 57)) (-3150 (((-643 (-410 (-949 |#1|))) (-643 |#4|)) 145) (((-691 (-410 (-949 |#1|))) (-691 |#4|)) 66) (((-410 (-949 |#1|)) |#4|) 142)) (-3149 (((-2 (|:| |rgl| (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))))) (|:| |rgsz| (-549))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-773) (-1162) (-549)) 113)) (-3154 (((-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))) (-691 |#4|) (-773)) 100)) (-3163 (((-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-691 |#4|) (-773)) 124)) (-3156 (((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| -1748 (-691 (-410 (-949 |#1|)))) (|:| |vec| (-643 (-410 (-949 |#1|)))) (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) 56))) +(((-927 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|) (-922))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)) (-922))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-922))) (-15 -3146 ((-549) (-691 |#4|) (-643 |#4|) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 (-1180)) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 |#4|) (-922) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 (-1180)) (-922) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-922) (-1162))) (-15 -3147 ((-549) (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162))) (-15 -3148 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162))) (-15 -3149 ((-2 (|:| |rgl| (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))))) (|:| |rgsz| (-549))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-773) (-1162) (-549))) (-15 -3150 ((-410 (-949 |#1|)) |#4|)) (-15 -3150 ((-691 (-410 (-949 |#1|))) (-691 |#4|))) (-15 -3150 ((-643 (-410 (-949 |#1|))) (-643 |#4|))) (-15 -3151 ((-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3152 (|#4| (-949 |#1|))) (-15 -3153 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-643 |#4|)) (|:| |n0| (-643 |#4|))) (-643 |#4|) (-643 |#4|))) (-15 -3154 ((-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))) (-691 |#4|) (-773))) (-15 -3155 ((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-643 |#4|))) (-15 -3156 ((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| -1748 (-691 (-410 (-949 |#1|)))) (|:| |vec| (-643 (-410 (-949 |#1|)))) (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (-15 -3157 ((-643 |#4|) |#4|)) (-15 -3158 ((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))))) (-15 -3159 ((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))))) (-15 -3160 ((-643 (-643 |#4|)) (-643 (-643 |#4|)))) (-15 -3161 ((-643 (-643 (-549))) (-549) (-549))) (-15 -3162 ((-112) (-643 |#4|) (-643 (-643 |#4|)))) (-15 -3163 ((-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-691 |#4|) (-773))) (-15 -3164 ((-691 |#4|) (-691 |#4|) (-643 |#4|))) (-15 -3165 ((-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-643 (-643 |#4|)) (-773) (-773) (-549))) (-15 -3166 (|#4| |#4|)) (-15 -3167 ((-112) (-643 |#4|))) (-15 -3167 ((-112) (-643 (-949 |#1|))))) (-13 (-308) (-147)) (-13 (-852) (-616 (-1180))) (-795) (-953 |#1| |#3| |#2|)) (T -927)) +((-3167 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-112)) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-112)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3166 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-852) (-616 (-1180)))) (-4 *5 (-795)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-953 *3 *5 *4)))) (-3165 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-5 *4 (-691 *12)) (-5 *5 (-643 (-410 (-949 *9)))) (-5 *6 (-643 (-643 *12))) (-5 *7 (-773)) (-5 *8 (-549)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-953 *9 *11 *10)) (-4 *10 (-13 (-852) (-616 (-1180)))) (-4 *11 (-795)) (-5 *2 (-2 (|:| |eqzro| (-643 *12)) (|:| |neqzro| (-643 *12)) (|:| |wcond| (-643 (-949 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *9)))) (|:| -2190 (-643 (-1269 (-410 (-949 *9))))))))) (-5 *1 (-927 *9 *10 *11 *12)))) (-3164 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *7)) (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3163 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-5 *4 (-773)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| |det| *8) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (-5 *1 (-927 *5 *6 *7 *8)))) (-3162 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-643 *8))) (-5 *3 (-643 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-112)) (-5 *1 (-927 *5 *6 *7 *8)))) (-3161 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-643 (-549)))) (-5 *1 (-927 *4 *5 *6 *7)) (-5 *3 (-549)) (-4 *7 (-953 *4 *6 *5)))) (-3160 (*1 *2 *2) (-12 (-5 *2 (-643 (-643 *6))) (-4 *6 (-953 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-852) (-616 (-1180)))) (-4 *5 (-795)) (-5 *1 (-927 *3 *4 *5 *6)))) (-3159 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| *7) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 *7))))) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-773)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| *7) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 *7))))) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-773)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3157 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 *3)) (-5 *1 (-927 *4 *5 *6 *3)) (-4 *3 (-953 *4 *6 *5)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1748 (-691 (-410 (-949 *4)))) (|:| |vec| (-643 (-410 (-949 *4)))) (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) (|:| -2190 (-643 (-1269 (-410 (-949 *4))))))) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5)))) (-3155 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) (|:| -2190 (-643 (-1269 (-410 (-949 *4))))))) (-5 *3 (-643 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-953 *4 *6 *5)) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *1 (-927 *4 *5 *6 *7)))) (-3154 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| *8) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 *8))))) (-5 *1 (-927 *5 *6 *7 *8)) (-5 *4 (-773)))) (-3153 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-4 *7 (-953 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-643 *7)) (|:| |n0| (-643 *7)))) (-5 *1 (-927 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-953 *4 *6 *5)) (-5 *1 (-927 *4 *5 *6 *2)) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-691 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-691 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)))) (-3150 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-410 (-949 *4))) (-5 *1 (-927 *4 *5 *6 *3)) (-4 *3 (-953 *4 *6 *5)))) (-3149 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-691 *11)) (-5 *4 (-643 (-410 (-949 *8)))) (-5 *5 (-773)) (-5 *6 (-1162)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-953 *8 *10 *9)) (-4 *9 (-13 (-852) (-616 (-1180)))) (-4 *10 (-795)) (-5 *2 (-2 (|:| |rgl| (-643 (-2 (|:| |eqzro| (-643 *11)) (|:| |neqzro| (-643 *11)) (|:| |wcond| (-643 (-949 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *8)))) (|:| -2190 (-643 (-1269 (-410 (-949 *8)))))))))) (|:| |rgsz| (-549)))) (-5 *1 (-927 *8 *9 *10 *11)) (-5 *7 (-549)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *7)) (|:| |neqzro| (-643 *7)) (|:| |wcond| (-643 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) (|:| -2190 (-643 (-1269 (-410 (-949 *4)))))))))) (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) (|:| |wcond| (-643 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) (-5 *4 (-1162)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-953 *5 *7 *6)) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *5 *6 *7 *8)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *4 (-922)) (-5 *5 (-1162)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *6 *7 *8 *9)))) (-3146 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-691 *10)) (-5 *4 (-643 (-1180))) (-5 *5 (-922)) (-5 *6 (-1162)) (-4 *10 (-953 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-852) (-616 (-1180)))) (-4 *9 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *7 *8 *9 *10)))) (-3146 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-691 *10)) (-5 *4 (-643 *10)) (-5 *5 (-922)) (-5 *6 (-1162)) (-4 *10 (-953 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-852) (-616 (-1180)))) (-4 *9 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *7 *8 *9 *10)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-5 *4 (-1162)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *5 *6 *7 *8)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 (-1180))) (-5 *5 (-1162)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *6 *7 *8 *9)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 *9)) (-5 *5 (-1162)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *6 *7 *8 *9)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-5 *4 (-922)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) (|:| |wcond| (-643 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) (-5 *1 (-927 *5 *6 *7 *8)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 (-1180))) (-5 *5 (-922)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *9)) (|:| |neqzro| (-643 *9)) (|:| |wcond| (-643 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *6)))) (|:| -2190 (-643 (-1269 (-410 (-949 *6)))))))))) (-5 *1 (-927 *6 *7 *8 *9)))) (-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-691 *9)) (-5 *5 (-922)) (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *9)) (|:| |neqzro| (-643 *9)) (|:| |wcond| (-643 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *6)))) (|:| -2190 (-643 (-1269 (-410 (-949 *6)))))))))) (-5 *1 (-927 *6 *7 *8 *9)) (-5 *4 (-643 *9)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-691 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *7)) (|:| |neqzro| (-643 *7)) (|:| |wcond| (-643 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) (|:| -2190 (-643 (-1269 (-410 (-949 *4)))))))))) (-5 *1 (-927 *4 *5 *6 *7)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-5 *4 (-643 (-1180))) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) (|:| |wcond| (-643 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) (-5 *1 (-927 *5 *6 *7 *8)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-691 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-643 (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) (|:| |wcond| (-643 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) (-5 *1 (-927 *5 *6 *7 *8)) (-5 *4 (-643 *8))))) +(-10 -7 (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 |#4|) (-922))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-643 (-1180)) (-922))) (-15 -3146 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-691 |#4|) (-922))) (-15 -3146 ((-549) (-691 |#4|) (-643 |#4|) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 (-1180)) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 |#4|) (-922) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-643 (-1180)) (-922) (-1162))) (-15 -3146 ((-549) (-691 |#4|) (-922) (-1162))) (-15 -3147 ((-549) (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162))) (-15 -3148 ((-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|))))))))) (-1162))) (-15 -3149 ((-2 (|:| |rgl| (-643 (-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))))) (|:| |rgsz| (-549))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-773) (-1162) (-549))) (-15 -3150 ((-410 (-949 |#1|)) |#4|)) (-15 -3150 ((-691 (-410 (-949 |#1|))) (-691 |#4|))) (-15 -3150 ((-643 (-410 (-949 |#1|))) (-643 |#4|))) (-15 -3151 ((-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3152 (|#4| (-949 |#1|))) (-15 -3153 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-643 |#4|)) (|:| |n0| (-643 |#4|))) (-643 |#4|) (-643 |#4|))) (-15 -3154 ((-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))) (-691 |#4|) (-773))) (-15 -3155 ((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-643 |#4|))) (-15 -3156 ((-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))) (-2 (|:| -1748 (-691 (-410 (-949 |#1|)))) (|:| |vec| (-643 (-410 (-949 |#1|)))) (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (-15 -3157 ((-643 |#4|) |#4|)) (-15 -3158 ((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))))) (-15 -3159 ((-773) (-643 (-2 (|:| -3513 (-773)) (|:| |eqns| (-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))))) (|:| |fgb| (-643 |#4|)))))) (-15 -3160 ((-643 (-643 |#4|)) (-643 (-643 |#4|)))) (-15 -3161 ((-643 (-643 (-549))) (-549) (-549))) (-15 -3162 ((-112) (-643 |#4|) (-643 (-643 |#4|)))) (-15 -3163 ((-643 (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) (-691 |#4|) (-773))) (-15 -3164 ((-691 |#4|) (-691 |#4|) (-643 |#4|))) (-15 -3165 ((-2 (|:| |eqzro| (-643 |#4|)) (|:| |neqzro| (-643 |#4|)) (|:| |wcond| (-643 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1269 (-410 (-949 |#1|)))) (|:| -2190 (-643 (-1269 (-410 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549)))) (-691 |#4|) (-643 (-410 (-949 |#1|))) (-643 (-643 |#4|)) (-773) (-773) (-549))) (-15 -3166 (|#4| |#4|)) (-15 -3167 ((-112) (-643 |#4|))) (-15 -3167 ((-112) (-643 (-949 |#1|))))) +((-4306 (($ $ (-1092 (-225))) 124) (($ $ (-1092 (-225)) (-1092 (-225))) 125)) (-3297 (((-1092 (-225)) $) 73)) (-3298 (((-1092 (-225)) $) 72)) (-3191 (((-1092 (-225)) $) 74)) (-3172 (((-549) (-549)) 66)) (-3176 (((-549) (-549)) 61)) (-3174 (((-549) (-549)) 64)) (-3170 (((-112) (-112)) 68)) (-3173 (((-549)) 65)) (-3538 (($ $ (-1092 (-225))) 128) (($ $) 129)) (-3193 (($ (-1 (-946 (-225)) (-225)) (-1092 (-225))) 143) (($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 144)) (-3179 (($ (-1 (-225) (-225)) (-1092 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-3192 (($ (-1 (-225) (-225)) (-1092 (-225))) 139) (($ (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225))) 140) (($ (-643 (-1 (-225) (-225))) (-1092 (-225))) 148) (($ (-643 (-1 (-225) (-225))) (-1092 (-225)) (-1092 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 142) (($ $ (-1092 (-225))) 130)) (-3178 (((-112) $) 69)) (-3169 (((-549)) 70)) (-3177 (((-549)) 59)) (-3175 (((-549)) 62)) (-3299 (((-643 (-643 (-946 (-225)))) $) 35)) (-3168 (((-112) (-112)) 71)) (-4378 (((-865) $) 169)) (-3171 (((-112)) 67))) +(((-928) (-13 (-958) (-10 -8 (-15 -3192 ($ (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-643 (-1 (-225) (-225))) (-1092 (-225)))) (-15 -3192 ($ (-643 (-1 (-225) (-225))) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3179 ($ (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3179 ($ (-1 (-225) (-225)))) (-15 -3192 ($ $ (-1092 (-225)))) (-15 -3178 ((-112) $)) (-15 -4306 ($ $ (-1092 (-225)))) (-15 -4306 ($ $ (-1092 (-225)) (-1092 (-225)))) (-15 -3538 ($ $ (-1092 (-225)))) (-15 -3538 ($ $)) (-15 -3191 ((-1092 (-225)) $)) (-15 -3177 ((-549))) (-15 -3176 ((-549) (-549))) (-15 -3175 ((-549))) (-15 -3174 ((-549) (-549))) (-15 -3173 ((-549))) (-15 -3172 ((-549) (-549))) (-15 -3171 ((-112))) (-15 -3170 ((-112) (-112))) (-15 -3169 ((-549))) (-15 -3168 ((-112) (-112)))))) (T -928)) +((-3192 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1 (-225) (-225)))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-643 (-1 (-225) (-225)))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3193 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3179 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) (-3179 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-928)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-4306 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-4306 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-3538 (*1 *1 *1) (-5 *1 (-928))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) (-3177 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3176 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3175 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3173 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3171 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3169 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) +(-13 (-958) (-10 -8 (-15 -3192 ($ (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-643 (-1 (-225) (-225))) (-1092 (-225)))) (-15 -3192 ($ (-643 (-1 (-225) (-225))) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3179 ($ (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3179 ($ (-1 (-225) (-225)))) (-15 -3192 ($ $ (-1092 (-225)))) (-15 -3178 ((-112) $)) (-15 -4306 ($ $ (-1092 (-225)))) (-15 -4306 ($ $ (-1092 (-225)) (-1092 (-225)))) (-15 -3538 ($ $ (-1092 (-225)))) (-15 -3538 ($ $)) (-15 -3191 ((-1092 (-225)) $)) (-15 -3177 ((-549))) (-15 -3176 ((-549) (-549))) (-15 -3175 ((-549))) (-15 -3174 ((-549) (-549))) (-15 -3173 ((-549))) (-15 -3172 ((-549) (-549))) (-15 -3171 ((-112))) (-15 -3170 ((-112) (-112))) (-15 -3169 ((-549))) (-15 -3168 ((-112) (-112))))) +((-3179 (((-928) |#1| (-1180)) 17) (((-928) |#1| (-1180) (-1092 (-225))) 21)) (-3192 (((-928) |#1| |#1| (-1180) (-1092 (-225))) 19) (((-928) |#1| (-1180) (-1092 (-225))) 15))) +(((-929 |#1|) (-10 -7 (-15 -3192 ((-928) |#1| (-1180) (-1092 (-225)))) (-15 -3192 ((-928) |#1| |#1| (-1180) (-1092 (-225)))) (-15 -3179 ((-928) |#1| (-1180) (-1092 (-225)))) (-15 -3179 ((-928) |#1| (-1180)))) (-616 (-538))) (T -929)) +((-3179 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538))))) (-3179 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538))))) (-3192 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538))))) (-3192 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538)))))) +(-10 -7 (-15 -3192 ((-928) |#1| (-1180) (-1092 (-225)))) (-15 -3192 ((-928) |#1| |#1| (-1180) (-1092 (-225)))) (-15 -3179 ((-928) |#1| (-1180) (-1092 (-225)))) (-15 -3179 ((-928) |#1| (-1180)))) +((-4306 (($ $ (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 123)) (-3296 (((-1092 (-225)) $) 64)) (-3297 (((-1092 (-225)) $) 63)) (-3298 (((-1092 (-225)) $) 62)) (-3190 (((-643 (-643 (-225))) $) 69)) (-3191 (((-1092 (-225)) $) 65)) (-3184 (((-549) (-549)) 57)) (-3188 (((-549) (-549)) 52)) (-3186 (((-549) (-549)) 55)) (-3182 (((-112) (-112)) 59)) (-3185 (((-549)) 56)) (-3538 (($ $ (-1092 (-225))) 126) (($ $) 127)) (-3193 (($ (-1 (-946 (-225)) (-225)) (-1092 (-225))) 133) (($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 134)) (-3192 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225))) 137) (($ $ (-1092 (-225))) 129)) (-3181 (((-549)) 60)) (-3189 (((-549)) 50)) (-3187 (((-549)) 53)) (-3299 (((-643 (-643 (-946 (-225)))) $) 153)) (-3180 (((-112) (-112)) 61)) (-4378 (((-865) $) 151)) (-3183 (((-112)) 58))) +(((-930) (-13 (-977) (-10 -8 (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ $ (-1092 (-225)))) (-15 -4306 ($ $ (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3538 ($ $ (-1092 (-225)))) (-15 -3538 ($ $)) (-15 -3191 ((-1092 (-225)) $)) (-15 -3190 ((-643 (-643 (-225))) $)) (-15 -3189 ((-549))) (-15 -3188 ((-549) (-549))) (-15 -3187 ((-549))) (-15 -3186 ((-549) (-549))) (-15 -3185 ((-549))) (-15 -3184 ((-549) (-549))) (-15 -3183 ((-112))) (-15 -3182 ((-112) (-112))) (-15 -3181 ((-549))) (-15 -3180 ((-112) (-112)))))) (T -930)) +((-3193 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) (-3193 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) (-3192 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) (-3192 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) (-4306 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) (-3538 (*1 *1 *1) (-5 *1 (-930))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-225)))) (-5 *1 (-930)))) (-3189 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3187 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3185 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3183 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930)))) (-3181 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930))))) +(-13 (-977) (-10 -8 (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)))) (-15 -3193 ($ (-1 (-946 (-225)) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)))) (-15 -3192 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3192 ($ $ (-1092 (-225)))) (-15 -4306 ($ $ (-1092 (-225)) (-1092 (-225)) (-1092 (-225)))) (-15 -3538 ($ $ (-1092 (-225)))) (-15 -3538 ($ $)) (-15 -3191 ((-1092 (-225)) $)) (-15 -3190 ((-643 (-643 (-225))) $)) (-15 -3189 ((-549))) (-15 -3188 ((-549) (-549))) (-15 -3187 ((-549))) (-15 -3186 ((-549) (-549))) (-15 -3185 ((-549))) (-15 -3184 ((-549) (-549))) (-15 -3183 ((-112))) (-15 -3182 ((-112) (-112))) (-15 -3181 ((-549))) (-15 -3180 ((-112) (-112))))) +((-3194 (((-643 (-1092 (-225))) (-643 (-643 (-946 (-225))))) 34))) +(((-931) (-10 -7 (-15 -3194 ((-643 (-1092 (-225))) (-643 (-643 (-946 (-225)))))))) (T -931)) +((-3194 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-643 (-1092 (-225)))) (-5 *1 (-931))))) +(-10 -7 (-15 -3194 ((-643 (-1092 (-225))) (-643 (-643 (-946 (-225))))))) +((-3196 (((-315 (-549)) (-1180)) 16)) (-3197 (((-315 (-549)) (-1180)) 14)) (-4384 (((-315 (-549)) (-1180)) 12)) (-3195 (((-315 (-549)) (-1180) (-509)) 19))) +(((-932) (-10 -7 (-15 -3195 ((-315 (-549)) (-1180) (-509))) (-15 -4384 ((-315 (-549)) (-1180))) (-15 -3196 ((-315 (-549)) (-1180))) (-15 -3197 ((-315 (-549)) (-1180))))) (T -932)) +((-3197 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) (-4384 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) (-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-509)) (-5 *2 (-315 (-549))) (-5 *1 (-932))))) +(-10 -7 (-15 -3195 ((-315 (-549)) (-1180) (-509))) (-15 -4384 ((-315 (-549)) (-1180))) (-15 -3196 ((-315 (-549)) (-1180))) (-15 -3197 ((-315 (-549)) (-1180)))) +((-3196 ((|#2| |#2|) 28)) (-3197 ((|#2| |#2|) 29)) (-4384 ((|#2| |#2|) 27)) (-3195 ((|#2| |#2| (-509)) 26))) +(((-933 |#1| |#2|) (-10 -7 (-15 -3195 (|#2| |#2| (-509))) (-15 -4384 (|#2| |#2|)) (-15 -3196 (|#2| |#2|)) (-15 -3197 (|#2| |#2|))) (-1104) (-424 |#1|)) (T -933)) +((-3197 (*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3)))) (-3196 (*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3)))) (-4384 (*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-509)) (-4 *4 (-1104)) (-5 *1 (-933 *4 *2)) (-4 *2 (-424 *4))))) +(-10 -7 (-15 -3195 (|#2| |#2| (-509))) (-15 -4384 (|#2| |#2|)) (-15 -3196 (|#2| |#2|)) (-15 -3197 (|#2| |#2|))) +((-3199 (((-891 |#1| |#3|) |#2| (-893 |#1|) (-891 |#1| |#3|)) 25)) (-3198 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -3198 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3199 ((-891 |#1| |#3|) |#2| (-893 |#1|) (-891 |#1| |#3|)))) (-1104) (-889 |#1|) (-13 (-1104) (-1041 |#2|))) (T -934)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-13 (-1104) (-1041 *3))) (-4 *3 (-889 *5)) (-5 *1 (-934 *5 *3 *6)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1104) (-1041 *5))) (-4 *5 (-889 *4)) (-4 *4 (-1104)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-934 *4 *5 *6))))) +(-10 -7 (-15 -3198 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3199 ((-891 |#1| |#3|) |#2| (-893 |#1|) (-891 |#1| |#3|)))) +((-3199 (((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)) 30))) +(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) (-1104) (-13 (-560) (-889 |#1|)) (-13 (-424 |#2|) (-616 (-893 |#1|)) (-889 |#1|) (-1041 (-613 $)))) (T -935)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) (-4 *3 (-13 (-424 *6) (-616 *4) (-889 *5) (-1041 (-613 $)))) (-5 *4 (-893 *5)) (-4 *6 (-13 (-560) (-889 *5))) (-5 *1 (-935 *5 *6 *3))))) +(-10 -7 (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) +((-3199 (((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|)) 13))) +(((-936 |#1|) (-10 -7 (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|)))) (-548)) (T -936)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 (-549) *3)) (-5 *4 (-893 (-549))) (-4 *3 (-548)) (-5 *1 (-936 *3))))) +(-10 -7 (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|)))) +((-3199 (((-891 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-891 |#1| |#2|)) 57))) +(((-937 |#1| |#2|) (-10 -7 (-15 -3199 ((-891 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-891 |#1| |#2|)))) (-1104) (-13 (-1104) (-1041 (-613 $)) (-616 (-893 |#1|)) (-889 |#1|))) (T -937)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1104)) (-4 *6 (-13 (-1104) (-1041 (-613 $)) (-616 *4) (-889 *5))) (-5 *4 (-893 *5)) (-5 *1 (-937 *5 *6))))) +(-10 -7 (-15 -3199 ((-891 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-891 |#1| |#2|)))) +((-3199 (((-888 |#1| |#2| |#3|) |#3| (-893 |#1|) (-888 |#1| |#2| |#3|)) 17))) +(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-888 |#1| |#2| |#3|) |#3| (-893 |#1|) (-888 |#1| |#2| |#3|)))) (-1104) (-889 |#1|) (-668 |#2|)) (T -938)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-888 *5 *6 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-889 *5)) (-4 *3 (-668 *6)) (-5 *1 (-938 *5 *6 *3))))) +(-10 -7 (-15 -3199 ((-888 |#1| |#2| |#3|) |#3| (-893 |#1|) (-888 |#1| |#2| |#3|)))) +((-3199 (((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|)) 17 (|has| |#3| (-889 |#1|))) (((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-893 |#1|) (-891 |#1| |#5|))) 16))) +(((-939 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3199 ((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-893 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-889 |#1|)) (-15 -3199 ((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|))) |%noBranch|)) (-1104) (-795) (-852) (-13 (-1052) (-889 |#1|)) (-13 (-953 |#4| |#2| |#3|) (-616 (-893 |#1|)))) (T -939)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) (-4 *3 (-13 (-953 *8 *6 *7) (-616 *4))) (-5 *4 (-893 *5)) (-4 *7 (-889 *5)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-13 (-1052) (-889 *5))) (-5 *1 (-939 *5 *6 *7 *8 *3)))) (-3199 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-893 *6) (-891 *6 *3))) (-4 *8 (-852)) (-5 *2 (-891 *6 *3)) (-5 *4 (-893 *6)) (-4 *6 (-1104)) (-4 *3 (-13 (-953 *9 *7 *8) (-616 *4))) (-4 *7 (-795)) (-4 *9 (-13 (-1052) (-889 *6))) (-5 *1 (-939 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3199 ((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|) (-1 (-891 |#1| |#5|) |#3| (-893 |#1|) (-891 |#1| |#5|)))) (IF (|has| |#3| (-889 |#1|)) (-15 -3199 ((-891 |#1| |#5|) |#5| (-893 |#1|) (-891 |#1| |#5|))) |%noBranch|)) +((-3629 (((-315 (-549)) (-1180) (-643 (-1 (-112) |#1|))) 18) (((-315 (-549)) (-1180) (-1 (-112) |#1|)) 15))) +(((-940 |#1|) (-10 -7 (-15 -3629 ((-315 (-549)) (-1180) (-1 (-112) |#1|))) (-15 -3629 ((-315 (-549)) (-1180) (-643 (-1 (-112) |#1|))))) (-1219)) (T -940)) +((-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-643 (-1 (-112) *5))) (-4 *5 (-1219)) (-5 *2 (-315 (-549))) (-5 *1 (-940 *5)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1219)) (-5 *2 (-315 (-549))) (-5 *1 (-940 *5))))) +(-10 -7 (-15 -3629 ((-315 (-549)) (-1180) (-1 (-112) |#1|))) (-15 -3629 ((-315 (-549)) (-1180) (-643 (-1 (-112) |#1|))))) +((-3629 ((|#2| |#2| (-643 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3629 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3629 (|#2| |#2| (-643 (-1 (-112) |#3|))))) (-1104) (-424 |#1|) (-1219)) (T -941)) +((-3629 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-1 (-112) *5))) (-4 *5 (-1219)) (-4 *4 (-1104)) (-5 *1 (-941 *4 *2 *5)) (-4 *2 (-424 *4)))) (-3629 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1219)) (-4 *4 (-1104)) (-5 *1 (-941 *4 *2 *5)) (-4 *2 (-424 *4))))) +(-10 -7 (-15 -3629 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3629 (|#2| |#2| (-643 (-1 (-112) |#3|))))) +((-3199 (((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)) 25))) +(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) (-1104) (-13 (-560) (-889 |#1|) (-616 (-893 |#1|))) (-994 |#2|)) (T -942)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) (-4 *3 (-994 *6)) (-4 *6 (-13 (-560) (-889 *5) (-616 *4))) (-5 *4 (-893 *5)) (-5 *1 (-942 *5 *6 *3))))) +(-10 -7 (-15 -3199 ((-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) +((-3199 (((-891 |#1| (-1180)) (-1180) (-893 |#1|) (-891 |#1| (-1180))) 18))) +(((-943 |#1|) (-10 -7 (-15 -3199 ((-891 |#1| (-1180)) (-1180) (-893 |#1|) (-891 |#1| (-1180))))) (-1104)) (T -943)) +((-3199 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 (-1180))) (-5 *3 (-1180)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-5 *1 (-943 *5))))) +(-10 -7 (-15 -3199 ((-891 |#1| (-1180)) (-1180) (-893 |#1|) (-891 |#1| (-1180))))) +((-3200 (((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))) 34)) (-3199 (((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-1 |#3| (-643 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))) 33))) +(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -3199 ((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-1 |#3| (-643 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) (-15 -3200 ((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))))) (-1104) (-1052) (-13 (-1052) (-616 (-893 |#1|)) (-1041 |#2|))) (T -944)) +((-3200 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-893 *6))) (-5 *5 (-1 (-891 *6 *8) *8 (-893 *6) (-891 *6 *8))) (-4 *6 (-1104)) (-4 *8 (-13 (-1052) (-616 (-893 *6)) (-1041 *7))) (-5 *2 (-891 *6 *8)) (-4 *7 (-1052)) (-5 *1 (-944 *6 *7 *8)))) (-3199 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-643 (-893 *7))) (-5 *5 (-1 *9 (-643 *9))) (-5 *6 (-1 (-891 *7 *9) *9 (-893 *7) (-891 *7 *9))) (-4 *7 (-1104)) (-4 *9 (-13 (-1052) (-616 (-893 *7)) (-1041 *8))) (-5 *2 (-891 *7 *9)) (-5 *3 (-643 *9)) (-4 *8 (-1052)) (-5 *1 (-944 *7 *8 *9))))) +(-10 -7 (-15 -3199 ((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-1 |#3| (-643 |#3|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|)))) (-15 -3200 ((-891 |#1| |#3|) (-643 |#3|) (-643 (-893 |#1|)) (-891 |#1| |#3|) (-1 (-891 |#1| |#3|) |#3| (-893 |#1|) (-891 |#1| |#3|))))) +((-3208 (((-1174 (-410 (-549))) (-549)) 81)) (-3207 (((-1174 (-549)) (-549)) 84)) (-3758 (((-1174 (-549)) (-549)) 78)) (-3206 (((-549) (-1174 (-549))) 74)) (-3205 (((-1174 (-410 (-549))) (-549)) 65)) (-3204 (((-1174 (-549)) (-549)) 49)) (-3203 (((-1174 (-549)) (-549)) 86)) (-3202 (((-1174 (-549)) (-549)) 85)) (-3201 (((-1174 (-410 (-549))) (-549)) 67))) +(((-945) (-10 -7 (-15 -3201 ((-1174 (-410 (-549))) (-549))) (-15 -3202 ((-1174 (-549)) (-549))) (-15 -3203 ((-1174 (-549)) (-549))) (-15 -3204 ((-1174 (-549)) (-549))) (-15 -3205 ((-1174 (-410 (-549))) (-549))) (-15 -3206 ((-549) (-1174 (-549)))) (-15 -3758 ((-1174 (-549)) (-549))) (-15 -3207 ((-1174 (-549)) (-549))) (-15 -3208 ((-1174 (-410 (-549))) (-549))))) (T -945)) +((-3208 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3207 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3758 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1174 (-549))) (-5 *2 (-549)) (-5 *1 (-945)))) (-3205 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3202 (*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549))))) +(-10 -7 (-15 -3201 ((-1174 (-410 (-549))) (-549))) (-15 -3202 ((-1174 (-549)) (-549))) (-15 -3203 ((-1174 (-549)) (-549))) (-15 -3204 ((-1174 (-549)) (-549))) (-15 -3205 ((-1174 (-410 (-549))) (-549))) (-15 -3206 ((-549) (-1174 (-549)))) (-15 -3758 ((-1174 (-549)) (-549))) (-15 -3207 ((-1174 (-549)) (-549))) (-15 -3208 ((-1174 (-410 (-549))) (-549)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773)) NIL (|has| |#1| (-23)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-4138 (($ (-643 |#1|)) 9)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) NIL (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4264 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-4148 (((-112) $ (-773)) NIL)) (-4265 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-4200 (($ $ (-643 |#1|)) 25)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 18) (($ $ (-1236 (-549))) NIL)) (-4268 ((|#1| $ $) NIL (|has| |#1| (-1052)))) (-4343 (((-922) $) 13)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4266 (($ $ $) 23)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538)))) (($ (-643 |#1|)) 14)) (-3953 (($ (-643 |#1|)) NIL)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4271 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-728))) (($ $ |#1|) NIL (|has| |#1| (-728)))) (-4389 (((-773) $) 11 (|has| $ (-6 -4425))))) +(((-946 |#1|) (-983 |#1|) (-1052)) (T -946)) +NIL +(-983 |#1|) +((-3211 (((-484 |#1| |#2|) (-949 |#2|)) 22)) (-3214 (((-247 |#1| |#2|) (-949 |#2|)) 35)) (-3212 (((-949 |#2|) (-484 |#1| |#2|)) 27)) (-3210 (((-247 |#1| |#2|) (-484 |#1| |#2|)) 57)) (-3213 (((-949 |#2|) (-247 |#1| |#2|)) 32)) (-3209 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 48))) +(((-947 |#1| |#2|) (-10 -7 (-15 -3209 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3210 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3211 ((-484 |#1| |#2|) (-949 |#2|))) (-15 -3212 ((-949 |#2|) (-484 |#1| |#2|))) (-15 -3213 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -3214 ((-247 |#1| |#2|) (-949 |#2|)))) (-643 (-1180)) (-1052)) (T -947)) +((-3214 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1052)) (-5 *2 (-247 *4 *5)) (-5 *1 (-947 *4 *5)) (-14 *4 (-643 (-1180))))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) (-5 *2 (-949 *5)) (-5 *1 (-947 *4 *5)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) (-5 *2 (-949 *5)) (-5 *1 (-947 *4 *5)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1052)) (-5 *2 (-484 *4 *5)) (-5 *1 (-947 *4 *5)) (-14 *4 (-643 (-1180))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) (-5 *2 (-247 *4 *5)) (-5 *1 (-947 *4 *5)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) (-5 *2 (-484 *4 *5)) (-5 *1 (-947 *4 *5))))) +(-10 -7 (-15 -3209 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3210 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3211 ((-484 |#1| |#2|) (-949 |#2|))) (-15 -3212 ((-949 |#2|) (-484 |#1| |#2|))) (-15 -3213 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -3214 ((-247 |#1| |#2|) (-949 |#2|)))) +((-3215 (((-643 |#2|) |#2| |#2|) 10)) (-3218 (((-773) (-643 |#1|)) 48 (|has| |#1| (-850)))) (-3216 (((-643 |#2|) |#2|) 11)) (-3219 (((-773) (-643 |#1|) (-549) (-549)) 52 (|has| |#1| (-850)))) (-3217 ((|#1| |#2|) 38 (|has| |#1| (-850))))) +(((-948 |#1| |#2|) (-10 -7 (-15 -3215 ((-643 |#2|) |#2| |#2|)) (-15 -3216 ((-643 |#2|) |#2|)) (IF (|has| |#1| (-850)) (PROGN (-15 -3217 (|#1| |#2|)) (-15 -3218 ((-773) (-643 |#1|))) (-15 -3219 ((-773) (-643 |#1|) (-549) (-549)))) |%noBranch|)) (-365) (-1245 |#1|)) (T -948)) +((-3219 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-549)) (-4 *5 (-850)) (-4 *5 (-365)) (-5 *2 (-773)) (-5 *1 (-948 *5 *6)) (-4 *6 (-1245 *5)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-850)) (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-948 *4 *5)) (-4 *5 (-1245 *4)))) (-3217 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-850)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1245 *2)))) (-3216 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-948 *4 *3)) (-4 *3 (-1245 *4)))) (-3215 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-948 *4 *3)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -3215 ((-643 |#2|) |#2| |#2|)) (-15 -3216 ((-643 |#2|) |#2|)) (IF (|has| |#1| (-850)) (PROGN (-15 -3217 (|#1| |#2|)) (-15 -3218 ((-773) (-643 |#1|))) (-15 -3219 ((-773) (-643 |#1|) (-549) (-549)))) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1180)) $) 16)) (-3487 (((-1174 $) $ (-1180)) 21) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1180))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) 8) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1180) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1180) $) NIL)) (-4188 (($ $ $ (-1180)) NIL (|has| |#1| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1180)) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 (-1180)) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1180) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1180) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#1|) (-1180)) NIL) (($ (-1174 $) (-1180)) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1180)) NIL)) (-3223 (((-534 (-1180)) $) NIL) (((-773) $ (-1180)) NIL) (((-643 (-773)) $ (-643 (-1180))) NIL)) (-1770 (($ (-1 (-534 (-1180)) (-534 (-1180))) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3486 (((-3 (-1180) #3="failed") $) 19)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1180)) (|:| -2564 (-773))) #3#) $) NIL)) (-4244 (($ $ (-1180)) 29 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1180) |#1|) NIL) (($ $ (-643 (-1180)) (-643 |#1|)) NIL) (($ $ (-1180) $) NIL) (($ $ (-643 (-1180)) (-643 $)) NIL)) (-4189 (($ $ (-1180)) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-4380 (((-534 (-1180)) $) NIL) (((-773) $ (-1180)) NIL) (((-643 (-773)) $ (-643 (-1180))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1180) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1180) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1180) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1180)) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 25) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1180)) 27) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-949 |#1|) (-13 (-953 |#1| (-534 (-1180)) (-1180)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1180))) |%noBranch|))) (-1052)) (T -949)) +((-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052))))) +(-13 (-953 |#1| (-534 (-1180)) (-1180)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1180))) |%noBranch|))) +((-4390 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 19))) +(((-950 |#1| |#2|) (-10 -7 (-15 -4390 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1052) (-1052)) (T -950)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-949 *6)) (-5 *1 (-950 *5 *6))))) +(-10 -7 (-15 -4390 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) +((-3487 (((-1238 |#1| (-949 |#2|)) (-949 |#2|) (-1266 |#1|)) 18))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3487 ((-1238 |#1| (-949 |#2|)) (-949 |#2|) (-1266 |#1|)))) (-1180) (-1052)) (T -951)) +((-3487 (*1 *2 *3 *4) (-12 (-5 *4 (-1266 *5)) (-14 *5 (-1180)) (-4 *6 (-1052)) (-5 *2 (-1238 *5 (-949 *6))) (-5 *1 (-951 *5 *6)) (-5 *3 (-949 *6))))) +(-10 -7 (-15 -3487 ((-1238 |#1| (-949 |#2|)) (-949 |#2|) (-1266 |#1|)))) +((-3222 (((-773) $) 88) (((-773) $ (-643 |#4|)) 93)) (-4206 (($ $) 203)) (-4401 (((-408 $) $) 195)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 141)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL) (((-3 (-549) #2#) $) NIL) (((-3 |#4| #2#) $) 74)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL) (((-549) $) NIL) ((|#4| $) 73)) (-4188 (($ $ $ |#4|) 95)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 131) (((-691 |#2|) (-691 $)) 121)) (-3926 (($ $) 210) (($ $ |#4|) 213)) (-3221 (((-643 $) $) 77)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 229) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 222)) (-3224 (((-643 $) $) 34)) (-3294 (($ |#2| |#3|) NIL) (($ $ |#4| (-773)) NIL) (($ $ (-643 |#4|) (-643 (-773))) 71)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#4|) 192)) (-3226 (((-3 (-643 $) "failed") $) 52)) (-3225 (((-3 (-643 $) "failed") $) 39)) (-3227 (((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-773))) "failed") $) 57)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 134)) (-3108 (((-408 (-1174 $)) (-1174 $)) 147)) (-3109 (((-408 (-1174 $)) (-1174 $)) 145)) (-4164 (((-408 $) $) 165)) (-4199 (($ $ (-643 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-643 |#4|) (-643 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-643 |#4|) (-643 $)) NIL)) (-4189 (($ $ |#4|) 97)) (-4402 (((-893 (-380)) $) 243) (((-893 (-549)) $) 236) (((-538) $) 251)) (-3220 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 184)) (-4109 ((|#2| $ |#3|) NIL) (($ $ |#4| (-773)) 62) (($ $ (-643 |#4|) (-643 (-773))) 69)) (-3105 (((-3 $ #1#) $) 186)) (-3662 (((-112) $ $) 216))) +(((-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -3105 ((-3 |#1| #1="failed") |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) #1#) (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3106 ((-3 (-1269 |#1|) #1#) (-691 |#1|))) (-15 -3926 (|#1| |#1| |#4|)) (-15 -3220 (|#1| |#1| |#4|)) (-15 -4189 (|#1| |#1| |#4|)) (-15 -4188 (|#1| |#1| |#1| |#4|)) (-15 -3221 ((-643 |#1|) |#1|)) (-15 -3222 ((-773) |#1| (-643 |#4|))) (-15 -3222 ((-773) |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-773))) "failed") |#1|)) (-15 -3226 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3225 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3294 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -3294 (|#1| |#1| |#4| (-773))) (-15 -4194 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3224 ((-643 |#1|) |#1|)) (-15 -4109 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -4109 (|#1| |#1| |#4| (-773))) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -3577 ((-3 |#4| #2="failed") |#1|)) (-15 -3576 (|#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#4| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4109 (|#2| |#1| |#3|)) (-15 -3577 ((-3 (-549) #2#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #2#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #2#) |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|))) (-953 |#2| |#3| |#4|) (-1052) (-795) (-852)) (T -952)) +NIL +(-10 -8 (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -3105 ((-3 |#1| #1="failed") |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) #1#) (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3106 ((-3 (-1269 |#1|) #1#) (-691 |#1|))) (-15 -3926 (|#1| |#1| |#4|)) (-15 -3220 (|#1| |#1| |#4|)) (-15 -4189 (|#1| |#1| |#4|)) (-15 -4188 (|#1| |#1| |#1| |#4|)) (-15 -3221 ((-643 |#1|) |#1|)) (-15 -3222 ((-773) |#1| (-643 |#4|))) (-15 -3222 ((-773) |#1|)) (-15 -3227 ((-3 (-2 (|:| |var| |#4|) (|:| -2564 (-773))) "failed") |#1|)) (-15 -3226 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3225 ((-3 (-643 |#1|) "failed") |#1|)) (-15 -3294 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -3294 (|#1| |#1| |#4| (-773))) (-15 -4194 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3224 ((-643 |#1|) |#1|)) (-15 -4109 (|#1| |#1| (-643 |#4|) (-643 (-773)))) (-15 -4109 (|#1| |#1| |#4| (-773))) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -3577 ((-3 |#4| #2="failed") |#1|)) (-15 -3576 (|#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#4| |#1|)) (-15 -4199 (|#1| |#1| (-643 |#4|) (-643 |#2|))) (-15 -4199 (|#1| |#1| |#4| |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4109 (|#2| |#1| |#3|)) (-15 -3577 ((-3 (-549) #2#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #2#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #2#) |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -3926 (|#1| |#1|)) (-15 -3662 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 |#3|) $) 112)) (-3487 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 89 (|has| |#1| (-560)))) (-2241 (($ $) 90 (|has| |#1| (-560)))) (-2239 (((-112) $) 92 (|has| |#1| (-560)))) (-3222 (((-773) $) 114) (((-773) $ (-643 |#3|)) 113)) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-913)))) (-4206 (($ $) 100 (|has| |#1| (-455)))) (-4401 (((-408 $) $) 99 (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-913)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 166) (((-3 (-410 (-549)) #2#) $) 163 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) 161 (|has| |#1| (-1041 (-549)))) (((-3 |#3| #2#) $) 138)) (-3576 ((|#1| $) 165) (((-410 (-549)) $) 164 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 162 (|has| |#1| (-1041 (-549)))) ((|#3| $) 139)) (-4188 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-4391 (($ $) 156)) (-2427 (((-691 (-549)) (-691 $)) 136 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 135 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 134) (((-691 |#1|) (-691 $)) 133)) (-3890 (((-3 $ "failed") $) 37)) (-3926 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3221 (((-643 $) $) 111)) (-4155 (((-112) $) 98 (|has| |#1| (-913)))) (-1769 (($ $ |#1| |#2| $) 174)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 86 (-12 (|has| |#3| (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 85 (-12 (|has| |#3| (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 171)) (-3488 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-3224 (((-643 $) $) 128)) (-4369 (((-112) $) 154)) (-3294 (($ |#1| |#2|) 155) (($ $ |#3| (-773)) 121) (($ $ (-643 |#3|) (-643 (-773))) 120)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) 122)) (-3223 ((|#2| $) 172) (((-773) $ |#3|) 124) (((-643 (-773)) $ (-643 |#3|)) 123)) (-1770 (($ (-1 |#2| |#2|) $) 173)) (-4390 (($ (-1 |#1| |#1|) $) 153)) (-3486 (((-3 |#3| "failed") $) 125)) (-3295 (($ $) 151)) (-3594 ((|#1| $) 150)) (-2069 (($ (-643 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3663 (((-1162) $) 10)) (-3226 (((-3 (-643 $) "failed") $) 116)) (-3225 (((-3 (-643 $) "failed") $) 117)) (-3227 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-773))) "failed") $) 115)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 168)) (-1971 ((|#1| $) 169)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 101 (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-643 $) (-643 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-643 |#3|) (-643 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-643 |#3|) (-643 $)) 140)) (-4189 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-4242 (($ $ |#3|) 46) (($ $ (-643 |#3|)) 45) (($ $ |#3| (-773)) 44) (($ $ (-643 |#3|) (-643 (-773))) 43)) (-4380 ((|#2| $) 152) (((-773) $ |#3|) 132) (((-643 (-773)) $ (-643 |#3|)) 131)) (-4402 (((-893 (-380)) $) 84 (-12 (|has| |#3| (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) 83 (-12 (|has| |#3| (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) 82 (-12 (|has| |#3| (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 106 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-560))) (($ (-410 (-549))) 80 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))))) (-4249 (((-643 |#1|) $) 170)) (-4109 ((|#1| $ |#2|) 157) (($ $ |#3| (-773)) 130) (($ $ (-643 |#3|) (-643 (-773))) 129)) (-3105 (((-3 $ "failed") $) 81 (-3960 (-3256 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 175 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 91 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ |#3|) 42) (($ $ (-643 |#3|)) 41) (($ $ |#3| (-773)) 40) (($ $ (-643 |#3|) (-643 (-773))) 39)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 160 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-953 |#1| |#2| |#3|) (-140) (-1052) (-795) (-852)) (T -953)) +((-3926 (*1 *1 *1) (-12 (-4 *1 (-953 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-4380 (*1 *2 *1 *3) (-12 (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-773)))) (-4380 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 (-773))))) (-4109 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-953 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *2 (-852)))) (-4109 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 (-773))) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)))) (-3224 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) (-3487 (*1 *2 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-1174 *1)) (-4 *1 (-953 *4 *5 *3)))) (-3487 (*1 *2 *1) (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-1174 *3)))) (-3486 (*1 *2 *1) (|partial| -12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3223 (*1 *2 *1 *3) (-12 (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-773)))) (-3223 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 (-773))))) (-4194 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-953 *4 *5 *3)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-953 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *2 (-852)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 (-773))) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)))) (-3488 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1052)) (-4 *1 (-953 *4 *5 *3)) (-4 *5 (-795)) (-4 *3 (-852)))) (-3488 (*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)))) (-3225 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) (-3227 (*1 *2 *1) (|partial| -12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-773)))))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-773)))) (-3222 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-773)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *5)))) (-3221 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) (-4188 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *3 (-172)))) (-4189 (*1 *1 *1 *2) (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *3 (-172)))) (-3220 (*1 *1 *1 *2) (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *3 (-455)))) (-3926 (*1 *1 *1 *2) (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *3 (-455)))) (-4206 (*1 *1 *1) (-12 (-4 *1 (-953 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-4401 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-408 *1)) (-4 *1 (-953 *3 *4 *5))))) +(-13 (-903 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-517 |t#3| |t#1|) (-517 |t#3| $) (-1041 |t#3|) (-379 |t#1|) (-10 -8 (-15 -4380 ((-773) $ |t#3|)) (-15 -4380 ((-643 (-773)) $ (-643 |t#3|))) (-15 -4109 ($ $ |t#3| (-773))) (-15 -4109 ($ $ (-643 |t#3|) (-643 (-773)))) (-15 -3224 ((-643 $) $)) (-15 -3487 ((-1174 $) $ |t#3|)) (-15 -3487 ((-1174 |t#1|) $)) (-15 -3486 ((-3 |t#3| "failed") $)) (-15 -3223 ((-773) $ |t#3|)) (-15 -3223 ((-643 (-773)) $ (-643 |t#3|))) (-15 -4194 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |t#3|)) (-15 -3294 ($ $ |t#3| (-773))) (-15 -3294 ($ $ (-643 |t#3|) (-643 (-773)))) (-15 -3488 ($ (-1174 |t#1|) |t#3|)) (-15 -3488 ($ (-1174 $) |t#3|)) (-15 -3225 ((-3 (-643 $) "failed") $)) (-15 -3226 ((-3 (-643 $) "failed") $)) (-15 -3227 ((-3 (-2 (|:| |var| |t#3|) (|:| -2564 (-773))) "failed") $)) (-15 -3222 ((-773) $)) (-15 -3222 ((-773) $ (-643 |t#3|))) (-15 -3485 ((-643 |t#3|) $)) (-15 -3221 ((-643 $) $)) (IF (|has| |t#1| (-616 (-538))) (IF (|has| |t#3| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-616 (-893 (-549)))) (IF (|has| |t#3| (-616 (-893 (-549)))) (-6 (-616 (-893 (-549)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-616 (-893 (-380)))) (IF (|has| |t#3| (-616 (-893 (-380)))) (-6 (-616 (-893 (-380)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-889 (-549))) (IF (|has| |t#3| (-889 (-549))) (-6 (-889 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-889 (-380))) (IF (|has| |t#3| (-889 (-380))) (-6 (-889 (-380))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4188 ($ $ $ |t#3|)) (-15 -4189 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-6 (-455)) (-15 -3220 ($ $ |t#3|)) (-15 -3926 ($ $)) (-15 -3926 ($ $ |t#3|)) (-15 -4401 ((-408 $) $)) (-15 -4206 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4423)) (-6 -4423) |%noBranch|) (IF (|has| |t#1| (-913)) (-6 (-913)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 |#3|) . T) ((-618 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-616 (-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549))))) ((-291) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-913)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-560) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-728) . T) ((-903 |#3|) . T) ((-889 (-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))) ((-913) |has| |#1| (-913)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1041 |#3|) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) |has| |#1| (-913))) +((-3485 (((-643 |#2|) |#5|) 40)) (-3487 (((-1174 |#5|) |#5| |#2| (-1174 |#5|)) 23) (((-410 (-1174 |#5|)) |#5| |#2|) 16)) (-3488 ((|#5| (-410 (-1174 |#5|)) |#2|) 30)) (-3486 (((-3 |#2| "failed") |#5|) 71)) (-3226 (((-3 (-643 |#5|) "failed") |#5|) 65)) (-3228 (((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-549))) "failed") |#5|) 53)) (-3225 (((-3 (-643 |#5|) "failed") |#5|) 67)) (-3227 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-549))) "failed") |#5|) 57))) +(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3485 ((-643 |#2|) |#5|)) (-15 -3486 ((-3 |#2| "failed") |#5|)) (-15 -3487 ((-410 (-1174 |#5|)) |#5| |#2|)) (-15 -3488 (|#5| (-410 (-1174 |#5|)) |#2|)) (-15 -3487 ((-1174 |#5|) |#5| |#2| (-1174 |#5|))) (-15 -3225 ((-3 (-643 |#5|) "failed") |#5|)) (-15 -3226 ((-3 (-643 |#5|) "failed") |#5|)) (-15 -3227 ((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-549))) "failed") |#5|)) (-15 -3228 ((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-549))) "failed") |#5|))) (-795) (-852) (-1052) (-953 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4378 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -954)) +((-3228 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2564 (-549)))) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3227 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-549)))) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3226 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *3)) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3225 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *3)) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3487 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) (-4 *7 (-953 *6 *5 *4)) (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) (-5 *1 (-954 *5 *4 *6 *7 *3)))) (-3488 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1174 *2))) (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) (-4 *2 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) (-5 *1 (-954 *5 *4 *6 *7 *2)) (-4 *7 (-953 *6 *5 *4)))) (-3487 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *5 *4)) (-5 *2 (-410 (-1174 *3))) (-5 *1 (-954 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3486 (*1 *2 *3) (|partial| -12 (-4 *4 (-795)) (-4 *5 (-1052)) (-4 *6 (-953 *5 *4 *2)) (-4 *2 (-852)) (-5 *1 (-954 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *6)) (-15 -3399 (*6 $)) (-15 -3398 (*6 $))))))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *5)) (-5 *1 (-954 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) +(-10 -7 (-15 -3485 ((-643 |#2|) |#5|)) (-15 -3486 ((-3 |#2| "failed") |#5|)) (-15 -3487 ((-410 (-1174 |#5|)) |#5| |#2|)) (-15 -3488 (|#5| (-410 (-1174 |#5|)) |#2|)) (-15 -3487 ((-1174 |#5|) |#5| |#2| (-1174 |#5|))) (-15 -3225 ((-3 (-643 |#5|) "failed") |#5|)) (-15 -3226 ((-3 (-643 |#5|) "failed") |#5|)) (-15 -3227 ((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-549))) "failed") |#5|)) (-15 -3228 ((-3 (-2 (|:| |val| |#5|) (|:| -2564 (-549))) "failed") |#5|))) +((-4390 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4390 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-795) (-852) (-1052) (-953 |#3| |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773)))))) (T -955)) +((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-852)) (-4 *8 (-1052)) (-4 *6 (-795)) (-4 *2 (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773)))))) (-5 *1 (-955 *6 *7 *8 *5 *2)) (-4 *5 (-953 *8 *6 *7))))) +(-10 -7 (-15 -4390 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3229 (((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#3| (-773)) 49)) (-3230 (((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) (-410 (-549)) (-773)) 44)) (-3232 (((-2 (|:| -2564 (-773)) (|:| -4386 |#4|) (|:| |radicand| (-643 |#4|))) |#4| (-773)) 65)) (-3231 (((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#5| (-773)) 74 (|has| |#3| (-455))))) +(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3229 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#3| (-773))) (-15 -3230 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) (-410 (-549)) (-773))) (IF (|has| |#3| (-455)) (-15 -3231 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#5| (-773))) |%noBranch|) (-15 -3232 ((-2 (|:| -2564 (-773)) (|:| -4386 |#4|) (|:| |radicand| (-643 |#4|))) |#4| (-773)))) (-795) (-852) (-560) (-953 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4378 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -956)) +((-3232 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) (-4 *3 (-953 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| (-643 *3)))) (-5 *1 (-956 *5 *6 *7 *3 *8)) (-5 *4 (-773)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4378 ($ *3)) (-15 -3399 (*3 $)) (-15 -3398 (*3 $))))))) (-3231 (*1 *2 *3 *4) (-12 (-4 *7 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) (-4 *8 (-953 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| *3))) (-5 *1 (-956 *5 *6 *7 *8 *3)) (-5 *4 (-773)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4378 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $))))))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-549))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) (-4 *8 (-953 *7 *5 *6)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *9) (|:| |radicand| *9))) (-5 *1 (-956 *5 *6 *7 *8 *9)) (-5 *4 (-773)) (-4 *9 (-13 (-365) (-10 -8 (-15 -4378 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $))))))) (-3229 (*1 *2 *3 *4) (-12 (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-560)) (-4 *7 (-953 *3 *5 *6)) (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *8) (|:| |radicand| *8))) (-5 *1 (-956 *5 *6 *3 *7 *8)) (-5 *4 (-773)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) +(-10 -7 (-15 -3229 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#3| (-773))) (-15 -3230 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) (-410 (-549)) (-773))) (IF (|has| |#3| (-455)) (-15 -3231 ((-2 (|:| -2564 (-773)) (|:| -4386 |#5|) (|:| |radicand| |#5|)) |#5| (-773))) |%noBranch|) (-15 -3232 ((-2 (|:| -2564 (-773)) (|:| -4386 |#4|) (|:| |radicand| (-643 |#4|))) |#4| (-773)))) +((-2968 (((-112) $ $) NIL)) (-3233 (($ (-1123)) 8)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (((-1123) $) 12)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 11))) +(((-957) (-13 (-1104) (-615 (-1123)) (-10 -8 (-15 -3233 ($ (-1123)))))) (T -957)) +((-3233 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-957))))) +(-13 (-1104) (-615 (-1123)) (-10 -8 (-15 -3233 ($ (-1123))))) +((-3297 (((-1092 (-225)) $) 8)) (-3298 (((-1092 (-225)) $) 9)) (-3299 (((-643 (-643 (-946 (-225)))) $) 10)) (-4378 (((-865) $) 6))) +(((-958) (-140)) (T -958)) +((-3299 (*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-643 (-643 (-946 (-225))))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-1092 (-225))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-1092 (-225)))))) +(-13 (-615 (-865)) (-10 -8 (-15 -3299 ((-643 (-643 (-946 (-225)))) $)) (-15 -3298 ((-1092 (-225)) $)) (-15 -3297 ((-1092 (-225)) $)))) +(((-615 (-865)) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 78 (|has| |#1| (-560)))) (-2241 (($ $) 79 (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 34)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) 31)) (-3890 (((-3 $ "failed") $) 42)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-1769 (($ $ |#1| |#2| $) 62)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) 17)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| |#2|) NIL)) (-3223 ((|#2| $) 24)) (-1770 (($ (-1 |#2| |#2|) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (($ $) 28)) (-3594 ((|#1| $) 26)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 51)) (-1971 ((|#1| $) NIL)) (-4170 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-560))))) (-3889 (((-3 $ "failed") $ $) 91 (|has| |#1| (-560))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-560)))) (-4380 ((|#2| $) 22)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) 46) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) 41) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ |#2|) 37)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 15 T CONST)) (-1768 (($ $ $ (-773)) 74 (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) 84 (|has| |#1| (-560)))) (-3510 (($) 27 T CONST)) (-3067 (($) 12 T CONST)) (-3455 (((-112) $ $) 83)) (-4381 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) 69) (($ $ (-773)) 67)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-959 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-560)) (IF (|has| |#2| (-131)) (-15 -4170 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1052) (-794)) (T -959)) +((-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *2 (-794))))) +(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-560)) (IF (|has| |#2| (-131)) (-15 -4170 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) +((-3234 (((-3 (-691 |#1|) "failed") |#2| (-922)) 18))) +(((-960 |#1| |#2|) (-10 -7 (-15 -3234 ((-3 (-691 |#1|) "failed") |#2| (-922)))) (-560) (-660 |#1|)) (T -960)) +((-3234 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-922)) (-4 *5 (-560)) (-5 *2 (-691 *5)) (-5 *1 (-960 *5 *3)) (-4 *3 (-660 *5))))) +(-10 -7 (-15 -3234 ((-3 (-691 |#1|) "failed") |#2| (-922)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) 19 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 18 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 16)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) |#1|) 15)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) 11 (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) 20 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) 17) (($ $ (-1236 (-549))) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) 21)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 14)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4389 (((-773) $) 8 (|has| $ (-6 -4425))))) +(((-961 |#1|) (-19 |#1|) (-1219)) (T -961)) NIL (-19 |#1|) -((-1954 (($ $ (-1094 $)) 7) (($ $ (-1179)) 6))) -(((-961) (-140)) (T -961)) -((-1954 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-961)))) (-1954 (*1 *1 *1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-1179))))) -(-13 (-10 -8 (-15 -1954 ($ $ (-1179))) (-15 -1954 ($ $ (-1094 $))))) -((-3882 (((-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)) (-1179)) 30) (((-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179))) 31) (((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1175 |#1|))) (-954 |#1|) (-1179) (-954 |#1|) (-1179)) 49))) -(((-962 |#1|) (-10 -7 (-15 -3882 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1175 |#1|))) (-954 |#1|) (-1179) (-954 |#1|) (-1179))) (-15 -3882 ((-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -3882 ((-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)) (-1179)))) (-13 (-365) (-147))) (T -962)) -((-3882 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-5 *5 (-1179)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 *6))) (|:| |prim| (-1175 *6)))) (-5 *1 (-962 *6)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 *5))) (|:| |prim| (-1175 *5)))) (-5 *1 (-962 *5)))) (-3882 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-954 *5)) (-5 *4 (-1179)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1175 *5)))) (-5 *1 (-962 *5))))) -(-10 -7 (-15 -3882 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1175 |#1|))) (-954 |#1|) (-1179) (-954 |#1|) (-1179))) (-15 -3882 ((-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)))) (-15 -3882 ((-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 |#1|))) (|:| |prim| (-1175 |#1|))) (-645 (-954 |#1|)) (-645 (-1179)) (-1179)))) -((-2527 (((-645 |#1|) |#1| |#1|) 47)) (-2946 (((-112) |#1|) 44)) (-2400 ((|#1| |#1|) 82)) (-2073 ((|#1| |#1|) 81))) -(((-963 |#1|) (-10 -7 (-15 -2946 ((-112) |#1|)) (-15 -2073 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -2527 ((-645 |#1|) |#1| |#1|))) (-548)) (T -963)) -((-2527 (*1 *2 *3 *3) (-12 (-5 *2 (-645 *3)) (-5 *1 (-963 *3)) (-4 *3 (-548)))) (-2400 (*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))) (-2073 (*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548)))) (-2946 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-548))))) -(-10 -7 (-15 -2946 ((-112) |#1|)) (-15 -2073 (|#1| |#1|)) (-15 -2400 (|#1| |#1|)) (-15 -2527 ((-645 |#1|) |#1| |#1|))) -((-2944 (((-1274) (-863)) 9))) -(((-964) (-10 -7 (-15 -2944 ((-1274) (-863))))) (T -964)) -((-2944 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-964))))) -(-10 -7 (-15 -2944 ((-1274) (-863)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 78 (|has| |#1| (-559)))) (-1987 (($ $) 79 (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 34)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-1833 (($ $) 31)) (-1377 (((-3 $ "failed") $) 42)) (-1873 (($ $) NIL (|has| |#1| (-455)))) (-1978 (($ $ |#1| |#2| $) 62)) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) 17)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| |#2|) NIL)) (-1562 ((|#2| $) 24)) (-2972 (($ (-1 |#2| |#2|) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-1796 (($ $) 28)) (-1809 ((|#1| $) 26)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) 51)) (-1774 ((|#1| $) NIL)) (-2755 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-559))))) (-2478 (((-3 $ "failed") $ $) 91 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-559)))) (-3380 ((|#2| $) 22)) (-1390 ((|#1| $) NIL (|has| |#1| (-455)))) (-2504 (((-863) $) NIL) (($ (-567)) 46) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 41) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ |#2|) 37)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) 15 T CONST)) (-3852 (($ $ $ (-772)) 74 (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) 84 (|has| |#1| (-559)))) (-1807 (($) 27 T CONST)) (-1820 (($) 12 T CONST)) (-2968 (((-112) $ $) 83)) (-3064 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) 69) (($ $ (-772)) 67)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-965 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -2755 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) (-1051) (-793)) (T -965)) -((-2755 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-965 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *2 (-793))))) -(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -2755 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL (-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-1992 (($ $ $) 65 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (-2932 (((-3 $ "failed") $ $) 52 (-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-3404 (((-772)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2668 ((|#2| $) 22)) (-3122 ((|#1| $) 21)) (-3758 (($) NIL (-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-1377 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-2119 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-4384 (((-112) $) NIL (-2836 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-2727 (($ $ $) NIL (-2836 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-1446 (($ $ $) NIL (-2836 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2365 (($ |#1| |#2|) 20)) (-2667 (((-923) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 39 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-2188 (($ (-923)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3479 (((-1122) $) NIL)) (-3307 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4033 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-2504 (((-863) $) 14)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 42 (-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-1820 (($) 25 (-2836 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) CONST)) (-3016 (((-112) $ $) NIL (-2836 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2996 (((-112) $ $) NIL (-2836 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2968 (((-112) $ $) 19)) (-3006 (((-112) $ $) NIL (-2836 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2986 (((-112) $ $) 69 (-2836 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3064 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3054 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3045 (($ $ $) 45 (-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (** (($ $ (-567)) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476)))) (($ $ (-772)) 32 (-2836 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (($ $ (-923)) NIL (-2836 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (* (($ (-567) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-772) $) 48 (-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ (-923) $) NIL (-2836 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ $ $) 28 (-2836 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))))) -(((-966 |#1| |#2|) (-13 (-1102) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -2365 ($ |#1| |#2|)) (-15 -3122 (|#1| $)) (-15 -2668 (|#2| $)))) (-1102) (-1102)) (T -966)) -((-2365 (*1 *1 *2 *3) (-12 (-5 *1 (-966 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-3122 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1102)))) (-2668 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-966 *3 *2)) (-4 *3 (-1102))))) -(-13 (-1102) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -2365 ($ |#1| |#2|)) (-15 -3122 (|#1| $)) (-15 -2668 (|#2| $)))) -((-2233 (((-1106) $) 12)) (-3108 (($ (-509) (-1106)) 14)) (-1646 (((-509) $) 9)) (-2504 (((-863) $) 26))) -(((-967) (-13 (-614 (-863)) (-10 -8 (-15 -1646 ((-509) $)) (-15 -2233 ((-1106) $)) (-15 -3108 ($ (-509) (-1106)))))) (T -967)) -((-1646 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-967)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-967)))) (-3108 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-967))))) -(-13 (-614 (-863)) (-10 -8 (-15 -1646 ((-509) $)) (-15 -2233 ((-1106) $)) (-15 -3108 ($ (-509) (-1106))))) -((-2487 (((-112) $ $) NIL)) (-3023 (($) NIL T CONST)) (-1763 (($ $ $) 11)) (-1736 (($ $) 9)) (-1812 (((-1161) $) NIL)) (-2190 (((-692 |#1|) $) 24)) (-2830 (((-692 (-874 $ $)) $) 36)) (-3980 (((-692 $) $) 29)) (-1445 (((-692 (-874 $ $)) $) 37)) (-3465 (((-692 (-874 $ $)) $) 38)) (-3159 (((-692 (-874 $ $)) $) 35)) (-2406 (($ $ $) 12)) (-3479 (((-1122) $) NIL)) (-1883 (($) 17 T CONST)) (-2663 (($ $ $) 13)) (-2504 (((-863) $) 40) (($ |#1|) 8)) (-3858 (((-112) $ $) NIL)) (-1750 (($ $ $) 10)) (-2968 (((-112) $ $) NIL))) -(((-968 |#1|) (-13 (-969) (-617 |#1|) (-10 -8 (-15 -2190 ((-692 |#1|) $)) (-15 -3980 ((-692 $) $)) (-15 -3159 ((-692 (-874 $ $)) $)) (-15 -2830 ((-692 (-874 $ $)) $)) (-15 -1445 ((-692 (-874 $ $)) $)) (-15 -3465 ((-692 (-874 $ $)) $)))) (-1102)) (T -968)) -((-2190 (*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-692 (-968 *3))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) (-4 *3 (-1102))))) -(-13 (-969) (-617 |#1|) (-10 -8 (-15 -2190 ((-692 |#1|) $)) (-15 -3980 ((-692 $) $)) (-15 -3159 ((-692 (-874 $ $)) $)) (-15 -2830 ((-692 (-874 $ $)) $)) (-15 -1445 ((-692 (-874 $ $)) $)) (-15 -3465 ((-692 (-874 $ $)) $)))) -((-2487 (((-112) $ $) 7)) (-3023 (($) 20 T CONST)) (-1763 (($ $ $) 16)) (-1736 (($ $) 18)) (-1812 (((-1161) $) 10)) (-2406 (($ $ $) 15)) (-3479 (((-1122) $) 11)) (-1883 (($) 19 T CONST)) (-2663 (($ $ $) 14)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1750 (($ $ $) 17)) (-2968 (((-112) $ $) 6))) -(((-969) (-140)) (T -969)) -((-3023 (*1 *1) (-4 *1 (-969))) (-1883 (*1 *1) (-4 *1 (-969))) (-1736 (*1 *1 *1) (-4 *1 (-969))) (-1750 (*1 *1 *1 *1) (-4 *1 (-969))) (-1763 (*1 *1 *1 *1) (-4 *1 (-969))) (-2406 (*1 *1 *1 *1) (-4 *1 (-969))) (-2663 (*1 *1 *1 *1) (-4 *1 (-969)))) -(-13 (-1102) (-10 -8 (-15 -3023 ($) -3562) (-15 -1883 ($) -3562) (-15 -1736 ($ $)) (-15 -1750 ($ $ $)) (-15 -1763 ($ $ $)) (-15 -2406 ($ $ $)) (-15 -2663 ($ $ $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-3758 (($) 7 T CONST)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-3196 (($ $ $) 44)) (-1315 (($ $ $) 45)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1446 ((|#1| $) 46)) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-970 |#1|) (-140) (-851)) (T -970)) -((-1446 (*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) (-1315 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) (-3196 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4422) (-15 -1446 (|t#1| $)) (-15 -1315 ($ $ $)) (-15 -3196 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-3032 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 106)) (-2717 ((|#2| |#2| |#2|) 104)) (-1396 (((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 108)) (-3320 (((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 110)) (-3163 (((-2 (|:| |coef2| |#2|) (|:| -4059 |#1|)) |#2| |#2|) 132 (|has| |#1| (-455)))) (-2276 (((-2 (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|) 56)) (-3011 (((-2 (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|) 81)) (-2531 (((-2 (|:| |coef1| |#2|) (|:| -2304 |#1|)) |#2| |#2|) 83)) (-3698 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-2671 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 90)) (-3663 (((-2 (|:| |coef2| |#2|) (|:| -2254 |#1|)) |#2|) 122)) (-2971 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 93)) (-4075 (((-645 (-772)) |#2| |#2|) 103)) (-2000 ((|#1| |#2| |#2|) 50)) (-1975 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4059 |#1|)) |#2| |#2|) 130 (|has| |#1| (-455)))) (-4059 ((|#1| |#2| |#2|) 128 (|has| |#1| (-455)))) (-3586 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|) 54)) (-2159 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|) 80)) (-2304 ((|#1| |#2| |#2|) 77)) (-3207 (((-2 (|:| -1344 |#1|) (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2|) 41)) (-2864 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-4283 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-4316 ((|#2| |#2| |#2|) 94)) (-2309 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 88)) (-1534 ((|#2| |#2| |#2| (-772)) 86)) (-1870 ((|#2| |#2| |#2|) 136 (|has| |#1| (-455)))) (-2478 (((-1269 |#2|) (-1269 |#2|) |#1|) 22)) (-2401 (((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2|) 46)) (-2408 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2254 |#1|)) |#2|) 120)) (-2254 ((|#1| |#2|) 117)) (-4073 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 92)) (-2770 ((|#2| |#2| |#2| (-772)) 91)) (-3315 (((-645 |#2|) |#2| |#2|) 100)) (-4320 ((|#2| |#2| |#1| |#1| (-772)) 62)) (-3189 ((|#1| |#1| |#1| (-772)) 61)) (* (((-1269 |#2|) |#1| (-1269 |#2|)) 17))) -(((-971 |#1| |#2|) (-10 -7 (-15 -2304 (|#1| |#2| |#2|)) (-15 -2159 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|)) (-15 -3011 ((-2 (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|)) (-15 -2531 ((-2 (|:| |coef1| |#2|) (|:| -2304 |#1|)) |#2| |#2|)) (-15 -1534 (|#2| |#2| |#2| (-772))) (-15 -2309 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2671 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2770 (|#2| |#2| |#2| (-772))) (-15 -4073 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2971 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -4316 (|#2| |#2| |#2|)) (-15 -4283 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3698 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2717 (|#2| |#2| |#2|)) (-15 -3032 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1396 ((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -3320 ((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -2254 (|#1| |#2|)) (-15 -2408 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2254 |#1|)) |#2|)) (-15 -3663 ((-2 (|:| |coef2| |#2|) (|:| -2254 |#1|)) |#2|)) (-15 -3315 ((-645 |#2|) |#2| |#2|)) (-15 -4075 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -4059 (|#1| |#2| |#2|)) (-15 -1975 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4059 |#1|)) |#2| |#2|)) (-15 -3163 ((-2 (|:| |coef2| |#2|) (|:| -4059 |#1|)) |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1269 |#2|) |#1| (-1269 |#2|))) (-15 -2478 ((-1269 |#2|) (-1269 |#2|) |#1|)) (-15 -3207 ((-2 (|:| -1344 |#1|) (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2|)) (-15 -2401 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2|)) (-15 -3189 (|#1| |#1| |#1| (-772))) (-15 -4320 (|#2| |#2| |#1| |#1| (-772))) (-15 -2864 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2000 (|#1| |#2| |#2|)) (-15 -3586 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|)) (-15 -2276 ((-2 (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|))) (-559) (-1245 |#1|)) (T -971)) -((-2276 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2304 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3586 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2304 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2000 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))) (-2864 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-4320 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-3189 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-971 *2 *4)) (-4 *4 (-1245 *2)))) (-2401 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -1344 *4) (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2478 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-559)) (-5 *1 (-971 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-559)) (-5 *1 (-971 *3 *4)))) (-1870 (*1 *2 *2 *2) (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-3163 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4059 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-1975 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4059 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-4059 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))) (-4075 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3315 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2254 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2408 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2254 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2254 (*1 *2 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))) (-3320 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1870 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-1396 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1870 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3032 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1870 *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2717 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-3698 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-4283 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-4316 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) (-2971 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))) (-4073 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))) (-2770 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) (-4 *2 (-1245 *4)))) (-2671 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))) (-2309 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5)))) (-1534 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) (-4 *2 (-1245 *4)))) (-2531 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2304 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-3011 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2304 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2159 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2304 *4))) (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) (-2304 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2))))) -(-10 -7 (-15 -2304 (|#1| |#2| |#2|)) (-15 -2159 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|)) (-15 -3011 ((-2 (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|)) (-15 -2531 ((-2 (|:| |coef1| |#2|) (|:| -2304 |#1|)) |#2| |#2|)) (-15 -1534 (|#2| |#2| |#2| (-772))) (-15 -2309 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2671 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2770 (|#2| |#2| |#2| (-772))) (-15 -4073 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2971 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -4316 (|#2| |#2| |#2|)) (-15 -4283 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3698 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2717 (|#2| |#2| |#2|)) (-15 -3032 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1396 ((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -3320 ((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -2254 (|#1| |#2|)) (-15 -2408 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2254 |#1|)) |#2|)) (-15 -3663 ((-2 (|:| |coef2| |#2|) (|:| -2254 |#1|)) |#2|)) (-15 -3315 ((-645 |#2|) |#2| |#2|)) (-15 -4075 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -4059 (|#1| |#2| |#2|)) (-15 -1975 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4059 |#1|)) |#2| |#2|)) (-15 -3163 ((-2 (|:| |coef2| |#2|) (|:| -4059 |#1|)) |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1269 |#2|) |#1| (-1269 |#2|))) (-15 -2478 ((-1269 |#2|) (-1269 |#2|) |#1|)) (-15 -3207 ((-2 (|:| -1344 |#1|) (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2|)) (-15 -2401 ((-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) |#2| |#2|)) (-15 -3189 (|#1| |#1| |#1| (-772))) (-15 -4320 (|#2| |#2| |#1| |#1| (-772))) (-15 -2864 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2000 (|#1| |#2| |#2|)) (-15 -3586 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|)) (-15 -2276 ((-2 (|:| |coef2| |#2|) (|:| -2304 |#1|)) |#2| |#2|))) -((-2487 (((-112) $ $) NIL)) (-3755 (((-1218) $) 13)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1378 (((-1137) $) 10)) (-2504 (((-863) $) 20) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-972) (-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)) (-15 -3755 ((-1218) $))))) (T -972)) -((-1378 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-972)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-972))))) -(-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)) (-15 -3755 ((-1218) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) 39)) (-3758 (($) NIL T CONST)) (-3121 (((-645 (-645 (-567))) (-645 (-567))) 48)) (-3776 (((-567) $) 72)) (-3397 (($ (-645 (-567))) 18)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1322 (((-645 (-567)) $) 13)) (-3307 (($ $) 52)) (-2504 (((-863) $) 68) (((-645 (-567)) $) 11)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 8 T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 26)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 25)) (-3045 (($ $ $) 28)) (* (($ (-923) $) NIL) (($ (-772) $) 37))) -(((-973) (-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -3397 ($ (-645 (-567)))) (-15 -3121 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -3776 ((-567) $)) (-15 -3307 ($ $))))) (T -973)) -((-3397 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-973)))) (-3121 (*1 *2 *3) (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-973)) (-5 *3 (-645 (-567))))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-973)))) (-3307 (*1 *1 *1) (-5 *1 (-973)))) -(-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -3397 ($ (-645 (-567)))) (-15 -3121 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -3776 ((-567) $)) (-15 -3307 ($ $)))) -((-3064 (($ $ |#2|) 31)) (-3054 (($ $) 23) (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) 29))) -(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3064 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) (-975 |#2| |#3| |#4|) (-1051) (-793) (-851)) (T -974)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3064 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-923) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 |#3|) $) 86)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1833 (($ $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-3219 (((-112) $) 85)) (-4384 (((-112) $) 35)) (-3615 (((-112) $) 74)) (-3764 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-645 |#3|) (-645 |#2|)) 87)) (-4364 (($ (-1 |#1| |#1|) $) 75)) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3380 ((|#2| $) 76)) (-4314 (($ $) 84)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4038 ((|#1| $ |#2|) 71)) (-2318 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-975 |#1| |#2| |#3|) (-140) (-1051) (-793) (-851)) (T -975)) -((-1809 (*1 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) (-4 *2 (-1051)))) (-1796 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *2 *4)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *2 (-793)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-975 *4 *3 *2)) (-4 *4 (-1051)) (-4 *3 (-793)) (-4 *2 (-851)))) (-3764 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-793)) (-4 *6 (-851)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) (-4 *4 (-851))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3764 ($ $ |t#3| |t#2|)) (-15 -3764 ($ $ (-645 |t#3|) (-645 |t#2|))) (-15 -1796 ($ $)) (-15 -1809 (|t#1| $)) (-15 -3380 (|t#2| $)) (-15 -3783 ((-645 |t#3|) $)) (-15 -3219 ((-112) $)) (-15 -4314 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2014 (((-1096 (-225)) $) 8)) (-2002 (((-1096 (-225)) $) 9)) (-1991 (((-1096 (-225)) $) 10)) (-1502 (((-645 (-645 (-945 (-225)))) $) 11)) (-2504 (((-863) $) 6))) -(((-976) (-140)) (T -976)) -((-1502 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-645 (-645 (-945 (-225))))))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225))))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225)))))) -(-13 (-614 (-863)) (-10 -8 (-15 -1502 ((-645 (-645 (-945 (-225)))) $)) (-15 -1991 ((-1096 (-225)) $)) (-15 -2002 ((-1096 (-225)) $)) (-15 -2014 ((-1096 (-225)) $)))) -(((-614 (-863)) . T)) -((-3783 (((-645 |#4|) $) 23)) (-2643 (((-112) $) 55)) (-2720 (((-112) $) 54)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#4|) 42)) (-3731 (((-112) $) 56)) (-4301 (((-112) $ $) 62)) (-4089 (((-112) $ $) 65)) (-3937 (((-112) $) 60)) (-2160 (((-645 |#5|) (-645 |#5|) $) 98)) (-3264 (((-645 |#5|) (-645 |#5|) $) 95)) (-2642 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3870 (((-645 |#4|) $) 27)) (-2415 (((-112) |#4| $) 34)) (-3530 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1582 (($ $ |#4|) 39)) (-2746 (($ $ |#4|) 38)) (-3975 (($ $ |#4|) 40)) (-2968 (((-112) $ $) 46))) -(((-977 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2720 ((-112) |#1|)) (-15 -2160 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -3264 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -2642 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3530 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3731 ((-112) |#1|)) (-15 -4089 ((-112) |#1| |#1|)) (-15 -4301 ((-112) |#1| |#1|)) (-15 -3937 ((-112) |#1|)) (-15 -2643 ((-112) |#1|)) (-15 -2080 ((-2 (|:| |under| |#1|) (|:| -1952 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1582 (|#1| |#1| |#4|)) (-15 -3975 (|#1| |#1| |#4|)) (-15 -2746 (|#1| |#1| |#4|)) (-15 -2415 ((-112) |#4| |#1|)) (-15 -3870 ((-645 |#4|) |#1|)) (-15 -3783 ((-645 |#4|) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) (-978 |#2| |#3| |#4| |#5|) (-1051) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -977)) -NIL -(-10 -8 (-15 -2720 ((-112) |#1|)) (-15 -2160 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -3264 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -2642 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3530 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3731 ((-112) |#1|)) (-15 -4089 ((-112) |#1| |#1|)) (-15 -4301 ((-112) |#1| |#1|)) (-15 -3937 ((-112) |#1|)) (-15 -2643 ((-112) |#1|)) (-15 -2080 ((-2 (|:| |under| |#1|) (|:| -1952 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1582 (|#1| |#1| |#4|)) (-15 -3975 (|#1| |#1| |#4|)) (-15 -2746 (|#1| |#1| |#4|)) (-15 -2415 ((-112) |#4| |#1|)) (-15 -3870 ((-645 |#4|) |#1|)) (-15 -3783 ((-645 |#4|) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-3783 (((-645 |#3|) $) 34)) (-2643 (((-112) $) 27)) (-2720 (((-112) $) 18 (|has| |#1| (-559)))) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) 28)) (-1555 (((-112) $ (-772)) 45)) (-1316 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422)))) (-3758 (($) 46 T CONST)) (-3731 (((-112) $) 23 (|has| |#1| (-559)))) (-4301 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4089 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3937 (((-112) $) 26 (|has| |#1| (-559)))) (-2160 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) 37)) (-3094 (($ (-645 |#4|)) 36)) (-3470 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422)))) (-3468 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-3066 ((|#3| $) 35)) (-3753 (((-112) $ (-772)) 44)) (-4200 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 48)) (-3870 (((-645 |#3|) $) 33)) (-2415 (((-112) |#3| $) 32)) (-3421 (((-112) $ (-772)) 43)) (-1812 (((-1161) $) 10)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-3479 (((-1122) $) 11)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1430 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) 39)) (-2319 (((-112) $) 42)) (-2973 (($) 41)) (-3486 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-3846 (($ $) 40)) (-1322 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 61)) (-1582 (($ $ |#3|) 29)) (-2746 (($ $ |#3|) 31)) (-3975 (($ $ |#3|) 30)) (-2504 (((-863) $) 12) (((-645 |#4|) $) 38)) (-3858 (((-112) $ $) 9)) (-3450 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 6)) (-2498 (((-772) $) 47 (|has| $ (-6 -4422))))) -(((-978 |#1| |#2| |#3| |#4|) (-140) (-1051) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -978)) -((-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-1067 *3 *4 *2)) (-4 *2 (-851)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2415 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *3 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) (-2746 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-3975 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-1582 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2)))) (-2080 (*1 *2 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1952 *1) (|:| |upper| *1))) (-4 *1 (-978 *4 *5 *3 *6)))) (-2643 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-4301 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-4089 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3530 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2642 (*1 *2 *3 *1) (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3264 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)))) (-2160 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112))))) -(-13 (-1102) (-151 |t#4|) (-614 (-645 |t#4|)) (-10 -8 (-6 -4422) (-15 -4275 ((-3 $ "failed") (-645 |t#4|))) (-15 -3094 ($ (-645 |t#4|))) (-15 -3066 (|t#3| $)) (-15 -3783 ((-645 |t#3|) $)) (-15 -3870 ((-645 |t#3|) $)) (-15 -2415 ((-112) |t#3| $)) (-15 -2746 ($ $ |t#3|)) (-15 -3975 ($ $ |t#3|)) (-15 -1582 ($ $ |t#3|)) (-15 -2080 ((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |t#3|)) (-15 -2643 ((-112) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -3937 ((-112) $)) (-15 -4301 ((-112) $ $)) (-15 -4089 ((-112) $ $)) (-15 -3731 ((-112) $)) (-15 -3530 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2642 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3264 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -2160 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -2720 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-1102) . T) ((-1219) . T)) -((-3982 (((-645 |#4|) |#4| |#4|) 136)) (-3488 (((-645 |#4|) (-645 |#4|) (-112)) 125 (|has| |#1| (-455))) (((-645 |#4|) (-645 |#4|)) 126 (|has| |#1| (-455)))) (-1598 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 44)) (-3587 (((-112) |#4|) 43)) (-3539 (((-645 |#4|) |#4|) 121 (|has| |#1| (-455)))) (-3652 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|)) 24)) (-2707 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 30)) (-1475 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 31)) (-1455 (((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|)) 90)) (-3224 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3334 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3584 (((-645 |#4|) (-645 |#4|)) 128)) (-1652 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112)) 59) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 61)) (-3311 ((|#4| |#4| (-645 |#4|)) 60)) (-2168 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 132 (|has| |#1| (-455)))) (-3234 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 135 (|has| |#1| (-455)))) (-3123 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 134 (|has| |#1| (-455)))) (-1332 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|))) 105) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 107) (((-645 |#4|) (-645 |#4|) |#4|) 141) (((-645 |#4|) |#4| |#4|) 137) (((-645 |#4|) (-645 |#4|)) 106)) (-1943 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3541 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 52)) (-4361 (((-112) (-645 |#4|)) 79)) (-3265 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 67)) (-3314 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 37)) (-3455 (((-112) |#4|) 36)) (-3230 (((-645 |#4|) (-645 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-1552 (((-645 |#4|) (-645 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3284 (((-645 |#4|) (-645 |#4|)) 83)) (-2018 (((-645 |#4|) (-645 |#4|)) 97)) (-4046 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-1432 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 50)) (-2591 (((-112) |#4|) 45))) -(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1332 ((-645 |#4|) (-645 |#4|))) (-15 -1332 ((-645 |#4|) |#4| |#4|)) (-15 -3584 ((-645 |#4|) (-645 |#4|))) (-15 -3982 ((-645 |#4|) |#4| |#4|)) (-15 -1332 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -1332 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1332 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -4046 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3265 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -4361 ((-112) (-645 |#4|))) (-15 -3652 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -2707 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1475 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -3541 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3587 ((-112) |#4|)) (-15 -1598 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3455 ((-112) |#4|)) (-15 -3314 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -2591 ((-112) |#4|)) (-15 -1432 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -1652 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1652 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3311 (|#4| |#4| (-645 |#4|))) (-15 -3284 ((-645 |#4|) (-645 |#4|))) (-15 -1455 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -2018 ((-645 |#4|) (-645 |#4|))) (-15 -3224 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3334 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3539 ((-645 |#4|) |#4|)) (-15 -3488 ((-645 |#4|) (-645 |#4|))) (-15 -3488 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -2168 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3123 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3234 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -1552 ((-645 |#4|) (-645 |#4|))) (-15 -3230 ((-645 |#4|) (-645 |#4|))) (-15 -1943 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -979)) -((-1943 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3230 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3234 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3123 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-2168 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3488 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3539 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3334 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-979 *5 *6 *7 *8)))) (-3224 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *1 (-979 *6 *7 *8 *9)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1455 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -3262 (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-3311 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *2)))) (-1652 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-1652 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1432 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2591 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3314 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3455 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-1598 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3541 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1475 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-3652 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *7)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *5 *6 *7 *8)))) (-4046 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *4 *5 *6 *7)))) (-1332 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7)))) (-1332 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1332 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *3)))) (-3982 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) (-1332 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))) -(-10 -7 (-15 -1332 ((-645 |#4|) (-645 |#4|))) (-15 -1332 ((-645 |#4|) |#4| |#4|)) (-15 -3584 ((-645 |#4|) (-645 |#4|))) (-15 -3982 ((-645 |#4|) |#4| |#4|)) (-15 -1332 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -1332 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1332 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -4046 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3265 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -4361 ((-112) (-645 |#4|))) (-15 -3652 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -2707 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1475 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -3541 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3587 ((-112) |#4|)) (-15 -1598 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3455 ((-112) |#4|)) (-15 -3314 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -2591 ((-112) |#4|)) (-15 -1432 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -1652 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1652 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3311 (|#4| |#4| (-645 |#4|))) (-15 -3284 ((-645 |#4|) (-645 |#4|))) (-15 -1455 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -2018 ((-645 |#4|) (-645 |#4|))) (-15 -3224 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3334 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3539 ((-645 |#4|) |#4|)) (-15 -3488 ((-645 |#4|) (-645 |#4|))) (-15 -3488 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -2168 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3123 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -3234 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -1552 ((-645 |#4|) (-645 |#4|))) (-15 -3230 ((-645 |#4|) (-645 |#4|))) (-15 -1943 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) -((-3033 (((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4242 (((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|)) 44)) (-3591 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-980 |#1|) (-10 -7 (-15 -3033 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3591 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4242 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|)))) (-365)) (T -980)) -((-4242 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1269 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)))) (-3591 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-980 *5)))) (-3033 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6)))) (-5 *1 (-980 *6)) (-5 *3 (-690 *6))))) -(-10 -7 (-15 -3033 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3591 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4242 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1269 |#1|)))) (-690 |#1|) (-1269 |#1|)))) -((-1466 (((-421 |#4|) |#4|) 56))) -(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1466 ((-421 |#4|) |#4|))) (-851) (-794) (-455) (-951 |#3| |#2| |#1|)) (T -981)) -((-1466 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4))))) -(-10 -7 (-15 -1466 ((-421 |#4|) |#4|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3398 (($ (-772)) 113 (|has| |#1| (-23)))) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3790 (($ $) 91 (|has| $ (-6 -4423)))) (-3247 (($ $) 101)) (-3470 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 52)) (-3932 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-2657 (($ (-645 |#1|)) 119)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-1896 (((-690 |#1|) $ $) 106 (|has| |#1| (-1051)))) (-4223 (($ (-772) |#1|) 70)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-2727 (($ $ $) 88 (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-1446 (($ $ $) 87 (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4207 ((|#1| $) 103 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-3421 (((-112) $ (-772)) 10)) (-3613 ((|#1| $) 104 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 43 (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2930 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-1678 (($ $ (-645 |#1|)) 117)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-1336 ((|#1| $ $) 107 (|has| |#1| (-1051)))) (-2589 (((-923) $) 118)) (-4281 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-2934 (($ $ $) 105)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3161 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 80 (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 120)) (-2516 (($ (-645 |#1|)) 71)) (-3644 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3006 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3054 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3045 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-982 |#1|) (-140) (-1051)) (T -982)) -((-2657 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-982 *3)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-1051)) (-5 *2 (-923)))) (-2934 (*1 *1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-1051)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-982 *3)) (-4 *3 (-1051))))) -(-13 (-1267 |t#1|) (-619 (-645 |t#1|)) (-10 -8 (-15 -2657 ($ (-645 |t#1|))) (-15 -2589 ((-923) $)) (-15 -2934 ($ $ $)) (-15 -1678 ($ $ (-645 |t#1|))))) -(((-34) . T) ((-102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-619 (-645 |#1|)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1219) . T) ((-1267 |#1|) . T)) -((-4364 (((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)) 17))) -(((-983 |#1| |#2|) (-10 -7 (-15 -4364 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) (-1051) (-1051)) (T -983)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-945 *6)) (-5 *1 (-983 *5 *6))))) -(-10 -7 (-15 -4364 ((-945 |#2|) (-1 |#2| |#1|) (-945 |#1|)))) -((-3462 ((|#1| (-945 |#1|)) 14)) (-1573 ((|#1| (-945 |#1|)) 13)) (-4144 ((|#1| (-945 |#1|)) 12)) (-4174 ((|#1| (-945 |#1|)) 16)) (-3565 ((|#1| (-945 |#1|)) 24)) (-2055 ((|#1| (-945 |#1|)) 15)) (-2029 ((|#1| (-945 |#1|)) 17)) (-2676 ((|#1| (-945 |#1|)) 23)) (-3114 ((|#1| (-945 |#1|)) 22))) -(((-984 |#1|) (-10 -7 (-15 -4144 (|#1| (-945 |#1|))) (-15 -1573 (|#1| (-945 |#1|))) (-15 -3462 (|#1| (-945 |#1|))) (-15 -2055 (|#1| (-945 |#1|))) (-15 -4174 (|#1| (-945 |#1|))) (-15 -2029 (|#1| (-945 |#1|))) (-15 -3114 (|#1| (-945 |#1|))) (-15 -2676 (|#1| (-945 |#1|))) (-15 -3565 (|#1| (-945 |#1|)))) (-1051)) (T -984)) -((-3565 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(-10 -7 (-15 -4144 (|#1| (-945 |#1|))) (-15 -1573 (|#1| (-945 |#1|))) (-15 -3462 (|#1| (-945 |#1|))) (-15 -2055 (|#1| (-945 |#1|))) (-15 -4174 (|#1| (-945 |#1|))) (-15 -2029 (|#1| (-945 |#1|))) (-15 -3114 (|#1| (-945 |#1|))) (-15 -2676 (|#1| (-945 |#1|))) (-15 -3565 (|#1| (-945 |#1|)))) -((-1756 (((-3 |#1| "failed") |#1|) 18)) (-1878 (((-3 |#1| "failed") |#1|) 6)) (-2651 (((-3 |#1| "failed") |#1|) 16)) (-3332 (((-3 |#1| "failed") |#1|) 4)) (-4065 (((-3 |#1| "failed") |#1|) 20)) (-4157 (((-3 |#1| "failed") |#1|) 8)) (-2417 (((-3 |#1| "failed") |#1| (-772)) 1)) (-2216 (((-3 |#1| "failed") |#1|) 3)) (-4017 (((-3 |#1| "failed") |#1|) 2)) (-3883 (((-3 |#1| "failed") |#1|) 21)) (-3001 (((-3 |#1| "failed") |#1|) 9)) (-2375 (((-3 |#1| "failed") |#1|) 19)) (-2564 (((-3 |#1| "failed") |#1|) 7)) (-2124 (((-3 |#1| "failed") |#1|) 17)) (-2050 (((-3 |#1| "failed") |#1|) 5)) (-2327 (((-3 |#1| "failed") |#1|) 24)) (-2609 (((-3 |#1| "failed") |#1|) 12)) (-3199 (((-3 |#1| "failed") |#1|) 22)) (-2155 (((-3 |#1| "failed") |#1|) 10)) (-4087 (((-3 |#1| "failed") |#1|) 26)) (-2001 (((-3 |#1| "failed") |#1|) 14)) (-2120 (((-3 |#1| "failed") |#1|) 27)) (-2620 (((-3 |#1| "failed") |#1|) 15)) (-2774 (((-3 |#1| "failed") |#1|) 25)) (-3400 (((-3 |#1| "failed") |#1|) 13)) (-1660 (((-3 |#1| "failed") |#1|) 23)) (-2484 (((-3 |#1| "failed") |#1|) 11))) -(((-985 |#1|) (-140) (-1204)) (T -985)) -((-2120 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4087 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2774 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2327 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1660 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3199 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3883 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4065 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2375 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1756 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2124 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2651 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2620 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2001 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3400 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2609 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2484 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2155 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3001 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4157 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2564 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-1878 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2050 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-3332 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2216 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-4017 (*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204)))) (-2417 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(-13 (-10 -7 (-15 -2417 ((-3 |t#1| "failed") |t#1| (-772))) (-15 -4017 ((-3 |t#1| "failed") |t#1|)) (-15 -2216 ((-3 |t#1| "failed") |t#1|)) (-15 -3332 ((-3 |t#1| "failed") |t#1|)) (-15 -2050 ((-3 |t#1| "failed") |t#1|)) (-15 -1878 ((-3 |t#1| "failed") |t#1|)) (-15 -2564 ((-3 |t#1| "failed") |t#1|)) (-15 -4157 ((-3 |t#1| "failed") |t#1|)) (-15 -3001 ((-3 |t#1| "failed") |t#1|)) (-15 -2155 ((-3 |t#1| "failed") |t#1|)) (-15 -2484 ((-3 |t#1| "failed") |t#1|)) (-15 -2609 ((-3 |t#1| "failed") |t#1|)) (-15 -3400 ((-3 |t#1| "failed") |t#1|)) (-15 -2001 ((-3 |t#1| "failed") |t#1|)) (-15 -2620 ((-3 |t#1| "failed") |t#1|)) (-15 -2651 ((-3 |t#1| "failed") |t#1|)) (-15 -2124 ((-3 |t#1| "failed") |t#1|)) (-15 -1756 ((-3 |t#1| "failed") |t#1|)) (-15 -2375 ((-3 |t#1| "failed") |t#1|)) (-15 -4065 ((-3 |t#1| "failed") |t#1|)) (-15 -3883 ((-3 |t#1| "failed") |t#1|)) (-15 -3199 ((-3 |t#1| "failed") |t#1|)) (-15 -1660 ((-3 |t#1| "failed") |t#1|)) (-15 -2327 ((-3 |t#1| "failed") |t#1|)) (-15 -2774 ((-3 |t#1| "failed") |t#1|)) (-15 -4087 ((-3 |t#1| "failed") |t#1|)) (-15 -2120 ((-3 |t#1| "failed") |t#1|)))) -((-4402 ((|#4| |#4| (-645 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1581 ((|#4| |#4| (-645 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4364 ((|#4| (-1 |#4| (-954 |#1|)) |#4|) 31))) -(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1581 (|#4| |#4| |#3|)) (-15 -1581 (|#4| |#4| (-645 |#3|))) (-15 -4402 (|#4| |#4| |#3|)) (-15 -4402 (|#4| |#4| (-645 |#3|))) (-15 -4364 (|#4| (-1 |#4| (-954 |#1|)) |#4|))) (-1051) (-794) (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179))))) (-951 (-954 |#1|) |#2| |#3|)) (T -986)) -((-4364 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-954 *4))) (-4 *4 (-1051)) (-4 *2 (-951 (-954 *4) *5 *6)) (-4 *5 (-794)) (-4 *6 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179)))))) (-5 *1 (-986 *4 *5 *6 *2)))) (-4402 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179)))))) (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) (-4 *2 (-951 (-954 *4) *5 *6)))) (-4402 (*1 *2 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179)))))) (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))) (-1581 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179)))))) (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) (-4 *2 (-951 (-954 *4) *5 *6)))) (-1581 (*1 *2 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)) (-15 -2722 ((-3 $ "failed") (-1179)))))) (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3))))) -(-10 -7 (-15 -1581 (|#4| |#4| |#3|)) (-15 -1581 (|#4| |#4| (-645 |#3|))) (-15 -4402 (|#4| |#4| |#3|)) (-15 -4402 (|#4| |#4| (-645 |#3|))) (-15 -4364 (|#4| (-1 |#4| (-954 |#1|)) |#4|))) -((-3733 ((|#2| |#3|) 35)) (-4112 (((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 83)) (-2171 (((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 103))) -(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2171 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -4112 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -3733 (|#2| |#3|))) (-351) (-1245 |#1|) (-1245 |#2|) (-725 |#2| |#3|)) (T -987)) -((-3733 (*1 *2 *3) (-12 (-4 *3 (-1245 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-987 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))) (-4112 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-987 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) (-2171 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -4374 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5))))) -(-10 -7 (-15 -2171 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -4112 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -3733 (|#2| |#3|))) -((-4392 (((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))) 84))) -(((-988 |#1| |#2|) (-10 -7 (-15 -4392 ((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) (-645 (-1179)) (-772)) (T -988)) -((-4392 (*1 *2 *2) (-12 (-5 *2 (-989 (-410 (-567)) (-865 *3) (-240 *4 (-772)) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1179))) (-14 *4 (-772)) (-5 *1 (-988 *3 *4))))) -(-10 -7 (-15 -4392 ((-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-989 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) -((-2487 (((-112) $ $) NIL)) (-2452 (((-3 (-112) "failed") $) 71)) (-2805 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-4277 (($ $ (-3 (-112) "failed")) 72)) (-2495 (($ (-645 |#4|) |#4|) 25)) (-1812 (((-1161) $) NIL)) (-1350 (($ $) 69)) (-3479 (((-1122) $) NIL)) (-2319 (((-112) $) 70)) (-2973 (($) 30)) (-1564 ((|#4| $) 74)) (-4067 (((-645 |#4|) $) 73)) (-2504 (((-863) $) 68)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-989 |#1| |#2| |#3| |#4|) (-13 (-1102) (-614 (-863)) (-10 -8 (-15 -2973 ($)) (-15 -2495 ($ (-645 |#4|) |#4|)) (-15 -2452 ((-3 (-112) "failed") $)) (-15 -4277 ($ $ (-3 (-112) "failed"))) (-15 -2319 ((-112) $)) (-15 -4067 ((-645 |#4|) $)) (-15 -1564 (|#4| $)) (-15 -1350 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -2805 ($ $)) |%noBranch|) |%noBranch|))) (-455) (-851) (-794) (-951 |#1| |#3| |#2|)) (T -989)) -((-2973 (*1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) (-2495 (*1 *1 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-951 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-989 *4 *5 *6 *3)))) (-2452 (*1 *2 *1) (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-2319 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-4067 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) (-1564 (*1 *2 *1) (-12 (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))) (-1350 (*1 *1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) (-2805 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3))))) -(-13 (-1102) (-614 (-863)) (-10 -8 (-15 -2973 ($)) (-15 -2495 ($ (-645 |#4|) |#4|)) (-15 -2452 ((-3 (-112) "failed") $)) (-15 -4277 ($ $ (-3 (-112) "failed"))) (-15 -2319 ((-112) $)) (-15 -4067 ((-645 |#4|) $)) (-15 -1564 (|#4| $)) (-15 -1350 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -2805 ($ $)) |%noBranch|) |%noBranch|))) -((-4209 (((-112) |#5| |#5|) 45)) (-3650 (((-112) |#5| |#5|) 60)) (-2217 (((-112) |#5| (-645 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-3390 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-1539 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) 71)) (-1391 (((-1274)) 33)) (-2804 (((-1274) (-1161) (-1161) (-1161)) 29)) (-1615 (((-645 |#5|) (-645 |#5|)) 101)) (-3614 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) 93)) (-2447 (((-645 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 123)) (-2288 (((-112) |#5| |#5|) 54)) (-3874 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1589 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-2775 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-4009 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-1696 (((-3 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3117 (((-645 |#5|) (-645 |#5|)) 50))) -(((-990 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2804 ((-1274) (-1161) (-1161) (-1161))) (-15 -1391 ((-1274))) (-15 -4209 ((-112) |#5| |#5|)) (-15 -3117 ((-645 |#5|) (-645 |#5|))) (-15 -2288 ((-112) |#5| |#5|)) (-15 -3650 ((-112) |#5| |#5|)) (-15 -3390 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1589 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2775 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4009 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3874 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2217 ((-112) |#5| |#5|)) (-15 -2217 ((-112) |#5| (-645 |#5|))) (-15 -1615 ((-645 |#5|) (-645 |#5|))) (-15 -1539 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) (-15 -3614 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-15 -2447 ((-645 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1696 ((-3 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -990)) -((-1696 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| -4178 (-645 *9)) (|:| -3526 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-990 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1073 *6 *7 *8 *9)))) (-2447 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -4178 (-645 *9)) (|:| -3526 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-990 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -3526 *7)))) (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-1539 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -3526 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-2217 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8 *3)))) (-2217 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3874 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-4009 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2775 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-1589 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3390 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3650 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2288 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) (-4209 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-1391 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-2804 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(-10 -7 (-15 -2804 ((-1274) (-1161) (-1161) (-1161))) (-15 -1391 ((-1274))) (-15 -4209 ((-112) |#5| |#5|)) (-15 -3117 ((-645 |#5|) (-645 |#5|))) (-15 -2288 ((-112) |#5| |#5|)) (-15 -3650 ((-112) |#5| |#5|)) (-15 -3390 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1589 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2775 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4009 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3874 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2217 ((-112) |#5| |#5|)) (-15 -2217 ((-112) |#5| (-645 |#5|))) (-15 -1615 ((-645 |#5|) (-645 |#5|))) (-15 -1539 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) (-15 -3614 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-15 -2447 ((-645 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1696 ((-3 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2722 (((-1179) $) 15)) (-2233 (((-1161) $) 16)) (-3382 (($ (-1179) (-1161)) 14)) (-2504 (((-863) $) 13))) -(((-991) (-13 (-614 (-863)) (-10 -8 (-15 -3382 ($ (-1179) (-1161))) (-15 -2722 ((-1179) $)) (-15 -2233 ((-1161) $))))) (T -991)) -((-3382 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1161)) (-5 *1 (-991)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-991)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-991))))) -(-13 (-614 (-863)) (-10 -8 (-15 -3382 ($ (-1179) (-1161))) (-15 -2722 ((-1179) $)) (-15 -2233 ((-1161) $)))) -((-4364 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#4| (-1 |#2| |#1|) |#3|))) (-559) (-559) (-994 |#1|) (-994 |#2|)) (T -992)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-4 *2 (-994 *6)) (-5 *1 (-992 *5 *6 *4 *2)) (-4 *4 (-994 *5))))) -(-10 -7 (-15 -4364 (|#4| (-1 |#2| |#1|) |#3|))) -((-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-1179) "failed") $) 66) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) 96)) (-3094 ((|#2| $) NIL) (((-1179) $) 61) (((-410 (-567)) $) NIL) (((-567) $) 93)) (-2690 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 115) (((-690 |#2|) (-690 $)) 28)) (-2119 (($) 99)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 76) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 85)) (-1550 (($ $) 10)) (-3104 (((-3 $ "failed") $) 20)) (-4364 (($ (-1 |#2| |#2|) $) 22)) (-2221 (($) 16)) (-3989 (($ $) 55)) (-3592 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2964 (($ $) 12)) (-1322 (((-894 (-567)) $) 71) (((-894 (-381)) $) 80) (((-539) $) 40) (((-381) $) 44) (((-225) $) 48)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 91) (($ |#2|) NIL) (($ (-1179)) 58)) (-2214 (((-772)) 31)) (-2986 (((-112) $ $) 51))) -(((-993 |#1| |#2|) (-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2221 (|#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -1322 ((-225) |#1|)) (-15 -1322 ((-381) |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -2504 (|#1| (-1179))) (-15 -4275 ((-3 (-1179) "failed") |#1|)) (-15 -3094 ((-1179) |#1|)) (-15 -2119 (|#1|)) (-15 -3989 (|#1| |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -2959 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -2690 ((-690 |#2|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| |#1|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-994 |#2|) (-559)) (T -993)) -((-2214 (*1 *2) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4))))) -(-10 -8 (-15 -2986 ((-112) |#1| |#1|)) (-15 -2221 (|#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -1322 ((-225) |#1|)) (-15 -1322 ((-381) |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -2504 (|#1| (-1179))) (-15 -4275 ((-3 (-1179) "failed") |#1|)) (-15 -3094 ((-1179) |#1|)) (-15 -2119 (|#1|)) (-15 -3989 (|#1| |#1|)) (-15 -2964 (|#1| |#1|)) (-15 -1550 (|#1| |#1|)) (-15 -2959 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -2959 ((-891 (-567) |#1|) |#1| (-894 (-567)) (-891 (-567) |#1|))) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -2690 ((-690 |#2|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| |#1|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-4199 ((|#1| $) 147 (|has| |#1| (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-2701 (((-421 (-1175 $)) (-1175 $)) 138 (|has| |#1| (-911)))) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 141 (|has| |#1| (-911)))) (-4175 (((-112) $ $) 65)) (-2777 (((-567) $) 128 (|has| |#1| (-821)))) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#1| "failed") $) 185) (((-3 (-1179) "failed") $) 136 (|has| |#1| (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) 119 (|has| |#1| (-1040 (-567)))) (((-3 (-567) "failed") $) 117 (|has| |#1| (-1040 (-567))))) (-3094 ((|#1| $) 186) (((-1179) $) 137 (|has| |#1| (-1040 (-1179)))) (((-410 (-567)) $) 120 (|has| |#1| (-1040 (-567)))) (((-567) $) 118 (|has| |#1| (-1040 (-567))))) (-2432 (($ $ $) 61)) (-2690 (((-690 (-567)) (-690 $)) 160 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 159 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 158) (((-690 |#1|) (-690 $)) 157)) (-1377 (((-3 $ "failed") $) 37)) (-2119 (($) 145 (|has| |#1| (-548)))) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-2946 (((-112) $) 79)) (-3635 (((-112) $) 130 (|has| |#1| (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 154 (|has| |#1| (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 153 (|has| |#1| (-888 (-381))))) (-4384 (((-112) $) 35)) (-1550 (($ $) 149)) (-4294 ((|#1| $) 151)) (-3104 (((-3 $ "failed") $) 116 (|has| |#1| (-1154)))) (-2585 (((-112) $) 129 (|has| |#1| (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2727 (($ $ $) 126 (|has| |#1| (-851)))) (-1446 (($ $ $) 125 (|has| |#1| (-851)))) (-4364 (($ (-1 |#1| |#1|) $) 177)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-2221 (($) 115 (|has| |#1| (-1154)) CONST)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3989 (($ $) 146 (|has| |#1| (-308)))) (-1952 ((|#1| $) 143 (|has| |#1| (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) 140 (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) 139 (|has| |#1| (-911)))) (-3661 (((-421 $) $) 82)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 179 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) 178 (|has| |#1| (-517 (-1179) |#1|)))) (-2465 (((-772) $) 64)) (-1882 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-3592 (($ $) 176 (|has| |#1| (-233))) (($ $ (-772)) 174 (|has| |#1| (-233))) (($ $ (-1179)) 172 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 171 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 170 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 169 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-2964 (($ $) 148)) (-4306 ((|#1| $) 150)) (-1322 (((-894 (-567)) $) 156 (|has| |#1| (-615 (-894 (-567))))) (((-894 (-381)) $) 155 (|has| |#1| (-615 (-894 (-381))))) (((-539) $) 133 (|has| |#1| (-615 (-539)))) (((-381) $) 132 (|has| |#1| (-1024))) (((-225) $) 131 (|has| |#1| (-1024)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 142 (-1750 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 189) (($ (-1179)) 135 (|has| |#1| (-1040 (-1179))))) (-2318 (((-3 $ "failed") $) 134 (-2836 (|has| |#1| (-145)) (-1750 (|has| $ (-145)) (|has| |#1| (-911)))))) (-2214 (((-772)) 32 T CONST)) (-3471 ((|#1| $) 144 (|has| |#1| (-548)))) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1368 (($ $) 127 (|has| |#1| (-821)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $) 175 (|has| |#1| (-233))) (($ $ (-772)) 173 (|has| |#1| (-233))) (($ $ (-1179)) 168 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 167 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 166 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 165 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-3016 (((-112) $ $) 123 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 122 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 124 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 121 (|has| |#1| (-851)))) (-3064 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) -(((-994 |#1|) (-140) (-559)) (T -994)) -((-3064 (*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-1550 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-2964 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-3989 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-2119 (*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-559)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548))))) -(-13 (-365) (-38 |t#1|) (-1040 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-886 |t#1|) (-403 |t#1|) (-10 -8 (-15 -3064 ($ |t#1| |t#1|)) (-15 -4294 (|t#1| $)) (-15 -4306 (|t#1| $)) (-15 -1550 ($ $)) (-15 -2964 ($ $)) (IF (|has| |t#1| (-1154)) (-6 (-1154)) |%noBranch|) (IF (|has| |t#1| (-1040 (-567))) (PROGN (-6 (-1040 (-567))) (-6 (-1040 (-410 (-567))))) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1040 (-1179))) (-6 (-1040 (-1179))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -4199 (|t#1| $)) (-15 -3989 ($ $))) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -2119 ($)) (-15 -3471 (|t#1| $)) (-15 -1952 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-911)) (-6 (-911)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 #1=(-1179)) |has| |#1| (-1040 (-1179))) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) |has| |#1| (-1024)) ((-615 (-381)) |has| |#1| (-1024)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-894 (-381))) |has| |#1| (-615 (-894 (-381)))) ((-615 (-894 (-567))) |has| |#1| (-615 (-894 (-567)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-455) . T) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-792) |has| |#1| (-821)) ((-793) |has| |#1| (-821)) ((-795) |has| |#1| (-821)) ((-796) |has| |#1| (-821)) ((-821) |has| |#1| (-821)) ((-849) |has| |#1| (-821)) ((-851) -2836 (|has| |#1| (-851)) (|has| |#1| (-821))) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-888 (-381)) |has| |#1| (-888 (-381))) ((-888 (-567)) |has| |#1| (-888 (-567))) ((-886 |#1|) . T) ((-911) |has| |#1| (-911)) ((-922) . T) ((-1024) |has| |#1| (-1024)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-567))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #1#) |has| |#1| (-1040 (-1179))) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-1154)) ((-1219) . T) ((-1223) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-3534 (($ (-1144 |#1| |#2|)) 11)) (-2446 (((-1144 |#1| |#2|) $) 12)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1882 ((|#2| $ (-240 |#1| |#2|)) 16)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL))) -(((-995 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3534 ($ (-1144 |#1| |#2|))) (-15 -2446 ((-1144 |#1| |#2|) $)) (-15 -1882 (|#2| $ (-240 |#1| |#2|))))) (-923) (-365)) (T -995)) -((-3534 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)) (-5 *1 (-995 *3 *4)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-1144 *3 *4)) (-5 *1 (-995 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-365)) (-5 *1 (-995 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3534 ($ (-1144 |#1| |#2|))) (-15 -2446 ((-1144 |#1| |#2|) $)) (-15 -1882 (|#2| $ (-240 |#1| |#2|))))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1378 (((-1137) $) 9)) (-2504 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-996) (-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $))))) (T -996)) -((-1378 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-996))))) -(-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) 8)) (-3758 (($) 7 T CONST)) (-2450 (($ $) 47)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-3613 (((-772) $) 46)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3725 ((|#1| $) 45)) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2337 ((|#1| |#1| $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1933 ((|#1| $) 48)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 43)) (-1715 ((|#1| $) 44)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-997 |#1|) (-140) (-1219)) (T -997)) -((-2337 (*1 *2 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))) (-2450 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4422) (-15 -2337 (|t#1| |t#1| $)) (-15 -1933 (|t#1| $)) (-15 -2450 ($ $)) (-15 -3613 ((-772) $)) (-15 -3725 (|t#1| $)) (-15 -1715 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-2684 (((-112) $) 43)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3094 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 44)) (-3810 (((-3 (-410 (-567)) "failed") $) 78)) (-1527 (((-112) $) 72)) (-2485 (((-410 (-567)) $) 76)) (-4384 (((-112) $) 42)) (-2013 ((|#2| $) 22)) (-4364 (($ (-1 |#2| |#2|) $) 19)) (-1752 (($ $) 58)) (-3592 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1322 (((-539) $) 67)) (-3307 (($ $) 17)) (-2504 (((-863) $) 53) (($ (-567)) 39) (($ |#2|) 37) (($ (-410 (-567))) NIL)) (-2214 (((-772)) 10)) (-1368 ((|#2| $) 71)) (-2968 (((-112) $ $) 26)) (-2986 (((-112) $ $) 69)) (-3054 (($ $) 30) (($ $ $) 29)) (-3045 (($ $ $) 27)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL))) -(((-998 |#1| |#2|) (-10 -8 (-15 -2504 (|#1| (-410 (-567)))) (-15 -2986 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -1752 (|#1| |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -1368 (|#2| |#1|)) (-15 -2013 (|#2| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 -4384 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2684 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) (-999 |#2|) (-172)) (T -998)) -((-2214 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-998 *3 *4)) (-4 *3 (-999 *4))))) -(-10 -8 (-15 -2504 (|#1| (-410 (-567)))) (-15 -2986 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -1752 (|#1| |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -1368 (|#2| |#1|)) (-15 -2013 (|#2| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -4364 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 -4384 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2684 ((-112) |#1|)) (-15 * (|#1| (-923) |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-4275 (((-3 (-567) "failed") $) 127 (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 125 (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) 122)) (-3094 (((-567) $) 126 (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) 124 (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) 123)) (-2690 (((-690 (-567)) (-690 $)) 97 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 96 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 95) (((-690 |#1|) (-690 $)) 94)) (-1377 (((-3 $ "failed") $) 37)) (-3680 ((|#1| $) 87)) (-3810 (((-3 (-410 (-567)) "failed") $) 83 (|has| |#1| (-548)))) (-1527 (((-112) $) 85 (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) 84 (|has| |#1| (-548)))) (-2347 (($ |#1| |#1| |#1| |#1|) 88)) (-4384 (((-112) $) 35)) (-2013 ((|#1| $) 89)) (-2727 (($ $ $) 76 (|has| |#1| (-851)))) (-1446 (($ $ $) 75 (|has| |#1| (-851)))) (-4364 (($ (-1 |#1| |#1|) $) 98)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 80 (|has| |#1| (-365)))) (-2857 ((|#1| $) 90)) (-4362 ((|#1| $) 91)) (-3707 ((|#1| $) 92)) (-3479 (((-1122) $) 11)) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) 100 (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) 99 (|has| |#1| (-517 (-1179) |#1|)))) (-1882 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-3592 (($ $) 121 (|has| |#1| (-233))) (($ $ (-772)) 119 (|has| |#1| (-233))) (($ $ (-1179)) 117 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 116 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 115 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 114 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-1322 (((-539) $) 81 (|has| |#1| (-615 (-539))))) (-3307 (($ $) 93)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 70 (-2836 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-2318 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1368 ((|#1| $) 86 (|has| |#1| (-1062)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $) 120 (|has| |#1| (-233))) (($ $ (-772)) 118 (|has| |#1| (-233))) (($ $ (-1179)) 113 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 112 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 111 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 110 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-3016 (((-112) $ $) 73 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 72 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 74 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 71 (|has| |#1| (-851)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 79 (|has| |#1| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-410 (-567))) 78 (|has| |#1| (-365))) (($ (-410 (-567)) $) 77 (|has| |#1| (-365))))) -(((-999 |#1|) (-140) (-172)) (T -999)) -((-3307 (*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-2347 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-3810 (*1 *2 *1) (|partial| -12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567)))))) -(-13 (-38 |t#1|) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -3307 ($ $)) (-15 -3707 (|t#1| $)) (-15 -4362 (|t#1| $)) (-15 -2857 (|t#1| $)) (-15 -2013 (|t#1| $)) (-15 -2347 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3680 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1062)) (-15 -1368 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1527 ((-112) $)) (-15 -2485 ((-410 (-567)) $)) (-15 -3810 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2836 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1179) |#1|) |has| |#1| (-517 (-1179) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 #0#) |has| |#1| (-365)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-365)) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-365)) ((-641 |#1|) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-365)) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1053 #0#) |has| |#1| (-365)) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1058 #0#) |has| |#1| (-365)) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-4364 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#3| (-1 |#4| |#2|) |#1|))) (-999 |#2|) (-172) (-999 |#4|) (-172)) (T -1000)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-999 *6)) (-5 *1 (-1000 *4 *5 *2 *6)) (-4 *4 (-999 *5))))) -(-10 -7 (-15 -4364 (|#3| (-1 |#4| |#2|) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3680 ((|#1| $) 12)) (-3810 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-1527 (((-112) $) NIL (|has| |#1| (-548)))) (-2485 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-2347 (($ |#1| |#1| |#1| |#1|) 16)) (-4384 (((-112) $) NIL)) (-2013 ((|#1| $) NIL)) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-2857 ((|#1| $) 15)) (-4362 ((|#1| $) 14)) (-3707 ((|#1| $) 13)) (-3479 (((-1122) $) NIL)) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1179) |#1|))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-517 (-1179) |#1|)))) (-1882 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3592 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-3307 (($ $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1368 ((|#1| $) NIL (|has| |#1| (-1062)))) (-1807 (($) 8 T CONST)) (-1820 (($) 10 T CONST)) (-2856 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))))) -(((-1001 |#1|) (-999 |#1|) (-172)) (T -1001)) -NIL -(-999 |#1|) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1555 (((-112) $ (-772)) NIL)) (-3758 (($) NIL T CONST)) (-2450 (($ $) 23)) (-3859 (($ (-645 |#1|)) 33)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-3613 (((-772) $) 26)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3018 ((|#1| $) 28)) (-3636 (($ |#1| $) 17)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3725 ((|#1| $) 27)) (-1713 ((|#1| $) 22)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2337 ((|#1| |#1| $) 16)) (-2319 (((-112) $) 18)) (-2973 (($) NIL)) (-1933 ((|#1| $) 21)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) NIL)) (-1715 ((|#1| $) 30)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1002 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -3859 ($ (-645 |#1|))))) (-1102)) (T -1002)) -((-3859 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1002 *3))))) -(-13 (-997 |#1|) (-10 -8 (-15 -3859 ($ (-645 |#1|))))) -((-3671 (($ $) 12)) (-4203 (($ $ (-567)) 13))) -(((-1003 |#1|) (-10 -8 (-15 -3671 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-567)))) (-1004)) (T -1003)) -NIL -(-10 -8 (-15 -3671 (|#1| |#1|)) (-15 -4203 (|#1| |#1| (-567)))) -((-3671 (($ $) 6)) (-4203 (($ $ (-567)) 7)) (** (($ $ (-410 (-567))) 8))) -(((-1004) (-140)) (T -1004)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-410 (-567))))) (-4203 (*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-567)))) (-3671 (*1 *1 *1) (-4 *1 (-1004)))) -(-13 (-10 -8 (-15 -3671 ($ $)) (-15 -4203 ($ $ (-567))) (-15 ** ($ $ (-410 (-567)))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2628 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-1987 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3342 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-2706 (((-690 (-410 |#2|)) (-1269 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-3132 (((-410 |#2|) $) NIL)) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1466 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4175 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3404 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-3742 (((-112)) NIL)) (-2334 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| (-410 |#2|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1040 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3431 (($ (-1269 (-410 |#2|)) (-1269 $)) NIL) (($ (-1269 (-410 |#2|))) 81) (($ (-1269 |#2|) |#2|) NIL)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2432 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3815 (((-690 (-410 |#2|)) $ (-1269 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-690 $) (-1269 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-3540 (((-1269 $) (-1269 $)) NIL)) (-2617 (($ |#3|) 75) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-1377 (((-3 $ "failed") $) NIL)) (-2687 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-3658 (((-112) |#1| |#1|) NIL)) (-1471 (((-923)) NIL)) (-2119 (($) NIL (|has| (-410 |#2|) (-370)))) (-2210 (((-112)) NIL)) (-1936 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2443 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-1873 (($ $) NIL)) (-3882 (($) NIL (|has| (-410 |#2|) (-351)))) (-1816 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-2559 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-2946 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-3905 (((-923) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-923)) $) NIL (|has| (-410 |#2|) (-351)))) (-4384 (((-112) $) NIL)) (-2925 (((-772)) NIL)) (-3754 (((-1269 $) (-1269 $)) NIL)) (-2013 (((-410 |#2|) $) NIL)) (-1651 (((-645 (-954 |#1|)) (-1179)) NIL (|has| |#1| (-365)))) (-3104 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3908 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-2667 (((-923) $) NIL (|has| (-410 |#2|) (-370)))) (-2606 ((|#3| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1812 (((-1161) $) NIL)) (-1373 (((-690 (-410 |#2|))) 57)) (-1422 (((-690 (-410 |#2|))) 56)) (-1752 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1984 (($ (-1269 |#2|) |#2|) 82)) (-3248 (((-690 (-410 |#2|))) 55)) (-2150 (((-690 (-410 |#2|))) 54)) (-4010 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-4323 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 88)) (-2115 (((-1269 $)) 51)) (-2171 (((-1269 $)) 50)) (-3323 (((-112) $) NIL)) (-2792 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2221 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-2188 (($ (-923)) NIL (|has| (-410 |#2|) (-370)))) (-1597 (((-3 |#2| "failed")) 70)) (-3479 (((-1122) $) NIL)) (-2818 (((-772)) NIL)) (-2335 (($) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| (-410 |#2|) (-365)))) (-1870 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-3661 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2478 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2465 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1882 ((|#1| $ |#1| |#1|) NIL)) (-1985 (((-3 |#2| "failed")) 68)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2254 (((-410 |#2|) (-1269 $)) NIL) (((-410 |#2|)) 47)) (-2943 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-3592 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-772)) NIL (-2836 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2836 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3089 (((-690 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-2783 ((|#3|) 58)) (-1876 (($) NIL (|has| (-410 |#2|) (-351)))) (-3237 (((-1269 (-410 |#2|)) $ (-1269 $)) NIL) (((-690 (-410 |#2|)) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 |#2|)) $) 83) (((-690 (-410 |#2|)) (-1269 $)) NIL)) (-1322 (((-1269 (-410 |#2|)) $) NIL) (($ (-1269 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-1641 (((-1269 $) (-1269 $)) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2836 (|has| (-410 |#2|) (-1040 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2318 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-4019 ((|#3| $) NIL)) (-2214 (((-772)) NIL T CONST)) (-4049 (((-112)) 65)) (-2463 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) 143)) (-3269 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-1846 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4271 (((-112)) NIL)) (-1807 (($) 109 T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-902 (-1179))))) (($ $ (-772)) NIL (-2836 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2836 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365))))) -(((-1005 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1223) (-1245 |#1|) (-1245 (-410 |#2|)) (-410 |#2|) (-772)) (T -1005)) +((-4273 (((-961 |#2|) (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|) 16)) (-4274 ((|#2| (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|) 18)) (-4390 (((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)) 13))) +(((-962 |#1| |#2|) (-10 -7 (-15 -4273 ((-961 |#2|) (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|)) (-15 -4390 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) (-1219) (-1219)) (T -962)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-961 *6)) (-5 *1 (-962 *5 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-961 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-962 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-961 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-961 *5)) (-5 *1 (-962 *6 *5))))) +(-10 -7 (-15 -4273 ((-961 |#2|) (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-961 |#1|) |#2|)) (-15 -4390 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) +((-3235 (($ $ (-1095 $)) 7) (($ $ (-1180)) 6))) +(((-963) (-140)) (T -963)) +((-3235 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-963)))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-1180))))) +(-13 (-10 -8 (-15 -3235 ($ $ (-1180))) (-15 -3235 ($ $ (-1095 $))))) +((-3236 (((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)) (-1180)) 30) (((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180))) 31) (((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 |#1|))) (-949 |#1|) (-1180) (-949 |#1|) (-1180)) 49))) +(((-964 |#1|) (-10 -7 (-15 -3236 ((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 |#1|))) (-949 |#1|) (-1180) (-949 |#1|) (-1180))) (-15 -3236 ((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -3236 ((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)) (-1180)))) (-13 (-365) (-147))) (T -964)) +((-3236 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-5 *5 (-1180)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 *6))) (|:| |prim| (-1174 *6)))) (-5 *1 (-964 *6)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 *5))) (|:| |prim| (-1174 *5)))) (-5 *1 (-964 *5)))) (-3236 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-1180)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 *5)))) (-5 *1 (-964 *5))))) +(-10 -7 (-15 -3236 ((-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 |#1|))) (-949 |#1|) (-1180) (-949 |#1|) (-1180))) (-15 -3236 ((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)))) (-15 -3236 ((-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 |#1|))) (|:| |prim| (-1174 |#1|))) (-643 (-949 |#1|)) (-643 (-1180)) (-1180)))) +((-3239 (((-643 |#1|) |#1| |#1|) 47)) (-4155 (((-112) |#1|) 44)) (-3238 ((|#1| |#1|) 80)) (-3237 ((|#1| |#1|) 79))) +(((-965 |#1|) (-10 -7 (-15 -4155 ((-112) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3239 ((-643 |#1|) |#1| |#1|))) (-548)) (T -965)) +((-3239 (*1 *2 *3 *3) (-12 (-5 *2 (-643 *3)) (-5 *1 (-965 *3)) (-4 *3 (-548)))) (-3238 (*1 *2 *2) (-12 (-5 *1 (-965 *2)) (-4 *2 (-548)))) (-3237 (*1 *2 *2) (-12 (-5 *1 (-965 *2)) (-4 *2 (-548)))) (-4155 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-965 *3)) (-4 *3 (-548))))) +(-10 -7 (-15 -4155 ((-112) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3239 ((-643 |#1|) |#1| |#1|))) +((-3240 (((-1275) (-865)) 9))) +(((-966) (-10 -7 (-15 -3240 ((-1275) (-865))))) (T -966)) +((-3240 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-966))))) +(-10 -7 (-15 -3240 ((-1275) (-865)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2805 (($ $ $) 65 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))) (-1407 (((-3 $ "failed") $ $) 52 (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-3540 (((-773)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3241 ((|#2| $) 22)) (-3242 ((|#1| $) 21)) (-4156 (($) NIL (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) CONST)) (-3890 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (-3395 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2573 (((-112) $) NIL (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (-2934 (($ $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-3260 (($ $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-3243 (($ |#1| |#2|) 20)) (-2188 (((-922) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 39 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-2563 (($ (-922)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3664 (((-1123) $) NIL)) (-3410 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-2756 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4378 (((-865) $) 14)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 42 (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))) CONST)) (-3067 (($) 25 (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))) CONST)) (-2966 (((-112) $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-2967 (((-112) $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-3455 (((-112) $ $) 19)) (-3087 (((-112) $ $) NIL (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-3088 (((-112) $ $) 69 (-3960 (-12 (|has| |#1| (-795)) (|has| |#2| (-795))) (-12 (|has| |#1| (-852)) (|has| |#2| (-852)))))) (-4381 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4269 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4271 (($ $ $) 45 (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (** (($ $ (-549)) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476)))) (($ $ (-773)) 32 (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))) (($ $ (-922)) NIL (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728)))))) (* (($ (-549) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-773) $) 48 (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))) (($ (-922) $) NIL (-3960 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))) (($ $ $) 28 (-3960 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-728)) (|has| |#2| (-728))))))) +(((-967 |#1| |#2|) (-13 (-1104) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-728)) (IF (|has| |#2| (-728)) (-6 (-728)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-852)) (IF (|has| |#2| (-852)) (-6 (-852)) |%noBranch|) |%noBranch|) (-15 -3243 ($ |#1| |#2|)) (-15 -3242 (|#1| $)) (-15 -3241 (|#2| $)))) (-1104) (-1104)) (T -967)) +((-3243 (*1 *1 *2 *3) (-12 (-5 *1 (-967 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3242 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1104)))) (-3241 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-967 *3 *2)) (-4 *3 (-1104))))) +(-13 (-1104) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-728)) (IF (|has| |#2| (-728)) (-6 (-728)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-852)) (IF (|has| |#2| (-852)) (-6 (-852)) |%noBranch|) |%noBranch|) (-15 -3243 ($ |#1| |#2|)) (-15 -3242 (|#1| $)) (-15 -3241 (|#2| $)))) +((-3826 (((-1106) $) 12)) (-3244 (($ (-509) (-1106)) 14)) (-3973 (((-509) $) 9)) (-4378 (((-865) $) 24))) +(((-968) (-13 (-615 (-865)) (-10 -8 (-15 -3973 ((-509) $)) (-15 -3826 ((-1106) $)) (-15 -3244 ($ (-509) (-1106)))))) (T -968)) +((-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-968)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-968)))) (-3244 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-968))))) +(-13 (-615 (-865)) (-10 -8 (-15 -3973 ((-509) $)) (-15 -3826 ((-1106) $)) (-15 -3244 ($ (-509) (-1106))))) +((-2968 (((-112) $ $) NIL)) (-3258 (($) NIL T CONST)) (-3255 (($ $ $) 30)) (-3746 (($ $) 24)) (-3663 (((-1162) $) NIL)) (-3252 (((-693 |#1|) $) 36)) (-3249 (((-693 (-875 $ $)) $) 55)) (-3251 (((-693 $) $) 45)) (-3248 (((-693 (-875 $ $)) $) 56)) (-3247 (((-693 (-875 $ $)) $) 57)) (-3250 (((-693 (-875 $ $)) $) 54)) (-3254 (($ $ $) 31)) (-3664 (((-1123) $) NIL)) (-3257 (($) NIL T CONST)) (-3253 (($ $ $) 32)) (-3245 (($ $ $) 29)) (-3246 (($ $ $) 27)) (-4378 (((-865) $) 59) (($ |#1|) 12)) (-3662 (((-112) $ $) NIL)) (-3256 (($ $ $) 28)) (-3455 (((-112) $ $) NIL))) +(((-969 |#1|) (-13 (-970) (-618 |#1|) (-10 -8 (-15 -3252 ((-693 |#1|) $)) (-15 -3251 ((-693 $) $)) (-15 -3250 ((-693 (-875 $ $)) $)) (-15 -3249 ((-693 (-875 $ $)) $)) (-15 -3248 ((-693 (-875 $ $)) $)) (-15 -3247 ((-693 (-875 $ $)) $)) (-15 -3246 ($ $ $)) (-15 -3245 ($ $ $)))) (-1104)) (T -969)) +((-3252 (*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-693 (-969 *3))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) (-4 *3 (-1104)))) (-3246 (*1 *1 *1 *1) (-12 (-5 *1 (-969 *2)) (-4 *2 (-1104)))) (-3245 (*1 *1 *1 *1) (-12 (-5 *1 (-969 *2)) (-4 *2 (-1104))))) +(-13 (-970) (-618 |#1|) (-10 -8 (-15 -3252 ((-693 |#1|) $)) (-15 -3251 ((-693 $) $)) (-15 -3250 ((-693 (-875 $ $)) $)) (-15 -3249 ((-693 (-875 $ $)) $)) (-15 -3248 ((-693 (-875 $ $)) $)) (-15 -3247 ((-693 (-875 $ $)) $)) (-15 -3246 ($ $ $)) (-15 -3245 ($ $ $)))) +((-2968 (((-112) $ $) 7)) (-3258 (($) 20 T CONST)) (-3255 (($ $ $) 16)) (-3746 (($ $) 18)) (-3663 (((-1162) $) 10)) (-3254 (($ $ $) 15)) (-3664 (((-1123) $) 11)) (-3257 (($) 19 T CONST)) (-3253 (($ $ $) 14)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3256 (($ $ $) 17)) (-3455 (((-112) $ $) 6))) +(((-970) (-140)) (T -970)) +((-3258 (*1 *1) (-4 *1 (-970))) (-3257 (*1 *1) (-4 *1 (-970))) (-3746 (*1 *1 *1) (-4 *1 (-970))) (-3256 (*1 *1 *1 *1) (-4 *1 (-970))) (-3255 (*1 *1 *1 *1) (-4 *1 (-970))) (-3254 (*1 *1 *1 *1) (-4 *1 (-970))) (-3253 (*1 *1 *1 *1) (-4 *1 (-970)))) +(-13 (-1104) (-10 -8 (-15 -3258 ($) -4384) (-15 -3257 ($) -4384) (-15 -3746 ($ $)) (-15 -3256 ($ $ $)) (-15 -3255 ($ $ $)) (-15 -3254 ($ $ $)) (-15 -3253 ($ $ $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3259 (($ $ $) 44)) (-3941 (($ $ $) 45)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3260 ((|#1| $) 46)) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-971 |#1|) (-140) (-852)) (T -971)) +((-3260 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852)))) (-3259 (*1 *1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3260 (|t#1| $)) (-15 -3941 ($ $ $)) (-15 -3259 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-3272 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|) 105)) (-4187 ((|#2| |#2| |#2|) 103)) (-3273 (((-2 (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|) 107)) (-3274 (((-2 (|:| |coef1| |#2|) (|:| -3564 |#2|)) |#2| |#2|) 109)) (-3281 (((-2 (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|) 131 (|has| |#1| (-455)))) (-3288 (((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 56)) (-3262 (((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 80)) (-3263 (((-2 (|:| |coef1| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 82)) (-3271 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3266 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773)) 89)) (-3276 (((-2 (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|) 121)) (-3269 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773)) 92)) (-3278 (((-643 (-773)) |#2| |#2|) 102)) (-3286 ((|#1| |#2| |#2|) 50)) (-3280 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|) 129 (|has| |#1| (-455)))) (-3279 ((|#1| |#2| |#2|) 127 (|has| |#1| (-455)))) (-3287 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 54)) (-3261 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|) 79)) (-4188 ((|#1| |#2| |#2|) 76)) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|) 41)) (-3285 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3270 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3610 ((|#2| |#2| |#2|) 93)) (-3265 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773)) 87)) (-3264 ((|#2| |#2| |#2| (-773)) 85)) (-3564 ((|#2| |#2| |#2|) 135 (|has| |#1| (-455)))) (-3889 (((-1269 |#2|) (-1269 |#2|) |#1|) 22)) (-3282 (((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|) 46)) (-3275 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|) 119)) (-4189 ((|#1| |#2|) 116)) (-3268 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773)) 91)) (-3267 ((|#2| |#2| |#2| (-773)) 90)) (-3277 (((-643 |#2|) |#2| |#2|) 99)) (-3284 ((|#2| |#2| |#1| |#1| (-773)) 62)) (-3283 ((|#1| |#1| |#1| (-773)) 61)) (* (((-1269 |#2|) |#1| (-1269 |#2|)) 17))) +(((-972 |#1| |#2|) (-10 -7 (-15 -4188 (|#1| |#2| |#2|)) (-15 -3261 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3264 (|#2| |#2| |#2| (-773))) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3266 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3267 (|#2| |#2| |#2| (-773))) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3269 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3610 (|#2| |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3271 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4187 (|#2| |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -3274 ((-2 (|:| |coef1| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -4189 (|#1| |#2|)) (-15 -3275 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|)) (-15 -3276 ((-2 (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|)) (-15 -3277 ((-643 |#2|) |#2| |#2|)) (-15 -3278 ((-643 (-773)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -3279 (|#1| |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|)) (-15 -3281 ((-2 (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|)) (-15 -3564 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1269 |#2|) |#1| (-1269 |#2|))) (-15 -3889 ((-1269 |#2|) (-1269 |#2|) |#1|)) (-15 -4184 ((-2 (|:| -4386 |#1|) (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3282 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3283 (|#1| |#1| |#1| (-773))) (-15 -3284 (|#2| |#2| |#1| |#1| (-773))) (-15 -3285 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3286 (|#1| |#2| |#2|)) (-15 -3287 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3288 ((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|))) (-560) (-1245 |#1|)) (T -972)) +((-3288 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3287 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3286 (*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) (-3285 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3284 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3283 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *2 (-560)) (-5 *1 (-972 *2 *4)) (-4 *4 (-1245 *2)))) (-3282 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-4184 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -4386 *4) (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3889 (*1 *2 *2 *3) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-560)) (-5 *1 (-972 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-560)) (-5 *1 (-972 *3 *4)))) (-3564 (*1 *2 *2 *2) (-12 (-4 *3 (-455)) (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3281 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3279 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3279 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-4 *2 (-455)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 (-773))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3276 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4189 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3275 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4189 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-4189 (*1 *2 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3564 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3564 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3564 *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-4187 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3610 (*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) (-3269 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5)))) (-3268 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5)))) (-3267 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-560)) (-5 *1 (-972 *4 *2)) (-4 *2 (-1245 *4)))) (-3266 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5)))) (-3265 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5)))) (-3264 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-560)) (-5 *1 (-972 *4 *2)) (-4 *2 (-1245 *4)))) (-3263 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3262 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-3261 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4188 *4))) (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) (-4188 (*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2))))) +(-10 -7 (-15 -4188 (|#1| |#2| |#2|)) (-15 -3261 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3262 ((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3264 (|#2| |#2| |#2| (-773))) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3266 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3267 (|#2| |#2| |#2| (-773))) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3269 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-773))) (-15 -3610 (|#2| |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3271 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4187 (|#2| |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -3273 ((-2 (|:| |coef2| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -3274 ((-2 (|:| |coef1| |#2|) (|:| -3564 |#2|)) |#2| |#2|)) (-15 -4189 (|#1| |#2|)) (-15 -3275 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|)) (-15 -3276 ((-2 (|:| |coef2| |#2|) (|:| -4189 |#1|)) |#2|)) (-15 -3277 ((-643 |#2|) |#2| |#2|)) (-15 -3278 ((-643 (-773)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -3279 (|#1| |#2| |#2|)) (-15 -3280 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|)) (-15 -3281 ((-2 (|:| |coef2| |#2|) (|:| -3279 |#1|)) |#2| |#2|)) (-15 -3564 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1269 |#2|) |#1| (-1269 |#2|))) (-15 -3889 ((-1269 |#2|) (-1269 |#2|) |#1|)) (-15 -4184 ((-2 (|:| -4386 |#1|) (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3282 ((-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3283 (|#1| |#1| |#1| (-773))) (-15 -3284 (|#2| |#2| |#1| |#1| (-773))) (-15 -3285 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3286 (|#1| |#2| |#2|)) (-15 -3287 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|)) (-15 -3288 ((-2 (|:| |coef2| |#2|) (|:| -4188 |#1|)) |#2| |#2|))) +((-2968 (((-112) $ $) NIL)) (-3739 (((-1220) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 10)) (-4378 (((-865) $) 20) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-973) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $))))) (T -973)) +((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-973)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-973))))) +(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) 39)) (-4156 (($) NIL T CONST)) (-3290 (((-643 (-643 (-549))) (-643 (-549))) 48)) (-3289 (((-549) $) 72)) (-3291 (($ (-643 (-549))) 18)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4402 (((-643 (-549)) $) 13)) (-3410 (($ $) 52)) (-4378 (((-865) $) 68) (((-643 (-549)) $) 11)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 8 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 26)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 25)) (-4271 (($ $ $) 28)) (* (($ (-922) $) NIL) (($ (-773) $) 37))) +(((-974) (-13 (-799) (-616 (-643 (-549))) (-615 (-643 (-549))) (-10 -8 (-15 -3291 ($ (-643 (-549)))) (-15 -3290 ((-643 (-643 (-549))) (-643 (-549)))) (-15 -3289 ((-549) $)) (-15 -3410 ($ $))))) (T -974)) +((-3291 (*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-974)))) (-3290 (*1 *2 *3) (-12 (-5 *2 (-643 (-643 (-549)))) (-5 *1 (-974)) (-5 *3 (-643 (-549))))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-974)))) (-3410 (*1 *1 *1) (-5 *1 (-974)))) +(-13 (-799) (-616 (-643 (-549))) (-615 (-643 (-549))) (-10 -8 (-15 -3291 ($ (-643 (-549)))) (-15 -3290 ((-643 (-643 (-549))) (-643 (-549)))) (-15 -3289 ((-549) $)) (-15 -3410 ($ $)))) +((-4381 (($ $ |#2|) 31)) (-4269 (($ $) 23) (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-410 (-549)) $) 27) (($ $ (-410 (-549))) 29))) +(((-975 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4381 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) (-976 |#2| |#3| |#4|) (-1052) (-794) (-852)) (T -975)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-410 (-549)))) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 -4381 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 * (|#1| (-922) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 |#3|) $) 86)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-3293 (((-112) $) 85)) (-2573 (((-112) $) 35)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-643 |#3|) (-643 |#2|)) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-4380 ((|#2| $) 76)) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4109 ((|#1| $ |#2|) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-976 |#1| |#2| |#3|) (-140) (-1052) (-794) (-852)) (T -976)) +((-3594 (*1 *2 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *3 (-794)) (-4 *4 (-852)) (-4 *2 (-1052)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *4 (-852)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *2 *4)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *2 (-794)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-976 *4 *3 *2)) (-4 *4 (-1052)) (-4 *3 (-794)) (-4 *2 (-852)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 *5)) (-4 *1 (-976 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-794)) (-4 *6 (-852)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *5 (-852)) (-5 *2 (-643 *5)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *5 (-852)) (-5 *2 (-112)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *4 (-852))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3294 ($ $ |t#3| |t#2|)) (-15 -3294 ($ $ (-643 |t#3|) (-643 |t#2|))) (-15 -3295 ($ $)) (-15 -3594 (|t#1| $)) (-15 -4380 (|t#2| $)) (-15 -3485 ((-643 |t#3|) $)) (-15 -3293 ((-112) $)) (-15 -3292 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-291) |has| |#1| (-560)) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-3296 (((-1092 (-225)) $) 8)) (-3297 (((-1092 (-225)) $) 9)) (-3298 (((-1092 (-225)) $) 10)) (-3299 (((-643 (-643 (-946 (-225)))) $) 11)) (-4378 (((-865) $) 6))) +(((-977) (-140)) (T -977)) +((-3299 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-643 (-643 (-946 (-225))))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225))))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225)))))) +(-13 (-615 (-865)) (-10 -8 (-15 -3299 ((-643 (-643 (-946 (-225)))) $)) (-15 -3298 ((-1092 (-225)) $)) (-15 -3297 ((-1092 (-225)) $)) (-15 -3296 ((-1092 (-225)) $)))) +(((-615 (-865)) . T)) +((-3485 (((-643 |#4|) $) 23)) (-3309 (((-112) $) 55)) (-3300 (((-112) $) 54)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#4|) 42)) (-3305 (((-112) $) 56)) (-3307 (((-112) $ $) 62)) (-3306 (((-112) $ $) 65)) (-3308 (((-112) $) 60)) (-3301 (((-643 |#5|) (-643 |#5|) $) 98)) (-3302 (((-643 |#5|) (-643 |#5|) $) 95)) (-3303 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3315 (((-643 |#4|) $) 27)) (-3314 (((-112) |#4| $) 34)) (-3304 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3311 (($ $ |#4|) 39)) (-3313 (($ $ |#4|) 38)) (-3312 (($ $ |#4|) 40)) (-3455 (((-112) $ $) 46))) +(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3300 ((-112) |#1|)) (-15 -3301 ((-643 |#5|) (-643 |#5|) |#1|)) (-15 -3302 ((-643 |#5|) (-643 |#5|) |#1|)) (-15 -3303 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3304 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3305 ((-112) |#1|)) (-15 -3306 ((-112) |#1| |#1|)) (-15 -3307 ((-112) |#1| |#1|)) (-15 -3308 ((-112) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3310 ((-2 (|:| |under| |#1|) (|:| -3534 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3314 ((-112) |#4| |#1|)) (-15 -3315 ((-643 |#4|) |#1|)) (-15 -3485 ((-643 |#4|) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-979 |#2| |#3| |#4| |#5|) (-1052) (-795) (-852) (-1068 |#2| |#3| |#4|)) (T -978)) +NIL +(-10 -8 (-15 -3300 ((-112) |#1|)) (-15 -3301 ((-643 |#5|) (-643 |#5|) |#1|)) (-15 -3302 ((-643 |#5|) (-643 |#5|) |#1|)) (-15 -3303 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3304 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3305 ((-112) |#1|)) (-15 -3306 ((-112) |#1| |#1|)) (-15 -3307 ((-112) |#1| |#1|)) (-15 -3308 ((-112) |#1|)) (-15 -3309 ((-112) |#1|)) (-15 -3310 ((-2 (|:| |under| |#1|) (|:| -3534 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3314 ((-112) |#4| |#1|)) (-15 -3315 ((-643 |#4|) |#1|)) (-15 -3485 ((-643 |#4|) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425)))) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425)))) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-3664 (((-1123) $) 11)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) +(((-979 |#1| |#2| |#3| |#4|) (-140) (-1052) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -979)) +((-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *1 (-979 *3 *4 *5 *6)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *1 (-979 *3 *4 *5 *6)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-1068 *3 *4 *2)) (-4 *2 (-852)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5)))) (-3314 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *5 *3 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-112)))) (-3313 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *5 (-1068 *3 *4 *2)))) (-3312 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *5 (-1068 *3 *4 *2)))) (-3311 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) (-4 *5 (-1068 *3 *4 *2)))) (-3310 (*1 *2 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3534 *1) (|:| |upper| *1))) (-4 *1 (-979 *4 *5 *3 *6)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112)))) (-3307 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112)))) (-3306 (*1 *2 *1 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112)))) (-3304 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *5 *6 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3303 (*1 *2 *3 *1) (-12 (-4 *1 (-979 *4 *5 *6 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3302 (*1 *2 *2 *1) (-12 (-5 *2 (-643 *6)) (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)))) (-3301 (*1 *2 *2 *1) (-12 (-5 *2 (-643 *6)) (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) +(-13 (-1104) (-151 |t#4|) (-615 (-643 |t#4|)) (-10 -8 (-6 -4425) (-15 -3577 ((-3 $ "failed") (-643 |t#4|))) (-15 -3576 ($ (-643 |t#4|))) (-15 -3600 (|t#3| $)) (-15 -3485 ((-643 |t#3|) $)) (-15 -3315 ((-643 |t#3|) $)) (-15 -3314 ((-112) |t#3| $)) (-15 -3313 ($ $ |t#3|)) (-15 -3312 ($ $ |t#3|)) (-15 -3311 ($ $ |t#3|)) (-15 -3310 ((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |t#3|)) (-15 -3309 ((-112) $)) (IF (|has| |t#1| (-560)) (PROGN (-15 -3308 ((-112) $)) (-15 -3307 ((-112) $ $)) (-15 -3306 ((-112) $ $)) (-15 -3305 ((-112) $)) (-15 -3304 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3303 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3302 ((-643 |t#4|) (-643 |t#4|) $)) (-15 -3301 ((-643 |t#4|) (-643 |t#4|) $)) (-15 -3300 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-1104) . T) ((-1219) . T)) +((-3317 (((-643 |#4|) |#4| |#4|) 136)) (-3340 (((-643 |#4|) (-643 |#4|) (-112)) 125 (|has| |#1| (-455))) (((-643 |#4|) (-643 |#4|)) 126 (|has| |#1| (-455)))) (-3327 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|)) 44)) (-3326 (((-112) |#4|) 43)) (-3339 (((-643 |#4|) |#4|) 121 (|has| |#1| (-455)))) (-3322 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-1 (-112) |#4|) (-643 |#4|)) 24)) (-3323 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|)) 30)) (-3324 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|)) 31)) (-3335 (((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|)) 90)) (-3337 (((-643 |#4|) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3338 (((-643 |#4|) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3316 (((-643 |#4|) (-643 |#4|)) 128)) (-3332 (((-643 |#4|) (-643 |#4|) (-643 |#4|) (-112)) 59) (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 61)) (-3333 ((|#4| |#4| (-643 |#4|)) 60)) (-3341 (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 132 (|has| |#1| (-455)))) (-3343 (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 135 (|has| |#1| (-455)))) (-3342 (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 134 (|has| |#1| (-455)))) (-3318 (((-643 |#4|) (-643 |#4|) (-643 |#4|) (-1 (-643 |#4|) (-643 |#4|))) 105) (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 107) (((-643 |#4|) (-643 |#4|) |#4|) 140) (((-643 |#4|) |#4| |#4|) 137) (((-643 |#4|) (-643 |#4|)) 106)) (-3346 (((-643 |#4|) (-643 |#4|) (-643 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3325 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|)) 52)) (-3321 (((-112) (-643 |#4|)) 79)) (-3320 (((-112) (-643 |#4|) (-643 (-643 |#4|))) 67)) (-3329 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|)) 37)) (-3328 (((-112) |#4|) 36)) (-3345 (((-643 |#4|) (-643 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3344 (((-643 |#4|) (-643 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3334 (((-643 |#4|) (-643 |#4|)) 83)) (-3336 (((-643 |#4|) (-643 |#4|)) 97)) (-3319 (((-112) (-643 |#4|) (-643 |#4|)) 65)) (-3331 (((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|)) 50)) (-3330 (((-112) |#4|) 45))) +(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3318 ((-643 |#4|) (-643 |#4|))) (-15 -3318 ((-643 |#4|) |#4| |#4|)) (-15 -3316 ((-643 |#4|) (-643 |#4|))) (-15 -3317 ((-643 |#4|) |#4| |#4|)) (-15 -3318 ((-643 |#4|) (-643 |#4|) |#4|)) (-15 -3318 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3318 ((-643 |#4|) (-643 |#4|) (-643 |#4|) (-1 (-643 |#4|) (-643 |#4|)))) (-15 -3319 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3320 ((-112) (-643 |#4|) (-643 (-643 |#4|)))) (-15 -3321 ((-112) (-643 |#4|))) (-15 -3322 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-1 (-112) |#4|) (-643 |#4|))) (-15 -3323 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|))) (-15 -3324 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|))) (-15 -3325 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3326 ((-112) |#4|)) (-15 -3327 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3328 ((-112) |#4|)) (-15 -3329 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3330 ((-112) |#4|)) (-15 -3331 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3332 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3332 ((-643 |#4|) (-643 |#4|) (-643 |#4|) (-112))) (-15 -3333 (|#4| |#4| (-643 |#4|))) (-15 -3334 ((-643 |#4|) (-643 |#4|))) (-15 -3335 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|))) (-15 -3336 ((-643 |#4|) (-643 |#4|))) (-15 -3337 ((-643 |#4|) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3338 ((-643 |#4|) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3339 ((-643 |#4|) |#4|)) (-15 -3340 ((-643 |#4|) (-643 |#4|))) (-15 -3340 ((-643 |#4|) (-643 |#4|) (-112))) (-15 -3341 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3342 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3343 ((-643 |#4|) (-643 |#4|) (-643 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -3344 ((-643 |#4|) (-643 |#4|))) (-15 -3345 ((-643 |#4|) (-643 |#4|))) (-15 -3346 ((-643 |#4|) (-643 |#4|) (-643 |#4|)))) |%noBranch|) |%noBranch|)) (-560) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -980)) +((-3346 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3343 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3342 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3341 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3340 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-112)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3338 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-980 *5 *6 *7 *8)))) (-3337 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-643 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) (-5 *1 (-980 *6 *7 *8 *9)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3335 (*1 *2 *3) (|partial| -12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -3748 (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3333 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *2)))) (-3332 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-643 *7)) (-5 *3 (-112)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3332 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1 (-112) *8))) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1 (-112) *8))) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3320 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-643 *8))) (-5 *3 (-643 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *5 *6 *7 *8)))) (-3319 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3318 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-643 *7) (-643 *7))) (-5 *2 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7)))) (-3318 (*1 *2 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3318 (*1 *2 *2 *3) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *3)))) (-3317 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) (-3318 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) +(-10 -7 (-15 -3318 ((-643 |#4|) (-643 |#4|))) (-15 -3318 ((-643 |#4|) |#4| |#4|)) (-15 -3316 ((-643 |#4|) (-643 |#4|))) (-15 -3317 ((-643 |#4|) |#4| |#4|)) (-15 -3318 ((-643 |#4|) (-643 |#4|) |#4|)) (-15 -3318 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3318 ((-643 |#4|) (-643 |#4|) (-643 |#4|) (-1 (-643 |#4|) (-643 |#4|)))) (-15 -3319 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3320 ((-112) (-643 |#4|) (-643 (-643 |#4|)))) (-15 -3321 ((-112) (-643 |#4|))) (-15 -3322 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-1 (-112) |#4|) (-643 |#4|))) (-15 -3323 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|))) (-15 -3324 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 (-1 (-112) |#4|)) (-643 |#4|))) (-15 -3325 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3326 ((-112) |#4|)) (-15 -3327 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3328 ((-112) |#4|)) (-15 -3329 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3330 ((-112) |#4|)) (-15 -3331 ((-2 (|:| |goodPols| (-643 |#4|)) (|:| |badPols| (-643 |#4|))) (-643 |#4|))) (-15 -3332 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3332 ((-643 |#4|) (-643 |#4|) (-643 |#4|) (-112))) (-15 -3333 (|#4| |#4| (-643 |#4|))) (-15 -3334 ((-643 |#4|) (-643 |#4|))) (-15 -3335 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|))) (-15 -3336 ((-643 |#4|) (-643 |#4|))) (-15 -3337 ((-643 |#4|) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3338 ((-643 |#4|) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3339 ((-643 |#4|) |#4|)) (-15 -3340 ((-643 |#4|) (-643 |#4|))) (-15 -3340 ((-643 |#4|) (-643 |#4|) (-112))) (-15 -3341 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3342 ((-643 |#4|) (-643 |#4|) (-643 |#4|))) (-15 -3343 ((-643 |#4|) (-643 |#4|) (-643 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -3344 ((-643 |#4|) (-643 |#4|))) (-15 -3345 ((-643 |#4|) (-643 |#4|))) (-15 -3346 ((-643 |#4|) (-643 |#4|) (-643 |#4|)))) |%noBranch|) |%noBranch|)) +((-3347 (((-2 (|:| R (-691 |#1|)) (|:| A (-691 |#1|)) (|:| |Ainv| (-691 |#1|))) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3349 (((-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|)) 44)) (-3348 (((-691 |#1|) (-691 |#1|) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-981 |#1|) (-10 -7 (-15 -3347 ((-2 (|:| R (-691 |#1|)) (|:| A (-691 |#1|)) (|:| |Ainv| (-691 |#1|))) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3348 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3349 ((-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|)))) (-365)) (T -981)) +((-3349 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-643 (-2 (|:| C (-691 *5)) (|:| |g| (-1269 *5))))) (-5 *1 (-981 *5)) (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)))) (-3348 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-691 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-981 *5)))) (-3347 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-691 *6)) (|:| A (-691 *6)) (|:| |Ainv| (-691 *6)))) (-5 *1 (-981 *6)) (-5 *3 (-691 *6))))) +(-10 -7 (-15 -3347 ((-2 (|:| R (-691 |#1|)) (|:| A (-691 |#1|)) (|:| |Ainv| (-691 |#1|))) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3348 ((-691 |#1|) (-691 |#1|) (-691 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3349 ((-643 (-2 (|:| C (-691 |#1|)) (|:| |g| (-1269 |#1|)))) (-691 |#1|) (-1269 |#1|)))) +((-4401 (((-408 |#4|) |#4|) 56))) +(((-982 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4401 ((-408 |#4|) |#4|))) (-852) (-795) (-455) (-953 |#3| |#2| |#1|)) (T -982)) +((-4401 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-455)) (-5 *2 (-408 *3)) (-5 *1 (-982 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4))))) +(-10 -7 (-15 -4401 ((-408 |#4|) |#4|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-4270 (($ (-773)) 113 (|has| |#1| (-23)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-3843 (((-549) (-1 (-112) |#1|) $) 98) (((-549) |#1| $) 97 (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) 96 (|has| |#1| (-1104)))) (-4138 (($ (-643 |#1|)) 119)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) 106 (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4264 ((|#1| $) 103 (-12 (|has| |#1| (-1052)) (|has| |#1| (-1005))))) (-4148 (((-112) $ (-773)) 10)) (-4265 ((|#1| $) 104 (-12 (|has| |#1| (-1052)) (|has| |#1| (-1005))))) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-4200 (($ $ (-643 |#1|)) 117)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-4268 ((|#1| $ $) 107 (|has| |#1| (-1052)))) (-4343 (((-922) $) 118)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-4266 (($ $ $) 105)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538)))) (($ (-643 |#1|)) 120)) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 84 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 86 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 83 (|has| |#1| (-852)))) (-4269 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-4271 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-549) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-728))) (($ $ |#1|) 108 (|has| |#1| (-728)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-983 |#1|) (-140) (-1052)) (T -983)) +((-4138 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1052)) (-4 *1 (-983 *3)))) (-4343 (*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1052)) (-5 *2 (-922)))) (-4266 (*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-1052)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-983 *3)) (-4 *3 (-1052))))) +(-13 (-1268 |t#1|) (-620 (-643 |t#1|)) (-10 -8 (-15 -4138 ($ (-643 |t#1|))) (-15 -4343 ((-922) $)) (-15 -4266 ($ $ $)) (-15 -4200 ($ $ (-643 |t#1|))))) +(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-620 (-643 |#1|)) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-374 |#1|) . T) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-19 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1219) . T) ((-1268 |#1|) . T)) +((-4390 (((-946 |#2|) (-1 |#2| |#1|) (-946 |#1|)) 17))) +(((-984 |#1| |#2|) (-10 -7 (-15 -4390 ((-946 |#2|) (-1 |#2| |#1|) (-946 |#1|)))) (-1052) (-1052)) (T -984)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-946 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-946 *6)) (-5 *1 (-984 *5 *6))))) +(-10 -7 (-15 -4390 ((-946 |#2|) (-1 |#2| |#1|) (-946 |#1|)))) +((-3352 ((|#1| (-946 |#1|)) 14)) (-3351 ((|#1| (-946 |#1|)) 13)) (-3350 ((|#1| (-946 |#1|)) 12)) (-3354 ((|#1| (-946 |#1|)) 16)) (-3358 ((|#1| (-946 |#1|)) 24)) (-3353 ((|#1| (-946 |#1|)) 15)) (-3355 ((|#1| (-946 |#1|)) 17)) (-3357 ((|#1| (-946 |#1|)) 23)) (-3356 ((|#1| (-946 |#1|)) 22))) +(((-985 |#1|) (-10 -7 (-15 -3350 (|#1| (-946 |#1|))) (-15 -3351 (|#1| (-946 |#1|))) (-15 -3352 (|#1| (-946 |#1|))) (-15 -3353 (|#1| (-946 |#1|))) (-15 -3354 (|#1| (-946 |#1|))) (-15 -3355 (|#1| (-946 |#1|))) (-15 -3356 (|#1| (-946 |#1|))) (-15 -3357 (|#1| (-946 |#1|))) (-15 -3358 (|#1| (-946 |#1|)))) (-1052)) (T -985)) +((-3358 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(-10 -7 (-15 -3350 (|#1| (-946 |#1|))) (-15 -3351 (|#1| (-946 |#1|))) (-15 -3352 (|#1| (-946 |#1|))) (-15 -3353 (|#1| (-946 |#1|))) (-15 -3354 (|#1| (-946 |#1|))) (-15 -3355 (|#1| (-946 |#1|))) (-15 -3356 (|#1| (-946 |#1|))) (-15 -3357 (|#1| (-946 |#1|))) (-15 -3358 (|#1| (-946 |#1|)))) +((-3376 (((-3 |#1| "failed") |#1|) 18)) (-3364 (((-3 |#1| "failed") |#1|) 6)) (-3374 (((-3 |#1| "failed") |#1|) 16)) (-3362 (((-3 |#1| "failed") |#1|) 4)) (-3378 (((-3 |#1| "failed") |#1|) 20)) (-3366 (((-3 |#1| "failed") |#1|) 8)) (-3359 (((-3 |#1| "failed") |#1| (-773)) 1)) (-3361 (((-3 |#1| "failed") |#1|) 3)) (-3360 (((-3 |#1| "failed") |#1|) 2)) (-3379 (((-3 |#1| "failed") |#1|) 21)) (-3367 (((-3 |#1| "failed") |#1|) 9)) (-3377 (((-3 |#1| "failed") |#1|) 19)) (-3365 (((-3 |#1| "failed") |#1|) 7)) (-3375 (((-3 |#1| "failed") |#1|) 17)) (-3363 (((-3 |#1| "failed") |#1|) 5)) (-3382 (((-3 |#1| "failed") |#1|) 24)) (-3370 (((-3 |#1| "failed") |#1|) 12)) (-3380 (((-3 |#1| "failed") |#1|) 22)) (-3368 (((-3 |#1| "failed") |#1|) 10)) (-3384 (((-3 |#1| "failed") |#1|) 26)) (-3372 (((-3 |#1| "failed") |#1|) 14)) (-3385 (((-3 |#1| "failed") |#1|) 27)) (-3373 (((-3 |#1| "failed") |#1|) 15)) (-3383 (((-3 |#1| "failed") |#1|) 25)) (-3371 (((-3 |#1| "failed") |#1|) 13)) (-3381 (((-3 |#1| "failed") |#1|) 23)) (-3369 (((-3 |#1| "failed") |#1|) 11))) +(((-986 |#1|) (-140) (-1205)) (T -986)) +((-3385 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3384 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3383 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3382 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3381 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3380 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3378 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3377 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3376 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3375 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3374 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3373 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3372 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3371 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3368 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3361 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3360 (*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205)))) (-3359 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-773)) (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(-13 (-10 -7 (-15 -3359 ((-3 |t#1| "failed") |t#1| (-773))) (-15 -3360 ((-3 |t#1| "failed") |t#1|)) (-15 -3361 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|)) (-15 -3368 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)) (-15 -3371 ((-3 |t#1| "failed") |t#1|)) (-15 -3372 ((-3 |t#1| "failed") |t#1|)) (-15 -3373 ((-3 |t#1| "failed") |t#1|)) (-15 -3374 ((-3 |t#1| "failed") |t#1|)) (-15 -3375 ((-3 |t#1| "failed") |t#1|)) (-15 -3376 ((-3 |t#1| "failed") |t#1|)) (-15 -3377 ((-3 |t#1| "failed") |t#1|)) (-15 -3378 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -3380 ((-3 |t#1| "failed") |t#1|)) (-15 -3381 ((-3 |t#1| "failed") |t#1|)) (-15 -3382 ((-3 |t#1| "failed") |t#1|)) (-15 -3383 ((-3 |t#1| "failed") |t#1|)) (-15 -3384 ((-3 |t#1| "failed") |t#1|)) (-15 -3385 ((-3 |t#1| "failed") |t#1|)))) +((-3387 ((|#4| |#4| (-643 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-3386 ((|#4| |#4| (-643 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4390 ((|#4| (-1 |#4| (-949 |#1|)) |#4|) 31))) +(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3386 (|#4| |#4| |#3|)) (-15 -3386 (|#4| |#4| (-643 |#3|))) (-15 -3387 (|#4| |#4| |#3|)) (-15 -3387 (|#4| |#4| (-643 |#3|))) (-15 -4390 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) (-1052) (-795) (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180))))) (-953 (-949 |#1|) |#2| |#3|)) (T -987)) +((-4390 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1052)) (-4 *2 (-953 (-949 *4) *5 *6)) (-4 *5 (-795)) (-4 *6 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1="failed") (-1180)))))) (-5 *1 (-987 *4 *5 *6 *2)))) (-3387 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) (-4 *4 (-1052)) (-4 *5 (-795)) (-5 *1 (-987 *4 *5 *6 *2)) (-4 *2 (-953 (-949 *4) *5 *6)))) (-3387 (*1 *2 *2 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) (-5 *1 (-987 *4 *5 *3 *2)) (-4 *2 (-953 (-949 *4) *5 *3)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *3 (-643 *6)) (-4 *6 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) (-4 *4 (-1052)) (-4 *5 (-795)) (-5 *1 (-987 *4 *5 *6 *2)) (-4 *2 (-953 (-949 *4) *5 *6)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) (-5 *1 (-987 *4 *5 *3 *2)) (-4 *2 (-953 (-949 *4) *5 *3))))) +(-10 -7 (-15 -3386 (|#4| |#4| |#3|)) (-15 -3386 (|#4| |#4| (-643 |#3|))) (-15 -3387 (|#4| |#4| |#3|)) (-15 -3387 (|#4| |#4| (-643 |#3|))) (-15 -4390 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) +((-3388 ((|#2| |#3|) 35)) (-4351 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|) 79)) (-4350 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) 100))) +(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|)) (-15 -3388 (|#2| |#3|))) (-352) (-1245 |#1|) (-1245 |#2|) (-726 |#2| |#3|)) (T -988)) +((-3388 (*1 *2 *3) (-12 (-4 *3 (-1245 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-988 *4 *2 *3 *5)) (-4 *4 (-352)) (-4 *5 (-726 *2 *3)))) (-4351 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-988 *4 *3 *5 *6)) (-4 *6 (-726 *3 *5)))) (-4350 (*1 *2) (-12 (-4 *3 (-352)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2190 (-691 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-691 *4)))) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-726 *4 *5))))) +(-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|)) (-15 -3388 (|#2| |#3|))) +((-2968 (((-112) $ $) NIL)) (-3825 (((-3 (-112) #1="failed") $) 71)) (-4081 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3392 (($ $ (-3 (-112) #1#)) 72)) (-3393 (($ (-643 |#4|) |#4|) 25)) (-3663 (((-1162) $) NIL)) (-3389 (($ $) 69)) (-3664 (((-1123) $) NIL)) (-3827 (((-112) $) 70)) (-3996 (($) 30)) (-3390 ((|#4| $) 74)) (-3391 (((-643 |#4|) $) 73)) (-4378 (((-865) $) 68)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-989 |#1| |#2| |#3| |#4|) (-13 (-1104) (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -3393 ($ (-643 |#4|) |#4|)) (-15 -3825 ((-3 (-112) #1="failed") $)) (-15 -3392 ($ $ (-3 (-112) #1#))) (-15 -3827 ((-112) $)) (-15 -3391 ((-643 |#4|) $)) (-15 -3390 (|#4| $)) (-15 -3389 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -4081 ($ $)) |%noBranch|) |%noBranch|))) (-455) (-852) (-795) (-953 |#1| |#3| |#2|)) (T -989)) +((-3996 (*1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-953 *2 *4 *3)))) (-3393 (*1 *1 *2 *3) (-12 (-5 *2 (-643 *3)) (-4 *3 (-953 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-852)) (-4 *6 (-795)) (-5 *1 (-989 *4 *5 *6 *3)))) (-3825 (*1 *2 *1) (|partial| -12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) (-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) (-3827 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) (-3391 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-643 *6)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) (-3390 (*1 *2 *1) (-12 (-4 *2 (-953 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)))) (-3389 (*1 *1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-953 *2 *4 *3)))) (-4081 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-953 *2 *4 *3))))) +(-13 (-1104) (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -3393 ($ (-643 |#4|) |#4|)) (-15 -3825 ((-3 (-112) #1="failed") $)) (-15 -3392 ($ $ (-3 (-112) #1#))) (-15 -3827 ((-112) $)) (-15 -3391 ((-643 |#4|) $)) (-15 -3390 (|#4| $)) (-15 -3389 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -4081 ($ $)) |%noBranch|) |%noBranch|))) +((-3394 (((-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549)))) (-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549))))) 82))) +(((-990 |#1| |#2|) (-10 -7 (-15 -3394 ((-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549)))) (-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549))))))) (-643 (-1180)) (-773)) (T -990)) +((-3394 (*1 *2 *2) (-12 (-5 *2 (-989 (-410 (-549)) (-866 *3) (-239 *4 (-773)) (-247 *3 (-410 (-549))))) (-14 *3 (-643 (-1180))) (-14 *4 (-773)) (-5 *1 (-990 *3 *4))))) +(-10 -7 (-15 -3394 ((-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549)))) (-989 (-410 (-549)) (-866 |#1|) (-239 |#2| (-773)) (-247 |#1| (-410 (-549))))))) +((-3691 (((-112) |#5| |#5|) 44)) (-3694 (((-112) |#5| |#5|) 59)) (-3699 (((-112) |#5| (-643 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3695 (((-112) (-643 |#4|) (-643 |#4|)) 65)) (-3701 (((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) 70)) (-3690 (((-1275)) 32)) (-3689 (((-1275) (-1162) (-1162) (-1162)) 28)) (-3700 (((-643 |#5|) (-643 |#5|)) 100)) (-3702 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) 92)) (-3703 (((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112)) 122)) (-3693 (((-112) |#5| |#5|) 53)) (-3698 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3696 (((-112) (-643 |#4|) (-643 |#4|)) 64)) (-3697 (((-112) (-643 |#4|) (-643 |#4|)) 66)) (-4131 (((-112) (-643 |#4|) (-643 |#4|)) 67)) (-3704 (((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3692 (((-643 |#5|) (-643 |#5|)) 49))) +(((-991 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3689 ((-1275) (-1162) (-1162) (-1162))) (-15 -3690 ((-1275))) (-15 -3691 ((-112) |#5| |#5|)) (-15 -3692 ((-643 |#5|) (-643 |#5|))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-112) |#5| |#5|)) (-15 -3695 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3696 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3697 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -4131 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3698 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3699 ((-112) |#5| |#5|)) (-15 -3699 ((-112) |#5| (-643 |#5|))) (-15 -3700 ((-643 |#5|) (-643 |#5|))) (-15 -3701 ((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3702 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-15 -3703 ((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3704 ((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -991)) +((-3704 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *4) (|:| |ineq| (-643 *9)))) (-5 *1 (-991 *6 *7 *8 *9 *4)) (-5 *3 (-643 *9)) (-4 *4 (-1074 *6 *7 *8 *9)))) (-3703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-643 *10)) (-5 *5 (-112)) (-4 *10 (-1074 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *10) (|:| |ineq| (-643 *9))))) (-5 *1 (-991 *6 *7 *8 *9 *10)) (-5 *3 (-643 *9)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-643 (-2 (|:| |val| (-643 *6)) (|:| -1708 *7)))) (-4 *6 (-1068 *3 *4 *5)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-991 *3 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-991 *3 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-991 *5 *6 *7 *8 *3)))) (-3699 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-4131 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-991 *3 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3690 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3689 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-991 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7))))) +(-10 -7 (-15 -3689 ((-1275) (-1162) (-1162) (-1162))) (-15 -3690 ((-1275))) (-15 -3691 ((-112) |#5| |#5|)) (-15 -3692 ((-643 |#5|) (-643 |#5|))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-112) |#5| |#5|)) (-15 -3695 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3696 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3697 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -4131 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3698 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3699 ((-112) |#5| |#5|)) (-15 -3699 ((-112) |#5| (-643 |#5|))) (-15 -3700 ((-643 |#5|) (-643 |#5|))) (-15 -3701 ((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3702 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-15 -3703 ((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3704 ((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-4263 (((-1180) $) 15)) (-3826 (((-1162) $) 16)) (-3646 (($ (-1180) (-1162)) 14)) (-4378 (((-865) $) 13))) +(((-992) (-13 (-615 (-865)) (-10 -8 (-15 -3646 ($ (-1180) (-1162))) (-15 -4263 ((-1180) $)) (-15 -3826 ((-1162) $))))) (T -992)) +((-3646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1162)) (-5 *1 (-992)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-992)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-992))))) +(-13 (-615 (-865)) (-10 -8 (-15 -3646 ($ (-1180) (-1162))) (-15 -4263 ((-1180) $)) (-15 -3826 ((-1162) $)))) +((-3577 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1180) #1#) $) 66) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) 96)) (-3576 ((|#2| $) NIL) (((-1180) $) 61) (((-410 (-549)) $) NIL) (((-549) $) 93)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 115) (((-691 |#2|) (-691 $)) 28)) (-3395 (($) 99)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 76) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 85)) (-3397 (($ $) 10)) (-3868 (((-3 $ "failed") $) 20)) (-4390 (($ (-1 |#2| |#2|) $) 22)) (-3869 (($) 16)) (-3532 (($ $) 55)) (-4242 (($ $) NIL) (($ $ (-773)) NIL) (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3396 (($ $) 12)) (-4402 (((-893 (-549)) $) 71) (((-893 (-380)) $) 80) (((-538) $) 40) (((-380) $) 44) (((-225) $) 48)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 91) (($ |#2|) NIL) (($ (-1180)) 58)) (-3530 (((-773)) 31)) (-3088 (((-112) $ $) 51))) +(((-993 |#1| |#2|) (-10 -8 (-15 -3088 ((-112) |#1| |#1|)) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4378 (|#1| (-1180))) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -3395 (|#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| |#1|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-994 |#2|) (-560)) (T -993)) +((-3530 (*1 *2) (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4))))) +(-10 -8 (-15 -3088 ((-112) |#1| |#1|)) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4378 (|#1| (-1180))) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -3395 (|#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -3199 ((-891 (-549) |#1|) |#1| (-893 (-549)) (-891 (-549) |#1|))) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -2427 ((-691 |#2|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| |#1|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3533 ((|#1| $) 147 (|has| |#1| (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 138 (|has| |#1| (-913)))) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 141 (|has| |#1| (-913)))) (-1753 (((-112) $ $) 65)) (-4055 (((-549) $) 128 (|has| |#1| (-822)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 185) (((-3 (-1180) #2#) $) 136 (|has| |#1| (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) 119 (|has| |#1| (-1041 (-549)))) (((-3 (-549) #2#) $) 117 (|has| |#1| (-1041 (-549))))) (-3576 ((|#1| $) 186) (((-1180) $) 137 (|has| |#1| (-1041 (-1180)))) (((-410 (-549)) $) 120 (|has| |#1| (-1041 (-549)))) (((-549) $) 118 (|has| |#1| (-1041 (-549))))) (-2964 (($ $ $) 61)) (-2427 (((-691 (-549)) (-691 $)) 160 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 159 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 158) (((-691 |#1|) (-691 $)) 157)) (-3890 (((-3 $ "failed") $) 37)) (-3395 (($) 145 (|has| |#1| (-548)))) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-3606 (((-112) $) 130 (|has| |#1| (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 154 (|has| |#1| (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 153 (|has| |#1| (-889 (-380))))) (-2573 (((-112) $) 35)) (-3397 (($ $) 149)) (-3399 ((|#1| $) 151)) (-3868 (((-3 $ "failed") $) 116 (|has| |#1| (-1154)))) (-3607 (((-112) $) 129 (|has| |#1| (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) 58)) (-2934 (($ $ $) 126 (|has| |#1| (-852)))) (-3260 (($ $ $) 125 (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) 177)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3869 (($) 115 (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3532 (($ $) 146 (|has| |#1| (-308)))) (-3534 ((|#1| $) 143 (|has| |#1| (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 140 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 139 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 179 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) 178 (|has| |#1| (-517 (-1180) |#1|)))) (-1752 (((-773) $) 64)) (-4231 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4242 (($ $) 176 (|has| |#1| (-233))) (($ $ (-773)) 174 (|has| |#1| (-233))) (($ $ (-1180)) 172 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 171 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 170 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 169 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3396 (($ $) 148)) (-3398 ((|#1| $) 150)) (-4402 (((-893 (-549)) $) 156 (|has| |#1| (-616 (-893 (-549))))) (((-893 (-380)) $) 155 (|has| |#1| (-616 (-893 (-380))))) (((-538) $) 133 (|has| |#1| (-616 (-538)))) (((-380) $) 132 (|has| |#1| (-1023))) (((-225) $) 131 (|has| |#1| (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 142 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ |#1|) 189) (($ (-1180)) 135 (|has| |#1| (-1041 (-1180))))) (-3105 (((-3 $ "failed") $) 134 (-3960 (|has| |#1| (-145)) (-3256 (|has| $ (-145)) (|has| |#1| (-913)))))) (-3530 (((-773)) 32 T CONST)) (-3535 ((|#1| $) 144 (|has| |#1| (-548)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3807 (($ $) 127 (|has| |#1| (-822)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $) 175 (|has| |#1| (-233))) (($ $ (-773)) 173 (|has| |#1| (-233))) (($ $ (-1180)) 168 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 167 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 166 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 165 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2966 (((-112) $ $) 123 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 122 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 124 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 121 (|has| |#1| (-852)))) (-4381 (($ $ $) 73) (($ |#1| |#1|) 152)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) +(((-994 |#1|) (-140) (-560)) (T -994)) +((-4381 (*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-308)))) (-3532 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-308)))) (-3395 (*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-560)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-548)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-548))))) +(-13 (-365) (-38 |t#1|) (-1041 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-887 |t#1|) (-403 |t#1|) (-10 -8 (-15 -4381 ($ |t#1| |t#1|)) (-15 -3399 (|t#1| $)) (-15 -3398 (|t#1| $)) (-15 -3397 ($ $)) (-15 -3396 ($ $)) (IF (|has| |t#1| (-1154)) (-6 (-1154)) |%noBranch|) (IF (|has| |t#1| (-1041 (-549))) (PROGN (-6 (-1041 (-549))) (-6 (-1041 (-410 (-549))))) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1041 (-1180))) (-6 (-1041 (-1180))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -3533 (|t#1| $)) (-15 -3532 ($ $))) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -3395 ($)) (-15 -3535 (|t#1| $)) (-15 -3534 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-913)) (-6 (-913)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 #2=(-1180)) |has| |#1| (-1041 (-1180))) ((-618 |#1|) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-616 (-225)) |has| |#1| (-1023)) ((-616 (-380)) |has| |#1| (-1023)) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-616 (-893 (-380))) |has| |#1| (-616 (-893 (-380)))) ((-616 (-893 (-549))) |has| |#1| (-616 (-893 (-549)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-455) . T) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) . T) ((-719 |#1|) . T) ((-719 $) . T) ((-728) . T) ((-793) |has| |#1| (-822)) ((-794) |has| |#1| (-822)) ((-796) |has| |#1| (-822)) ((-799) |has| |#1| (-822)) ((-822) |has| |#1| (-822)) ((-850) |has| |#1| (-822)) ((-852) -3960 (|has| |#1| (-852)) (|has| |#1| (-822))) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-889 (-380)) |has| |#1| (-889 (-380))) ((-889 (-549)) |has| |#1| (-889 (-549))) ((-887 |#1|) . T) ((-913) |has| |#1| (-913)) ((-924) . T) ((-1023) |has| |#1| (-1023)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-549))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 #2#) |has| |#1| (-1041 (-1180))) ((-1041 |#1|) . T) ((-1054 #1#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-1154)) ((-1219) . T) ((-1224) . T)) +((-4390 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#2| |#1|) |#3|))) (-560) (-560) (-994 |#1|) (-994 |#2|)) (T -995)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-560)) (-4 *6 (-560)) (-4 *2 (-994 *6)) (-5 *1 (-995 *5 *6 *4 *2)) (-4 *4 (-994 *5))))) +(-10 -7 (-15 -4390 (|#4| (-1 |#2| |#1|) |#3|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3400 (($ (-1145 |#1| |#2|)) 11)) (-3528 (((-1145 |#1| |#2|) $) 12)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4231 ((|#2| $ (-239 |#1| |#2|)) 16)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL))) +(((-996 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3400 ($ (-1145 |#1| |#2|))) (-15 -3528 ((-1145 |#1| |#2|) $)) (-15 -4231 (|#2| $ (-239 |#1| |#2|))))) (-922) (-365)) (T -996)) +((-3400 (*1 *1 *2) (-12 (-5 *2 (-1145 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)) (-5 *1 (-996 *3 *4)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-1145 *3 *4)) (-5 *1 (-996 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-922)) (-4 *2 (-365)) (-5 *1 (-996 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3400 ($ (-1145 |#1| |#2|))) (-15 -3528 ((-1145 |#1| |#2|) $)) (-15 -4231 (|#2| $ (-239 |#1| |#2|))))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 9)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-997) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $))))) (T -997)) +((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-997))))) +(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-3403 (($ $) 47)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-4265 (((-773) $) 46)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-3402 ((|#1| $) 45)) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3405 ((|#1| |#1| $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3404 ((|#1| $) 48)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-3401 ((|#1| $) 44)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-998 |#1|) (-140) (-1219)) (T -998)) +((-3405 (*1 *2 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219)))) (-3403 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3405 (|t#1| |t#1| $)) (-15 -3404 (|t#1| $)) (-15 -3403 ($ $)) (-15 -4265 ((-773) $)) (-15 -3402 (|t#1| $)) (-15 -3401 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4075 ((|#1| $) 12)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL (|has| |#1| (-548)))) (-3424 (((-112) $) NIL (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) NIL (|has| |#1| (-548)))) (-3406 (($ |#1| |#1| |#1| |#1|) 16)) (-2573 (((-112) $) NIL)) (-3536 ((|#1| $) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-3407 ((|#1| $) 15)) (-3408 ((|#1| $) 14)) (-3409 ((|#1| $) 13)) (-3664 (((-1123) $) NIL)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-517 (-1180) |#1|)))) (-4231 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-4242 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3410 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3807 ((|#1| $) NIL (|has| |#1| (-1063)))) (-3510 (($) 8 T CONST)) (-3067 (($) 10 T CONST)) (-3072 (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-365))) (($ (-410 (-549)) $) NIL (|has| |#1| (-365))))) +(((-999 |#1|) (-1001 |#1|) (-172)) (T -999)) +NIL +(-1001 |#1|) +((-3608 (((-112) $) 43)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#2| #1#) $) 46)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#2| $) 44)) (-3425 (((-3 (-410 (-549)) "failed") $) 78)) (-3424 (((-112) $) 72)) (-3423 (((-410 (-549)) $) 76)) (-2573 (((-112) $) 42)) (-3536 ((|#2| $) 22)) (-4390 (($ (-1 |#2| |#2|) $) 19)) (-2806 (($ $) 58)) (-4242 (($ $) NIL) (($ $ (-773)) NIL) (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-4402 (((-538) $) 67)) (-3410 (($ $) 17)) (-4378 (((-865) $) 53) (($ (-549)) 39) (($ |#2|) 37) (($ (-410 (-549))) NIL)) (-3530 (((-773)) 10)) (-3807 ((|#2| $) 71)) (-3455 (((-112) $ $) 26)) (-3088 (((-112) $ $) 69)) (-4269 (($ $) 30) (($ $ $) 29)) (-4271 (($ $ $) 27)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL))) +(((-1000 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| (-410 (-549)))) (-15 -3088 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 * (|#1| |#1| (-410 (-549)))) (-15 -2806 (|#1| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -2573 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-1001 |#2|) (-172)) (T -1000)) +((-3530 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-1000 *3 *4)) (-4 *3 (-1001 *4))))) +(-10 -8 (-15 -4378 (|#1| (-410 (-549)))) (-15 -3088 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-549)) |#1|)) (-15 * (|#1| |#1| (-410 (-549)))) (-15 -2806 (|#1| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|)) (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3807 (|#2| |#1|)) (-15 -3536 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4390 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1|)) (-15 -3577 ((-3 |#2| #1="failed") |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -2573 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 * (|#1| (-773) |#1|)) (-15 -3608 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4271 (|#1| |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3577 (((-3 (-549) #1="failed") $) 127 (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 125 (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) 122)) (-3576 (((-549) $) 126 (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) 124 (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) 123)) (-2427 (((-691 (-549)) (-691 $)) 97 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 96 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 95) (((-691 |#1|) (-691 $)) 94)) (-3890 (((-3 $ "failed") $) 37)) (-4075 ((|#1| $) 87)) (-3425 (((-3 (-410 (-549)) "failed") $) 83 (|has| |#1| (-548)))) (-3424 (((-112) $) 85 (|has| |#1| (-548)))) (-3423 (((-410 (-549)) $) 84 (|has| |#1| (-548)))) (-3406 (($ |#1| |#1| |#1| |#1|) 88)) (-2573 (((-112) $) 35)) (-3536 ((|#1| $) 89)) (-2934 (($ $ $) 76 (|has| |#1| (-852)))) (-3260 (($ $ $) 75 (|has| |#1| (-852)))) (-4390 (($ (-1 |#1| |#1|) $) 98)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 80 (|has| |#1| (-365)))) (-3407 ((|#1| $) 90)) (-3408 ((|#1| $) 91)) (-3409 ((|#1| $) 92)) (-3664 (((-1123) $) 11)) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-294 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-294 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-643 (-1180)) (-643 |#1|)) 100 (|has| |#1| (-517 (-1180) |#1|))) (($ $ (-1180) |#1|) 99 (|has| |#1| (-517 (-1180) |#1|)))) (-4231 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-4242 (($ $) 121 (|has| |#1| (-233))) (($ $ (-773)) 119 (|has| |#1| (-233))) (($ $ (-1180)) 117 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 116 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 115 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 114 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-4402 (((-538) $) 81 (|has| |#1| (-616 (-538))))) (-3410 (($ $) 93)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 44) (($ (-410 (-549))) 70 (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3807 ((|#1| $) 86 (|has| |#1| (-1063)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $) 120 (|has| |#1| (-233))) (($ $ (-773)) 118 (|has| |#1| (-233))) (($ $ (-1180)) 113 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 112 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 111 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 110 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2966 (((-112) $ $) 73 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 72 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 74 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 71 (|has| |#1| (-852)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 79 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-410 (-549))) 78 (|has| |#1| (-365))) (($ (-410 (-549)) $) 77 (|has| |#1| (-365))))) +(((-1001 |#1|) (-140) (-172)) (T -1001)) +((-3410 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3406 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549)))))) +(-13 (-38 |t#1|) (-415 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -3410 ($ $)) (-15 -3409 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3536 (|t#1| $)) (-15 -3406 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4075 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1063)) (-15 -3807 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -3424 ((-112) $)) (-15 -3423 ((-410 (-549)) $)) (-15 -3425 ((-3 (-410 (-549)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-365))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -3960 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-517 (-1180) |#1|) |has| |#1| (-517 (-1180) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-648 #1#) |has| |#1| (-365)) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-365)) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-365)) ((-642 |#1|) . T) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) |has| |#1| (-365)) ((-719 |#1|) . T) ((-728) . T) ((-852) |has| |#1| (-852)) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1054 #1#) |has| |#1| (-365)) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1059 #1#) |has| |#1| (-365)) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-4390 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) (-1001 |#2|) (-172) (-1001 |#4|) (-172)) (T -1002)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-1001 *6)) (-5 *1 (-1002 *4 *5 *2 *6)) (-4 *4 (-1001 *5))))) +(-10 -7 (-15 -4390 (|#3| (-1 |#4| |#2|) |#1|))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3403 (($ $) 23)) (-3411 (($ (-643 |#1|)) 33)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-4265 (((-773) $) 26)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) 28)) (-4039 (($ |#1| $) 17)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-3402 ((|#1| $) 27)) (-1370 ((|#1| $) 22)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3405 ((|#1| |#1| $) 16)) (-3827 (((-112) $) 18)) (-3996 (($) NIL)) (-3404 ((|#1| $) 21)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) NIL)) (-3401 ((|#1| $) 30)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1003 |#1|) (-13 (-998 |#1|) (-10 -8 (-15 -3411 ($ (-643 |#1|))))) (-1104)) (T -1003)) +((-3411 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-1003 *3))))) +(-13 (-998 |#1|) (-10 -8 (-15 -3411 ($ (-643 |#1|))))) +((-3438 (($ $) 12)) (-3412 (($ $ (-549)) 13))) +(((-1004 |#1|) (-10 -8 (-15 -3438 (|#1| |#1|)) (-15 -3412 (|#1| |#1| (-549)))) (-1005)) (T -1004)) +NIL +(-10 -8 (-15 -3438 (|#1| |#1|)) (-15 -3412 (|#1| |#1| (-549)))) +((-3438 (($ $) 6)) (-3412 (($ $ (-549)) 7)) (** (($ $ (-410 (-549))) 8))) +(((-1005) (-140)) (T -1005)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-410 (-549))))) (-3412 (*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-549)))) (-3438 (*1 *1 *1) (-4 *1 (-1005)))) +(-13 (-10 -8 (-15 -3438 ($ $)) (-15 -3412 ($ $ (-549))) (-15 ** ($ $ (-410 (-549)))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1815 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-2241 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2239 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-1957 (((-691 (-410 |#2|)) (-1269 $)) NIL) (((-691 (-410 |#2|))) NIL)) (-3754 (((-410 |#2|) $) NIL)) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| (-410 |#2|) (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4401 (((-408 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1753 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3540 (((-773)) NIL (|has| (-410 |#2|) (-370)))) (-1829 (((-112)) NIL)) (-1828 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| (-410 |#2|) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-3 (-410 |#2|) #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| (-410 |#2|) (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| (-410 |#2|) (-1041 (-410 (-549))))) (((-410 |#2|) $) NIL)) (-1967 (($ (-1269 (-410 |#2|)) (-1269 $)) NIL) (($ (-1269 (-410 |#2|))) 81) (($ (-1269 |#2|) |#2|) NIL)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-352)))) (-2964 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1956 (((-691 (-410 |#2|)) $ (-1269 $)) NIL) (((-691 (-410 |#2|)) $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-410 |#2|) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-410 |#2|))) (|:| |vec| (-1269 (-410 |#2|)))) (-691 $) (-1269 $)) NIL) (((-691 (-410 |#2|)) (-691 $)) NIL)) (-1820 (((-1269 $) (-1269 $)) NIL)) (-4274 (($ |#3|) 75) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-1807 (((-643 (-643 |#1|))) NIL (|has| |#1| (-370)))) (-1832 (((-112) |#1| |#1|) NIL)) (-3513 (((-922)) NIL)) (-3395 (($) NIL (|has| (-410 |#2|) (-370)))) (-1827 (((-112)) NIL)) (-1826 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2963 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| (-410 |#2|) (-365)))) (-3926 (($ $) NIL)) (-3236 (($) NIL (|has| (-410 |#2|) (-352)))) (-1848 (((-112) $) NIL (|has| (-410 |#2|) (-352)))) (-1941 (($ $ (-773)) NIL (|has| (-410 |#2|) (-352))) (($ $) NIL (|has| (-410 |#2|) (-352)))) (-4155 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-4203 (((-922) $) NIL (|has| (-410 |#2|) (-352))) (((-834 (-922)) $) NIL (|has| (-410 |#2|) (-352)))) (-2573 (((-112) $) NIL)) (-3801 (((-773)) NIL)) (-1821 (((-1269 $) (-1269 $)) NIL)) (-3536 (((-410 |#2|) $) NIL)) (-1808 (((-643 (-949 |#1|)) (-1180)) NIL (|has| |#1| (-365)))) (-3868 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| (-410 |#2|) (-365)))) (-2192 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-2188 (((-922) $) NIL (|has| (-410 |#2|) (-370)))) (-3481 ((|#3| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3663 (((-1162) $) NIL)) (-1816 (((-691 (-410 |#2|))) 57)) (-1818 (((-691 (-410 |#2|))) 56)) (-2806 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1813 (($ (-1269 |#2|) |#2|) 82)) (-1817 (((-691 (-410 |#2|))) 55)) (-1819 (((-691 (-410 |#2|))) 54)) (-1812 (((-2 (|:| |num| (-691 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1814 (((-2 (|:| |num| (-1269 |#2|)) (|:| |den| |#2|)) $) 88)) (-1825 (((-1269 $)) 51)) (-4350 (((-1269 $)) 50)) (-1824 (((-112) $) NIL)) (-1823 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3869 (($) NIL (|has| (-410 |#2|) (-352)) CONST)) (-2563 (($ (-922)) NIL (|has| (-410 |#2|) (-370)))) (-1810 (((-3 |#2| #3="failed")) 70)) (-3664 (((-1123) $) NIL)) (-1834 (((-773)) NIL)) (-2572 (($) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| (-410 |#2|) (-365)))) (-3564 (($ (-643 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| (-410 |#2|) (-352)))) (-4164 (((-408 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| (-410 |#2|) (-365)))) (-1752 (((-773) $) NIL (|has| (-410 |#2|) (-365)))) (-4231 ((|#1| $ |#1| |#1|) NIL)) (-1811 (((-3 |#2| #3#)) 68)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-4189 (((-410 |#2|) (-1269 $)) NIL) (((-410 |#2|)) 47)) (-1942 (((-773) $) NIL (|has| (-410 |#2|) (-352))) (((-3 (-773) "failed") $ $) NIL (|has| (-410 |#2|) (-352)))) (-4242 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-2571 (((-691 (-410 |#2|)) (-1269 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-3605 ((|#3|) 58)) (-1842 (($) NIL (|has| (-410 |#2|) (-352)))) (-3644 (((-1269 (-410 |#2|)) $ (-1269 $)) NIL) (((-691 (-410 |#2|)) (-1269 $) (-1269 $)) NIL) (((-1269 (-410 |#2|)) $) 83) (((-691 (-410 |#2|)) (-1269 $)) NIL)) (-4402 (((-1269 (-410 |#2|)) $) NIL) (($ (-1269 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| (-410 |#2|) (-352)))) (-1822 (((-1269 $) (-1269 $)) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1041 (-410 (-549)))))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-3105 (($ $) NIL (|has| (-410 |#2|) (-352))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-2770 ((|#3| $) NIL)) (-3530 (((-773)) NIL T CONST)) (-1831 (((-112)) 65)) (-1830 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) NIL)) (-2240 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-1809 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1833 (((-112)) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-773)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-1180)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-903 (-1180))))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352)))) (($ $) NIL (-3960 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-352))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-549)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-549))) NIL (|has| (-410 |#2|) (-365))))) +(((-1006 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1224) (-1245 |#1|) (-1245 (-410 |#2|)) (-410 |#2|) (-773)) (T -1006)) NIL (-344 |#1| |#2| |#3|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4149 (((-645 (-567)) $) 73)) (-1990 (($ (-645 (-567))) 81)) (-4199 (((-567) $) 48 (|has| (-567) (-308)))) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL (|has| (-567) (-821)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) 60) (((-3 (-1179) "failed") $) NIL (|has| (-567) (-1040 (-1179)))) (((-3 (-410 (-567)) "failed") $) 57 (|has| (-567) (-1040 (-567)))) (((-3 (-567) "failed") $) 60 (|has| (-567) (-1040 (-567))))) (-3094 (((-567) $) NIL) (((-1179) $) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) NIL (|has| (-567) (-1040 (-567)))) (((-567) $) NIL (|has| (-567) (-1040 (-567))))) (-2432 (($ $ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2119 (($) NIL (|has| (-567) (-548)))) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-4050 (((-645 (-567)) $) 79)) (-3635 (((-112) $) NIL (|has| (-567) (-821)))) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (|has| (-567) (-888 (-567)))) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (|has| (-567) (-888 (-381))))) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL)) (-4294 (((-567) $) 45)) (-3104 (((-3 $ "failed") $) NIL (|has| (-567) (-1154)))) (-2585 (((-112) $) NIL (|has| (-567) (-821)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| (-567) (-851)))) (-4364 (($ (-1 (-567) (-567)) $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL)) (-2221 (($) NIL (|has| (-567) (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3989 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) 50)) (-3452 (((-1159 (-567)) $) 78)) (-1354 (($ (-645 (-567)) (-645 (-567))) 82)) (-1952 (((-567) $) 64 (|has| (-567) (-548)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| (-567) (-911)))) (-3661 (((-421 $) $) NIL)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2913 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1179)) (-645 (-567))) NIL (|has| (-567) (-517 (-1179) (-567)))) (($ $ (-1179) (-567)) NIL (|has| (-567) (-517 (-1179) (-567))))) (-2465 (((-772) $) NIL)) (-1882 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $) 15 (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2964 (($ $) NIL)) (-4306 (((-567) $) 47)) (-3012 (((-645 (-567)) $) 80)) (-1322 (((-894 (-567)) $) NIL (|has| (-567) (-615 (-894 (-567))))) (((-894 (-381)) $) NIL (|has| (-567) (-615 (-894 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1024))) (((-225) $) NIL (|has| (-567) (-1024)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-911))))) (-2504 (((-863) $) 107) (($ (-567)) 51) (($ $) NIL) (($ (-410 (-567))) 27) (($ (-567)) 51) (($ (-1179)) NIL (|has| (-567) (-1040 (-1179)))) (((-410 (-567)) $) 25)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-567) (-911))) (|has| (-567) (-145))))) (-2214 (((-772)) 13 T CONST)) (-3471 (((-567) $) 62 (|has| (-567) (-548)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1368 (($ $) NIL (|has| (-567) (-821)))) (-1807 (($) 14 T CONST)) (-1820 (($) 17 T CONST)) (-2856 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1179)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| (-567) (-902 (-1179)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3016 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2968 (((-112) $ $) 21)) (-3006 (((-112) $ $) NIL (|has| (-567) (-851)))) (-2986 (((-112) $ $) 40 (|has| (-567) (-851)))) (-3064 (($ $ $) 36) (($ (-567) (-567)) 38)) (-3054 (($ $) 23) (($ $ $) 30)) (-3045 (($ $ $) 28)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ $ $) 34) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) 32) (($ $ (-567)) NIL))) -(((-1006 |#1|) (-13 (-994 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -3989 ((-410 (-567)) $)) (-15 -4149 ((-645 (-567)) $)) (-15 -3452 ((-1159 (-567)) $)) (-15 -4050 ((-645 (-567)) $)) (-15 -3012 ((-645 (-567)) $)) (-15 -1990 ($ (-645 (-567)))) (-15 -1354 ($ (-645 (-567)) (-645 (-567)))))) (-567)) (T -1006)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-4149 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-1990 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) (-1354 (*1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) -(-13 (-994 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -3989 ((-410 (-567)) $)) (-15 -4149 ((-645 (-567)) $)) (-15 -3452 ((-1159 (-567)) $)) (-15 -4050 ((-645 (-567)) $)) (-15 -3012 ((-645 (-567)) $)) (-15 -1990 ($ (-645 (-567)))) (-15 -1354 ($ (-645 (-567)) (-645 (-567)))))) -((-3931 (((-52) (-410 (-567)) (-567)) 9))) -(((-1007) (-10 -7 (-15 -3931 ((-52) (-410 (-567)) (-567))))) (T -1007)) -((-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) (-5 *1 (-1007))))) -(-10 -7 (-15 -3931 ((-52) (-410 (-567)) (-567)))) -((-3404 (((-567)) 23)) (-2677 (((-567)) 28)) (-2997 (((-1274) (-567)) 26)) (-3077 (((-567) (-567)) 29) (((-567)) 22))) -(((-1008) (-10 -7 (-15 -3077 ((-567))) (-15 -3404 ((-567))) (-15 -3077 ((-567) (-567))) (-15 -2997 ((-1274) (-567))) (-15 -2677 ((-567))))) (T -1008)) -((-2677 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1008)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-3404 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) (-3077 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))) -(-10 -7 (-15 -3077 ((-567))) (-15 -3404 ((-567))) (-15 -3077 ((-567) (-567))) (-15 -2997 ((-1274) (-567))) (-15 -2677 ((-567)))) -((-3761 (((-421 |#1|) |#1|) 43)) (-3661 (((-421 |#1|) |#1|) 41))) -(((-1009 |#1|) (-10 -7 (-15 -3661 ((-421 |#1|) |#1|)) (-15 -3761 ((-421 |#1|) |#1|))) (-1245 (-410 (-567)))) (T -1009)) -((-3761 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1245 (-410 (-567)))))) (-3661 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) (-4 *3 (-1245 (-410 (-567))))))) -(-10 -7 (-15 -3661 ((-421 |#1|) |#1|)) (-15 -3761 ((-421 |#1|) |#1|))) -((-3810 (((-3 (-410 (-567)) "failed") |#1|) 15)) (-1527 (((-112) |#1|) 14)) (-2485 (((-410 (-567)) |#1|) 10))) -(((-1010 |#1|) (-10 -7 (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|))) (-1040 (-410 (-567)))) (T -1010)) -((-3810 (*1 *2 *3) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2)))) (-1527 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1010 *3)) (-4 *3 (-1040 (-410 (-567)))))) (-2485 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2))))) -(-10 -7 (-15 -2485 ((-410 (-567)) |#1|)) (-15 -1527 ((-112) |#1|)) (-15 -3810 ((-3 (-410 (-567)) "failed") |#1|))) -((-3824 ((|#2| $ "value" |#2|) 12)) (-1882 ((|#2| $ "value") 10)) (-2049 (((-112) $ $) 18))) -(((-1011 |#1| |#2|) (-10 -8 (-15 -3824 (|#2| |#1| "value" |#2|)) (-15 -2049 ((-112) |#1| |#1|)) (-15 -1882 (|#2| |#1| "value"))) (-1012 |#2|) (-1219)) (T -1011)) -NIL -(-10 -8 (-15 -3824 (|#2| |#1| "value" |#2|)) (-15 -2049 ((-112) |#1| |#1|)) (-15 -1882 (|#2| |#1| "value"))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2233 ((|#1| $) 49)) (-1555 (((-112) $ (-772)) 8)) (-3647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-3758 (($) 7 T CONST)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 51)) (-2373 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-3895 (((-645 |#1|) $) 46)) (-1972 (((-112) $) 50)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ "value") 48)) (-2721 (((-567) $ $) 45)) (-3625 (((-112) $) 47)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 52)) (-2049 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-1012 |#1|) (-140) (-1219)) (T -1012)) -((-2629 (*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) (-3047 (*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1219)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1012 *2)) (-4 *2 (-1219)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3895 (*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-645 *3)))) (-2721 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-567)))) (-2049 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-2373 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-1727 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4423)) (-4 *1 (-1012 *3)) (-4 *3 (-1219)))) (-3824 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4423)) (-4 *1 (-1012 *2)) (-4 *2 (-1219)))) (-3647 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1012 *2)) (-4 *2 (-1219))))) -(-13 (-492 |t#1|) (-10 -8 (-15 -2629 ((-645 $) $)) (-15 -3047 ((-645 $) $)) (-15 -1972 ((-112) $)) (-15 -2233 (|t#1| $)) (-15 -1882 (|t#1| $ "value")) (-15 -3625 ((-112) $)) (-15 -3895 ((-645 |t#1|) $)) (-15 -2721 ((-567) $ $)) (IF (|has| |t#1| (-1102)) (PROGN (-15 -2049 ((-112) $ $)) (-15 -2373 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4423)) (PROGN (-15 -1727 ($ $ (-645 $))) (-15 -3824 (|t#1| $ "value" |t#1|)) (-15 -3647 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-3671 (($ $) 9) (($ $ (-923)) 49) (($ (-410 (-567))) 13) (($ (-567)) 15)) (-1617 (((-3 $ "failed") (-1175 $) (-923) (-863)) 24) (((-3 $ "failed") (-1175 $) (-923)) 32)) (-4203 (($ $ (-567)) 58)) (-2214 (((-772)) 18)) (-1567 (((-645 $) (-1175 $)) NIL) (((-645 $) (-1175 (-410 (-567)))) 63) (((-645 $) (-1175 (-567))) 68) (((-645 $) (-954 $)) 72) (((-645 $) (-954 (-410 (-567)))) 76) (((-645 $) (-954 (-567))) 80)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 53))) -(((-1013 |#1|) (-10 -8 (-15 -3671 (|#1| (-567))) (-15 -3671 (|#1| (-410 (-567)))) (-15 -3671 (|#1| |#1| (-923))) (-15 -1567 ((-645 |#1|) (-954 (-567)))) (-15 -1567 ((-645 |#1|) (-954 (-410 (-567))))) (-15 -1567 ((-645 |#1|) (-954 |#1|))) (-15 -1567 ((-645 |#1|) (-1175 (-567)))) (-15 -1567 ((-645 |#1|) (-1175 (-410 (-567))))) (-15 -1567 ((-645 |#1|) (-1175 |#1|))) (-15 -1617 ((-3 |#1| "failed") (-1175 |#1|) (-923))) (-15 -1617 ((-3 |#1| "failed") (-1175 |#1|) (-923) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -4203 (|#1| |#1| (-567))) (-15 -3671 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -2214 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) (-1014)) (T -1013)) -((-2214 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1013 *3)) (-4 *3 (-1014))))) -(-10 -8 (-15 -3671 (|#1| (-567))) (-15 -3671 (|#1| (-410 (-567)))) (-15 -3671 (|#1| |#1| (-923))) (-15 -1567 ((-645 |#1|) (-954 (-567)))) (-15 -1567 ((-645 |#1|) (-954 (-410 (-567))))) (-15 -1567 ((-645 |#1|) (-954 |#1|))) (-15 -1567 ((-645 |#1|) (-1175 (-567)))) (-15 -1567 ((-645 |#1|) (-1175 (-410 (-567))))) (-15 -1567 ((-645 |#1|) (-1175 |#1|))) (-15 -1617 ((-3 |#1| "failed") (-1175 |#1|) (-923))) (-15 -1617 ((-3 |#1| "failed") (-1175 |#1|) (-923) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -4203 (|#1| |#1| (-567))) (-15 -3671 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -2214 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 102)) (-1987 (($ $) 103)) (-3342 (((-112) $) 105)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 122)) (-1466 (((-421 $) $) 123)) (-3671 (($ $) 86) (($ $ (-923)) 72) (($ (-410 (-567))) 71) (($ (-567)) 70)) (-4175 (((-112) $ $) 113)) (-2777 (((-567) $) 139)) (-3758 (($) 18 T CONST)) (-1617 (((-3 $ "failed") (-1175 $) (-923) (-863)) 80) (((-3 $ "failed") (-1175 $) (-923)) 79)) (-4275 (((-3 (-567) "failed") $) 99 (|has| (-410 (-567)) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) 94)) (-3094 (((-567) $) 98 (|has| (-410 (-567)) (-1040 (-567)))) (((-410 (-567)) $) 96 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-410 (-567)) $) 95)) (-2104 (($ $ (-863)) 69)) (-3299 (($ $ (-863)) 68)) (-2432 (($ $ $) 117)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 116)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 111)) (-2946 (((-112) $) 124)) (-3635 (((-112) $) 137)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 85)) (-2585 (((-112) $) 138)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 120)) (-2727 (($ $ $) 136)) (-1446 (($ $ $) 135)) (-3692 (((-3 (-1175 $) "failed") $) 81)) (-3507 (((-3 (-863) "failed") $) 83)) (-2180 (((-3 (-1175 $) "failed") $) 82)) (-1831 (($ (-645 $)) 109) (($ $ $) 108)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 125)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 110)) (-1870 (($ (-645 $)) 107) (($ $ $) 106)) (-3661 (((-421 $) $) 121)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 118)) (-2478 (((-3 $ "failed") $ $) 101)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 112)) (-2465 (((-772) $) 114)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 115)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 129) (($ $) 100) (($ (-410 (-567))) 93) (($ (-567)) 92) (($ (-410 (-567))) 89)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 104)) (-3092 (((-410 (-567)) $ $) 67)) (-1567 (((-645 $) (-1175 $)) 78) (((-645 $) (-1175 (-410 (-567)))) 77) (((-645 $) (-1175 (-567))) 76) (((-645 $) (-954 $)) 75) (((-645 $) (-954 (-410 (-567)))) 74) (((-645 $) (-954 (-567))) 73)) (-1368 (($ $) 140)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-3016 (((-112) $ $) 133)) (-2996 (((-112) $ $) 132)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 134)) (-2986 (((-112) $ $) 131)) (-3064 (($ $ $) 130)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126) (($ $ (-410 (-567))) 84)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 128) (($ $ (-410 (-567))) 127) (($ (-567) $) 91) (($ $ (-567)) 90) (($ (-410 (-567)) $) 88) (($ $ (-410 (-567))) 87))) -(((-1014) (-140)) (T -1014)) -((-3671 (*1 *1 *1) (-4 *1 (-1014))) (-3507 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-2180 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1014)))) (-3692 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1014)))) (-1617 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-5 *4 (-863)) (-4 *1 (-1014)))) (-1617 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-4 *1 (-1014)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-1175 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-1175 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) (-3671 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-923)))) (-3671 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1014)))) (-3671 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1014)))) (-2104 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-3299 (*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863)))) (-3092 (*1 *2 *1 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-410 (-567)))))) -(-13 (-147) (-849) (-172) (-365) (-414 (-410 (-567))) (-38 (-567)) (-38 (-410 (-567))) (-1004) (-10 -8 (-15 -3507 ((-3 (-863) "failed") $)) (-15 -2180 ((-3 (-1175 $) "failed") $)) (-15 -3692 ((-3 (-1175 $) "failed") $)) (-15 -1617 ((-3 $ "failed") (-1175 $) (-923) (-863))) (-15 -1617 ((-3 $ "failed") (-1175 $) (-923))) (-15 -1567 ((-645 $) (-1175 $))) (-15 -1567 ((-645 $) (-1175 (-410 (-567))))) (-15 -1567 ((-645 $) (-1175 (-567)))) (-15 -1567 ((-645 $) (-954 $))) (-15 -1567 ((-645 $) (-954 (-410 (-567))))) (-15 -1567 ((-645 $) (-954 (-567)))) (-15 -3671 ($ $ (-923))) (-15 -3671 ($ $)) (-15 -3671 ($ (-410 (-567)))) (-15 -3671 ($ (-567))) (-15 -2104 ($ $ (-863))) (-15 -3299 ($ $ (-863))) (-15 -3092 ((-410 (-567)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 #1=(-567)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-414 (-410 (-567))) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 #1#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 #1#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-922) . T) ((-1004) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) |has| (-410 (-567)) (-1040 (-567))) ((-1053 #0#) . T) ((-1053 #1#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 #1#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T)) -((-2664 (((-2 (|:| |ans| |#2|) (|:| -4347 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1015 |#1| |#2|) (-10 -7 (-15 -2664 ((-2 (|:| |ans| |#2|) (|:| -4347 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-27) (-433 |#1|))) (T -1015)) -((-2664 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1179)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3906 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1204) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4347 *4) (|:| |sol?| (-112)))) (-5 *1 (-1015 *8 *4))))) -(-10 -7 (-15 -2664 ((-2 (|:| |ans| |#2|) (|:| -4347 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2502 (((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1016 |#1| |#2|) (-10 -7 (-15 -2502 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1040 (-567)) (-640 (-567))) (-13 (-1204) (-27) (-433 |#1|))) (T -1016)) -((-2502 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1179)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3906 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1204) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-645 *4)) (-5 *1 (-1016 *8 *4))))) -(-10 -7 (-15 -2502 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1179) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3906 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-4032 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4178 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)) 41)) (-1857 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3582 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 71)) (-3193 (((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|)) 76))) -(((-1017 |#1| |#2|) (-10 -7 (-15 -1857 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3582 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3193 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -4032 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4178 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1040 (-567))) (-1245 |#1|)) (T -1017)) -((-4032 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1040 *4))) (-5 *4 (-567)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4178 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1017 *6 *3)))) (-3193 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5)))) (-1857 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -3582 *6))) (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -1857 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3582 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3193 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -4032 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4178 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) -((-3911 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3582 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 22)) (-1310 (((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 34))) -(((-1018 |#1| |#2|) (-10 -7 (-15 -3911 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3582 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1310 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) (-13 (-365) (-147) (-1040 (-567))) (-1245 |#1|)) (T -1018)) -((-1310 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-410 *5)))) (-3911 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -3582 *6))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6))))) -(-10 -7 (-15 -3911 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3582 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -1310 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) -((-4376 (((-1 |#1|) (-645 (-2 (|:| -2233 |#1|) (|:| -1895 (-567))))) 37)) (-1482 (((-1 |#1|) (-1104 |#1|)) 45)) (-2506 (((-1 |#1|) (-1269 |#1|) (-1269 (-567)) (-567)) 34))) -(((-1019 |#1|) (-10 -7 (-15 -1482 ((-1 |#1|) (-1104 |#1|))) (-15 -4376 ((-1 |#1|) (-645 (-2 (|:| -2233 |#1|) (|:| -1895 (-567)))))) (-15 -2506 ((-1 |#1|) (-1269 |#1|) (-1269 (-567)) (-567)))) (-1102)) (T -1019)) -((-2506 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1269 *6)) (-5 *4 (-1269 (-567))) (-5 *5 (-567)) (-4 *6 (-1102)) (-5 *2 (-1 *6)) (-5 *1 (-1019 *6)))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2233 *4) (|:| -1895 (-567))))) (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4)))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-1104 *4)) (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4))))) -(-10 -7 (-15 -1482 ((-1 |#1|) (-1104 |#1|))) (-15 -4376 ((-1 |#1|) (-645 (-2 (|:| -2233 |#1|) (|:| -1895 (-567)))))) (-15 -2506 ((-1 |#1|) (-1269 |#1|) (-1269 (-567)) (-567)))) -((-3905 (((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3905 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1020)) -((-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-4 *4 (-1245 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) (-5 *1 (-1020 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3905 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2487 (((-112) $ $) NIL)) (-3609 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-1137) $) 11)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1021) (-13 (-1085) (-10 -8 (-15 -3609 ((-1137) $)) (-15 -3501 ((-1137) $))))) (T -1021)) -((-3609 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021))))) -(-13 (-1085) (-10 -8 (-15 -3609 ((-1137) $)) (-15 -3501 ((-1137) $)))) -((-2548 (((-3 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) "failed") |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) 32) (((-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567))) 29)) (-4307 (((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567))) 34) (((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-410 (-567))) 30) (((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) 33) (((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1|) 28)) (-2681 (((-645 (-410 (-567))) (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) 20)) (-4193 (((-410 (-567)) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) 17))) -(((-1022 |#1|) (-10 -7 (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1|)) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567)))) (-15 -2548 ((-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567)))) (-15 -2548 ((-3 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) "failed") |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-15 -4193 ((-410 (-567)) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-15 -2681 ((-645 (-410 (-567))) (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))))) (-1245 (-567))) (T -1022)) -((-2681 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1022 *4)) (-4 *4 (-1245 (-567))))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) (-5 *2 (-410 (-567))) (-5 *1 (-1022 *4)) (-4 *4 (-1245 (-567))))) (-2548 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))))) (-2548 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))))) (-4307 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -4335 *5) (|:| -4347 *5)))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) (-5 *4 (-2 (|:| -4335 *5) (|:| -4347 *5))))) (-4307 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) (-5 *4 (-410 (-567))))) (-4307 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) (-5 *4 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))))) (-4307 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567)))))) -(-10 -7 (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1|)) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567)))) (-15 -2548 ((-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567)))) (-15 -2548 ((-3 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) "failed") |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-15 -4193 ((-410 (-567)) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-15 -2681 ((-645 (-410 (-567))) (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))))) -((-2548 (((-3 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) "failed") |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) 35) (((-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567))) 32)) (-4307 (((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567))) 30) (((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-410 (-567))) 26) (((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) 28) (((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1|) 24))) -(((-1023 |#1|) (-10 -7 (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1|)) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567)))) (-15 -2548 ((-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567)))) (-15 -2548 ((-3 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) "failed") |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))))) (-1245 (-410 (-567)))) (T -1023)) -((-2548 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567)))))) (-2548 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 *4)))) (-4307 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -4335 *5) (|:| -4347 *5)))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 *5)) (-5 *4 (-2 (|:| -4335 *5) (|:| -4347 *5))))) (-4307 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -4335 *4) (|:| -4347 *4)))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 *4)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567)))) (-5 *4 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))))) (-4307 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567))))))) -(-10 -7 (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1|)) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -4307 ((-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567)))) (-15 -2548 ((-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-410 (-567)))) (-15 -2548 ((-3 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) "failed") |#1| (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))) (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))))) -((-1322 (((-225) $) 6) (((-381) $) 9))) -(((-1024) (-140)) (T -1024)) -NIL -(-13 (-615 (-225)) (-615 (-381))) -(((-615 (-225)) . T) ((-615 (-381)) . T)) -((-2510 (((-645 (-381)) (-954 (-567)) (-381)) 28) (((-645 (-381)) (-954 (-410 (-567))) (-381)) 27)) (-3747 (((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1179)) (-381)) 37))) -(((-1025) (-10 -7 (-15 -2510 ((-645 (-381)) (-954 (-410 (-567))) (-381))) (-15 -2510 ((-645 (-381)) (-954 (-567)) (-381))) (-15 -3747 ((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1179)) (-381))))) (T -1025)) -((-3747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-645 (-1179))) (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1025)) (-5 *5 (-381)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) (-5 *4 (-381)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) (-5 *4 (-381))))) -(-10 -7 (-15 -2510 ((-645 (-381)) (-954 (-410 (-567))) (-381))) (-15 -2510 ((-645 (-381)) (-954 (-567)) (-381))) (-15 -3747 ((-645 (-645 (-381))) (-645 (-954 (-567))) (-645 (-1179)) (-381)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 75)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-3671 (($ $) NIL) (($ $ (-923)) NIL) (($ (-410 (-567))) NIL) (($ (-567)) NIL)) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) 70)) (-3758 (($) NIL T CONST)) (-1617 (((-3 $ "failed") (-1175 $) (-923) (-863)) NIL) (((-3 $ "failed") (-1175 $) (-923)) 55)) (-4275 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-567) "failed") $) NIL (-2836 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))))) (-3094 (((-410 (-567)) $) 17 (|has| (-410 (-567)) (-1040 (-410 (-567))))) (((-410 (-567)) $) 17) ((|#1| $) 117) (((-567) $) NIL (-2836 (|has| (-410 (-567)) (-1040 (-567))) (|has| |#1| (-1040 (-567)))))) (-2104 (($ $ (-863)) 47)) (-3299 (($ $ (-863)) 48)) (-2432 (($ $ $) NIL)) (-3059 (((-410 (-567)) $ $) 21)) (-1377 (((-3 $ "failed") $) 88)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-3635 (((-112) $) 66)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL)) (-2585 (((-112) $) 69)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-3692 (((-3 (-1175 $) "failed") $) 83)) (-3507 (((-3 (-863) "failed") $) 82)) (-2180 (((-3 (-1175 $) "failed") $) 80)) (-2023 (((-3 (-1063 $ (-1175 $)) "failed") $) 78)) (-1831 (($ (-645 $)) NIL) (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 89)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-2504 (((-863) $) 87) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) 63) (($ (-410 (-567))) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 119)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-3092 (((-410 (-567)) $ $) 27)) (-1567 (((-645 $) (-1175 $)) 61) (((-645 $) (-1175 (-410 (-567)))) NIL) (((-645 $) (-1175 (-567))) NIL) (((-645 $) (-954 $)) NIL) (((-645 $) (-954 (-410 (-567)))) NIL) (((-645 $) (-954 (-567))) NIL)) (-4084 (($ (-1063 $ (-1175 $)) (-863)) 46)) (-1368 (($ $) 22)) (-1807 (($) 32 T CONST)) (-1820 (($) 39 T CONST)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 76)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 24)) (-3064 (($ $ $) 37)) (-3054 (($ $) 38) (($ $ $) 74)) (-3045 (($ $ $) 112)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 104) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ (-567) $) 98) (($ $ (-567)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1026 |#1|) (-13 (-1014) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -4084 ($ (-1063 $ (-1175 $)) (-863))) (-15 -2023 ((-3 (-1063 $ (-1175 $)) "failed") $)) (-15 -3059 ((-410 (-567)) $ $)))) (-13 (-849) (-365) (-1024))) (T -1026)) -((-4084 (*1 *1 *2 *3) (-12 (-5 *2 (-1063 (-1026 *4) (-1175 (-1026 *4)))) (-5 *3 (-863)) (-5 *1 (-1026 *4)) (-4 *4 (-13 (-849) (-365) (-1024))))) (-2023 (*1 *2 *1) (|partial| -12 (-5 *2 (-1063 (-1026 *3) (-1175 (-1026 *3)))) (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024))))) (-3059 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024)))))) -(-13 (-1014) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -4084 ($ (-1063 $ (-1175 $)) (-863))) (-15 -2023 ((-3 (-1063 $ (-1175 $)) "failed") $)) (-15 -3059 ((-410 (-567)) $ $)))) -((-3178 (((-2 (|:| -4178 |#2|) (|:| -3788 (-645 |#1|))) |#2| (-645 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1027 |#1| |#2|) (-10 -7 (-15 -3178 (|#2| |#2| |#1|)) (-15 -3178 ((-2 (|:| -4178 |#2|) (|:| -3788 (-645 |#1|))) |#2| (-645 |#1|)))) (-365) (-657 |#1|)) (T -1027)) -((-3178 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -4178 *3) (|:| -3788 (-645 *5)))) (-5 *1 (-1027 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))) (-3178 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1027 *3 *2)) (-4 *2 (-657 *3))))) -(-10 -7 (-15 -3178 (|#2| |#2| |#1|)) (-15 -3178 ((-2 (|:| -4178 |#2|) (|:| -3788 (-645 |#1|))) |#2| (-645 |#1|)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4116 ((|#1| $ |#1|) 14)) (-3824 ((|#1| $ |#1|) 12)) (-1459 (($ |#1|) 10)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1882 ((|#1| $) 11)) (-1913 ((|#1| $) 13)) (-2504 (((-863) $) 21 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2968 (((-112) $ $) 9))) -(((-1028 |#1|) (-13 (-1219) (-10 -8 (-15 -1459 ($ |#1|)) (-15 -1882 (|#1| $)) (-15 -3824 (|#1| $ |#1|)) (-15 -1913 (|#1| $)) (-15 -4116 (|#1| $ |#1|)) (-15 -2968 ((-112) $ $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1219)) (T -1028)) -((-1459 (*1 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-1882 (*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-3824 (*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-1913 (*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-4116 (*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) (-2968 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1219))))) -(-13 (-1219) (-10 -8 (-15 -1459 ($ |#1|)) (-15 -1882 (|#1| $)) (-15 -3824 (|#1| $ |#1|)) (-15 -1913 (|#1| $)) (-15 -4116 (|#1| $ |#1|)) (-15 -2968 ((-112) $ $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3148 (((-645 $) (-645 |#4|)) 118) (((-645 $) (-645 |#4|) (-112)) 119) (((-645 $) (-645 |#4|) (-112) (-112)) 117) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 120)) (-3783 (((-645 |#3|) $) NIL)) (-2643 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2688 ((|#4| |#4| $) NIL)) (-3864 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| $) 112)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-1316 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 66)) (-3758 (($) NIL T CONST)) (-3731 (((-112) $) 29 (|has| |#1| (-559)))) (-4301 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4089 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3937 (((-112) $) NIL (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2160 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) NIL)) (-3094 (($ (-645 |#4|)) NIL)) (-3447 (((-3 $ "failed") $) 45)) (-2903 ((|#4| |#4| $) 69)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-1695 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1861 ((|#4| |#4| $) NIL)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) NIL)) (-2940 (((-112) |#4| $) NIL)) (-2708 (((-112) |#4| $) NIL)) (-2600 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2867 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 133)) (-3468 (((-645 |#4|) $) 18 (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3066 ((|#3| $) 38)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#4|) $) 19 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-2021 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 23)) (-3870 (((-645 |#3|) $) NIL)) (-2415 (((-112) |#3| $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-1434 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-4316 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| |#4| $) 110)) (-1725 (((-3 |#4| "failed") $) 42)) (-2920 (((-645 $) |#4| $) 93)) (-4264 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-3972 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3873 (((-645 $) |#4| $) 115) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 116) (((-645 $) |#4| (-645 $)) NIL)) (-2835 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 128)) (-4214 (($ |#4| $) 82) (($ (-645 |#4|) $) 83) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2290 (((-645 |#4|) $) NIL)) (-1737 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2763 ((|#4| |#4| $) NIL)) (-4009 (((-112) $ $) NIL)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3893 ((|#4| |#4| $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-3 |#4| "failed") $) 40)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2806 (((-3 $ "failed") $ |#4|) 59)) (-1678 (($ $ |#4|) NIL) (((-645 $) |#4| $) 95) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 89)) (-1430 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 17)) (-2973 (($) 14)) (-3380 (((-772) $) NIL)) (-3486 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) 13)) (-1322 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 22)) (-1582 (($ $ |#3|) 52)) (-2746 (($ $ |#3|) 54)) (-2012 (($ $) NIL)) (-3975 (($ $ |#3|) NIL)) (-2504 (((-863) $) 35) (((-645 |#4|) $) 46)) (-3312 (((-772) $) NIL (|has| |#3| (-370)))) (-3858 (((-112) $ $) NIL)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3259 (((-645 $) |#4| $) 92) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-3450 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) NIL)) (-3961 (((-112) |#4| $) NIL)) (-3392 (((-112) |#3| $) 65)) (-2968 (((-112) $ $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1029 |#1| |#2| |#3| |#4|) (-13 (-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4214 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3148 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3148 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2835 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2867 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1029)) -((-4214 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *3))) (-5 *1 (-1029 *5 *6 *7 *3)) (-4 *3 (-1067 *5 *6 *7)))) (-3148 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-3148 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-2835 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) (-2867 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1029 *5 *6 *7 *8))))) (-5 *1 (-1029 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(-13 (-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4214 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3148 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3148 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2835 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2867 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) -((-3787 (((-645 (-690 |#1|)) (-645 (-690 |#1|))) 73) (((-690 |#1|) (-690 |#1|)) 72) (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 71) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 68)) (-1496 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923)) 66) (((-690 |#1|) (-690 |#1|) (-923)) 65)) (-4284 (((-645 (-690 (-567))) (-645 (-645 (-567)))) 84) (((-645 (-690 (-567))) (-645 (-907 (-567))) (-567)) 83) (((-690 (-567)) (-645 (-567))) 80) (((-690 (-567)) (-907 (-567)) (-567)) 78)) (-2536 (((-690 (-954 |#1|)) (-772)) 98)) (-1868 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923)) 52 (|has| |#1| (-6 (-4424 "*")))) (((-690 |#1|) (-690 |#1|) (-923)) 50 (|has| |#1| (-6 (-4424 "*")))))) -(((-1030 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4424 "*"))) (-15 -1868 ((-690 |#1|) (-690 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4424 "*"))) (-15 -1868 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) |%noBranch|) (-15 -2536 ((-690 (-954 |#1|)) (-772))) (-15 -1496 ((-690 |#1|) (-690 |#1|) (-923))) (-15 -1496 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) (-15 -3787 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3787 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3787 ((-690 |#1|) (-690 |#1|))) (-15 -3787 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -4284 ((-690 (-567)) (-907 (-567)) (-567))) (-15 -4284 ((-690 (-567)) (-645 (-567)))) (-15 -4284 ((-645 (-690 (-567))) (-645 (-907 (-567))) (-567))) (-15 -4284 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) (-1051)) (T -1030)) -((-4284 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-4284 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-907 (-567)))) (-5 *4 (-567)) (-5 *2 (-645 (-690 *4))) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-4284 (*1 *2 *3 *4) (-12 (-5 *3 (-907 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3787 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-3787 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) (-1496 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-1496 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-2536 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-690 (-954 *4))) (-5 *1 (-1030 *4)) (-4 *4 (-1051)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (|has| *4 (-6 (-4424 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4424 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4424 "*"))) (-15 -1868 ((-690 |#1|) (-690 |#1|) (-923))) |%noBranch|) (IF (|has| |#1| (-6 (-4424 "*"))) (-15 -1868 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) |%noBranch|) (-15 -2536 ((-690 (-954 |#1|)) (-772))) (-15 -1496 ((-690 |#1|) (-690 |#1|) (-923))) (-15 -1496 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-923))) (-15 -3787 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3787 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3787 ((-690 |#1|) (-690 |#1|))) (-15 -3787 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -4284 ((-690 (-567)) (-907 (-567)) (-567))) (-15 -4284 ((-690 (-567)) (-645 (-567)))) (-15 -4284 ((-645 (-690 (-567))) (-645 (-907 (-567))) (-567))) (-15 -4284 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) -((-4282 (((-690 |#1|) (-645 (-690 |#1|)) (-1269 |#1|)) 71 (|has| |#1| (-308)))) (-3601 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 (-1269 |#1|))) 112 (|has| |#1| (-365))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 |#1|)) 119 (|has| |#1| (-365)))) (-2250 (((-1269 |#1|) (-645 (-1269 |#1|)) (-567)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1869 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1941 (((-112) (-645 (-690 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-645 (-690 |#1|)) (-567)) 108 (|has| |#1| (-365)))) (-4232 (((-1269 (-1269 |#1|)) (-645 (-690 |#1|)) (-1269 |#1|)) 68 (|has| |#1| (-308)))) (-1385 (((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|)) 48)) (-2089 (((-690 |#1|) (-1269 (-1269 |#1|))) 41)) (-2793 (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567)) 96 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 95 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567)) 103 (|has| |#1| (-365))))) -(((-1031 |#1|) (-10 -7 (-15 -2089 ((-690 |#1|) (-1269 (-1269 |#1|)))) (-15 -1385 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -4232 ((-1269 (-1269 |#1|)) (-645 (-690 |#1|)) (-1269 |#1|))) (-15 -4282 ((-690 |#1|) (-645 (-690 |#1|)) (-1269 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2793 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -2793 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2793 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1941 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1941 ((-112) (-645 (-690 |#1|)))) (-15 -3601 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 |#1|))) (-15 -3601 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 (-1269 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -1869 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -1869 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -1869 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -1869 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923))) (-15 -2250 ((-1269 |#1|) (-645 (-1269 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) (-1051)) (T -1031)) -((-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1269 *5))) (-5 *4 (-567)) (-5 *2 (-1269 *5)) (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-1869 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-1869 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1051)) (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1031 *4)) (-5 *3 (-645 (-690 *4))))) (-1869 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1051)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1031 *6)) (-5 *3 (-645 (-690 *6))))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 (-1269 *5))) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-645 (-690 *5))))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *4)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) (-4 *5 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *5)))) (-2793 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-1051)))) (-2793 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4)) (-4 *4 (-365)) (-4 *4 (-1051)))) (-2793 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) (-5 *2 (-690 *6)) (-5 *1 (-1031 *6)) (-4 *6 (-365)) (-4 *6 (-1051)))) (-4282 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1269 *5)) (-4 *5 (-308)) (-4 *5 (-1051)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5)))) (-4232 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1051)) (-5 *2 (-1269 (-1269 *5))) (-5 *1 (-1031 *5)) (-5 *4 (-1269 *5)))) (-1385 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1031 *4)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-1269 (-1269 *4))) (-4 *4 (-1051)) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4))))) -(-10 -7 (-15 -2089 ((-690 |#1|) (-1269 (-1269 |#1|)))) (-15 -1385 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -4232 ((-1269 (-1269 |#1|)) (-645 (-690 |#1|)) (-1269 |#1|))) (-15 -4282 ((-690 |#1|) (-645 (-690 |#1|)) (-1269 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2793 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -2793 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2793 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1941 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1941 ((-112) (-645 (-690 |#1|)))) (-15 -3601 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 |#1|))) (-15 -3601 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1269 (-1269 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -1869 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -1869 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -1869 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -1869 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-923))) (-15 -2250 ((-1269 |#1|) (-645 (-1269 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) -((-3994 ((|#1| (-923) |#1|) 18))) -(((-1032 |#1|) (-10 -7 (-15 -3994 (|#1| (-923) |#1|))) (-13 (-1102) (-10 -8 (-15 -3045 ($ $ $))))) (T -1032)) -((-3994 (*1 *2 *3 *2) (-12 (-5 *3 (-923)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1102) (-10 -8 (-15 -3045 ($ $ $)))))))) -(-10 -7 (-15 -3994 (|#1| (-923) |#1|))) -((-4355 (((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567))))) 67)) (-3373 (((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567))))) 52)) (-2577 (((-645 (-317 (-567))) (-690 (-410 (-954 (-567))))) 45)) (-2966 (((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567))))) 88)) (-2513 (((-690 (-317 (-567))) (-690 (-317 (-567)))) 38)) (-1765 (((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567))))) 76)) (-2040 (((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567))))) 85))) -(((-1033) (-10 -7 (-15 -4355 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567)))))) (-15 -3373 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567)))))) (-15 -2577 ((-645 (-317 (-567))) (-690 (-410 (-954 (-567)))))) (-15 -2040 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567)))))) (-15 -2513 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -1765 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -2966 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567)))))))) (T -1033)) -((-2966 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))) (-2040 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-317 (-567)))) (-5 *1 (-1033)))) (-3373 (*1 *2 *3 *4) (-12 (-5 *4 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)) (-5 *3 (-317 (-567))))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567)))))))) (-5 *1 (-1033))))) -(-10 -7 (-15 -4355 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-954 (-567)))))) (-15 -3373 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-954 (-567)))))) (-15 -2577 ((-645 (-317 (-567))) (-690 (-410 (-954 (-567)))))) (-15 -2040 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-954 (-567)))))) (-15 -2513 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -1765 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -2966 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-954 (-567))))))) -((-4167 ((|#1| |#1| (-923)) 18))) -(((-1034 |#1|) (-10 -7 (-15 -4167 (|#1| |#1| (-923)))) (-13 (-1102) (-10 -8 (-15 * ($ $ $))))) (T -1034)) -((-4167 (*1 *2 *2 *3) (-12 (-5 *3 (-923)) (-5 *1 (-1034 *2)) (-4 *2 (-13 (-1102) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -4167 (|#1| |#1| (-923)))) -((-2504 ((|#1| (-313)) 11) (((-1274) |#1|) 9))) -(((-1035 |#1|) (-10 -7 (-15 -2504 ((-1274) |#1|)) (-15 -2504 (|#1| (-313)))) (-1219)) (T -1035)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1035 *2)) (-4 *2 (-1219)))) (-2504 (*1 *2 *3) (-12 (-5 *2 (-1274)) (-5 *1 (-1035 *3)) (-4 *3 (-1219))))) -(-10 -7 (-15 -2504 ((-1274) |#1|)) (-15 -2504 (|#1| (-313)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-2617 (($ |#4|) 25)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-2606 ((|#4| $) 27)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 46) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2214 (((-772)) 43 T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 21 T CONST)) (-1820 (($) 23 T CONST)) (-2968 (((-112) $ $) 40)) (-3054 (($ $) 31) (($ $ $) NIL)) (-3045 (($ $ $) 29)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1036 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2617 ($ |#4|)) (-15 -2504 ($ |#4|)) (-15 -2606 (|#4| $)))) (-365) (-794) (-851) (-951 |#1| |#2| |#3|) (-645 |#4|)) (T -1036)) -((-2617 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) (-2504 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) (-14 *6 (-645 *2)))) (-2606 (*1 *2 *1) (-12 (-4 *2 (-951 *3 *4 *5)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2))))) -(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2617 ($ |#4|)) (-15 -2504 ($ |#4|)) (-15 -2606 (|#4| $)))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL)) (-3095 (((-1274) $ (-1179) (-1179)) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-2151 (((-112) (-112)) 43)) (-2451 (((-112) (-112)) 42)) (-3824 (((-52) $ (-1179) (-52)) NIL)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 (-52) "failed") (-1179) $) NIL)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-4197 (($ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-3 (-52) "failed") (-1179) $) NIL)) (-1695 (($ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2036 (((-52) $ (-1179) (-52)) NIL (|has| $ (-6 -4423)))) (-1970 (((-52) $ (-1179)) NIL)) (-3468 (((-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-1179) $) NIL (|has| (-1179) (-851)))) (-4200 (((-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-2346 (((-1179) $) NIL (|has| (-1179) (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-1512 (((-645 (-1179)) $) 37)) (-1560 (((-112) (-1179) $) NIL)) (-3018 (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL)) (-3636 (($ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL)) (-3360 (((-645 (-1179)) $) NIL)) (-2919 (((-112) (-1179) $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-3436 (((-52) $) NIL (|has| (-1179) (-851)))) (-2989 (((-3 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) "failed") (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL)) (-2930 (($ $ (-52)) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))))) NIL (-12 (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL (-12 (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ $ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) NIL (-12 (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL (-12 (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-1804 (((-645 (-52)) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 (((-52) $ (-1179)) 39) (((-52) $ (-1179) (-52)) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL)) (-2504 (((-863) $) 41 (-2836 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1037) (-13 (-1195 (-1179) (-52)) (-10 -7 (-15 -2151 ((-112) (-112))) (-15 -2451 ((-112) (-112))) (-6 -4422)))) (T -1037)) -((-2151 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037)))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037))))) -(-13 (-1195 (-1179) (-52)) (-10 -7 (-15 -2151 ((-112) (-112))) (-15 -2451 ((-112) (-112))) (-6 -4422))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1378 (((-1137) $) 9)) (-2504 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1038) (-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $))))) (T -1038)) -((-1378 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1038))))) -(-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)))) -((-3094 ((|#2| $) 10))) -(((-1039 |#1| |#2|) (-10 -8 (-15 -3094 (|#2| |#1|))) (-1040 |#2|) (-1219)) (T -1039)) -NIL -(-10 -8 (-15 -3094 (|#2| |#1|))) -((-4275 (((-3 |#1| "failed") $) 9)) (-3094 ((|#1| $) 8)) (-2504 (($ |#1|) 6))) -(((-1040 |#1|) (-140) (-1219)) (T -1040)) -((-4275 (*1 *2 *1) (|partial| -12 (-4 *1 (-1040 *2)) (-4 *2 (-1219)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1219))))) -(-13 (-617 |t#1|) (-10 -8 (-15 -4275 ((-3 |t#1| "failed") $)) (-15 -3094 (|t#1| $)))) -(((-617 |#1|) . T)) -((-1408 (((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1179))) 38))) -(((-1041 |#1| |#2|) (-10 -7 (-15 -1408 ((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1179))))) (-559) (-13 (-559) (-1040 |#1|))) (T -1041)) -((-1408 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-4 *6 (-13 (-559) (-1040 *5))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *6)))))) (-5 *1 (-1041 *5 *6))))) -(-10 -7 (-15 -1408 ((-645 (-645 (-295 (-410 (-954 |#2|))))) (-645 (-954 |#2|)) (-645 (-1179))))) -((-3187 (((-381)) 17)) (-1482 (((-1 (-381)) (-381) (-381)) 22)) (-3582 (((-1 (-381)) (-772)) 50)) (-1399 (((-381)) 37)) (-1374 (((-1 (-381)) (-381) (-381)) 38)) (-2752 (((-381)) 29)) (-2195 (((-1 (-381)) (-381)) 30)) (-2296 (((-381) (-772)) 45)) (-4254 (((-1 (-381)) (-772)) 46)) (-1676 (((-1 (-381)) (-772) (-772)) 49)) (-3291 (((-1 (-381)) (-772) (-772)) 47))) -(((-1042) (-10 -7 (-15 -3187 ((-381))) (-15 -1399 ((-381))) (-15 -2752 ((-381))) (-15 -2296 ((-381) (-772))) (-15 -1482 ((-1 (-381)) (-381) (-381))) (-15 -1374 ((-1 (-381)) (-381) (-381))) (-15 -2195 ((-1 (-381)) (-381))) (-15 -4254 ((-1 (-381)) (-772))) (-15 -3291 ((-1 (-381)) (-772) (-772))) (-15 -1676 ((-1 (-381)) (-772) (-772))) (-15 -3582 ((-1 (-381)) (-772))))) (T -1042)) -((-3582 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-1676 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-4254 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-1374 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-1482 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1042)))) (-2752 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))) (-1399 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042)))) (-3187 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042))))) -(-10 -7 (-15 -3187 ((-381))) (-15 -1399 ((-381))) (-15 -2752 ((-381))) (-15 -2296 ((-381) (-772))) (-15 -1482 ((-1 (-381)) (-381) (-381))) (-15 -1374 ((-1 (-381)) (-381) (-381))) (-15 -2195 ((-1 (-381)) (-381))) (-15 -4254 ((-1 (-381)) (-772))) (-15 -3291 ((-1 (-381)) (-772) (-772))) (-15 -1676 ((-1 (-381)) (-772) (-772))) (-15 -3582 ((-1 (-381)) (-772)))) -((-3661 (((-421 |#1|) |#1|) 33))) -(((-1043 |#1|) (-10 -7 (-15 -3661 ((-421 |#1|) |#1|))) (-1245 (-410 (-954 (-567))))) (T -1043)) -((-3661 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1043 *3)) (-4 *3 (-1245 (-410 (-954 (-567)))))))) -(-10 -7 (-15 -3661 ((-421 |#1|) |#1|))) -((-1710 (((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))) 14))) -(((-1044 |#1|) (-10 -7 (-15 -1710 ((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))))) (-308)) (T -1044)) -((-1710 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-421 (-954 *4)))) (-5 *1 (-1044 *4))))) -(-10 -7 (-15 -1710 ((-410 (-421 (-954 |#1|))) (-410 (-954 |#1|))))) -((-3783 (((-645 (-1179)) (-410 (-954 |#1|))) 17)) (-3633 (((-410 (-1175 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179)) 24)) (-3772 (((-410 (-954 |#1|)) (-410 (-1175 (-410 (-954 |#1|)))) (-1179)) 26)) (-2047 (((-3 (-1179) "failed") (-410 (-954 |#1|))) 20)) (-2913 (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|))))) 32) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|)))) 33) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1179)) (-645 (-410 (-954 |#1|)))) 28) (((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|))) 29)) (-2504 (((-410 (-954 |#1|)) |#1|) 11))) -(((-1045 |#1|) (-10 -7 (-15 -3783 ((-645 (-1179)) (-410 (-954 |#1|)))) (-15 -2047 ((-3 (-1179) "failed") (-410 (-954 |#1|)))) (-15 -3633 ((-410 (-1175 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179))) (-15 -3772 ((-410 (-954 |#1|)) (-410 (-1175 (-410 (-954 |#1|)))) (-1179))) (-15 -2913 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)))) (-15 -2913 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1179)) (-645 (-410 (-954 |#1|))))) (-15 -2913 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2913 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -2504 ((-410 (-954 |#1|)) |#1|))) (-559)) (T -1045)) -((-2504 (*1 *2 *3) (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-1045 *3)) (-4 *3 (-559)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-5 *2 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-5 *2 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-2913 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-1179))) (-5 *4 (-645 (-410 (-954 *5)))) (-5 *2 (-410 (-954 *5))) (-4 *5 (-559)) (-5 *1 (-1045 *5)))) (-2913 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-1045 *4)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1175 (-410 (-954 *5))))) (-5 *4 (-1179)) (-5 *2 (-410 (-954 *5))) (-5 *1 (-1045 *5)) (-4 *5 (-559)))) (-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-559)) (-5 *2 (-410 (-1175 (-410 (-954 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-410 (-954 *5))))) (-2047 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-1179)) (-5 *1 (-1045 *4)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1179))) (-5 *1 (-1045 *4))))) -(-10 -7 (-15 -3783 ((-645 (-1179)) (-410 (-954 |#1|)))) (-15 -2047 ((-3 (-1179) "failed") (-410 (-954 |#1|)))) (-15 -3633 ((-410 (-1175 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179))) (-15 -3772 ((-410 (-954 |#1|)) (-410 (-1175 (-410 (-954 |#1|)))) (-1179))) (-15 -2913 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)))) (-15 -2913 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-1179)) (-645 (-410 (-954 |#1|))))) (-15 -2913 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-295 (-410 (-954 |#1|))))) (-15 -2913 ((-410 (-954 |#1|)) (-410 (-954 |#1|)) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -2504 ((-410 (-954 |#1|)) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3758 (($) 18 T CONST)) (-3757 ((|#1| $) 23)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3508 ((|#1| $) 22)) (-2809 ((|#1|) 20 T CONST)) (-2504 (((-863) $) 12)) (-3995 ((|#1| $) 21)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16))) -(((-1046 |#1|) (-140) (-23)) (T -1046)) -((-3757 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-3995 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))) (-2809 (*1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3757 (|t#1| $)) (-15 -3508 (|t#1| $)) (-15 -3995 (|t#1| $)) (-15 -2809 (|t#1|) -3562))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2181 (($) 25 T CONST)) (-3758 (($) 18 T CONST)) (-3757 ((|#1| $) 23)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3508 ((|#1| $) 22)) (-2809 ((|#1|) 20 T CONST)) (-2504 (((-863) $) 12)) (-3995 ((|#1| $) 21)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3418 (((-643 (-549)) $) 73)) (-3414 (($ (-643 (-549))) 81)) (-3533 (((-549) $) 48 (|has| (-549) (-308)))) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL (|has| (-549) (-822)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #2="failed") $) 60) (((-3 (-1180) #2#) $) NIL (|has| (-549) (-1041 (-1180)))) (((-3 (-410 (-549)) #2#) $) 57 (|has| (-549) (-1041 (-549)))) (((-3 (-549) #2#) $) 60 (|has| (-549) (-1041 (-549))))) (-3576 (((-549) $) NIL) (((-1180) $) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) NIL (|has| (-549) (-1041 (-549)))) (((-549) $) NIL (|has| (-549) (-1041 (-549))))) (-2964 (($ $ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| (-549) (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3395 (($) NIL (|has| (-549) (-548)))) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3416 (((-643 (-549)) $) 79)) (-3606 (((-112) $) NIL (|has| (-549) (-822)))) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (|has| (-549) (-889 (-549)))) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (|has| (-549) (-889 (-380))))) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL)) (-3399 (((-549) $) 45)) (-3868 (((-3 $ "failed") $) NIL (|has| (-549) (-1154)))) (-3607 (((-112) $) NIL (|has| (-549) (-822)))) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-549) (-852)))) (-4390 (($ (-1 (-549) (-549)) $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL)) (-3869 (($) NIL (|has| (-549) (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3532 (($ $) NIL (|has| (-549) (-308))) (((-410 (-549)) $) 50)) (-3417 (((-1157 (-549)) $) 78)) (-3413 (($ (-643 (-549)) (-643 (-549))) 82)) (-3534 (((-549) $) 64 (|has| (-549) (-548)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| (-549) (-913)))) (-4164 (((-408 $) $) NIL)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-4199 (($ $ (-643 (-549)) (-643 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-549) (-549)) NIL (|has| (-549) (-310 (-549)))) (($ $ (-294 (-549))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-294 (-549)))) NIL (|has| (-549) (-310 (-549)))) (($ $ (-643 (-1180)) (-643 (-549))) NIL (|has| (-549) (-517 (-1180) (-549)))) (($ $ (-1180) (-549)) NIL (|has| (-549) (-517 (-1180) (-549))))) (-1752 (((-773) $) NIL)) (-4231 (($ $ (-549)) NIL (|has| (-549) (-287 (-549) (-549))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $) 15 (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-3396 (($ $) NIL)) (-3398 (((-549) $) 47)) (-3415 (((-643 (-549)) $) 80)) (-4402 (((-893 (-549)) $) NIL (|has| (-549) (-616 (-893 (-549))))) (((-893 (-380)) $) NIL (|has| (-549) (-616 (-893 (-380))))) (((-538) $) NIL (|has| (-549) (-616 (-538)))) (((-380) $) NIL (|has| (-549) (-1023))) (((-225) $) NIL (|has| (-549) (-1023)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-549) (-913))))) (-4378 (((-865) $) 107) (($ (-549)) 51) (($ $) NIL) (($ (-410 (-549))) 27) (($ (-549)) 51) (($ (-1180)) NIL (|has| (-549) (-1041 (-1180)))) (((-410 (-549)) $) 25)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-549) (-913))) (|has| (-549) (-145))))) (-3530 (((-773)) 13 T CONST)) (-3535 (((-549) $) 62 (|has| (-549) (-548)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3807 (($ $) NIL (|has| (-549) (-822)))) (-3510 (($) 14 T CONST)) (-3067 (($) 17 T CONST)) (-3072 (($ $) NIL (|has| (-549) (-233))) (($ $ (-773)) NIL (|has| (-549) (-233))) (($ $ (-1180)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| (-549) (-903 (-1180)))) (($ $ (-1 (-549) (-549)) (-773)) NIL) (($ $ (-1 (-549) (-549))) NIL)) (-2966 (((-112) $ $) NIL (|has| (-549) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3455 (((-112) $ $) 21)) (-3087 (((-112) $ $) NIL (|has| (-549) (-852)))) (-3088 (((-112) $ $) 40 (|has| (-549) (-852)))) (-4381 (($ $ $) 36) (($ (-549) (-549)) 38)) (-4269 (($ $) 23) (($ $ $) 30)) (-4271 (($ $ $) 28)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 32) (($ $ $) 34) (($ $ (-410 (-549))) NIL) (($ (-410 (-549)) $) NIL) (($ (-549) $) 32) (($ $ (-549)) NIL))) +(((-1007 |#1|) (-13 (-994 (-549)) (-615 (-410 (-549))) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -3418 ((-643 (-549)) $)) (-15 -3417 ((-1157 (-549)) $)) (-15 -3416 ((-643 (-549)) $)) (-15 -3415 ((-643 (-549)) $)) (-15 -3414 ($ (-643 (-549)))) (-15 -3413 ($ (-643 (-549)) (-643 (-549)))))) (-549)) (T -1007)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) (-3413 (*1 *1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) +(-13 (-994 (-549)) (-615 (-410 (-549))) (-10 -8 (-15 -3532 ((-410 (-549)) $)) (-15 -3418 ((-643 (-549)) $)) (-15 -3417 ((-1157 (-549)) $)) (-15 -3416 ((-643 (-549)) $)) (-15 -3415 ((-643 (-549)) $)) (-15 -3414 ($ (-643 (-549)))) (-15 -3413 ($ (-643 (-549)) (-643 (-549)))))) +((-3419 (((-51) (-410 (-549)) (-549)) 9))) +(((-1008) (-10 -7 (-15 -3419 ((-51) (-410 (-549)) (-549))))) (T -1008)) +((-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-549))) (-5 *4 (-549)) (-5 *2 (-51)) (-5 *1 (-1008))))) +(-10 -7 (-15 -3419 ((-51) (-410 (-549)) (-549)))) +((-3540 (((-549)) 23)) (-3422 (((-549)) 28)) (-3421 (((-1275) (-549)) 26)) (-3420 (((-549) (-549)) 29) (((-549)) 22))) +(((-1009) (-10 -7 (-15 -3420 ((-549))) (-15 -3540 ((-549))) (-15 -3420 ((-549) (-549))) (-15 -3421 ((-1275) (-549))) (-15 -3422 ((-549))))) (T -1009)) +((-3422 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1009)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) (-3540 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) (-3420 (*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009))))) +(-10 -7 (-15 -3420 ((-549))) (-15 -3540 ((-549))) (-15 -3420 ((-549) (-549))) (-15 -3421 ((-1275) (-549))) (-15 -3422 ((-549)))) +((-4165 (((-408 |#1|) |#1|) 43)) (-4164 (((-408 |#1|) |#1|) 41))) +(((-1010 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1|))) (-1245 (-410 (-549)))) (T -1010)) +((-4165 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1245 (-410 (-549)))))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1245 (-410 (-549))))))) +(-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1|))) +((-3425 (((-3 (-410 (-549)) "failed") |#1|) 15)) (-3424 (((-112) |#1|) 14)) (-3423 (((-410 (-549)) |#1|) 10))) +(((-1011 |#1|) (-10 -7 (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|))) (-1041 (-410 (-549)))) (T -1011)) +((-3425 (*1 *2 *3) (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-1011 *3)) (-4 *3 (-1041 *2)))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1011 *3)) (-4 *3 (-1041 (-410 (-549)))))) (-3423 (*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1011 *3)) (-4 *3 (-1041 *2))))) +(-10 -7 (-15 -3423 ((-410 (-549)) |#1|)) (-15 -3424 ((-112) |#1|)) (-15 -3425 ((-3 (-410 (-549)) "failed") |#1|))) +((-4219 ((|#2| $ "value" |#2|) 12)) (-4231 ((|#2| $ "value") 10)) (-3429 (((-112) $ $) 18))) +(((-1012 |#1| |#2|) (-10 -8 (-15 -4219 (|#2| |#1| "value" |#2|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -4231 (|#2| |#1| "value"))) (-1013 |#2|) (-1219)) (T -1012)) +NIL +(-10 -8 (-15 -4219 (|#2| |#1| "value" |#2|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -4231 (|#2| |#1| "value"))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4156 (($) 7 T CONST)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ "value") 48)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-1013 |#1|) (-140) (-1219)) (T -1013)) +((-3945 (*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-643 *1)) (-4 *1 (-1013 *3)))) (-3432 (*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-643 *1)) (-4 *1 (-1013 *3)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3431 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-643 *3)))) (-3430 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-549)))) (-3429 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-3428 (*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *1)) (|has| *1 (-6 -4426)) (-4 *1 (-1013 *3)) (-4 *3 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4426)) (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) (-3426 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1013 *2)) (-4 *2 (-1219))))) +(-13 (-492 |t#1|) (-10 -8 (-15 -3945 ((-643 $) $)) (-15 -3432 ((-643 $) $)) (-15 -3950 ((-112) $)) (-15 -3826 (|t#1| $)) (-15 -4231 (|t#1| $ "value")) (-15 -4065 ((-112) $)) (-15 -3431 ((-643 |t#1|) $)) (-15 -3430 ((-549) $ $)) (IF (|has| |t#1| (-1104)) (PROGN (-15 -3429 ((-112) $ $)) (-15 -3428 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -3427 ($ $ (-643 $))) (-15 -4219 (|t#1| $ "value" |t#1|)) (-15 -3426 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-3438 (($ $) 9) (($ $ (-922)) 49) (($ (-410 (-549))) 13) (($ (-549)) 15)) (-3603 (((-3 $ "failed") (-1174 $) (-922) (-865)) 24) (((-3 $ "failed") (-1174 $) (-922)) 32)) (-3412 (($ $ (-549)) 58)) (-3530 (((-773)) 18)) (-3604 (((-643 $) (-1174 $)) NIL) (((-643 $) (-1174 (-410 (-549)))) 63) (((-643 $) (-1174 (-549))) 68) (((-643 $) (-949 $)) 72) (((-643 $) (-949 (-410 (-549)))) 76) (((-643 $) (-949 (-549))) 80)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL) (($ $ (-410 (-549))) 53))) +(((-1014 |#1|) (-10 -8 (-15 -3438 (|#1| (-549))) (-15 -3438 (|#1| (-410 (-549)))) (-15 -3438 (|#1| |#1| (-922))) (-15 -3604 ((-643 |#1|) (-949 (-549)))) (-15 -3604 ((-643 |#1|) (-949 (-410 (-549))))) (-15 -3604 ((-643 |#1|) (-949 |#1|))) (-15 -3604 ((-643 |#1|) (-1174 (-549)))) (-15 -3604 ((-643 |#1|) (-1174 (-410 (-549))))) (-15 -3604 ((-643 |#1|) (-1174 |#1|))) (-15 -3603 ((-3 |#1| "failed") (-1174 |#1|) (-922))) (-15 -3603 ((-3 |#1| "failed") (-1174 |#1|) (-922) (-865))) (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -3412 (|#1| |#1| (-549))) (-15 -3438 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -3530 ((-773))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922)))) (-1015)) (T -1014)) +((-3530 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1014 *3)) (-4 *3 (-1015))))) +(-10 -8 (-15 -3438 (|#1| (-549))) (-15 -3438 (|#1| (-410 (-549)))) (-15 -3438 (|#1| |#1| (-922))) (-15 -3604 ((-643 |#1|) (-949 (-549)))) (-15 -3604 ((-643 |#1|) (-949 (-410 (-549))))) (-15 -3604 ((-643 |#1|) (-949 |#1|))) (-15 -3604 ((-643 |#1|) (-1174 (-549)))) (-15 -3604 ((-643 |#1|) (-1174 (-410 (-549))))) (-15 -3604 ((-643 |#1|) (-1174 |#1|))) (-15 -3603 ((-3 |#1| "failed") (-1174 |#1|) (-922))) (-15 -3603 ((-3 |#1| "failed") (-1174 |#1|) (-922) (-865))) (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -3412 (|#1| |#1| (-549))) (-15 -3438 (|#1| |#1|)) (-15 ** (|#1| |#1| (-549))) (-15 -3530 ((-773))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 102)) (-2241 (($ $) 103)) (-2239 (((-112) $) 105)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 122)) (-4401 (((-408 $) $) 123)) (-3438 (($ $) 86) (($ $ (-922)) 72) (($ (-410 (-549))) 71) (($ (-549)) 70)) (-1753 (((-112) $ $) 113)) (-4055 (((-549) $) 139)) (-4156 (($) 18 T CONST)) (-3603 (((-3 $ "failed") (-1174 $) (-922) (-865)) 80) (((-3 $ "failed") (-1174 $) (-922)) 79)) (-3577 (((-3 (-549) #1="failed") $) 99 (|has| (-410 (-549)) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 97 (|has| (-410 (-549)) (-1041 (-410 (-549))))) (((-3 (-410 (-549)) #1#) $) 94)) (-3576 (((-549) $) 98 (|has| (-410 (-549)) (-1041 (-549)))) (((-410 (-549)) $) 96 (|has| (-410 (-549)) (-1041 (-410 (-549))))) (((-410 (-549)) $) 95)) (-3434 (($ $ (-865)) 69)) (-3433 (($ $ (-865)) 68)) (-2964 (($ $ $) 117)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 116)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 111)) (-4155 (((-112) $) 124)) (-3606 (((-112) $) 137)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 85)) (-3607 (((-112) $) 138)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 120)) (-2934 (($ $ $) 136)) (-3260 (($ $ $) 135)) (-3435 (((-3 (-1174 $) "failed") $) 81)) (-3437 (((-3 (-865) "failed") $) 83)) (-3436 (((-3 (-1174 $) "failed") $) 82)) (-2069 (($ (-643 $)) 109) (($ $ $) 108)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 125)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 110)) (-3564 (($ (-643 $)) 107) (($ $ $) 106)) (-4164 (((-408 $) $) 121)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 118)) (-3889 (((-3 $ "failed") $ $) 101)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 112)) (-1752 (((-773) $) 114)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 115)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 129) (($ $) 100) (($ (-410 (-549))) 93) (($ (-549)) 92) (($ (-410 (-549))) 89)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 104)) (-4201 (((-410 (-549)) $ $) 67)) (-3604 (((-643 $) (-1174 $)) 78) (((-643 $) (-1174 (-410 (-549)))) 77) (((-643 $) (-1174 (-549))) 76) (((-643 $) (-949 $)) 75) (((-643 $) (-949 (-410 (-549)))) 74) (((-643 $) (-949 (-549))) 73)) (-3807 (($ $) 140)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 133)) (-2967 (((-112) $ $) 132)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 134)) (-3088 (((-112) $ $) 131)) (-4381 (($ $ $) 130)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 126) (($ $ (-410 (-549))) 84)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ (-410 (-549)) $) 128) (($ $ (-410 (-549))) 127) (($ (-549) $) 91) (($ $ (-549)) 90) (($ (-410 (-549)) $) 88) (($ $ (-410 (-549))) 87))) +(((-1015) (-140)) (T -1015)) +((-3438 (*1 *1 *1) (-4 *1 (-1015))) (-3437 (*1 *2 *1) (|partial| -12 (-4 *1 (-1015)) (-5 *2 (-865)))) (-3436 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1015)))) (-3435 (*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1015)))) (-3603 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-922)) (-5 *4 (-865)) (-4 *1 (-1015)))) (-3603 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-922)) (-4 *1 (-1015)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-1015)) (-5 *2 (-643 *1)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1174 (-410 (-549)))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1174 (-549))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1015)) (-5 *2 (-643 *1)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-949 (-549))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) (-3438 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-922)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-1015)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1015)))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-865)))) (-3433 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-865)))) (-4201 (*1 *2 *1 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-410 (-549)))))) +(-13 (-147) (-850) (-172) (-365) (-415 (-410 (-549))) (-38 (-549)) (-38 (-410 (-549))) (-1005) (-10 -8 (-15 -3437 ((-3 (-865) "failed") $)) (-15 -3436 ((-3 (-1174 $) "failed") $)) (-15 -3435 ((-3 (-1174 $) "failed") $)) (-15 -3603 ((-3 $ "failed") (-1174 $) (-922) (-865))) (-15 -3603 ((-3 $ "failed") (-1174 $) (-922))) (-15 -3604 ((-643 $) (-1174 $))) (-15 -3604 ((-643 $) (-1174 (-410 (-549))))) (-15 -3604 ((-643 $) (-1174 (-549)))) (-15 -3604 ((-643 $) (-949 $))) (-15 -3604 ((-643 $) (-949 (-410 (-549))))) (-15 -3604 ((-643 $) (-949 (-549)))) (-15 -3438 ($ $ (-922))) (-15 -3438 ($ $)) (-15 -3438 ($ (-410 (-549)))) (-15 -3438 ($ (-549))) (-15 -3434 ($ $ (-865))) (-15 -3433 ($ $ (-865))) (-15 -4201 ((-410 (-549)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 #2=(-549)) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-415 (-410 (-549))) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 #2#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 #2#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 #2#) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-850) . T) ((-852) . T) ((-924) . T) ((-1005) . T) ((-1041 (-410 (-549))) . T) ((-1041 (-549)) |has| (-410 (-549)) (-1041 (-549))) ((-1054 #1#) . T) ((-1054 #2#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 #2#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) +((-3439 (((-2 (|:| |ans| |#2|) (|:| -3541 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1016 |#1| |#2|) (-10 -7 (-15 -3439 ((-2 (|:| |ans| |#2|) (|:| -3541 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-27) (-424 |#1|))) (T -1016)) +((-3439 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1180)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-643 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1205) (-27) (-424 *8))) (-4 *8 (-13 (-455) (-147) (-1041 *3) (-641 *3))) (-5 *3 (-549)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3541 *4) (|:| |sol?| (-112)))) (-5 *1 (-1016 *8 *4))))) +(-10 -7 (-15 -3439 ((-2 (|:| |ans| |#2|) (|:| -3541 |#2|) (|:| |sol?| (-112))) (-549) |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3440 (((-3 (-643 |#2|) "failed") (-549) |#2| |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -3440 ((-3 (-643 |#2|) "failed") (-549) |#2| |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1041 (-549)) (-641 (-549))) (-13 (-1205) (-27) (-424 |#1|))) (T -1017)) +((-3440 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1180)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-643 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1205) (-27) (-424 *8))) (-4 *8 (-13 (-455) (-147) (-1041 *3) (-641 *3))) (-5 *3 (-549)) (-5 *2 (-643 *4)) (-5 *1 (-1017 *8 *4))))) +(-10 -7 (-15 -3440 ((-3 (-643 |#2|) "failed") (-549) |#2| |#2| |#2| (-1180) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-643 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-643 |#2|)) (-1 (-3 (-2 (|:| -2318 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3443 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3687 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)) 38)) (-3441 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 69)) (-3442 (((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|)) 74))) +(((-1018 |#1| |#2|) (-10 -7 (-15 -3441 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3442 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -3443 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3687 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1041 (-549))) (-1245 |#1|)) (T -1018)) +((-3443 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1041 *4))) (-5 *4 (-549)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3687 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1018 *6 *3)))) (-3442 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-410 *5)))) (-3441 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -3497 *6))) (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6))))) +(-10 -7 (-15 -3441 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3442 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -3443 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3687 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-549)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-549) (-1 |#2| |#2|)))) +((-3444 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 22)) (-3445 (((-3 (-643 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 34))) +(((-1019 |#1| |#2|) (-10 -7 (-15 -3444 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3445 ((-3 (-643 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) (-13 (-365) (-147) (-1041 (-549))) (-1245 |#1|)) (T -1019)) +((-3445 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) (-5 *2 (-643 (-410 *5))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-410 *5)))) (-3444 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -3497 *6))) (-5 *1 (-1019 *5 *6)) (-5 *3 (-410 *6))))) +(-10 -7 (-15 -3444 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -3497 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3445 ((-3 (-643 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) +((-3446 (((-1 |#1|) (-643 (-2 (|:| -3826 |#1|) (|:| -1623 (-549))))) 37)) (-3504 (((-1 |#1|) (-1100 |#1|)) 44)) (-3447 (((-1 |#1|) (-1269 |#1|) (-1269 (-549)) (-549)) 34))) +(((-1020 |#1|) (-10 -7 (-15 -3504 ((-1 |#1|) (-1100 |#1|))) (-15 -3446 ((-1 |#1|) (-643 (-2 (|:| -3826 |#1|) (|:| -1623 (-549)))))) (-15 -3447 ((-1 |#1|) (-1269 |#1|) (-1269 (-549)) (-549)))) (-1104)) (T -1020)) +((-3447 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1269 *6)) (-5 *4 (-1269 (-549))) (-5 *5 (-549)) (-4 *6 (-1104)) (-5 *2 (-1 *6)) (-5 *1 (-1020 *6)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3826 *4) (|:| -1623 (-549))))) (-4 *4 (-1104)) (-5 *2 (-1 *4)) (-5 *1 (-1020 *4)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1100 *4)) (-4 *4 (-1104)) (-5 *2 (-1 *4)) (-5 *1 (-1020 *4))))) +(-10 -7 (-15 -3504 ((-1 |#1|) (-1100 |#1|))) (-15 -3446 ((-1 |#1|) (-643 (-2 (|:| -3826 |#1|) (|:| -1623 (-549)))))) (-15 -3447 ((-1 |#1|) (-1269 |#1|) (-1269 (-549)) (-549)))) +((-4203 (((-773) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1021 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4203 ((-773) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1245 |#1|) (-1245 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1021)) +((-4203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1245 *6)) (-4 *4 (-1245 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-773)) (-5 *1 (-1021 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4203 ((-773) (-335 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2968 (((-112) $ $) NIL)) (-3448 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 11)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1022) (-13 (-1086) (-10 -8 (-15 -3448 ((-1138) $)) (-15 -3653 ((-1138) $))))) (T -1022)) +((-3448 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1022)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1022))))) +(-13 (-1086) (-10 -8 (-15 -3448 ((-1138) $)) (-15 -3653 ((-1138) $)))) +((-4402 (((-225) $) 6) (((-380) $) 9))) +(((-1023) (-140)) (T -1023)) +NIL +(-13 (-616 (-225)) (-616 (-380))) +(((-616 (-225)) . T) ((-616 (-380)) . T)) +((-3538 (((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 32) (((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549))) 29)) (-3451 (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549))) 34) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549))) 30) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 33) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|) 28)) (-3450 (((-643 (-410 (-549))) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) 20)) (-3449 (((-410 (-549)) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 17))) +(((-1024 |#1|) (-10 -7 (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|)) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549)))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3449 ((-410 (-549)) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3450 ((-643 (-410 (-549))) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))))) (-1245 (-549))) (T -1024)) +((-3450 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *2 (-643 (-410 (-549)))) (-5 *1 (-1024 *4)) (-4 *4 (-1245 (-549))))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *2 (-410 (-549))) (-5 *1 (-1024 *4)) (-4 *4 (-1245 (-549))))) (-3538 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) (-3538 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *4 (-410 (-549))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) (-3451 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *5) (|:| -3541 *5)))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) (-5 *4 (-2 (|:| -3542 *5) (|:| -3541 *5))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) (-5 *4 (-410 (-549))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) (-5 *4 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-3451 (*1 *2 *3) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549)))))) +(-10 -7 (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|)) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549)))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3449 ((-410 (-549)) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3450 ((-643 (-410 (-549))) (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))))) +((-3538 (((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 35) (((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549))) 32)) (-3451 (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549))) 30) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549))) 26) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) 28) (((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|) 24))) +(((-1025 |#1|) (-10 -7 (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|)) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549)))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-1245 (-410 (-549)))) (T -1025)) +((-3538 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))))) (-3538 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) (-5 *4 (-410 (-549))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 *4)))) (-3451 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *5) (|:| -3541 *5)))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 *5)) (-5 *4 (-2 (|:| -3542 *5) (|:| -3541 *5))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *4) (|:| -3541 *4)))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 *4)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))) (-5 *4 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) (-3451 (*1 *2 *3) (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549))))))) +(-10 -7 (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1|)) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-410 (-549)))) (-15 -3451 ((-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-410 (-549)))) (-15 -3538 ((-3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) "failed") |#1| (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))) (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) +((-4004 (((-643 (-380)) (-949 (-549)) (-380)) 28) (((-643 (-380)) (-949 (-410 (-549))) (-380)) 27)) (-4399 (((-643 (-643 (-380))) (-643 (-949 (-549))) (-643 (-1180)) (-380)) 37))) +(((-1026) (-10 -7 (-15 -4004 ((-643 (-380)) (-949 (-410 (-549))) (-380))) (-15 -4004 ((-643 (-380)) (-949 (-549)) (-380))) (-15 -4399 ((-643 (-643 (-380))) (-643 (-949 (-549))) (-643 (-1180)) (-380))))) (T -1026)) +((-4399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-643 (-1180))) (-5 *2 (-643 (-643 (-380)))) (-5 *1 (-1026)) (-5 *5 (-380)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-549))) (-5 *2 (-643 (-380))) (-5 *1 (-1026)) (-5 *4 (-380)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *2 (-643 (-380))) (-5 *1 (-1026)) (-5 *4 (-380))))) +(-10 -7 (-15 -4004 ((-643 (-380)) (-949 (-410 (-549))) (-380))) (-15 -4004 ((-643 (-380)) (-949 (-549)) (-380))) (-15 -4399 ((-643 (-643 (-380))) (-643 (-949 (-549))) (-643 (-1180)) (-380)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 75)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-3438 (($ $) NIL) (($ $ (-922)) NIL) (($ (-410 (-549))) NIL) (($ (-549)) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) 70)) (-4156 (($) NIL T CONST)) (-3603 (((-3 $ #1="failed") (-1174 $) (-922) (-865)) NIL) (((-3 $ #1#) (-1174 $) (-922)) 55)) (-3577 (((-3 (-410 (-549)) #2="failed") $) NIL (|has| (-410 (-549)) (-1041 (-410 (-549))))) (((-3 (-410 (-549)) #2#) $) NIL) (((-3 |#1| #2#) $) 116) (((-3 (-549) #2#) $) NIL (-3960 (|has| (-410 (-549)) (-1041 (-549))) (|has| |#1| (-1041 (-549)))))) (-3576 (((-410 (-549)) $) 17 (|has| (-410 (-549)) (-1041 (-410 (-549))))) (((-410 (-549)) $) 17) ((|#1| $) 117) (((-549) $) NIL (-3960 (|has| (-410 (-549)) (-1041 (-549))) (|has| |#1| (-1041 (-549)))))) (-3434 (($ $ (-865)) 47)) (-3433 (($ $ (-865)) 48)) (-2964 (($ $ $) NIL)) (-3602 (((-410 (-549)) $ $) 21)) (-3890 (((-3 $ "failed") $) 88)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-3606 (((-112) $) 66)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL)) (-3607 (((-112) $) 69)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3435 (((-3 (-1174 $) #1#) $) 83)) (-3437 (((-3 (-865) #1#) $) 82)) (-3436 (((-3 (-1174 $) #1#) $) 80)) (-3452 (((-3 (-1064 $ (-1174 $)) "failed") $) 78)) (-2069 (($ (-643 $)) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 89)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ (-643 $)) NIL) (($ $ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4378 (((-865) $) 87) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ $) 63) (($ (-410 (-549))) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ |#1|) 119)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-4201 (((-410 (-549)) $ $) 27)) (-3604 (((-643 $) (-1174 $)) 61) (((-643 $) (-1174 (-410 (-549)))) NIL) (((-643 $) (-1174 (-549))) NIL) (((-643 $) (-949 $)) NIL) (((-643 $) (-949 (-410 (-549)))) NIL) (((-643 $) (-949 (-549))) NIL)) (-3453 (($ (-1064 $ (-1174 $)) (-865)) 46)) (-3807 (($ $) 22)) (-3510 (($) 32 T CONST)) (-3067 (($) 39 T CONST)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 76)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 24)) (-4381 (($ $ $) 37)) (-4269 (($ $) 38) (($ $ $) 74)) (-4271 (($ $ $) 112)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL) (($ $ (-410 (-549))) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 98) (($ $ $) 104) (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ (-549) $) 98) (($ $ (-549)) NIL) (($ (-410 (-549)) $) NIL) (($ $ (-410 (-549))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1027 |#1|) (-13 (-1015) (-415 |#1|) (-38 |#1|) (-10 -8 (-15 -3453 ($ (-1064 $ (-1174 $)) (-865))) (-15 -3452 ((-3 (-1064 $ (-1174 $)) "failed") $)) (-15 -3602 ((-410 (-549)) $ $)))) (-13 (-850) (-365) (-1023))) (T -1027)) +((-3453 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 (-1027 *4) (-1174 (-1027 *4)))) (-5 *3 (-865)) (-5 *1 (-1027 *4)) (-4 *4 (-13 (-850) (-365) (-1023))))) (-3452 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064 (-1027 *3) (-1174 (-1027 *3)))) (-5 *1 (-1027 *3)) (-4 *3 (-13 (-850) (-365) (-1023))))) (-3602 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1027 *3)) (-4 *3 (-13 (-850) (-365) (-1023)))))) +(-13 (-1015) (-415 |#1|) (-38 |#1|) (-10 -8 (-15 -3453 ($ (-1064 $ (-1174 $)) (-865))) (-15 -3452 ((-3 (-1064 $ (-1174 $)) "failed") $)) (-15 -3602 ((-410 (-549)) $ $)))) +((-3454 (((-2 (|:| -3687 |#2|) (|:| -2902 (-643 |#1|))) |#2| (-643 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1028 |#1| |#2|) (-10 -7 (-15 -3454 (|#2| |#2| |#1|)) (-15 -3454 ((-2 (|:| -3687 |#2|) (|:| -2902 (-643 |#1|))) |#2| (-643 |#1|)))) (-365) (-660 |#1|)) (T -1028)) +((-3454 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3687 *3) (|:| -2902 (-643 *5)))) (-5 *1 (-1028 *5 *3)) (-5 *4 (-643 *5)) (-4 *3 (-660 *5)))) (-3454 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1028 *3 *2)) (-4 *2 (-660 *3))))) +(-10 -7 (-15 -3454 (|#2| |#2| |#1|)) (-15 -3454 ((-2 (|:| -3687 |#2|) (|:| -2902 (-643 |#1|))) |#2| (-643 |#1|)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3456 ((|#1| $ |#1|) 14)) (-4219 ((|#1| $ |#1|) 12)) (-3458 (($ |#1|) 10)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4231 ((|#1| $) 11)) (-3457 ((|#1| $) 13)) (-4378 (((-865) $) 21 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3455 (((-112) $ $) 9))) +(((-1029 |#1|) (-13 (-1219) (-10 -8 (-15 -3458 ($ |#1|)) (-15 -4231 (|#1| $)) (-15 -4219 (|#1| $ |#1|)) (-15 -3457 (|#1| $)) (-15 -3456 (|#1| $ |#1|)) (-15 -3455 ((-112) $ $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) (-1219)) (T -1029)) +((-3458 (*1 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-4219 (*1 *2 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-3457 (*1 *2 *1) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-3456 (*1 *2 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) (-3455 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1219))))) +(-13 (-1219) (-10 -8 (-15 -3458 ($ |#1|)) (-15 -4231 (|#1| $)) (-15 -4219 (|#1| $ |#1|)) (-15 -3457 (|#1| $)) (-15 -3456 (|#1| $ |#1|)) (-15 -3455 ((-112) $ $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) NIL)) (-4114 (((-643 $) (-643 |#4|)) 118) (((-643 $) (-643 |#4|) (-112)) 119) (((-643 $) (-643 |#4|) (-112) (-112)) 117) (((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112)) 120)) (-3485 (((-643 |#3|) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 112)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 66)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) 29 (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3301 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) NIL)) (-3576 (($ (-643 |#4|)) NIL)) (-4230 (((-3 $ #1#) $) 45)) (-4117 ((|#4| |#4| $) 69)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4115 ((|#4| |#4| $) NIL)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) NIL)) (-3617 (((-112) |#4| $) NIL)) (-3615 (((-112) |#4| $) NIL)) (-3618 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3862 (((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112)) 133)) (-2124 (((-643 |#4|) $) 18 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3600 ((|#3| $) 38)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 19 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2128 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 23)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) NIL)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 110)) (-4229 (((-3 |#4| #1#) $) 42)) (-3612 (((-643 $) |#4| $) 93)) (-3614 (((-3 (-112) (-643 $)) |#4| $) NIL)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3658 (((-643 $) |#4| $) 115) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) 116) (((-643 $) |#4| (-643 $)) NIL)) (-3863 (((-643 $) (-643 |#4|) (-112) (-112) (-112)) 128)) (-3864 (($ |#4| $) 82) (($ (-643 |#4|) $) 83) (((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4129 (((-643 |#4|) $) NIL)) (-4123 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-4131 (((-112) $ $) NIL)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4119 ((|#4| |#4| $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 |#4| #1#) $) 40)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4111 (((-3 $ #1#) $ |#4|) 59)) (-4200 (($ $ |#4|) NIL) (((-643 $) |#4| $) 95) (((-643 $) |#4| (-643 $)) NIL) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) 89)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 14)) (-4380 (((-773) $) NIL)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) 13)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-3313 (($ $ |#3|) 54)) (-4116 (($ $) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) 35) (((-643 |#4|) $) 46)) (-4110 (((-773) $) NIL (|has| |#3| (-370)))) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) NIL)) (-3609 (((-643 $) |#4| $) 92) (((-643 $) |#4| (-643 $)) NIL) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) NIL)) (-3616 (((-112) |#4| $) NIL)) (-4365 (((-112) |#3| $) 65)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1030 |#1| |#2| |#3| |#4|) (-13 (-1074 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3864 ((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112))) (-15 -3863 ((-643 $) (-643 |#4|) (-112) (-112) (-112))) (-15 -3862 ((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112))))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -1030)) +((-3864 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *3))) (-5 *1 (-1030 *5 *6 *7 *3)) (-4 *3 (-1068 *5 *6 *7)))) (-4114 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) (-5 *1 (-1030 *5 *6 *7 *8)))) (-4114 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) (-5 *1 (-1030 *5 *6 *7 *8)))) (-3863 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) (-5 *1 (-1030 *5 *6 *7 *8)))) (-3862 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-643 *8)) (|:| |towers| (-643 (-1030 *5 *6 *7 *8))))) (-5 *1 (-1030 *5 *6 *7 *8)) (-5 *3 (-643 *8))))) +(-13 (-1074 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3864 ((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112))) (-15 -3863 ((-643 $) (-643 |#4|) (-112) (-112) (-112))) (-15 -3862 ((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112))))) +((-3459 (((-643 (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-643 (-691 (-315 (-549))))))) (-691 (-410 (-949 (-549))))) 67)) (-3460 (((-643 (-691 (-315 (-549)))) (-315 (-549)) (-691 (-410 (-949 (-549))))) 52)) (-3461 (((-643 (-315 (-549))) (-691 (-410 (-949 (-549))))) 45)) (-3465 (((-643 (-691 (-315 (-549)))) (-691 (-410 (-949 (-549))))) 87)) (-3463 (((-691 (-315 (-549))) (-691 (-315 (-549)))) 38)) (-3464 (((-643 (-691 (-315 (-549)))) (-643 (-691 (-315 (-549))))) 76)) (-3462 (((-3 (-691 (-315 (-549))) "failed") (-691 (-410 (-949 (-549))))) 84))) +(((-1031) (-10 -7 (-15 -3459 ((-643 (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-643 (-691 (-315 (-549))))))) (-691 (-410 (-949 (-549)))))) (-15 -3460 ((-643 (-691 (-315 (-549)))) (-315 (-549)) (-691 (-410 (-949 (-549)))))) (-15 -3461 ((-643 (-315 (-549))) (-691 (-410 (-949 (-549)))))) (-15 -3462 ((-3 (-691 (-315 (-549))) "failed") (-691 (-410 (-949 (-549)))))) (-15 -3463 ((-691 (-315 (-549))) (-691 (-315 (-549))))) (-15 -3464 ((-643 (-691 (-315 (-549)))) (-643 (-691 (-315 (-549)))))) (-15 -3465 ((-643 (-691 (-315 (-549)))) (-691 (-410 (-949 (-549)))))))) (T -1031)) +((-3465 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-691 (-315 (-549))))) (-5 *1 (-1031)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-643 (-691 (-315 (-549))))) (-5 *1 (-1031)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-691 (-315 (-549)))) (-5 *1 (-1031)))) (-3462 (*1 *2 *3) (|partial| -12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-691 (-315 (-549)))) (-5 *1 (-1031)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-315 (-549)))) (-5 *1 (-1031)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *4 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-691 (-315 (-549))))) (-5 *1 (-1031)) (-5 *3 (-315 (-549))))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-643 (-691 (-315 (-549)))))))) (-5 *1 (-1031))))) +(-10 -7 (-15 -3459 ((-643 (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) (|:| |radvect| (-643 (-691 (-315 (-549))))))) (-691 (-410 (-949 (-549)))))) (-15 -3460 ((-643 (-691 (-315 (-549)))) (-315 (-549)) (-691 (-410 (-949 (-549)))))) (-15 -3461 ((-643 (-315 (-549))) (-691 (-410 (-949 (-549)))))) (-15 -3462 ((-3 (-691 (-315 (-549))) "failed") (-691 (-410 (-949 (-549)))))) (-15 -3463 ((-691 (-315 (-549))) (-691 (-315 (-549))))) (-15 -3464 ((-643 (-691 (-315 (-549)))) (-643 (-691 (-315 (-549)))))) (-15 -3465 ((-643 (-691 (-315 (-549)))) (-691 (-410 (-949 (-549))))))) +((-3469 (((-643 (-691 |#1|)) (-643 (-691 |#1|))) 73) (((-691 |#1|) (-691 |#1|)) 72) (((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-643 (-691 |#1|))) 71) (((-691 |#1|) (-691 |#1|) (-691 |#1|)) 68)) (-3468 (((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922)) 66) (((-691 |#1|) (-691 |#1|) (-922)) 65)) (-3470 (((-643 (-691 (-549))) (-643 (-643 (-549)))) 84) (((-643 (-691 (-549))) (-643 (-905 (-549))) (-549)) 83) (((-691 (-549)) (-643 (-549))) 80) (((-691 (-549)) (-905 (-549)) (-549)) 78)) (-3467 (((-691 (-949 |#1|)) (-773)) 98)) (-3466 (((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922)) 52 (|has| |#1| (-6 (-4427 "*")))) (((-691 |#1|) (-691 |#1|) (-922)) 50 (|has| |#1| (-6 (-4427 "*")))))) +(((-1032 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4427 "*"))) (-15 -3466 ((-691 |#1|) (-691 |#1|) (-922))) |%noBranch|) (IF (|has| |#1| (-6 (-4427 "*"))) (-15 -3466 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922))) |%noBranch|) (-15 -3467 ((-691 (-949 |#1|)) (-773))) (-15 -3468 ((-691 |#1|) (-691 |#1|) (-922))) (-15 -3468 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922))) (-15 -3469 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -3469 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3469 ((-691 |#1|) (-691 |#1|))) (-15 -3469 ((-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3470 ((-691 (-549)) (-905 (-549)) (-549))) (-15 -3470 ((-691 (-549)) (-643 (-549)))) (-15 -3470 ((-643 (-691 (-549))) (-643 (-905 (-549))) (-549))) (-15 -3470 ((-643 (-691 (-549))) (-643 (-643 (-549)))))) (-1052)) (T -1032)) +((-3470 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-549)))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-1032 *4)) (-4 *4 (-1052)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-905 (-549)))) (-5 *4 (-549)) (-5 *2 (-643 (-691 *4))) (-5 *1 (-1032 *5)) (-4 *5 (-1052)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1032 *4)) (-4 *4 (-1052)))) (-3470 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-549))) (-5 *4 (-549)) (-5 *2 (-691 *4)) (-5 *1 (-1032 *5)) (-4 *5 (-1052)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-643 (-691 *3))) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) (-3469 (*1 *2 *2 *2) (-12 (-5 *2 (-643 (-691 *3))) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) (-3469 (*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-691 *4))) (-5 *3 (-922)) (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *4)) (-5 *3 (-922)) (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-691 (-949 *4))) (-5 *1 (-1032 *4)) (-4 *4 (-1052)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-643 (-691 *4))) (-5 *3 (-922)) (|has| *4 (-6 (-4427 "*"))) (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-691 *4)) (-5 *3 (-922)) (|has| *4 (-6 (-4427 "*"))) (-4 *4 (-1052)) (-5 *1 (-1032 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4427 "*"))) (-15 -3466 ((-691 |#1|) (-691 |#1|) (-922))) |%noBranch|) (IF (|has| |#1| (-6 (-4427 "*"))) (-15 -3466 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922))) |%noBranch|) (-15 -3467 ((-691 (-949 |#1|)) (-773))) (-15 -3468 ((-691 |#1|) (-691 |#1|) (-922))) (-15 -3468 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-922))) (-15 -3469 ((-691 |#1|) (-691 |#1|) (-691 |#1|))) (-15 -3469 ((-643 (-691 |#1|)) (-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3469 ((-691 |#1|) (-691 |#1|))) (-15 -3469 ((-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3470 ((-691 (-549)) (-905 (-549)) (-549))) (-15 -3470 ((-691 (-549)) (-643 (-549)))) (-15 -3470 ((-643 (-691 (-549))) (-643 (-905 (-549))) (-549))) (-15 -3470 ((-643 (-691 (-549))) (-643 (-643 (-549)))))) +((-3474 (((-691 |#1|) (-643 (-691 |#1|)) (-1269 |#1|)) 71 (|has| |#1| (-308)))) (-3842 (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 (-1269 |#1|))) 111 (|has| |#1| (-365))) (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 |#1|)) 118 (|has| |#1| (-365)))) (-3478 (((-1269 |#1|) (-643 (-1269 |#1|)) (-549)) 136 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3477 (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-922)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112)) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|))) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112) (-549) (-549)) 121 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3476 (((-112) (-643 (-691 |#1|))) 104 (|has| |#1| (-365))) (((-112) (-643 (-691 |#1|)) (-549)) 107 (|has| |#1| (-365)))) (-3473 (((-1269 (-1269 |#1|)) (-643 (-691 |#1|)) (-1269 |#1|)) 68 (|has| |#1| (-308)))) (-3472 (((-691 |#1|) (-643 (-691 |#1|)) (-691 |#1|)) 48)) (-3471 (((-691 |#1|) (-1269 (-1269 |#1|))) 41)) (-3475 (((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-549)) 95 (|has| |#1| (-365))) (((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|))) 94 (|has| |#1| (-365))) (((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-112) (-549)) 102 (|has| |#1| (-365))))) +(((-1033 |#1|) (-10 -7 (-15 -3471 ((-691 |#1|) (-1269 (-1269 |#1|)))) (-15 -3472 ((-691 |#1|) (-643 (-691 |#1|)) (-691 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -3473 ((-1269 (-1269 |#1|)) (-643 (-691 |#1|)) (-1269 |#1|))) (-15 -3474 ((-691 |#1|) (-643 (-691 |#1|)) (-1269 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-112) (-549))) (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-549))) (-15 -3476 ((-112) (-643 (-691 |#1|)) (-549))) (-15 -3476 ((-112) (-643 (-691 |#1|)))) (-15 -3842 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 |#1|))) (-15 -3842 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 (-1269 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112) (-549) (-549))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-922))) (-15 -3478 ((-1269 |#1|) (-643 (-1269 |#1|)) (-549)))) |%noBranch|) |%noBranch|)) (-1052)) (T -1033)) +((-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1269 *5))) (-5 *4 (-549)) (-5 *2 (-1269 *5)) (-5 *1 (-1033 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)) (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-643 (-691 *5))))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)) (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-643 (-691 *5))))) (-3477 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1052)) (-5 *2 (-643 (-643 (-691 *4)))) (-5 *1 (-1033 *4)) (-5 *3 (-643 (-691 *4))))) (-3477 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-549)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1052)) (-5 *2 (-643 (-643 (-691 *6)))) (-5 *1 (-1033 *6)) (-5 *3 (-643 (-691 *6))))) (-3842 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 (-1269 *5))) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-643 (-691 *5))))) (-3842 (*1 *2 *3 *4) (-12 (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) (-5 *3 (-643 (-691 *5))))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-643 (-691 *4))) (-4 *4 (-365)) (-4 *4 (-1052)) (-5 *2 (-112)) (-5 *1 (-1033 *4)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-549)) (-4 *5 (-365)) (-4 *5 (-1052)) (-5 *2 (-112)) (-5 *1 (-1033 *5)))) (-3475 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-549)) (-5 *2 (-691 *5)) (-5 *1 (-1033 *5)) (-4 *5 (-365)) (-4 *5 (-1052)))) (-3475 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-691 *4))) (-5 *2 (-691 *4)) (-5 *1 (-1033 *4)) (-4 *4 (-365)) (-4 *4 (-1052)))) (-3475 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-643 (-691 *6))) (-5 *4 (-112)) (-5 *5 (-549)) (-5 *2 (-691 *6)) (-5 *1 (-1033 *6)) (-4 *6 (-365)) (-4 *6 (-1052)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-1269 *5)) (-4 *5 (-308)) (-4 *5 (-1052)) (-5 *2 (-691 *5)) (-5 *1 (-1033 *5)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-691 *5))) (-4 *5 (-308)) (-4 *5 (-1052)) (-5 *2 (-1269 (-1269 *5))) (-5 *1 (-1033 *5)) (-5 *4 (-1269 *5)))) (-3472 (*1 *2 *3 *2) (-12 (-5 *3 (-643 (-691 *4))) (-5 *2 (-691 *4)) (-4 *4 (-1052)) (-5 *1 (-1033 *4)))) (-3471 (*1 *2 *3) (-12 (-5 *3 (-1269 (-1269 *4))) (-4 *4 (-1052)) (-5 *2 (-691 *4)) (-5 *1 (-1033 *4))))) +(-10 -7 (-15 -3471 ((-691 |#1|) (-1269 (-1269 |#1|)))) (-15 -3472 ((-691 |#1|) (-643 (-691 |#1|)) (-691 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -3473 ((-1269 (-1269 |#1|)) (-643 (-691 |#1|)) (-1269 |#1|))) (-15 -3474 ((-691 |#1|) (-643 (-691 |#1|)) (-1269 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-112) (-549))) (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3475 ((-691 |#1|) (-643 (-691 |#1|)) (-643 (-691 |#1|)) (-549))) (-15 -3476 ((-112) (-643 (-691 |#1|)) (-549))) (-15 -3476 ((-112) (-643 (-691 |#1|)))) (-15 -3842 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 |#1|))) (-15 -3842 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-1269 (-1269 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112) (-549) (-549))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-112))) (-15 -3477 ((-643 (-643 (-691 |#1|))) (-643 (-691 |#1|)) (-922))) (-15 -3478 ((-1269 |#1|) (-643 (-1269 |#1|)) (-549)))) |%noBranch|) |%noBranch|)) +((-3479 ((|#1| (-922) |#1|) 18))) +(((-1034 |#1|) (-10 -7 (-15 -3479 (|#1| (-922) |#1|))) (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $))))) (T -1034)) +((-3479 (*1 *2 *3 *2) (-12 (-5 *3 (-922)) (-5 *1 (-1034 *2)) (-4 *2 (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)))))))) +(-10 -7 (-15 -3479 (|#1| (-922) |#1|))) +((-3480 ((|#1| |#1| (-922)) 18))) +(((-1035 |#1|) (-10 -7 (-15 -3480 (|#1| |#1| (-922)))) (-13 (-1104) (-10 -8 (-15 * ($ $ $))))) (T -1035)) +((-3480 (*1 *2 *2 *3) (-12 (-5 *3 (-922)) (-5 *1 (-1035 *2)) (-4 *2 (-13 (-1104) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3480 (|#1| |#1| (-922)))) +((-4378 ((|#1| (-312)) 11) (((-1275) |#1|) 9))) +(((-1036 |#1|) (-10 -7 (-15 -4378 ((-1275) |#1|)) (-15 -4378 (|#1| (-312)))) (-1219)) (T -1036)) +((-4378 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1036 *2)) (-4 *2 (-1219)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-1275)) (-5 *1 (-1036 *3)) (-4 *3 (-1219))))) +(-10 -7 (-15 -4378 ((-1275) |#1|)) (-15 -4378 (|#1| (-312)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-4274 (($ |#4|) 25)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-3481 ((|#4| $) 27)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 46) (($ (-549)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3530 (((-773)) 43 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 21 T CONST)) (-3067 (($) 23 T CONST)) (-3455 (((-112) $ $) 40)) (-4269 (($ $) 31) (($ $ $) NIL)) (-4271 (($ $ $) 29)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1037 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -4274 ($ |#4|)) (-15 -4378 ($ |#4|)) (-15 -3481 (|#4| $)))) (-365) (-795) (-852) (-953 |#1| |#2| |#3|) (-643 |#4|)) (T -1037)) +((-4274 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *2 (-953 *3 *4 *5)) (-14 *6 (-643 *2)))) (-4378 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *2 (-953 *3 *4 *5)) (-14 *6 (-643 *2)))) (-3481 (*1 *2 *1) (-12 (-4 *2 (-953 *3 *4 *5)) (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-14 *6 (-643 *2))))) +(-13 (-172) (-38 |#1|) (-10 -8 (-15 -4274 ($ |#4|)) (-15 -4378 ($ |#4|)) (-15 -3481 (|#4| $)))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2372 (((-1275) $ (-1180) (-1180)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-3483 (((-112) (-112)) 43)) (-3482 (((-112) (-112)) 42)) (-4219 (((-51) $ (-1180) (-51)) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 (-51) #1="failed") (-1180) $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-3829 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-3 (-51) #1#) (-1180) $) NIL)) (-3830 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-51) $ (-1180) (-51)) NIL (|has| $ (-6 -4426)))) (-3517 (((-51) $ (-1180)) NIL)) (-2124 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1180) $) NIL (|has| (-1180) (-852)))) (-3008 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2375 (((-1180) $) NIL (|has| (-1180) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-2816 (((-643 (-1180)) $) 37)) (-2382 (((-112) (-1180) $) NIL)) (-1369 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-2377 (((-643 (-1180)) $) NIL)) (-2378 (((-112) (-1180) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4232 (((-51) $) NIL (|has| (-1180) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) "failed") (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL)) (-2373 (($ $ (-51)) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-51)) (-643 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-294 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-643 (-294 (-51)))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2379 (((-643 (-51)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (((-51) $ (-1180)) 39) (((-51) $ (-1180) (-51)) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-773) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104)))) (((-773) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-4378 (((-865) $) 41 (-3960 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-615 (-865))) (|has| (-51) (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1038) (-13 (-1196 (-1180) (-51)) (-10 -7 (-15 -3483 ((-112) (-112))) (-15 -3482 ((-112) (-112))) (-6 -4425)))) (T -1038)) +((-3483 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1038)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1038))))) +(-13 (-1196 (-1180) (-51)) (-10 -7 (-15 -3483 ((-112) (-112))) (-15 -3482 ((-112) (-112))) (-6 -4425))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 9)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1039) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $))))) (T -1039)) +((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1039))))) +(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)))) +((-3576 ((|#2| $) 10))) +(((-1040 |#1| |#2|) (-10 -8 (-15 -3576 (|#2| |#1|))) (-1041 |#2|) (-1219)) (T -1040)) +NIL +(-10 -8 (-15 -3576 (|#2| |#1|))) +((-3577 (((-3 |#1| "failed") $) 9)) (-3576 ((|#1| $) 8)) (-4378 (($ |#1|) 6))) +(((-1041 |#1|) (-140) (-1219)) (T -1041)) +((-3577 (*1 *2 *1) (|partial| -12 (-4 *1 (-1041 *2)) (-4 *2 (-1219)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1219))))) +(-13 (-618 |t#1|) (-10 -8 (-15 -3577 ((-3 |t#1| "failed") $)) (-15 -3576 (|t#1| $)))) +(((-618 |#1|) . T)) +((-3484 (((-643 (-643 (-294 (-410 (-949 |#2|))))) (-643 (-949 |#2|)) (-643 (-1180))) 38))) +(((-1042 |#1| |#2|) (-10 -7 (-15 -3484 ((-643 (-643 (-294 (-410 (-949 |#2|))))) (-643 (-949 |#2|)) (-643 (-1180))))) (-560) (-13 (-560) (-1041 |#1|))) (T -1042)) +((-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-4 *6 (-13 (-560) (-1041 *5))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *6)))))) (-5 *1 (-1042 *5 *6))))) +(-10 -7 (-15 -3484 ((-643 (-643 (-294 (-410 (-949 |#2|))))) (-643 (-949 |#2|)) (-643 (-1180))))) +((-3485 (((-643 (-1180)) (-410 (-949 |#1|))) 17)) (-3487 (((-410 (-1174 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180)) 24)) (-3488 (((-410 (-949 |#1|)) (-410 (-1174 (-410 (-949 |#1|)))) (-1180)) 26)) (-3486 (((-3 (-1180) "failed") (-410 (-949 |#1|))) 20)) (-4199 (((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-294 (-410 (-949 |#1|))))) 32) (((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|)))) 33) (((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-1180)) (-643 (-410 (-949 |#1|)))) 28) (((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|))) 29)) (-4378 (((-410 (-949 |#1|)) |#1|) 11))) +(((-1043 |#1|) (-10 -7 (-15 -3485 ((-643 (-1180)) (-410 (-949 |#1|)))) (-15 -3486 ((-3 (-1180) "failed") (-410 (-949 |#1|)))) (-15 -3487 ((-410 (-1174 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180))) (-15 -3488 ((-410 (-949 |#1|)) (-410 (-1174 (-410 (-949 |#1|)))) (-1180))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-1180)) (-643 (-410 (-949 |#1|))))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -4378 ((-410 (-949 |#1|)) |#1|))) (-560)) (T -1043)) +((-4378 (*1 *2 *3) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-560)))) (-4199 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-294 (-410 (-949 *4))))) (-5 *2 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *1 (-1043 *4)))) (-4199 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-410 (-949 *4)))) (-5 *2 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *1 (-1043 *4)))) (-4199 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-643 (-1180))) (-5 *4 (-643 (-410 (-949 *5)))) (-5 *2 (-410 (-949 *5))) (-4 *5 (-560)) (-5 *1 (-1043 *5)))) (-4199 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-410 (-949 *4))) (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-1043 *4)))) (-3488 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1174 (-410 (-949 *5))))) (-5 *4 (-1180)) (-5 *2 (-410 (-949 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-560)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-410 (-1174 (-410 (-949 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-410 (-949 *5))))) (-3486 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-1180)) (-5 *1 (-1043 *4)))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-643 (-1180))) (-5 *1 (-1043 *4))))) +(-10 -7 (-15 -3485 ((-643 (-1180)) (-410 (-949 |#1|)))) (-15 -3486 ((-3 (-1180) "failed") (-410 (-949 |#1|)))) (-15 -3487 ((-410 (-1174 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180))) (-15 -3488 ((-410 (-949 |#1|)) (-410 (-1174 (-410 (-949 |#1|)))) (-1180))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-1180)) (-643 (-410 (-949 |#1|))))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-294 (-410 (-949 |#1|))))) (-15 -4199 ((-410 (-949 |#1|)) (-410 (-949 |#1|)) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -4378 ((-410 (-949 |#1|)) |#1|))) +((-3489 (((-380)) 17)) (-3504 (((-1 (-380)) (-380) (-380)) 22)) (-3497 (((-1 (-380)) (-773)) 50)) (-3490 (((-380)) 37)) (-3493 (((-1 (-380)) (-380) (-380)) 38)) (-3491 (((-380)) 29)) (-3494 (((-1 (-380)) (-380)) 30)) (-3492 (((-380) (-773)) 45)) (-3495 (((-1 (-380)) (-773)) 46)) (-3496 (((-1 (-380)) (-773) (-773)) 49)) (-3808 (((-1 (-380)) (-773) (-773)) 47))) +(((-1044) (-10 -7 (-15 -3489 ((-380))) (-15 -3490 ((-380))) (-15 -3491 ((-380))) (-15 -3492 ((-380) (-773))) (-15 -3504 ((-1 (-380)) (-380) (-380))) (-15 -3493 ((-1 (-380)) (-380) (-380))) (-15 -3494 ((-1 (-380)) (-380))) (-15 -3495 ((-1 (-380)) (-773))) (-15 -3808 ((-1 (-380)) (-773) (-773))) (-15 -3496 ((-1 (-380)) (-773) (-773))) (-15 -3497 ((-1 (-380)) (-773))))) (T -1044)) +((-3497 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) (-3496 (*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) (-3808 (*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) (-3494 (*1 *2 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380)))) (-3493 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380)))) (-3504 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-380)) (-5 *1 (-1044)))) (-3491 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044)))) (-3490 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044)))) (-3489 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044))))) +(-10 -7 (-15 -3489 ((-380))) (-15 -3490 ((-380))) (-15 -3491 ((-380))) (-15 -3492 ((-380) (-773))) (-15 -3504 ((-1 (-380)) (-380) (-380))) (-15 -3493 ((-1 (-380)) (-380) (-380))) (-15 -3494 ((-1 (-380)) (-380))) (-15 -3495 ((-1 (-380)) (-773))) (-15 -3808 ((-1 (-380)) (-773) (-773))) (-15 -3496 ((-1 (-380)) (-773) (-773))) (-15 -3497 ((-1 (-380)) (-773)))) +((-4164 (((-408 |#1|) |#1|) 33))) +(((-1045 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1|))) (-1245 (-410 (-949 (-549))))) (T -1045)) +((-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1045 *3)) (-4 *3 (-1245 (-410 (-949 (-549)))))))) +(-10 -7 (-15 -4164 ((-408 |#1|) |#1|))) +((-3498 (((-410 (-408 (-949 |#1|))) (-410 (-949 |#1|))) 14))) +(((-1046 |#1|) (-10 -7 (-15 -3498 ((-410 (-408 (-949 |#1|))) (-410 (-949 |#1|))))) (-308)) (T -1046)) +((-3498 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-408 (-949 *4)))) (-5 *1 (-1046 *4))))) +(-10 -7 (-15 -3498 ((-410 (-408 (-949 |#1|))) (-410 (-949 |#1|))))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4156 (($) 18 T CONST)) (-3502 ((|#1| $) 23)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3501 ((|#1| $) 22)) (-3499 ((|#1|) 20 T CONST)) (-4378 (((-865) $) 12)) (-3500 ((|#1| $) 21)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16))) (((-1047 |#1|) (-140) (-23)) (T -1047)) -((-2181 (*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) -(-13 (-1046 |t#1|) (-10 -8 (-15 -2181 ($) -3562))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1046 |#1|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 (-781 |#1| (-865 |#2|)))))) (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-3148 (((-645 $) (-645 (-781 |#1| (-865 |#2|)))) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)) NIL)) (-3783 (((-645 (-865 |#2|)) $) NIL)) (-2643 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| |#1| (-559)))) (-1650 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2688 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3864 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -3526 $))) (-781 |#1| (-865 |#2|)) $) NIL)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ (-865 |#2|)) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-1316 (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 (-781 |#1| (-865 |#2|)) "failed") $ (-865 |#2|)) NIL)) (-3758 (($) NIL T CONST)) (-3731 (((-112) $) NIL (|has| |#1| (-559)))) (-4301 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4089 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3937 (((-112) $) NIL (|has| |#1| (-559)))) (-4069 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-2160 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3264 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-3094 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-3447 (((-3 $ "failed") $) NIL)) (-2903 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-1695 (($ (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-4115 (((-112) (-781 |#1| (-865 |#2|)) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1861 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2617 (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|))) NIL (|has| $ (-6 -4422))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-3608 (((-2 (|:| -4057 (-645 (-781 |#1| (-865 |#2|)))) (|:| -1692 (-645 (-781 |#1| (-865 |#2|))))) $) NIL)) (-2940 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2708 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2600 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3468 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3463 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3066 (((-865 |#2|) $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-2021 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL)) (-3870 (((-645 (-865 |#2|)) $) NIL)) (-2415 (((-112) (-865 |#2|) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-1434 (((-3 (-781 |#1| (-865 |#2|)) (-645 $)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-4316 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -3526 $))) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-1725 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-2920 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL)) (-4264 (((-3 (-112) (-645 $)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3972 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 $))) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-3873 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL)) (-4214 (($ (-781 |#1| (-865 |#2|)) $) NIL) (($ (-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-2290 (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-1737 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2763 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-4009 (((-112) $ $) NIL)) (-3530 (((-2 (|:| |num| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-1927 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-3893 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-2989 (((-3 (-781 |#1| (-865 |#2|)) "failed") (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL)) (-2806 (((-3 $ "failed") $ (-781 |#1| (-865 |#2|))) NIL)) (-1678 (($ $ (-781 |#1| (-865 |#2|))) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-1430 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-295 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (($ $ (-645 (-295 (-781 |#1| (-865 |#2|))))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-3380 (((-772) $) NIL)) (-3486 (((-772) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-781 |#1| (-865 |#2|)) (-1102)))) (((-772) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-781 |#1| (-865 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-1582 (($ $ (-865 |#2|)) NIL)) (-2746 (($ $ (-865 |#2|)) NIL)) (-2012 (($ $) NIL)) (-3975 (($ $ (-865 |#2|)) NIL)) (-2504 (((-863) $) NIL) (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-3312 (((-772) $) NIL (|has| (-865 |#2|) (-370)))) (-3858 (((-112) $ $) NIL)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-4205 (((-112) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-645 (-781 |#1| (-865 |#2|))))) NIL)) (-3259 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-3450 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-3955 (((-645 (-865 |#2|)) $) NIL)) (-3961 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-3392 (((-112) (-865 |#2|) $) NIL)) (-2968 (((-112) $ $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1048 |#1| |#2|) (-13 (-1073 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3148 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) (-455) (-645 (-1179))) (T -1048)) -((-3148 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1048 *5 *6))))) -(-13 (-1073 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -3148 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) -((-1482 (((-1 (-567)) (-1096 (-567))) 32)) (-2402 (((-567) (-567) (-567) (-567) (-567)) 29)) (-2781 (((-1 (-567)) |RationalNumber|) NIL)) (-3784 (((-1 (-567)) |RationalNumber|) NIL)) (-3040 (((-1 (-567)) (-567) |RationalNumber|) NIL))) -(((-1049) (-10 -7 (-15 -1482 ((-1 (-567)) (-1096 (-567)))) (-15 -3040 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -2781 ((-1 (-567)) |RationalNumber|)) (-15 -3784 ((-1 (-567)) |RationalNumber|)) (-15 -2402 ((-567) (-567) (-567) (-567) (-567))))) (T -1049)) -((-2402 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1049)))) (-3784 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))) (-2781 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)) (-5 *3 (-567)))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-1096 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1049))))) -(-10 -7 (-15 -1482 ((-1 (-567)) (-1096 (-567)))) (-15 -3040 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -2781 ((-1 (-567)) |RationalNumber|)) (-15 -3784 ((-1 (-567)) |RationalNumber|)) (-15 -2402 ((-567) (-567) (-567) (-567) (-567)))) -((-2504 (((-863) $) NIL) (($ (-567)) 10))) -(((-1050 |#1|) (-10 -8 (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-1051)) (T -1050)) -NIL -(-10 -8 (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-1051) (-140)) (T -1051)) -((-2214 (*1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-772))))) -(-13 (-1060) (-727) (-649 $) (-617 (-567)) (-10 -7 (-15 -2214 ((-772)) -3562) (-6 -4419))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-3759 (((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)) 60))) -(((-1052 |#1| |#2|) (-10 -7 (-15 -3759 ((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) (-1179) (-365)) (T -1052)) -((-3759 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) (-5 *2 (-410 (-954 *6))) (-5 *1 (-1052 *5 *6)) (-14 *5 (-1179))))) -(-10 -7 (-15 -3759 ((-410 (-954 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 15)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 16 T CONST)) (-2968 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1053 |#1|) (-140) (-1060)) (T -1053)) -((-1807 (*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060))))) -(-13 (-1102) (-10 -8 (-15 (-1807) ($) -3562) (-15 -2684 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-3740 (((-112) $) 40)) (-2995 (((-112) $) 17)) (-4371 (((-772) $) 13)) (-4385 (((-772) $) 14)) (-2698 (((-112) $) 30)) (-3343 (((-112) $) 42))) -(((-1054 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4385 ((-772) |#1|)) (-15 -4371 ((-772) |#1|)) (-15 -3343 ((-112) |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -2698 ((-112) |#1|)) (-15 -2995 ((-112) |#1|))) (-1055 |#2| |#3| |#4| |#5| |#6|) (-772) (-772) (-1051) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1054)) -NIL -(-10 -8 (-15 -4385 ((-772) |#1|)) (-15 -4371 ((-772) |#1|)) (-15 -3343 ((-112) |#1|)) (-15 -3740 ((-112) |#1|)) (-15 -2698 ((-112) |#1|)) (-15 -2995 ((-112) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3740 (((-112) $) 56)) (-2932 (((-3 $ "failed") $ $) 20)) (-2995 (((-112) $) 58)) (-1555 (((-112) $ (-772)) 66)) (-3758 (($) 18 T CONST)) (-2367 (($ $) 39 (|has| |#3| (-308)))) (-4134 ((|#4| $ (-567)) 44)) (-1471 (((-772) $) 38 (|has| |#3| (-559)))) (-1970 ((|#3| $ (-567) (-567)) 46)) (-3468 (((-645 |#3|) $) 73 (|has| $ (-6 -4422)))) (-3301 (((-772) $) 37 (|has| |#3| (-559)))) (-3010 (((-645 |#5|) $) 36 (|has| |#3| (-559)))) (-4371 (((-772) $) 50)) (-4385 (((-772) $) 49)) (-3753 (((-112) $ (-772)) 65)) (-3181 (((-567) $) 54)) (-2631 (((-567) $) 52)) (-4200 (((-645 |#3|) $) 74 (|has| $ (-6 -4422)))) (-2203 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1102)) (|has| $ (-6 -4422))))) (-4244 (((-567) $) 53)) (-3802 (((-567) $) 51)) (-2446 (($ (-645 (-645 |#3|))) 59)) (-2021 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3298 (((-645 (-645 |#3|)) $) 48)) (-3421 (((-112) $ (-772)) 64)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-559)))) (-1430 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#3|) (-645 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-2222 (((-112) $ $) 60)) (-2319 (((-112) $) 63)) (-2973 (($) 62)) (-1882 ((|#3| $ (-567) (-567)) 47) ((|#3| $ (-567) (-567) |#3|) 45)) (-2698 (((-112) $) 57)) (-3486 (((-772) |#3| $) 75 (-12 (|has| |#3| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4422)))) (-3846 (($ $) 61)) (-2900 ((|#5| $ (-567)) 43)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3450 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4422)))) (-3343 (((-112) $) 55)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2498 (((-772) $) 67 (|has| $ (-6 -4422))))) -(((-1055 |#1| |#2| |#3| |#4| |#5|) (-140) (-772) (-772) (-1051) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1055)) -((-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1051)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3740 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-2631 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5))))) (-1882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) (-1970 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) (-1882 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *2 (-1051)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *2 *7)) (-4 *6 (-1051)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-2900 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *7 *2)) (-4 *6 (-1051)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-4364 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559)))) (-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-2367 (*1 *1 *1) (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-645 *7))))) -(-13 (-111 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4422) (IF (|has| |t#3| (-172)) (-6 (-718 |t#3|)) |%noBranch|) (-15 -2446 ($ (-645 (-645 |t#3|)))) (-15 -2995 ((-112) $)) (-15 -2698 ((-112) $)) (-15 -3740 ((-112) $)) (-15 -3343 ((-112) $)) (-15 -3181 ((-567) $)) (-15 -4244 ((-567) $)) (-15 -2631 ((-567) $)) (-15 -3802 ((-567) $)) (-15 -4371 ((-772) $)) (-15 -4385 ((-772) $)) (-15 -3298 ((-645 (-645 |t#3|)) $)) (-15 -1882 (|t#3| $ (-567) (-567))) (-15 -1970 (|t#3| $ (-567) (-567))) (-15 -1882 (|t#3| $ (-567) (-567) |t#3|)) (-15 -4134 (|t#4| $ (-567))) (-15 -2900 (|t#5| $ (-567))) (-15 -4364 ($ (-1 |t#3| |t#3|) $)) (-15 -4364 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-559)) (-15 -2478 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3064 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -2367 ($ $)) |%noBranch|) (IF (|has| |t#3| (-559)) (PROGN (-15 -1471 ((-772) $)) (-15 -3301 ((-772) $)) (-15 -3010 ((-645 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-614 (-863)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))) ((-492 |#3|) . T) ((-517 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))) ((-647 (-567)) . T) ((-647 |#3|) . T) ((-649 |#3|) . T) ((-641 |#3|) |has| |#3| (-172)) ((-718 |#3|) |has| |#3| (-172)) ((-1053 |#3|) . T) ((-1058 |#3|) . T) ((-1102) . T) ((-1219) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3740 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2995 (((-112) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3758 (($) NIL T CONST)) (-2367 (($ $) 47 (|has| |#3| (-308)))) (-4134 (((-240 |#2| |#3|) $ (-567)) 36)) (-1429 (($ (-690 |#3|)) 45)) (-1471 (((-772) $) 49 (|has| |#3| (-559)))) (-1970 ((|#3| $ (-567) (-567)) NIL)) (-3468 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-3301 (((-772) $) 51 (|has| |#3| (-559)))) (-3010 (((-645 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-559)))) (-4371 (((-772) $) NIL)) (-4385 (((-772) $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-3181 (((-567) $) NIL)) (-2631 (((-567) $) NIL)) (-4200 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-4244 (((-567) $) NIL)) (-3802 (((-567) $) NIL)) (-2446 (($ (-645 (-645 |#3|))) 31)) (-2021 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3298 (((-645 (-645 |#3|)) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2478 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-559)))) (-1430 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#3| $ (-567) (-567)) NIL) ((|#3| $ (-567) (-567) |#3|) NIL)) (-2589 (((-134)) 59 (|has| |#3| (-365)))) (-2698 (((-112) $) NIL)) (-3486 (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102)))) (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) 65 (|has| |#3| (-615 (-539))))) (-2900 (((-240 |#1| |#3|) $ (-567)) 40)) (-2504 (((-863) $) 19) (((-690 |#3|) $) 42)) (-3858 (((-112) $ $) NIL)) (-3450 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-3343 (((-112) $) NIL)) (-1807 (($) 16 T CONST)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1056 |#1| |#2| |#3|) (-13 (-1055 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1276 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -1429 ($ (-690 |#3|))))) (-772) (-772) (-1051)) (T -1056)) -((-1429 (*1 *1 *2) (-12 (-5 *2 (-690 *5)) (-4 *5 (-1051)) (-5 *1 (-1056 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772))))) -(-13 (-1055 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1276 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -1429 ($ (-690 |#3|))))) -((-2617 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4364 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1057 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4364 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2617 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-772) (-772) (-1051) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1055 |#1| |#2| |#3| |#4| |#5|) (-1051) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1055 |#1| |#2| |#7| |#8| |#9|)) (T -1057)) -((-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1051)) (-4 *2 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *12 (-1055 *5 *6 *2 *10 *11)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1051)) (-4 *10 (-1051)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1055 *5 *6 *10 *11 *12)) (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) -(-10 -7 (-15 -4364 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2617 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ |#1|) 27))) -(((-1058 |#1|) (-140) (-1060)) (T -1058)) -NIL -(-13 (-21) (-1053 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1053 |#1|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2722 (((-1179) $) 11)) (-4150 ((|#1| $) 12)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3382 (($ (-1179) |#1|) 10)) (-2504 (((-863) $) 22 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2968 (((-112) $ $) 17 (|has| |#1| (-1102))))) -(((-1059 |#1| |#2|) (-13 (-1219) (-10 -8 (-15 -3382 ($ (-1179) |#1|)) (-15 -2722 ((-1179) $)) (-15 -4150 (|#1| $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1095 |#2|) (-1219)) (T -1059)) -((-3382 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-4 *4 (-1219)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-1095 *4)))) (-2722 (*1 *2 *1) (-12 (-4 *4 (-1219)) (-5 *2 (-1179)) (-5 *1 (-1059 *3 *4)) (-4 *3 (-1095 *4)))) (-4150 (*1 *2 *1) (-12 (-4 *2 (-1095 *3)) (-5 *1 (-1059 *2 *3)) (-4 *3 (-1219))))) -(-13 (-1219) (-10 -8 (-15 -3382 ($ (-1179) |#1|)) (-15 -2722 ((-1179) $)) (-15 -4150 (|#1| $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) +((-3502 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23)))) (-3499 (*1 *2) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3502 (|t#1| $)) (-15 -3501 (|t#1| $)) (-15 -3500 (|t#1| $)) (-15 -3499 (|t#1|) -4384))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3503 (($) 25 T CONST)) (-4156 (($) 18 T CONST)) (-3502 ((|#1| $) 23)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3501 ((|#1| $) 22)) (-3499 ((|#1|) 20 T CONST)) (-4378 (((-865) $) 12)) (-3500 ((|#1| $) 21)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16))) +(((-1048 |#1|) (-140) (-23)) (T -1048)) +((-3503 (*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) +(-13 (-1047 |t#1|) (-10 -8 (-15 -3503 ($) -4384))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-615 (-865)) . T) ((-1047 |#1|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 (-782 |#1| (-866 |#2|)))))) (-643 (-782 |#1| (-866 |#2|)))) NIL)) (-4114 (((-643 $) (-643 (-782 |#1| (-866 |#2|)))) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-112)) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-112) (-112)) NIL)) (-3485 (((-643 (-866 |#2|)) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-4120 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-4206 (((-643 (-2 (|:| |val| (-782 |#1| (-866 |#2|))) (|:| -1708 $))) (-782 |#1| (-866 |#2|)) $) NIL)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ (-866 |#2|)) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 (-782 |#1| (-866 |#2|)) #1="failed") $ (-866 |#2|)) NIL)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) NIL (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))) $ (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL)) (-3301 (((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|))) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 (-782 |#1| (-866 |#2|)))) NIL)) (-3576 (($ (-643 (-782 |#1| (-866 |#2|)))) NIL)) (-4230 (((-3 $ #1#) $) NIL)) (-4117 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104))))) (-3830 (($ (-782 |#1| (-866 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (($ (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-782 |#1| (-866 |#2|))) (|:| |den| |#1|)) (-782 |#1| (-866 |#2|)) $) NIL (|has| |#1| (-560)))) (-4126 (((-112) (-782 |#1| (-866 |#2|)) $ (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL)) (-4115 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-4274 (((-782 |#1| (-866 |#2|)) (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $ (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (((-782 |#1| (-866 |#2|)) (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $ (-782 |#1| (-866 |#2|))) NIL (|has| $ (-6 -4425))) (((-782 |#1| (-866 |#2|)) (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $ (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL)) (-4128 (((-2 (|:| -4293 (-643 (-782 |#1| (-866 |#2|)))) (|:| -1870 (-643 (-782 |#1| (-866 |#2|))))) $) NIL)) (-3617 (((-112) (-782 |#1| (-866 |#2|)) $) NIL)) (-3615 (((-112) (-782 |#1| (-866 |#2|)) $) NIL)) (-3618 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-2124 (((-643 (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4127 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-3600 (((-866 |#2|) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-782 |#1| (-866 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104))))) (-2128 (($ (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) $) NIL)) (-3315 (((-643 (-866 |#2|)) $) NIL)) (-3314 (((-112) (-866 |#2|) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3611 (((-3 (-782 |#1| (-866 |#2|)) (-643 $)) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-3610 (((-643 (-2 (|:| |val| (-782 |#1| (-866 |#2|))) (|:| -1708 $))) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-4229 (((-3 (-782 |#1| (-866 |#2|)) #1#) $) NIL)) (-3612 (((-643 $) (-782 |#1| (-866 |#2|)) $) NIL)) (-3614 (((-3 (-112) (-643 $)) (-782 |#1| (-866 |#2|)) $) NIL)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) (-782 |#1| (-866 |#2|)) $) NIL)) (-3658 (((-643 $) (-782 |#1| (-866 |#2|)) $) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) $) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-643 $)) NIL) (((-643 $) (-782 |#1| (-866 |#2|)) (-643 $)) NIL)) (-3864 (($ (-782 |#1| (-866 |#2|)) $) NIL) (($ (-643 (-782 |#1| (-866 |#2|))) $) NIL)) (-4129 (((-643 (-782 |#1| (-866 |#2|))) $) NIL)) (-4123 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-4118 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-4131 (((-112) $ $) NIL)) (-3304 (((-2 (|:| |num| (-782 |#1| (-866 |#2|))) (|:| |den| |#1|)) (-782 |#1| (-866 |#2|)) $) NIL (|has| |#1| (-560)))) (-4124 (((-112) (-782 |#1| (-866 |#2|)) $) NIL) (((-112) $) NIL)) (-4119 (((-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 (-782 |#1| (-866 |#2|)) #1#) $) NIL)) (-1441 (((-3 (-782 |#1| (-866 |#2|)) "failed") (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL)) (-4111 (((-3 $ #1#) $ (-782 |#1| (-866 |#2|))) NIL)) (-4200 (($ $ (-782 |#1| (-866 |#2|))) NIL) (((-643 $) (-782 |#1| (-866 |#2|)) $) NIL) (((-643 $) (-782 |#1| (-866 |#2|)) (-643 $)) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) $) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-643 $)) NIL)) (-2126 (((-112) (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-782 |#1| (-866 |#2|))) (-643 (-782 |#1| (-866 |#2|)))) NIL (-12 (|has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|)))) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (($ $ (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|))) NIL (-12 (|has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|)))) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (($ $ (-294 (-782 |#1| (-866 |#2|)))) NIL (-12 (|has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|)))) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (($ $ (-643 (-294 (-782 |#1| (-866 |#2|))))) NIL (-12 (|has| (-782 |#1| (-866 |#2|)) (-310 (-782 |#1| (-866 |#2|)))) (|has| (-782 |#1| (-866 |#2|)) (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4380 (((-773) $) NIL)) (-2125 (((-773) (-782 |#1| (-866 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-782 |#1| (-866 |#2|)) (-1104)))) (((-773) (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-782 |#1| (-866 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-782 |#1| (-866 |#2|)))) NIL)) (-3311 (($ $ (-866 |#2|)) NIL)) (-3313 (($ $ (-866 |#2|)) NIL)) (-4116 (($ $) NIL)) (-3312 (($ $ (-866 |#2|)) NIL)) (-4378 (((-865) $) NIL) (((-643 (-782 |#1| (-866 |#2|))) $) NIL)) (-4110 (((-773) $) NIL (|has| (-866 |#2|) (-370)))) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 (-782 |#1| (-866 |#2|))))) #1#) (-643 (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 (-782 |#1| (-866 |#2|))))) #1#) (-643 (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|))) (-1 (-112) (-782 |#1| (-866 |#2|)) (-782 |#1| (-866 |#2|)))) NIL)) (-4122 (((-112) $ (-1 (-112) (-782 |#1| (-866 |#2|)) (-643 (-782 |#1| (-866 |#2|))))) NIL)) (-3609 (((-643 $) (-782 |#1| (-866 |#2|)) $) NIL) (((-643 $) (-782 |#1| (-866 |#2|)) (-643 $)) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) $) NIL) (((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-643 $)) NIL)) (-2127 (((-112) (-1 (-112) (-782 |#1| (-866 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 (-866 |#2|)) $) NIL)) (-3616 (((-112) (-782 |#1| (-866 |#2|)) $) NIL)) (-4365 (((-112) (-866 |#2|) $) NIL)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1049 |#1| |#2|) (-13 (-1074 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) (-10 -8 (-15 -4114 ((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-112) (-112))))) (-455) (-643 (-1180))) (T -1049)) +((-4114 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-1049 *5 *6))))) +(-13 (-1074 |#1| (-534 (-866 |#2|)) (-866 |#2|) (-782 |#1| (-866 |#2|))) (-10 -8 (-15 -4114 ((-643 $) (-643 (-782 |#1| (-866 |#2|))) (-112) (-112))))) +((-3504 (((-1 (-549)) (-1092 (-549))) 32)) (-3508 (((-549) (-549) (-549) (-549) (-549)) 29)) (-3506 (((-1 (-549)) |RationalNumber|) NIL)) (-3507 (((-1 (-549)) |RationalNumber|) NIL)) (-3505 (((-1 (-549)) (-549) |RationalNumber|) NIL))) +(((-1050) (-10 -7 (-15 -3504 ((-1 (-549)) (-1092 (-549)))) (-15 -3505 ((-1 (-549)) (-549) |RationalNumber|)) (-15 -3506 ((-1 (-549)) |RationalNumber|)) (-15 -3507 ((-1 (-549)) |RationalNumber|)) (-15 -3508 ((-549) (-549) (-549) (-549) (-549))))) (T -1050)) +((-3508 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1050)))) (-3507 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050)))) (-3506 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050)) (-5 *3 (-549)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1092 (-549))) (-5 *2 (-1 (-549))) (-5 *1 (-1050))))) +(-10 -7 (-15 -3504 ((-1 (-549)) (-1092 (-549)))) (-15 -3505 ((-1 (-549)) (-549) |RationalNumber|)) (-15 -3506 ((-1 (-549)) |RationalNumber|)) (-15 -3507 ((-1 (-549)) |RationalNumber|)) (-15 -3508 ((-549) (-549) (-549) (-549) (-549)))) +((-4378 (((-865) $) NIL) (($ (-549)) 10))) +(((-1051 |#1|) (-10 -8 (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-1052)) (T -1051)) +NIL +(-10 -8 (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-1052) (-140)) (T -1052)) +((-3530 (*1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-773))))) +(-13 (-1060) (-728) (-650 $) (-618 (-549)) (-10 -7 (-15 -3530 ((-773)) -4384) (-6 -4422))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-549)) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-728) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-3509 (((-410 (-949 |#2|)) (-643 |#2|) (-643 |#2|) (-773) (-773)) 60))) +(((-1053 |#1| |#2|) (-10 -7 (-15 -3509 ((-410 (-949 |#2|)) (-643 |#2|) (-643 |#2|) (-773) (-773)))) (-1180) (-365)) (T -1053)) +((-3509 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-773)) (-4 *6 (-365)) (-5 *2 (-410 (-949 *6))) (-5 *1 (-1053 *5 *6)) (-14 *5 (-1180))))) +(-10 -7 (-15 -3509 ((-410 (-949 |#2|)) (-643 |#2|) (-643 |#2|) (-773) (-773)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 15)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 16 T CONST)) (-3455 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1054 |#1|) (-140) (-1060)) (T -1054)) +((-3510 (*1 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1060)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1054 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1060))))) +(-13 (-1104) (-10 -8 (-15 (-3510) ($) -4384) (-15 -3608 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-3525 (((-112) $) 40)) (-3527 (((-112) $) 17)) (-3519 (((-773) $) 13)) (-3518 (((-773) $) 14)) (-3526 (((-112) $) 30)) (-3524 (((-112) $) 42))) +(((-1055 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3518 ((-773) |#1|)) (-15 -3519 ((-773) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -3525 ((-112) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|))) (-1056 |#2| |#3| |#4| |#5| |#6|) (-773) (-773) (-1052) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1055)) +NIL +(-10 -8 (-15 -3518 ((-773) |#1|)) (-15 -3519 ((-773) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -3525 ((-112) |#1|)) (-15 -3526 ((-112) |#1|)) (-15 -3527 ((-112) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3525 (((-112) $) 56)) (-1407 (((-3 $ "failed") $ $) 20)) (-3527 (((-112) $) 58)) (-1309 (((-112) $ (-773)) 66)) (-4156 (($) 18 T CONST)) (-3514 (($ $) 39 (|has| |#3| (-308)))) (-3516 ((|#4| $ (-549)) 44)) (-3513 (((-773) $) 38 (|has| |#3| (-560)))) (-3517 ((|#3| $ (-549) (-549)) 46)) (-2124 (((-643 |#3|) $) 73 (|has| $ (-6 -4425)))) (-3512 (((-773) $) 37 (|has| |#3| (-560)))) (-3511 (((-643 |#5|) $) 36 (|has| |#3| (-560)))) (-3519 (((-773) $) 50)) (-3518 (((-773) $) 49)) (-4151 (((-112) $ (-773)) 65)) (-3523 (((-549) $) 54)) (-3521 (((-549) $) 52)) (-3008 (((-643 |#3|) $) 74 (|has| $ (-6 -4425)))) (-3666 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1104)) (|has| $ (-6 -4425))))) (-3522 (((-549) $) 53)) (-3520 (((-549) $) 51)) (-3528 (($ (-643 (-643 |#3|))) 59)) (-2128 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-4025 (((-643 (-643 |#3|)) $) 48)) (-4148 (((-112) $ (-773)) 64)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-560)))) (-2126 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#3|) (-643 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-294 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-643 (-294 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))))) (-1310 (((-112) $ $) 60)) (-3827 (((-112) $) 63)) (-3996 (($) 62)) (-4231 ((|#3| $ (-549) (-549)) 47) ((|#3| $ (-549) (-549) |#3|) 45)) (-3526 (((-112) $) 57)) (-2125 (((-773) |#3| $) 75 (-12 (|has| |#3| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4425)))) (-3824 (($ $) 61)) (-3515 ((|#5| $ (-549)) 43)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4425)))) (-3524 (((-112) $) 55)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-4389 (((-773) $) 67 (|has| $ (-6 -4425))))) +(((-1056 |#1| |#2| |#3| |#4| |#5|) (-140) (-773) (-773) (-1052) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1056)) +((-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3528 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *5))) (-4 *5 (-1052)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-549)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-549)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-549)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-549)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-773)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-773)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-643 (-643 *5))))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1052)))) (-3517 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1052)))) (-4231 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *2 (-1052)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-3516 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *6 *2 *7)) (-4 *6 (-1052)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *6 *7 *2)) (-4 *6 (-1052)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3889 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1056 *3 *4 *2 *5 *6)) (-4 *2 (-1052)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-560)))) (-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-1056 *3 *4 *2 *5 *6)) (-4 *2 (-1052)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-3514 (*1 *1 *1) (-12 (-4 *1 (-1056 *2 *3 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-773)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-773)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-643 *7))))) +(-13 (-111 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4425) (IF (|has| |t#3| (-172)) (-6 (-719 |t#3|)) |%noBranch|) (-15 -3528 ($ (-643 (-643 |t#3|)))) (-15 -3527 ((-112) $)) (-15 -3526 ((-112) $)) (-15 -3525 ((-112) $)) (-15 -3524 ((-112) $)) (-15 -3523 ((-549) $)) (-15 -3522 ((-549) $)) (-15 -3521 ((-549) $)) (-15 -3520 ((-549) $)) (-15 -3519 ((-773) $)) (-15 -3518 ((-773) $)) (-15 -4025 ((-643 (-643 |t#3|)) $)) (-15 -4231 (|t#3| $ (-549) (-549))) (-15 -3517 (|t#3| $ (-549) (-549))) (-15 -4231 (|t#3| $ (-549) (-549) |t#3|)) (-15 -3516 (|t#4| $ (-549))) (-15 -3515 (|t#5| $ (-549))) (-15 -4390 ($ (-1 |t#3| |t#3|) $)) (-15 -4390 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-560)) (-15 -3889 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -4381 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -3514 ($ $)) |%noBranch|) (IF (|has| |t#3| (-560)) (PROGN (-15 -3513 ((-773) $)) (-15 -3512 ((-773) $)) (-15 -3511 ((-643 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-615 (-865)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))) ((-492 |#3|) . T) ((-517 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))) ((-648 (-549)) . T) ((-648 |#3|) . T) ((-650 |#3|) . T) ((-642 |#3|) |has| |#3| (-172)) ((-719 |#3|) |has| |#3| (-172)) ((-1054 |#3|) . T) ((-1059 |#3|) . T) ((-1104) . T) ((-1219) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3525 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3514 (($ $) 47 (|has| |#3| (-308)))) (-3516 (((-239 |#2| |#3|) $ (-549)) 36)) (-3529 (($ (-691 |#3|)) 45)) (-3513 (((-773) $) 49 (|has| |#3| (-560)))) (-3517 ((|#3| $ (-549) (-549)) NIL)) (-2124 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-3512 (((-773) $) 51 (|has| |#3| (-560)))) (-3511 (((-643 (-239 |#1| |#3|)) $) 55 (|has| |#3| (-560)))) (-3519 (((-773) $) NIL)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#3|))) 31)) (-2128 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-4025 (((-643 (-643 |#3|)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-560)))) (-2126 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#3|) (-643 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-643 (-294 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#3| $ (-549) (-549)) NIL) ((|#3| $ (-549) (-549) |#3|) NIL)) (-4343 (((-134)) 59 (|has| |#3| (-365)))) (-3526 (((-112) $) NIL)) (-2125 (((-773) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104)))) (((-773) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 65 (|has| |#3| (-616 (-538))))) (-3515 (((-239 |#1| |#3|) $ (-549)) 40)) (-4378 (((-865) $) 19) (((-691 |#3|) $) 42)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3510 (($) 16 T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1057 |#1| |#2| |#3|) (-13 (-1056 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-615 (-691 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1277 |#3|)) |%noBranch|) (IF (|has| |#3| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (-15 -3529 ($ (-691 |#3|))))) (-773) (-773) (-1052)) (T -1057)) +((-3529 (*1 *1 *2) (-12 (-5 *2 (-691 *5)) (-4 *5 (-1052)) (-5 *1 (-1057 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773))))) +(-13 (-1056 |#1| |#2| |#3| (-239 |#2| |#3|) (-239 |#1| |#3|)) (-615 (-691 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1277 |#3|)) |%noBranch|) (IF (|has| |#3| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|) (-15 -3529 ($ (-691 |#3|))))) +((-4274 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4390 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1058 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4390 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4274 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-773) (-773) (-1052) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1056 |#1| |#2| |#3| |#4| |#5|) (-1052) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1056 |#1| |#2| |#7| |#8| |#9|)) (T -1058)) +((-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1052)) (-4 *2 (-1052)) (-14 *5 (-773)) (-14 *6 (-773)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1058 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1056 *5 *6 *7 *8 *9)) (-4 *12 (-1056 *5 *6 *2 *10 *11)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1052)) (-4 *10 (-1052)) (-14 *5 (-773)) (-14 *6 (-773)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1056 *5 *6 *10 *11 *12)) (-5 *1 (-1058 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1056 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) +(-10 -7 (-15 -4390 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4274 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ |#1|) 27))) +(((-1059 |#1|) (-140) (-1060)) (T -1059)) +NIL +(-13 (-21) (-1054 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-1054 |#1|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) (((-1060) (-140)) (T -1060)) NIL -(-13 (-21) (-1114)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1114) . T) ((-1102) . T)) -((-3413 (($ $) 17)) (-3517 (($ $) 25)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 55)) (-2013 (($ $) 27)) (-3989 (($ $) 12)) (-1952 (($ $) 43)) (-1322 (((-381) $) NIL) (((-225) $) NIL) (((-894 (-381)) $) 36)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 31) (($ (-567)) NIL) (($ (-410 (-567))) 31)) (-2214 (((-772)) 9)) (-3471 (($ $) 45))) -(((-1061 |#1|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3413 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -1952 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2959 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| (-567))) (-15 -1322 ((-225) |#1|)) (-15 -1322 ((-381) |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| |#1|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-1062)) (T -1061)) -((-2214 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1061 *3)) (-4 *3 (-1062))))) -(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3413 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -1952 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2959 ((-891 (-381) |#1|) |#1| (-894 (-381)) (-891 (-381) |#1|))) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| (-567))) (-15 -1322 ((-225) |#1|)) (-15 -1322 ((-381) |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| |#1|)) (-15 -2214 ((-772))) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-4199 (((-567) $) 97)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-3413 (($ $) 95)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-3671 (($ $) 105)) (-4175 (((-112) $ $) 65)) (-2777 (((-567) $) 122)) (-3758 (($) 18 T CONST)) (-3517 (($ $) 94)) (-4275 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-3094 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-2946 (((-112) $) 79)) (-3635 (((-112) $) 120)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 101)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 104)) (-2013 (($ $) 100)) (-2585 (((-112) $) 121)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2727 (($ $ $) 119)) (-1446 (($ $ $) 118)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3989 (($ $) 96)) (-1952 (($ $) 98)) (-3661 (((-421 $) $) 82)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-1322 (((-381) $) 113) (((-225) $) 112) (((-894 (-381)) $) 102)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-2214 (((-772)) 32 T CONST)) (-3471 (($ $) 99)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1368 (($ $) 123)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-3016 (((-112) $ $) 116)) (-2996 (((-112) $ $) 115)) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 117)) (-2986 (((-112) $ $) 114)) (-3064 (($ $ $) 73)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75))) -(((-1062) (-140)) (T -1062)) -((-1368 (*1 *1 *1) (-4 *1 (-1062))) (-2013 (*1 *1 *1) (-4 *1 (-1062))) (-3471 (*1 *1 *1) (-4 *1 (-1062))) (-1952 (*1 *1 *1) (-4 *1 (-1062))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-567)))) (-3989 (*1 *1 *1) (-4 *1 (-1062))) (-3413 (*1 *1 *1) (-4 *1 (-1062))) (-3517 (*1 *1 *1) (-4 *1 (-1062)))) -(-13 (-365) (-849) (-1024) (-1040 (-567)) (-1040 (-410 (-567))) (-1004) (-615 (-894 (-381))) (-888 (-381)) (-147) (-10 -8 (-15 -2013 ($ $)) (-15 -3471 ($ $)) (-15 -1952 ($ $)) (-15 -4199 ((-567) $)) (-15 -3989 ($ $)) (-15 -3413 ($ $)) (-15 -3517 ($ $)) (-15 -1368 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-894 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-888 (-381)) . T) ((-922) . T) ((-1004) . T) ((-1024) . T) ((-1040 (-410 (-567))) . T) ((-1040 (-567)) . T) ((-1053 #0#) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) |#2| $) 26)) (-3404 ((|#1| $) 10)) (-2777 (((-567) |#2| $) 116)) (-1617 (((-3 $ "failed") |#2| (-923)) 75)) (-4347 ((|#1| $) 31)) (-3059 ((|#1| |#2| $ |#1|) 40)) (-2548 (($ $) 28)) (-1377 (((-3 |#2| "failed") |#2| $) 111)) (-3635 (((-112) |#2| $) NIL)) (-2585 (((-112) |#2| $) NIL)) (-2954 (((-112) |#2| $) 27)) (-2352 ((|#1| $) 117)) (-4335 ((|#1| $) 30)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2783 ((|#2| $) 102)) (-2504 (((-863) $) 92)) (-3858 (((-112) $ $) NIL)) (-3092 ((|#1| |#2| $ |#1|) 41)) (-1567 (((-645 $) |#2|) 77)) (-2968 (((-112) $ $) 97))) -(((-1063 |#1| |#2|) (-13 (-1070 |#1| |#2|) (-10 -8 (-15 -4335 (|#1| $)) (-15 -4347 (|#1| $)) (-15 -3404 (|#1| $)) (-15 -2352 (|#1| $)) (-15 -2548 ($ $)) (-15 -2954 ((-112) |#2| $)) (-15 -3059 (|#1| |#2| $ |#1|)))) (-13 (-849) (-365)) (-1245 |#1|)) (T -1063)) -((-3059 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-4335 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-4347 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-3404 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-2352 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-2548 (*1 *1 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1245 *2)))) (-2954 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1063 *4 *3)) (-4 *3 (-1245 *4))))) -(-13 (-1070 |#1| |#2|) (-10 -8 (-15 -4335 (|#1| $)) (-15 -4347 (|#1| $)) (-15 -3404 (|#1| $)) (-15 -2352 (|#1| $)) (-15 -2548 ($ $)) (-15 -2954 ((-112) |#2| $)) (-15 -3059 (|#1| |#2| $ |#1|)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-3309 (($ $ $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2893 (($ $ $ $) NIL)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-2777 (((-567) $) NIL)) (-3075 (($ $ $) NIL)) (-3758 (($) NIL T CONST)) (-1915 (($ (-1179)) 10) (($ (-567)) 7)) (-4275 (((-3 (-567) "failed") $) NIL)) (-3094 (((-567) $) NIL)) (-2432 (($ $ $) NIL)) (-2690 (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-410 (-567)) "failed") $) NIL)) (-1527 (((-112) $) NIL)) (-2485 (((-410 (-567)) $) NIL)) (-2119 (($) NIL) (($ $) NIL)) (-2443 (($ $ $) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-1591 (($ $ $ $) NIL)) (-4211 (($ $ $) NIL)) (-3635 (((-112) $) NIL)) (-4090 (($ $ $) NIL)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-4384 (((-112) $) NIL)) (-3807 (((-112) $) NIL)) (-3104 (((-3 $ "failed") $) NIL)) (-2585 (((-112) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4003 (($ $ $ $) NIL)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-1789 (($ $) NIL)) (-3613 (($ $) NIL)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-3718 (($ $ $) NIL)) (-2221 (($) NIL T CONST)) (-3762 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2256 (($ $) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1359 (((-112) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-3592 (($ $ (-772)) NIL) (($ $) NIL)) (-2199 (($ $) NIL)) (-3846 (($ $) NIL)) (-1322 (((-567) $) 16) (((-539) $) NIL) (((-894 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1179)) 9)) (-2504 (((-863) $) 23) (($ (-567)) 6) (($ $) NIL) (($ (-567)) 6)) (-2214 (((-772)) NIL T CONST)) (-3050 (((-112) $ $) NIL)) (-3040 (($ $ $) NIL)) (-3858 (((-112) $ $) NIL)) (-3140 (($) NIL)) (-3269 (((-112) $ $) NIL)) (-1799 (($ $ $ $) NIL)) (-1368 (($ $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL)) (-3054 (($ $) 22) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL))) -(((-1064) (-13 (-548) (-619 (-1179)) (-10 -8 (-6 -4409) (-6 -4414) (-6 -4410) (-15 -1915 ($ (-1179))) (-15 -1915 ($ (-567)))))) (T -1064)) -((-1915 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1064)))) (-1915 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1064))))) -(-13 (-548) (-619 (-1179)) (-10 -8 (-6 -4409) (-6 -4414) (-6 -4410) (-15 -1915 ($ (-1179))) (-15 -1915 ($ (-567))))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL)) (-3095 (((-1274) $ (-1179) (-1179)) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3795 (($) 9)) (-3824 (((-52) $ (-1179) (-52)) NIL)) (-3884 (($ $) 32)) (-1852 (($ $) 30)) (-1950 (($ $) 29)) (-3914 (($ $) 31)) (-3324 (($ $) 35)) (-2466 (($ $) 36)) (-2435 (($ $) 28)) (-2489 (($ $) 33)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) 27 (|has| $ (-6 -4422)))) (-2412 (((-3 (-52) "failed") (-1179) $) 43)) (-3758 (($) NIL T CONST)) (-2570 (($) 7)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-4197 (($ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) 53 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-3 (-52) "failed") (-1179) $) NIL)) (-1695 (($ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422)))) (-1719 (((-3 (-1161) "failed") $ (-1161) (-567)) 74)) (-2036 (((-52) $ (-1179) (-52)) NIL (|has| $ (-6 -4423)))) (-1970 (((-52) $ (-1179)) NIL)) (-3468 (((-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-1179) $) NIL (|has| (-1179) (-851)))) (-4200 (((-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) 38 (|has| $ (-6 -4422))) (((-645 (-52)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-2346 (((-1179) $) NIL (|has| (-1179) (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4423))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-1512 (((-645 (-1179)) $) NIL)) (-1560 (((-112) (-1179) $) NIL)) (-3018 (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL)) (-3636 (($ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) 46)) (-3360 (((-645 (-1179)) $) NIL)) (-2919 (((-112) (-1179) $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-1644 (((-381) $ (-1179)) 52)) (-2612 (((-645 (-1161)) $ (-1161)) 76)) (-3436 (((-52) $) NIL (|has| (-1179) (-851)))) (-2989 (((-3 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) "failed") (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL)) (-2930 (($ $ (-52)) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))))) NIL (-12 (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ $ (-295 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL (-12 (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ $ (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) NIL (-12 (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ $ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL (-12 (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-310 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102))))) (-1804 (((-645 (-52)) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 (((-52) $ (-1179)) NIL) (((-52) $ (-1179) (-52)) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL)) (-2974 (($ $ (-1179)) 54)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-52) (-1102)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) 40)) (-3644 (($ $ $) 41)) (-2504 (((-863) $) NIL (-2836 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-614 (-863)))))) (-2910 (($ $ (-1179) (-381)) 50)) (-2437 (($ $ (-1179) (-381)) 51)) (-3858 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 (-1179)) (|:| -2265 (-52)))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-52) (-1102)) (|has| (-2 (|:| -2025 (-1179)) (|:| -2265 (-52))) (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1065) (-13 (-1195 (-1179) (-52)) (-10 -8 (-15 -3644 ($ $ $)) (-15 -2570 ($)) (-15 -2435 ($ $)) (-15 -1950 ($ $)) (-15 -1852 ($ $)) (-15 -3914 ($ $)) (-15 -2489 ($ $)) (-15 -3884 ($ $)) (-15 -3324 ($ $)) (-15 -2466 ($ $)) (-15 -2910 ($ $ (-1179) (-381))) (-15 -2437 ($ $ (-1179) (-381))) (-15 -1644 ((-381) $ (-1179))) (-15 -2612 ((-645 (-1161)) $ (-1161))) (-15 -2974 ($ $ (-1179))) (-15 -3795 ($)) (-15 -1719 ((-3 (-1161) "failed") $ (-1161) (-567))) (-6 -4422)))) (T -1065)) -((-3644 (*1 *1 *1 *1) (-5 *1 (-1065))) (-2570 (*1 *1) (-5 *1 (-1065))) (-2435 (*1 *1 *1) (-5 *1 (-1065))) (-1950 (*1 *1 *1) (-5 *1 (-1065))) (-1852 (*1 *1 *1) (-5 *1 (-1065))) (-3914 (*1 *1 *1) (-5 *1 (-1065))) (-2489 (*1 *1 *1) (-5 *1 (-1065))) (-3884 (*1 *1 *1) (-5 *1 (-1065))) (-3324 (*1 *1 *1) (-5 *1 (-1065))) (-2466 (*1 *1 *1) (-5 *1 (-1065))) (-2910 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-381)) (-5 *1 (-1065)))) (-2437 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-381)) (-5 *1 (-1065)))) (-1644 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-381)) (-5 *1 (-1065)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1065)) (-5 *3 (-1161)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1065)))) (-3795 (*1 *1) (-5 *1 (-1065))) (-1719 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-1065))))) -(-13 (-1195 (-1179) (-52)) (-10 -8 (-15 -3644 ($ $ $)) (-15 -2570 ($)) (-15 -2435 ($ $)) (-15 -1950 ($ $)) (-15 -1852 ($ $)) (-15 -3914 ($ $)) (-15 -2489 ($ $)) (-15 -3884 ($ $)) (-15 -3324 ($ $)) (-15 -2466 ($ $)) (-15 -2910 ($ $ (-1179) (-381))) (-15 -2437 ($ $ (-1179) (-381))) (-15 -1644 ((-381) $ (-1179))) (-15 -2612 ((-645 (-1161)) $ (-1161))) (-15 -2974 ($ $ (-1179))) (-15 -3795 ($)) (-15 -1719 ((-3 (-1161) "failed") $ (-1161) (-567))) (-6 -4422))) -((-1493 (($ $) 46)) (-3760 (((-112) $ $) 82)) (-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-954 (-410 (-567)))) 253) (((-3 $ "failed") (-954 (-567))) 252) (((-3 $ "failed") (-954 |#2|)) 255)) (-3094 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) NIL) (($ (-954 (-410 (-567)))) 241) (($ (-954 (-567))) 237) (($ (-954 |#2|)) 257)) (-1833 (($ $) NIL) (($ $ |#4|) 44)) (-4115 (((-112) $ $) 131) (((-112) $ (-645 $)) 135)) (-3460 (((-112) $) 60)) (-3207 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 125)) (-2330 (($ $) 160)) (-3042 (($ $) 156)) (-1904 (($ $) 155)) (-2291 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1934 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3463 (((-112) $ $) 143) (((-112) $ (-645 $)) 144)) (-3066 ((|#4| $) 32)) (-3381 (($ $ $) 128)) (-2847 (((-112) $) 59)) (-3704 (((-772) $) 35)) (-3688 (($ $) 174)) (-3078 (($ $) 171)) (-4148 (((-645 $) $) 72)) (-2960 (($ $) 62)) (-1323 (($ $) 167)) (-2575 (((-645 $) $) 69)) (-2287 (($ $) 64)) (-1809 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3840 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3987 (-772))) $ $) 130)) (-3235 (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $) 126) (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $ |#4|) 127)) (-2442 (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -2642 $)) $ $) 121) (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -2642 $)) $ $ |#4|) 123)) (-2713 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2716 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1626 (((-645 $) $) 54)) (-1737 (((-112) $ $) 140) (((-112) $ (-645 $)) 141)) (-2763 (($ $ $) 116)) (-2221 (($ $) 37)) (-4009 (((-112) $ $) 80)) (-1927 (((-112) $ $) 136) (((-112) $ (-645 $)) 138)) (-3893 (($ $ $) 112)) (-2404 (($ $) 41)) (-1870 ((|#2| |#2| $) 164) (($ (-645 $)) NIL) (($ $ $) NIL)) (-1529 (($ $ |#2|) NIL) (($ $ $) 153)) (-2493 (($ $ |#2|) 148) (($ $ $) 151)) (-2858 (($ $) 49)) (-3217 (($ $) 55)) (-1322 (((-894 (-381)) $) NIL) (((-894 (-567)) $) NIL) (((-539) $) NIL) (($ (-954 (-410 (-567)))) 243) (($ (-954 (-567))) 239) (($ (-954 |#2|)) 254) (((-1161) $) 281) (((-954 |#2|) $) 184)) (-2504 (((-863) $) 29) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-954 |#2|) $) 185) (($ (-410 (-567))) NIL) (($ $) NIL)) (-1858 (((-3 (-112) "failed") $ $) 79))) -(((-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2504 (|#1| |#1|)) (-15 -1870 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-645 |#1|))) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 ((-954 |#2|) |#1|)) (-15 -1322 ((-954 |#2|) |#1|)) (-15 -1322 ((-1161) |#1|)) (-15 -3688 (|#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -1870 (|#2| |#2| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -1529 (|#1| |#1| |#2|)) (-15 -2493 (|#1| |#1| |#2|)) (-15 -3042 (|#1| |#1|)) (-15 -1904 (|#1| |#1|)) (-15 -1322 (|#1| (-954 |#2|))) (-15 -3094 (|#1| (-954 |#2|))) (-15 -4275 ((-3 |#1| "failed") (-954 |#2|))) (-15 -1322 (|#1| (-954 (-567)))) (-15 -3094 (|#1| (-954 (-567)))) (-15 -4275 ((-3 |#1| "failed") (-954 (-567)))) (-15 -1322 (|#1| (-954 (-410 (-567))))) (-15 -3094 (|#1| (-954 (-410 (-567))))) (-15 -4275 ((-3 |#1| "failed") (-954 (-410 (-567))))) (-15 -2763 (|#1| |#1| |#1|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -3840 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3987 (-772))) |#1| |#1|)) (-15 -3381 (|#1| |#1| |#1|)) (-15 -3207 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -3235 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1| |#4|)) (-15 -3235 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -2442 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -2642 |#1|)) |#1| |#1| |#4|)) (-15 -2442 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -2716 (|#1| |#1| |#1| |#4|)) (-15 -2713 (|#1| |#1| |#1| |#4|)) (-15 -2716 (|#1| |#1| |#1|)) (-15 -2713 (|#1| |#1| |#1|)) (-15 -1934 (|#1| |#1| |#1| |#4|)) (-15 -2291 (|#1| |#1| |#1| |#4|)) (-15 -1934 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1| |#1|)) (-15 -3463 ((-112) |#1| (-645 |#1|))) (-15 -3463 ((-112) |#1| |#1|)) (-15 -1737 ((-112) |#1| (-645 |#1|))) (-15 -1737 ((-112) |#1| |#1|)) (-15 -1927 ((-112) |#1| (-645 |#1|))) (-15 -1927 ((-112) |#1| |#1|)) (-15 -4115 ((-112) |#1| (-645 |#1|))) (-15 -4115 ((-112) |#1| |#1|)) (-15 -3760 ((-112) |#1| |#1|)) (-15 -4009 ((-112) |#1| |#1|)) (-15 -1858 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4148 ((-645 |#1|) |#1|)) (-15 -2575 ((-645 |#1|) |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2960 (|#1| |#1|)) (-15 -3460 ((-112) |#1|)) (-15 -2847 ((-112) |#1|)) (-15 -1833 (|#1| |#1| |#4|)) (-15 -1809 (|#1| |#1| |#4|)) (-15 -3217 (|#1| |#1|)) (-15 -1626 ((-645 |#1|) |#1|)) (-15 -2858 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2221 (|#1| |#1|)) (-15 -3704 ((-772) |#1|)) (-15 -3066 (|#4| |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -2504 (|#1| |#4|)) (-15 -4275 ((-3 |#4| "failed") |#1|)) (-15 -3094 (|#4| |#1|)) (-15 -1809 (|#2| |#1|)) (-15 -1833 (|#1| |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-1067 |#2| |#3| |#4|) (-1051) (-794) (-851)) (T -1066)) -NIL -(-10 -8 (-15 -2504 (|#1| |#1|)) (-15 -1870 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-645 |#1|))) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 ((-954 |#2|) |#1|)) (-15 -1322 ((-954 |#2|) |#1|)) (-15 -1322 ((-1161) |#1|)) (-15 -3688 (|#1| |#1|)) (-15 -3078 (|#1| |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -2330 (|#1| |#1|)) (-15 -1870 (|#2| |#2| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -1529 (|#1| |#1| |#2|)) (-15 -2493 (|#1| |#1| |#2|)) (-15 -3042 (|#1| |#1|)) (-15 -1904 (|#1| |#1|)) (-15 -1322 (|#1| (-954 |#2|))) (-15 -3094 (|#1| (-954 |#2|))) (-15 -4275 ((-3 |#1| "failed") (-954 |#2|))) (-15 -1322 (|#1| (-954 (-567)))) (-15 -3094 (|#1| (-954 (-567)))) (-15 -4275 ((-3 |#1| "failed") (-954 (-567)))) (-15 -1322 (|#1| (-954 (-410 (-567))))) (-15 -3094 (|#1| (-954 (-410 (-567))))) (-15 -4275 ((-3 |#1| "failed") (-954 (-410 (-567))))) (-15 -2763 (|#1| |#1| |#1|)) (-15 -3893 (|#1| |#1| |#1|)) (-15 -3840 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3987 (-772))) |#1| |#1|)) (-15 -3381 (|#1| |#1| |#1|)) (-15 -3207 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -3235 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1| |#4|)) (-15 -3235 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -2442 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -2642 |#1|)) |#1| |#1| |#4|)) (-15 -2442 ((-2 (|:| -1344 |#1|) (|:| |gap| (-772)) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -2716 (|#1| |#1| |#1| |#4|)) (-15 -2713 (|#1| |#1| |#1| |#4|)) (-15 -2716 (|#1| |#1| |#1|)) (-15 -2713 (|#1| |#1| |#1|)) (-15 -1934 (|#1| |#1| |#1| |#4|)) (-15 -2291 (|#1| |#1| |#1| |#4|)) (-15 -1934 (|#1| |#1| |#1|)) (-15 -2291 (|#1| |#1| |#1|)) (-15 -3463 ((-112) |#1| (-645 |#1|))) (-15 -3463 ((-112) |#1| |#1|)) (-15 -1737 ((-112) |#1| (-645 |#1|))) (-15 -1737 ((-112) |#1| |#1|)) (-15 -1927 ((-112) |#1| (-645 |#1|))) (-15 -1927 ((-112) |#1| |#1|)) (-15 -4115 ((-112) |#1| (-645 |#1|))) (-15 -4115 ((-112) |#1| |#1|)) (-15 -3760 ((-112) |#1| |#1|)) (-15 -4009 ((-112) |#1| |#1|)) (-15 -1858 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4148 ((-645 |#1|) |#1|)) (-15 -2575 ((-645 |#1|) |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2960 (|#1| |#1|)) (-15 -3460 ((-112) |#1|)) (-15 -2847 ((-112) |#1|)) (-15 -1833 (|#1| |#1| |#4|)) (-15 -1809 (|#1| |#1| |#4|)) (-15 -3217 (|#1| |#1|)) (-15 -1626 ((-645 |#1|) |#1|)) (-15 -2858 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2221 (|#1| |#1|)) (-15 -3704 ((-772) |#1|)) (-15 -3066 (|#4| |#1|)) (-15 -1322 ((-539) |#1|)) (-15 -1322 ((-894 (-567)) |#1|)) (-15 -1322 ((-894 (-381)) |#1|)) (-15 -2504 (|#1| |#4|)) (-15 -4275 ((-3 |#4| "failed") |#1|)) (-15 -3094 (|#4| |#1|)) (-15 -1809 (|#2| |#1|)) (-15 -1833 (|#1| |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 |#3|) $) 112)) (-3633 (((-1175 $) $ |#3|) 127) (((-1175 |#1|) $) 126)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-1987 (($ $) 90 (|has| |#1| (-559)))) (-3342 (((-112) $) 92 (|has| |#1| (-559)))) (-3153 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-1493 (($ $) 273)) (-3760 (((-112) $ $) 259)) (-2932 (((-3 $ "failed") $ $) 20)) (-2717 (($ $ $) 218 (|has| |#1| (-559)))) (-2855 (((-645 $) $ $) 213 (|has| |#1| (-559)))) (-2701 (((-421 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-911)))) (-3864 (($ $) 100 (|has| |#1| (-455)))) (-1466 (((-421 $) $) 99 (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-911)))) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-954 (-410 (-567)))) 233 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))) (((-3 $ "failed") (-954 (-567))) 230 (-2836 (-12 (-1736 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179)))))) (((-3 $ "failed") (-954 |#1|)) 227 (-2836 (-12 (-1736 (|has| |#1| (-38 (-410 (-567))))) (-1736 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1179)))) (-12 (-1736 (|has| |#1| (-548))) (-1736 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (-1736 (|has| |#1| (-994 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))))) (-3094 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) ((|#3| $) 139) (($ (-954 (-410 (-567)))) 232 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))) (($ (-954 (-567))) 229 (-2836 (-12 (-1736 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179)))))) (($ (-954 |#1|)) 226 (-2836 (-12 (-1736 (|has| |#1| (-38 (-410 (-567))))) (-1736 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1179)))) (-12 (-1736 (|has| |#1| (-548))) (-1736 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (-1736 (|has| |#1| (-994 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))))) (-2304 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-559)))) (-1833 (($ $) 156) (($ $ |#3|) 268)) (-2690 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-4115 (((-112) $ $) 258) (((-112) $ (-645 $)) 257)) (-1377 (((-3 $ "failed") $) 37)) (-3460 (((-112) $) 266)) (-3207 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 238)) (-2330 (($ $) 207 (|has| |#1| (-455)))) (-1873 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-1818 (((-645 $) $) 111)) (-2946 (((-112) $) 98 (|has| |#1| (-911)))) (-3042 (($ $) 223 (|has| |#1| (-559)))) (-1904 (($ $) 224 (|has| |#1| (-559)))) (-2291 (($ $ $) 250) (($ $ $ |#3|) 248)) (-1934 (($ $ $) 249) (($ $ $ |#3|) 247)) (-1978 (($ $ |#1| |#2| $) 174)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| |#3| (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| |#3| (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-4384 (((-112) $) 35)) (-1921 (((-772) $) 171)) (-3463 (((-112) $ $) 252) (((-112) $ (-645 $)) 251)) (-3439 (($ $ $ $ $) 209 (|has| |#1| (-559)))) (-3066 ((|#3| $) 277)) (-3772 (($ (-1175 |#1|) |#3|) 119) (($ (-1175 $) |#3|) 118)) (-2615 (((-645 $) $) 128)) (-3615 (((-112) $) 154)) (-3764 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-3381 (($ $ $) 237)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ |#3|) 122)) (-2847 (((-112) $) 267)) (-1562 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3704 (((-772) $) 276)) (-2972 (($ (-1 |#2| |#2|) $) 173)) (-4364 (($ (-1 |#1| |#1|) $) 153)) (-2047 (((-3 |#3| "failed") $) 125)) (-3688 (($ $) 204 (|has| |#1| (-455)))) (-3078 (($ $) 205 (|has| |#1| (-455)))) (-4148 (((-645 $) $) 262)) (-2960 (($ $) 265)) (-1323 (($ $) 206 (|has| |#1| (-455)))) (-2575 (((-645 $) $) 263)) (-2287 (($ $) 264)) (-1796 (($ $) 151)) (-1809 ((|#1| $) 150) (($ $ |#3|) 269)) (-1831 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3840 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3987 (-772))) $ $) 236)) (-3235 (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $) 240) (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $ |#3|) 239)) (-2442 (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -2642 $)) $ $) 242) (((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -2642 $)) $ $ |#3|) 241)) (-2713 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2716 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1812 (((-1161) $) 10)) (-4316 (($ $ $) 212 (|has| |#1| (-559)))) (-1626 (((-645 $) $) 271)) (-4056 (((-3 (-645 $) "failed") $) 116)) (-3655 (((-3 (-645 $) "failed") $) 117)) (-2873 (((-3 (-2 (|:| |var| |#3|) (|:| -2618 (-772))) "failed") $) 115)) (-1737 (((-112) $ $) 254) (((-112) $ (-645 $)) 253)) (-2763 (($ $ $) 234)) (-2221 (($ $) 275)) (-4009 (((-112) $ $) 260)) (-1927 (((-112) $ $) 256) (((-112) $ (-645 $)) 255)) (-3893 (($ $ $) 235)) (-2404 (($ $) 274)) (-3479 (((-1122) $) 11)) (-1788 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-559)))) (-3653 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-559)))) (-1762 (((-112) $) 168)) (-1774 ((|#1| $) 169)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-455)))) (-1870 ((|#1| |#1| $) 208 (|has| |#1| (-455))) (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-911)))) (-3661 (((-421 $) $) 101 (|has| |#1| (-911)))) (-1314 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-559)))) (-2478 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-1529 (($ $ |#1|) 221 (|has| |#1| (-559))) (($ $ $) 219 (|has| |#1| (-559)))) (-2493 (($ $ |#1|) 222 (|has| |#1| (-559))) (($ $ $) 220 (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-2254 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3592 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3380 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-2858 (($ $) 272)) (-3217 (($ $) 270)) (-1322 (((-894 (-381)) $) 84 (-12 (|has| |#3| (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| |#3| (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539))))) (($ (-954 (-410 (-567)))) 231 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179))))) (($ (-954 (-567))) 228 (-2836 (-12 (-1736 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1179)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1179)))))) (($ (-954 |#1|)) 225 (|has| |#3| (-615 (-1179)))) (((-1161) $) 203 (-12 (|has| |#1| (-1040 (-567))) (|has| |#3| (-615 (-1179))))) (((-954 |#1|) $) 202 (|has| |#3| (-615 (-1179))))) (-1390 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 106 (-1750 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-954 |#1|) $) 201 (|has| |#3| (-615 (-1179)))) (($ (-410 (-567))) 80 (-2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) 170)) (-4038 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-2318 (((-3 $ "failed") $) 81 (-2836 (-1750 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) 32 T CONST)) (-3852 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1807 (($) 19 T CONST)) (-1858 (((-3 (-112) "failed") $ $) 261)) (-1820 (($) 34 T CONST)) (-1334 (($ $ $ $ (-772)) 210 (|has| |#1| (-559)))) (-3835 (($ $ $ (-772)) 211 (|has| |#1| (-559)))) (-2856 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1067 |#1| |#2| |#3|) (-140) (-1051) (-794) (-851)) (T -1067)) -((-3066 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-2221 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2404 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1493 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2858 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1626 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-3217 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1809 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1833 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2847 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3460 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2960 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2287 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2575 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-4148 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-1858 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4009 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3760 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4115 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4115 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1927 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1927 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1737 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-3463 (*1 *2 *1 *1) (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3463 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-2291 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1934 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2291 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1934 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2713 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2716 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2713 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2716 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2442 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -1344 *1) (|:| |gap| (-772)) (|:| -2642 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-2442 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -1344 *1) (|:| |gap| (-772)) (|:| -2642 *1))) (-4 *1 (-1067 *4 *5 *3)))) (-3235 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -1344 *1) (|:| |gap| (-772)) (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-3235 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -1344 *1) (|:| |gap| (-772)) (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-1067 *4 *5 *3)))) (-3207 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-1067 *3 *4 *5)))) (-3381 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3840 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3987 (-772)))) (-4 *1 (-1067 *3 *4 *5)))) (-3893 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2763 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4275 (*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3094 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)))) (-4275 (*1 *1 *2) (|partial| -2836 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3094 (*1 *1 *2) (-2836 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-1322 (*1 *1 *2) (-2836 (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) (-4275 (*1 *1 *2) (|partial| -2836 (-12 (-5 *2 (-954 *3)) (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) (-1736 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1736 (-4 *3 (-548))) (-1736 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1736 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3094 (*1 *1 *2) (-2836 (-12 (-5 *2 (-954 *3)) (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) (-1736 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1736 (-4 *3 (-548))) (-1736 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-954 *3)) (-12 (-1736 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *5 (-615 (-1179))) (-4 *4 (-794)) (-4 *5 (-851)))) (-1904 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3042 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2493 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1529 (*1 *1 *1 *2) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2493 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1529 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2717 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1314 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-3653 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-1788 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef2| *1))) (-4 *1 (-1067 *3 *4 *5)))) (-2304 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2855 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5)))) (-4316 (*1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3835 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-1334 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-3439 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1870 (*1 *2 *2 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2330 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-1323 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3078 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3688 (*1 *1 *1) (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455))))) -(-13 (-951 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3066 (|t#3| $)) (-15 -3704 ((-772) $)) (-15 -2221 ($ $)) (-15 -2404 ($ $)) (-15 -1493 ($ $)) (-15 -2858 ($ $)) (-15 -1626 ((-645 $) $)) (-15 -3217 ($ $)) (-15 -1809 ($ $ |t#3|)) (-15 -1833 ($ $ |t#3|)) (-15 -2847 ((-112) $)) (-15 -3460 ((-112) $)) (-15 -2960 ($ $)) (-15 -2287 ($ $)) (-15 -2575 ((-645 $) $)) (-15 -4148 ((-645 $) $)) (-15 -1858 ((-3 (-112) "failed") $ $)) (-15 -4009 ((-112) $ $)) (-15 -3760 ((-112) $ $)) (-15 -4115 ((-112) $ $)) (-15 -4115 ((-112) $ (-645 $))) (-15 -1927 ((-112) $ $)) (-15 -1927 ((-112) $ (-645 $))) (-15 -1737 ((-112) $ $)) (-15 -1737 ((-112) $ (-645 $))) (-15 -3463 ((-112) $ $)) (-15 -3463 ((-112) $ (-645 $))) (-15 -2291 ($ $ $)) (-15 -1934 ($ $ $)) (-15 -2291 ($ $ $ |t#3|)) (-15 -1934 ($ $ $ |t#3|)) (-15 -2713 ($ $ $)) (-15 -2716 ($ $ $)) (-15 -2713 ($ $ $ |t#3|)) (-15 -2716 ($ $ $ |t#3|)) (-15 -2442 ((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -2642 $)) $ $)) (-15 -2442 ((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -2642 $)) $ $ |t#3|)) (-15 -3235 ((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -3235 ((-2 (|:| -1344 $) (|:| |gap| (-772)) (|:| -3693 $) (|:| -2642 $)) $ $ |t#3|)) (-15 -3207 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -3381 ($ $ $)) (-15 -3840 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3987 (-772))) $ $)) (-15 -3893 ($ $ $)) (-15 -2763 ($ $ $)) (IF (|has| |t#3| (-615 (-1179))) (PROGN (-6 (-614 (-954 |t#1|))) (-6 (-615 (-954 |t#1|))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -4275 ((-3 $ "failed") (-954 (-410 (-567))))) (-15 -3094 ($ (-954 (-410 (-567))))) (-15 -1322 ($ (-954 (-410 (-567))))) (-15 -4275 ((-3 $ "failed") (-954 (-567)))) (-15 -3094 ($ (-954 (-567)))) (-15 -1322 ($ (-954 (-567)))) (IF (|has| |t#1| (-994 (-567))) |%noBranch| (PROGN (-15 -4275 ((-3 $ "failed") (-954 |t#1|))) (-15 -3094 ($ (-954 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -4275 ((-3 $ "failed") (-954 (-567)))) (-15 -3094 ($ (-954 (-567)))) (-15 -1322 ($ (-954 (-567)))) (IF (|has| |t#1| (-548)) |%noBranch| (PROGN (-15 -4275 ((-3 $ "failed") (-954 |t#1|))) (-15 -3094 ($ (-954 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) |%noBranch| (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -4275 ((-3 $ "failed") (-954 |t#1|))) (-15 -3094 ($ (-954 |t#1|)))))) (-15 -1322 ($ (-954 |t#1|))) (IF (|has| |t#1| (-1040 (-567))) (-6 (-615 (-1161))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1904 ($ $)) (-15 -3042 ($ $)) (-15 -2493 ($ $ |t#1|)) (-15 -1529 ($ $ |t#1|)) (-15 -2493 ($ $ $)) (-15 -1529 ($ $ $)) (-15 -2717 ($ $ $)) (-15 -1314 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3653 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -1788 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -2304 ($ $ $)) (-15 -2855 ((-645 $) $ $)) (-15 -4316 ($ $ $)) (-15 -3835 ($ $ $ (-772))) (-15 -1334 ($ $ $ $ (-772))) (-15 -3439 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -1870 (|t#1| |t#1| $)) (-15 -2330 ($ $)) (-15 -1323 ($ $)) (-15 -3078 ($ $)) (-15 -3688 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-614 (-954 |#1|)) |has| |#3| (-615 (-1179))) ((-172) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#3| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#3| (-615 (-894 (-567))))) ((-615 (-954 |#1|)) |has| |#3| (-615 (-1179))) ((-615 (-1161)) -12 (|has| |#1| (-1040 (-567))) (|has| |#3| (-615 (-1179)))) ((-291) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2836 (|has| |#1| (-911)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-902 |#3|) . T) ((-888 (-381)) -12 (|has| |#1| (-888 (-381))) (|has| |#3| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-888 (-567))) (|has| |#3| (-888 (-567)))) ((-951 |#1| |#2| |#3|) . T) ((-911) |has| |#1| (-911)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 |#1|) . T) ((-1040 |#3|) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) |has| |#1| (-911))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-2735 (((-645 (-1137)) $) 18)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 27) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-1137) $) 20)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1068) (-13 (-1085) (-10 -8 (-15 -2735 ((-645 (-1137)) $)) (-15 -3501 ((-1137) $))))) (T -1068)) -((-2735 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1068)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1068))))) -(-13 (-1085) (-10 -8 (-15 -2735 ((-645 (-1137)) $)) (-15 -3501 ((-1137) $)))) -((-2684 (((-112) |#3| $) 15)) (-1617 (((-3 $ "failed") |#3| (-923)) 29)) (-1377 (((-3 |#3| "failed") |#3| $) 45)) (-3635 (((-112) |#3| $) 19)) (-2585 (((-112) |#3| $) 17))) -(((-1069 |#1| |#2| |#3|) (-10 -8 (-15 -1617 ((-3 |#1| "failed") |#3| (-923))) (-15 -1377 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3635 ((-112) |#3| |#1|)) (-15 -2585 ((-112) |#3| |#1|)) (-15 -2684 ((-112) |#3| |#1|))) (-1070 |#2| |#3|) (-13 (-849) (-365)) (-1245 |#2|)) (T -1069)) -NIL -(-10 -8 (-15 -1617 ((-3 |#1| "failed") |#3| (-923))) (-15 -1377 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3635 ((-112) |#3| |#1|)) (-15 -2585 ((-112) |#3| |#1|)) (-15 -2684 ((-112) |#3| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) |#2| $) 22)) (-2777 (((-567) |#2| $) 23)) (-1617 (((-3 $ "failed") |#2| (-923)) 16)) (-3059 ((|#1| |#2| $ |#1|) 14)) (-1377 (((-3 |#2| "failed") |#2| $) 19)) (-3635 (((-112) |#2| $) 20)) (-2585 (((-112) |#2| $) 21)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2783 ((|#2| $) 18)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-3092 ((|#1| |#2| $ |#1|) 15)) (-1567 (((-645 $) |#2|) 17)) (-2968 (((-112) $ $) 6))) -(((-1070 |#1| |#2|) (-140) (-13 (-849) (-365)) (-1245 |t#1|)) (T -1070)) -((-2777 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-567)))) (-2684 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-2585 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3635 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-1377 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1245 *3)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1245 *3)))) (-1567 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-645 *1)) (-4 *1 (-1070 *4 *3)))) (-1617 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-849) (-365))) (-4 *1 (-1070 *4 *2)) (-4 *2 (-1245 *4)))) (-3092 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1245 *2)))) (-3059 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1245 *2))))) -(-13 (-1102) (-10 -8 (-15 -2777 ((-567) |t#2| $)) (-15 -2684 ((-112) |t#2| $)) (-15 -2585 ((-112) |t#2| $)) (-15 -3635 ((-112) |t#2| $)) (-15 -1377 ((-3 |t#2| "failed") |t#2| $)) (-15 -2783 (|t#2| $)) (-15 -1567 ((-645 $) |t#2|)) (-15 -1617 ((-3 $ "failed") |t#2| (-923))) (-15 -3092 (|t#1| |t#2| $ |t#1|)) (-15 -3059 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2608 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-772)) 115)) (-2176 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772)) 63)) (-2604 (((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-772)) 100)) (-3892 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-2937 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772)) 65) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772) (-112)) 67)) (-2289 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 87)) (-1322 (((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) 92)) (-1441 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-112)) 62)) (-2052 (((-772) (-645 |#4|) (-645 |#5|)) 21))) -(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2052 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3892 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1441 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-112))) (-15 -2176 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772))) (-15 -2176 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772))) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2289 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2289 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2608 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-772))) (-15 -1322 ((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) (-15 -2604 ((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-772)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1071)) -((-2604 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -3526 *9)))) (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1274)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -3526 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1161)) (-5 *1 (-1071 *4 *5 *6 *7 *8)))) (-2608 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -3526 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -3526 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) (-4 *11 (-1073 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1071 *7 *8 *9 *10 *11)))) (-2289 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-2289 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-2937 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2937 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-2937 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1071 *7 *8 *9 *3 *4)) (-4 *4 (-1073 *7 *8 *9 *3)))) (-2176 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-1441 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2052 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3892 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1441 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-112))) (-15 -2176 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772))) (-15 -2176 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772))) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2289 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2289 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2608 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-772))) (-15 -1322 ((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) (-15 -2604 ((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-772)))) -((-2940 (((-112) |#5| $) 26)) (-2708 (((-112) |#5| $) 29)) (-2600 (((-112) |#5| $) 18) (((-112) $) 52)) (-3873 (((-645 $) |#5| $) NIL) (((-645 $) (-645 |#5|) $) 94) (((-645 $) (-645 |#5|) (-645 $)) 92) (((-645 $) |#5| (-645 $)) 95)) (-1678 (($ $ |#5|) NIL) (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 73) (((-645 $) (-645 |#5|) $) 75) (((-645 $) (-645 |#5|) (-645 $)) 77)) (-3259 (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 64) (((-645 $) (-645 |#5|) $) 69) (((-645 $) (-645 |#5|) (-645 $)) 71)) (-3961 (((-112) |#5| $) 32))) -(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1678 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -1678 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -1678 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -1678 ((-645 |#1|) |#5| |#1|)) (-15 -3259 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3259 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3259 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3259 ((-645 |#1|) |#5| |#1|)) (-15 -3873 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3873 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3873 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3873 ((-645 |#1|) |#5| |#1|)) (-15 -2708 ((-112) |#5| |#1|)) (-15 -2600 ((-112) |#1|)) (-15 -3961 ((-112) |#5| |#1|)) (-15 -2940 ((-112) |#5| |#1|)) (-15 -2600 ((-112) |#5| |#1|)) (-15 -1678 (|#1| |#1| |#5|))) (-1073 |#2| |#3| |#4| |#5|) (-455) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -1072)) -NIL -(-10 -8 (-15 -1678 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -1678 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -1678 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -1678 ((-645 |#1|) |#5| |#1|)) (-15 -3259 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3259 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3259 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3259 ((-645 |#1|) |#5| |#1|)) (-15 -3873 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3873 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3873 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3873 ((-645 |#1|) |#5| |#1|)) (-15 -2708 ((-112) |#5| |#1|)) (-15 -2600 ((-112) |#1|)) (-15 -3961 ((-112) |#5| |#1|)) (-15 -2940 ((-112) |#5| |#1|)) (-15 -2600 ((-112) |#5| |#1|)) (-15 -1678 (|#1| |#1| |#5|))) -((-2487 (((-112) $ $) 7)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) 86)) (-3148 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-3783 (((-645 |#3|) $) 34)) (-2643 (((-112) $) 27)) (-2720 (((-112) $) 18 (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) 102) (((-112) $) 98)) (-2688 ((|#4| |#4| $) 93)) (-3864 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| $) 127)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) 28)) (-1555 (((-112) $ (-772)) 45)) (-1316 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3758 (($) 46 T CONST)) (-3731 (((-112) $) 23 (|has| |#1| (-559)))) (-4301 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4089 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3937 (((-112) $) 26 (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2160 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) 37)) (-3094 (($ (-645 |#4|)) 36)) (-3447 (((-3 $ "failed") $) 83)) (-2903 ((|#4| |#4| $) 90)) (-3470 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1861 ((|#4| |#4| $) 88)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) 106)) (-2940 (((-112) |#4| $) 137)) (-2708 (((-112) |#4| $) 134)) (-2600 (((-112) |#4| $) 138) (((-112) $) 135)) (-3468 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-3753 (((-112) $ (-772)) 44)) (-4200 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 48)) (-3870 (((-645 |#3|) $) 33)) (-2415 (((-112) |#3| $) 32)) (-3421 (((-112) $ (-772)) 43)) (-1812 (((-1161) $) 10)) (-1434 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-4316 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| |#4| $) 128)) (-1725 (((-3 |#4| "failed") $) 84)) (-2920 (((-645 $) |#4| $) 130)) (-4264 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3972 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3873 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-4214 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2290 (((-645 |#4|) $) 108)) (-1737 (((-112) |#4| $) 100) (((-112) $) 96)) (-2763 ((|#4| |#4| $) 91)) (-4009 (((-112) $ $) 111)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) 101) (((-112) $) 97)) (-3893 ((|#4| |#4| $) 92)) (-3479 (((-1122) $) 11)) (-3436 (((-3 |#4| "failed") $) 85)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2806 (((-3 $ "failed") $ |#4|) 79)) (-1678 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-1430 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) 39)) (-2319 (((-112) $) 42)) (-2973 (($) 41)) (-3380 (((-772) $) 107)) (-3486 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-3846 (($ $) 40)) (-1322 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 61)) (-1582 (($ $ |#3|) 29)) (-2746 (($ $ |#3|) 31)) (-2012 (($ $) 89)) (-3975 (($ $ |#3|) 30)) (-2504 (((-863) $) 12) (((-645 |#4|) $) 38)) (-3312 (((-772) $) 77 (|has| |#3| (-370)))) (-3858 (((-112) $ $) 9)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3259 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-3450 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) 82)) (-3961 (((-112) |#4| $) 136)) (-3392 (((-112) |#3| $) 81)) (-2968 (((-112) $ $) 6)) (-2498 (((-772) $) 47 (|has| $ (-6 -4422))))) -(((-1073 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1073)) -((-2600 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2940 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-3961 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2708 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-4264 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3972 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3972 (*1 *2 *3 *1) (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-2920 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-1434 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-4316 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3864 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *1)))) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3873 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3873 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-3873 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-3873 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-3259 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-3259 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-3259 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-4214 (*1 *1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-4214 (*1 *1 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)))) (-1678 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)))) (-1678 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) (-1678 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *7)))) (-1678 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1073 *5 *6 *7 *8))))) -(-13 (-1212 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2600 ((-112) |t#4| $)) (-15 -2940 ((-112) |t#4| $)) (-15 -3961 ((-112) |t#4| $)) (-15 -2600 ((-112) $)) (-15 -2708 ((-112) |t#4| $)) (-15 -4264 ((-3 (-112) (-645 $)) |t#4| $)) (-15 -3972 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 $))) |t#4| $)) (-15 -3972 ((-112) |t#4| $)) (-15 -2920 ((-645 $) |t#4| $)) (-15 -1434 ((-3 |t#4| (-645 $)) |t#4| |t#4| $)) (-15 -4316 ((-645 (-2 (|:| |val| |t#4|) (|:| -3526 $))) |t#4| |t#4| $)) (-15 -3864 ((-645 (-2 (|:| |val| |t#4|) (|:| -3526 $))) |t#4| $)) (-15 -3873 ((-645 $) |t#4| $)) (-15 -3873 ((-645 $) (-645 |t#4|) $)) (-15 -3873 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3873 ((-645 $) |t#4| (-645 $))) (-15 -3259 ((-645 $) |t#4| $)) (-15 -3259 ((-645 $) |t#4| (-645 $))) (-15 -3259 ((-645 $) (-645 |t#4|) $)) (-15 -3259 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -4214 ($ |t#4| $)) (-15 -4214 ($ (-645 |t#4|) $)) (-15 -1678 ((-645 $) |t#4| $)) (-15 -1678 ((-645 $) |t#4| (-645 $))) (-15 -1678 ((-645 $) (-645 |t#4|) $)) (-15 -1678 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3148 ((-645 $) (-645 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1212 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) -((-2652 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|) 87)) (-1324 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|) 128)) (-3080 (((-645 |#5|) |#4| |#5|) 75)) (-4047 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3851 (((-1274)) 37)) (-2748 (((-1274)) 26)) (-3355 (((-1274) (-1161) (-1161) (-1161)) 33)) (-1835 (((-1274) (-1161) (-1161) (-1161)) 22)) (-3889 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#4| |#4| |#5|) 108)) (-3953 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#3| (-112)) 119) (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4034 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|) 114))) -(((-1074 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1835 ((-1274) (-1161) (-1161) (-1161))) (-15 -2748 ((-1274))) (-15 -3355 ((-1274) (-1161) (-1161) (-1161))) (-15 -3851 ((-1274))) (-15 -3889 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -3953 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3953 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#3| (-112))) (-15 -4034 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -1324 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -4047 ((-112) |#4| |#5|)) (-15 -4047 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3080 ((-645 |#5|) |#4| |#5|)) (-15 -2652 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1074)) -((-2652 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3080 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4047 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4047 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1324 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4034 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3953 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -3526 *9)))) (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -3526 *9)))) (-5 *1 (-1074 *6 *7 *4 *8 *9)))) (-3953 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3889 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))) (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3851 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-3355 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2748 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-1835 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(-10 -7 (-15 -1835 ((-1274) (-1161) (-1161) (-1161))) (-15 -2748 ((-1274))) (-15 -3355 ((-1274) (-1161) (-1161) (-1161))) (-15 -3851 ((-1274))) (-15 -3889 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -3953 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3953 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#3| (-112))) (-15 -4034 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -1324 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -4047 ((-112) |#4| |#5|)) (-15 -4047 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3080 ((-645 |#5|) |#4| |#5|)) (-15 -2652 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|))) -((-2487 (((-112) $ $) NIL)) (-3755 (((-1218) $) 13)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1378 (((-1137) $) 10)) (-2504 (((-863) $) 20) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1075) (-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)) (-15 -3755 ((-1218) $))))) (T -1075)) -((-1378 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1075)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-1075))))) -(-13 (-1085) (-10 -8 (-15 -1378 ((-1137) $)) (-15 -3755 ((-1218) $)))) -((-4178 (((-112) $ $) 7))) -(((-1076) (-13 (-1219) (-10 -8 (-15 -4178 ((-112) $ $))))) (T -1076)) -((-4178 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1076))))) -(-13 (-1219) (-10 -8 (-15 -4178 ((-112) $ $)))) -((-2487 (((-112) $ $) NIL)) (-1646 (((-1179) $) 8)) (-1812 (((-1161) $) 17)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 11)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 14))) -(((-1077 |#1|) (-13 (-1102) (-10 -8 (-15 -1646 ((-1179) $)))) (-1179)) (T -1077)) -((-1646 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1077 *3)) (-14 *3 *2)))) -(-13 (-1102) (-10 -8 (-15 -1646 ((-1179) $)))) -((-2487 (((-112) $ $) NIL)) (-1612 (($ $ (-645 (-1179)) (-1 (-112) (-645 |#3|))) 34)) (-2125 (($ |#3| |#3|) 23) (($ |#3| |#3| (-645 (-1179))) 21)) (-2141 ((|#3| $) 13)) (-4275 (((-3 (-295 |#3|) "failed") $) 60)) (-3094 (((-295 |#3|) $) NIL)) (-2053 (((-645 (-1179)) $) 16)) (-1722 (((-894 |#1|) $) 11)) (-2128 ((|#3| $) 12)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1882 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-923)) 41)) (-2504 (((-863) $) 89) (($ (-295 |#3|)) 22)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 38))) -(((-1078 |#1| |#2| |#3|) (-13 (-1102) (-287 |#3| |#3|) (-1040 (-295 |#3|)) (-10 -8 (-15 -2125 ($ |#3| |#3|)) (-15 -2125 ($ |#3| |#3| (-645 (-1179)))) (-15 -1612 ($ $ (-645 (-1179)) (-1 (-112) (-645 |#3|)))) (-15 -1722 ((-894 |#1|) $)) (-15 -2128 (|#3| $)) (-15 -2141 (|#3| $)) (-15 -1882 (|#3| $ |#3| (-923))) (-15 -2053 ((-645 (-1179)) $)))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -1078)) -((-2125 (*1 *1 *2 *2) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))) (-2125 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-1612 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-1 (-112) (-645 *6))) (-4 *6 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *6)))) (-1722 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 *2))) (-5 *2 (-894 *3)) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 *2))))) (-2128 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) (-2141 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) (-1882 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) (-2053 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *2 (-645 (-1179))) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))))) -(-13 (-1102) (-287 |#3| |#3|) (-1040 (-295 |#3|)) (-10 -8 (-15 -2125 ($ |#3| |#3|)) (-15 -2125 ($ |#3| |#3| (-645 (-1179)))) (-15 -1612 ($ $ (-645 (-1179)) (-1 (-112) (-645 |#3|)))) (-15 -1722 ((-894 |#1|) $)) (-15 -2128 (|#3| $)) (-15 -2141 (|#3| $)) (-15 -1882 (|#3| $ |#3| (-923))) (-15 -2053 ((-645 (-1179)) $)))) -((-2487 (((-112) $ $) NIL)) (-1578 (($ (-645 (-1078 |#1| |#2| |#3|))) 14)) (-1499 (((-645 (-1078 |#1| |#2| |#3|)) $) 21)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1882 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-923)) 27)) (-2504 (((-863) $) 17)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 20))) -(((-1079 |#1| |#2| |#3|) (-13 (-1102) (-287 |#3| |#3|) (-10 -8 (-15 -1578 ($ (-645 (-1078 |#1| |#2| |#3|)))) (-15 -1499 ((-645 (-1078 |#1| |#2| |#3|)) $)) (-15 -1882 (|#3| $ |#3| (-923))))) (-1102) (-13 (-1051) (-888 |#1|) (-615 (-894 |#1|))) (-13 (-433 |#2|) (-888 |#1|) (-615 (-894 |#1|)))) (T -1079)) -((-1578 (*1 *1 *2) (-12 (-5 *2 (-645 (-1078 *3 *4 *5))) (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) (-5 *1 (-1079 *3 *4 *5)))) (-1499 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) (-5 *2 (-645 (-1078 *3 *4 *5))) (-5 *1 (-1079 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))))) (-1882 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-923)) (-4 *4 (-1102)) (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) (-5 *1 (-1079 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4))))))) -(-13 (-1102) (-287 |#3| |#3|) (-10 -8 (-15 -1578 ($ (-645 (-1078 |#1| |#2| |#3|)))) (-15 -1499 ((-645 (-1078 |#1| |#2| |#3|)) $)) (-15 -1882 (|#3| $ |#3| (-923))))) -((-3087 (((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)) 88) (((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|))) 92) (((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112)) 90))) -(((-1080 |#1| |#2|) (-10 -7 (-15 -3087 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -3087 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -3087 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-645 (-1179))) (T -1080)) -((-3087 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -2380 (-1175 *4)) (|:| -3237 (-645 (-954 *4)))))) (-5 *1 (-1080 *4 *5)) (-5 *3 (-645 (-954 *4))) (-14 *5 (-645 (-1179))))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179)))))) -(-10 -7 (-15 -3087 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -3087 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -3087 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)))) -((-3661 (((-421 |#3|) |#3|) 18))) -(((-1081 |#1| |#2| |#3|) (-10 -7 (-15 -3661 ((-421 |#3|) |#3|))) (-1245 (-410 (-567))) (-13 (-365) (-147) (-725 (-410 (-567)) |#1|)) (-1245 |#2|)) (T -1081)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -3661 ((-421 |#3|) |#3|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 141)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-1987 (($ $) NIL (|has| |#1| (-365)))) (-3342 (((-112) $) NIL (|has| |#1| (-365)))) (-2706 (((-690 |#1|) (-1269 $)) NIL) (((-690 |#1|)) 125)) (-3132 ((|#1| $) 130)) (-2694 (((-1192 (-923) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3404 (((-772)) 46 (|has| |#1| (-370)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-3431 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) 49)) (-3730 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-3815 (((-690 |#1|) $ (-1269 $)) NIL) (((-690 |#1|) $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 115) (((-690 |#1|) (-690 $)) 110)) (-2617 (($ |#2|) 67) (((-3 $ "failed") (-410 |#2|)) NIL (|has| |#1| (-365)))) (-1377 (((-3 $ "failed") $) NIL)) (-1471 (((-923)) 84)) (-2119 (($) 50 (|has| |#1| (-370)))) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3882 (($) NIL (|has| |#1| (-351)))) (-1816 (((-112) $) NIL (|has| |#1| (-351)))) (-2559 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3905 (((-923) $) NIL (|has| |#1| (-351))) (((-834 (-923)) $) NIL (|has| |#1| (-351)))) (-4384 (((-112) $) NIL)) (-2013 ((|#1| $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3908 ((|#2| $) 91 (|has| |#1| (-365)))) (-2667 (((-923) $) 150 (|has| |#1| (-370)))) (-2606 ((|#2| $) 64)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-2221 (($) NIL (|has| |#1| (-351)) CONST)) (-2188 (($ (-923)) 140 (|has| |#1| (-370)))) (-3479 (((-1122) $) NIL)) (-2335 (($) 132)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3093 (((-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567))))) NIL (|has| |#1| (-351)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-2254 ((|#1| (-1269 $)) NIL) ((|#1|) 119)) (-2943 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-3592 (($ $) NIL (-2836 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2836 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3089 (((-690 |#1|) (-1269 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2783 ((|#2|) 80)) (-1876 (($) NIL (|has| |#1| (-351)))) (-3237 (((-1269 |#1|) $ (-1269 $)) 96) (((-690 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) 77) (((-690 |#1|) (-1269 $)) 92)) (-1322 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (|has| |#1| (-351)))) (-2504 (((-863) $) 63) (($ (-567)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-365)) (|has| |#1| (-1040 (-410 (-567))))))) (-2318 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4019 ((|#2| $) 89)) (-2214 (((-772)) 82 T CONST)) (-3858 (((-112) $ $) NIL)) (-4374 (((-1269 $)) 88)) (-3269 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1807 (($) 32 T CONST)) (-1820 (($) 19 T CONST)) (-2856 (($ $) NIL (-2836 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2836 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-902 (-1179))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2968 (((-112) $ $) 69)) (-3064 (($ $ $) NIL (|has| |#1| (-365)))) (-3054 (($ $) 73) (($ $ $) NIL)) (-3045 (($ $ $) 71)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))))) -(((-1082 |#1| |#2| |#3|) (-725 |#1| |#2|) (-172) (-1245 |#1|) |#2|) (T -1082)) -NIL -(-725 |#1| |#2|) -((-3661 (((-421 |#3|) |#3|) 19))) -(((-1083 |#1| |#2| |#3|) (-10 -7 (-15 -3661 ((-421 |#3|) |#3|))) (-1245 (-410 (-954 (-567)))) (-13 (-365) (-147) (-725 (-410 (-954 (-567))) |#1|)) (-1245 |#2|)) (T -1083)) -((-3661 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 (-954 (-567))))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-954 (-567))) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(-10 -7 (-15 -3661 ((-421 |#3|) |#3|))) -((-2487 (((-112) $ $) NIL)) (-2727 (($ $ $) 16)) (-1446 (($ $ $) 17)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1778 (($) 6)) (-1322 (((-1179) $) 20)) (-2504 (((-863) $) 13)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 15)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 9))) -(((-1084) (-13 (-851) (-615 (-1179)) (-10 -8 (-15 -1778 ($))))) (T -1084)) -((-1778 (*1 *1) (-5 *1 (-1084)))) -(-13 (-851) (-615 (-1179)) (-10 -8 (-15 -1778 ($)))) -((-2487 (((-112) $ $) 7)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-1184)) 17) (((-1184) $) 16)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-1085) (-140)) (T -1085)) +(-13 (-21) (-1115)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4263 (((-1180) $) 11)) (-4168 ((|#1| $) 12)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-3646 (($ (-1180) |#1|) 10)) (-4378 (((-865) $) 22 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3455 (((-112) $ $) 17 (|has| |#1| (-1104))))) +(((-1061 |#1| |#2|) (-13 (-1219) (-10 -8 (-15 -3646 ($ (-1180) |#1|)) (-15 -4263 ((-1180) $)) (-15 -4168 (|#1| $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) (-1097 |#2|) (-1219)) (T -1061)) +((-3646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-4 *4 (-1219)) (-5 *1 (-1061 *3 *4)) (-4 *3 (-1097 *4)))) (-4263 (*1 *2 *1) (-12 (-4 *4 (-1219)) (-5 *2 (-1180)) (-5 *1 (-1061 *3 *4)) (-4 *3 (-1097 *4)))) (-4168 (*1 *2 *1) (-12 (-4 *2 (-1097 *3)) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1219))))) +(-13 (-1219) (-10 -8 (-15 -3646 ($ (-1180) |#1|)) (-15 -4263 ((-1180) $)) (-15 -4168 (|#1| $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) +((-4202 (($ $) 17)) (-3531 (($ $) 25)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 55)) (-3536 (($ $) 27)) (-3532 (($ $) 12)) (-3534 (($ $) 43)) (-4402 (((-380) $) NIL) (((-225) $) NIL) (((-893 (-380)) $) 36)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL) (($ (-410 (-549))) 31) (($ (-549)) NIL) (($ (-410 (-549))) 31)) (-3530 (((-773)) 9)) (-3535 (($ $) 45))) +(((-1062 |#1|) (-10 -8 (-15 -3531 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| |#1|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-1063)) (T -1062)) +((-3530 (*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1062 *3)) (-4 *3 (-1063))))) +(-10 -8 (-15 -3531 (|#1| |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3536 (|#1| |#1|)) (-15 -3199 ((-891 (-380) |#1|) |#1| (-893 (-380)) (-891 (-380) |#1|))) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 -4402 ((-225) |#1|)) (-15 -4402 ((-380) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| |#1|)) (-15 -3530 ((-773))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3533 (((-549) $) 97)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-4202 (($ $) 95)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-3438 (($ $) 105)) (-1753 (((-112) $ $) 65)) (-4055 (((-549) $) 122)) (-4156 (($) 18 T CONST)) (-3531 (($ $) 94)) (-3577 (((-3 (-549) #1="failed") $) 110) (((-3 (-410 (-549)) #1#) $) 107)) (-3576 (((-549) $) 111) (((-410 (-549)) $) 108)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-4155 (((-112) $) 79)) (-3606 (((-112) $) 120)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 101)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 104)) (-3536 (($ $) 100)) (-3607 (((-112) $) 121)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) 58)) (-2934 (($ $ $) 119)) (-3260 (($ $ $) 118)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-3532 (($ $) 96)) (-3534 (($ $) 98)) (-4164 (((-408 $) $) 82)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-4402 (((-380) $) 113) (((-225) $) 112) (((-893 (-380)) $) 102)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ (-549)) 109) (($ (-410 (-549))) 106)) (-3530 (((-773)) 32 T CONST)) (-3535 (($ $) 99)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3807 (($ $) 123)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-2966 (((-112) $ $) 116)) (-2967 (((-112) $ $) 115)) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 117)) (-3088 (((-112) $ $) 114)) (-4381 (($ $ $) 73)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77) (($ $ (-410 (-549))) 103)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75))) +(((-1063) (-140)) (T -1063)) +((-3807 (*1 *1 *1) (-4 *1 (-1063))) (-3536 (*1 *1 *1) (-4 *1 (-1063))) (-3535 (*1 *1 *1) (-4 *1 (-1063))) (-3534 (*1 *1 *1) (-4 *1 (-1063))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-549)))) (-3532 (*1 *1 *1) (-4 *1 (-1063))) (-4202 (*1 *1 *1) (-4 *1 (-1063))) (-3531 (*1 *1 *1) (-4 *1 (-1063)))) +(-13 (-365) (-850) (-1023) (-1041 (-549)) (-1041 (-410 (-549))) (-1005) (-616 (-893 (-380))) (-889 (-380)) (-147) (-10 -8 (-15 -3536 ($ $)) (-15 -3535 ($ $)) (-15 -3534 ($ $)) (-15 -3533 ((-549) $)) (-15 -3532 ($ $)) (-15 -4202 ($ $)) (-15 -3531 ($ $)) (-15 -3807 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-616 (-225)) . T) ((-616 (-380)) . T) ((-616 (-893 (-380))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 $) . T) ((-728) . T) ((-793) . T) ((-794) . T) ((-796) . T) ((-799) . T) ((-850) . T) ((-852) . T) ((-889 (-380)) . T) ((-924) . T) ((-1005) . T) ((-1023) . T) ((-1041 (-410 (-549))) . T) ((-1041 (-549)) . T) ((-1054 #1#) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) |#2| $) 26)) (-3540 ((|#1| $) 10)) (-4055 (((-549) |#2| $) 116)) (-3603 (((-3 $ #1="failed") |#2| (-922)) 75)) (-3541 ((|#1| $) 31)) (-3602 ((|#1| |#2| $ |#1|) 40)) (-3538 (($ $) 28)) (-3890 (((-3 |#2| #1#) |#2| $) 111)) (-3606 (((-112) |#2| $) NIL)) (-3607 (((-112) |#2| $) NIL)) (-3537 (((-112) |#2| $) 27)) (-3539 ((|#1| $) 117)) (-3542 ((|#1| $) 30)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3605 ((|#2| $) 102)) (-4378 (((-865) $) 92)) (-3662 (((-112) $ $) NIL)) (-4201 ((|#1| |#2| $ |#1|) 41)) (-3604 (((-643 $) |#2|) 77)) (-3455 (((-112) $ $) 97))) +(((-1064 |#1| |#2|) (-13 (-1071 |#1| |#2|) (-10 -8 (-15 -3542 (|#1| $)) (-15 -3541 (|#1| $)) (-15 -3540 (|#1| $)) (-15 -3539 (|#1| $)) (-15 -3538 ($ $)) (-15 -3537 ((-112) |#2| $)) (-15 -3602 (|#1| |#2| $ |#1|)))) (-13 (-850) (-365)) (-1245 |#1|)) (T -1064)) +((-3602 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3542 (*1 *2 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3541 (*1 *2 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3540 (*1 *2 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3539 (*1 *2 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3538 (*1 *1 *1) (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) (-3537 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-850) (-365))) (-5 *2 (-112)) (-5 *1 (-1064 *4 *3)) (-4 *3 (-1245 *4))))) +(-13 (-1071 |#1| |#2|) (-10 -8 (-15 -3542 (|#1| $)) (-15 -3541 (|#1| $)) (-15 -3540 (|#1| $)) (-15 -3539 (|#1| $)) (-15 -3538 ($ $)) (-15 -3537 ((-112) |#2| $)) (-15 -3602 (|#1| |#2| $ |#1|)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2225 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2220 (($ $ $ $) NIL)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-4055 (((-549) $) NIL)) (-2762 (($ $ $) NIL)) (-4156 (($) NIL T CONST)) (-3543 (($ (-1180)) 10) (($ (-549)) 7)) (-3577 (((-3 (-549) "failed") $) NIL)) (-3576 (((-549) $) NIL)) (-2964 (($ $ $) NIL)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-691 (-549)) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL)) (-3424 (((-112) $) NIL)) (-3423 (((-410 (-549)) $) NIL)) (-3395 (($) NIL) (($ $) NIL)) (-2963 (($ $ $) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2218 (($ $ $ $) NIL)) (-2226 (($ $ $) NIL)) (-3606 (((-112) $) NIL)) (-1456 (($ $ $) NIL)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL)) (-2573 (((-112) $) NIL)) (-3076 (((-112) $) NIL)) (-3868 (((-3 $ "failed") $) NIL)) (-3607 (((-112) $) NIL)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2219 (($ $ $ $) NIL)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-2222 (($ $) NIL)) (-4265 (($ $) NIL)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2217 (($ $ $) NIL)) (-3869 (($) NIL T CONST)) (-2224 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) NIL) (($ (-643 $)) NIL)) (-1454 (($ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-2223 (($ $) NIL)) (-3824 (($ $) NIL)) (-4402 (((-549) $) 16) (((-538) $) NIL) (((-893 (-549)) $) NIL) (((-380) $) NIL) (((-225) $) NIL) (($ (-1180)) 9)) (-4378 (((-865) $) 23) (($ (-549)) 6) (($ $) NIL) (($ (-549)) 6)) (-3530 (((-773)) NIL T CONST)) (-2227 (((-112) $ $) NIL)) (-3505 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3097 (($) NIL)) (-2240 (((-112) $ $) NIL)) (-2221 (($ $ $ $) NIL)) (-3807 (($ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL)) (-4269 (($ $) 22) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL))) +(((-1065) (-13 (-548) (-620 (-1180)) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3543 ($ (-1180))) (-15 -3543 ($ (-549)))))) (T -1065)) +((-3543 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1065)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1065))))) +(-13 (-548) (-620 (-1180)) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3543 ($ (-1180))) (-15 -3543 ($ (-549))))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2372 (((-1275) $ (-1180) (-1180)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-3545 (($) 9)) (-4219 (((-51) $ (-1180) (-51)) NIL)) (-3553 (($ $) 32)) (-3556 (($ $) 30)) (-3557 (($ $) 29)) (-3555 (($ $) 31)) (-3552 (($ $) 35)) (-3551 (($ $) 36)) (-3558 (($ $) 28)) (-3554 (($ $) 33)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) 27 (|has| $ (-6 -4425)))) (-2381 (((-3 (-51) #1="failed") (-1180) $) 43)) (-4156 (($) NIL T CONST)) (-3559 (($) 7)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-3829 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) 53 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-3 (-51) #1#) (-1180) $) NIL)) (-3830 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425)))) (-3544 (((-3 (-1162) "failed") $ (-1162) (-549)) 74)) (-1684 (((-51) $ (-1180) (-51)) NIL (|has| $ (-6 -4426)))) (-3517 (((-51) $ (-1180)) NIL)) (-2124 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1180) $) NIL (|has| (-1180) (-852)))) (-3008 (((-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) 38 (|has| $ (-6 -4425))) (((-643 (-51)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2375 (((-1180) $) NIL (|has| (-1180) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4426))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-2816 (((-643 (-1180)) $) NIL)) (-2382 (((-112) (-1180) $) NIL)) (-1369 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) 46)) (-2377 (((-643 (-1180)) $) NIL)) (-2378 (((-112) (-1180) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-3548 (((-380) $ (-1180)) 52)) (-3547 (((-643 (-1162)) $ (-1162)) 76)) (-4232 (((-51) $) NIL (|has| (-1180) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) "failed") (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL)) (-2373 (($ $ (-51)) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL (-12 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-310 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (($ $ (-643 (-51)) (-643 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-294 (-51))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104)))) (($ $ (-643 (-294 (-51)))) NIL (-12 (|has| (-51) (-310 (-51))) (|has| (-51) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104))))) (-2379 (((-643 (-51)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (((-51) $ (-1180)) NIL) (((-51) $ (-1180) (-51)) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-3546 (($ $ (-1180)) 54)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104)))) (((-773) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1104)))) (((-773) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) 40)) (-4233 (($ $ $) 41)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-615 (-865))) (|has| (-51) (-615 (-865)))))) (-3550 (($ $ (-1180) (-380)) 50)) (-3549 (($ $ (-1180) (-380)) 51)) (-3662 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 (-1180)) (|:| -2254 (-51)))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-51) (-1104)) (|has| (-2 (|:| -4292 (-1180)) (|:| -2254 (-51))) (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1066) (-13 (-1196 (-1180) (-51)) (-10 -8 (-15 -4233 ($ $ $)) (-15 -3559 ($)) (-15 -3558 ($ $)) (-15 -3557 ($ $)) (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $)) (-15 -3551 ($ $)) (-15 -3550 ($ $ (-1180) (-380))) (-15 -3549 ($ $ (-1180) (-380))) (-15 -3548 ((-380) $ (-1180))) (-15 -3547 ((-643 (-1162)) $ (-1162))) (-15 -3546 ($ $ (-1180))) (-15 -3545 ($)) (-15 -3544 ((-3 (-1162) "failed") $ (-1162) (-549))) (-6 -4425)))) (T -1066)) +((-4233 (*1 *1 *1 *1) (-5 *1 (-1066))) (-3559 (*1 *1) (-5 *1 (-1066))) (-3558 (*1 *1 *1) (-5 *1 (-1066))) (-3557 (*1 *1 *1) (-5 *1 (-1066))) (-3556 (*1 *1 *1) (-5 *1 (-1066))) (-3555 (*1 *1 *1) (-5 *1 (-1066))) (-3554 (*1 *1 *1) (-5 *1 (-1066))) (-3553 (*1 *1 *1) (-5 *1 (-1066))) (-3552 (*1 *1 *1) (-5 *1 (-1066))) (-3551 (*1 *1 *1) (-5 *1 (-1066))) (-3550 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-380)) (-5 *1 (-1066)))) (-3549 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-380)) (-5 *1 (-1066)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-380)) (-5 *1 (-1066)))) (-3547 (*1 *2 *1 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1066)) (-5 *3 (-1162)))) (-3546 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1066)))) (-3545 (*1 *1) (-5 *1 (-1066))) (-3544 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-1066))))) +(-13 (-1196 (-1180) (-51)) (-10 -8 (-15 -4233 ($ $ $)) (-15 -3559 ($)) (-15 -3558 ($ $)) (-15 -3557 ($ $)) (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $)) (-15 -3551 ($ $)) (-15 -3550 ($ $ (-1180) (-380))) (-15 -3549 ($ $ (-1180) (-380))) (-15 -3548 ((-380) $ (-1180))) (-15 -3547 ((-643 (-1162)) $ (-1162))) (-15 -3546 ($ $ (-1180))) (-15 -3545 ($)) (-15 -3544 ((-3 (-1162) "failed") $ (-1162) (-549))) (-6 -4425))) +((-4228 (($ $) 46)) (-3586 (((-112) $ $) 82)) (-3577 (((-3 |#2| #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-949 (-410 (-549)))) 253) (((-3 $ "failed") (-949 (-549))) 252) (((-3 $ "failed") (-949 |#2|)) 255)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL) (((-549) $) NIL) ((|#4| $) NIL) (($ (-949 (-410 (-549)))) 241) (($ (-949 (-549))) 237) (($ (-949 |#2|)) 257)) (-4391 (($ $) NIL) (($ $ |#4|) 44)) (-4126 (((-112) $ $) 131) (((-112) $ (-643 $)) 135)) (-3592 (((-112) $) 60)) (-4184 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 125)) (-3563 (($ $) 160)) (-3574 (($ $) 156)) (-3575 (($ $) 155)) (-3585 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3584 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4127 (((-112) $ $) 143) (((-112) $ (-643 $)) 144)) (-3600 ((|#4| $) 32)) (-3579 (($ $ $) 128)) (-3593 (((-112) $) 59)) (-3599 (((-773) $) 35)) (-3560 (($ $) 174)) (-3561 (($ $) 171)) (-3588 (((-643 $) $) 72)) (-3591 (($ $) 62)) (-3562 (($ $) 167)) (-3589 (((-643 $) $) 69)) (-3590 (($ $) 64)) (-3594 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3578 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3904 (-773))) $ $) 130)) (-3580 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $) 126) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $ |#4|) 127)) (-3581 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $) 121) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $ |#4|) 123)) (-3583 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3582 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3596 (((-643 $) $) 54)) (-4123 (((-112) $ $) 140) (((-112) $ (-643 $)) 141)) (-4118 (($ $ $) 116)) (-3869 (($ $) 37)) (-4131 (((-112) $ $) 80)) (-4124 (((-112) $ $) 136) (((-112) $ (-643 $)) 138)) (-4119 (($ $ $) 112)) (-3598 (($ $) 41)) (-3564 ((|#2| |#2| $) 164) (($ (-643 $)) NIL) (($ $ $) NIL)) (-3572 (($ $ |#2|) NIL) (($ $ $) 153)) (-3573 (($ $ |#2|) 148) (($ $ $) 151)) (-3597 (($ $) 49)) (-3595 (($ $) 55)) (-4402 (((-893 (-380)) $) NIL) (((-893 (-549)) $) NIL) (((-538) $) NIL) (($ (-949 (-410 (-549)))) 243) (($ (-949 (-549))) 239) (($ (-949 |#2|)) 254) (((-1162) $) 281) (((-949 |#2|) $) 184)) (-4378 (((-865) $) 29) (($ (-549)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-949 |#2|) $) 185) (($ (-410 (-549))) NIL) (($ $) NIL)) (-3587 (((-3 (-112) "failed") $ $) 79))) +(((-1067 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 ((-949 |#2|) |#1|)) (-15 -4402 ((-949 |#2|) |#1|)) (-15 -4402 ((-1162) |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -3564 (|#2| |#2| |#1|)) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3573 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#2|)) (-15 -3573 (|#1| |#1| |#2|)) (-15 -3574 (|#1| |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -4402 (|#1| (-949 |#2|))) (-15 -3576 (|#1| (-949 |#2|))) (-15 -3577 ((-3 |#1| "failed") (-949 |#2|))) (-15 -4402 (|#1| (-949 (-549)))) (-15 -3576 (|#1| (-949 (-549)))) (-15 -3577 ((-3 |#1| "failed") (-949 (-549)))) (-15 -4402 (|#1| (-949 (-410 (-549))))) (-15 -3576 (|#1| (-949 (-410 (-549))))) (-15 -3577 ((-3 |#1| "failed") (-949 (-410 (-549))))) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4119 (|#1| |#1| |#1|)) (-15 -3578 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3904 (-773))) |#1| |#1|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -4184 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3581 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3581 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1| |#4|)) (-15 -3583 (|#1| |#1| |#1| |#4|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -3584 (|#1| |#1| |#1| |#4|)) (-15 -3585 (|#1| |#1| |#1| |#4|)) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -4127 ((-112) |#1| (-643 |#1|))) (-15 -4127 ((-112) |#1| |#1|)) (-15 -4123 ((-112) |#1| (-643 |#1|))) (-15 -4123 ((-112) |#1| |#1|)) (-15 -4124 ((-112) |#1| (-643 |#1|))) (-15 -4124 ((-112) |#1| |#1|)) (-15 -4126 ((-112) |#1| (-643 |#1|))) (-15 -4126 ((-112) |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -4131 ((-112) |#1| |#1|)) (-15 -3587 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3588 ((-643 |#1|) |#1|)) (-15 -3589 ((-643 |#1|) |#1|)) (-15 -3590 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -3592 ((-112) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -4391 (|#1| |#1| |#4|)) (-15 -3594 (|#1| |#1| |#4|)) (-15 -3595 (|#1| |#1|)) (-15 -3596 ((-643 |#1|) |#1|)) (-15 -3597 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3599 ((-773) |#1|)) (-15 -3600 (|#4| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4378 (|#1| |#4|)) (-15 -3577 ((-3 |#4| #1="failed") |#1|)) (-15 -3576 (|#4| |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-1068 |#2| |#3| |#4|) (-1052) (-795) (-852)) (T -1067)) +NIL +(-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -3564 (|#1| |#1| |#1|)) (-15 -3564 (|#1| (-643 |#1|))) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 ((-949 |#2|) |#1|)) (-15 -4402 ((-949 |#2|) |#1|)) (-15 -4402 ((-1162) |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3562 (|#1| |#1|)) (-15 -3563 (|#1| |#1|)) (-15 -3564 (|#2| |#2| |#1|)) (-15 -3572 (|#1| |#1| |#1|)) (-15 -3573 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#2|)) (-15 -3573 (|#1| |#1| |#2|)) (-15 -3574 (|#1| |#1|)) (-15 -3575 (|#1| |#1|)) (-15 -4402 (|#1| (-949 |#2|))) (-15 -3576 (|#1| (-949 |#2|))) (-15 -3577 ((-3 |#1| "failed") (-949 |#2|))) (-15 -4402 (|#1| (-949 (-549)))) (-15 -3576 (|#1| (-949 (-549)))) (-15 -3577 ((-3 |#1| "failed") (-949 (-549)))) (-15 -4402 (|#1| (-949 (-410 (-549))))) (-15 -3576 (|#1| (-949 (-410 (-549))))) (-15 -3577 ((-3 |#1| "failed") (-949 (-410 (-549))))) (-15 -4118 (|#1| |#1| |#1|)) (-15 -4119 (|#1| |#1| |#1|)) (-15 -3578 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3904 (-773))) |#1| |#1|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -4184 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3580 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3581 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3581 ((-2 (|:| -4386 |#1|) (|:| |gap| (-773)) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1| |#4|)) (-15 -3583 (|#1| |#1| |#1| |#4|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -3584 (|#1| |#1| |#1| |#4|)) (-15 -3585 (|#1| |#1| |#1| |#4|)) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -4127 ((-112) |#1| (-643 |#1|))) (-15 -4127 ((-112) |#1| |#1|)) (-15 -4123 ((-112) |#1| (-643 |#1|))) (-15 -4123 ((-112) |#1| |#1|)) (-15 -4124 ((-112) |#1| (-643 |#1|))) (-15 -4124 ((-112) |#1| |#1|)) (-15 -4126 ((-112) |#1| (-643 |#1|))) (-15 -4126 ((-112) |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -4131 ((-112) |#1| |#1|)) (-15 -3587 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3588 ((-643 |#1|) |#1|)) (-15 -3589 ((-643 |#1|) |#1|)) (-15 -3590 (|#1| |#1|)) (-15 -3591 (|#1| |#1|)) (-15 -3592 ((-112) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -4391 (|#1| |#1| |#4|)) (-15 -3594 (|#1| |#1| |#4|)) (-15 -3595 (|#1| |#1|)) (-15 -3596 ((-643 |#1|) |#1|)) (-15 -3597 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -3599 ((-773) |#1|)) (-15 -3600 (|#4| |#1|)) (-15 -4402 ((-538) |#1|)) (-15 -4402 ((-893 (-549)) |#1|)) (-15 -4402 ((-893 (-380)) |#1|)) (-15 -4378 (|#1| |#4|)) (-15 -3577 ((-3 |#4| #1="failed") |#1|)) (-15 -3576 (|#4| |#1|)) (-15 -3594 (|#2| |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 |#3|) $) 112)) (-3487 (((-1174 $) $ |#3|) 127) (((-1174 |#1|) $) 126)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 89 (|has| |#1| (-560)))) (-2241 (($ $) 90 (|has| |#1| (-560)))) (-2239 (((-112) $) 92 (|has| |#1| (-560)))) (-3222 (((-773) $) 114) (((-773) $ (-643 |#3|)) 113)) (-4228 (($ $) 273)) (-3586 (((-112) $ $) 259)) (-1407 (((-3 $ "failed") $ $) 20)) (-4187 (($ $ $) 218 (|has| |#1| (-560)))) (-3568 (((-643 $) $ $) 213 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-913)))) (-4206 (($ $) 100 (|has| |#1| (-455)))) (-4401 (((-408 $) $) 99 (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-913)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 166) (((-3 (-410 (-549)) #2#) $) 163 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) 161 (|has| |#1| (-1041 (-549)))) (((-3 |#3| #2#) $) 138) (((-3 $ "failed") (-949 (-410 (-549)))) 233 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))) (((-3 $ "failed") (-949 (-549))) 230 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180)))))) (((-3 $ "failed") (-949 |#1|)) 227 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-38 (-549)))) (|has| |#3| (-616 (-1180)))) (-12 (-3746 (|has| |#1| (-548))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (-3746 (|has| |#1| (-994 (-549)))) (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))))) (-3576 ((|#1| $) 165) (((-410 (-549)) $) 164 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 162 (|has| |#1| (-1041 (-549)))) ((|#3| $) 139) (($ (-949 (-410 (-549)))) 232 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))) (($ (-949 (-549))) 229 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180)))))) (($ (-949 |#1|)) 226 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (-3746 (|has| |#1| (-38 (-549)))) (|has| |#3| (-616 (-1180)))) (-12 (-3746 (|has| |#1| (-548))) (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (-3746 (|has| |#1| (-994 (-549)))) (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))))) (-4188 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-560)))) (-4391 (($ $) 156) (($ $ |#3|) 268)) (-2427 (((-691 (-549)) (-691 $)) 136 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 135 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 134) (((-691 |#1|) (-691 $)) 133)) (-4126 (((-112) $ $) 258) (((-112) $ (-643 $)) 257)) (-3890 (((-3 $ "failed") $) 37)) (-3592 (((-112) $) 266)) (-4184 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 238)) (-3563 (($ $) 207 (|has| |#1| (-455)))) (-3926 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-3221 (((-643 $) $) 111)) (-4155 (((-112) $) 98 (|has| |#1| (-913)))) (-3574 (($ $) 223 (|has| |#1| (-560)))) (-3575 (($ $) 224 (|has| |#1| (-560)))) (-3585 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3584 (($ $ $) 249) (($ $ $ |#3|) 247)) (-1769 (($ $ |#1| |#2| $) 174)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 86 (-12 (|has| |#3| (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 85 (-12 (|has| |#3| (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 171)) (-4127 (((-112) $ $) 252) (((-112) $ (-643 $)) 251)) (-3565 (($ $ $ $ $) 209 (|has| |#1| (-560)))) (-3600 ((|#3| $) 277)) (-3488 (($ (-1174 |#1|) |#3|) 119) (($ (-1174 $) |#3|) 118)) (-3224 (((-643 $) $) 128)) (-4369 (((-112) $) 154)) (-3294 (($ |#1| |#2|) 155) (($ $ |#3| (-773)) 121) (($ $ (-643 |#3|) (-643 (-773))) 120)) (-3579 (($ $ $) 237)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) 122)) (-3593 (((-112) $) 267)) (-3223 ((|#2| $) 172) (((-773) $ |#3|) 124) (((-643 (-773)) $ (-643 |#3|)) 123)) (-3599 (((-773) $) 276)) (-1770 (($ (-1 |#2| |#2|) $) 173)) (-4390 (($ (-1 |#1| |#1|) $) 153)) (-3486 (((-3 |#3| #3="failed") $) 125)) (-3560 (($ $) 204 (|has| |#1| (-455)))) (-3561 (($ $) 205 (|has| |#1| (-455)))) (-3588 (((-643 $) $) 262)) (-3591 (($ $) 265)) (-3562 (($ $) 206 (|has| |#1| (-455)))) (-3589 (((-643 $) $) 263)) (-3590 (($ $) 264)) (-3295 (($ $) 151)) (-3594 ((|#1| $) 150) (($ $ |#3|) 269)) (-2069 (($ (-643 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3578 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3904 (-773))) $ $) 236)) (-3580 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $) 240) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $ |#3|) 239)) (-3581 (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $) 242) (((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $ |#3|) 241)) (-3583 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3582 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3663 (((-1162) $) 10)) (-3610 (($ $ $) 212 (|has| |#1| (-560)))) (-3596 (((-643 $) $) 271)) (-3226 (((-3 (-643 $) #3#) $) 116)) (-3225 (((-3 (-643 $) #3#) $) 117)) (-3227 (((-3 (-2 (|:| |var| |#3|) (|:| -2564 (-773))) #3#) $) 115)) (-4123 (((-112) $ $) 254) (((-112) $ (-643 $)) 253)) (-4118 (($ $ $) 234)) (-3869 (($ $) 275)) (-4131 (((-112) $ $) 260)) (-4124 (((-112) $ $) 256) (((-112) $ (-643 $)) 255)) (-4119 (($ $ $) 235)) (-3598 (($ $) 274)) (-3664 (((-1123) $) 11)) (-3569 (((-2 (|:| -3564 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-560)))) (-3570 (((-2 (|:| -3564 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-560)))) (-1972 (((-112) $) 168)) (-1971 ((|#1| $) 169)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-3564 ((|#1| |#1| $) 208 (|has| |#1| (-455))) (($ (-643 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 101 (|has| |#1| (-913)))) (-3571 (((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-560)))) (-3889 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-560)))) (-3572 (($ $ |#1|) 221 (|has| |#1| (-560))) (($ $ $) 219 (|has| |#1| (-560)))) (-3573 (($ $ |#1|) 222 (|has| |#1| (-560))) (($ $ $) 220 (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-643 $) (-643 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-643 |#3|) (-643 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-643 |#3|) (-643 $)) 140)) (-4189 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-4242 (($ $ |#3|) 46) (($ $ (-643 |#3|)) 45) (($ $ |#3| (-773)) 44) (($ $ (-643 |#3|) (-643 (-773))) 43)) (-4380 ((|#2| $) 152) (((-773) $ |#3|) 132) (((-643 (-773)) $ (-643 |#3|)) 131)) (-3597 (($ $) 272)) (-3595 (($ $) 270)) (-4402 (((-893 (-380)) $) 84 (-12 (|has| |#3| (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) 83 (-12 (|has| |#3| (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) 82 (-12 (|has| |#3| (-616 (-538))) (|has| |#1| (-616 (-538))))) (($ (-949 (-410 (-549)))) 231 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180))))) (($ (-949 (-549))) 228 (-3960 (-12 (-3746 (|has| |#1| (-38 (-410 (-549))))) (|has| |#1| (-38 (-549))) (|has| |#3| (-616 (-1180)))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#3| (-616 (-1180)))))) (($ (-949 |#1|)) 225 (|has| |#3| (-616 (-1180)))) (((-1162) $) 203 (-12 (|has| |#1| (-1041 (-549))) (|has| |#3| (-616 (-1180))))) (((-949 |#1|) $) 202 (|has| |#3| (-616 (-1180))))) (-3220 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 106 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-949 |#1|) $) 201 (|has| |#3| (-616 (-1180)))) (($ (-410 (-549))) 80 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549)))))) (($ $) 87 (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) 170)) (-4109 ((|#1| $ |#2|) 157) (($ $ |#3| (-773)) 130) (($ $ (-643 |#3|) (-643 (-773))) 129)) (-3105 (((-3 $ #1#) $) 81 (-3960 (-3256 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 175 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 91 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3587 (((-3 (-112) "failed") $ $) 261)) (-3067 (($) 34 T CONST)) (-3566 (($ $ $ $ (-773)) 210 (|has| |#1| (-560)))) (-3567 (($ $ $ (-773)) 211 (|has| |#1| (-560)))) (-3072 (($ $ |#3|) 42) (($ $ (-643 |#3|)) 41) (($ $ |#3| (-773)) 40) (($ $ (-643 |#3|) (-643 (-773))) 39)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 160 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1068 |#1| |#2| |#3|) (-140) (-1052) (-795) (-852)) (T -1068)) +((-3600 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-773)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3596 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5)))) (-3595 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3594 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-4391 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-3591 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3590 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3589 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5)))) (-3588 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5)))) (-3587 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4131 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-3586 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) (-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) (-4123 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4123 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) (-4127 (*1 *2 *1 *1) (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)))) (-4127 (*1 *2 *1 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) (-3585 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3585 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3584 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3583 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3582 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3583 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3582 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) (-3581 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -3303 *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3581 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -3303 *1))) (-4 *1 (-1068 *4 *5 *3)))) (-3580 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3580 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1068 *4 *5 *3)))) (-4184 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3579 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3578 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3904 (-773)))) (-4 *1 (-1068 *3 *4 *5)))) (-4119 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) (-3577 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)))) (-3576 (*1 *1 *2) (-12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)))) (-3577 (*1 *1 *2) (|partial| -3960 (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))))) (-3576 (*1 *1 *2) (-3960 (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))))) (-4402 (*1 *1 *2) (-3960 (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))))) (-3577 (*1 *1 *2) (|partial| -3960 (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-3746 (-4 *3 (-38 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-548))) (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-994 (-549)))) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))))) (-3576 (*1 *1 *2) (-3960 (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-3746 (-4 *3 (-38 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-548))) (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) (-12 (-5 *2 (-949 *3)) (-12 (-3746 (-4 *3 (-994 (-549)))) (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *5 (-616 (-1180))) (-4 *4 (-795)) (-4 *5 (-852)))) (-3575 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3574 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3573 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3572 (*1 *1 *1 *2) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3573 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3572 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-4187 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3571 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -3564 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3570 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -3564 *1) (|:| |coef1| *1))) (-4 *1 (-1068 *3 *4 *5)))) (-3569 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-2 (|:| -3564 *1) (|:| |coef2| *1))) (-4 *1 (-1068 *3 *4 *5)))) (-4188 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3568 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5)))) (-3610 (*1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3567 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *3 (-560)))) (-3566 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *3 (-560)))) (-3565 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-560)))) (-3564 (*1 *2 *2 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-3562 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-3561 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455)))) (-3560 (*1 *1 *1) (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-455))))) +(-13 (-953 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3600 (|t#3| $)) (-15 -3599 ((-773) $)) (-15 -3869 ($ $)) (-15 -3598 ($ $)) (-15 -4228 ($ $)) (-15 -3597 ($ $)) (-15 -3596 ((-643 $) $)) (-15 -3595 ($ $)) (-15 -3594 ($ $ |t#3|)) (-15 -4391 ($ $ |t#3|)) (-15 -3593 ((-112) $)) (-15 -3592 ((-112) $)) (-15 -3591 ($ $)) (-15 -3590 ($ $)) (-15 -3589 ((-643 $) $)) (-15 -3588 ((-643 $) $)) (-15 -3587 ((-3 (-112) "failed") $ $)) (-15 -4131 ((-112) $ $)) (-15 -3586 ((-112) $ $)) (-15 -4126 ((-112) $ $)) (-15 -4126 ((-112) $ (-643 $))) (-15 -4124 ((-112) $ $)) (-15 -4124 ((-112) $ (-643 $))) (-15 -4123 ((-112) $ $)) (-15 -4123 ((-112) $ (-643 $))) (-15 -4127 ((-112) $ $)) (-15 -4127 ((-112) $ (-643 $))) (-15 -3585 ($ $ $)) (-15 -3584 ($ $ $)) (-15 -3585 ($ $ $ |t#3|)) (-15 -3584 ($ $ $ |t#3|)) (-15 -3583 ($ $ $)) (-15 -3582 ($ $ $)) (-15 -3583 ($ $ $ |t#3|)) (-15 -3582 ($ $ $ |t#3|)) (-15 -3581 ((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $)) (-15 -3581 ((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -3303 $)) $ $ |t#3|)) (-15 -3580 ((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -3580 ((-2 (|:| -4386 $) (|:| |gap| (-773)) (|:| -2152 $) (|:| -3303 $)) $ $ |t#3|)) (-15 -4184 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -3579 ($ $ $)) (-15 -3578 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3904 (-773))) $ $)) (-15 -4119 ($ $ $)) (-15 -4118 ($ $ $)) (IF (|has| |t#3| (-616 (-1180))) (PROGN (-6 (-615 (-949 |t#1|))) (-6 (-616 (-949 |t#1|))) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -3577 ((-3 $ "failed") (-949 (-410 (-549))))) (-15 -3576 ($ (-949 (-410 (-549))))) (-15 -4402 ($ (-949 (-410 (-549))))) (-15 -3577 ((-3 $ "failed") (-949 (-549)))) (-15 -3576 ($ (-949 (-549)))) (-15 -4402 ($ (-949 (-549)))) (IF (|has| |t#1| (-994 (-549))) |%noBranch| (PROGN (-15 -3577 ((-3 $ "failed") (-949 |t#1|))) (-15 -3576 ($ (-949 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-549))) (IF (|has| |t#1| (-38 (-410 (-549)))) |%noBranch| (PROGN (-15 -3577 ((-3 $ "failed") (-949 (-549)))) (-15 -3576 ($ (-949 (-549)))) (-15 -4402 ($ (-949 (-549)))) (IF (|has| |t#1| (-548)) |%noBranch| (PROGN (-15 -3577 ((-3 $ "failed") (-949 |t#1|))) (-15 -3576 ($ (-949 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-549))) |%noBranch| (IF (|has| |t#1| (-38 (-410 (-549)))) |%noBranch| (PROGN (-15 -3577 ((-3 $ "failed") (-949 |t#1|))) (-15 -3576 ($ (-949 |t#1|)))))) (-15 -4402 ($ (-949 |t#1|))) (IF (|has| |t#1| (-1041 (-549))) (-6 (-616 (-1162))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-15 -3575 ($ $)) (-15 -3574 ($ $)) (-15 -3573 ($ $ |t#1|)) (-15 -3572 ($ $ |t#1|)) (-15 -3573 ($ $ $)) (-15 -3572 ($ $ $)) (-15 -4187 ($ $ $)) (-15 -3571 ((-2 (|:| -3564 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3570 ((-2 (|:| -3564 $) (|:| |coef1| $)) $ $)) (-15 -3569 ((-2 (|:| -3564 $) (|:| |coef2| $)) $ $)) (-15 -4188 ($ $ $)) (-15 -3568 ((-643 $) $ $)) (-15 -3610 ($ $ $)) (-15 -3567 ($ $ $ (-773))) (-15 -3566 ($ $ $ $ (-773))) (-15 -3565 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -3564 (|t#1| |t#1| $)) (-15 -3563 ($ $)) (-15 -3562 ($ $)) (-15 -3561 ($ $)) (-15 -3560 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 |#3|) . T) ((-618 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-615 (-865)) . T) ((-615 (-949 |#1|)) |has| |#3| (-616 (-1180))) ((-172) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-616 (-538)) -12 (|has| |#1| (-616 (-538))) (|has| |#3| (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#3| (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#3| (-616 (-893 (-549))))) ((-616 (-949 |#1|)) |has| |#3| (-616 (-1180))) ((-616 (-1162)) -12 (|has| |#1| (-1041 (-549))) (|has| |#3| (-616 (-1180)))) ((-291) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-913)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-560) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455))) ((-728) . T) ((-903 |#3|) . T) ((-889 (-380)) -12 (|has| |#1| (-889 (-380))) (|has| |#3| (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-889 (-549))) (|has| |#3| (-889 (-549)))) ((-953 |#1| |#2| |#3|) . T) ((-913) |has| |#1| (-913)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 |#1|) . T) ((-1041 |#3|) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) |has| |#1| (-913))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3601 (((-643 (-1138)) $) 18)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 27) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-1138) $) 20)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1069) (-13 (-1086) (-10 -8 (-15 -3601 ((-643 (-1138)) $)) (-15 -3653 ((-1138) $))))) (T -1069)) +((-3601 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1069)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1069))))) +(-13 (-1086) (-10 -8 (-15 -3601 ((-643 (-1138)) $)) (-15 -3653 ((-1138) $)))) +((-3608 (((-112) |#3| $) 15)) (-3603 (((-3 $ "failed") |#3| (-922)) 29)) (-3890 (((-3 |#3| "failed") |#3| $) 45)) (-3606 (((-112) |#3| $) 19)) (-3607 (((-112) |#3| $) 17))) +(((-1070 |#1| |#2| |#3|) (-10 -8 (-15 -3603 ((-3 |#1| "failed") |#3| (-922))) (-15 -3890 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3606 ((-112) |#3| |#1|)) (-15 -3607 ((-112) |#3| |#1|)) (-15 -3608 ((-112) |#3| |#1|))) (-1071 |#2| |#3|) (-13 (-850) (-365)) (-1245 |#2|)) (T -1070)) +NIL +(-10 -8 (-15 -3603 ((-3 |#1| "failed") |#3| (-922))) (-15 -3890 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3606 ((-112) |#3| |#1|)) (-15 -3607 ((-112) |#3| |#1|)) (-15 -3608 ((-112) |#3| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) |#2| $) 22)) (-4055 (((-549) |#2| $) 23)) (-3603 (((-3 $ "failed") |#2| (-922)) 16)) (-3602 ((|#1| |#2| $ |#1|) 14)) (-3890 (((-3 |#2| "failed") |#2| $) 19)) (-3606 (((-112) |#2| $) 20)) (-3607 (((-112) |#2| $) 21)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3605 ((|#2| $) 18)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-4201 ((|#1| |#2| $ |#1|) 15)) (-3604 (((-643 $) |#2|) 17)) (-3455 (((-112) $ $) 6))) +(((-1071 |#1| |#2|) (-140) (-13 (-850) (-365)) (-1245 |t#1|)) (T -1071)) +((-4055 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-549)))) (-3608 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3607 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3606 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-112)))) (-3890 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-13 (-850) (-365))) (-4 *2 (-1245 *3)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-13 (-850) (-365))) (-4 *2 (-1245 *3)))) (-3604 (*1 *2 *3) (-12 (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-643 *1)) (-4 *1 (-1071 *4 *3)))) (-3603 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-922)) (-4 *4 (-13 (-850) (-365))) (-4 *1 (-1071 *4 *2)) (-4 *2 (-1245 *4)))) (-4201 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1071 *2 *3)) (-4 *2 (-13 (-850) (-365))) (-4 *3 (-1245 *2)))) (-3602 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1071 *2 *3)) (-4 *2 (-13 (-850) (-365))) (-4 *3 (-1245 *2))))) +(-13 (-1104) (-10 -8 (-15 -4055 ((-549) |t#2| $)) (-15 -3608 ((-112) |t#2| $)) (-15 -3607 ((-112) |t#2| $)) (-15 -3606 ((-112) |t#2| $)) (-15 -3890 ((-3 |t#2| "failed") |t#2| $)) (-15 -3605 (|t#2| $)) (-15 -3604 ((-643 $) |t#2|)) (-15 -3603 ((-3 $ "failed") |t#2| (-922))) (-15 -4201 (|t#1| |t#2| $ |t#1|)) (-15 -3602 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-3860 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773)) 114)) (-3857 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773)) 63)) (-3861 (((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)) 99)) (-3855 (((-773) (-643 |#4|) (-643 |#5|)) 30)) (-3858 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773)) 65) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112)) 67)) (-3859 (((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112)) 87)) (-4402 (((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) 92)) (-3856 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-112)) 62)) (-3854 (((-773) (-643 |#4|) (-643 |#5|)) 21))) +(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3854 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3855 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3856 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-112))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3860 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773))) (-15 -4402 ((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3861 ((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -1072)) +((-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *4 (-773)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-1275)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1162)) (-5 *1 (-1072 *4 *5 *6 *7 *8)))) (-3860 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-643 *11)) (|:| |todo| (-643 (-2 (|:| |val| *3) (|:| -1708 *11)))))) (-5 *6 (-773)) (-5 *2 (-643 (-2 (|:| |val| (-643 *10)) (|:| -1708 *11)))) (-5 *3 (-643 *10)) (-5 *4 (-643 *11)) (-4 *10 (-1068 *7 *8 *9)) (-4 *11 (-1074 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) (-5 *1 (-1072 *7 *8 *9 *10 *11)))) (-3859 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-3859 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3858 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3858 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-773)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) (-4 *3 (-1068 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *7 *8 *9 *3 *4)) (-4 *4 (-1074 *7 *8 *9 *3)))) (-3857 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3857 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3856 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-773)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-773)) (-5 *1 (-1072 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3854 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3855 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3856 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-112))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3860 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773))) (-15 -4402 ((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3861 ((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)))) +((-3617 (((-112) |#5| $) 26)) (-3615 (((-112) |#5| $) 29)) (-3618 (((-112) |#5| $) 18) (((-112) $) 52)) (-3658 (((-643 $) |#5| $) NIL) (((-643 $) (-643 |#5|) $) 94) (((-643 $) (-643 |#5|) (-643 $)) 92) (((-643 $) |#5| (-643 $)) 95)) (-4200 (($ $ |#5|) NIL) (((-643 $) |#5| $) NIL) (((-643 $) |#5| (-643 $)) 73) (((-643 $) (-643 |#5|) $) 75) (((-643 $) (-643 |#5|) (-643 $)) 77)) (-3609 (((-643 $) |#5| $) NIL) (((-643 $) |#5| (-643 $)) 64) (((-643 $) (-643 |#5|) $) 69) (((-643 $) (-643 |#5|) (-643 $)) 71)) (-3616 (((-112) |#5| $) 32))) +(((-1073 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4200 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -4200 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -4200 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -4200 ((-643 |#1|) |#5| |#1|)) (-15 -3609 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -3609 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -3609 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -3609 ((-643 |#1|) |#5| |#1|)) (-15 -3658 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -3658 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -3658 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -3658 ((-643 |#1|) |#5| |#1|)) (-15 -3615 ((-112) |#5| |#1|)) (-15 -3618 ((-112) |#1|)) (-15 -3616 ((-112) |#5| |#1|)) (-15 -3617 ((-112) |#5| |#1|)) (-15 -3618 ((-112) |#5| |#1|)) (-15 -4200 (|#1| |#1| |#5|))) (-1074 |#2| |#3| |#4| |#5|) (-455) (-795) (-852) (-1068 |#2| |#3| |#4|)) (T -1073)) +NIL +(-10 -8 (-15 -4200 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -4200 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -4200 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -4200 ((-643 |#1|) |#5| |#1|)) (-15 -3609 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -3609 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -3609 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -3609 ((-643 |#1|) |#5| |#1|)) (-15 -3658 ((-643 |#1|) |#5| (-643 |#1|))) (-15 -3658 ((-643 |#1|) (-643 |#5|) (-643 |#1|))) (-15 -3658 ((-643 |#1|) (-643 |#5|) |#1|)) (-15 -3658 ((-643 |#1|) |#5| |#1|)) (-15 -3615 ((-112) |#5| |#1|)) (-15 -3618 ((-112) |#1|)) (-15 -3616 ((-112) |#5| |#1|)) (-15 -3617 ((-112) |#5| |#1|)) (-15 -3618 ((-112) |#5| |#1|)) (-15 -4200 (|#1| |#1| |#5|))) +((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87) (((-643 $) (-643 |#4|) (-112)) 112)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 127)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ #1#) $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-3617 (((-112) |#4| $) 137)) (-3615 (((-112) |#4| $) 134)) (-3618 (((-112) |#4| $) 138) (((-112) $) 135)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) 129)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 128)) (-4229 (((-3 |#4| #1#) $) 84)) (-3612 (((-643 $) |#4| $) 130)) (-3614 (((-3 (-112) (-643 $)) |#4| $) 133)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3658 (((-643 $) |#4| $) 126) (((-643 $) (-643 |#4|) $) 125) (((-643 $) (-643 |#4|) (-643 $)) 124) (((-643 $) |#4| (-643 $)) 123)) (-3864 (($ |#4| $) 118) (($ (-643 |#4|) $) 117)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| #1#) $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ #1#) $ |#4|) 79)) (-4200 (($ $ |#4|) 78) (((-643 $) |#4| $) 116) (((-643 $) |#4| (-643 $)) 115) (((-643 $) (-643 |#4|) $) 114) (((-643 $) (-643 |#4|) (-643 $)) 113)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-3609 (((-643 $) |#4| $) 122) (((-643 $) |#4| (-643 $)) 121) (((-643 $) (-643 |#4|) $) 120) (((-643 $) (-643 |#4|) (-643 $)) 119)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-3616 (((-112) |#4| $) 136)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) +(((-1074 |#1| |#2| |#3| |#4|) (-140) (-455) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -1074)) +((-3618 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3617 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3616 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3618 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-3615 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3614 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-3 (-112) (-643 *1))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3613 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *1)))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3613 (*1 *2 *3 *1) (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-3612 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3611 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-3 *3 (-643 *1))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3610 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *1)))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-4206 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *1)))) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3658 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3658 (*1 *2 *3 *1) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) (-3658 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) (-3658 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) (-3609 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) (-3609 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) (-3609 (*1 *2 *3 *1) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) (-3609 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) (-3864 (*1 *1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-3864 (*1 *1 *2 *1) (-12 (-5 *2 (-643 *6)) (-4 *1 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)))) (-4200 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) (-4200 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) (-4200 (*1 *2 *3 *1) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) (-4200 (*1 *2 *3 *2) (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *5 *6 *7 *8))))) +(-13 (-1214 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3618 ((-112) |t#4| $)) (-15 -3617 ((-112) |t#4| $)) (-15 -3616 ((-112) |t#4| $)) (-15 -3618 ((-112) $)) (-15 -3615 ((-112) |t#4| $)) (-15 -3614 ((-3 (-112) (-643 $)) |t#4| $)) (-15 -3613 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |t#4| $)) (-15 -3613 ((-112) |t#4| $)) (-15 -3612 ((-643 $) |t#4| $)) (-15 -3611 ((-3 |t#4| (-643 $)) |t#4| |t#4| $)) (-15 -3610 ((-643 (-2 (|:| |val| |t#4|) (|:| -1708 $))) |t#4| |t#4| $)) (-15 -4206 ((-643 (-2 (|:| |val| |t#4|) (|:| -1708 $))) |t#4| $)) (-15 -3658 ((-643 $) |t#4| $)) (-15 -3658 ((-643 $) (-643 |t#4|) $)) (-15 -3658 ((-643 $) (-643 |t#4|) (-643 $))) (-15 -3658 ((-643 $) |t#4| (-643 $))) (-15 -3609 ((-643 $) |t#4| $)) (-15 -3609 ((-643 $) |t#4| (-643 $))) (-15 -3609 ((-643 $) (-643 |t#4|) $)) (-15 -3609 ((-643 $) (-643 |t#4|) (-643 $))) (-15 -3864 ($ |t#4| $)) (-15 -3864 ($ (-643 |t#4|) $)) (-15 -4200 ((-643 $) |t#4| $)) (-15 -4200 ((-643 $) |t#4| (-643 $))) (-15 -4200 ((-643 $) (-643 |t#4|) $)) (-15 -4200 ((-643 $) (-643 |t#4|) (-643 $))) (-15 -4114 ((-643 $) (-643 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1214 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) +((-3625 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|) 86)) (-3622 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|) 127)) (-3624 (((-643 |#5|) |#4| |#5|) 74)) (-3623 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3708 (((-1275)) 36)) (-3706 (((-1275)) 25)) (-3707 (((-1275) (-1162) (-1162) (-1162)) 32)) (-3705 (((-1275) (-1162) (-1162) (-1162)) 21)) (-3619 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|) 107)) (-3620 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112)) 118) (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3621 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|) 113))) +(((-1075 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3705 ((-1275) (-1162) (-1162) (-1162))) (-15 -3706 ((-1275))) (-15 -3707 ((-1275) (-1162) (-1162) (-1162))) (-15 -3708 ((-1275))) (-15 -3619 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3620 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3620 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112))) (-15 -3621 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3622 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3623 ((-112) |#4| |#5|)) (-15 -3623 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3624 ((-643 |#5|) |#4| |#5|)) (-15 -3625 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -1075)) +((-3625 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 *4)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3622 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3621 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3620 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *5 (-112)) (-4 *8 (-1068 *6 *7 *4)) (-4 *9 (-1074 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *4 (-852)) (-5 *2 (-643 (-2 (|:| |val| *8) (|:| -1708 *9)))) (-5 *1 (-1075 *6 *7 *4 *8 *9)))) (-3620 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3619 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3708 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3706 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7))))) +(-10 -7 (-15 -3705 ((-1275) (-1162) (-1162) (-1162))) (-15 -3706 ((-1275))) (-15 -3707 ((-1275) (-1162) (-1162) (-1162))) (-15 -3708 ((-1275))) (-15 -3619 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3620 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3620 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112))) (-15 -3621 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3622 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3623 ((-112) |#4| |#5|)) (-15 -3623 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3624 ((-643 |#5|) |#4| |#5|)) (-15 -3625 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|))) +((-2968 (((-112) $ $) NIL)) (-3739 (((-1220) $) 13)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3626 (((-1138) $) 10)) (-4378 (((-865) $) 20) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1076) (-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $))))) (T -1076)) +((-3626 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1076)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-1076))))) +(-13 (-1086) (-10 -8 (-15 -3626 ((-1138) $)) (-15 -3739 ((-1220) $)))) +((-3687 (((-112) $ $) 7))) +(((-1077) (-13 (-1219) (-10 -8 (-15 -3687 ((-112) $ $))))) (T -1077)) +((-3687 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1077))))) +(-13 (-1219) (-10 -8 (-15 -3687 ((-112) $ $)))) +((-2968 (((-112) $ $) NIL)) (-3629 (($ $ (-643 (-1180)) (-1 (-112) (-643 |#3|))) 34)) (-3630 (($ |#3| |#3|) 23) (($ |#3| |#3| (-643 (-1180))) 21)) (-3951 ((|#3| $) 13)) (-3577 (((-3 (-294 |#3|) "failed") $) 60)) (-3576 (((-294 |#3|) $) NIL)) (-3627 (((-643 (-1180)) $) 16)) (-3628 (((-893 |#1|) $) 11)) (-3952 ((|#3| $) 12)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4231 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-922)) 41)) (-4378 (((-865) $) 89) (($ (-294 |#3|)) 22)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 38))) +(((-1078 |#1| |#2| |#3|) (-13 (-1104) (-287 |#3| |#3|) (-1041 (-294 |#3|)) (-10 -8 (-15 -3630 ($ |#3| |#3|)) (-15 -3630 ($ |#3| |#3| (-643 (-1180)))) (-15 -3629 ($ $ (-643 (-1180)) (-1 (-112) (-643 |#3|)))) (-15 -3628 ((-893 |#1|) $)) (-15 -3952 (|#3| $)) (-15 -3951 (|#3| $)) (-15 -4231 (|#3| $ |#3| (-922))) (-15 -3627 ((-643 (-1180)) $)))) (-1104) (-13 (-1052) (-889 |#1|) (-616 (-893 |#1|))) (-13 (-424 |#2|) (-889 |#1|) (-616 (-893 |#1|)))) (T -1078)) +((-3630 (*1 *1 *2 *2) (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))))) (-3630 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) (-3629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-1 (-112) (-643 *6))) (-4 *6 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *6)))) (-3628 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 *2))) (-5 *2 (-893 *3)) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-889 *3) (-616 *2))))) (-3952 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))))) (-3951 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))))) (-4231 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) (-3627 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) (-5 *2 (-643 (-1180))) (-5 *1 (-1078 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3))))))) +(-13 (-1104) (-287 |#3| |#3|) (-1041 (-294 |#3|)) (-10 -8 (-15 -3630 ($ |#3| |#3|)) (-15 -3630 ($ |#3| |#3| (-643 (-1180)))) (-15 -3629 ($ $ (-643 (-1180)) (-1 (-112) (-643 |#3|)))) (-15 -3628 ((-893 |#1|) $)) (-15 -3952 (|#3| $)) (-15 -3951 (|#3| $)) (-15 -4231 (|#3| $ |#3| (-922))) (-15 -3627 ((-643 (-1180)) $)))) +((-2968 (((-112) $ $) NIL)) (-3973 (((-1180) $) 8)) (-3663 (((-1162) $) 17)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 11)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 14))) +(((-1079 |#1|) (-13 (-1104) (-10 -8 (-15 -3973 ((-1180) $)))) (-1180)) (T -1079)) +((-3973 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1079 *3)) (-14 *3 *2)))) +(-13 (-1104) (-10 -8 (-15 -3973 ((-1180) $)))) +((-2968 (((-112) $ $) NIL)) (-3632 (($ (-643 (-1078 |#1| |#2| |#3|))) 14)) (-3631 (((-643 (-1078 |#1| |#2| |#3|)) $) 21)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4231 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-922)) 27)) (-4378 (((-865) $) 17)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 20))) +(((-1080 |#1| |#2| |#3|) (-13 (-1104) (-287 |#3| |#3|) (-10 -8 (-15 -3632 ($ (-643 (-1078 |#1| |#2| |#3|)))) (-15 -3631 ((-643 (-1078 |#1| |#2| |#3|)) $)) (-15 -4231 (|#3| $ |#3| (-922))))) (-1104) (-13 (-1052) (-889 |#1|) (-616 (-893 |#1|))) (-13 (-424 |#2|) (-889 |#1|) (-616 (-893 |#1|)))) (T -1080)) +((-3632 (*1 *1 *2) (-12 (-5 *2 (-643 (-1078 *3 *4 *5))) (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) (-5 *1 (-1080 *3 *4 *5)))) (-3631 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) (-5 *2 (-643 (-1078 *3 *4 *5))) (-5 *1 (-1080 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))))) (-4231 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-1104)) (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1080 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4))))))) +(-13 (-1104) (-287 |#3| |#3|) (-10 -8 (-15 -3632 ($ (-643 (-1078 |#1| |#2| |#3|)))) (-15 -3631 ((-643 (-1078 |#1| |#2| |#3|)) $)) (-15 -4231 (|#3| $ |#3| (-922))))) +((-3633 (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112)) 88) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|))) 92) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112)) 90))) +(((-1081 |#1| |#2|) (-10 -7 (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112))) (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-643 (-1180))) (T -1081)) +((-3633 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1081 *5 *6)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))))) (-3633 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) (-5 *1 (-1081 *4 *5)) (-5 *3 (-643 (-949 *4))) (-14 *5 (-643 (-1180))))) (-3633 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1081 *5 *6)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180)))))) +(-10 -7 (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112))) (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -3633 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 139)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-2241 (($ $) NIL (|has| |#1| (-365)))) (-2239 (((-112) $) NIL (|has| |#1| (-365)))) (-1957 (((-691 |#1|) (-1269 $)) NIL) (((-691 |#1|)) 123)) (-3754 ((|#1| $) 128)) (-1843 (((-1192 (-922) (-773)) (-549)) NIL (|has| |#1| (-352)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3540 (((-773)) 46 (|has| |#1| (-370)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-1967 (($ (-1269 |#1|) (-1269 $)) NIL) (($ (-1269 |#1|)) 49)) (-1841 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-352)))) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-1956 (((-691 |#1|) $ (-1269 $)) NIL) (((-691 |#1|) $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 115) (((-691 |#1|) (-691 $)) 110)) (-4274 (($ |#2|) 67) (((-3 $ "failed") (-410 |#2|)) NIL (|has| |#1| (-365)))) (-3890 (((-3 $ "failed") $) NIL)) (-3513 (((-922)) 84)) (-3395 (($) 50 (|has| |#1| (-370)))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-3236 (($) NIL (|has| |#1| (-352)))) (-1848 (((-112) $) NIL (|has| |#1| (-352)))) (-1941 (($ $ (-773)) NIL (|has| |#1| (-352))) (($ $) NIL (|has| |#1| (-352)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-4203 (((-922) $) NIL (|has| |#1| (-352))) (((-834 (-922)) $) NIL (|has| |#1| (-352)))) (-2573 (((-112) $) NIL)) (-3536 ((|#1| $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-352)))) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-2192 ((|#2| $) 91 (|has| |#1| (-365)))) (-2188 (((-922) $) 148 (|has| |#1| (-370)))) (-3481 ((|#2| $) 64)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-3869 (($) NIL (|has| |#1| (-352)) CONST)) (-2563 (($ (-922)) 138 (|has| |#1| (-370)))) (-3664 (((-1123) $) NIL)) (-2572 (($) 130)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1844 (((-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549))))) NIL (|has| |#1| (-352)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4189 ((|#1| (-1269 $)) NIL) ((|#1|) 119)) (-1942 (((-773) $) NIL (|has| |#1| (-352))) (((-3 (-773) "failed") $ $) NIL (|has| |#1| (-352)))) (-4242 (($ $) NIL (-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-773)) NIL (-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-1 |#1| |#1|) (-773)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2571 (((-691 |#1|) (-1269 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3605 ((|#2|) 80)) (-1842 (($) NIL (|has| |#1| (-352)))) (-3644 (((-1269 |#1|) $ (-1269 $)) 96) (((-691 |#1|) (-1269 $) (-1269 $)) NIL) (((-1269 |#1|) $) 77) (((-691 |#1|) (-1269 $)) 92)) (-4402 (((-1269 |#1|) $) NIL) (($ (-1269 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3106 (((-3 (-1269 $) "failed") (-691 $)) NIL (|has| |#1| (-352)))) (-4378 (((-865) $) 63) (($ (-549)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-365)) (|has| |#1| (-1041 (-410 (-549))))))) (-3105 (($ $) NIL (|has| |#1| (-352))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2770 ((|#2| $) 89)) (-3530 (((-773)) 82 T CONST)) (-3662 (((-112) $ $) NIL)) (-2190 (((-1269 $)) 88)) (-2240 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3510 (($) 32 T CONST)) (-3067 (($) 19 T CONST)) (-3072 (($ $) NIL (-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-773)) NIL (-3960 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-352)))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-903 (-1180))))) (($ $ (-1 |#1| |#1|) (-773)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3455 (((-112) $ $) 69)) (-4381 (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) 73) (($ $ $) NIL)) (-4271 (($ $ $) 71)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-410 (-549)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-549))) NIL (|has| |#1| (-365))))) +(((-1082 |#1| |#2| |#3|) (-726 |#1| |#2|) (-172) (-1245 |#1|) |#2|) (T -1082)) +NIL +(-726 |#1| |#2|) +((-4164 (((-408 |#3|) |#3|) 18))) +(((-1083 |#1| |#2| |#3|) (-10 -7 (-15 -4164 ((-408 |#3|) |#3|))) (-1245 (-410 (-549))) (-13 (-365) (-147) (-726 (-410 (-549)) |#1|)) (-1245 |#2|)) (T -1083)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-13 (-365) (-147) (-726 (-410 (-549)) *4))) (-5 *2 (-408 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1245 *5))))) +(-10 -7 (-15 -4164 ((-408 |#3|) |#3|))) +((-4164 (((-408 |#3|) |#3|) 19))) +(((-1084 |#1| |#2| |#3|) (-10 -7 (-15 -4164 ((-408 |#3|) |#3|))) (-1245 (-410 (-949 (-549)))) (-13 (-365) (-147) (-726 (-410 (-949 (-549))) |#1|)) (-1245 |#2|)) (T -1084)) +((-4164 (*1 *2 *3) (-12 (-4 *4 (-1245 (-410 (-949 (-549))))) (-4 *5 (-13 (-365) (-147) (-726 (-410 (-949 (-549))) *4))) (-5 *2 (-408 *3)) (-5 *1 (-1084 *4 *5 *3)) (-4 *3 (-1245 *5))))) +(-10 -7 (-15 -4164 ((-408 |#3|) |#3|))) +((-2968 (((-112) $ $) NIL)) (-2934 (($ $ $) 16)) (-3260 (($ $ $) 17)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3634 (($) 6)) (-4402 (((-1180) $) 20)) (-4378 (((-865) $) 13)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 15)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 9))) +(((-1085) (-13 (-852) (-616 (-1180)) (-10 -8 (-15 -3634 ($))))) (T -1085)) +((-3634 (*1 *1) (-5 *1 (-1085)))) +(-13 (-852) (-616 (-1180)) (-10 -8 (-15 -3634 ($)))) +((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-1185)) 17) (((-1185) $) 16)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-1086) (-140)) (T -1086)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-617 #0=(-1184)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T)) -((-2494 ((|#1| |#1| (-1 (-567) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-2526 (((-1274)) 22)) (-4243 (((-645 |#1|)) 13))) -(((-1086 |#1|) (-10 -7 (-15 -2526 ((-1274))) (-15 -4243 ((-645 |#1|))) (-15 -2494 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2494 (|#1| |#1| (-1 (-567) |#1| |#1|)))) (-132)) (T -1086)) -((-2494 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) (-2494 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) (-4243 (*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-132)))) (-2526 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1086 *3)) (-4 *3 (-132))))) -(-10 -7 (-15 -2526 ((-1274))) (-15 -4243 ((-645 |#1|))) (-15 -2494 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2494 (|#1| |#1| (-1 (-567) |#1| |#1|)))) -((-1498 (($ (-109) $) 20)) (-4068 (((-692 (-109)) (-509) $) 19)) (-2973 (($) 7)) (-2354 (($) 21)) (-2810 (($) 22)) (-3514 (((-645 (-175)) $) 10)) (-2504 (((-863) $) 25))) -(((-1087) (-13 (-614 (-863)) (-10 -8 (-15 -2973 ($)) (-15 -3514 ((-645 (-175)) $)) (-15 -4068 ((-692 (-109)) (-509) $)) (-15 -1498 ($ (-109) $)) (-15 -2354 ($)) (-15 -2810 ($))))) (T -1087)) -((-2973 (*1 *1) (-5 *1 (-1087))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1087)))) (-4068 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1087)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1087)))) (-2354 (*1 *1) (-5 *1 (-1087))) (-2810 (*1 *1) (-5 *1 (-1087)))) -(-13 (-614 (-863)) (-10 -8 (-15 -2973 ($)) (-15 -3514 ((-645 (-175)) $)) (-15 -4068 ((-692 (-109)) (-509) $)) (-15 -1498 ($ (-109) $)) (-15 -2354 ($)) (-15 -2810 ($)))) -((-1998 (((-1269 (-690 |#1|)) (-645 (-690 |#1|))) 47) (((-1269 (-690 (-954 |#1|))) (-645 (-1179)) (-690 (-954 |#1|))) 75) (((-1269 (-690 (-410 (-954 |#1|)))) (-645 (-1179)) (-690 (-410 (-954 |#1|)))) 92)) (-3237 (((-1269 |#1|) (-690 |#1|) (-645 (-690 |#1|))) 41))) -(((-1088 |#1|) (-10 -7 (-15 -1998 ((-1269 (-690 (-410 (-954 |#1|)))) (-645 (-1179)) (-690 (-410 (-954 |#1|))))) (-15 -1998 ((-1269 (-690 (-954 |#1|))) (-645 (-1179)) (-690 (-954 |#1|)))) (-15 -1998 ((-1269 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3237 ((-1269 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) (-365)) (T -1088)) -((-3237 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-1269 *5)) (-5 *1 (-1088 *5)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-1088 *4)))) (-1998 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1179))) (-4 *5 (-365)) (-5 *2 (-1269 (-690 (-954 *5)))) (-5 *1 (-1088 *5)) (-5 *4 (-690 (-954 *5))))) (-1998 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1179))) (-4 *5 (-365)) (-5 *2 (-1269 (-690 (-410 (-954 *5))))) (-5 *1 (-1088 *5)) (-5 *4 (-690 (-410 (-954 *5))))))) -(-10 -7 (-15 -1998 ((-1269 (-690 (-410 (-954 |#1|)))) (-645 (-1179)) (-690 (-410 (-954 |#1|))))) (-15 -1998 ((-1269 (-690 (-954 |#1|))) (-645 (-1179)) (-690 (-954 |#1|)))) (-15 -1998 ((-1269 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3237 ((-1269 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3466 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1179)) NIL)) (-1895 (((-772) $) NIL) (((-772) $ (-1179)) NIL)) (-3783 (((-645 (-1090 (-1179))) $) NIL)) (-3633 (((-1175 $) $ (-1090 (-1179))) NIL) (((-1175 |#1|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-1090 (-1179)))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-1309 (($ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1090 (-1179)) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL) (((-3 (-1127 |#1| (-1179)) "failed") $) NIL)) (-3094 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1090 (-1179)) $) NIL) (((-1179) $) NIL) (((-1127 |#1| (-1179)) $) NIL)) (-2304 (($ $ $ (-1090 (-1179))) NIL (|has| |#1| (-172)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1090 (-1179))) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-1978 (($ $ |#1| (-534 (-1090 (-1179))) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1090 (-1179)) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1090 (-1179)) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3905 (((-772) $ (-1179)) NIL) (((-772) $) NIL)) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3772 (($ (-1175 |#1|) (-1090 (-1179))) NIL) (($ (-1175 $) (-1090 (-1179))) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-534 (-1090 (-1179)))) NIL) (($ $ (-1090 (-1179)) (-772)) NIL) (($ $ (-645 (-1090 (-1179))) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-1090 (-1179))) NIL)) (-1562 (((-534 (-1090 (-1179))) $) NIL) (((-772) $ (-1090 (-1179))) NIL) (((-645 (-772)) $ (-645 (-1090 (-1179)))) NIL)) (-2972 (($ (-1 (-534 (-1090 (-1179))) (-534 (-1090 (-1179)))) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3973 (((-1 $ (-772)) (-1179)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-2047 (((-3 (-1090 (-1179)) "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-3459 (((-1090 (-1179)) $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1812 (((-1161) $) NIL)) (-3773 (((-112) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-1090 (-1179))) (|:| -2618 (-772))) "failed") $) NIL)) (-1413 (($ $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1090 (-1179)) |#1|) NIL) (($ $ (-645 (-1090 (-1179))) (-645 |#1|)) NIL) (($ $ (-1090 (-1179)) $) NIL) (($ $ (-645 (-1090 (-1179))) (-645 $)) NIL) (($ $ (-1179) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1179)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1179)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-2254 (($ $ (-1090 (-1179))) NIL (|has| |#1| (-172)))) (-3592 (($ $ (-1090 (-1179))) NIL) (($ $ (-645 (-1090 (-1179)))) NIL) (($ $ (-1090 (-1179)) (-772)) NIL) (($ $ (-645 (-1090 (-1179))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4022 (((-645 (-1179)) $) NIL)) (-3380 (((-534 (-1090 (-1179))) $) NIL) (((-772) $ (-1090 (-1179))) NIL) (((-645 (-772)) $ (-645 (-1090 (-1179)))) NIL) (((-772) $ (-1179)) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-1090 (-1179)) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1090 (-1179)) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1090 (-1179)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1090 (-1179))) NIL (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1090 (-1179))) NIL) (($ (-1179)) NIL) (($ (-1127 |#1| (-1179))) NIL) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-534 (-1090 (-1179)))) NIL) (($ $ (-1090 (-1179)) (-772)) NIL) (($ $ (-645 (-1090 (-1179))) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-1090 (-1179))) NIL) (($ $ (-645 (-1090 (-1179)))) NIL) (($ $ (-1090 (-1179)) (-772)) NIL) (($ $ (-645 (-1090 (-1179))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1089 |#1|) (-13 (-254 |#1| (-1179) (-1090 (-1179)) (-534 (-1090 (-1179)))) (-1040 (-1127 |#1| (-1179)))) (-1051)) (T -1089)) -NIL -(-13 (-254 |#1| (-1179) (-1090 (-1179)) (-534 (-1090 (-1179)))) (-1040 (-1127 |#1| (-1179)))) -((-2487 (((-112) $ $) NIL)) (-1895 (((-772) $) NIL)) (-2722 ((|#1| $) 10)) (-4275 (((-3 |#1| "failed") $) NIL)) (-3094 ((|#1| $) NIL)) (-3905 (((-772) $) 11)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-3973 (($ |#1| (-772)) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3592 (($ $) NIL) (($ $ (-772)) NIL)) (-2504 (((-863) $) NIL) (($ |#1|) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 16))) -(((-1090 |#1|) (-267 |#1|) (-851)) (T -1090)) +(((-93) . T) ((-102) . T) ((-618 #1=(-1185)) . T) ((-615 (-865)) . T) ((-615 #1#) . T) ((-493 #1#) . T) ((-1104) . T)) +((-3637 ((|#1| |#1| (-1 (-549) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3635 (((-1275)) 21)) (-3636 (((-643 |#1|)) 13))) +(((-1087 |#1|) (-10 -7 (-15 -3635 ((-1275))) (-15 -3636 ((-643 |#1|))) (-15 -3637 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3637 (|#1| |#1| (-1 (-549) |#1| |#1|)))) (-132)) (T -1087)) +((-3637 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-549) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1087 *2)))) (-3637 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1087 *2)))) (-3636 (*1 *2) (-12 (-5 *2 (-643 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-132)))) (-3635 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1087 *3)) (-4 *3 (-132))))) +(-10 -7 (-15 -3635 ((-1275))) (-15 -3636 ((-643 |#1|))) (-15 -3637 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3637 (|#1| |#1| (-1 (-549) |#1| |#1|)))) +((-3640 (($ (-109) $) 20)) (-3641 (((-693 (-109)) (-509) $) 19)) (-3996 (($) 7)) (-3639 (($) 21)) (-3638 (($) 22)) (-3642 (((-643 (-175)) $) 10)) (-4378 (((-865) $) 25))) +(((-1088) (-13 (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -3642 ((-643 (-175)) $)) (-15 -3641 ((-693 (-109)) (-509) $)) (-15 -3640 ($ (-109) $)) (-15 -3639 ($)) (-15 -3638 ($))))) (T -1088)) +((-3996 (*1 *1) (-5 *1 (-1088))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-643 (-175))) (-5 *1 (-1088)))) (-3641 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-109))) (-5 *1 (-1088)))) (-3640 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1088)))) (-3639 (*1 *1) (-5 *1 (-1088))) (-3638 (*1 *1) (-5 *1 (-1088)))) +(-13 (-615 (-865)) (-10 -8 (-15 -3996 ($)) (-15 -3642 ((-643 (-175)) $)) (-15 -3641 ((-693 (-109)) (-509) $)) (-15 -3640 ($ (-109) $)) (-15 -3639 ($)) (-15 -3638 ($)))) +((-3643 (((-1269 (-691 |#1|)) (-643 (-691 |#1|))) 47) (((-1269 (-691 (-949 |#1|))) (-643 (-1180)) (-691 (-949 |#1|))) 75) (((-1269 (-691 (-410 (-949 |#1|)))) (-643 (-1180)) (-691 (-410 (-949 |#1|)))) 92)) (-3644 (((-1269 |#1|) (-691 |#1|) (-643 (-691 |#1|))) 41))) +(((-1089 |#1|) (-10 -7 (-15 -3643 ((-1269 (-691 (-410 (-949 |#1|)))) (-643 (-1180)) (-691 (-410 (-949 |#1|))))) (-15 -3643 ((-1269 (-691 (-949 |#1|))) (-643 (-1180)) (-691 (-949 |#1|)))) (-15 -3643 ((-1269 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3644 ((-1269 |#1|) (-691 |#1|) (-643 (-691 |#1|))))) (-365)) (T -1089)) +((-3644 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-691 *5))) (-5 *3 (-691 *5)) (-4 *5 (-365)) (-5 *2 (-1269 *5)) (-5 *1 (-1089 *5)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-643 (-691 *4))) (-4 *4 (-365)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-1089 *4)))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1180))) (-4 *5 (-365)) (-5 *2 (-1269 (-691 (-949 *5)))) (-5 *1 (-1089 *5)) (-5 *4 (-691 (-949 *5))))) (-3643 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-1180))) (-4 *5 (-365)) (-5 *2 (-1269 (-691 (-410 (-949 *5))))) (-5 *1 (-1089 *5)) (-5 *4 (-691 (-410 (-949 *5))))))) +(-10 -7 (-15 -3643 ((-1269 (-691 (-410 (-949 |#1|)))) (-643 (-1180)) (-691 (-410 (-949 |#1|))))) (-15 -3643 ((-1269 (-691 (-949 |#1|))) (-643 (-1180)) (-691 (-949 |#1|)))) (-15 -3643 ((-1269 (-691 |#1|)) (-643 (-691 |#1|)))) (-15 -3644 ((-1269 |#1|) (-691 |#1|) (-643 (-691 |#1|))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1589 (((-643 (-773)) $) NIL) (((-643 (-773)) $ (-1180)) NIL)) (-1623 (((-773) $) NIL) (((-773) $ (-1180)) NIL)) (-3485 (((-643 (-1091 (-1180))) $) NIL)) (-3487 (((-1174 $) $ (-1091 (-1180))) NIL) (((-1174 |#1|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1091 (-1180)))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-1585 (($ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1091 (-1180)) #2#) $) NIL) (((-3 (-1180) #2#) $) NIL) (((-3 (-1128 |#1| (-1180)) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1091 (-1180)) $) NIL) (((-1180) $) NIL) (((-1128 |#1| (-1180)) $) NIL)) (-4188 (($ $ $ (-1091 (-1180))) NIL (|has| |#1| (-172)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1091 (-1180))) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 (-1091 (-1180))) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1091 (-1180)) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1091 (-1180)) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ (-1180)) NIL) (((-773) $) NIL)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3488 (($ (-1174 |#1|) (-1091 (-1180))) NIL) (($ (-1174 $) (-1091 (-1180))) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-534 (-1091 (-1180)))) NIL) (($ $ (-1091 (-1180)) (-773)) NIL) (($ $ (-643 (-1091 (-1180))) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1091 (-1180))) NIL)) (-3223 (((-534 (-1091 (-1180))) $) NIL) (((-773) $ (-1091 (-1180))) NIL) (((-643 (-773)) $ (-643 (-1091 (-1180)))) NIL)) (-1770 (($ (-1 (-534 (-1091 (-1180))) (-534 (-1091 (-1180)))) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1624 (((-1 $ (-773)) (-1180)) NIL) (((-1 $ (-773)) $) NIL (|has| |#1| (-233)))) (-3486 (((-3 (-1091 (-1180)) #3="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-1587 (((-1091 (-1180)) $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-1588 (((-112) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1091 (-1180))) (|:| -2564 (-773))) #3#) $) NIL)) (-1586 (($ $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1091 (-1180)) |#1|) NIL) (($ $ (-643 (-1091 (-1180))) (-643 |#1|)) NIL) (($ $ (-1091 (-1180)) $) NIL) (($ $ (-643 (-1091 (-1180))) (-643 $)) NIL) (($ $ (-1180) $) NIL (|has| |#1| (-233))) (($ $ (-643 (-1180)) (-643 $)) NIL (|has| |#1| (-233))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-233))) (($ $ (-643 (-1180)) (-643 |#1|)) NIL (|has| |#1| (-233)))) (-4189 (($ $ (-1091 (-1180))) NIL (|has| |#1| (-172)))) (-4242 (($ $ (-1091 (-1180))) NIL) (($ $ (-643 (-1091 (-1180)))) NIL) (($ $ (-1091 (-1180)) (-773)) NIL) (($ $ (-643 (-1091 (-1180))) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1590 (((-643 (-1180)) $) NIL)) (-4380 (((-534 (-1091 (-1180))) $) NIL) (((-773) $ (-1091 (-1180))) NIL) (((-643 (-773)) $ (-643 (-1091 (-1180)))) NIL) (((-773) $ (-1180)) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1091 (-1180)) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1091 (-1180)) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1091 (-1180)) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1091 (-1180))) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-1091 (-1180))) NIL) (($ (-1180)) NIL) (($ (-1128 |#1| (-1180))) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-534 (-1091 (-1180)))) NIL) (($ $ (-1091 (-1180)) (-773)) NIL) (($ $ (-643 (-1091 (-1180))) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1091 (-1180))) NIL) (($ $ (-643 (-1091 (-1180)))) NIL) (($ $ (-1091 (-1180)) (-773)) NIL) (($ $ (-643 (-1091 (-1180))) (-643 (-773))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-773)) NIL (|has| |#1| (-233))) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1090 |#1|) (-13 (-254 |#1| (-1180) (-1091 (-1180)) (-534 (-1091 (-1180)))) (-1041 (-1128 |#1| (-1180)))) (-1052)) (T -1090)) +NIL +(-13 (-254 |#1| (-1180) (-1091 (-1180)) (-534 (-1091 (-1180)))) (-1041 (-1128 |#1| (-1180)))) +((-2968 (((-112) $ $) NIL)) (-1623 (((-773) $) NIL)) (-4263 ((|#1| $) 10)) (-3577 (((-3 |#1| "failed") $) NIL)) (-3576 ((|#1| $) NIL)) (-4203 (((-773) $) 11)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-1624 (($ |#1| (-773)) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4242 (($ $) NIL) (($ $ (-773)) NIL)) (-4378 (((-865) $) NIL) (($ |#1|) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 16))) +(((-1091 |#1|) (-267 |#1|) (-852)) (T -1091)) NIL (-267 |#1|) -((-4364 (((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 29 (|has| |#1| (-849))) (((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|)) 14))) -(((-1091 |#1| |#2|) (-10 -7 (-15 -4364 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) (IF (|has| |#1| (-849)) (-15 -4364 ((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) |%noBranch|)) (-1219) (-1219)) (T -1091)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-849)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-645 *6)) (-5 *1 (-1091 *5 *6)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1096 *6)) (-5 *1 (-1091 *5 *6))))) -(-10 -7 (-15 -4364 ((-1096 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) (IF (|has| |#1| (-849)) (-15 -4364 ((-645 |#2|) (-1 |#2| |#1|) (-1096 |#1|))) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 16) (($ (-1184)) NIL) (((-1184) $) NIL)) (-4102 (((-645 (-1137)) $) 10)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1092) (-13 (-1085) (-10 -8 (-15 -4102 ((-645 (-1137)) $))))) (T -1092)) -((-4102 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1092))))) -(-13 (-1085) (-10 -8 (-15 -4102 ((-645 (-1137)) $)))) -((-4364 (((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)) 19))) -(((-1093 |#1| |#2|) (-10 -7 (-15 -4364 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)))) (-1219) (-1219)) (T -1093)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1094 *6)) (-5 *1 (-1093 *5 *6))))) -(-10 -7 (-15 -4364 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)))) -((-2487 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))) (-2722 (((-1179) $) NIL)) (-4150 (((-1096 |#1|) $) NIL)) (-1812 (((-1161) $) NIL (|has| (-1096 |#1|) (-1102)))) (-3479 (((-1122) $) NIL (|has| (-1096 |#1|) (-1102)))) (-3382 (($ (-1179) (-1096 |#1|)) NIL)) (-2504 (((-863) $) NIL (|has| (-1096 |#1|) (-1102)))) (-3858 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102)))) (-2968 (((-112) $ $) NIL (|has| (-1096 |#1|) (-1102))))) -(((-1094 |#1|) (-13 (-1219) (-10 -8 (-15 -3382 ($ (-1179) (-1096 |#1|))) (-15 -2722 ((-1179) $)) (-15 -4150 ((-1096 |#1|) $)) (IF (|has| (-1096 |#1|) (-1102)) (-6 (-1102)) |%noBranch|))) (-1219)) (T -1094)) -((-3382 (*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1096 *4)) (-4 *4 (-1219)) (-5 *1 (-1094 *4)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1094 *3)) (-4 *3 (-1219)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-1219))))) -(-13 (-1219) (-10 -8 (-15 -3382 ($ (-1179) (-1096 |#1|))) (-15 -2722 ((-1179) $)) (-15 -4150 ((-1096 |#1|) $)) (IF (|has| (-1096 |#1|) (-1102)) (-6 (-1102)) |%noBranch|))) -((-4150 (($ |#1| |#1|) 8)) (-1448 ((|#1| $) 11)) (-1744 ((|#1| $) 13)) (-1758 (((-567) $) 9)) (-1425 ((|#1| $) 10)) (-2521 ((|#1| $) 12)) (-1322 (($ |#1|) 6)) (-3553 (($ |#1| |#1|) 15)) (-2765 (($ $ (-567)) 14))) -(((-1095 |#1|) (-140) (-1219)) (T -1095)) -((-3553 (*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-2765 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1095 *3)) (-4 *3 (-1219)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1219)) (-5 *2 (-567)))) (-4150 (*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219))))) -(-13 (-619 |t#1|) (-10 -8 (-15 -3553 ($ |t#1| |t#1|)) (-15 -2765 ($ $ (-567))) (-15 -1744 (|t#1| $)) (-15 -2521 (|t#1| $)) (-15 -1448 (|t#1| $)) (-15 -1425 (|t#1| $)) (-15 -1758 ((-567) $)) (-15 -4150 ($ |t#1| |t#1|)))) -(((-619 |#1|) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4150 (($ |#1| |#1|) 16)) (-4364 (((-645 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-849)))) (-1448 ((|#1| $) 12)) (-1744 ((|#1| $) 11)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1758 (((-567) $) 15)) (-1425 ((|#1| $) 14)) (-2521 ((|#1| $) 13)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-4382 (((-645 |#1|) $) 44 (|has| |#1| (-849))) (((-645 |#1|) (-645 $)) 43 (|has| |#1| (-849)))) (-1322 (($ |#1|) 29)) (-2504 (((-863) $) 28 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3553 (($ |#1| |#1|) 10)) (-2765 (($ $ (-567)) 17)) (-2968 (((-112) $ $) 22 (|has| |#1| (-1102))))) -(((-1096 |#1|) (-13 (-1095 |#1|) (-10 -7 (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-645 |#1|))) |%noBranch|))) (-1219)) (T -1096)) -NIL -(-13 (-1095 |#1|) (-10 -7 (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-645 |#1|))) |%noBranch|))) -((-4150 (($ |#1| |#1|) 8)) (-4364 ((|#2| (-1 |#1| |#1|) $) 16)) (-1448 ((|#1| $) 11)) (-1744 ((|#1| $) 13)) (-1758 (((-567) $) 9)) (-1425 ((|#1| $) 10)) (-2521 ((|#1| $) 12)) (-4382 ((|#2| (-645 $)) 18) ((|#2| $) 17)) (-1322 (($ |#1|) 6)) (-3553 (($ |#1| |#1|) 15)) (-2765 (($ $ (-567)) 14))) -(((-1097 |#1| |#2|) (-140) (-849) (-1151 |t#1|)) (T -1097)) -((-4382 (*1 *2 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1151 *4)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1151 *3)))) (-4364 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1151 *4))))) -(-13 (-1095 |t#1|) (-10 -8 (-15 -4382 (|t#2| (-645 $))) (-15 -4382 (|t#2| $)) (-15 -4364 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-619 |#1|) . T) ((-1095 |#1|) . T)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-1725 (((-1137) $) 12)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 18) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3501 (((-645 (-1137)) $) 10)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1098) (-13 (-1085) (-10 -8 (-15 -3501 ((-645 (-1137)) $)) (-15 -1725 ((-1137) $))))) (T -1098)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1098)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1098))))) -(-13 (-1085) (-10 -8 (-15 -3501 ((-645 (-1137)) $)) (-15 -1725 ((-1137) $)))) -((-3855 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1321 (($ $ $) 10)) (-2828 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1099 |#1| |#2|) (-10 -8 (-15 -3855 (|#1| |#2| |#1|)) (-15 -3855 (|#1| |#1| |#2|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -1321 (|#1| |#1| |#1|)) (-15 -2828 (|#1| |#1| |#2|)) (-15 -2828 (|#1| |#1| |#1|))) (-1100 |#2|) (-1102)) (T -1099)) -NIL -(-10 -8 (-15 -3855 (|#1| |#2| |#1|)) (-15 -3855 (|#1| |#1| |#2|)) (-15 -3855 (|#1| |#1| |#1|)) (-15 -1321 (|#1| |#1| |#1|)) (-15 -2828 (|#1| |#1| |#2|)) (-15 -2828 (|#1| |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-3855 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-1321 (($ $ $) 21)) (-3103 (((-112) $ $) 20)) (-1555 (((-112) $ (-772)) 36)) (-4191 (($) 26) (($ (-645 |#1|)) 25)) (-1316 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4422)))) (-3758 (($) 37 T CONST)) (-3470 (($ $) 60 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#1| $) 59 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4422)))) (-3468 (((-645 |#1|) $) 44 (|has| $ (-6 -4422)))) (-2117 (((-112) $ $) 29)) (-3753 (((-112) $ (-772)) 35)) (-4200 (((-645 |#1|) $) 45 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 39)) (-3421 (((-112) $ (-772)) 34)) (-1812 (((-1161) $) 10)) (-3873 (($ $ $) 24)) (-3479 (((-1122) $) 11)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1430 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#1|) (-645 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 30)) (-2319 (((-112) $) 33)) (-2973 (($) 32)) (-2828 (($ $ $) 23) (($ $ |#1|) 22)) (-3486 (((-772) |#1| $) 46 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4422)))) (-3846 (($ $) 31)) (-1322 (((-539) $) 61 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 52)) (-2504 (((-863) $) 12)) (-3719 (($) 28) (($ (-645 |#1|)) 27)) (-3858 (((-112) $ $) 9)) (-3450 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 6)) (-2498 (((-772) $) 38 (|has| $ (-6 -4422))))) -(((-1100 |#1|) (-140) (-1102)) (T -1100)) -((-2117 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-3719 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) (-4191 (*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-4191 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) (-3873 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-2828 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-2828 (*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-1321 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-3103 (*1 *2 *1 *1) (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-3855 (*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) (-3855 (*1 *1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) -(-13 (-1102) (-151 |t#1|) (-10 -8 (-6 -4412) (-15 -2117 ((-112) $ $)) (-15 -3719 ($)) (-15 -3719 ($ (-645 |t#1|))) (-15 -4191 ($)) (-15 -4191 ($ (-645 |t#1|))) (-15 -3873 ($ $ $)) (-15 -2828 ($ $ $)) (-15 -2828 ($ $ |t#1|)) (-15 -1321 ($ $ $)) (-15 -3103 ((-112) $ $)) (-15 -3855 ($ $ $)) (-15 -3855 ($ $ |t#1|)) (-15 -3855 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) . T) ((-1219) . T)) -((-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 8)) (-3858 (((-112) $ $) 12))) -(((-1101 |#1|) (-10 -8 (-15 -3858 ((-112) |#1| |#1|)) (-15 -1812 ((-1161) |#1|)) (-15 -3479 ((-1122) |#1|))) (-1102)) (T -1101)) -NIL -(-10 -8 (-15 -3858 ((-112) |#1| |#1|)) (-15 -1812 ((-1161) |#1|)) (-15 -3479 ((-1122) |#1|))) -((-2487 (((-112) $ $) 7)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-1102) (-140)) (T -1102)) -((-3479 (*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1122)))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1161)))) (-3858 (*1 *2 *1 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-112))))) -(-13 (-102) (-614 (-863)) (-10 -8 (-15 -3479 ((-1122) $)) (-15 -1812 ((-1161) $)) (-15 -3858 ((-112) $ $)))) -(((-102) . T) ((-614 (-863)) . T)) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) 36)) (-3735 (($ (-645 (-923))) 73)) (-1905 (((-3 $ "failed") $ (-923) (-923)) 84)) (-2119 (($) 40)) (-2203 (((-112) (-923) $) 44)) (-2667 (((-923) $) 66)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) 39)) (-4195 (((-3 $ "failed") $ (-923)) 80)) (-3479 (((-1122) $) NIL)) (-4000 (((-1269 $)) 49)) (-3144 (((-645 (-923)) $) 27)) (-2582 (((-772) $ (-923) (-923)) 81)) (-2504 (((-863) $) 32)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 24))) -(((-1103 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -4195 ((-3 $ "failed") $ (-923))) (-15 -1905 ((-3 $ "failed") $ (-923) (-923))) (-15 -3144 ((-645 (-923)) $)) (-15 -3735 ($ (-645 (-923)))) (-15 -4000 ((-1269 $))) (-15 -2203 ((-112) (-923) $)) (-15 -2582 ((-772) $ (-923) (-923))))) (-923) (-923)) (T -1103)) -((-4195 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1905 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-3735 (*1 *1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-4000 (*1 *2) (-12 (-5 *2 (-1269 (-1103 *3 *4))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) (-2203 (*1 *2 *3 *1) (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2582 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-772)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-370) (-10 -8 (-15 -4195 ((-3 $ "failed") $ (-923))) (-15 -1905 ((-3 $ "failed") $ (-923) (-923))) (-15 -3144 ((-645 (-923)) $)) (-15 -3735 ($ (-645 (-923)))) (-15 -4000 ((-1269 $))) (-15 -2203 ((-112) (-923) $)) (-15 -2582 ((-772) $ (-923) (-923))))) -((-2487 (((-112) $ $) NIL)) (-1738 (($) NIL (|has| |#1| (-370)))) (-3855 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-1321 (($ $ $) 81)) (-3103 (((-112) $ $) 82)) (-1555 (((-112) $ (-772)) NIL)) (-3404 (((-772)) NIL (|has| |#1| (-370)))) (-4191 (($ (-645 |#1|)) NIL) (($) 13)) (-2105 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-4197 (($ |#1| $) 74 (|has| $ (-6 -4422))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4422)))) (-2119 (($) NIL (|has| |#1| (-370)))) (-3468 (((-645 |#1|) $) 19 (|has| $ (-6 -4422)))) (-2117 (((-112) $ $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2727 ((|#1| $) 55 (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1446 ((|#1| $) 53 (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 34)) (-2667 (((-923) $) NIL (|has| |#1| (-370)))) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-3873 (($ $ $) 79)) (-3018 ((|#1| $) 25)) (-3636 (($ |#1| $) 69)) (-2188 (($ (-923)) NIL (|has| |#1| (-370)))) (-3479 (((-1122) $) NIL)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1713 ((|#1| $) 27)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 21)) (-2973 (($) 11)) (-2828 (($ $ |#1|) NIL) (($ $ $) 80)) (-2730 (($) NIL) (($ (-645 |#1|)) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) 16)) (-1322 (((-539) $) 50 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 62)) (-3925 (($ $) NIL (|has| |#1| (-370)))) (-2504 (((-863) $) NIL)) (-2091 (((-772) $) NIL)) (-3719 (($ (-645 |#1|)) NIL) (($) 12)) (-3858 (((-112) $ $) NIL)) (-4225 (($ (-645 |#1|)) NIL)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 52)) (-2498 (((-772) $) 10 (|has| $ (-6 -4422))))) -(((-1104 |#1|) (-428 |#1|) (-1102)) (T -1104)) -NIL -(-428 |#1|) -((-2487 (((-112) $ $) 7)) (-2507 (((-112) $) 33)) (-1365 ((|#2| $) 28)) (-2962 (((-112) $) 34)) (-3322 ((|#1| $) 29)) (-3202 (((-112) $) 36)) (-1667 (((-112) $) 38)) (-2737 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3243 (((-112) $) 32)) (-1392 ((|#3| $) 27)) (-3479 (((-1122) $) 11)) (-4341 (((-112) $) 31)) (-2627 ((|#4| $) 26)) (-2682 ((|#5| $) 25)) (-4178 (((-112) $ $) 39)) (-1882 (($ $ (-567)) 21) (($ $ (-645 (-567))) 20)) (-3729 (((-645 $) $) 30)) (-1322 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-645 $)) 40)) (-2504 (((-863) $) 12)) (-3339 (($ $) 23)) (-3328 (($ $) 24)) (-3858 (((-112) $ $) 9)) (-4005 (((-112) $) 37)) (-2968 (((-112) $ $) 6)) (-2498 (((-567) $) 22))) -(((-1105 |#1| |#2| |#3| |#4| |#5|) (-140) (-1102) (-1102) (-1102) (-1102) (-1102)) (T -1105)) -((-4178 (*1 *2 *1 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-1667 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2962 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112)))) (-3729 (*1 *2 *1) (-12 (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-1105 *3 *4 *5 *6 *7)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *2 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-1392 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *2 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *2 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-2682 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *2)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))) (-3339 (*1 *1 *1) (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-567)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102))))) -(-13 (-1102) (-619 |t#1|) (-619 |t#2|) (-619 |t#3|) (-619 |t#4|) (-619 |t#4|) (-619 |t#5|) (-619 (-645 $)) (-10 -8 (-15 -4178 ((-112) $ $)) (-15 -1667 ((-112) $)) (-15 -4005 ((-112) $)) (-15 -3202 ((-112) $)) (-15 -2737 ((-112) $)) (-15 -2962 ((-112) $)) (-15 -2507 ((-112) $)) (-15 -3243 ((-112) $)) (-15 -4341 ((-112) $)) (-15 -3729 ((-645 $) $)) (-15 -3322 (|t#1| $)) (-15 -1365 (|t#2| $)) (-15 -1392 (|t#3| $)) (-15 -2627 (|t#4| $)) (-15 -2682 (|t#5| $)) (-15 -3328 ($ $)) (-15 -3339 ($ $)) (-15 -2498 ((-567) $)) (-15 -1882 ($ $ (-567))) (-15 -1882 ($ $ (-645 (-567)))))) -(((-102) . T) ((-614 (-863)) . T) ((-619 (-645 $)) . T) ((-619 |#1|) . T) ((-619 |#2|) . T) ((-619 |#3|) . T) ((-619 |#4|) . T) ((-619 |#5|) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-2507 (((-112) $) NIL)) (-1365 (((-1179) $) NIL)) (-2962 (((-112) $) NIL)) (-3322 (((-1161) $) NIL)) (-3202 (((-112) $) NIL)) (-1667 (((-112) $) NIL)) (-2737 (((-112) $) NIL)) (-1812 (((-1161) $) NIL)) (-3243 (((-112) $) NIL)) (-1392 (((-567) $) NIL)) (-3479 (((-1122) $) NIL)) (-4341 (((-112) $) NIL)) (-2627 (((-225) $) NIL)) (-2682 (((-863) $) NIL)) (-4178 (((-112) $ $) NIL)) (-1882 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-3729 (((-645 $) $) NIL)) (-1322 (($ (-1161)) NIL) (($ (-1179)) NIL) (($ (-567)) NIL) (($ (-225)) NIL) (($ (-863)) NIL) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL)) (-3339 (($ $) NIL)) (-3328 (($ $) NIL)) (-3858 (((-112) $ $) NIL)) (-4005 (((-112) $) NIL)) (-2968 (((-112) $ $) NIL)) (-2498 (((-567) $) NIL))) -(((-1106) (-1105 (-1161) (-1179) (-567) (-225) (-863))) (T -1106)) -NIL -(-1105 (-1161) (-1179) (-567) (-225) (-863)) -((-2487 (((-112) $ $) NIL)) (-2507 (((-112) $) 45)) (-1365 ((|#2| $) 48)) (-2962 (((-112) $) 20)) (-3322 ((|#1| $) 21)) (-3202 (((-112) $) 42)) (-1667 (((-112) $) 14)) (-2737 (((-112) $) 44)) (-1812 (((-1161) $) NIL)) (-3243 (((-112) $) 46)) (-1392 ((|#3| $) 50)) (-3479 (((-1122) $) NIL)) (-4341 (((-112) $) 47)) (-2627 ((|#4| $) 49)) (-2682 ((|#5| $) 51)) (-4178 (((-112) $ $) 41)) (-1882 (($ $ (-567)) 62) (($ $ (-645 (-567))) 64)) (-3729 (((-645 $) $) 27)) (-1322 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-645 $)) 52)) (-2504 (((-863) $) 28)) (-3339 (($ $) 26)) (-3328 (($ $) 58)) (-3858 (((-112) $ $) NIL)) (-4005 (((-112) $) 23)) (-2968 (((-112) $ $) 40)) (-2498 (((-567) $) 60))) -(((-1107 |#1| |#2| |#3| |#4| |#5|) (-1105 |#1| |#2| |#3| |#4| |#5|) (-1102) (-1102) (-1102) (-1102) (-1102)) (T -1107)) -NIL -(-1105 |#1| |#2| |#3| |#4| |#5|) -((-2229 (((-1274) $) 23)) (-2342 (($ (-1179) (-437) |#2|) 11)) (-2504 (((-863) $) 16))) -(((-1108 |#1| |#2|) (-13 (-398) (-10 -8 (-15 -2342 ($ (-1179) (-437) |#2|)))) (-1102) (-433 |#1|)) (T -1108)) -((-2342 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1179)) (-5 *3 (-437)) (-4 *5 (-1102)) (-5 *1 (-1108 *5 *4)) (-4 *4 (-433 *5))))) -(-13 (-398) (-10 -8 (-15 -2342 ($ (-1179) (-437) |#2|)))) -((-4209 (((-112) |#5| |#5|) 45)) (-3650 (((-112) |#5| |#5|) 60)) (-2217 (((-112) |#5| (-645 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-3390 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-1539 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) 71)) (-1391 (((-1274)) 33)) (-2804 (((-1274) (-1161) (-1161) (-1161)) 29)) (-1615 (((-645 |#5|) (-645 |#5|)) 102)) (-3614 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) 94)) (-2447 (((-645 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 124)) (-2288 (((-112) |#5| |#5|) 54)) (-3874 (((-3 (-112) "failed") |#5| |#5|) 79)) (-1589 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-2775 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-4009 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-1696 (((-3 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-3117 (((-645 |#5|) (-645 |#5|)) 50))) -(((-1109 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2804 ((-1274) (-1161) (-1161) (-1161))) (-15 -1391 ((-1274))) (-15 -4209 ((-112) |#5| |#5|)) (-15 -3117 ((-645 |#5|) (-645 |#5|))) (-15 -2288 ((-112) |#5| |#5|)) (-15 -3650 ((-112) |#5| |#5|)) (-15 -3390 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1589 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2775 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4009 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3874 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2217 ((-112) |#5| |#5|)) (-15 -2217 ((-112) |#5| (-645 |#5|))) (-15 -1615 ((-645 |#5|) (-645 |#5|))) (-15 -1539 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) (-15 -3614 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-15 -2447 ((-645 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1696 ((-3 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1109)) -((-1696 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| -4178 (-645 *9)) (|:| -3526 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-1109 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1073 *6 *7 *8 *9)))) (-2447 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -4178 (-645 *9)) (|:| -3526 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-1109 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -3526 *7)))) (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-1539 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -3526 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-2217 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *8 *3)))) (-2217 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3874 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-4009 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2775 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-1589 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3390 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-3650 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-2288 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-1109 *3 *4 *5 *6 *7)))) (-4209 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) (-1391 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-2804 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(-10 -7 (-15 -2804 ((-1274) (-1161) (-1161) (-1161))) (-15 -1391 ((-1274))) (-15 -4209 ((-112) |#5| |#5|)) (-15 -3117 ((-645 |#5|) (-645 |#5|))) (-15 -2288 ((-112) |#5| |#5|)) (-15 -3650 ((-112) |#5| |#5|)) (-15 -3390 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -1589 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2775 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -4009 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3874 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2217 ((-112) |#5| |#5|)) (-15 -2217 ((-112) |#5| (-645 |#5|))) (-15 -1615 ((-645 |#5|) (-645 |#5|))) (-15 -1539 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) (-15 -3614 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-15 -2447 ((-645 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -1696 ((-3 (-2 (|:| -4178 (-645 |#4|)) (|:| -3526 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3619 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|) 109)) (-3819 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#4| |#4| |#5|) 81)) (-4393 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|) 103)) (-3241 (((-645 |#5|) |#4| |#5|) 125)) (-3878 (((-645 |#5|) |#4| |#5|) 132)) (-3432 (((-645 |#5|) |#4| |#5|) 133)) (-4257 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|) 110)) (-2315 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|) 131)) (-1649 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-2266 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#3| (-112)) 93) (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-2538 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|) 88)) (-3851 (((-1274)) 37)) (-2748 (((-1274)) 26)) (-3355 (((-1274) (-1161) (-1161) (-1161)) 33)) (-1835 (((-1274) (-1161) (-1161) (-1161)) 22))) -(((-1110 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1835 ((-1274) (-1161) (-1161) (-1161))) (-15 -2748 ((-1274))) (-15 -3355 ((-1274) (-1161) (-1161) (-1161))) (-15 -3851 ((-1274))) (-15 -3819 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -2266 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2266 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#3| (-112))) (-15 -2538 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -4393 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -1649 ((-112) |#4| |#5|)) (-15 -4257 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3241 ((-645 |#5|) |#4| |#5|)) (-15 -2315 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3878 ((-645 |#5|) |#4| |#5|)) (-15 -1649 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3432 ((-645 |#5|) |#4| |#5|)) (-15 -3619 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1073 |#1| |#2| |#3| |#4|)) (T -1110)) -((-3619 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1649 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3878 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2315 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3241 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4257 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-1649 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-4393 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2538 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-2266 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -3526 *9)))) (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -3526 *9)))) (-5 *1 (-1110 *6 *7 *4 *8 *9)))) (-2266 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1110 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) (-3819 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))) (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) (-3851 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-3355 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) (-2748 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) (-1835 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(-10 -7 (-15 -1835 ((-1274) (-1161) (-1161) (-1161))) (-15 -2748 ((-1274))) (-15 -3355 ((-1274) (-1161) (-1161) (-1161))) (-15 -3851 ((-1274))) (-15 -3819 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -2266 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2266 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) |#3| (-112))) (-15 -2538 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -4393 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#4| |#5|)) (-15 -1649 ((-112) |#4| |#5|)) (-15 -4257 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3241 ((-645 |#5|) |#4| |#5|)) (-15 -2315 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3878 ((-645 |#5|) |#4| |#5|)) (-15 -1649 ((-645 (-2 (|:| |val| (-112)) (|:| -3526 |#5|))) |#4| |#5|)) (-15 -3432 ((-645 |#5|) |#4| |#5|)) (-15 -3619 ((-645 (-2 (|:| |val| |#4|) (|:| -3526 |#5|))) |#4| |#5|))) -((-2487 (((-112) $ $) 7)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) 86)) (-3148 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-3783 (((-645 |#3|) $) 34)) (-2643 (((-112) $) 27)) (-2720 (((-112) $) 18 (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) 102) (((-112) $) 98)) (-2688 ((|#4| |#4| $) 93)) (-3864 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| $) 127)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) 28)) (-1555 (((-112) $ (-772)) 45)) (-1316 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3758 (($) 46 T CONST)) (-3731 (((-112) $) 23 (|has| |#1| (-559)))) (-4301 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4089 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3937 (((-112) $) 26 (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2160 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) 37)) (-3094 (($ (-645 |#4|)) 36)) (-3447 (((-3 $ "failed") $) 83)) (-2903 ((|#4| |#4| $) 90)) (-3470 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1861 ((|#4| |#4| $) 88)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) 106)) (-2940 (((-112) |#4| $) 137)) (-2708 (((-112) |#4| $) 134)) (-2600 (((-112) |#4| $) 138) (((-112) $) 135)) (-3468 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-3753 (((-112) $ (-772)) 44)) (-4200 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 48)) (-3870 (((-645 |#3|) $) 33)) (-2415 (((-112) |#3| $) 32)) (-3421 (((-112) $ (-772)) 43)) (-1812 (((-1161) $) 10)) (-1434 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-4316 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| |#4| $) 128)) (-1725 (((-3 |#4| "failed") $) 84)) (-2920 (((-645 $) |#4| $) 130)) (-4264 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3972 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3873 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-4214 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2290 (((-645 |#4|) $) 108)) (-1737 (((-112) |#4| $) 100) (((-112) $) 96)) (-2763 ((|#4| |#4| $) 91)) (-4009 (((-112) $ $) 111)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) 101) (((-112) $) 97)) (-3893 ((|#4| |#4| $) 92)) (-3479 (((-1122) $) 11)) (-3436 (((-3 |#4| "failed") $) 85)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2806 (((-3 $ "failed") $ |#4|) 79)) (-1678 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-1430 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) 39)) (-2319 (((-112) $) 42)) (-2973 (($) 41)) (-3380 (((-772) $) 107)) (-3486 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-3846 (($ $) 40)) (-1322 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 61)) (-1582 (($ $ |#3|) 29)) (-2746 (($ $ |#3|) 31)) (-2012 (($ $) 89)) (-3975 (($ $ |#3|) 30)) (-2504 (((-863) $) 12) (((-645 |#4|) $) 38)) (-3312 (((-772) $) 77 (|has| |#3| (-370)))) (-3858 (((-112) $ $) 9)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3259 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-3450 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) 82)) (-3961 (((-112) |#4| $) 136)) (-3392 (((-112) |#3| $) 81)) (-2968 (((-112) $ $) 6)) (-2498 (((-772) $) 47 (|has| $ (-6 -4422))))) -(((-1111 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1111)) -NIL -(-13 (-1073 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1212 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) -((-1871 (((-645 (-567)) (-567) (-567) (-567)) 39)) (-2850 (((-645 (-567)) (-567) (-567) (-567)) 29)) (-1605 (((-645 (-567)) (-567) (-567) (-567)) 34)) (-3007 (((-567) (-567) (-567)) 23)) (-1784 (((-1269 (-567)) (-645 (-567)) (-1269 (-567)) (-567)) 75) (((-1269 (-567)) (-1269 (-567)) (-1269 (-567)) (-567)) 70)) (-3771 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112)) 52)) (-2024 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 74)) (-1491 (((-690 (-567)) (-645 (-567)) (-645 (-567))) 58)) (-2899 (((-645 (-690 (-567))) (-645 (-567))) 63)) (-2071 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 78)) (-3293 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567))) 88))) -(((-1112) (-10 -7 (-15 -3293 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2071 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -2899 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1491 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2024 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -3771 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -1784 ((-1269 (-567)) (-1269 (-567)) (-1269 (-567)) (-567))) (-15 -1784 ((-1269 (-567)) (-645 (-567)) (-1269 (-567)) (-567))) (-15 -3007 ((-567) (-567) (-567))) (-15 -1605 ((-645 (-567)) (-567) (-567) (-567))) (-15 -2850 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1871 ((-645 (-567)) (-567) (-567) (-567))))) (T -1112)) -((-1871 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-2850 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-1605 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567)))) (-3007 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1112)))) (-1784 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1269 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) (-5 *1 (-1112)))) (-1784 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1269 (-567))) (-5 *3 (-567)) (-5 *1 (-1112)))) (-3771 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1112)))) (-2024 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1112)))) (-1491 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112)))) (-2899 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1112)))) (-2071 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1112)))) (-3293 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112))))) -(-10 -7 (-15 -3293 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2071 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -2899 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1491 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2024 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -3771 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -1784 ((-1269 (-567)) (-1269 (-567)) (-1269 (-567)) (-567))) (-15 -1784 ((-1269 (-567)) (-645 (-567)) (-1269 (-567)) (-567))) (-15 -3007 ((-567) (-567) (-567))) (-15 -1605 ((-645 (-567)) (-567) (-567) (-567))) (-15 -2850 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1871 ((-645 (-567)) (-567) (-567) (-567)))) -((** (($ $ (-923)) 10))) -(((-1113 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-923)))) (-1114)) (T -1113)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-923)))) -((-2487 (((-112) $ $) 7)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6)) (** (($ $ (-923)) 14)) (* (($ $ $) 15))) -(((-1114) (-140)) (T -1114)) -((* (*1 *1 *1 *1) (-4 *1 (-1114))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1114)) (-5 *2 (-923))))) -(-13 (-1102) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-923))))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-2684 (((-112) $) NIL (|has| |#3| (-131)))) (-1771 (($ (-923)) NIL (|has| |#3| (-1051)))) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1992 (($ $ $) NIL (|has| |#3| (-794)))) (-2932 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1555 (((-112) $ (-772)) NIL)) (-3404 (((-772)) NIL (|has| |#3| (-370)))) (-2777 (((-567) $) NIL (|has| |#3| (-849)))) (-3824 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1102)))) (-3094 (((-567) $) NIL (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) ((|#3| $) NIL (|has| |#3| (-1102)))) (-2690 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1051)))) (((-2 (|:| -2434 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 $) (-1269 $)) NIL (|has| |#3| (-1051))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1051)))) (-1377 (((-3 $ "failed") $) NIL (|has| |#3| (-727)))) (-2119 (($) NIL (|has| |#3| (-370)))) (-2036 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#3| $ (-567)) 12)) (-3635 (((-112) $) NIL (|has| |#3| (-849)))) (-3468 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-4384 (((-112) $) NIL (|has| |#3| (-727)))) (-2585 (((-112) $) NIL (|has| |#3| (-849)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-4200 (((-645 |#3|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2021 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#3| |#3|) $) NIL)) (-2667 (((-923) $) NIL (|has| |#3| (-370)))) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#3| (-1102)))) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-2188 (($ (-923)) NIL (|has| |#3| (-370)))) (-3479 (((-1122) $) NIL (|has| |#3| (-1102)))) (-3436 ((|#3| $) NIL (|has| (-567) (-851)))) (-2930 (($ $ |#3|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-1804 (((-645 |#3|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) NIL)) (-1336 ((|#3| $ $) NIL (|has| |#3| (-1051)))) (-3700 (($ (-1269 |#3|)) NIL)) (-2589 (((-134)) NIL (|has| |#3| (-365)))) (-3592 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051)))) (-3486 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#3| (-1102))))) (-3846 (($ $) NIL)) (-2504 (((-1269 |#3|) $) NIL) (($ (-567)) NIL (-2836 (-12 (|has| |#3| (-1040 (-567))) (|has| |#3| (-1102))) (|has| |#3| (-1051)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1040 (-410 (-567)))) (|has| |#3| (-1102)))) (($ |#3|) NIL (|has| |#3| (-1102))) (((-863) $) NIL (|has| |#3| (-614 (-863))))) (-2214 (((-772)) NIL (|has| |#3| (-1051)) CONST)) (-3858 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-3450 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4422)))) (-1368 (($ $) NIL (|has| |#3| (-849)))) (-1807 (($) NIL (|has| |#3| (-131)) CONST)) (-1820 (($) NIL (|has| |#3| (-727)) CONST)) (-2856 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1051)))) (($ $ (-1179)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#3| (-902 (-1179))) (|has| |#3| (-1051)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1051))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1051)))) (-3016 (((-112) $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2996 (((-112) $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2968 (((-112) $ $) NIL (|has| |#3| (-1102)))) (-3006 (((-112) $ $) NIL (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-2986 (((-112) $ $) 24 (-2836 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3064 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3054 (($ $ $) NIL (|has| |#3| (-1051))) (($ $) NIL (|has| |#3| (-1051)))) (-3045 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-772)) NIL (|has| |#3| (-727))) (($ $ (-923)) NIL (|has| |#3| (-727)))) (* (($ (-567) $) NIL (|has| |#3| (-1051))) (($ $ $) NIL (|has| |#3| (-727))) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ (-772) $) NIL (|has| |#3| (-131))) (($ (-923) $) NIL (|has| |#3| (-25)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1115 |#1| |#2| |#3|) (-238 |#1| |#3|) (-772) (-772) (-794)) (T -1115)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4168 (($ |#1| |#1|) 16)) (-4390 (((-643 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-850)))) (-3649 ((|#1| $) 12)) (-3651 ((|#1| $) 11)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3647 (((-549) $) 15)) (-3648 ((|#1| $) 14)) (-3650 ((|#1| $) 13)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4395 (((-643 |#1|) $) 44 (|has| |#1| (-850))) (((-643 |#1|) (-643 $)) 43 (|has| |#1| (-850)))) (-4402 (($ |#1|) 29)) (-4378 (((-865) $) 28 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4169 (($ |#1| |#1|) 10)) (-3652 (($ $ (-549)) 17)) (-3455 (((-112) $ $) 22 (|has| |#1| (-1104))))) +(((-1092 |#1|) (-13 (-1097 |#1|) (-10 -7 (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-1098 |#1| (-643 |#1|))) |%noBranch|))) (-1219)) (T -1092)) +NIL +(-13 (-1097 |#1|) (-10 -7 (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-1098 |#1| (-643 |#1|))) |%noBranch|))) +((-4390 (((-643 |#2|) (-1 |#2| |#1|) (-1092 |#1|)) 29 (|has| |#1| (-850))) (((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|)) 14))) +(((-1093 |#1| |#2|) (-10 -7 (-15 -4390 ((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|))) (IF (|has| |#1| (-850)) (-15 -4390 ((-643 |#2|) (-1 |#2| |#1|) (-1092 |#1|))) |%noBranch|)) (-1219) (-1219)) (T -1093)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-850)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-643 *6)) (-5 *1 (-1093 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1092 *6)) (-5 *1 (-1093 *5 *6))))) +(-10 -7 (-15 -4390 ((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|))) (IF (|has| |#1| (-850)) (-15 -4390 ((-643 |#2|) (-1 |#2| |#1|) (-1092 |#1|))) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 16) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3645 (((-643 (-1138)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1094) (-13 (-1086) (-10 -8 (-15 -3645 ((-643 (-1138)) $))))) (T -1094)) +((-3645 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1094))))) +(-13 (-1086) (-10 -8 (-15 -3645 ((-643 (-1138)) $)))) +((-2968 (((-112) $ $) NIL (|has| (-1092 |#1|) (-1104)))) (-4263 (((-1180) $) NIL)) (-4168 (((-1092 |#1|) $) NIL)) (-3663 (((-1162) $) NIL (|has| (-1092 |#1|) (-1104)))) (-3664 (((-1123) $) NIL (|has| (-1092 |#1|) (-1104)))) (-3646 (($ (-1180) (-1092 |#1|)) NIL)) (-4378 (((-865) $) NIL (|has| (-1092 |#1|) (-1104)))) (-3662 (((-112) $ $) NIL (|has| (-1092 |#1|) (-1104)))) (-3455 (((-112) $ $) NIL (|has| (-1092 |#1|) (-1104))))) +(((-1095 |#1|) (-13 (-1219) (-10 -8 (-15 -3646 ($ (-1180) (-1092 |#1|))) (-15 -4263 ((-1180) $)) (-15 -4168 ((-1092 |#1|) $)) (IF (|has| (-1092 |#1|) (-1104)) (-6 (-1104)) |%noBranch|))) (-1219)) (T -1095)) +((-3646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1092 *4)) (-4 *4 (-1219)) (-5 *1 (-1095 *4)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1095 *3)) (-4 *3 (-1219)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-1219))))) +(-13 (-1219) (-10 -8 (-15 -3646 ($ (-1180) (-1092 |#1|))) (-15 -4263 ((-1180) $)) (-15 -4168 ((-1092 |#1|) $)) (IF (|has| (-1092 |#1|) (-1104)) (-6 (-1104)) |%noBranch|))) +((-4390 (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 19))) +(((-1096 |#1| |#2|) (-10 -7 (-15 -4390 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)))) (-1219) (-1219)) (T -1096)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1095 *6)) (-5 *1 (-1096 *5 *6))))) +(-10 -7 (-15 -4390 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)))) +((-4168 (($ |#1| |#1|) 8)) (-3649 ((|#1| $) 11)) (-3651 ((|#1| $) 13)) (-3647 (((-549) $) 9)) (-3648 ((|#1| $) 10)) (-3650 ((|#1| $) 12)) (-4402 (($ |#1|) 6)) (-4169 (($ |#1| |#1|) 15)) (-3652 (($ $ (-549)) 14))) +(((-1097 |#1|) (-140) (-1219)) (T -1097)) +((-4169 (*1 *1 *2 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1097 *3)) (-4 *3 (-1219)))) (-3651 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1219)) (-5 *2 (-549)))) (-4168 (*1 *1 *2 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) +(-13 (-620 |t#1|) (-10 -8 (-15 -4169 ($ |t#1| |t#1|)) (-15 -3652 ($ $ (-549))) (-15 -3651 (|t#1| $)) (-15 -3650 (|t#1| $)) (-15 -3649 (|t#1| $)) (-15 -3648 (|t#1| $)) (-15 -3647 ((-549) $)) (-15 -4168 ($ |t#1| |t#1|)))) +(((-620 |#1|) . T)) +((-4168 (($ |#1| |#1|) 8)) (-4390 ((|#2| (-1 |#1| |#1|) $) 16)) (-3649 ((|#1| $) 11)) (-3651 ((|#1| $) 13)) (-3647 (((-549) $) 9)) (-3648 ((|#1| $) 10)) (-3650 ((|#1| $) 12)) (-4395 ((|#2| (-643 $)) 18) ((|#2| $) 17)) (-4402 (($ |#1|) 6)) (-4169 (($ |#1| |#1|) 15)) (-3652 (($ $ (-549)) 14))) +(((-1098 |#1| |#2|) (-140) (-850) (-1152 |t#1|)) (T -1098)) +((-4395 (*1 *2 *3) (-12 (-5 *3 (-643 *1)) (-4 *1 (-1098 *4 *2)) (-4 *4 (-850)) (-4 *2 (-1152 *4)))) (-4395 (*1 *2 *1) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1152 *3)))) (-4390 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1098 *4 *2)) (-4 *4 (-850)) (-4 *2 (-1152 *4))))) +(-13 (-1097 |t#1|) (-10 -8 (-15 -4395 (|t#2| (-643 $))) (-15 -4395 (|t#2| $)) (-15 -4390 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-620 |#1|) . T) ((-1097 |#1|) . T)) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-4229 (((-1138) $) 12)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 18) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3653 (((-643 (-1138)) $) 10)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1099) (-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $)) (-15 -4229 ((-1138) $))))) (T -1099)) +((-3653 (*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1099)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1099))))) +(-13 (-1086) (-10 -8 (-15 -3653 ((-643 (-1138)) $)) (-15 -4229 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-1977 (($) NIL (|has| |#1| (-370)))) (-3654 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3656 (($ $ $) 81)) (-3655 (((-112) $ $) 82)) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#1| (-370)))) (-3659 (($ (-643 |#1|)) NIL) (($) 13)) (-1678 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3829 (($ |#1| $) 74 (|has| $ (-6 -4425))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4425)))) (-3395 (($) NIL (|has| |#1| (-370)))) (-2124 (((-643 |#1|) $) 19 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2934 ((|#1| $) 55 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3260 ((|#1| $) 53 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 34)) (-2188 (((-922) $) NIL (|has| |#1| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3658 (($ $ $) 79)) (-1369 ((|#1| $) 25)) (-4039 (($ |#1| $) 69)) (-2563 (($ (-922)) NIL (|has| |#1| (-370)))) (-3664 (((-1123) $) NIL)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1370 ((|#1| $) 27)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 21)) (-3996 (($) 11)) (-3657 (($ $ |#1|) NIL) (($ $ $) 80)) (-1567 (($) NIL) (($ (-643 |#1|)) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 16)) (-4402 (((-538) $) 50 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 62)) (-1978 (($ $) NIL (|has| |#1| (-370)))) (-4378 (((-865) $) NIL)) (-1979 (((-773) $) NIL)) (-3660 (($ (-643 |#1|)) NIL) (($) 12)) (-3662 (((-112) $ $) NIL)) (-1371 (($ (-643 |#1|)) NIL)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 52)) (-4389 (((-773) $) 10 (|has| $ (-6 -4425))))) +(((-1100 |#1|) (-429 |#1|) (-1104)) (T -1100)) +NIL +(-429 |#1|) +((-3654 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3656 (($ $ $) 10)) (-3657 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1101 |#1| |#2|) (-10 -8 (-15 -3654 (|#1| |#2| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3657 (|#1| |#1| |#1|))) (-1102 |#2|) (-1104)) (T -1101)) +NIL +(-10 -8 (-15 -3654 (|#1| |#2| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3657 (|#1| |#1| |#2|)) (-15 -3657 (|#1| |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-3654 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3656 (($ $ $) 21)) (-3655 (((-112) $ $) 20)) (-1309 (((-112) $ (-773)) 36)) (-3659 (($) 26) (($ (-643 |#1|)) 25)) (-4142 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4425)))) (-4156 (($) 37 T CONST)) (-1440 (($ $) 60 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 59 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4425)))) (-2124 (((-643 |#1|) $) 44 (|has| $ (-6 -4425)))) (-3661 (((-112) $ $) 29)) (-4151 (((-112) $ (-773)) 35)) (-3008 (((-643 |#1|) $) 45 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 39)) (-4148 (((-112) $ (-773)) 34)) (-3663 (((-1162) $) 10)) (-3658 (($ $ $) 24)) (-3664 (((-1123) $) 11)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2126 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#1|) (-643 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 (-294 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 30)) (-3827 (((-112) $) 33)) (-3996 (($) 32)) (-3657 (($ $ $) 23) (($ $ |#1|) 22)) (-2125 (((-773) |#1| $) 46 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4425)))) (-3824 (($ $) 31)) (-4402 (((-538) $) 61 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 52)) (-4378 (((-865) $) 12)) (-3660 (($) 28) (($ (-643 |#1|)) 27)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 38 (|has| $ (-6 -4425))))) +(((-1102 |#1|) (-140) (-1104)) (T -1102)) +((-3661 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-3660 (*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-1102 *3)))) (-3659 (*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3659 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-1102 *3)))) (-3658 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3657 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3657 (*1 *1 *1 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3656 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3655 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) (-3654 (*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3654 (*1 *1 *1 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) (-3654 (*1 *1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) +(-13 (-1104) (-151 |t#1|) (-10 -8 (-6 -4415) (-15 -3661 ((-112) $ $)) (-15 -3660 ($)) (-15 -3660 ($ (-643 |t#1|))) (-15 -3659 ($)) (-15 -3659 ($ (-643 |t#1|))) (-15 -3658 ($ $ $)) (-15 -3657 ($ $ $)) (-15 -3657 ($ $ |t#1|)) (-15 -3656 ($ $ $)) (-15 -3655 ((-112) $ $)) (-15 -3654 ($ $ $)) (-15 -3654 ($ $ |t#1|)) (-15 -3654 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) . T) ((-1219) . T)) +((-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 8)) (-3662 (((-112) $ $) 12))) +(((-1103 |#1|) (-10 -8 (-15 -3662 ((-112) |#1| |#1|)) (-15 -3663 ((-1162) |#1|)) (-15 -3664 ((-1123) |#1|))) (-1104)) (T -1103)) +NIL +(-10 -8 (-15 -3662 ((-112) |#1| |#1|)) (-15 -3663 ((-1162) |#1|)) (-15 -3664 ((-1123) |#1|))) +((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-1104) (-140)) (T -1104)) +((-3664 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1123)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1162)))) (-3662 (*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) +(-13 (-102) (-615 (-865)) (-10 -8 (-15 -3664 ((-1123) $)) (-15 -3663 ((-1162) $)) (-15 -3662 ((-112) $ $)))) +(((-102) . T) ((-615 (-865)) . T)) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) 36)) (-3668 (($ (-643 (-922))) 72)) (-3670 (((-3 $ #1="failed") $ (-922) (-922)) 83)) (-3395 (($) 40)) (-3666 (((-112) (-922) $) 44)) (-2188 (((-922) $) 66)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 39)) (-3671 (((-3 $ #1#) $ (-922)) 79)) (-3664 (((-1123) $) NIL)) (-3667 (((-1269 $)) 49)) (-3669 (((-643 (-922)) $) 27)) (-3665 (((-773) $ (-922) (-922)) 80)) (-4378 (((-865) $) 32)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 24))) +(((-1105 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -3671 ((-3 $ #1="failed") $ (-922))) (-15 -3670 ((-3 $ #1#) $ (-922) (-922))) (-15 -3669 ((-643 (-922)) $)) (-15 -3668 ($ (-643 (-922)))) (-15 -3667 ((-1269 $))) (-15 -3666 ((-112) (-922) $)) (-15 -3665 ((-773) $ (-922) (-922))))) (-922) (-922)) (T -1105)) +((-3671 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1105 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3670 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1105 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3668 (*1 *1 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3667 (*1 *2) (-12 (-5 *2 (-1269 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3666 (*1 *2 *3 *1) (-12 (-5 *3 (-922)) (-5 *2 (-112)) (-5 *1 (-1105 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3665 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-773)) (-5 *1 (-1105 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-370) (-10 -8 (-15 -3671 ((-3 $ #1="failed") $ (-922))) (-15 -3670 ((-3 $ #1#) $ (-922) (-922))) (-15 -3669 ((-643 (-922)) $)) (-15 -3668 ($ (-643 (-922)))) (-15 -3667 ((-1269 $))) (-15 -3666 ((-112) (-922) $)) (-15 -3665 ((-773) $ (-922) (-922))))) +((-2968 (((-112) $ $) NIL)) (-3681 (((-112) $) NIL)) (-3677 (((-1180) $) NIL)) (-3682 (((-112) $) NIL)) (-3966 (((-1162) $) NIL)) (-3684 (((-112) $) NIL)) (-3686 (((-112) $) NIL)) (-3683 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-3680 (((-112) $) NIL)) (-3676 (((-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-3679 (((-112) $) NIL)) (-3675 (((-225) $) NIL)) (-3674 (((-865) $) NIL)) (-3687 (((-112) $ $) NIL)) (-4231 (($ $ (-549)) NIL) (($ $ (-643 (-549))) NIL)) (-3678 (((-643 $) $) NIL)) (-4402 (($ (-1162)) NIL) (($ (-1180)) NIL) (($ (-549)) NIL) (($ (-225)) NIL) (($ (-865)) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL)) (-3672 (($ $) NIL)) (-3673 (($ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3685 (((-112) $) NIL)) (-3455 (((-112) $ $) NIL)) (-4389 (((-549) $) NIL))) +(((-1106) (-1107 (-1162) (-1180) (-549) (-225) (-865))) (T -1106)) +NIL +(-1107 (-1162) (-1180) (-549) (-225) (-865)) +((-2968 (((-112) $ $) 7)) (-3681 (((-112) $) 33)) (-3677 ((|#2| $) 28)) (-3682 (((-112) $) 34)) (-3966 ((|#1| $) 29)) (-3684 (((-112) $) 36)) (-3686 (((-112) $) 38)) (-3683 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3680 (((-112) $) 32)) (-3676 ((|#3| $) 27)) (-3664 (((-1123) $) 11)) (-3679 (((-112) $) 31)) (-3675 ((|#4| $) 26)) (-3674 ((|#5| $) 25)) (-3687 (((-112) $ $) 39)) (-4231 (($ $ (-549)) 21) (($ $ (-643 (-549))) 20)) (-3678 (((-643 $) $) 30)) (-4402 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-643 $)) 40)) (-4378 (((-865) $) 12)) (-3672 (($ $) 23)) (-3673 (($ $) 24)) (-3662 (((-112) $ $) 9)) (-3685 (((-112) $) 37)) (-3455 (((-112) $ $) 6)) (-4389 (((-549) $) 22))) +(((-1107 |#1| |#2| |#3| |#4| |#5|) (-140) (-1104) (-1104) (-1104) (-1104) (-1104)) (T -1107)) +((-3687 (*1 *2 *1 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112)))) (-3678 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-1107 *3 *4 *5 *6 *7)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *2 *4 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *2 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *2 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *2)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) (-3673 (*1 *1 *1) (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *2 (-1104)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)))) (-3672 (*1 *1 *1) (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *2 (-1104)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-549)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104))))) +(-13 (-1104) (-620 |t#1|) (-620 |t#2|) (-620 |t#3|) (-620 |t#4|) (-620 |t#4|) (-620 |t#5|) (-620 (-643 $)) (-10 -8 (-15 -3687 ((-112) $ $)) (-15 -3686 ((-112) $)) (-15 -3685 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -3683 ((-112) $)) (-15 -3682 ((-112) $)) (-15 -3681 ((-112) $)) (-15 -3680 ((-112) $)) (-15 -3679 ((-112) $)) (-15 -3678 ((-643 $) $)) (-15 -3966 (|t#1| $)) (-15 -3677 (|t#2| $)) (-15 -3676 (|t#3| $)) (-15 -3675 (|t#4| $)) (-15 -3674 (|t#5| $)) (-15 -3673 ($ $)) (-15 -3672 ($ $)) (-15 -4389 ((-549) $)) (-15 -4231 ($ $ (-549))) (-15 -4231 ($ $ (-643 (-549)))))) +(((-102) . T) ((-615 (-865)) . T) ((-620 (-643 $)) . T) ((-620 |#1|) . T) ((-620 |#2|) . T) ((-620 |#3|) . T) ((-620 |#4|) . T) ((-620 |#5|) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3681 (((-112) $) 45)) (-3677 ((|#2| $) 48)) (-3682 (((-112) $) 20)) (-3966 ((|#1| $) 21)) (-3684 (((-112) $) 42)) (-3686 (((-112) $) 14)) (-3683 (((-112) $) 44)) (-3663 (((-1162) $) NIL)) (-3680 (((-112) $) 46)) (-3676 ((|#3| $) 50)) (-3664 (((-1123) $) NIL)) (-3679 (((-112) $) 47)) (-3675 ((|#4| $) 49)) (-3674 ((|#5| $) 51)) (-3687 (((-112) $ $) 41)) (-4231 (($ $ (-549)) 62) (($ $ (-643 (-549))) 64)) (-3678 (((-643 $) $) 27)) (-4402 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-643 $)) 52)) (-4378 (((-865) $) 28)) (-3672 (($ $) 26)) (-3673 (($ $) 58)) (-3662 (((-112) $ $) NIL)) (-3685 (((-112) $) 23)) (-3455 (((-112) $ $) 40)) (-4389 (((-549) $) 60))) +(((-1108 |#1| |#2| |#3| |#4| |#5|) (-1107 |#1| |#2| |#3| |#4| |#5|) (-1104) (-1104) (-1104) (-1104) (-1104)) (T -1108)) +NIL +(-1107 |#1| |#2| |#3| |#4| |#5|) +((-3804 (((-1275) $) 22)) (-3688 (($ (-1180) (-437) |#2|) 11)) (-4378 (((-865) $) 16))) +(((-1109 |#1| |#2|) (-13 (-399) (-10 -8 (-15 -3688 ($ (-1180) (-437) |#2|)))) (-1104) (-424 |#1|)) (T -1109)) +((-3688 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1180)) (-5 *3 (-437)) (-4 *5 (-1104)) (-5 *1 (-1109 *5 *4)) (-4 *4 (-424 *5))))) +(-13 (-399) (-10 -8 (-15 -3688 ($ (-1180) (-437) |#2|)))) +((-3691 (((-112) |#5| |#5|) 44)) (-3694 (((-112) |#5| |#5|) 59)) (-3699 (((-112) |#5| (-643 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3695 (((-112) (-643 |#4|) (-643 |#4|)) 65)) (-3701 (((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) 70)) (-3690 (((-1275)) 32)) (-3689 (((-1275) (-1162) (-1162) (-1162)) 28)) (-3700 (((-643 |#5|) (-643 |#5|)) 101)) (-3702 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) 93)) (-3703 (((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112)) 123)) (-3693 (((-112) |#5| |#5|) 53)) (-3698 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3696 (((-112) (-643 |#4|) (-643 |#4|)) 64)) (-3697 (((-112) (-643 |#4|) (-643 |#4|)) 66)) (-4131 (((-112) (-643 |#4|) (-643 |#4|)) 67)) (-3704 (((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3692 (((-643 |#5|) (-643 |#5|)) 49))) +(((-1110 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3689 ((-1275) (-1162) (-1162) (-1162))) (-15 -3690 ((-1275))) (-15 -3691 ((-112) |#5| |#5|)) (-15 -3692 ((-643 |#5|) (-643 |#5|))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-112) |#5| |#5|)) (-15 -3695 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3696 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3697 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -4131 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3698 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3699 ((-112) |#5| |#5|)) (-15 -3699 ((-112) |#5| (-643 |#5|))) (-15 -3700 ((-643 |#5|) (-643 |#5|))) (-15 -3701 ((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3702 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-15 -3703 ((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3704 ((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -1110)) +((-3704 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *4) (|:| |ineq| (-643 *9)))) (-5 *1 (-1110 *6 *7 *8 *9 *4)) (-5 *3 (-643 *9)) (-4 *4 (-1074 *6 *7 *8 *9)))) (-3703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-643 *10)) (-5 *5 (-112)) (-4 *10 (-1074 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *10) (|:| |ineq| (-643 *9))))) (-5 *1 (-1110 *6 *7 *8 *9 *10)) (-5 *3 (-643 *9)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-643 (-2 (|:| |val| (-643 *6)) (|:| -1708 *7)))) (-4 *6 (-1068 *3 *4 *5)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1110 *3 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-1110 *3 *4 *5 *6 *7)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1110 *5 *6 *7 *8 *3)))) (-3699 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-4131 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *1 (-1110 *3 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) (-3690 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3689 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7))))) +(-10 -7 (-15 -3689 ((-1275) (-1162) (-1162) (-1162))) (-15 -3690 ((-1275))) (-15 -3691 ((-112) |#5| |#5|)) (-15 -3692 ((-643 |#5|) (-643 |#5|))) (-15 -3693 ((-112) |#5| |#5|)) (-15 -3694 ((-112) |#5| |#5|)) (-15 -3695 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3696 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3697 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -4131 ((-112) (-643 |#4|) (-643 |#4|))) (-15 -3698 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3699 ((-112) |#5| |#5|)) (-15 -3699 ((-112) |#5| (-643 |#5|))) (-15 -3700 ((-643 |#5|) (-643 |#5|))) (-15 -3701 ((-112) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3702 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-15 -3703 ((-643 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|)))) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3704 ((-3 (-2 (|:| -3687 (-643 |#4|)) (|:| -1708 |#5|) (|:| |ineq| (-643 |#4|))) "failed") (-643 |#4|) |#5| (-643 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3719 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|) 108)) (-3709 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|) 80)) (-3712 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|) 102)) (-3714 (((-643 |#5|) |#4| |#5|) 124)) (-3716 (((-643 |#5|) |#4| |#5|) 131)) (-3718 (((-643 |#5|) |#4| |#5|) 132)) (-3713 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 109)) (-3715 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 130)) (-3717 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3710 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112)) 92) (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3711 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|) 87)) (-3708 (((-1275)) 36)) (-3706 (((-1275)) 25)) (-3707 (((-1275) (-1162) (-1162) (-1162)) 32)) (-3705 (((-1275) (-1162) (-1162) (-1162)) 21))) +(((-1111 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3705 ((-1275) (-1162) (-1162) (-1162))) (-15 -3706 ((-1275))) (-15 -3707 ((-1275) (-1162) (-1162) (-1162))) (-15 -3708 ((-1275))) (-15 -3709 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3710 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3710 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112))) (-15 -3711 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3712 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3717 ((-112) |#4| |#5|)) (-15 -3713 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3714 ((-643 |#5|) |#4| |#5|)) (-15 -3715 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3716 ((-643 |#5|) |#4| |#5|)) (-15 -3717 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3718 ((-643 |#5|) |#4| |#5|)) (-15 -3719 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3| |#4|)) (T -1111)) +((-3719 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3718 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3716 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3715 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3717 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3711 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3710 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *5 (-112)) (-4 *8 (-1068 *6 *7 *4)) (-4 *9 (-1074 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *4 (-852)) (-5 *2 (-643 (-2 (|:| |val| *8) (|:| -1708 *9)))) (-5 *1 (-1111 *6 *7 *4 *8 *9)))) (-3710 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) (-3709 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) (-3708 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3707 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7)))) (-3706 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-1275)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) (-3705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) (-4 *8 (-1074 *4 *5 *6 *7))))) +(-10 -7 (-15 -3705 ((-1275) (-1162) (-1162) (-1162))) (-15 -3706 ((-1275))) (-15 -3707 ((-1275) (-1162) (-1162) (-1162))) (-15 -3708 ((-1275))) (-15 -3709 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3710 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3710 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) |#3| (-112))) (-15 -3711 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3712 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#4| |#5|)) (-15 -3717 ((-112) |#4| |#5|)) (-15 -3713 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3714 ((-643 |#5|) |#4| |#5|)) (-15 -3715 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3716 ((-643 |#5|) |#4| |#5|)) (-15 -3717 ((-643 (-2 (|:| |val| (-112)) (|:| -1708 |#5|))) |#4| |#5|)) (-15 -3718 ((-643 |#5|) |#4| |#5|)) (-15 -3719 ((-643 (-2 (|:| |val| |#4|) (|:| -1708 |#5|))) |#4| |#5|))) +((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87) (((-643 $) (-643 |#4|) (-112)) 112)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 127)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ #1#) $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-3617 (((-112) |#4| $) 137)) (-3615 (((-112) |#4| $) 134)) (-3618 (((-112) |#4| $) 138) (((-112) $) 135)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) 129)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 128)) (-4229 (((-3 |#4| #1#) $) 84)) (-3612 (((-643 $) |#4| $) 130)) (-3614 (((-3 (-112) (-643 $)) |#4| $) 133)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3658 (((-643 $) |#4| $) 126) (((-643 $) (-643 |#4|) $) 125) (((-643 $) (-643 |#4|) (-643 $)) 124) (((-643 $) |#4| (-643 $)) 123)) (-3864 (($ |#4| $) 118) (($ (-643 |#4|) $) 117)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| #1#) $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ #1#) $ |#4|) 79)) (-4200 (($ $ |#4|) 78) (((-643 $) |#4| $) 116) (((-643 $) |#4| (-643 $)) 115) (((-643 $) (-643 |#4|) $) 114) (((-643 $) (-643 |#4|) (-643 $)) 113)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-3609 (((-643 $) |#4| $) 122) (((-643 $) |#4| (-643 $)) 121) (((-643 $) (-643 |#4|) $) 120) (((-643 $) (-643 |#4|) (-643 $)) 119)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-3616 (((-112) |#4| $) 136)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) +(((-1112 |#1| |#2| |#3| |#4|) (-140) (-455) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -1112)) +NIL +(-13 (-1074 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1074 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1214 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) +((-3730 (((-643 (-549)) (-549) (-549) (-549)) 39)) (-3729 (((-643 (-549)) (-549) (-549) (-549)) 29)) (-3728 (((-643 (-549)) (-549) (-549) (-549)) 34)) (-3727 (((-549) (-549) (-549)) 23)) (-3726 (((-1269 (-549)) (-643 (-549)) (-1269 (-549)) (-549)) 75) (((-1269 (-549)) (-1269 (-549)) (-1269 (-549)) (-549)) 70)) (-3725 (((-643 (-549)) (-643 (-549)) (-643 (-549)) (-112)) 52)) (-3724 (((-691 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549))) 74)) (-3723 (((-691 (-549)) (-643 (-549)) (-643 (-549))) 58)) (-3722 (((-643 (-691 (-549))) (-643 (-549))) 63)) (-3721 (((-643 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549))) 78)) (-3720 (((-691 (-549)) (-643 (-549)) (-643 (-549)) (-643 (-549))) 88))) +(((-1113) (-10 -7 (-15 -3720 ((-691 (-549)) (-643 (-549)) (-643 (-549)) (-643 (-549)))) (-15 -3721 ((-643 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549)))) (-15 -3722 ((-643 (-691 (-549))) (-643 (-549)))) (-15 -3723 ((-691 (-549)) (-643 (-549)) (-643 (-549)))) (-15 -3724 ((-691 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549)))) (-15 -3725 ((-643 (-549)) (-643 (-549)) (-643 (-549)) (-112))) (-15 -3726 ((-1269 (-549)) (-1269 (-549)) (-1269 (-549)) (-549))) (-15 -3726 ((-1269 (-549)) (-643 (-549)) (-1269 (-549)) (-549))) (-15 -3727 ((-549) (-549) (-549))) (-15 -3728 ((-643 (-549)) (-549) (-549) (-549))) (-15 -3729 ((-643 (-549)) (-549) (-549) (-549))) (-15 -3730 ((-643 (-549)) (-549) (-549) (-549))))) (T -1113)) +((-3730 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549)))) (-3729 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549)))) (-3728 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549)))) (-3727 (*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1113)))) (-3726 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1269 (-549))) (-5 *3 (-643 (-549))) (-5 *4 (-549)) (-5 *1 (-1113)))) (-3726 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1269 (-549))) (-5 *3 (-549)) (-5 *1 (-1113)))) (-3725 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *3 (-112)) (-5 *1 (-1113)))) (-3724 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-691 (-549))) (-5 *3 (-643 (-549))) (-5 *1 (-1113)))) (-3723 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1113)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-1113)))) (-3721 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *3 (-691 (-549))) (-5 *1 (-1113)))) (-3720 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1113))))) +(-10 -7 (-15 -3720 ((-691 (-549)) (-643 (-549)) (-643 (-549)) (-643 (-549)))) (-15 -3721 ((-643 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549)))) (-15 -3722 ((-643 (-691 (-549))) (-643 (-549)))) (-15 -3723 ((-691 (-549)) (-643 (-549)) (-643 (-549)))) (-15 -3724 ((-691 (-549)) (-643 (-549)) (-643 (-549)) (-691 (-549)))) (-15 -3725 ((-643 (-549)) (-643 (-549)) (-643 (-549)) (-112))) (-15 -3726 ((-1269 (-549)) (-1269 (-549)) (-1269 (-549)) (-549))) (-15 -3726 ((-1269 (-549)) (-643 (-549)) (-1269 (-549)) (-549))) (-15 -3727 ((-549) (-549) (-549))) (-15 -3728 ((-643 (-549)) (-549) (-549) (-549))) (-15 -3729 ((-643 (-549)) (-549) (-549) (-549))) (-15 -3730 ((-643 (-549)) (-549) (-549) (-549)))) +((** (($ $ (-922)) 10))) +(((-1114 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-922)))) (-1115)) (T -1114)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-922)))) +((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6)) (** (($ $ (-922)) 14)) (* (($ $ $) 15))) +(((-1115) (-140)) (T -1115)) +((* (*1 *1 *1 *1) (-4 *1 (-1115))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-922))))) +(-13 (-1104) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-922))))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL (|has| |#3| (-1104)))) (-3608 (((-112) $) NIL (|has| |#3| (-131)))) (-4139 (($ (-922)) NIL (|has| |#3| (-1052)))) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-2805 (($ $ $) NIL (|has| |#3| (-795)))) (-1407 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1309 (((-112) $ (-773)) NIL)) (-3540 (((-773)) NIL (|has| |#3| (-370)))) (-4055 (((-549) $) NIL (|has| |#3| (-850)))) (-4219 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104)))) (((-3 (-410 (-549)) #1#) $) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1104)))) (-3576 (((-549) $) NIL (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104)))) (((-410 (-549)) $) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) ((|#3| $) NIL (|has| |#3| (-1104)))) (-2427 (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#3| (-641 (-549))) (|has| |#3| (-1052)))) (((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 $) (-1269 $)) NIL (|has| |#3| (-1052))) (((-691 |#3|) (-691 $)) NIL (|has| |#3| (-1052)))) (-3890 (((-3 $ "failed") $) NIL (|has| |#3| (-728)))) (-3395 (($) NIL (|has| |#3| (-370)))) (-1684 ((|#3| $ (-549) |#3|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#3| $ (-549)) 12)) (-3606 (((-112) $) NIL (|has| |#3| (-850)))) (-2124 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL (|has| |#3| (-728)))) (-3607 (((-112) $) NIL (|has| |#3| (-850)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3008 (((-643 |#3|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-2128 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#3| |#3|) $) NIL)) (-2188 (((-922) $) NIL (|has| |#3| (-370)))) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#3| (-1104)))) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-2563 (($ (-922)) NIL (|has| |#3| (-370)))) (-3664 (((-1123) $) NIL (|has| |#3| (-1104)))) (-4232 ((|#3| $) NIL (|has| (-549) (-852)))) (-2373 (($ $ |#3|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104)))) (($ $ (-643 |#3|) (-643 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-2379 (((-643 |#3|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#3| $ (-549) |#3|) NIL) ((|#3| $ (-549)) NIL)) (-4268 ((|#3| $ $) NIL (|has| |#3| (-1052)))) (-1569 (($ (-1269 |#3|)) NIL)) (-4343 (((-134)) NIL (|has| |#3| (-365)))) (-4242 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1 |#3| |#3|) (-773)) NIL (|has| |#3| (-1052))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1052)))) (-2125 (((-773) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425))) (((-773) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1104))))) (-3824 (($ $) NIL)) (-4378 (((-1269 |#3|) $) NIL) (($ (-549)) NIL (-3960 (-12 (|has| |#3| (-1041 (-549))) (|has| |#3| (-1104))) (|has| |#3| (-1052)))) (($ (-410 (-549))) NIL (-12 (|has| |#3| (-1041 (-410 (-549)))) (|has| |#3| (-1104)))) (($ |#3|) NIL (|has| |#3| (-1104))) (((-865) $) NIL (|has| |#3| (-615 (-865))))) (-3530 (((-773)) NIL (|has| |#3| (-1052)) CONST)) (-3662 (((-112) $ $) NIL (|has| |#3| (-1104)))) (-2127 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4425)))) (-3807 (($ $) NIL (|has| |#3| (-850)))) (-3510 (($) NIL (|has| |#3| (-131)) CONST)) (-3067 (($) NIL (|has| |#3| (-728)) CONST)) (-3072 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $ (-773)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1052)))) (($ $ (-1180)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#3| (-903 (-1180))) (|has| |#3| (-1052)))) (($ $ (-1 |#3| |#3|) (-773)) NIL (|has| |#3| (-1052))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1052)))) (-2966 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-2967 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3455 (((-112) $ $) NIL (|has| |#3| (-1104)))) (-3087 (((-112) $ $) NIL (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-3088 (((-112) $ $) 24 (-3960 (|has| |#3| (-795)) (|has| |#3| (-850))))) (-4381 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-4269 (($ $ $) NIL (|has| |#3| (-1052))) (($ $) NIL (|has| |#3| (-1052)))) (-4271 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-773)) NIL (|has| |#3| (-728))) (($ $ (-922)) NIL (|has| |#3| (-728)))) (* (($ (-549) $) NIL (|has| |#3| (-1052))) (($ $ $) NIL (|has| |#3| (-728))) (($ $ |#3|) NIL (|has| |#3| (-728))) (($ |#3| $) NIL (|has| |#3| (-728))) (($ (-773) $) NIL (|has| |#3| (-131))) (($ (-922) $) NIL (|has| |#3| (-25)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1116 |#1| |#2| |#3|) (-238 |#1| |#3|) (-773) (-773) (-795)) (T -1116)) NIL (-238 |#1| |#3|) -((-2492 (((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 53)) (-3667 (((-567) (-1242 |#2| |#1|)) 100 (|has| |#1| (-455)))) (-1565 (((-567) (-1242 |#2| |#1|)) 82)) (-1764 (((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 63)) (-1627 (((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 99 (|has| |#1| (-455)))) (-2259 (((-645 |#1|) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 67)) (-1766 (((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|)) 81))) -(((-1116 |#1| |#2|) (-10 -7 (-15 -2492 ((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -1764 ((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -2259 ((-645 |#1|) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -1766 ((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -1565 ((-567) (-1242 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -1627 ((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -3667 ((-567) (-1242 |#2| |#1|)))) |%noBranch|)) (-821) (-1179)) (T -1116)) -((-3667 (*1 *2 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-1627 (*1 *2 *3 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-1766 (*1 *2 *3 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5)))) (-2259 (*1 *2 *3 *3) (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 *4)) (-5 *1 (-1116 *4 *5)))) (-1764 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 (-1242 *5 *4))) (-5 *1 (-1116 *4 *5)) (-5 *3 (-1242 *5 *4)))) (-2492 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 (-1242 *5 *4))) (-5 *1 (-1116 *4 *5)) (-5 *3 (-1242 *5 *4))))) -(-10 -7 (-15 -2492 ((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -1764 ((-645 (-1242 |#2| |#1|)) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -2259 ((-645 |#1|) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -1766 ((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -1565 ((-567) (-1242 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -1627 ((-567) (-1242 |#2| |#1|) (-1242 |#2| |#1|))) (-15 -3667 ((-567) (-1242 |#2| |#1|)))) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-1449 (($ (-509) (-1120)) 13)) (-4261 (((-1120) $) 19)) (-1646 (((-509) $) 16)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 26) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1117) (-13 (-1085) (-10 -8 (-15 -1449 ($ (-509) (-1120))) (-15 -1646 ((-509) $)) (-15 -4261 ((-1120) $))))) (T -1117)) -((-1449 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-1117)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1117)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1117))))) -(-13 (-1085) (-10 -8 (-15 -1449 ($ (-509) (-1120))) (-15 -1646 ((-509) $)) (-15 -4261 ((-1120) $)))) -((-2777 (((-3 (-567) "failed") |#2| (-1179) |#2| (-1161)) 19) (((-3 (-567) "failed") |#2| (-1179) (-844 |#2|)) 17) (((-3 (-567) "failed") |#2|) 60))) -(((-1118 |#1| |#2|) (-10 -7 (-15 -2777 ((-3 (-567) "failed") |#2|)) (-15 -2777 ((-3 (-567) "failed") |#2| (-1179) (-844 |#2|))) (-15 -2777 ((-3 (-567) "failed") |#2| (-1179) |#2| (-1161)))) (-13 (-559) (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1204) (-433 |#1|))) (T -1118)) -((-2777 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-1161)) (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *6 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))))) (-2777 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-844 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *6 *3)))) (-2777 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1118 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4)))))) -(-10 -7 (-15 -2777 ((-3 (-567) "failed") |#2|)) (-15 -2777 ((-3 (-567) "failed") |#2| (-1179) (-844 |#2|))) (-15 -2777 ((-3 (-567) "failed") |#2| (-1179) |#2| (-1161)))) -((-2777 (((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)) (-1161)) 38) (((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-844 (-410 (-954 |#1|)))) 33) (((-3 (-567) "failed") (-410 (-954 |#1|))) 14))) -(((-1119 |#1|) (-10 -7 (-15 -2777 ((-3 (-567) "failed") (-410 (-954 |#1|)))) (-15 -2777 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-844 (-410 (-954 |#1|))))) (-15 -2777 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)) (-1161)))) (-455)) (T -1119)) -((-2777 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1179)) (-5 *5 (-1161)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) (-2777 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-844 (-410 (-954 *6)))) (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) (-2777 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *4))))) -(-10 -7 (-15 -2777 ((-3 (-567) "failed") (-410 (-954 |#1|)))) (-15 -2777 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-844 (-410 (-954 |#1|))))) (-15 -2777 ((-3 (-567) "failed") (-410 (-954 |#1|)) (-1179) (-410 (-954 |#1|)) (-1161)))) -((-2487 (((-112) $ $) NIL)) (-3755 (((-1184) $) 12)) (-3709 (((-645 (-1184)) $) 14)) (-4261 (($ (-645 (-1184)) (-1184)) 10)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 29)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 17))) -(((-1120) (-13 (-1102) (-10 -8 (-15 -4261 ($ (-645 (-1184)) (-1184))) (-15 -3755 ((-1184) $)) (-15 -3709 ((-645 (-1184)) $))))) (T -1120)) -((-4261 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1184))) (-5 *3 (-1184)) (-5 *1 (-1120)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1120)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1120))))) -(-13 (-1102) (-10 -8 (-15 -4261 ($ (-645 (-1184)) (-1184))) (-15 -3755 ((-1184) $)) (-15 -3709 ((-645 (-1184)) $)))) -((-2805 (((-317 (-567)) (-48)) 12))) -(((-1121) (-10 -7 (-15 -2805 ((-317 (-567)) (-48))))) (T -1121)) -((-2805 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1121))))) -(-10 -7 (-15 -2805 ((-317 (-567)) (-48)))) -((-2487 (((-112) $ $) NIL)) (-2509 (($ $) 44)) (-2684 (((-112) $) 69)) (-1779 (($ $ $) 51)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 97)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-3309 (($ $ $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2893 (($ $ $ $) 80)) (-3864 (($ $) NIL)) (-1466 (((-421 $) $) NIL)) (-4175 (((-112) $ $) NIL)) (-3404 (((-772)) 82)) (-2777 (((-567) $) NIL)) (-3075 (($ $ $) 77)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL)) (-3094 (((-567) $) NIL)) (-2432 (($ $ $) 63)) (-2690 (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 91) (((-690 (-567)) (-690 $)) 32)) (-1377 (((-3 $ "failed") $) NIL)) (-3810 (((-3 (-410 (-567)) "failed") $) NIL)) (-1527 (((-112) $) NIL)) (-2485 (((-410 (-567)) $) NIL)) (-2119 (($) 94) (($ $) 95)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL)) (-2946 (((-112) $) NIL)) (-1591 (($ $ $ $) NIL)) (-4211 (($ $ $) 92)) (-3635 (((-112) $) NIL)) (-4090 (($ $ $) NIL)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL)) (-4384 (((-112) $) 71)) (-3807 (((-112) $) 68)) (-1736 (($ $) 45)) (-3104 (((-3 $ "failed") $) NIL)) (-2585 (((-112) $) 81)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4003 (($ $ $ $) 78)) (-2727 (($ $ $) 73) (($) 42 T CONST)) (-1446 (($ $ $) 72) (($) 41 T CONST)) (-1789 (($ $) NIL)) (-2667 (((-923) $) 87)) (-3613 (($ $) 76)) (-1831 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1812 (((-1161) $) NIL)) (-3718 (($ $ $) NIL)) (-2221 (($) NIL T CONST)) (-2188 (($ (-923)) 86)) (-3762 (($ $) 56)) (-3479 (((-1122) $) 75)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL)) (-1870 (($ $ $) 66) (($ (-645 $)) NIL)) (-2256 (($ $) NIL)) (-3661 (((-421 $) $) NIL)) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2478 (((-3 $ "failed") $ $) NIL)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1359 (((-112) $) NIL)) (-2465 (((-772) $) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 65)) (-3592 (($ $ (-772)) NIL) (($ $) NIL)) (-2199 (($ $) 57)) (-3846 (($ $) NIL)) (-1322 (((-567) $) 17) (((-539) $) NIL) (((-894 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-2504 (((-863) $) 35) (($ (-567)) 93) (($ $) NIL) (($ (-567)) 93)) (-2214 (((-772)) NIL T CONST)) (-3050 (((-112) $ $) NIL)) (-3040 (($ $ $) NIL)) (-3858 (((-112) $ $) NIL)) (-3140 (($) 40)) (-3269 (((-112) $ $) NIL)) (-1799 (($ $ $ $) 79)) (-1368 (($ $) 67)) (-2552 (($ $ $) 47)) (-1807 (($) 7 T CONST)) (-3429 (($ $ $) 50)) (-1820 (($) 39 T CONST)) (-2166 (((-1161) $) 26) (((-1161) $ (-112)) 27) (((-1274) (-823) $) 28) (((-1274) (-823) $ (-112)) 29)) (-3441 (($ $) 48)) (-2856 (($ $ (-772)) NIL) (($ $) NIL)) (-3419 (($ $ $) 49)) (-3016 (((-112) $ $) 55)) (-2996 (((-112) $ $) 52)) (-2968 (((-112) $ $) 43)) (-3006 (((-112) $ $) 54)) (-2986 (((-112) $ $) 10)) (-2542 (($ $ $) 46)) (-3054 (($ $) 16) (($ $ $) 59)) (-3045 (($ $ $) 58)) (** (($ $ (-923)) NIL) (($ $ (-772)) 61)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 38) (($ $ $) 37))) -(((-1122) (-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4409) (-6 -4414) (-6 -4410) (-15 -1736 ($ $)) (-15 -1779 ($ $ $)) (-15 -3441 ($ $)) (-15 -3419 ($ $ $)) (-15 -3429 ($ $ $))))) (T -1122)) -((-1736 (*1 *1 *1) (-5 *1 (-1122))) (-1779 (*1 *1 *1 *1) (-5 *1 (-1122))) (-3441 (*1 *1 *1) (-5 *1 (-1122))) (-3419 (*1 *1 *1 *1) (-5 *1 (-1122))) (-3429 (*1 *1 *1 *1) (-5 *1 (-1122)))) -(-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4409) (-6 -4414) (-6 -4410) (-15 -1736 ($ $)) (-15 -1779 ($ $ $)) (-15 -3441 ($ $)) (-15 -3419 ($ $ $)) (-15 -3429 ($ $ $)))) +((-3731 (((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 50)) (-3737 (((-549) (-1238 |#2| |#1|)) 97 (|has| |#1| (-455)))) (-3735 (((-549) (-1238 |#2| |#1|)) 79)) (-3732 (((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 60)) (-3736 (((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 96 (|has| |#1| (-455)))) (-3733 (((-643 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 64)) (-3734 (((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 78))) +(((-1117 |#1| |#2|) (-10 -7 (-15 -3731 ((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3732 ((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3733 ((-643 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3734 ((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3735 ((-549) (-1238 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3736 ((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3737 ((-549) (-1238 |#2| |#1|)))) |%noBranch|)) (-822) (-1180)) (T -1117)) +((-3737 (*1 *2 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-455)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) (-5 *1 (-1117 *4 *5)))) (-3736 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-455)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) (-5 *1 (-1117 *4 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) (-5 *1 (-1117 *4 *5)))) (-3734 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) (-5 *1 (-1117 *4 *5)))) (-3733 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 *4)) (-5 *1 (-1117 *4 *5)))) (-3732 (*1 *2 *3 *3) (-12 (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 (-1238 *5 *4))) (-5 *1 (-1117 *4 *5)) (-5 *3 (-1238 *5 *4)))) (-3731 (*1 *2 *3 *3) (-12 (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 (-1238 *5 *4))) (-5 *1 (-1117 *4 *5)) (-5 *3 (-1238 *5 *4))))) +(-10 -7 (-15 -3731 ((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3732 ((-643 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3733 ((-643 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3734 ((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3735 ((-549) (-1238 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -3736 ((-549) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3737 ((-549) (-1238 |#2| |#1|)))) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3739 (((-1185) $) 12)) (-3738 (((-643 (-1185)) $) 14)) (-3740 (($ (-643 (-1185)) (-1185)) 10)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 29)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 17))) +(((-1118) (-13 (-1104) (-10 -8 (-15 -3740 ($ (-643 (-1185)) (-1185))) (-15 -3739 ((-1185) $)) (-15 -3738 ((-643 (-1185)) $))))) (T -1118)) +((-3740 (*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1185))) (-5 *3 (-1185)) (-5 *1 (-1118)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1118)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1118))))) +(-13 (-1104) (-10 -8 (-15 -3740 ($ (-643 (-1185)) (-1185))) (-15 -3739 ((-1185) $)) (-15 -3738 ((-643 (-1185)) $)))) +((-2968 (((-112) $ $) NIL)) (-3741 (($ (-509) (-1118)) 13)) (-3740 (((-1118) $) 19)) (-3973 (((-509) $) 16)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 26) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1119) (-13 (-1086) (-10 -8 (-15 -3741 ($ (-509) (-1118))) (-15 -3973 ((-509) $)) (-15 -3740 ((-1118) $))))) (T -1119)) +((-3741 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-1119)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1119)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1119))))) +(-13 (-1086) (-10 -8 (-15 -3741 ($ (-509) (-1118))) (-15 -3973 ((-509) $)) (-15 -3740 ((-1118) $)))) +((-4055 (((-3 (-549) #1="failed") |#2| (-1180) |#2| (-1162)) 19) (((-3 (-549) #1#) |#2| (-1180) (-844 |#2|)) 17) (((-3 (-549) #1#) |#2|) 60))) +(((-1120 |#1| |#2|) (-10 -7 (-15 -4055 ((-3 (-549) #1="failed") |#2|)) (-15 -4055 ((-3 (-549) #1#) |#2| (-1180) (-844 |#2|))) (-15 -4055 ((-3 (-549) #1#) |#2| (-1180) |#2| (-1162)))) (-13 (-560) (-1041 (-549)) (-641 (-549)) (-455)) (-13 (-27) (-1205) (-424 |#1|))) (T -1120)) +((-4055 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-1162)) (-4 *6 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) (-5 *1 (-1120 *6 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))))) (-4055 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-844 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) (-4 *6 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) (-5 *1 (-1120 *6 *3)))) (-4055 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4)))))) +(-10 -7 (-15 -4055 ((-3 (-549) #1="failed") |#2|)) (-15 -4055 ((-3 (-549) #1#) |#2| (-1180) (-844 |#2|))) (-15 -4055 ((-3 (-549) #1#) |#2| (-1180) |#2| (-1162)))) +((-4055 (((-3 (-549) #1="failed") (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)) (-1162)) 38) (((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-844 (-410 (-949 |#1|)))) 33) (((-3 (-549) #1#) (-410 (-949 |#1|))) 14))) +(((-1121 |#1|) (-10 -7 (-15 -4055 ((-3 (-549) #1="failed") (-410 (-949 |#1|)))) (-15 -4055 ((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-844 (-410 (-949 |#1|))))) (-15 -4055 ((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)) (-1162)))) (-455)) (T -1121)) +((-4055 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-410 (-949 *6))) (-5 *4 (-1180)) (-5 *5 (-1162)) (-4 *6 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *6)))) (-4055 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-844 (-410 (-949 *6)))) (-5 *3 (-410 (-949 *6))) (-4 *6 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *6)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *4))))) +(-10 -7 (-15 -4055 ((-3 (-549) #1="failed") (-410 (-949 |#1|)))) (-15 -4055 ((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-844 (-410 (-949 |#1|))))) (-15 -4055 ((-3 (-549) #1#) (-410 (-949 |#1|)) (-1180) (-410 (-949 |#1|)) (-1162)))) +((-4081 (((-315 (-549)) (-48)) 12))) +(((-1122) (-10 -7 (-15 -4081 ((-315 (-549)) (-48))))) (T -1122)) +((-4081 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-549))) (-5 *1 (-1122))))) +(-10 -7 (-15 -4081 ((-315 (-549)) (-48)))) +((-2968 (((-112) $ $) NIL)) (-2458 (($ $) 44)) (-3608 (((-112) $) 69)) (-3745 (($ $ $) 51)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 97)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-2225 (($ $ $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-2220 (($ $ $ $) 80)) (-4206 (($ $) NIL)) (-4401 (((-408 $) $) NIL)) (-1753 (((-112) $ $) NIL)) (-3540 (((-773)) 82)) (-4055 (((-549) $) NIL)) (-2762 (($ $ $) 77)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) "failed") $) NIL)) (-3576 (((-549) $) NIL)) (-2964 (($ $ $) 63)) (-2427 (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 91) (((-691 (-549)) (-691 $)) 32)) (-3890 (((-3 $ "failed") $) NIL)) (-3425 (((-3 (-410 (-549)) "failed") $) NIL)) (-3424 (((-112) $) NIL)) (-3423 (((-410 (-549)) $) NIL)) (-3395 (($) 94) (($ $) 95)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL)) (-4155 (((-112) $) NIL)) (-2218 (($ $ $ $) NIL)) (-2226 (($ $ $) 92)) (-3606 (((-112) $) NIL)) (-1456 (($ $ $) NIL)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL)) (-2573 (((-112) $) 71)) (-3076 (((-112) $) 68)) (-3746 (($ $) 45)) (-3868 (((-3 $ "failed") $) NIL)) (-3607 (((-112) $) 81)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL)) (-2219 (($ $ $ $) 78)) (-2934 (($ $ $) 73) (($) 42 T CONST)) (-3260 (($ $ $) 72) (($) 41 T CONST)) (-2222 (($ $) NIL)) (-2188 (((-922) $) 87)) (-4265 (($ $) 76)) (-2069 (($ $ $) NIL) (($ (-643 $)) NIL)) (-3663 (((-1162) $) NIL)) (-2217 (($ $ $) NIL)) (-3869 (($) NIL T CONST)) (-2563 (($ (-922)) 86)) (-2224 (($ $) 56)) (-3664 (((-1123) $) 75)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL)) (-3564 (($ $ $) 66) (($ (-643 $)) NIL)) (-1454 (($ $) NIL)) (-4164 (((-408 $) $) NIL)) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL)) (-3889 (((-3 $ "failed") $ $) NIL)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL)) (-3077 (((-112) $) NIL)) (-1752 (((-773) $) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 65)) (-4242 (($ $ (-773)) NIL) (($ $) NIL)) (-2223 (($ $) 57)) (-3824 (($ $) NIL)) (-4402 (((-549) $) 17) (((-538) $) NIL) (((-893 (-549)) $) NIL) (((-380) $) NIL) (((-225) $) NIL)) (-4378 (((-865) $) 35) (($ (-549)) 93) (($ $) NIL) (($ (-549)) 93)) (-3530 (((-773)) NIL T CONST)) (-2227 (((-112) $ $) NIL)) (-3505 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3097 (($) 40)) (-2240 (((-112) $ $) NIL)) (-2221 (($ $ $ $) 79)) (-3807 (($ $) 67)) (-2456 (($ $ $) 47)) (-3510 (($) 7 T CONST)) (-3742 (($ $ $) 50)) (-3067 (($) 39 T CONST)) (-2900 (((-1162) $) 26) (((-1162) $ (-112)) 27) (((-1275) (-825) $) 28) (((-1275) (-825) $ (-112)) 29)) (-3744 (($ $) 48)) (-3072 (($ $ (-773)) NIL) (($ $) NIL)) (-3743 (($ $ $) 49)) (-2966 (((-112) $ $) 55)) (-2967 (((-112) $ $) 52)) (-3455 (((-112) $ $) 43)) (-3087 (((-112) $ $) 54)) (-3088 (((-112) $ $) 10)) (-2457 (($ $ $) 46)) (-4269 (($ $) 16) (($ $ $) 59)) (-4271 (($ $ $) 58)) (** (($ $ (-922)) NIL) (($ $ (-773)) 61)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 38) (($ $ $) 37))) +(((-1123) (-13 (-548) (-846) (-664) (-823) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3746 ($ $)) (-15 -3745 ($ $ $)) (-15 -3744 ($ $)) (-15 -3743 ($ $ $)) (-15 -3742 ($ $ $))))) (T -1123)) +((-3746 (*1 *1 *1) (-5 *1 (-1123))) (-3745 (*1 *1 *1 *1) (-5 *1 (-1123))) (-3744 (*1 *1 *1) (-5 *1 (-1123))) (-3743 (*1 *1 *1 *1) (-5 *1 (-1123))) (-3742 (*1 *1 *1 *1) (-5 *1 (-1123)))) +(-13 (-548) (-846) (-664) (-823) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3746 ($ $)) (-15 -3745 ($ $ $)) (-15 -3744 ($ $)) (-15 -3743 ($ $ $)) (-15 -3742 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3262 ((|#1| $) 45)) (-1555 (((-112) $ (-772)) 8)) (-3758 (($) 7 T CONST)) (-3410 ((|#1| |#1| $) 47)) (-4353 ((|#1| $) 46)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-3018 ((|#1| $) 40)) (-3636 (($ |#1| $) 41)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-1713 ((|#1| $) 42)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-2772 (((-772) $) 44)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) 43)) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-1123 |#1|) (-140) (-1219)) (T -1123)) -((-3410 (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1219)) (-5 *2 (-772))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4422) (-15 -3410 (|t#1| |t#1| $)) (-15 -4353 (|t#1| $)) (-15 -3262 (|t#1| $)) (-15 -2772 ((-772) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-3132 ((|#3| $) 87)) (-4275 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3094 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#3| $) 47)) (-2690 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL) (((-2 (|:| -2434 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 $) (-1269 $)) 84) (((-690 |#3|) (-690 $)) 76)) (-3592 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-2274 ((|#3| $) 89)) (-1930 ((|#4| $) 43)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#3|) 25)) (** (($ $ (-923)) NIL) (($ $ (-772)) 24) (($ $ (-567)) 95))) -(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -2274 (|#3| |#1|)) (-15 -3132 (|#3| |#1|)) (-15 -1930 (|#4| |#1|)) (-15 -2690 ((-690 |#3|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -2504 (|#1| |#3|)) (-15 -4275 ((-3 |#3| "failed") |#1|)) (-15 -3094 (|#3| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2504 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -2504 ((-863) |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-772) (-1051) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1124)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -2274 (|#3| |#1|)) (-15 -3132 (|#3| |#1|)) (-15 -1930 (|#4| |#1|)) (-15 -2690 ((-690 |#3|) (-690 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 |#3|)) (|:| |vec| (-1269 |#3|))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 |#1|) (-1269 |#1|))) (-15 -2690 ((-690 (-567)) (-690 |#1|))) (-15 -2504 (|#1| |#3|)) (-15 -4275 ((-3 |#3| "failed") |#1|)) (-15 -3094 (|#3| |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -3592 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2504 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3132 ((|#2| $) 77)) (-3740 (((-112) $) 117)) (-2932 (((-3 $ "failed") $ $) 20)) (-2995 (((-112) $) 115)) (-1555 (((-112) $ (-772)) 107)) (-3923 (($ |#2|) 80)) (-3758 (($) 18 T CONST)) (-2367 (($ $) 134 (|has| |#2| (-308)))) (-4134 ((|#3| $ (-567)) 129)) (-4275 (((-3 (-567) "failed") $) 92 (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) 89 (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) 86)) (-3094 (((-567) $) 91 (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) 88 (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) 87)) (-2690 (((-690 (-567)) (-690 $)) 84 (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 83 (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 82) (((-690 |#2|) (-690 $)) 81)) (-1377 (((-3 $ "failed") $) 37)) (-1471 (((-772) $) 135 (|has| |#2| (-559)))) (-1970 ((|#2| $ (-567) (-567)) 127)) (-3468 (((-645 |#2|) $) 100 (|has| $ (-6 -4422)))) (-4384 (((-112) $) 35)) (-3301 (((-772) $) 136 (|has| |#2| (-559)))) (-3010 (((-645 |#4|) $) 137 (|has| |#2| (-559)))) (-4371 (((-772) $) 123)) (-4385 (((-772) $) 124)) (-3753 (((-112) $ (-772)) 108)) (-2241 ((|#2| $) 72 (|has| |#2| (-6 (-4424 "*"))))) (-3181 (((-567) $) 119)) (-2631 (((-567) $) 121)) (-4200 (((-645 |#2|) $) 99 (|has| $ (-6 -4422)))) (-2203 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-4244 (((-567) $) 120)) (-3802 (((-567) $) 122)) (-2446 (($ (-645 (-645 |#2|))) 114)) (-2021 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-3298 (((-645 (-645 |#2|)) $) 125)) (-3421 (((-112) $ (-772)) 109)) (-1812 (((-1161) $) 10)) (-1656 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-3479 (((-1122) $) 11)) (-2478 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-559)))) (-1430 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) 113)) (-2319 (((-112) $) 110)) (-2973 (($) 111)) (-1882 ((|#2| $ (-567) (-567) |#2|) 128) ((|#2| $ (-567) (-567)) 126)) (-3592 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-772)) 55) (($ $ (-645 (-1179)) (-645 (-772))) 48 (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) 47 (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) 46 (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) 45 (|has| |#2| (-902 (-1179)))) (($ $ (-772)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-2274 ((|#2| $) 76)) (-4217 (($ (-645 |#2|)) 79)) (-2698 (((-112) $) 116)) (-1930 ((|#3| $) 78)) (-2593 ((|#2| $) 73 (|has| |#2| (-6 (-4424 "*"))))) (-3486 (((-772) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4422))) (((-772) |#2| $) 98 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 112)) (-2900 ((|#4| $ (-567)) 130)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 90 (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) 85)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3450 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4422)))) (-3343 (((-112) $) 118)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-772)) 53) (($ $ (-645 (-1179)) (-645 (-772))) 52 (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) 51 (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) 50 (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) 49 (|has| |#2| (-902 (-1179)))) (($ $ (-772)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 70 (|has| |#2| (-365)))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2498 (((-772) $) 106 (|has| $ (-6 -4422))))) -(((-1125 |#1| |#2| |#3| |#4|) (-140) (-772) (-1051) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1125)) -((-3923 (*1 *1 *2) (-12 (-4 *2 (-1051)) (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-4217 (*1 *1 *2) (-12 (-5 *2 (-645 *4)) (-4 *4 (-1051)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1051)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) (-1656 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))) -(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1055 |t#1| |t#1| |t#2| |t#3| |t#4|) (-414 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-718 |t#2|)) |%noBranch|) (-15 -3923 ($ |t#2|)) (-15 -4217 ($ (-645 |t#2|))) (-15 -1930 (|t#3| $)) (-15 -3132 (|t#2| $)) (-15 -2274 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4424 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2593 (|t#2| $)) (-15 -2241 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -1656 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4424 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#2| (-1040 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-379 |#2|) . T) ((-414 |#2|) . T) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-6 (-4424 "*")))) ((-640 (-567)) |has| |#2| (-640 (-567))) ((-640 |#2|) . T) ((-718 |#2|) -2836 (|has| |#2| (-172)) (|has| |#2| (-6 (-4424 "*")))) ((-727) . T) ((-902 (-1179)) |has| |#2| (-902 (-1179))) ((-1055 |#1| |#1| |#2| |#3| |#4|) . T) ((-1040 #0#) |has| |#2| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#2| (-1040 (-567))) ((-1040 |#2|) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1219) . T)) -((-1697 ((|#4| |#4|) 81)) (-2246 ((|#4| |#4|) 76)) (-1672 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|))) |#4| |#3|) 91)) (-2674 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2653 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2246 (|#4| |#4|)) (-15 -2653 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1697 (|#4| |#4|)) (-15 -2674 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1672 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1126)) -((-1672 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) (-5 *1 (-1126 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2674 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -2246 (|#4| |#4|)) (-15 -2653 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1697 (|#4| |#4|)) (-15 -2674 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1672 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4374 (-645 |#3|))) |#4| |#3|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 18)) (-3783 (((-645 |#2|) $) 178)) (-3633 (((-1175 $) $ |#2|) 63) (((-1175 |#1|) $) 52)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 118 (|has| |#1| (-559)))) (-1987 (($ $) 120 (|has| |#1| (-559)))) (-3342 (((-112) $) 122 (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 |#2|)) 217)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) 172) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 |#2| "failed") $) NIL)) (-3094 ((|#1| $) 170) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) ((|#2| $) NIL)) (-2304 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-1833 (($ $) 221)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) 92)) (-1873 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-1978 (($ $ |#1| (-534 |#2|) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#1| (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#1| (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-4384 (((-112) $) 20)) (-1921 (((-772) $) 30)) (-3772 (($ (-1175 |#1|) |#2|) 57) (($ (-1175 $) |#2|) 74)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) 41)) (-3764 (($ |#1| (-534 |#2|)) 81) (($ $ |#2| (-772)) 61) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ |#2|) NIL)) (-1562 (((-534 |#2|) $) 209) (((-772) $ |#2|) 210) (((-645 (-772)) $ (-645 |#2|)) 211)) (-2972 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) 130)) (-2047 (((-3 |#2| "failed") $) 181)) (-1796 (($ $) 220)) (-1809 ((|#1| $) 46)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1812 (((-1161) $) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| |#2|) (|:| -2618 (-772))) "failed") $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) 42)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 150 (|has| |#1| (-455)))) (-1870 (($ (-645 $)) 155 (|has| |#1| (-455))) (($ $ $) 140 (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#1| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-911)))) (-2478 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-645 |#2|) (-645 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-645 |#2|) (-645 $)) 198)) (-2254 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3592 (($ $ |#2|) 219) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3380 (((-534 |#2|) $) 205) (((-772) $ |#2|) 200) (((-645 (-772)) $ (-645 |#2|)) 203)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| |#1| (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| |#1| (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1390 ((|#1| $) 136 (|has| |#1| (-455))) (($ $ |#2|) 139 (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2504 (((-863) $) 161) (($ (-567)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-1516 (((-645 |#1|) $) 164)) (-4038 ((|#1| $ (-534 |#2|)) 83) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) 89 T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) 125 (|has| |#1| (-559)))) (-1807 (($) 12 T CONST)) (-1820 (($) 14 T CONST)) (-2856 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2968 (((-112) $ $) 108)) (-3064 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3054 (($ $) 95) (($ $ $) 106)) (-3045 (($ $ $) 58)) (** (($ $ (-923)) 112) (($ $ (-772)) 111)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 75) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 101) (($ $ |#1|) NIL))) -(((-1127 |#1| |#2|) (-951 |#1| (-534 |#2|) |#2|) (-1051) (-851)) (T -1127)) -NIL -(-951 |#1| (-534 |#2|) |#2|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 |#2|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-1406 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1380 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-1431 (($ $) 156 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3204 (((-954 |#1|) $ (-772)) NIL) (((-954 |#1|) $ (-772) (-772)) NIL)) (-3219 (((-112) $) NIL)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-772) $ |#2|) NIL) (((-772) $ |#2| (-772)) NIL)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3615 (((-112) $) NIL)) (-3764 (($ $ (-645 |#2|) (-645 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 63) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2734 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3670 (($ $ |#2|) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) NIL)) (-4293 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-410 (-567)))))) (-1678 (($ $ (-772)) 16)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-4272 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (($ $ |#2| $) 106) (($ $ (-645 |#2|) (-645 $)) 99) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-3592 (($ $ |#2|) 109) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3380 (((-534 |#2|) $) NIL)) (-1864 (((-1 (-1159 |#3|) |#3|) (-645 |#2|) (-645 (-1159 |#3|))) 87)) (-1443 (($ $) 158 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 18)) (-2504 (((-863) $) 199) (($ (-567)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#2|) 70) (($ |#3|) 68)) (-4038 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL) ((|#3| $ (-772)) 43)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-2090 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 52 T CONST)) (-1820 (($) 62 T CONST)) (-2856 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 66)) (** (($ $ (-923)) NIL) (($ $ (-772)) 77) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 112 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 65) (($ $ (-410 (-567))) 117 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 115 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1128 |#1| |#2| |#3|) (-13 (-741 |#1| |#2|) (-10 -8 (-15 -4038 (|#3| $ (-772))) (-15 -2504 ($ |#2|)) (-15 -2504 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1864 ((-1 (-1159 |#3|) |#3|) (-645 |#2|) (-645 (-1159 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $ |#2| |#1|)) (-15 -4293 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1051) (-851) (-951 |#1| (-534 |#2|) |#2|)) (T -1128)) -((-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-951 *4 (-534 *5) *5)) (-5 *1 (-1128 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-851)))) (-2504 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) (-2504 (*1 *1 *2) (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) (-4 *2 (-951 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) (-4 *2 (-951 *3 (-534 *4) *4)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1159 *7))) (-4 *6 (-851)) (-4 *7 (-951 *5 (-534 *6) *6)) (-4 *5 (-1051)) (-5 *2 (-1 (-1159 *7) *7)) (-5 *1 (-1128 *5 *6 *7)))) (-3670 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) (-4293 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1128 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *1 (-1128 *4 *3 *5)) (-4 *5 (-951 *4 (-534 *3) *3))))) -(-13 (-741 |#1| |#2|) (-10 -8 (-15 -4038 (|#3| $ (-772))) (-15 -2504 ($ |#2|)) (-15 -2504 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1864 ((-1 (-1159 |#3|) |#3|) (-645 |#2|) (-645 (-1159 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $ |#2| |#1|)) (-15 -4293 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2487 (((-112) $ $) 7)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) 86)) (-3148 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-3783 (((-645 |#3|) $) 34)) (-2643 (((-112) $) 27)) (-2720 (((-112) $) 18 (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) 102) (((-112) $) 98)) (-2688 ((|#4| |#4| $) 93)) (-3864 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| $) 127)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) 28)) (-1555 (((-112) $ (-772)) 45)) (-1316 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3758 (($) 46 T CONST)) (-3731 (((-112) $) 23 (|has| |#1| (-559)))) (-4301 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4089 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3937 (((-112) $) 26 (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2160 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) 37)) (-3094 (($ (-645 |#4|)) 36)) (-3447 (((-3 $ "failed") $) 83)) (-2903 ((|#4| |#4| $) 90)) (-3470 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1861 ((|#4| |#4| $) 88)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) 106)) (-2940 (((-112) |#4| $) 137)) (-2708 (((-112) |#4| $) 134)) (-2600 (((-112) |#4| $) 138) (((-112) $) 135)) (-3468 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-3753 (((-112) $ (-772)) 44)) (-4200 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 48)) (-3870 (((-645 |#3|) $) 33)) (-2415 (((-112) |#3| $) 32)) (-3421 (((-112) $ (-772)) 43)) (-1812 (((-1161) $) 10)) (-1434 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-4316 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| |#4| $) 128)) (-1725 (((-3 |#4| "failed") $) 84)) (-2920 (((-645 $) |#4| $) 130)) (-4264 (((-3 (-112) (-645 $)) |#4| $) 133)) (-3972 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3873 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-4214 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2290 (((-645 |#4|) $) 108)) (-1737 (((-112) |#4| $) 100) (((-112) $) 96)) (-2763 ((|#4| |#4| $) 91)) (-4009 (((-112) $ $) 111)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) 101) (((-112) $) 97)) (-3893 ((|#4| |#4| $) 92)) (-3479 (((-1122) $) 11)) (-3436 (((-3 |#4| "failed") $) 85)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2806 (((-3 $ "failed") $ |#4|) 79)) (-1678 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-1430 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) 39)) (-2319 (((-112) $) 42)) (-2973 (($) 41)) (-3380 (((-772) $) 107)) (-3486 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-3846 (($ $) 40)) (-1322 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 61)) (-1582 (($ $ |#3|) 29)) (-2746 (($ $ |#3|) 31)) (-2012 (($ $) 89)) (-3975 (($ $ |#3|) 30)) (-2504 (((-863) $) 12) (((-645 |#4|) $) 38)) (-3312 (((-772) $) 77 (|has| |#3| (-370)))) (-3858 (((-112) $ $) 9)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3259 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-3450 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) 82)) (-3961 (((-112) |#4| $) 136)) (-3392 (((-112) |#3| $) 81)) (-2968 (((-112) $ $) 6)) (-2498 (((-772) $) 47 (|has| $ (-6 -4422))))) -(((-1129 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1129)) -NIL -(-13 (-1111 |t#1| |t#2| |t#3| |t#4|) (-785 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-785 |#1| |#2| |#3| |#4|) . T) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1073 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1111 |#1| |#2| |#3| |#4|) . T) ((-1212 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) -((-2510 (((-645 |#2|) |#1|) 15)) (-3796 (((-645 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-645 |#2|) |#1|) 63)) (-2692 (((-645 |#2|) |#2| |#2| |#2|) 45) (((-645 |#2|) |#1|) 61)) (-1342 ((|#2| |#1|) 56)) (-3318 (((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3188 (((-645 |#2|) |#2| |#2|) 42) (((-645 |#2|) |#1|) 60)) (-4233 (((-645 |#2|) |#2| |#2| |#2| |#2|) 46) (((-645 |#2|) |#1|) 62)) (-3843 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3085 ((|#2| |#2| |#2| |#2|) 53)) (-2987 ((|#2| |#2| |#2|) 52)) (-2383 ((|#2| |#2| |#2| |#2| |#2|) 54))) -(((-1130 |#1| |#2|) (-10 -7 (-15 -2510 ((-645 |#2|) |#1|)) (-15 -1342 (|#2| |#1|)) (-15 -3318 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3188 ((-645 |#2|) |#1|)) (-15 -2692 ((-645 |#2|) |#1|)) (-15 -4233 ((-645 |#2|) |#1|)) (-15 -3796 ((-645 |#2|) |#1|)) (-15 -3188 ((-645 |#2|) |#2| |#2|)) (-15 -2692 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -4233 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3796 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2987 (|#2| |#2| |#2|)) (-15 -3085 (|#2| |#2| |#2| |#2|)) (-15 -2383 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3843 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1245 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (T -1130)) -((-3843 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-2383 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-3085 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-2987 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-3796 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))) (-4233 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))) (-2692 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))) (-3188 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) (-3188 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-2 (|:| |solns| (-645 *5)) (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1130 *3 *5)) (-4 *3 (-1245 *5)))) (-1342 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -2510 ((-645 |#2|) |#1|)) (-15 -1342 (|#2| |#1|)) (-15 -3318 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3188 ((-645 |#2|) |#1|)) (-15 -2692 ((-645 |#2|) |#1|)) (-15 -4233 ((-645 |#2|) |#1|)) (-15 -3796 ((-645 |#2|) |#1|)) (-15 -3188 ((-645 |#2|) |#2| |#2|)) (-15 -2692 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -4233 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3796 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2987 (|#2| |#2| |#2|)) (-15 -3085 (|#2| |#2| |#2| |#2|)) (-15 -2383 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3843 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-2379 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|))))) 124) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179))) 123) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|)))) 121) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1179))) 119) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|)))) 97) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1179)) 98) (((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|))) 92) (((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1179)) 82)) (-3897 (((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179))) 117) (((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1179)) 54)) (-3571 (((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1179)) 128) (((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179)) 127))) -(((-1131 |#1|) (-10 -7 (-15 -2379 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -2379 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)))) (-15 -2379 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -2379 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))))) (-15 -2379 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2379 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))))) (-15 -2379 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179)))) (-15 -2379 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -3897 ((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1179))) (-15 -3897 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -3571 ((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -3571 ((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1179)))) (-13 (-308) (-147))) (T -1131)) -((-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1168 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1168 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) (-5 *1 (-1131 *5)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) (-5 *1 (-1131 *5)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-954 *5))))) (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5))))) -(-10 -7 (-15 -2379 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)) (-1179))) (-15 -2379 ((-645 (-295 (-317 |#1|))) (-410 (-954 |#1|)))) (-15 -2379 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -2379 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-954 |#1|))))) (-15 -2379 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2379 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-954 |#1|))))) (-15 -2379 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179)))) (-15 -2379 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -3897 ((-645 (-317 |#1|)) (-410 (-954 |#1|)) (-1179))) (-15 -3897 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -3571 ((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -3571 ((-1168 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-954 |#1|)) (-1179)))) -((-1439 (((-410 (-1175 (-317 |#1|))) (-1269 (-317 |#1|)) (-410 (-1175 (-317 |#1|))) (-567)) 38)) (-2414 (((-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|)))) 49))) -(((-1132 |#1|) (-10 -7 (-15 -2414 ((-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))))) (-15 -1439 ((-410 (-1175 (-317 |#1|))) (-1269 (-317 |#1|)) (-410 (-1175 (-317 |#1|))) (-567)))) (-559)) (T -1132)) -((-1439 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-410 (-1175 (-317 *5)))) (-5 *3 (-1269 (-317 *5))) (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1132 *5)))) (-2414 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-410 (-1175 (-317 *3)))) (-4 *3 (-559)) (-5 *1 (-1132 *3))))) -(-10 -7 (-15 -2414 ((-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))) (-410 (-1175 (-317 |#1|))))) (-15 -1439 ((-410 (-1175 (-317 |#1|))) (-1269 (-317 |#1|)) (-410 (-1175 (-317 |#1|))) (-567)))) -((-2510 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1179))) 250) (((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1179)) 23) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1179)) 29) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-645 (-295 (-317 |#1|))) (-317 |#1|)) 24))) -(((-1133 |#1|) (-10 -7 (-15 -2510 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -2510 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -2510 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1179))) (-15 -2510 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1179))) (-15 -2510 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1179))))) (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (T -1133)) -((-2510 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1179))) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1133 *5)) (-5 *3 (-645 (-295 (-317 *5)))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-317 *5)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) (-5 *3 (-295 (-317 *5))))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-295 (-317 *4))))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) (-5 *3 (-317 *4))))) -(-10 -7 (-15 -2510 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -2510 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -2510 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1179))) (-15 -2510 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1179))) (-15 -2510 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1179))))) -((-1393 ((|#2| |#2|) 30 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-4117 ((|#2| |#2|) 29 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1134 |#1| |#2|) (-10 -7 (-15 -4117 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1393 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -4117 (|#2| |#2|)) (-15 -1393 (|#2| |#2|))) |%noBranch|)) (-1219) (-13 (-605 (-567) |#1|) (-10 -7 (-6 -4422) (-6 -4423)))) (T -1134)) -((-1393 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1219)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4422) (-6 -4423)))))) (-4117 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1219)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4422) (-6 -4423)))))) (-1393 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4422) (-6 -4423)))))) (-4117 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1134 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4422) (-6 -4423))))))) -(-10 -7 (-15 -4117 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1393 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -4117 (|#2| |#2|)) (-15 -1393 (|#2| |#2|))) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-2107 (((-1167 3 |#1|) $) 141)) (-1813 (((-112) $) 101)) (-2329 (($ $ (-645 (-945 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 104) (($ (-645 (-945 |#1|))) 103) (((-645 (-945 |#1|)) $) 102)) (-2518 (((-112) $) 72)) (-2657 (($ $ (-945 |#1|)) 76) (($ $ (-645 |#1|)) 81) (($ $ (-772)) 83) (($ (-945 |#1|)) 77) (((-945 |#1|) $) 75)) (-3129 (((-2 (|:| -1629 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 139)) (-1477 (((-772) $) 53)) (-2925 (((-772) $) 52)) (-1633 (($ $ (-772) (-945 |#1|)) 67)) (-1637 (((-112) $) 111)) (-3286 (($ $ (-645 (-645 (-945 |#1|))) (-645 (-171)) (-171)) 118) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 120) (($ $ (-645 (-645 (-945 |#1|))) (-112) (-112)) 115) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 127) (($ (-645 (-645 (-945 |#1|)))) 116) (($ (-645 (-645 (-945 |#1|))) (-112) (-112)) 117) (((-645 (-645 (-945 |#1|))) $) 114)) (-1315 (($ (-645 $)) 56) (($ $ $) 57)) (-3569 (((-645 (-171)) $) 133)) (-3145 (((-645 (-945 |#1|)) $) 130)) (-1811 (((-645 (-645 (-171))) $) 132)) (-2109 (((-645 (-645 (-645 (-945 |#1|)))) $) NIL)) (-3041 (((-645 (-645 (-645 (-772)))) $) 131)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3495 (((-772) $ (-645 (-945 |#1|))) 65)) (-2269 (((-112) $) 84)) (-1875 (($ $ (-645 (-945 |#1|))) 86) (($ $ (-645 (-645 |#1|))) 92) (($ (-645 (-945 |#1|))) 87) (((-645 (-945 |#1|)) $) 85)) (-1910 (($) 48) (($ (-1167 3 |#1|)) 49)) (-3846 (($ $) 63)) (-3434 (((-645 $) $) 62)) (-2557 (($ (-645 $)) 59)) (-1988 (((-645 $) $) 61)) (-2504 (((-863) $) 146)) (-2950 (((-112) $) 94)) (-1583 (($ $ (-645 (-945 |#1|))) 96) (($ $ (-645 (-645 |#1|))) 99) (($ (-645 (-945 |#1|))) 97) (((-645 (-945 |#1|)) $) 95)) (-1983 (($ $) 140)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1135 |#1|) (-1136 |#1|) (-1051)) (T -1135)) -NIL -(-1136 |#1|) -((-2487 (((-112) $ $) 7)) (-2107 (((-1167 3 |#1|) $) 14)) (-1813 (((-112) $) 30)) (-2329 (($ $ (-645 (-945 |#1|))) 34) (($ $ (-645 (-645 |#1|))) 33) (($ (-645 (-945 |#1|))) 32) (((-645 (-945 |#1|)) $) 31)) (-2518 (((-112) $) 45)) (-2657 (($ $ (-945 |#1|)) 50) (($ $ (-645 |#1|)) 49) (($ $ (-772)) 48) (($ (-945 |#1|)) 47) (((-945 |#1|) $) 46)) (-3129 (((-2 (|:| -1629 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 16)) (-1477 (((-772) $) 59)) (-2925 (((-772) $) 60)) (-1633 (($ $ (-772) (-945 |#1|)) 51)) (-1637 (((-112) $) 22)) (-3286 (($ $ (-645 (-645 (-945 |#1|))) (-645 (-171)) (-171)) 29) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 28) (($ $ (-645 (-645 (-945 |#1|))) (-112) (-112)) 27) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 26) (($ (-645 (-645 (-945 |#1|)))) 25) (($ (-645 (-645 (-945 |#1|))) (-112) (-112)) 24) (((-645 (-645 (-945 |#1|))) $) 23)) (-1315 (($ (-645 $)) 58) (($ $ $) 57)) (-3569 (((-645 (-171)) $) 17)) (-3145 (((-645 (-945 |#1|)) $) 21)) (-1811 (((-645 (-645 (-171))) $) 18)) (-2109 (((-645 (-645 (-645 (-945 |#1|)))) $) 19)) (-3041 (((-645 (-645 (-645 (-772)))) $) 20)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3495 (((-772) $ (-645 (-945 |#1|))) 52)) (-2269 (((-112) $) 40)) (-1875 (($ $ (-645 (-945 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 43) (($ (-645 (-945 |#1|))) 42) (((-645 (-945 |#1|)) $) 41)) (-1910 (($) 62) (($ (-1167 3 |#1|)) 61)) (-3846 (($ $) 53)) (-3434 (((-645 $) $) 54)) (-2557 (($ (-645 $)) 56)) (-1988 (((-645 $) $) 55)) (-2504 (((-863) $) 12)) (-2950 (((-112) $) 35)) (-1583 (($ $ (-645 (-945 |#1|))) 39) (($ $ (-645 (-645 |#1|))) 38) (($ (-645 (-945 |#1|))) 37) (((-645 (-945 |#1|)) $) 36)) (-1983 (($ $) 15)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) -(((-1136 |#1|) (-140) (-1051)) (T -1136)) -((-2504 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-863)))) (-1910 (*1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-1910 (*1 *1 *2) (-12 (-5 *2 (-1167 3 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) (-1315 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1315 (*1 *1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1988 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))) (-3434 (*1 *2 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)))) (-3846 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-3495 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-945 *4))) (-4 *1 (-1136 *4)) (-4 *4 (-1051)) (-5 *2 (-772)))) (-1633 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-945 *4)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-945 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-945 *3)))) (-2518 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-1875 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1875 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1875 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-1583 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1583 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-1583 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-2329 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2329 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) (-2329 (*1 *1 *2) (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-3286 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-945 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) (-3286 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) (-3286 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-3286 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) (-3286 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 *3)))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) (-3286 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *4 (-1051)) (-4 *1 (-1136 *4)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-945 *3)))))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) (-3041 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-645 (-772))))))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-645 (-945 *3))))))) (-1811 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-171)))))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-171))))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -1629 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772)))))) (-1983 (*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-1167 3 *3))))) -(-13 (-1102) (-10 -8 (-15 -1910 ($)) (-15 -1910 ($ (-1167 3 |t#1|))) (-15 -2925 ((-772) $)) (-15 -1477 ((-772) $)) (-15 -1315 ($ (-645 $))) (-15 -1315 ($ $ $)) (-15 -2557 ($ (-645 $))) (-15 -1988 ((-645 $) $)) (-15 -3434 ((-645 $) $)) (-15 -3846 ($ $)) (-15 -3495 ((-772) $ (-645 (-945 |t#1|)))) (-15 -1633 ($ $ (-772) (-945 |t#1|))) (-15 -2657 ($ $ (-945 |t#1|))) (-15 -2657 ($ $ (-645 |t#1|))) (-15 -2657 ($ $ (-772))) (-15 -2657 ($ (-945 |t#1|))) (-15 -2657 ((-945 |t#1|) $)) (-15 -2518 ((-112) $)) (-15 -1875 ($ $ (-645 (-945 |t#1|)))) (-15 -1875 ($ $ (-645 (-645 |t#1|)))) (-15 -1875 ($ (-645 (-945 |t#1|)))) (-15 -1875 ((-645 (-945 |t#1|)) $)) (-15 -2269 ((-112) $)) (-15 -1583 ($ $ (-645 (-945 |t#1|)))) (-15 -1583 ($ $ (-645 (-645 |t#1|)))) (-15 -1583 ($ (-645 (-945 |t#1|)))) (-15 -1583 ((-645 (-945 |t#1|)) $)) (-15 -2950 ((-112) $)) (-15 -2329 ($ $ (-645 (-945 |t#1|)))) (-15 -2329 ($ $ (-645 (-645 |t#1|)))) (-15 -2329 ($ (-645 (-945 |t#1|)))) (-15 -2329 ((-645 (-945 |t#1|)) $)) (-15 -1813 ((-112) $)) (-15 -3286 ($ $ (-645 (-645 (-945 |t#1|))) (-645 (-171)) (-171))) (-15 -3286 ($ $ (-645 (-645 (-645 |t#1|))) (-645 (-171)) (-171))) (-15 -3286 ($ $ (-645 (-645 (-945 |t#1|))) (-112) (-112))) (-15 -3286 ($ $ (-645 (-645 (-645 |t#1|))) (-112) (-112))) (-15 -3286 ($ (-645 (-645 (-945 |t#1|))))) (-15 -3286 ($ (-645 (-645 (-945 |t#1|))) (-112) (-112))) (-15 -3286 ((-645 (-645 (-945 |t#1|))) $)) (-15 -1637 ((-112) $)) (-15 -3145 ((-645 (-945 |t#1|)) $)) (-15 -3041 ((-645 (-645 (-645 (-772)))) $)) (-15 -2109 ((-645 (-645 (-645 (-945 |t#1|)))) $)) (-15 -1811 ((-645 (-645 (-171))) $)) (-15 -3569 ((-645 (-171)) $)) (-15 -3129 ((-2 (|:| -1629 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $)) (-15 -1983 ($ $)) (-15 -2107 ((-1167 3 |t#1|) $)) (-15 -2504 ((-863) $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 184) (($ (-1184)) NIL) (((-1184) $) 7)) (-1794 (((-112) $ (|[\|\|]| (-527))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-677))) 27) (((-112) $ (|[\|\|]| (-1279))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-607))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1117))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-682))) 55) (((-112) $ (|[\|\|]| (-520))) 59) (((-112) $ (|[\|\|]| (-1068))) 63) (((-112) $ (|[\|\|]| (-1280))) 67) (((-112) $ (|[\|\|]| (-528))) 71) (((-112) $ (|[\|\|]| (-1153))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-672))) 83) (((-112) $ (|[\|\|]| (-312))) 87) (((-112) $ (|[\|\|]| (-1038))) 91) (((-112) $ (|[\|\|]| (-180))) 95) (((-112) $ (|[\|\|]| (-972))) 99) (((-112) $ (|[\|\|]| (-1075))) 103) (((-112) $ (|[\|\|]| (-1092))) 107) (((-112) $ (|[\|\|]| (-1098))) 111) (((-112) $ (|[\|\|]| (-627))) 115) (((-112) $ (|[\|\|]| (-1169))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-481))) 131) (((-112) $ (|[\|\|]| (-594))) 135) (((-112) $ (|[\|\|]| (-509))) 139) (((-112) $ (|[\|\|]| (-1161))) 143) (((-112) $ (|[\|\|]| (-567))) 147)) (-3858 (((-112) $ $) NIL)) (-3879 (((-527) $) 20) (((-218) $) 24) (((-677) $) 28) (((-1279) $) 32) (((-138) $) 36) (((-607) $) 40) (((-133) $) 44) (((-1117) $) 48) (((-96) $) 52) (((-682) $) 56) (((-520) $) 60) (((-1068) $) 64) (((-1280) $) 68) (((-528) $) 72) (((-1153) $) 76) (((-154) $) 80) (((-672) $) 84) (((-312) $) 88) (((-1038) $) 92) (((-180) $) 96) (((-972) $) 100) (((-1075) $) 104) (((-1092) $) 108) (((-1098) $) 112) (((-627) $) 116) (((-1169) $) 120) (((-156) $) 124) (((-137) $) 128) (((-481) $) 132) (((-594) $) 136) (((-509) $) 140) (((-1161) $) 144) (((-567) $) 148)) (-2968 (((-112) $ $) NIL))) -(((-1137) (-1139)) (T -1137)) -NIL -(-1139) -((-2066 (((-645 (-1184)) (-1161)) 9))) -(((-1138) (-10 -7 (-15 -2066 ((-645 (-1184)) (-1161))))) (T -1138)) -((-2066 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-645 (-1184))) (-5 *1 (-1138))))) -(-10 -7 (-15 -2066 ((-645 (-1184)) (-1161)))) -((-2487 (((-112) $ $) 7)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-1184)) 17) (((-1184) $) 16)) (-1794 (((-112) $ (|[\|\|]| (-527))) 85) (((-112) $ (|[\|\|]| (-218))) 83) (((-112) $ (|[\|\|]| (-677))) 81) (((-112) $ (|[\|\|]| (-1279))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-607))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1117))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-682))) 67) (((-112) $ (|[\|\|]| (-520))) 65) (((-112) $ (|[\|\|]| (-1068))) 63) (((-112) $ (|[\|\|]| (-1280))) 61) (((-112) $ (|[\|\|]| (-528))) 59) (((-112) $ (|[\|\|]| (-1153))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-672))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1038))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-972))) 45) (((-112) $ (|[\|\|]| (-1075))) 43) (((-112) $ (|[\|\|]| (-1092))) 41) (((-112) $ (|[\|\|]| (-1098))) 39) (((-112) $ (|[\|\|]| (-627))) 37) (((-112) $ (|[\|\|]| (-1169))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-481))) 29) (((-112) $ (|[\|\|]| (-594))) 27) (((-112) $ (|[\|\|]| (-509))) 25) (((-112) $ (|[\|\|]| (-1161))) 23) (((-112) $ (|[\|\|]| (-567))) 21)) (-3858 (((-112) $ $) 9)) (-3879 (((-527) $) 84) (((-218) $) 82) (((-677) $) 80) (((-1279) $) 78) (((-138) $) 76) (((-607) $) 74) (((-133) $) 72) (((-1117) $) 70) (((-96) $) 68) (((-682) $) 66) (((-520) $) 64) (((-1068) $) 62) (((-1280) $) 60) (((-528) $) 58) (((-1153) $) 56) (((-154) $) 54) (((-672) $) 52) (((-312) $) 50) (((-1038) $) 48) (((-180) $) 46) (((-972) $) 44) (((-1075) $) 42) (((-1092) $) 40) (((-1098) $) 38) (((-627) $) 36) (((-1169) $) 34) (((-156) $) 32) (((-137) $) 30) (((-481) $) 28) (((-594) $) 26) (((-509) $) 24) (((-1161) $) 22) (((-567) $) 20)) (-2968 (((-112) $ $) 6))) -(((-1139) (-140)) (T -1139)) -((-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-527)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-218)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-677)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1279))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1279)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-138)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-607))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-607)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-133)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1117)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-96)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-682)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-520)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1068)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1280))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1280)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-528)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1153))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1153)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-154)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-672)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-312)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1038)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-180)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-972))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-972)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1075)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1092)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1098)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-627)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1169)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-156)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-137)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-481)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-594)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-509)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1161)))) (-1794 (*1 *2 *1 *3) (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) (-3879 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-567))))) -(-13 (-1085) (-1264) (-10 -8 (-15 -1794 ((-112) $ (|[\|\|]| (-527)))) (-15 -3879 ((-527) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-218)))) (-15 -3879 ((-218) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-677)))) (-15 -3879 ((-677) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1279)))) (-15 -3879 ((-1279) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-138)))) (-15 -3879 ((-138) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-607)))) (-15 -3879 ((-607) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-133)))) (-15 -3879 ((-133) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1117)))) (-15 -3879 ((-1117) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-96)))) (-15 -3879 ((-96) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-682)))) (-15 -3879 ((-682) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-520)))) (-15 -3879 ((-520) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1068)))) (-15 -3879 ((-1068) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1280)))) (-15 -3879 ((-1280) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-528)))) (-15 -3879 ((-528) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1153)))) (-15 -3879 ((-1153) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-154)))) (-15 -3879 ((-154) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-672)))) (-15 -3879 ((-672) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-312)))) (-15 -3879 ((-312) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1038)))) (-15 -3879 ((-1038) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-180)))) (-15 -3879 ((-180) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-972)))) (-15 -3879 ((-972) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1075)))) (-15 -3879 ((-1075) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1092)))) (-15 -3879 ((-1092) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1098)))) (-15 -3879 ((-1098) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-627)))) (-15 -3879 ((-627) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1169)))) (-15 -3879 ((-1169) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-156)))) (-15 -3879 ((-156) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-137)))) (-15 -3879 ((-137) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-481)))) (-15 -3879 ((-481) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-594)))) (-15 -3879 ((-594) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-509)))) (-15 -3879 ((-509) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-1161)))) (-15 -3879 ((-1161) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-567)))) (-15 -3879 ((-567) $)))) -(((-93) . T) ((-102) . T) ((-617 #0=(-1184)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1102) . T) ((-1085) . T) ((-1264) . T)) -((-3225 (((-1274) (-645 (-863))) 23) (((-1274) (-863)) 22)) (-3957 (((-1274) (-645 (-863))) 21) (((-1274) (-863)) 20)) (-2229 (((-1274) (-645 (-863))) 19) (((-1274) (-863)) 11) (((-1274) (-1161) (-863)) 17))) -(((-1140) (-10 -7 (-15 -2229 ((-1274) (-1161) (-863))) (-15 -2229 ((-1274) (-863))) (-15 -3957 ((-1274) (-863))) (-15 -3225 ((-1274) (-863))) (-15 -2229 ((-1274) (-645 (-863)))) (-15 -3957 ((-1274) (-645 (-863)))) (-15 -3225 ((-1274) (-645 (-863)))))) (T -1140)) -((-3225 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) (-2229 (*1 *2 *3 *4) (-12 (-5 *3 (-1161)) (-5 *4 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140))))) -(-10 -7 (-15 -2229 ((-1274) (-1161) (-863))) (-15 -2229 ((-1274) (-863))) (-15 -3957 ((-1274) (-863))) (-15 -3225 ((-1274) (-863))) (-15 -2229 ((-1274) (-645 (-863)))) (-15 -3957 ((-1274) (-645 (-863)))) (-15 -3225 ((-1274) (-645 (-863))))) -((-2611 (($ $ $) 10)) (-3053 (($ $) 9)) (-2083 (($ $ $) 13)) (-2551 (($ $ $) 15)) (-3002 (($ $ $) 12)) (-2907 (($ $ $) 14)) (-3877 (($ $) 17)) (-2821 (($ $) 16)) (-1368 (($ $) 6)) (-1370 (($ $ $) 11) (($ $) 7)) (-3291 (($ $ $) 8))) -(((-1141) (-140)) (T -1141)) -((-3877 (*1 *1 *1) (-4 *1 (-1141))) (-2821 (*1 *1 *1) (-4 *1 (-1141))) (-2551 (*1 *1 *1 *1) (-4 *1 (-1141))) (-2907 (*1 *1 *1 *1) (-4 *1 (-1141))) (-2083 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3002 (*1 *1 *1 *1) (-4 *1 (-1141))) (-1370 (*1 *1 *1 *1) (-4 *1 (-1141))) (-2611 (*1 *1 *1 *1) (-4 *1 (-1141))) (-3053 (*1 *1 *1) (-4 *1 (-1141))) (-3291 (*1 *1 *1 *1) (-4 *1 (-1141))) (-1370 (*1 *1 *1) (-4 *1 (-1141))) (-1368 (*1 *1 *1) (-4 *1 (-1141)))) -(-13 (-10 -8 (-15 -1368 ($ $)) (-15 -1370 ($ $)) (-15 -3291 ($ $ $)) (-15 -3053 ($ $)) (-15 -2611 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3002 ($ $ $)) (-15 -2083 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2551 ($ $ $)) (-15 -2821 ($ $)) (-15 -3877 ($ $)))) -((-2487 (((-112) $ $) 44)) (-2233 ((|#1| $) 17)) (-3126 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2452 (((-112) $) 19)) (-1400 (($ $ |#1|) 30)) (-2799 (($ $ (-112)) 32)) (-3909 (($ $) 33)) (-3483 (($ $ |#2|) 31)) (-1812 (((-1161) $) NIL)) (-4400 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3479 (((-1122) $) NIL)) (-2319 (((-112) $) 16)) (-2973 (($) 13)) (-3846 (($ $) 29)) (-2516 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3526 |#2|))) 23) (((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -3526 |#2|)))) 26) (((-645 $) |#1| (-645 |#2|)) 28)) (-2388 ((|#2| $) 18)) (-2504 (((-863) $) 53)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 42))) -(((-1142 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -2973 ($)) (-15 -2319 ((-112) $)) (-15 -2233 (|#1| $)) (-15 -2388 (|#2| $)) (-15 -2452 ((-112) $)) (-15 -2516 ($ |#1| |#2| (-112))) (-15 -2516 ($ |#1| |#2|)) (-15 -2516 ($ (-2 (|:| |val| |#1|) (|:| -3526 |#2|)))) (-15 -2516 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -3526 |#2|))))) (-15 -2516 ((-645 $) |#1| (-645 |#2|))) (-15 -3846 ($ $)) (-15 -1400 ($ $ |#1|)) (-15 -3483 ($ $ |#2|)) (-15 -2799 ($ $ (-112))) (-15 -3909 ($ $)) (-15 -4400 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3126 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1102) (-34)) (-13 (-1102) (-34))) (T -1142)) -((-2973 (*1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-2233 (*1 *2 *1) (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *2 *3)) (-4 *3 (-13 (-1102) (-34))))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))))) (-2452 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-2516 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2516 (*1 *1 *2 *3) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2516 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3526 *4))) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *4)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -3526 *5)))) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-645 (-1142 *4 *5))) (-5 *1 (-1142 *4 *5)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-645 (-1142 *3 *5))) (-5 *1 (-1142 *3 *5)) (-4 *3 (-13 (-1102) (-34))))) (-3846 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-1400 (*1 *1 *1 *2) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-3483 (*1 *1 *1 *2) (-12 (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))) (-4 *2 (-13 (-1102) (-34))))) (-2799 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-4400 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *5 *6)))) (-3126 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34)))))) -(-13 (-1102) (-10 -8 (-15 -2973 ($)) (-15 -2319 ((-112) $)) (-15 -2233 (|#1| $)) (-15 -2388 (|#2| $)) (-15 -2452 ((-112) $)) (-15 -2516 ($ |#1| |#2| (-112))) (-15 -2516 ($ |#1| |#2|)) (-15 -2516 ($ (-2 (|:| |val| |#1|) (|:| -3526 |#2|)))) (-15 -2516 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -3526 |#2|))))) (-15 -2516 ((-645 $) |#1| (-645 |#2|))) (-15 -3846 ($ $)) (-15 -1400 ($ $ |#1|)) (-15 -3483 ($ $ |#2|)) (-15 -2799 ($ $ (-112))) (-15 -3909 ($ $)) (-15 -4400 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3126 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2487 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-2233 (((-1142 |#1| |#2|) $) 27)) (-1628 (($ $) 91)) (-3270 (((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1427 (($ $ $ (-645 (-1142 |#1| |#2|))) 108) (($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1555 (((-112) $ (-772)) NIL)) (-3647 (((-1142 |#1| |#2|) $ (-1142 |#1| |#2|)) 46 (|has| $ (-6 -4423)))) (-3824 (((-1142 |#1| |#2|) $ "value" (-1142 |#1| |#2|)) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 44 (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-1625 (((-645 (-2 (|:| |val| |#1|) (|:| -3526 |#2|))) $) 95)) (-4197 (($ (-1142 |#1| |#2|) $) 42)) (-1695 (($ (-1142 |#1| |#2|) $) 34)) (-3468 (((-645 (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 54)) (-2477 (((-112) (-1142 |#1| |#2|) $) 97)) (-2373 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 (-1142 |#1| |#2|)) $) 58 (|has| $ (-6 -4422)))) (-2203 (((-112) (-1142 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-1142 |#1| |#2|) (-1102))))) (-2021 (($ (-1 (-1142 |#1| |#2|) (-1142 |#1| |#2|)) $) 50 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-1142 |#1| |#2|) (-1142 |#1| |#2|)) $) 49)) (-3421 (((-112) $ (-772)) NIL)) (-3895 (((-645 (-1142 |#1| |#2|)) $) 56)) (-1972 (((-112) $) 45)) (-1812 (((-1161) $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3479 (((-1122) $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-1305 (((-3 $ "failed") $) 89)) (-1430 (((-112) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-1142 |#1| |#2|)))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-295 (-1142 |#1| |#2|))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-1142 |#1| |#2|) (-1142 |#1| |#2|)) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102)))) (($ $ (-645 (-1142 |#1| |#2|)) (-645 (-1142 |#1| |#2|))) NIL (-12 (|has| (-1142 |#1| |#2|) (-310 (-1142 |#1| |#2|))) (|has| (-1142 |#1| |#2|) (-1102))))) (-2222 (((-112) $ $) 53)) (-2319 (((-112) $) 24)) (-2973 (($) 26)) (-1882 (((-1142 |#1| |#2|) $ "value") NIL)) (-2721 (((-567) $ $) NIL)) (-3625 (((-112) $) 47)) (-3486 (((-772) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4422))) (((-772) (-1142 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-1142 |#1| |#2|) (-1102))))) (-3846 (($ $) 52)) (-2516 (($ (-1142 |#1| |#2|)) 10) (($ |#1| |#2| (-645 $)) 13) (($ |#1| |#2| (-645 (-1142 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-645 |#2|)) 18)) (-4004 (((-645 |#2|) $) 96)) (-2504 (((-863) $) 87 (|has| (-1142 |#1| |#2|) (-614 (-863))))) (-2629 (((-645 $) $) 31)) (-2049 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3858 (((-112) $ $) NIL (|has| (-1142 |#1| |#2|) (-1102)))) (-3450 (((-112) (-1 (-112) (-1142 |#1| |#2|)) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 70 (|has| (-1142 |#1| |#2|) (-1102)))) (-2498 (((-772) $) 64 (|has| $ (-6 -4422))))) -(((-1143 |#1| |#2|) (-13 (-1012 (-1142 |#1| |#2|)) (-10 -8 (-6 -4423) (-6 -4422) (-15 -1305 ((-3 $ "failed") $)) (-15 -1628 ($ $)) (-15 -2516 ($ (-1142 |#1| |#2|))) (-15 -2516 ($ |#1| |#2| (-645 $))) (-15 -2516 ($ |#1| |#2| (-645 (-1142 |#1| |#2|)))) (-15 -2516 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4004 ((-645 |#2|) $)) (-15 -1625 ((-645 (-2 (|:| |val| |#1|) (|:| -3526 |#2|))) $)) (-15 -2477 ((-112) (-1142 |#1| |#2|) $)) (-15 -3270 ((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1695 ($ (-1142 |#1| |#2|) $)) (-15 -4197 ($ (-1142 |#1| |#2|) $)) (-15 -1427 ($ $ $ (-645 (-1142 |#1| |#2|)))) (-15 -1427 ($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1102) (-34)) (-13 (-1102) (-34))) (T -1143)) -((-1305 (*1 *1 *1) (|partial| -12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-1628 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2516 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-2516 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1143 *2 *3))) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) (-2516 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1142 *2 *3))) (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)))) (-2516 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-645 *4)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))))) (-2477 (*1 *2 *3 *1) (-12 (-5 *3 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5)))) (-3270 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1142 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *5 *6)))) (-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-4197 (*1 *1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-1427 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-645 (-1142 *3 *4))) (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) (-1427 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1142 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) (-5 *1 (-1143 *4 *5))))) -(-13 (-1012 (-1142 |#1| |#2|)) (-10 -8 (-6 -4423) (-6 -4422) (-15 -1305 ((-3 $ "failed") $)) (-15 -1628 ($ $)) (-15 -2516 ($ (-1142 |#1| |#2|))) (-15 -2516 ($ |#1| |#2| (-645 $))) (-15 -2516 ($ |#1| |#2| (-645 (-1142 |#1| |#2|)))) (-15 -2516 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -4004 ((-645 |#2|) $)) (-15 -1625 ((-645 (-2 (|:| |val| |#1|) (|:| -3526 |#2|))) $)) (-15 -2477 ((-112) (-1142 |#1| |#2|) $)) (-15 -3270 ((-112) (-1142 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1695 ($ (-1142 |#1| |#2|) $)) (-15 -4197 ($ (-1142 |#1| |#2|) $)) (-15 -1427 ($ $ $ (-645 (-1142 |#1| |#2|)))) (-15 -1427 ($ $ $ (-645 (-1142 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3017 (($ $) NIL)) (-3132 ((|#2| $) NIL)) (-3740 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3402 (($ (-690 |#2|)) 56)) (-2995 (((-112) $) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-3923 (($ |#2|) 14)) (-3758 (($) NIL T CONST)) (-2367 (($ $) 69 (|has| |#2| (-308)))) (-4134 (((-240 |#1| |#2|) $ (-567)) 42)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) ((|#2| $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) 83)) (-1471 (((-772) $) 71 (|has| |#2| (-559)))) (-1970 ((|#2| $ (-567) (-567)) NIL)) (-3468 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-4384 (((-112) $) NIL)) (-3301 (((-772) $) 73 (|has| |#2| (-559)))) (-3010 (((-645 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-559)))) (-4371 (((-772) $) NIL)) (-4223 (($ |#2|) 25)) (-4385 (((-772) $) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2241 ((|#2| $) 67 (|has| |#2| (-6 (-4424 "*"))))) (-3181 (((-567) $) NIL)) (-2631 (((-567) $) NIL)) (-4200 (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-4244 (((-567) $) NIL)) (-3802 (((-567) $) NIL)) (-2446 (($ (-645 (-645 |#2|))) 37)) (-2021 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3298 (((-645 (-645 |#2|)) $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-1656 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-3479 (((-1122) $) NIL)) (-2478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-1430 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) NIL)) (-3592 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2274 ((|#2| $) NIL)) (-4217 (($ (-645 |#2|)) 50)) (-2698 (((-112) $) NIL)) (-1930 (((-240 |#1| |#2|) $) NIL)) (-2593 ((|#2| $) 65 (|has| |#2| (-6 (-4424 "*"))))) (-3486 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-3846 (($ $) NIL)) (-1322 (((-539) $) 89 (|has| |#2| (-615 (-539))))) (-2900 (((-240 |#1| |#2|) $ (-567)) 44)) (-2504 (((-863) $) 47) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1040 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) 52)) (-2214 (((-772)) 23 T CONST)) (-3858 (((-112) $ $) NIL)) (-3450 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-3343 (((-112) $) NIL)) (-1807 (($) 16 T CONST)) (-1820 (($) 21 T CONST)) (-2856 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) 63) (($ $ (-567)) 82 (|has| |#2| (-365)))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1144 |#1| |#2|) (-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -4223 ($ |#2|)) (-15 -3017 ($ $)) (-15 -3402 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4424 "*"))) (-6 -4411) |%noBranch|) (IF (|has| |#2| (-6 (-4424 "*"))) (IF (|has| |#2| (-6 -4419)) (-6 -4419) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-772) (-1051)) (T -1144)) -((-4223 (*1 *1 *2) (-12 (-5 *1 (-1144 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1051)))) (-3017 (*1 *1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1051)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1144 *3 *4)) (-14 *3 (-772))))) -(-13 (-1125 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -4223 ($ |#2|)) (-15 -3017 ($ $)) (-15 -3402 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4424 "*"))) (-6 -4411) |%noBranch|) (IF (|has| |#2| (-6 (-4424 "*"))) (IF (|has| |#2| (-6 -4419)) (-6 -4419) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) -((-3860 (($ $) 19)) (-1311 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1694 (((-112) $ $) 24)) (-3371 (($ $) 17)) (-1882 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1236 (-567))) NIL) (($ $ $) 31)) (-2504 (($ (-144)) 29) (((-863) $) NIL))) -(((-1145 |#1|) (-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -1882 (|#1| |#1| |#1|)) (-15 -1311 (|#1| |#1| (-141))) (-15 -1311 (|#1| |#1| (-144))) (-15 -2504 (|#1| (-144))) (-15 -1694 ((-112) |#1| |#1|)) (-15 -3860 (|#1| |#1|)) (-15 -3371 (|#1| |#1|)) (-15 -1882 (|#1| |#1| (-1236 (-567)))) (-15 -1882 ((-144) |#1| (-567))) (-15 -1882 ((-144) |#1| (-567) (-144)))) (-1146)) (T -1145)) -NIL -(-10 -8 (-15 -2504 ((-863) |#1|)) (-15 -1882 (|#1| |#1| |#1|)) (-15 -1311 (|#1| |#1| (-141))) (-15 -1311 (|#1| |#1| (-144))) (-15 -2504 (|#1| (-144))) (-15 -1694 ((-112) |#1| |#1|)) (-15 -3860 (|#1| |#1|)) (-15 -3371 (|#1| |#1|)) (-15 -1882 (|#1| |#1| (-1236 (-567)))) (-15 -1882 ((-144) |#1| (-567))) (-15 -1882 ((-144) |#1| (-567) (-144)))) -((-2487 (((-112) $ $) 19 (|has| (-144) (-1102)))) (-3847 (($ $) 121)) (-3860 (($ $) 122)) (-1311 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-1670 (((-112) $ $) 119)) (-1648 (((-112) $ $ (-567)) 118)) (-3601 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2051 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-2767 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4423))))) (-2080 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-1555 (((-112) $ (-772)) 8)) (-3824 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4423))) (((-144) $ (-1236 (-567)) (-144)) 59 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-1610 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-3790 (($ $) 91 (|has| $ (-6 -4423)))) (-3247 (($ $) 101)) (-3964 (($ $ (-1236 (-567)) $) 115)) (-3470 (($ $) 79 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ (-144) $) 78 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4422)))) (-2617 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4422)))) (-2036 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4423)))) (-1970 (((-144) $ (-567)) 52)) (-1694 (((-112) $ $) 120)) (-3932 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-3468 (((-645 (-144)) $) 31 (|has| $ (-6 -4422)))) (-4223 (($ (-772) (-144)) 70)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-2727 (($ $ $) 88 (|has| (-144) (-851)))) (-1315 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-4200 (((-645 (-144)) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-1446 (($ $ $) 87 (|has| (-144) (-851)))) (-3943 (((-112) $ $ (-144)) 116)) (-4016 (((-772) $ $ (-144)) 117)) (-2021 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-4158 (($ $) 123)) (-3371 (($ $) 124)) (-3421 (((-112) $ (-772)) 10)) (-1622 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1812 (((-1161) $) 22 (|has| (-144) (-1102)))) (-4222 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-3479 (((-1122) $) 21 (|has| (-144) (-1102)))) (-3436 (((-144) $) 43 (|has| (-567) (-851)))) (-2989 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2930 (($ $ (-144)) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1804 (((-645 (-144)) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1236 (-567))) 64) (($ $ $) 103)) (-4281 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3486 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4422))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-3161 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-2516 (($ (-645 (-144))) 71)) (-3644 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-2504 (($ (-144)) 112) (((-863) $) 18 (|has| (-144) (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| (-144) (-1102)))) (-3450 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2996 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2968 (((-112) $ $) 20 (|has| (-144) (-1102)))) (-3006 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2986 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-1146) (-140)) (T -1146)) -((-3371 (*1 *1 *1) (-4 *1 (-1146))) (-4158 (*1 *1 *1) (-4 *1 (-1146))) (-3860 (*1 *1 *1) (-4 *1 (-1146))) (-3847 (*1 *1 *1) (-4 *1 (-1146))) (-1694 (*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))) (-1670 (*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112)))) (-1648 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-567)) (-5 *2 (-112)))) (-4016 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-772)))) (-3943 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3964 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1236 (-567))))) (-3932 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)))) (-3932 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)) (-5 *3 (-141)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1146)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) (-3601 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) (-1311 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-1311 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-1622 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-1622 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-1610 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144)))) (-1610 (*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) (-1882 (*1 *1 *1 *1) (-4 *1 (-1146)))) -(-13 (-19 (-144)) (-10 -8 (-15 -3371 ($ $)) (-15 -4158 ($ $)) (-15 -3860 ($ $)) (-15 -3847 ($ $)) (-15 -1694 ((-112) $ $)) (-15 -1670 ((-112) $ $)) (-15 -1648 ((-112) $ $ (-567))) (-15 -4016 ((-772) $ $ (-144))) (-15 -3943 ((-112) $ $ (-144))) (-15 -3964 ($ $ (-1236 (-567)) $)) (-15 -3932 ((-567) $ $ (-567))) (-15 -3932 ((-567) (-141) $ (-567))) (-15 -2504 ($ (-144))) (-15 -3601 ((-645 $) $ (-144))) (-15 -3601 ((-645 $) $ (-141))) (-15 -1311 ($ $ (-144))) (-15 -1311 ($ $ (-141))) (-15 -1622 ($ $ (-144))) (-15 -1622 ($ $ (-141))) (-15 -1610 ($ $ (-144))) (-15 -1610 ($ $ (-141))) (-15 -1882 ($ $ $)))) -(((-34) . T) ((-102) -2836 (|has| (-144) (-1102)) (|has| (-144) (-851))) ((-614 (-863)) -2836 (|has| (-144) (-1102)) (|has| (-144) (-851)) (|has| (-144) (-614 (-863)))) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-652 #0#) . T) ((-19 #0#) . T) ((-851) |has| (-144) (-851)) ((-1102) -2836 (|has| (-144) (-1102)) (|has| (-144) (-851))) ((-1219) . T)) -((-2608 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-772)) 113)) (-2176 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772)) 61)) (-2604 (((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-772)) 98)) (-3892 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-2937 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772)) 63) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772) (-112)) 65)) (-2289 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 85)) (-1322 (((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) 90)) (-1441 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|) 60)) (-2052 (((-772) (-645 |#4|) (-645 |#5|)) 21))) -(((-1147 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2052 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3892 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1441 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2176 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772))) (-15 -2176 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772))) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2289 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2289 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2608 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-772))) (-15 -1322 ((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) (-15 -2604 ((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-772)))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|) (-1111 |#1| |#2| |#3| |#4|)) (T -1147)) -((-2604 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -3526 *9)))) (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1274)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -3526 *8))) (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1111 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1161)) (-5 *1 (-1147 *4 *5 *6 *7 *8)))) (-2608 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -3526 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -3526 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) (-4 *11 (-1111 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1147 *7 *8 *9 *10 *11)))) (-2289 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-2289 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-2937 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-2937 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) (-2937 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1147 *7 *8 *9 *3 *4)) (-4 *4 (-1111 *7 *8 *9 *3)))) (-2176 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-2176 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1067 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) (-1441 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2052 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3892 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -1441 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2176 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772))) (-15 -2176 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5| (-772))) (-15 -2937 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) |#4| |#5|)) (-15 -2289 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2289 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2608 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))))) (-772))) (-15 -1322 ((-1161) (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|)))) (-15 -2604 ((-1274) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -3526 |#5|))) (-772)))) -((-2487 (((-112) $ $) NIL)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3148 (((-645 $) (-645 |#4|)) 124) (((-645 $) (-645 |#4|) (-112)) 125) (((-645 $) (-645 |#4|) (-112) (-112)) 123) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 126)) (-3783 (((-645 |#3|) $) NIL)) (-2643 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2688 ((|#4| |#4| $) NIL)) (-3864 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| $) 97)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-1316 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 75)) (-3758 (($) NIL T CONST)) (-3731 (((-112) $) 29 (|has| |#1| (-559)))) (-4301 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4089 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3937 (((-112) $) NIL (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2160 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) NIL)) (-3094 (($ (-645 |#4|)) NIL)) (-3447 (((-3 $ "failed") $) 45)) (-2903 ((|#4| |#4| $) 78)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-1695 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1861 ((|#4| |#4| $) NIL)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) NIL)) (-2940 (((-112) |#4| $) NIL)) (-2708 (((-112) |#4| $) NIL)) (-2600 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2867 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 139)) (-3468 (((-645 |#4|) $) 18 (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3066 ((|#3| $) 38)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#4|) $) 19 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-2021 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 23)) (-3870 (((-645 |#3|) $) NIL)) (-2415 (((-112) |#3| $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-1434 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-4316 (((-645 (-2 (|:| |val| |#4|) (|:| -3526 $))) |#4| |#4| $) 117)) (-1725 (((-3 |#4| "failed") $) 42)) (-2920 (((-645 $) |#4| $) 102)) (-4264 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-3972 (((-645 (-2 (|:| |val| (-112)) (|:| -3526 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3873 (((-645 $) |#4| $) 121) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 122) (((-645 $) |#4| (-645 $)) NIL)) (-2835 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 134)) (-4214 (($ |#4| $) 88) (($ (-645 |#4|) $) 89) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2290 (((-645 |#4|) $) NIL)) (-1737 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2763 ((|#4| |#4| $) NIL)) (-4009 (((-112) $ $) NIL)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3893 ((|#4| |#4| $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-3 |#4| "failed") $) 40)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2806 (((-3 $ "failed") $ |#4|) 59)) (-1678 (($ $ |#4|) NIL) (((-645 $) |#4| $) 104) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 99)) (-1430 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 17)) (-2973 (($) 14)) (-3380 (((-772) $) NIL)) (-3486 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) 13)) (-1322 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 22)) (-1582 (($ $ |#3|) 52)) (-2746 (($ $ |#3|) 54)) (-2012 (($ $) NIL)) (-3975 (($ $ |#3|) NIL)) (-2504 (((-863) $) 35) (((-645 |#4|) $) 46)) (-3312 (((-772) $) NIL (|has| |#3| (-370)))) (-3858 (((-112) $ $) NIL)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3259 (((-645 $) |#4| $) 66) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-3450 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) NIL)) (-3961 (((-112) |#4| $) NIL)) (-3392 (((-112) |#3| $) 74)) (-2968 (((-112) $ $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1148 |#1| |#2| |#3| |#4|) (-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4214 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3148 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3148 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2835 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2867 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1148)) -((-4214 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *3))) (-5 *1 (-1148 *5 *6 *7 *3)) (-4 *3 (-1067 *5 *6 *7)))) (-3148 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-3148 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-2835 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) (-2867 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1148 *5 *6 *7 *8))))) (-5 *1 (-1148 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(-13 (-1111 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4214 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3148 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -3148 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2835 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2867 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3262 ((|#1| $) 37)) (-3521 (($ (-645 |#1|)) 45)) (-1555 (((-112) $ (-772)) NIL)) (-3758 (($) NIL T CONST)) (-3410 ((|#1| |#1| $) 40)) (-4353 ((|#1| $) 35)) (-3468 (((-645 |#1|) $) 18 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 22)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3018 ((|#1| $) 38)) (-3636 (($ |#1| $) 41)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1713 ((|#1| $) 36)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 32)) (-2973 (($) 43)) (-2772 (((-772) $) 30)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) 27)) (-2504 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4225 (($ (-645 |#1|)) NIL)) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 17 (|has| |#1| (-1102)))) (-2498 (((-772) $) 31 (|has| $ (-6 -4422))))) -(((-1149 |#1|) (-13 (-1123 |#1|) (-10 -8 (-15 -3521 ($ (-645 |#1|))))) (-1219)) (T -1149)) -((-3521 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1149 *3))))) -(-13 (-1123 |#1|) (-10 -8 (-15 -3521 ($ (-645 |#1|))))) -((-3824 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1236 (-567)) |#2|) 55) ((|#2| $ (-567) |#2|) 52)) (-3689 (((-112) $) 12)) (-2021 (($ (-1 |#2| |#2|) $) 50)) (-3436 ((|#2| $) NIL) (($ $ (-772)) 20)) (-2930 (($ $ |#2|) 51)) (-3268 (((-112) $) 11)) (-1882 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1236 (-567))) 38) ((|#2| $ (-567)) 29) ((|#2| $ (-567) |#2|) NIL)) (-3416 (($ $ $) 58) (($ $ |#2|) NIL)) (-3644 (($ $ $) 40) (($ |#2| $) NIL) (($ (-645 $)) 47) (($ $ |#2|) NIL))) -(((-1150 |#1| |#2|) (-10 -8 (-15 -3689 ((-112) |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -3824 (|#2| |#1| (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567))) (-15 -2930 (|#1| |#1| |#2|)) (-15 -3644 (|#1| |#1| |#2|)) (-15 -3644 (|#1| (-645 |#1|))) (-15 -1882 (|#1| |#1| (-1236 (-567)))) (-15 -3824 (|#2| |#1| (-1236 (-567)) |#2|)) (-15 -3824 (|#2| |#1| "last" |#2|)) (-15 -3824 (|#1| |#1| "rest" |#1|)) (-15 -3824 (|#2| |#1| "first" |#2|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -1882 (|#2| |#1| "last")) (-15 -1882 (|#1| |#1| "rest")) (-15 -3436 (|#1| |#1| (-772))) (-15 -1882 (|#2| |#1| "first")) (-15 -3436 (|#2| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3824 (|#2| |#1| "value" |#2|)) (-15 -1882 (|#2| |#1| "value")) (-15 -2021 (|#1| (-1 |#2| |#2|) |#1|))) (-1151 |#2|) (-1219)) (T -1150)) -NIL -(-10 -8 (-15 -3689 ((-112) |#1|)) (-15 -3268 ((-112) |#1|)) (-15 -3824 (|#2| |#1| (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567) |#2|)) (-15 -1882 (|#2| |#1| (-567))) (-15 -2930 (|#1| |#1| |#2|)) (-15 -3644 (|#1| |#1| |#2|)) (-15 -3644 (|#1| (-645 |#1|))) (-15 -1882 (|#1| |#1| (-1236 (-567)))) (-15 -3824 (|#2| |#1| (-1236 (-567)) |#2|)) (-15 -3824 (|#2| |#1| "last" |#2|)) (-15 -3824 (|#1| |#1| "rest" |#1|)) (-15 -3824 (|#2| |#1| "first" |#2|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -1882 (|#2| |#1| "last")) (-15 -1882 (|#1| |#1| "rest")) (-15 -3436 (|#1| |#1| (-772))) (-15 -1882 (|#2| |#1| "first")) (-15 -3436 (|#2| |#1|)) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3824 (|#2| |#1| "value" |#2|)) (-15 -1882 (|#2| |#1| "value")) (-15 -2021 (|#1| (-1 |#2| |#2|) |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2233 ((|#1| $) 49)) (-2587 ((|#1| $) 66)) (-1493 (($ $) 68)) (-3095 (((-1274) $ (-567) (-567)) 98 (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) 53 (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) 8)) (-3647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4234 (($ $ $) 57 (|has| $ (-6 -4423)))) (-2718 ((|#1| $ |#1|) 55 (|has| $ (-6 -4423)))) (-1588 ((|#1| $ |#1|) 59 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4423))) (($ $ "rest" $) 56 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 118 (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4422)))) (-2574 ((|#1| $) 67)) (-3758 (($) 7 T CONST)) (-3447 (($ $) 74) (($ $ (-772)) 72)) (-3470 (($ $) 100 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4422))) (($ |#1| $) 101 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2036 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 88)) (-3689 (((-112) $) 84)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 51)) (-2373 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-4223 (($ (-772) |#1|) 109)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 96 (|has| (-567) (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 95 (|has| (-567) (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3421 (((-112) $ (-772)) 10)) (-3895 (((-645 |#1|) $) 46)) (-1972 (((-112) $) 50)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-1725 ((|#1| $) 71) (($ $ (-772)) 69)) (-4222 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-3360 (((-645 (-567)) $) 93)) (-2919 (((-112) (-567) $) 92)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 77) (($ $ (-772)) 75)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2930 (($ $ |#1|) 97 (|has| $ (-6 -4423)))) (-3268 (((-112) $) 85)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 91)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1236 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-2721 (((-567) $ $) 45)) (-4281 (($ $ (-1236 (-567))) 115) (($ $ (-567)) 114)) (-3625 (((-112) $) 47)) (-4121 (($ $) 63)) (-3277 (($ $) 60 (|has| $ (-6 -4423)))) (-3880 (((-772) $) 64)) (-1908 (($ $) 65)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-1322 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 108)) (-3416 (($ $ $) 62 (|has| $ (-6 -4423))) (($ $ |#1|) 61 (|has| $ (-6 -4423)))) (-3644 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 52)) (-2049 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-1151 |#1|) (-140) (-1219)) (T -1151)) -((-3268 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(-13 (-1257 |t#1|) (-652 |t#1|) (-10 -8 (-15 -3268 ((-112) $)) (-15 -3689 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T) ((-1257 |#1|) . T)) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3095 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#2| $ |#1| |#2|) NIL)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 |#2| "failed") |#1| $) NIL)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) NIL)) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) NIL)) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 ((|#1| $) NIL (|has| |#1| (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 ((|#1| $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1512 (((-645 |#1|) $) NIL)) (-1560 (((-112) |#1| $) NIL)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3360 (((-645 |#1|) $) NIL)) (-2919 (((-112) |#1| $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3436 ((|#2| $) NIL (|has| |#1| (-851)))) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1152 |#1| |#2| |#3|) (-1195 |#1| |#2|) (-1102) (-1102) |#2|) (T -1152)) -NIL -(-1195 |#1| |#2|) -((-2487 (((-112) $ $) NIL)) (-4394 (((-692 (-1137)) $) 27)) (-3674 (((-1137) $) 15)) (-3965 (((-1137) $) 17)) (-1812 (((-1161) $) NIL)) (-3594 (((-509) $) 13)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 37) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1153) (-13 (-1085) (-10 -8 (-15 -3594 ((-509) $)) (-15 -3965 ((-1137) $)) (-15 -4394 ((-692 (-1137)) $)) (-15 -3674 ((-1137) $))))) (T -1153)) -((-3594 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1153)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1153)))) (-4394 (*1 *2 *1) (-12 (-5 *2 (-692 (-1137))) (-5 *1 (-1153)))) (-3674 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1153))))) -(-13 (-1085) (-10 -8 (-15 -3594 ((-509) $)) (-15 -3965 ((-1137) $)) (-15 -4394 ((-692 (-1137)) $)) (-15 -3674 ((-1137) $)))) -((-2487 (((-112) $ $) 7)) (-3104 (((-3 $ "failed") $) 14)) (-1812 (((-1161) $) 10)) (-2221 (($) 15 T CONST)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-2968 (((-112) $ $) 6))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3748 ((|#1| $) 45)) (-1309 (((-112) $ (-773)) 8)) (-4156 (($) 7 T CONST)) (-3750 ((|#1| |#1| $) 47)) (-3749 ((|#1| $) 46)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-1369 ((|#1| $) 40)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-1370 ((|#1| $) 42)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-3747 (((-773) $) 44)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) 43)) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-1124 |#1|) (-140) (-1219)) (T -1124)) +((-3750 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1219)) (-5 *2 (-773))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3750 (|t#1| |t#1| $)) (-15 -3749 (|t#1| $)) (-15 -3748 (|t#1| $)) (-15 -3747 ((-773) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-3754 ((|#3| $) 87)) (-3577 (((-3 (-549) #1="failed") $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 |#3| #1#) $) 50)) (-3576 (((-549) $) NIL) (((-410 (-549)) $) NIL) ((|#3| $) 47)) (-2427 (((-691 (-549)) (-691 $)) NIL) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL) (((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 $) (-1269 $)) 84) (((-691 |#3|) (-691 $)) 76)) (-4242 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180)) NIL) (($ $ (-773)) NIL) (($ $) NIL)) (-3753 ((|#3| $) 89)) (-3755 ((|#4| $) 43)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ |#3|) 25)) (** (($ $ (-922)) NIL) (($ $ (-773)) 24) (($ $ (-549)) 95))) +(((-1125 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 -3753 (|#3| |#1|)) (-15 -3754 (|#3| |#1|)) (-15 -3755 (|#4| |#1|)) (-15 -2427 ((-691 |#3|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -4378 (|#1| |#3|)) (-15 -3577 ((-3 |#3| #1="failed") |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|) (-773))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922))) (-15 -4378 ((-865) |#1|))) (-1126 |#2| |#3| |#4| |#5|) (-773) (-1052) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1125)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-549))) (-15 -3753 (|#3| |#1|)) (-15 -3754 (|#3| |#1|)) (-15 -3755 (|#4| |#1|)) (-15 -2427 ((-691 |#3|) (-691 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 |#3|)) (|:| |vec| (-1269 |#3|))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 |#1|) (-1269 |#1|))) (-15 -2427 ((-691 (-549)) (-691 |#1|))) (-15 -4378 (|#1| |#3|)) (-15 -3577 ((-3 |#3| #1="failed") |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|) (-773))) (-15 -4242 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3754 ((|#2| $) 77)) (-3525 (((-112) $) 117)) (-1407 (((-3 $ "failed") $ $) 20)) (-3527 (((-112) $) 115)) (-1309 (((-112) $ (-773)) 107)) (-3757 (($ |#2|) 80)) (-4156 (($) 18 T CONST)) (-3514 (($ $) 134 (|has| |#2| (-308)))) (-3516 ((|#3| $ (-549)) 129)) (-3577 (((-3 (-549) #1="failed") $) 92 (|has| |#2| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) 89 (|has| |#2| (-1041 (-410 (-549))))) (((-3 |#2| #1#) $) 86)) (-3576 (((-549) $) 91 (|has| |#2| (-1041 (-549)))) (((-410 (-549)) $) 88 (|has| |#2| (-1041 (-410 (-549))))) ((|#2| $) 87)) (-2427 (((-691 (-549)) (-691 $)) 84 (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 83 (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 82) (((-691 |#2|) (-691 $)) 81)) (-3890 (((-3 $ "failed") $) 37)) (-3513 (((-773) $) 135 (|has| |#2| (-560)))) (-3517 ((|#2| $ (-549) (-549)) 127)) (-2124 (((-643 |#2|) $) 100 (|has| $ (-6 -4425)))) (-2573 (((-112) $) 35)) (-3512 (((-773) $) 136 (|has| |#2| (-560)))) (-3511 (((-643 |#4|) $) 137 (|has| |#2| (-560)))) (-3519 (((-773) $) 123)) (-3518 (((-773) $) 124)) (-4151 (((-112) $ (-773)) 108)) (-3751 ((|#2| $) 72 (|has| |#2| (-6 (-4427 #2="*"))))) (-3523 (((-549) $) 119)) (-3521 (((-549) $) 121)) (-3008 (((-643 |#2|) $) 99 (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-3522 (((-549) $) 120)) (-3520 (((-549) $) 122)) (-3528 (($ (-643 (-643 |#2|))) 114)) (-2128 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-4025 (((-643 (-643 |#2|)) $) 125)) (-4148 (((-112) $ (-773)) 109)) (-3663 (((-1162) $) 10)) (-4021 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-3664 (((-1123) $) 11)) (-3889 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-560)))) (-2126 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) 113)) (-3827 (((-112) $) 110)) (-3996 (($) 111)) (-4231 ((|#2| $ (-549) (-549) |#2|) 128) ((|#2| $ (-549) (-549)) 126)) (-4242 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-773)) 55) (($ $ (-643 (-1180)) (-643 (-773))) 48 (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) 47 (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) 46 (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) 45 (|has| |#2| (-903 (-1180)))) (($ $ (-773)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-3753 ((|#2| $) 76)) (-3756 (($ (-643 |#2|)) 79)) (-3526 (((-112) $) 116)) (-3755 ((|#3| $) 78)) (-3752 ((|#2| $) 73 (|has| |#2| (-6 (-4427 #2#))))) (-2125 (((-773) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4425))) (((-773) |#2| $) 98 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 112)) (-3515 ((|#4| $ (-549)) 130)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 90 (|has| |#2| (-1041 (-410 (-549))))) (($ |#2|) 85)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2127 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4425)))) (-3524 (((-112) $) 118)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-773)) 53) (($ $ (-643 (-1180)) (-643 (-773))) 52 (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) 51 (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) 50 (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) 49 (|has| |#2| (-903 (-1180)))) (($ $ (-773)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 70 (|has| |#2| (-365)))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-4389 (((-773) $) 106 (|has| $ (-6 -4425))))) +(((-1126 |#1| |#2| |#3| |#4|) (-140) (-773) (-1052) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1126)) +((-3757 (*1 *1 *2) (-12 (-4 *2 (-1052)) (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-643 *4)) (-4 *4 (-1052)) (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *2 *5)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1052)))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1052)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1126 *3 *4 *2 *5)) (-4 *4 (-1052)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4427 #1="*"))) (-4 *2 (-1052)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4427 #1#))) (-4 *2 (-1052)))) (-4021 (*1 *1 *1) (|partial| -12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))) +(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1056 |t#1| |t#1| |t#2| |t#3| |t#4|) (-415 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-719 |t#2|)) |%noBranch|) (-15 -3757 ($ |t#2|)) (-15 -3756 ($ (-643 |t#2|))) (-15 -3755 (|t#3| $)) (-15 -3754 (|t#2| $)) (-15 -3753 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4427 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3752 (|t#2| $)) (-15 -3751 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -4021 ((-3 $ "failed") $)) (-15 ** ($ $ (-549)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4427 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 #2=(-410 (-549))) |has| |#2| (-1041 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#2|) . T) ((-615 (-865)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-379 |#2|) . T) ((-415 |#2|) . T) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-648 (-549)) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-650 |#2|) . T) ((-650 $) . T) ((-642 |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-6 (-4427 #1#)))) ((-641 (-549)) |has| |#2| (-641 (-549))) ((-641 |#2|) . T) ((-719 |#2|) -3960 (|has| |#2| (-172)) (|has| |#2| (-6 (-4427 #1#)))) ((-728) . T) ((-903 (-1180)) |has| |#2| (-903 (-1180))) ((-1056 |#1| |#1| |#2| |#3| |#4|) . T) ((-1041 #2#) |has| |#2| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#2| (-1041 (-549))) ((-1041 |#2|) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1219) . T)) +((-3760 ((|#4| |#4|) 81)) (-3758 ((|#4| |#4|) 76)) (-3762 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|) 91)) (-3761 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3759 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3758 (|#4| |#4|)) (-15 -3759 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3760 (|#4| |#4|)) (-15 -3761 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3762 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|))) (-308) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|)) (T -1127)) +((-3762 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-374 *5)) (-4 *4 (-374 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) (-5 *1 (-1127 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1127 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3760 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-1127 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1127 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3758 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-1127 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(-10 -7 (-15 -3758 (|#4| |#4|)) (-15 -3759 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3760 (|#4| |#4|)) (-15 -3761 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3762 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2190 (-643 |#3|))) |#4| |#3|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 18)) (-3485 (((-643 |#2|) $) 174)) (-3487 (((-1174 $) $ |#2|) 60) (((-1174 |#1|) $) 49)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 116 (|has| |#1| (-560)))) (-2241 (($ $) 118 (|has| |#1| (-560)))) (-2239 (((-112) $) 120 (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 |#2|)) 213)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) 167) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 |#2| #2#) $) NIL)) (-3576 ((|#1| $) 165) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) ((|#2| $) NIL)) (-4188 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-4391 (($ $) 217)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) 90)) (-3926 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-534 |#2|) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| |#1| (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| |#1| (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-2573 (((-112) $) 20)) (-2581 (((-773) $) 30)) (-3488 (($ (-1174 |#1|) |#2|) 54) (($ (-1174 $) |#2|) 71)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) 38)) (-3294 (($ |#1| (-534 |#2|)) 78) (($ $ |#2| (-773)) 58) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ |#2|) NIL)) (-3223 (((-534 |#2|) $) 205) (((-773) $ |#2|) 206) (((-643 (-773)) $ (-643 |#2|)) 207)) (-1770 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 128)) (-3486 (((-3 |#2| #3="failed") $) 177)) (-3295 (($ $) 216)) (-3594 ((|#1| $) 43)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-3226 (((-3 (-643 $) #3#) $) NIL)) (-3225 (((-3 (-643 $) #3#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| |#2|) (|:| -2564 (-773))) #3#) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 39)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 148 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) 153 (|has| |#1| (-455))) (($ $ $) 138 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#1| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-913)))) (-3889 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-560)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-643 |#2|) (-643 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-643 |#2|) (-643 $)) 194)) (-4189 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4242 (($ $ |#2|) 215) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4380 (((-534 |#2|) $) 201) (((-773) $ |#2|) 196) (((-643 (-773)) $ (-643 |#2|)) 199)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| |#1| (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| |#1| (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| |#1| (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#1| $) 134 (|has| |#1| (-455))) (($ $ |#2|) 137 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4378 (((-865) $) 159) (($ (-549)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-560))) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-4249 (((-643 |#1|) $) 162)) (-4109 ((|#1| $ (-534 |#2|)) 80) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 87 T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) 123 (|has| |#1| (-560)))) (-3510 (($) 12 T CONST)) (-3067 (($) 14 T CONST)) (-3072 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3455 (((-112) $ $) 106)) (-4381 (($ $ |#1|) 132 (|has| |#1| (-365)))) (-4269 (($ $) 93) (($ $ $) 104)) (-4271 (($ $ $) 55)) (** (($ $ (-922)) 110) (($ $ (-773)) 109)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 96) (($ $ $) 72) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1128 |#1| |#2|) (-953 |#1| (-534 |#2|) |#2|) (-1052) (-852)) (T -1128)) +NIL +(-953 |#1| (-534 |#2|) |#2|) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3915 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 128 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 124 (|has| |#1| (-38 (-410 (-549)))))) (-3917 (($ $) 156 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4246 (((-949 |#1|) $ (-773)) NIL) (((-949 |#1|) $ (-773) (-773)) NIL)) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $ |#2|) NIL) (((-773) $ |#2| (-773)) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4369 (((-112) $) NIL)) (-3294 (($ $ (-643 |#2|) (-643 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-773)) 63) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) 122 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4244 (($ $ |#2|) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-4108 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-410 (-549)))))) (-4200 (($ $ (-773)) 16)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4375 (($ $) 120 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (($ $ |#2| $) 106) (($ $ (-643 |#2|) (-643 $)) 99) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL)) (-4242 (($ $ |#2|) 109) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-4380 (((-534 |#2|) $) NIL)) (-3763 (((-1 (-1157 |#3|) |#3|) (-643 |#2|) (-643 (-1157 |#3|))) 87)) (-3918 (($ $) 158 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 126 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 18)) (-4378 (((-865) $) 199) (($ (-549)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-560))) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#2|) 70) (($ |#3|) 68)) (-4109 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL) ((|#3| $ (-773)) 43)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 164 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 160 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 168 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-3924 (($ $) 170 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 166 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 162 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 52 T CONST)) (-3067 (($) 62 T CONST)) (-3072 (($ $ |#2|) NIL) (($ $ (-643 |#2|)) NIL) (($ $ |#2| (-773)) NIL) (($ $ (-643 |#2|) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 66)) (** (($ $ (-922)) NIL) (($ $ (-773)) 77) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 112 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 65) (($ $ (-410 (-549))) 117 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 115 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1129 |#1| |#2| |#3|) (-13 (-742 |#1| |#2|) (-10 -8 (-15 -4109 (|#3| $ (-773))) (-15 -4378 ($ |#2|)) (-15 -4378 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3763 ((-1 (-1157 |#3|) |#3|) (-643 |#2|) (-643 (-1157 |#3|)))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ |#2| |#1|)) (-15 -4108 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1052) (-852) (-953 |#1| (-534 |#2|) |#2|)) (T -1129)) +((-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *2 (-953 *4 (-534 *5) *5)) (-5 *1 (-1129 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-852)))) (-4378 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-4 *2 (-852)) (-5 *1 (-1129 *3 *2 *4)) (-4 *4 (-953 *3 (-534 *2) *2)))) (-4378 (*1 *1 *2) (-12 (-4 *3 (-1052)) (-4 *4 (-852)) (-5 *1 (-1129 *3 *4 *2)) (-4 *2 (-953 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1052)) (-4 *4 (-852)) (-5 *1 (-1129 *3 *4 *2)) (-4 *2 (-953 *3 (-534 *4) *4)))) (-3763 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-1157 *7))) (-4 *6 (-852)) (-4 *7 (-953 *5 (-534 *6) *6)) (-4 *5 (-1052)) (-5 *2 (-1 (-1157 *7) *7)) (-5 *1 (-1129 *5 *6 *7)))) (-4244 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-4 *2 (-852)) (-5 *1 (-1129 *3 *2 *4)) (-4 *4 (-953 *3 (-534 *2) *2)))) (-4108 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1129 *4 *3 *5))) (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052)) (-4 *3 (-852)) (-5 *1 (-1129 *4 *3 *5)) (-4 *5 (-953 *4 (-534 *3) *3))))) +(-13 (-742 |#1| |#2|) (-10 -8 (-15 -4109 (|#3| $ (-773))) (-15 -4378 ($ |#2|)) (-15 -4378 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3763 ((-1 (-1157 |#3|) |#3|) (-643 |#2|) (-643 (-1157 |#3|)))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ |#2| |#1|)) (-15 -4108 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87) (((-643 $) (-643 |#4|) (-112)) 112)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 127)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ #1#) $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-3617 (((-112) |#4| $) 137)) (-3615 (((-112) |#4| $) 134)) (-3618 (((-112) |#4| $) 138) (((-112) $) 135)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) 129)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 128)) (-4229 (((-3 |#4| #1#) $) 84)) (-3612 (((-643 $) |#4| $) 130)) (-3614 (((-3 (-112) (-643 $)) |#4| $) 133)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3658 (((-643 $) |#4| $) 126) (((-643 $) (-643 |#4|) $) 125) (((-643 $) (-643 |#4|) (-643 $)) 124) (((-643 $) |#4| (-643 $)) 123)) (-3864 (($ |#4| $) 118) (($ (-643 |#4|) $) 117)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| #1#) $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ #1#) $ |#4|) 79)) (-4200 (($ $ |#4|) 78) (((-643 $) |#4| $) 116) (((-643 $) |#4| (-643 $)) 115) (((-643 $) (-643 |#4|) $) 114) (((-643 $) (-643 |#4|) (-643 $)) 113)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-3609 (((-643 $) |#4| $) 122) (((-643 $) |#4| (-643 $)) 121) (((-643 $) (-643 |#4|) $) 120) (((-643 $) (-643 |#4|) (-643 $)) 119)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-3616 (((-112) |#4| $) 136)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) +(((-1130 |#1| |#2| |#3| |#4|) (-140) (-455) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -1130)) +NIL +(-13 (-1112 |t#1| |t#2| |t#3| |t#4|) (-786 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-786 |#1| |#2| |#3| |#4|) . T) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1074 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1112 |#1| |#2| |#3| |#4|) . T) ((-1214 |#1| |#2| |#3| |#4|) . T) ((-1219) . T)) +((-4004 (((-643 |#2|) |#1|) 15)) (-3769 (((-643 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-643 |#2|) |#1|) 63)) (-3767 (((-643 |#2|) |#2| |#2| |#2|) 45) (((-643 |#2|) |#1|) 61)) (-3764 ((|#2| |#1|) 56)) (-3765 (((-2 (|:| |solns| (-643 |#2|)) (|:| |maps| (-643 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3766 (((-643 |#2|) |#2| |#2|) 42) (((-643 |#2|) |#1|) 60)) (-3768 (((-643 |#2|) |#2| |#2| |#2| |#2|) 46) (((-643 |#2|) |#1|) 62)) (-3773 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3771 ((|#2| |#2| |#2| |#2|) 53)) (-3770 ((|#2| |#2| |#2|) 52)) (-3772 ((|#2| |#2| |#2| |#2| |#2|) 54))) +(((-1131 |#1| |#2|) (-10 -7 (-15 -4004 ((-643 |#2|) |#1|)) (-15 -3764 (|#2| |#1|)) (-15 -3765 ((-2 (|:| |solns| (-643 |#2|)) (|:| |maps| (-643 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3766 ((-643 |#2|) |#1|)) (-15 -3767 ((-643 |#2|) |#1|)) (-15 -3768 ((-643 |#2|) |#1|)) (-15 -3769 ((-643 |#2|) |#1|)) (-15 -3766 ((-643 |#2|) |#2| |#2|)) (-15 -3767 ((-643 |#2|) |#2| |#2| |#2|)) (-15 -3768 ((-643 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3769 ((-643 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3770 (|#2| |#2| |#2|)) (-15 -3771 (|#2| |#2| |#2| |#2|)) (-15 -3772 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3773 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1245 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (T -1131)) +((-3773 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-3772 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-3771 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-3770 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-3769 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3)))) (-3768 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3)))) (-3767 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3)))) (-3766 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3)))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) (-3768 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) (-3767 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) (-3765 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-2 (|:| |solns| (-643 *5)) (|:| |maps| (-643 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1131 *3 *5)) (-4 *3 (-1245 *5)))) (-3764 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2)))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -4004 ((-643 |#2|) |#1|)) (-15 -3764 (|#2| |#1|)) (-15 -3765 ((-2 (|:| |solns| (-643 |#2|)) (|:| |maps| (-643 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3766 ((-643 |#2|) |#1|)) (-15 -3767 ((-643 |#2|) |#1|)) (-15 -3768 ((-643 |#2|) |#1|)) (-15 -3769 ((-643 |#2|) |#1|)) (-15 -3766 ((-643 |#2|) |#2| |#2|)) (-15 -3767 ((-643 |#2|) |#2| |#2| |#2|)) (-15 -3768 ((-643 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3769 ((-643 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3770 (|#2| |#2| |#2|)) (-15 -3771 (|#2| |#2| |#2| |#2|)) (-15 -3772 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3773 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3774 (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|))))) 118) (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180))) 117) (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|)))) 115) (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))) (-643 (-1180))) 113) (((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|)))) 97) (((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))) (-1180)) 98) (((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|))) 92) (((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)) (-1180)) 82)) (-3775 (((-643 (-643 (-315 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180))) 111) (((-643 (-315 |#1|)) (-410 (-949 |#1|)) (-1180)) 54)) (-3776 (((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-410 (-949 |#1|)) (-1180)) 122) (((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180)) 121))) +(((-1132 |#1|) (-10 -7 (-15 -3774 ((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180)))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -3775 ((-643 (-315 |#1|)) (-410 (-949 |#1|)) (-1180))) (-15 -3775 ((-643 (-643 (-315 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3776 ((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -3776 ((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-410 (-949 |#1|)) (-1180)))) (-13 (-308) (-147))) (T -1132)) +((-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1169 (-643 (-315 *5)) (-643 (-294 (-315 *5))))) (-5 *1 (-1132 *5)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-410 (-949 *5)))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1169 (-643 (-315 *5)) (-643 (-294 (-315 *5))))) (-5 *1 (-1132 *5)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-315 *5)))) (-5 *1 (-1132 *5)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-315 *5))) (-5 *1 (-1132 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-643 (-294 (-410 (-949 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *4))))) (-5 *1 (-1132 *4)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-294 (-410 (-949 *5))))) (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) (-5 *1 (-1132 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-643 (-410 (-949 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *4))))) (-5 *1 (-1132 *4)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) (-5 *1 (-1132 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-294 (-410 (-949 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1132 *4)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-410 (-949 *5)))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1132 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1132 *4)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1132 *5))))) +(-10 -7 (-15 -3774 ((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)) (-1180))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-410 (-949 |#1|)))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -3774 ((-643 (-294 (-315 |#1|))) (-294 (-410 (-949 |#1|))))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-410 (-949 |#1|))))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180)))) (-15 -3774 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -3775 ((-643 (-315 |#1|)) (-410 (-949 |#1|)) (-1180))) (-15 -3775 ((-643 (-643 (-315 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -3776 ((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -3776 ((-1169 (-643 (-315 |#1|)) (-643 (-294 (-315 |#1|)))) (-410 (-949 |#1|)) (-1180)))) +((-3778 (((-410 (-1174 (-315 |#1|))) (-1269 (-315 |#1|)) (-410 (-1174 (-315 |#1|))) (-549)) 38)) (-3777 (((-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|)))) 49))) +(((-1133 |#1|) (-10 -7 (-15 -3777 ((-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))))) (-15 -3778 ((-410 (-1174 (-315 |#1|))) (-1269 (-315 |#1|)) (-410 (-1174 (-315 |#1|))) (-549)))) (-560)) (T -1133)) +((-3778 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-410 (-1174 (-315 *5)))) (-5 *3 (-1269 (-315 *5))) (-5 *4 (-549)) (-4 *5 (-560)) (-5 *1 (-1133 *5)))) (-3777 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-410 (-1174 (-315 *3)))) (-4 *3 (-560)) (-5 *1 (-1133 *3))))) +(-10 -7 (-15 -3777 ((-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))) (-410 (-1174 (-315 |#1|))))) (-15 -3778 ((-410 (-1174 (-315 |#1|))) (-1269 (-315 |#1|)) (-410 (-1174 (-315 |#1|))) (-549)))) +((-4004 (((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-315 |#1|))) (-643 (-1180))) 246) (((-643 (-294 (-315 |#1|))) (-315 |#1|) (-1180)) 23) (((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)) (-1180)) 29) (((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|))) 28) (((-643 (-294 (-315 |#1|))) (-315 |#1|)) 24))) +(((-1134 |#1|) (-10 -7 (-15 -4004 ((-643 (-294 (-315 |#1|))) (-315 |#1|))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)) (-1180))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-315 |#1|) (-1180))) (-15 -4004 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-315 |#1|))) (-643 (-1180))))) (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (T -1134)) +((-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-1180))) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) (-5 *1 (-1134 *5)) (-5 *3 (-643 (-294 (-315 *5)))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-315 *5)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-294 (-315 *5))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-294 (-315 *4))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-315 *4))))) +(-10 -7 (-15 -4004 ((-643 (-294 (-315 |#1|))) (-315 |#1|))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-294 (-315 |#1|)) (-1180))) (-15 -4004 ((-643 (-294 (-315 |#1|))) (-315 |#1|) (-1180))) (-15 -4004 ((-643 (-643 (-294 (-315 |#1|)))) (-643 (-294 (-315 |#1|))) (-643 (-1180))))) +((-3780 ((|#2| |#2|) 30 (|has| |#1| (-852))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3779 ((|#2| |#2|) 29 (|has| |#1| (-852))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1135 |#1| |#2|) (-10 -7 (-15 -3779 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3780 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-852)) (PROGN (-15 -3779 (|#2| |#2|)) (-15 -3780 (|#2| |#2|))) |%noBranch|)) (-1219) (-13 (-606 (-549) |#1|) (-10 -7 (-6 -4425) (-6 -4426)))) (T -1135)) +((-3780 (*1 *2 *2) (-12 (-4 *3 (-852)) (-4 *3 (-1219)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-13 (-606 (-549) *3) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3779 (*1 *2 *2) (-12 (-4 *3 (-852)) (-4 *3 (-1219)) (-5 *1 (-1135 *3 *2)) (-4 *2 (-13 (-606 (-549) *3) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3780 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1135 *4 *2)) (-4 *2 (-13 (-606 (-549) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3779 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1135 *4 *2)) (-4 *2 (-13 (-606 (-549) *4) (-10 -7 (-6 -4425) (-6 -4426))))))) +(-10 -7 (-15 -3779 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3780 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-852)) (PROGN (-15 -3779 (|#2| |#2|)) (-15 -3780 (|#2| |#2|))) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-4320 (((-1168 3 |#1|) $) 141)) (-3790 (((-112) $) 101)) (-3791 (($ $ (-643 (-946 |#1|))) 44) (($ $ (-643 (-643 |#1|))) 104) (($ (-643 (-946 |#1|))) 103) (((-643 (-946 |#1|)) $) 102)) (-3796 (((-112) $) 72)) (-4138 (($ $ (-946 |#1|)) 76) (($ $ (-643 |#1|)) 81) (($ $ (-773)) 83) (($ (-946 |#1|)) 77) (((-946 |#1|) $) 75)) (-3782 (((-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) (|:| |constructs| (-773))) $) 139)) (-3800 (((-773) $) 53)) (-3801 (((-773) $) 52)) (-4319 (($ $ (-773) (-946 |#1|)) 67)) (-3788 (((-112) $) 111)) (-3789 (($ $ (-643 (-643 (-946 |#1|))) (-643 (-171)) (-171)) 118) (($ $ (-643 (-643 (-643 |#1|))) (-643 (-171)) (-171)) 120) (($ $ (-643 (-643 (-946 |#1|))) (-112) (-112)) 115) (($ $ (-643 (-643 (-643 |#1|))) (-112) (-112)) 127) (($ (-643 (-643 (-946 |#1|)))) 116) (($ (-643 (-643 (-946 |#1|))) (-112) (-112)) 117) (((-643 (-643 (-946 |#1|))) $) 114)) (-3941 (($ (-643 $)) 56) (($ $ $) 57)) (-3783 (((-643 (-171)) $) 133)) (-3787 (((-643 (-946 |#1|)) $) 130)) (-3784 (((-643 (-643 (-171))) $) 132)) (-3785 (((-643 (-643 (-643 (-946 |#1|)))) $) NIL)) (-3786 (((-643 (-643 (-643 (-773)))) $) 131)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3797 (((-773) $ (-643 (-946 |#1|))) 65)) (-3794 (((-112) $) 84)) (-3795 (($ $ (-643 (-946 |#1|))) 86) (($ $ (-643 (-643 |#1|))) 92) (($ (-643 (-946 |#1|))) 87) (((-643 (-946 |#1|)) $) 85)) (-3802 (($) 48) (($ (-1168 3 |#1|)) 49)) (-3824 (($ $) 63)) (-3798 (((-643 $) $) 62)) (-4186 (($ (-643 $)) 59)) (-3799 (((-643 $) $) 61)) (-4378 (((-865) $) 146)) (-3792 (((-112) $) 94)) (-3793 (($ $ (-643 (-946 |#1|))) 96) (($ $ (-643 (-643 |#1|))) 99) (($ (-643 (-946 |#1|))) 97) (((-643 (-946 |#1|)) $) 95)) (-3781 (($ $) 140)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1136 |#1|) (-1137 |#1|) (-1052)) (T -1136)) +NIL +(-1137 |#1|) +((-2968 (((-112) $ $) 7)) (-4320 (((-1168 3 |#1|) $) 14)) (-3790 (((-112) $) 30)) (-3791 (($ $ (-643 (-946 |#1|))) 34) (($ $ (-643 (-643 |#1|))) 33) (($ (-643 (-946 |#1|))) 32) (((-643 (-946 |#1|)) $) 31)) (-3796 (((-112) $) 45)) (-4138 (($ $ (-946 |#1|)) 50) (($ $ (-643 |#1|)) 49) (($ $ (-773)) 48) (($ (-946 |#1|)) 47) (((-946 |#1|) $) 46)) (-3782 (((-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) (|:| |constructs| (-773))) $) 16)) (-3800 (((-773) $) 59)) (-3801 (((-773) $) 60)) (-4319 (($ $ (-773) (-946 |#1|)) 51)) (-3788 (((-112) $) 22)) (-3789 (($ $ (-643 (-643 (-946 |#1|))) (-643 (-171)) (-171)) 29) (($ $ (-643 (-643 (-643 |#1|))) (-643 (-171)) (-171)) 28) (($ $ (-643 (-643 (-946 |#1|))) (-112) (-112)) 27) (($ $ (-643 (-643 (-643 |#1|))) (-112) (-112)) 26) (($ (-643 (-643 (-946 |#1|)))) 25) (($ (-643 (-643 (-946 |#1|))) (-112) (-112)) 24) (((-643 (-643 (-946 |#1|))) $) 23)) (-3941 (($ (-643 $)) 58) (($ $ $) 57)) (-3783 (((-643 (-171)) $) 17)) (-3787 (((-643 (-946 |#1|)) $) 21)) (-3784 (((-643 (-643 (-171))) $) 18)) (-3785 (((-643 (-643 (-643 (-946 |#1|)))) $) 19)) (-3786 (((-643 (-643 (-643 (-773)))) $) 20)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3797 (((-773) $ (-643 (-946 |#1|))) 52)) (-3794 (((-112) $) 40)) (-3795 (($ $ (-643 (-946 |#1|))) 44) (($ $ (-643 (-643 |#1|))) 43) (($ (-643 (-946 |#1|))) 42) (((-643 (-946 |#1|)) $) 41)) (-3802 (($) 62) (($ (-1168 3 |#1|)) 61)) (-3824 (($ $) 53)) (-3798 (((-643 $) $) 54)) (-4186 (($ (-643 $)) 56)) (-3799 (((-643 $) $) 55)) (-4378 (((-865) $) 12)) (-3792 (((-112) $) 35)) (-3793 (($ $ (-643 (-946 |#1|))) 39) (($ $ (-643 (-643 |#1|))) 38) (($ (-643 (-946 |#1|))) 37) (((-643 (-946 |#1|)) $) 36)) (-3781 (($ $) 15)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) +(((-1137 |#1|) (-140) (-1052)) (T -1137)) +((-4378 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-865)))) (-3802 (*1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-1168 3 *3)) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) (-4186 (*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3799 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)))) (-3798 (*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)))) (-3824 (*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) (-3797 (*1 *2 *1 *3) (-12 (-5 *3 (-643 (-946 *4))) (-4 *1 (-1137 *4)) (-4 *4 (-1052)) (-5 *2 (-773)))) (-4319 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-946 *4)) (-4 *1 (-1137 *4)) (-4 *4 (-1052)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-4138 (*1 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-946 *3)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3795 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3789 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-643 (-946 *5)))) (-5 *3 (-643 (-171))) (-5 *4 (-171)) (-4 *1 (-1137 *5)) (-4 *5 (-1052)))) (-3789 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-643 (-643 (-643 *5)))) (-5 *3 (-643 (-171))) (-5 *4 (-171)) (-4 *1 (-1137 *5)) (-4 *5 (-1052)))) (-3789 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-643 (-643 (-946 *4)))) (-5 *3 (-112)) (-4 *1 (-1137 *4)) (-4 *4 (-1052)))) (-3789 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-643 (-643 (-643 *4)))) (-5 *3 (-112)) (-4 *1 (-1137 *4)) (-4 *4 (-1052)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 *3)))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) (-3789 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-643 (-643 (-946 *4)))) (-5 *3 (-112)) (-4 *4 (-1052)) (-4 *1 (-1137 *4)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-946 *3)))))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-643 (-773))))))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-643 (-946 *3))))))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-171)))))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-171))))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) (|:| |constructs| (-773)))))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-1168 3 *3))))) +(-13 (-1104) (-10 -8 (-15 -3802 ($)) (-15 -3802 ($ (-1168 3 |t#1|))) (-15 -3801 ((-773) $)) (-15 -3800 ((-773) $)) (-15 -3941 ($ (-643 $))) (-15 -3941 ($ $ $)) (-15 -4186 ($ (-643 $))) (-15 -3799 ((-643 $) $)) (-15 -3798 ((-643 $) $)) (-15 -3824 ($ $)) (-15 -3797 ((-773) $ (-643 (-946 |t#1|)))) (-15 -4319 ($ $ (-773) (-946 |t#1|))) (-15 -4138 ($ $ (-946 |t#1|))) (-15 -4138 ($ $ (-643 |t#1|))) (-15 -4138 ($ $ (-773))) (-15 -4138 ($ (-946 |t#1|))) (-15 -4138 ((-946 |t#1|) $)) (-15 -3796 ((-112) $)) (-15 -3795 ($ $ (-643 (-946 |t#1|)))) (-15 -3795 ($ $ (-643 (-643 |t#1|)))) (-15 -3795 ($ (-643 (-946 |t#1|)))) (-15 -3795 ((-643 (-946 |t#1|)) $)) (-15 -3794 ((-112) $)) (-15 -3793 ($ $ (-643 (-946 |t#1|)))) (-15 -3793 ($ $ (-643 (-643 |t#1|)))) (-15 -3793 ($ (-643 (-946 |t#1|)))) (-15 -3793 ((-643 (-946 |t#1|)) $)) (-15 -3792 ((-112) $)) (-15 -3791 ($ $ (-643 (-946 |t#1|)))) (-15 -3791 ($ $ (-643 (-643 |t#1|)))) (-15 -3791 ($ (-643 (-946 |t#1|)))) (-15 -3791 ((-643 (-946 |t#1|)) $)) (-15 -3790 ((-112) $)) (-15 -3789 ($ $ (-643 (-643 (-946 |t#1|))) (-643 (-171)) (-171))) (-15 -3789 ($ $ (-643 (-643 (-643 |t#1|))) (-643 (-171)) (-171))) (-15 -3789 ($ $ (-643 (-643 (-946 |t#1|))) (-112) (-112))) (-15 -3789 ($ $ (-643 (-643 (-643 |t#1|))) (-112) (-112))) (-15 -3789 ($ (-643 (-643 (-946 |t#1|))))) (-15 -3789 ($ (-643 (-643 (-946 |t#1|))) (-112) (-112))) (-15 -3789 ((-643 (-643 (-946 |t#1|))) $)) (-15 -3788 ((-112) $)) (-15 -3787 ((-643 (-946 |t#1|)) $)) (-15 -3786 ((-643 (-643 (-643 (-773)))) $)) (-15 -3785 ((-643 (-643 (-643 (-946 |t#1|)))) $)) (-15 -3784 ((-643 (-643 (-171))) $)) (-15 -3783 ((-643 (-171)) $)) (-15 -3782 ((-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) (|:| |constructs| (-773))) $)) (-15 -3781 ($ $)) (-15 -4320 ((-1168 3 |t#1|) $)) (-15 -4378 ((-865) $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 184) (($ (-1185)) NIL) (((-1185) $) 7)) (-3997 (((-112) $ (|[\|\|]| (-527))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-678))) 27) (((-112) $ (|[\|\|]| (-1280))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-608))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1119))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-683))) 55) (((-112) $ (|[\|\|]| (-520))) 59) (((-112) $ (|[\|\|]| (-1069))) 63) (((-112) $ (|[\|\|]| (-1281))) 67) (((-112) $ (|[\|\|]| (-528))) 71) (((-112) $ (|[\|\|]| (-1155))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-673))) 83) (((-112) $ (|[\|\|]| (-313))) 87) (((-112) $ (|[\|\|]| (-1039))) 91) (((-112) $ (|[\|\|]| (-180))) 95) (((-112) $ (|[\|\|]| (-973))) 99) (((-112) $ (|[\|\|]| (-1076))) 103) (((-112) $ (|[\|\|]| (-1094))) 107) (((-112) $ (|[\|\|]| (-1099))) 111) (((-112) $ (|[\|\|]| (-628))) 115) (((-112) $ (|[\|\|]| (-1170))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-481))) 131) (((-112) $ (|[\|\|]| (-595))) 135) (((-112) $ (|[\|\|]| (-509))) 139) (((-112) $ (|[\|\|]| (-1162))) 143) (((-112) $ (|[\|\|]| (-549))) 147)) (-3662 (((-112) $ $) NIL)) (-4003 (((-527) $) 20) (((-218) $) 24) (((-678) $) 28) (((-1280) $) 32) (((-138) $) 36) (((-608) $) 40) (((-133) $) 44) (((-1119) $) 48) (((-96) $) 52) (((-683) $) 56) (((-520) $) 60) (((-1069) $) 64) (((-1281) $) 68) (((-528) $) 72) (((-1155) $) 76) (((-154) $) 80) (((-673) $) 84) (((-313) $) 88) (((-1039) $) 92) (((-180) $) 96) (((-973) $) 100) (((-1076) $) 104) (((-1094) $) 108) (((-1099) $) 112) (((-628) $) 116) (((-1170) $) 120) (((-156) $) 124) (((-137) $) 128) (((-481) $) 132) (((-595) $) 136) (((-509) $) 140) (((-1162) $) 144) (((-549) $) 148)) (-3455 (((-112) $ $) NIL))) +(((-1138) (-1140)) (T -1138)) +NIL +(-1140) +((-3803 (((-643 (-1185)) (-1162)) 9))) +(((-1139) (-10 -7 (-15 -3803 ((-643 (-1185)) (-1162))))) (T -1139)) +((-3803 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-643 (-1185))) (-5 *1 (-1139))))) +(-10 -7 (-15 -3803 ((-643 (-1185)) (-1162)))) +((-2968 (((-112) $ $) 7)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-1185)) 17) (((-1185) $) 16)) (-3997 (((-112) $ (|[\|\|]| (-527))) 85) (((-112) $ (|[\|\|]| (-218))) 83) (((-112) $ (|[\|\|]| (-678))) 81) (((-112) $ (|[\|\|]| (-1280))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-608))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1119))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-683))) 67) (((-112) $ (|[\|\|]| (-520))) 65) (((-112) $ (|[\|\|]| (-1069))) 63) (((-112) $ (|[\|\|]| (-1281))) 61) (((-112) $ (|[\|\|]| (-528))) 59) (((-112) $ (|[\|\|]| (-1155))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-673))) 53) (((-112) $ (|[\|\|]| (-313))) 51) (((-112) $ (|[\|\|]| (-1039))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-973))) 45) (((-112) $ (|[\|\|]| (-1076))) 43) (((-112) $ (|[\|\|]| (-1094))) 41) (((-112) $ (|[\|\|]| (-1099))) 39) (((-112) $ (|[\|\|]| (-628))) 37) (((-112) $ (|[\|\|]| (-1170))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-481))) 29) (((-112) $ (|[\|\|]| (-595))) 27) (((-112) $ (|[\|\|]| (-509))) 25) (((-112) $ (|[\|\|]| (-1162))) 23) (((-112) $ (|[\|\|]| (-549))) 21)) (-3662 (((-112) $ $) 9)) (-4003 (((-527) $) 84) (((-218) $) 82) (((-678) $) 80) (((-1280) $) 78) (((-138) $) 76) (((-608) $) 74) (((-133) $) 72) (((-1119) $) 70) (((-96) $) 68) (((-683) $) 66) (((-520) $) 64) (((-1069) $) 62) (((-1281) $) 60) (((-528) $) 58) (((-1155) $) 56) (((-154) $) 54) (((-673) $) 52) (((-313) $) 50) (((-1039) $) 48) (((-180) $) 46) (((-973) $) 44) (((-1076) $) 42) (((-1094) $) 40) (((-1099) $) 38) (((-628) $) 36) (((-1170) $) 34) (((-156) $) 32) (((-137) $) 30) (((-481) $) 28) (((-595) $) 26) (((-509) $) 24) (((-1162) $) 22) (((-549) $) 20)) (-3455 (((-112) $ $) 6))) +(((-1140) (-140)) (T -1140)) +((-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-527)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-218)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-678))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-678)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1280))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1280)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-138)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-608)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-133)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1119))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1119)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-96)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-683)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-520)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1069)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1281))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1281)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-528)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1155)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-154)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-673))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-673)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-313))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-313)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1039))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1039)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-180)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-973))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-973)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1076))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1076)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1094)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1099)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-628))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-628)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1170)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-156)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-137)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-481)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-595))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-595)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-509)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1162)))) (-3997 (*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-549))))) +(-13 (-1086) (-1265) (-10 -8 (-15 -3997 ((-112) $ (|[\|\|]| (-527)))) (-15 -4003 ((-527) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-218)))) (-15 -4003 ((-218) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-678)))) (-15 -4003 ((-678) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1280)))) (-15 -4003 ((-1280) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-138)))) (-15 -4003 ((-138) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-608)))) (-15 -4003 ((-608) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-133)))) (-15 -4003 ((-133) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1119)))) (-15 -4003 ((-1119) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-96)))) (-15 -4003 ((-96) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-683)))) (-15 -4003 ((-683) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-520)))) (-15 -4003 ((-520) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1069)))) (-15 -4003 ((-1069) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1281)))) (-15 -4003 ((-1281) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-528)))) (-15 -4003 ((-528) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1155)))) (-15 -4003 ((-1155) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-154)))) (-15 -4003 ((-154) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-673)))) (-15 -4003 ((-673) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-313)))) (-15 -4003 ((-313) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1039)))) (-15 -4003 ((-1039) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-180)))) (-15 -4003 ((-180) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-973)))) (-15 -4003 ((-973) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1076)))) (-15 -4003 ((-1076) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1094)))) (-15 -4003 ((-1094) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1099)))) (-15 -4003 ((-1099) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-628)))) (-15 -4003 ((-628) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1170)))) (-15 -4003 ((-1170) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-156)))) (-15 -4003 ((-156) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-137)))) (-15 -4003 ((-137) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-481)))) (-15 -4003 ((-481) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-595)))) (-15 -4003 ((-595) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -4003 ((-509) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-1162)))) (-15 -4003 ((-1162) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-549)))) (-15 -4003 ((-549) $)))) +(((-93) . T) ((-102) . T) ((-618 #1=(-1185)) . T) ((-615 (-865)) . T) ((-615 #1#) . T) ((-493 #1#) . T) ((-1104) . T) ((-1086) . T) ((-1265) . T)) +((-3806 (((-1275) (-643 (-865))) 22) (((-1275) (-865)) 21)) (-3805 (((-1275) (-643 (-865))) 20) (((-1275) (-865)) 19)) (-3804 (((-1275) (-643 (-865))) 18) (((-1275) (-865)) 10) (((-1275) (-1162) (-865)) 16))) +(((-1141) (-10 -7 (-15 -3804 ((-1275) (-1162) (-865))) (-15 -3804 ((-1275) (-865))) (-15 -3805 ((-1275) (-865))) (-15 -3806 ((-1275) (-865))) (-15 -3804 ((-1275) (-643 (-865)))) (-15 -3805 ((-1275) (-643 (-865)))) (-15 -3806 ((-1275) (-643 (-865)))))) (T -1141)) +((-3806 (*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3806 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) (-3804 (*1 *2 *3 *4) (-12 (-5 *3 (-1162)) (-5 *4 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141))))) +(-10 -7 (-15 -3804 ((-1275) (-1162) (-865))) (-15 -3804 ((-1275) (-865))) (-15 -3805 ((-1275) (-865))) (-15 -3806 ((-1275) (-865))) (-15 -3804 ((-1275) (-643 (-865)))) (-15 -3805 ((-1275) (-643 (-865)))) (-15 -3806 ((-1275) (-643 (-865))))) +((-3810 (($ $ $) 10)) (-3809 (($ $) 9)) (-3813 (($ $ $) 13)) (-3815 (($ $ $) 15)) (-3812 (($ $ $) 12)) (-3814 (($ $ $) 14)) (-3817 (($ $) 17)) (-3816 (($ $) 16)) (-3807 (($ $) 6)) (-3811 (($ $ $) 11) (($ $) 7)) (-3808 (($ $ $) 8))) +(((-1142) (-140)) (T -1142)) +((-3817 (*1 *1 *1) (-4 *1 (-1142))) (-3816 (*1 *1 *1) (-4 *1 (-1142))) (-3815 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3814 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3813 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3812 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3811 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3810 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3809 (*1 *1 *1) (-4 *1 (-1142))) (-3808 (*1 *1 *1 *1) (-4 *1 (-1142))) (-3811 (*1 *1 *1) (-4 *1 (-1142))) (-3807 (*1 *1 *1) (-4 *1 (-1142)))) +(-13 (-10 -8 (-15 -3807 ($ $)) (-15 -3811 ($ $)) (-15 -3808 ($ $ $)) (-15 -3809 ($ $)) (-15 -3810 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -3812 ($ $ $)) (-15 -3813 ($ $ $)) (-15 -3814 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3816 ($ $)) (-15 -3817 ($ $)))) +((-2968 (((-112) $ $) 44)) (-3826 ((|#1| $) 17)) (-3818 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3825 (((-112) $) 19)) (-3823 (($ $ |#1|) 30)) (-3821 (($ $ (-112)) 32)) (-3820 (($ $) 33)) (-3822 (($ $ |#2|) 31)) (-3663 (((-1162) $) NIL)) (-3819 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3664 (((-1123) $) NIL)) (-3827 (((-112) $) 16)) (-3996 (($) 13)) (-3824 (($ $) 29)) (-3953 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -1708 |#2|))) 23) (((-643 $) (-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|)))) 26) (((-643 $) |#1| (-643 |#2|)) 28)) (-4354 ((|#2| $) 18)) (-4378 (((-865) $) 53)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 42))) +(((-1143 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -3996 ($)) (-15 -3827 ((-112) $)) (-15 -3826 (|#1| $)) (-15 -4354 (|#2| $)) (-15 -3825 ((-112) $)) (-15 -3953 ($ |#1| |#2| (-112))) (-15 -3953 ($ |#1| |#2|)) (-15 -3953 ($ (-2 (|:| |val| |#1|) (|:| -1708 |#2|)))) (-15 -3953 ((-643 $) (-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))))) (-15 -3953 ((-643 $) |#1| (-643 |#2|))) (-15 -3824 ($ $)) (-15 -3823 ($ $ |#1|)) (-15 -3822 ($ $ |#2|)) (-15 -3821 ($ $ (-112))) (-15 -3820 ($ $)) (-15 -3819 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3818 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1104) (-34)) (-13 (-1104) (-34))) (T -1143)) +((-3996 (*1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3826 (*1 *2 *1) (-12 (-4 *2 (-13 (-1104) (-34))) (-5 *1 (-1143 *2 *3)) (-4 *3 (-13 (-1104) (-34))))) (-4354 (*1 *2 *1) (-12 (-4 *2 (-13 (-1104) (-34))) (-5 *1 (-1143 *3 *2)) (-4 *3 (-13 (-1104) (-34))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1708 *4))) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1143 *3 *4)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-643 (-2 (|:| |val| *4) (|:| -1708 *5)))) (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-643 (-1143 *4 *5))) (-5 *1 (-1143 *4 *5)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *4 (-643 *5)) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-643 (-1143 *3 *5))) (-5 *1 (-1143 *3 *5)) (-4 *3 (-13 (-1104) (-34))))) (-3824 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3823 (*1 *1 *1 *2) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3822 (*1 *1 *1 *2) (-12 (-5 *1 (-1143 *3 *2)) (-4 *3 (-13 (-1104) (-34))) (-4 *2 (-13 (-1104) (-34))))) (-3821 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3820 (*1 *1 *1) (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3819 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1104) (-34))) (-4 *6 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *5 *6)))) (-3818 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5)) (-4 *4 (-13 (-1104) (-34)))))) +(-13 (-1104) (-10 -8 (-15 -3996 ($)) (-15 -3827 ((-112) $)) (-15 -3826 (|#1| $)) (-15 -4354 (|#2| $)) (-15 -3825 ((-112) $)) (-15 -3953 ($ |#1| |#2| (-112))) (-15 -3953 ($ |#1| |#2|)) (-15 -3953 ($ (-2 (|:| |val| |#1|) (|:| -1708 |#2|)))) (-15 -3953 ((-643 $) (-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))))) (-15 -3953 ((-643 $) |#1| (-643 |#2|))) (-15 -3824 ($ $)) (-15 -3823 ($ $ |#1|)) (-15 -3822 ($ $ |#2|)) (-15 -3821 ($ $ (-112))) (-15 -3820 ($ $)) (-15 -3819 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3818 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2968 (((-112) $ $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-3826 (((-1143 |#1| |#2|) $) 27)) (-3835 (($ $) 91)) (-3831 (((-112) (-1143 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3828 (($ $ $ (-643 (-1143 |#1| |#2|))) 108) (($ $ $ (-643 (-1143 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1309 (((-112) $ (-773)) NIL)) (-3426 (((-1143 |#1| |#2|) $ (-1143 |#1| |#2|)) 46 (|has| $ (-6 -4426)))) (-4219 (((-1143 |#1| |#2|) $ #1="value" (-1143 |#1| |#2|)) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 44 (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-3833 (((-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))) $) 95)) (-3829 (($ (-1143 |#1| |#2|) $) 42)) (-3830 (($ (-1143 |#1| |#2|) $) 34)) (-2124 (((-643 (-1143 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 54)) (-3832 (((-112) (-1143 |#1| |#2|) $) 97)) (-3428 (((-112) $ $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 (-1143 |#1| |#2|)) $) 58 (|has| $ (-6 -4425)))) (-3666 (((-112) (-1143 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-1143 |#1| |#2|) (-1104))))) (-2128 (($ (-1 (-1143 |#1| |#2|) (-1143 |#1| |#2|)) $) 50 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-1143 |#1| |#2|) (-1143 |#1| |#2|)) $) 49)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 (-1143 |#1| |#2|)) $) 56)) (-3950 (((-112) $) 45)) (-3663 (((-1162) $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-3664 (((-1123) $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-3836 (((-3 $ "failed") $) 89)) (-2126 (((-112) (-1 (-112) (-1143 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-1143 |#1| |#2|)))) NIL (-12 (|has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|))) (|has| (-1143 |#1| |#2|) (-1104)))) (($ $ (-294 (-1143 |#1| |#2|))) NIL (-12 (|has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|))) (|has| (-1143 |#1| |#2|) (-1104)))) (($ $ (-1143 |#1| |#2|) (-1143 |#1| |#2|)) NIL (-12 (|has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|))) (|has| (-1143 |#1| |#2|) (-1104)))) (($ $ (-643 (-1143 |#1| |#2|)) (-643 (-1143 |#1| |#2|))) NIL (-12 (|has| (-1143 |#1| |#2|) (-310 (-1143 |#1| |#2|))) (|has| (-1143 |#1| |#2|) (-1104))))) (-1310 (((-112) $ $) 53)) (-3827 (((-112) $) 24)) (-3996 (($) 26)) (-4231 (((-1143 |#1| |#2|) $ #1#) NIL)) (-3430 (((-549) $ $) NIL)) (-4065 (((-112) $) 47)) (-2125 (((-773) (-1 (-112) (-1143 |#1| |#2|)) $) NIL (|has| $ (-6 -4425))) (((-773) (-1143 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-1143 |#1| |#2|) (-1104))))) (-3824 (($ $) 52)) (-3953 (($ (-1143 |#1| |#2|)) 10) (($ |#1| |#2| (-643 $)) 13) (($ |#1| |#2| (-643 (-1143 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-643 |#2|)) 18)) (-3834 (((-643 |#2|) $) 96)) (-4378 (((-865) $) 87 (|has| (-1143 |#1| |#2|) (-615 (-865))))) (-3945 (((-643 $) $) 31)) (-3429 (((-112) $ $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-3662 (((-112) $ $) NIL (|has| (-1143 |#1| |#2|) (-1104)))) (-2127 (((-112) (-1 (-112) (-1143 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 70 (|has| (-1143 |#1| |#2|) (-1104)))) (-4389 (((-773) $) 64 (|has| $ (-6 -4425))))) +(((-1144 |#1| |#2|) (-13 (-1013 (-1143 |#1| |#2|)) (-10 -8 (-6 -4426) (-6 -4425) (-15 -3836 ((-3 $ "failed") $)) (-15 -3835 ($ $)) (-15 -3953 ($ (-1143 |#1| |#2|))) (-15 -3953 ($ |#1| |#2| (-643 $))) (-15 -3953 ($ |#1| |#2| (-643 (-1143 |#1| |#2|)))) (-15 -3953 ($ |#1| |#2| |#1| (-643 |#2|))) (-15 -3834 ((-643 |#2|) $)) (-15 -3833 ((-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))) $)) (-15 -3832 ((-112) (-1143 |#1| |#2|) $)) (-15 -3831 ((-112) (-1143 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3830 ($ (-1143 |#1| |#2|) $)) (-15 -3829 ($ (-1143 |#1| |#2|) $)) (-15 -3828 ($ $ $ (-643 (-1143 |#1| |#2|)))) (-15 -3828 ($ $ $ (-643 (-1143 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1104) (-34)) (-13 (-1104) (-34))) (T -1144)) +((-3836 (*1 *1 *1) (|partial| -12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3835 (*1 *1 *1) (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-643 (-1144 *2 *3))) (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) (-3953 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-643 (-1143 *2 *3))) (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))) (-5 *1 (-1144 *2 *3)))) (-3953 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-643 *3)) (-4 *3 (-13 (-1104) (-34))) (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-643 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))))) (-3832 (*1 *2 *3 *1) (-12 (-5 *3 (-1143 *4 *5)) (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1144 *4 *5)))) (-3831 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1143 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1104) (-34))) (-4 *6 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1144 *5 *6)))) (-3830 (*1 *1 *2 *1) (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) (-3829 (*1 *1 *2 *1) (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) (-3828 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-643 (-1143 *3 *4))) (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) (-3828 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1143 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) (-5 *1 (-1144 *4 *5))))) +(-13 (-1013 (-1143 |#1| |#2|)) (-10 -8 (-6 -4426) (-6 -4425) (-15 -3836 ((-3 $ "failed") $)) (-15 -3835 ($ $)) (-15 -3953 ($ (-1143 |#1| |#2|))) (-15 -3953 ($ |#1| |#2| (-643 $))) (-15 -3953 ($ |#1| |#2| (-643 (-1143 |#1| |#2|)))) (-15 -3953 ($ |#1| |#2| |#1| (-643 |#2|))) (-15 -3834 ((-643 |#2|) $)) (-15 -3833 ((-643 (-2 (|:| |val| |#1|) (|:| -1708 |#2|))) $)) (-15 -3832 ((-112) (-1143 |#1| |#2|) $)) (-15 -3831 ((-112) (-1143 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3830 ($ (-1143 |#1| |#2|) $)) (-15 -3829 ($ (-1143 |#1| |#2|) $)) (-15 -3828 ($ $ $ (-643 (-1143 |#1| |#2|)))) (-15 -3828 ($ $ $ (-643 (-1143 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3838 (($ $) NIL)) (-3754 ((|#2| $) NIL)) (-3525 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3837 (($ (-691 |#2|)) 56)) (-3527 (((-112) $) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-3757 (($ |#2|) 14)) (-4156 (($) NIL T CONST)) (-3514 (($ $) 69 (|has| |#2| (-308)))) (-3516 (((-239 |#1| |#2|) $ (-549)) 42)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 |#2| #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) ((|#2| $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) 83)) (-3513 (((-773) $) 71 (|has| |#2| (-560)))) (-3517 ((|#2| $ (-549) (-549)) NIL)) (-2124 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-2573 (((-112) $) NIL)) (-3512 (((-773) $) 73 (|has| |#2| (-560)))) (-3511 (((-643 (-239 |#1| |#2|)) $) 77 (|has| |#2| (-560)))) (-3519 (((-773) $) NIL)) (-4046 (($ |#2|) 25)) (-3518 (((-773) $) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-3751 ((|#2| $) 67 (|has| |#2| (-6 (-4427 #2="*"))))) (-3523 (((-549) $) NIL)) (-3521 (((-549) $) NIL)) (-3008 (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3522 (((-549) $) NIL)) (-3520 (((-549) $) NIL)) (-3528 (($ (-643 (-643 |#2|))) 37)) (-2128 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-4025 (((-643 (-643 |#2|)) $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-4021 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-3664 (((-1123) $) NIL)) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560)))) (-2126 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ (-549) (-549) |#2|) NIL) ((|#2| $ (-549) (-549)) NIL)) (-4242 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3753 ((|#2| $) NIL)) (-3756 (($ (-643 |#2|)) 50)) (-3526 (((-112) $) NIL)) (-3755 (((-239 |#1| |#2|) $) NIL)) (-3752 ((|#2| $) 65 (|has| |#2| (-6 (-4427 #2#))))) (-2125 (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 89 (|has| |#2| (-616 (-538))))) (-3515 (((-239 |#1| |#2|) $ (-549)) 44)) (-4378 (((-865) $) 47) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#2| (-1041 (-410 (-549))))) (($ |#2|) NIL) (((-691 |#2|) $) 52)) (-3530 (((-773)) 23 T CONST)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3524 (((-112) $) NIL)) (-3510 (($) 16 T CONST)) (-3067 (($) 21 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-773)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) 63) (($ $ (-549)) 82 (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-239 |#1| |#2|) $ (-239 |#1| |#2|)) 59) (((-239 |#1| |#2|) (-239 |#1| |#2|) $) 61)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1145 |#1| |#2|) (-13 (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-615 (-691 |#2|)) (-10 -8 (-15 -4046 ($ |#2|)) (-15 -3838 ($ $)) (-15 -3837 ($ (-691 |#2|))) (IF (|has| |#2| (-6 (-4427 "*"))) (-6 -4414) |%noBranch|) (IF (|has| |#2| (-6 (-4427 "*"))) (IF (|has| |#2| (-6 -4422)) (-6 -4422) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) (-773) (-1052)) (T -1145)) +((-4046 (*1 *1 *2) (-12 (-5 *1 (-1145 *3 *2)) (-14 *3 (-773)) (-4 *2 (-1052)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-1145 *2 *3)) (-14 *2 (-773)) (-4 *3 (-1052)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-691 *4)) (-4 *4 (-1052)) (-5 *1 (-1145 *3 *4)) (-14 *3 (-773))))) +(-13 (-1126 |#1| |#2| (-239 |#1| |#2|) (-239 |#1| |#2|)) (-615 (-691 |#2|)) (-10 -8 (-15 -4046 ($ |#2|)) (-15 -3838 ($ $)) (-15 -3837 ($ (-691 |#2|))) (IF (|has| |#2| (-6 (-4427 "*"))) (-6 -4414) |%noBranch|) (IF (|has| |#2| (-6 (-4427 "*"))) (IF (|has| |#2| (-6 -4422)) (-6 -4422) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-616 (-538))) (-6 (-616 (-538))) |%noBranch|))) +((-3851 (($ $) 19)) (-3841 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3849 (((-112) $ $) 24)) (-3853 (($ $) 17)) (-4231 (((-144) $ (-549) (-144)) NIL) (((-144) $ (-549)) NIL) (($ $ (-1236 (-549))) NIL) (($ $ $) 31)) (-4378 (($ (-144)) 29) (((-865) $) NIL))) +(((-1146 |#1|) (-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4231 (|#1| |#1| |#1|)) (-15 -3841 (|#1| |#1| (-141))) (-15 -3841 (|#1| |#1| (-144))) (-15 -4378 (|#1| (-144))) (-15 -3849 ((-112) |#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4231 ((-144) |#1| (-549))) (-15 -4231 ((-144) |#1| (-549) (-144)))) (-1147)) (T -1146)) +NIL +(-10 -8 (-15 -4378 ((-865) |#1|)) (-15 -4231 (|#1| |#1| |#1|)) (-15 -3841 (|#1| |#1| (-141))) (-15 -3841 (|#1| |#1| (-144))) (-15 -4378 (|#1| (-144))) (-15 -3849 ((-112) |#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4231 ((-144) |#1| (-549))) (-15 -4231 ((-144) |#1| (-549) (-144)))) +((-2968 (((-112) $ $) 19 (|has| (-144) (-1104)))) (-3850 (($ $) 121)) (-3851 (($ $) 122)) (-3841 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-3848 (((-112) $ $) 119)) (-3847 (((-112) $ $ (-549)) 118)) (-3842 (((-643 $) $ (-144)) 111) (((-643 $) $ (-141)) 110)) (-1900 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-852)))) (-1898 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| (-144) (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 (((-144) $ (-549) (-144)) 53 (|has| $ (-6 -4426))) (((-144) $ (-1236 (-549)) (-144)) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-3839 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-3844 (($ $ (-1236 (-549)) $) 115)) (-1440 (($ $) 79 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-144) $) 78 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4425)))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4425)))) (-1684 (((-144) $ (-549) (-144)) 54 (|has| $ (-6 -4426)))) (-3517 (((-144) $ (-549)) 52)) (-3849 (((-112) $ $) 120)) (-3843 (((-549) (-1 (-112) (-144)) $) 98) (((-549) (-144) $) 97 (|has| (-144) (-1104))) (((-549) (-144) $ (-549)) 96 (|has| (-144) (-1104))) (((-549) $ $ (-549)) 114) (((-549) (-141) $ (-549)) 113)) (-2124 (((-643 (-144)) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-144)) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| (-144) (-852)))) (-3941 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| (-144) (-852)))) (-3845 (((-112) $ $ (-144)) 116)) (-3846 (((-773) $ $ (-144)) 117)) (-2128 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3852 (($ $) 123)) (-3853 (($ $) 124)) (-4148 (((-112) $ (-773)) 10)) (-3840 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3663 (((-1162) $) 22 (|has| (-144) (-1104)))) (-2449 (($ (-144) $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| (-144) (-1104)))) (-4232 (((-144) $) 43 (|has| (-549) (-852)))) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2373 (($ $ (-144)) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-144)) (-643 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2379 (((-643 (-144)) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 (((-144) $ (-549) (-144)) 51) (((-144) $ (-549)) 50) (($ $ (-1236 (-549))) 64) (($ $ $) 103)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4425))) (((-773) (-144) $) 29 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| (-144) (-616 (-538))))) (-3953 (($ (-643 (-144))) 71)) (-4233 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (($ (-144)) 112) (((-865) $) 18 (|has| (-144) (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| (-144) (-1104)))) (-2127 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| (-144) (-852)))) (-2967 (((-112) $ $) 84 (|has| (-144) (-852)))) (-3455 (((-112) $ $) 20 (|has| (-144) (-1104)))) (-3087 (((-112) $ $) 86 (|has| (-144) (-852)))) (-3088 (((-112) $ $) 83 (|has| (-144) (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-1147) (-140)) (T -1147)) +((-3853 (*1 *1 *1) (-4 *1 (-1147))) (-3852 (*1 *1 *1) (-4 *1 (-1147))) (-3851 (*1 *1 *1) (-4 *1 (-1147))) (-3850 (*1 *1 *1) (-4 *1 (-1147))) (-3849 (*1 *2 *1 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-112)))) (-3848 (*1 *2 *1 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-112)))) (-3847 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-549)) (-5 *2 (-112)))) (-3846 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-144)) (-5 *2 (-773)))) (-3845 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3844 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-1236 (-549))))) (-3843 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-549)))) (-3843 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-549)) (-5 *3 (-141)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1147)))) (-3842 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-643 *1)) (-4 *1 (-1147)))) (-3842 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-643 *1)) (-4 *1 (-1147)))) (-3841 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144)))) (-3841 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) (-3840 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144)))) (-3840 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) (-3839 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144)))) (-3839 (*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) (-4231 (*1 *1 *1 *1) (-4 *1 (-1147)))) +(-13 (-19 (-144)) (-10 -8 (-15 -3853 ($ $)) (-15 -3852 ($ $)) (-15 -3851 ($ $)) (-15 -3850 ($ $)) (-15 -3849 ((-112) $ $)) (-15 -3848 ((-112) $ $)) (-15 -3847 ((-112) $ $ (-549))) (-15 -3846 ((-773) $ $ (-144))) (-15 -3845 ((-112) $ $ (-144))) (-15 -3844 ($ $ (-1236 (-549)) $)) (-15 -3843 ((-549) $ $ (-549))) (-15 -3843 ((-549) (-141) $ (-549))) (-15 -4378 ($ (-144))) (-15 -3842 ((-643 $) $ (-144))) (-15 -3842 ((-643 $) $ (-141))) (-15 -3841 ($ $ (-144))) (-15 -3841 ($ $ (-141))) (-15 -3840 ($ $ (-144))) (-15 -3840 ($ $ (-141))) (-15 -3839 ($ $ (-144))) (-15 -3839 ($ $ (-141))) (-15 -4231 ($ $ $)))) +(((-34) . T) ((-102) -3960 (|has| (-144) (-1104)) (|has| (-144) (-852))) ((-615 (-865)) -3960 (|has| (-144) (-1104)) (|has| (-144) (-852)) (|has| (-144) (-615 (-865)))) ((-151 #1=(-144)) . T) ((-616 (-538)) |has| (-144) (-616 (-538))) ((-287 #2=(-549) #1#) . T) ((-289 #2# #1#) . T) ((-310 #1#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))) ((-374 #1#) . T) ((-492 #1#) . T) ((-606 #2# #1#) . T) ((-517 #1# #1#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))) ((-653 #1#) . T) ((-19 #1#) . T) ((-852) |has| (-144) (-852)) ((-1104) -3960 (|has| (-144) (-1104)) (|has| (-144) (-852))) ((-1219) . T)) +((-3860 (((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773)) 112)) (-3857 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773)) 61)) (-3861 (((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)) 97)) (-3855 (((-773) (-643 |#4|) (-643 |#5|)) 30)) (-3858 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773)) 63) (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112)) 65)) (-3859 (((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112)) 85)) (-4402 (((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) 90)) (-3856 (((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|) 60)) (-3854 (((-773) (-643 |#4|) (-643 |#5|)) 21))) +(((-1148 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3854 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3855 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3856 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3860 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773))) (-15 -4402 ((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3861 ((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|) (-1112 |#1| |#2| |#3| |#4|)) (T -1148)) +((-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *4 (-773)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-1275)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1112 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1162)) (-5 *1 (-1148 *4 *5 *6 *7 *8)))) (-3860 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-643 *11)) (|:| |todo| (-643 (-2 (|:| |val| *3) (|:| -1708 *11)))))) (-5 *6 (-773)) (-5 *2 (-643 (-2 (|:| |val| (-643 *10)) (|:| -1708 *11)))) (-5 *3 (-643 *10)) (-5 *4 (-643 *11)) (-4 *10 (-1068 *7 *8 *9)) (-4 *11 (-1112 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) (-5 *1 (-1148 *7 *8 *9 *10 *11)))) (-3859 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) (-3859 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) (-3858 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3)))) (-3858 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *6 *7 *8 *3 *4)) (-4 *4 (-1112 *6 *7 *8 *3)))) (-3858 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-773)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) (-4 *3 (-1068 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *7 *8 *9 *3 *4)) (-4 *4 (-1112 *7 *8 *9 *3)))) (-3857 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3)))) (-3857 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *6 *7 *8 *3 *4)) (-4 *4 (-1112 *6 *7 *8 *3)))) (-3856 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-643 *4)) (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-773)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) (-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-773)) (-5 *1 (-1148 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3854 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3855 ((-773) (-643 |#4|) (-643 |#5|))) (-15 -3856 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3857 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773) (-112))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5| (-773))) (-15 -3858 ((-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) |#4| |#5|)) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112))) (-15 -3859 ((-643 |#5|) (-643 |#4|) (-643 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3860 ((-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-643 |#4|) (-643 |#5|) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-2 (|:| |done| (-643 |#5|)) (|:| |todo| (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))))) (-773))) (-15 -4402 ((-1162) (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|)))) (-15 -3861 ((-1275) (-643 (-2 (|:| |val| (-643 |#4|)) (|:| -1708 |#5|))) (-773)))) +((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) NIL)) (-4114 (((-643 $) (-643 |#4|)) 124) (((-643 $) (-643 |#4|) (-112)) 125) (((-643 $) (-643 |#4|) (-112) (-112)) 123) (((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112)) 126)) (-3485 (((-643 |#3|) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-4206 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| $) 97)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) 75)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) 29 (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3301 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) NIL)) (-3576 (($ (-643 |#4|)) NIL)) (-4230 (((-3 $ #1#) $) 45)) (-4117 ((|#4| |#4| $) 78)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4115 ((|#4| |#4| $) NIL)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) NIL)) (-3617 (((-112) |#4| $) NIL)) (-3615 (((-112) |#4| $) NIL)) (-3618 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3862 (((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112)) 139)) (-2124 (((-643 |#4|) $) 18 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3600 ((|#3| $) 38)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 19 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-2128 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 23)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-3611 (((-3 |#4| (-643 $)) |#4| |#4| $) NIL)) (-3610 (((-643 (-2 (|:| |val| |#4|) (|:| -1708 $))) |#4| |#4| $) 117)) (-4229 (((-3 |#4| #1#) $) 42)) (-3612 (((-643 $) |#4| $) 102)) (-3614 (((-3 (-112) (-643 $)) |#4| $) NIL)) (-3613 (((-643 (-2 (|:| |val| (-112)) (|:| -1708 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3658 (((-643 $) |#4| $) 121) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) 122) (((-643 $) |#4| (-643 $)) NIL)) (-3863 (((-643 $) (-643 |#4|) (-112) (-112) (-112)) 134)) (-3864 (($ |#4| $) 88) (($ (-643 |#4|) $) 89) (((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4129 (((-643 |#4|) $) NIL)) (-4123 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) NIL)) (-4131 (((-112) $ $) NIL)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4119 ((|#4| |#4| $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 |#4| #1#) $) 40)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4111 (((-3 $ #1#) $ |#4|) 59)) (-4200 (($ $ |#4|) NIL) (((-643 $) |#4| $) 104) (((-643 $) |#4| (-643 $)) NIL) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) 99)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 17)) (-3996 (($) 14)) (-4380 (((-773) $) NIL)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) 13)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 22)) (-3311 (($ $ |#3|) 52)) (-3313 (($ $ |#3|) 54)) (-4116 (($ $) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) 35) (((-643 |#4|) $) 46)) (-4110 (((-773) $) NIL (|has| |#3| (-370)))) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) NIL)) (-3609 (((-643 $) |#4| $) 66) (((-643 $) |#4| (-643 $)) NIL) (((-643 $) (-643 |#4|) $) NIL) (((-643 $) (-643 |#4|) (-643 $)) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) NIL)) (-3616 (((-112) |#4| $) NIL)) (-4365 (((-112) |#3| $) 74)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1149 |#1| |#2| |#3| |#4|) (-13 (-1112 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3864 ((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112))) (-15 -3863 ((-643 $) (-643 |#4|) (-112) (-112) (-112))) (-15 -3862 ((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112))))) (-455) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -1149)) +((-3864 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *3))) (-5 *1 (-1149 *5 *6 *7 *3)) (-4 *3 (-1068 *5 *6 *7)))) (-4114 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) (-5 *1 (-1149 *5 *6 *7 *8)))) (-4114 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) (-5 *1 (-1149 *5 *6 *7 *8)))) (-3863 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) (-5 *1 (-1149 *5 *6 *7 *8)))) (-3862 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-643 *8)) (|:| |towers| (-643 (-1149 *5 *6 *7 *8))))) (-5 *1 (-1149 *5 *6 *7 *8)) (-5 *3 (-643 *8))))) +(-13 (-1112 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3864 ((-643 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112))) (-15 -4114 ((-643 $) (-643 |#4|) (-112) (-112) (-112) (-112))) (-15 -3863 ((-643 $) (-643 |#4|) (-112) (-112) (-112))) (-15 -3862 ((-2 (|:| |val| (-643 |#4|)) (|:| |towers| (-643 $))) (-643 |#4|) (-112) (-112))))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3748 ((|#1| $) 37)) (-3865 (($ (-643 |#1|)) 45)) (-1309 (((-112) $ (-773)) NIL)) (-4156 (($) NIL T CONST)) (-3750 ((|#1| |#1| $) 40)) (-3749 ((|#1| $) 35)) (-2124 (((-643 |#1|) $) 18 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 22)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-1369 ((|#1| $) 38)) (-4039 (($ |#1| $) 41)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-1370 ((|#1| $) 36)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 32)) (-3996 (($) 43)) (-3747 (((-773) $) 30)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 27)) (-4378 (((-865) $) 14 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-1371 (($ (-643 |#1|)) NIL)) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 17 (|has| |#1| (-1104)))) (-4389 (((-773) $) 31 (|has| $ (-6 -4425))))) +(((-1150 |#1|) (-13 (-1124 |#1|) (-10 -8 (-15 -3865 ($ (-643 |#1|))))) (-1219)) (T -1150)) +((-3865 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1150 *3))))) +(-13 (-1124 |#1|) (-10 -8 (-15 -3865 ($ (-643 |#1|))))) +((-4219 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1236 (-549)) |#2|) 55) ((|#2| $ (-549) |#2|) 52)) (-3866 (((-112) $) 12)) (-2128 (($ (-1 |#2| |#2|) $) 50)) (-4232 ((|#2| $) NIL) (($ $ (-773)) 20)) (-2373 (($ $ |#2|) 51)) (-3867 (((-112) $) 11)) (-4231 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1236 (-549))) 38) ((|#2| $ (-549)) 29) ((|#2| $ (-549) |#2|) NIL)) (-4222 (($ $ $) 58) (($ $ |#2|) NIL)) (-4233 (($ $ $) 40) (($ |#2| $) NIL) (($ (-643 $)) 47) (($ $ |#2|) NIL))) +(((-1151 |#1| |#2|) (-10 -8 (-15 -3866 ((-112) |#1|)) (-15 -3867 ((-112) |#1|)) (-15 -4219 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -2373 (|#1| |#1| |#2|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4219 (|#2| |#1| (-1236 (-549)) |#2|)) (-15 -4219 (|#2| |#1| #1="last" |#2|)) (-15 -4219 (|#1| |#1| #2="rest" |#1|)) (-15 -4219 (|#2| |#1| #3="first" |#2|)) (-15 -4222 (|#1| |#1| |#2|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -4231 (|#1| |#1| #2#)) (-15 -4232 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| #3#)) (-15 -4232 (|#2| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4219 (|#2| |#1| #4="value" |#2|)) (-15 -4231 (|#2| |#1| #4#)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|))) (-1152 |#2|) (-1219)) (T -1151)) +NIL +(-10 -8 (-15 -3866 ((-112) |#1|)) (-15 -3867 ((-112) |#1|)) (-15 -4219 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549) |#2|)) (-15 -4231 (|#2| |#1| (-549))) (-15 -2373 (|#1| |#1| |#2|)) (-15 -4233 (|#1| |#1| |#2|)) (-15 -4233 (|#1| (-643 |#1|))) (-15 -4231 (|#1| |#1| (-1236 (-549)))) (-15 -4219 (|#2| |#1| (-1236 (-549)) |#2|)) (-15 -4219 (|#2| |#1| #1="last" |#2|)) (-15 -4219 (|#1| |#1| #2="rest" |#1|)) (-15 -4219 (|#2| |#1| #3="first" |#2|)) (-15 -4222 (|#1| |#1| |#2|)) (-15 -4222 (|#1| |#1| |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -4231 (|#1| |#1| #2#)) (-15 -4232 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| #3#)) (-15 -4232 (|#2| |#1|)) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -4219 (|#2| |#1| #4="value" |#2|)) (-15 -4231 (|#2| |#1| #4#)) (-15 -2128 (|#1| (-1 |#2| |#2|) |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4226 ((|#1| $) 66)) (-4228 (($ $) 68)) (-2372 (((-1275) $ (-549) (-549)) 98 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 53 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 57 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) 55 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 59 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 58 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 56 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) 54 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 118 (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) 87 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4425)))) (-4227 ((|#1| $) 67)) (-4156 (($) 7 T CONST)) (-4230 (($ $) 74) (($ $ (-773)) 72)) (-1440 (($ $) 100 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4425))) (($ |#1| $) 101 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1684 ((|#1| $ (-549) |#1|) 86 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 88)) (-3866 (((-112) $) 84)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) 109)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 96 (|has| (-549) (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 95 (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 71) (($ $ (-773)) 69)) (-2449 (($ $ $ (-549)) 117) (($ |#1| $ (-549)) 116)) (-2377 (((-643 (-549)) $) 93)) (-2378 (((-112) (-549) $) 92)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 77) (($ $ (-773)) 75)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2373 (($ $ |#1|) 97 (|has| $ (-6 -4426)))) (-3867 (((-112) $) 85)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 91)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) ((|#1| $ #2#) 76) (($ $ #3#) 73) ((|#1| $ #4#) 70) (($ $ (-1236 (-549))) 113) ((|#1| $ (-549)) 90) ((|#1| $ (-549) |#1|) 89)) (-3430 (((-549) $ $) 45)) (-2450 (($ $ (-1236 (-549))) 115) (($ $ (-549)) 114)) (-4065 (((-112) $) 47)) (-4223 (($ $) 63)) (-4221 (($ $) 60 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 64)) (-4225 (($ $) 65)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4402 (((-538) $) 99 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 108)) (-4222 (($ $ $) 62 (|has| $ (-6 -4426))) (($ $ |#1|) 61 (|has| $ (-6 -4426)))) (-4233 (($ $ $) 79) (($ |#1| $) 78) (($ (-643 $)) 111) (($ $ |#1|) 110)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-1152 |#1|) (-140) (-1219)) (T -1152)) +((-3867 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) +(-13 (-1258 |t#1|) (-653 |t#1|) (-10 -8 (-15 -3867 ((-112) $)) (-15 -3866 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T) ((-1258 |#1|) . T)) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) NIL)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1153 |#1| |#2| |#3|) (-1196 |#1| |#2|) (-1104) (-1104) |#2|) (T -1153)) +NIL +(-1196 |#1| |#2|) +((-2968 (((-112) $ $) 7)) (-3868 (((-3 $ "failed") $) 14)) (-3663 (((-1162) $) 10)) (-3869 (($) 15 T CONST)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3455 (((-112) $ $) 6))) (((-1154) (-140)) (T -1154)) -((-2221 (*1 *1) (-4 *1 (-1154))) (-3104 (*1 *1 *1) (|partial| -4 *1 (-1154)))) -(-13 (-1102) (-10 -8 (-15 -2221 ($) -3562) (-15 -3104 ((-3 $ "failed") $)))) -(((-102) . T) ((-614 (-863)) . T) ((-1102) . T)) -((-2488 (((-1159 |#1|) (-1159 |#1|)) 17)) (-4030 (((-1159 |#1|) (-1159 |#1|)) 13)) (-2033 (((-1159 |#1|) (-1159 |#1|) (-567) (-567)) 20)) (-3966 (((-1159 |#1|) (-1159 |#1|)) 15))) -(((-1155 |#1|) (-10 -7 (-15 -4030 ((-1159 |#1|) (-1159 |#1|))) (-15 -3966 ((-1159 |#1|) (-1159 |#1|))) (-15 -2488 ((-1159 |#1|) (-1159 |#1|))) (-15 -2033 ((-1159 |#1|) (-1159 |#1|) (-567) (-567)))) (-13 (-559) (-147))) (T -1155)) -((-2033 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1155 *4)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1155 *3)))) (-3966 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1155 *3)))) (-4030 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1155 *3))))) -(-10 -7 (-15 -4030 ((-1159 |#1|) (-1159 |#1|))) (-15 -3966 ((-1159 |#1|) (-1159 |#1|))) (-15 -2488 ((-1159 |#1|) (-1159 |#1|))) (-15 -2033 ((-1159 |#1|) (-1159 |#1|) (-567) (-567)))) -((-3644 (((-1159 |#1|) (-1159 (-1159 |#1|))) 15))) -(((-1156 |#1|) (-10 -7 (-15 -3644 ((-1159 |#1|) (-1159 (-1159 |#1|))))) (-1219)) (T -1156)) -((-3644 (*1 *2 *3) (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1156 *4)) (-4 *4 (-1219))))) -(-10 -7 (-15 -3644 ((-1159 |#1|) (-1159 (-1159 |#1|))))) -((-4309 (((-1159 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|)) 25)) (-2617 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|)) 26)) (-4364 (((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|)) 16))) -(((-1157 |#1| |#2|) (-10 -7 (-15 -4364 ((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|))) (-15 -4309 ((-1159 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|))) (-15 -2617 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|)))) (-1219) (-1219)) (T -1157)) -((-2617 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1159 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-1157 *5 *2)))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1159 *6)) (-4 *6 (-1219)) (-4 *3 (-1219)) (-5 *2 (-1159 *3)) (-5 *1 (-1157 *6 *3)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6))))) -(-10 -7 (-15 -4364 ((-1159 |#2|) (-1 |#2| |#1|) (-1159 |#1|))) (-15 -4309 ((-1159 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|))) (-15 -2617 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1159 |#1|)))) -((-4364 (((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-1159 |#2|)) 21))) -(((-1158 |#1| |#2| |#3|) (-10 -7 (-15 -4364 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-1159 |#2|)))) (-1219) (-1219) (-1219)) (T -1158)) -((-4364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1159 *6)) (-5 *5 (-1159 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) (-5 *1 (-1158 *6 *7 *8))))) -(-10 -7 (-15 -4364 ((-1159 |#3|) (-1 |#3| |#1| |#2|) (-1159 |#1|) (-1159 |#2|)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) NIL)) (-2587 ((|#1| $) NIL)) (-1493 (($ $) 67)) (-3095 (((-1274) $ (-567) (-567)) 99 (|has| $ (-6 -4423)))) (-1358 (($ $ (-567)) 129 (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-2059 (((-863) $) 56 (|has| |#1| (-1102)))) (-4152 (((-112)) 55 (|has| |#1| (-1102)))) (-3647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4423)))) (-4234 (($ $ $) 116 (|has| $ (-6 -4423))) (($ $ (-567) $) 142)) (-2718 ((|#1| $ |#1|) 126 (|has| $ (-6 -4423)))) (-1588 ((|#1| $ |#1|) 121 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4423))) (($ $ "rest" $) 125 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 113 (|has| $ (-6 -4423))) ((|#1| $ (-567) |#1|) 77 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) 80)) (-2574 ((|#1| $) NIL)) (-3758 (($) NIL T CONST)) (-3082 (($ $) 14)) (-3447 (($ $) 42) (($ $ (-772)) 111)) (-2098 (((-112) (-645 |#1|) $) 135 (|has| |#1| (-1102)))) (-4260 (($ (-645 |#1|)) 131)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) 79)) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3689 (((-112) $) NIL)) (-3468 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-1822 (((-1274) (-567) $) 141 (|has| |#1| (-1102)))) (-2026 (((-772) $) 138)) (-3047 (((-645 $) $) NIL)) (-2373 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4223 (($ (-772) |#1|) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-3421 (((-112) $ (-772)) NIL)) (-3895 (((-645 |#1|) $) NIL)) (-1972 (((-112) $) NIL)) (-2097 (($ $) 114)) (-2134 (((-112) $) 13)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1725 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-4222 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) 96)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2378 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-3067 ((|#1| $) 10)) (-3436 ((|#1| $) 41) (($ $ (-772)) 65)) (-4085 (((-2 (|:| |cycle?| (-112)) (|:| -4181 (-772)) (|:| |period| (-772))) (-772) $) 36)) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4395 (($ (-1 (-112) |#1|) $) 146)) (-1307 (($ (-1 (-112) |#1|) $) 147)) (-2930 (($ $ |#1|) 90 (|has| $ (-6 -4423)))) (-1678 (($ $ (-567)) 45)) (-3268 (((-112) $) 94)) (-3820 (((-112) $) 12)) (-2778 (((-112) $) 137)) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 30)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) 20)) (-2973 (($) 60)) (-1882 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1236 (-567))) NIL) ((|#1| $ (-567)) 75) ((|#1| $ (-567) |#1|) NIL)) (-2721 (((-567) $ $) 64)) (-4281 (($ $ (-1236 (-567))) NIL) (($ $ (-567)) NIL)) (-2227 (($ (-1 $)) 63)) (-3625 (((-112) $) 91)) (-4121 (($ $) 92)) (-3277 (($ $) 117 (|has| $ (-6 -4423)))) (-3880 (((-772) $) NIL)) (-1908 (($ $) NIL)) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) 59)) (-1322 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 73)) (-1849 (($ |#1| $) 115)) (-3416 (($ $ $) 119 (|has| $ (-6 -4423))) (($ $ |#1|) 120 (|has| $ (-6 -4423)))) (-3644 (($ $ $) 101) (($ |#1| $) 61) (($ (-645 $)) 106) (($ $ |#1|) 100)) (-4314 (($ $) 66)) (-2504 (($ (-645 |#1|)) 130) (((-863) $) 57 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) NIL)) (-2049 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 133 (|has| |#1| (-1102)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1159 |#1|) (-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4423) (-15 -4260 ($ (-645 |#1|))) (IF (|has| |#1| (-1102)) (-15 -2098 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -4085 ((-2 (|:| |cycle?| (-112)) (|:| -4181 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -2227 ($ (-1 $))) (-15 -1849 ($ |#1| $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -1822 ((-1274) (-567) $)) (-15 -2059 ((-863) $)) (-15 -4152 ((-112)))) |%noBranch|) (-15 -4234 ($ $ (-567) $)) (-15 -2378 ($ (-1 |#1|))) (-15 -2378 ($ (-1 |#1| |#1|) |#1|)) (-15 -4395 ($ (-1 (-112) |#1|) $)) (-15 -1307 ($ (-1 (-112) |#1|) $)))) (-1219)) (T -1159)) -((-4260 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) (-2098 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-4 *4 (-1219)) (-5 *2 (-112)) (-5 *1 (-1159 *4)))) (-4085 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4181 (-772)) (|:| |period| (-772)))) (-5 *1 (-1159 *4)) (-4 *4 (-1219)) (-5 *3 (-772)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-1 (-1159 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1219)))) (-1849 (*1 *1 *2 *1) (-12 (-5 *1 (-1159 *2)) (-4 *2 (-1219)))) (-1822 (*1 *2 *3 *1) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1159 *4)) (-4 *4 (-1102)) (-4 *4 (-1219)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1159 *3)) (-4 *3 (-1102)) (-4 *3 (-1219)))) (-4152 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3)) (-4 *3 (-1102)) (-4 *3 (-1219)))) (-4234 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1159 *3)) (-4 *3 (-1219)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) (-2378 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) (-4395 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) (-1307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3))))) -(-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4423) (-15 -4260 ($ (-645 |#1|))) (IF (|has| |#1| (-1102)) (-15 -2098 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -4085 ((-2 (|:| |cycle?| (-112)) (|:| -4181 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -2227 ($ (-1 $))) (-15 -1849 ($ |#1| $)) (IF (|has| |#1| (-1102)) (PROGN (-15 -1822 ((-1274) (-567) $)) (-15 -2059 ((-863) $)) (-15 -4152 ((-112)))) |%noBranch|) (-15 -4234 ($ $ (-567) $)) (-15 -2378 ($ (-1 |#1|))) (-15 -2378 ($ (-1 |#1| |#1|) |#1|)) (-15 -4395 ($ (-1 (-112) |#1|) $)) (-15 -1307 ($ (-1 (-112) |#1|) $)))) -((-2487 (((-112) $ $) 19)) (-3847 (($ $) 121)) (-3860 (($ $) 122)) (-1311 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-1670 (((-112) $ $) 119)) (-1648 (((-112) $ $ (-567)) 118)) (-3322 (($ (-567)) 128)) (-3601 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2051 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-2767 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4423))))) (-2080 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-1555 (((-112) $ (-772)) 8)) (-3824 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4423))) (((-144) $ (-1236 (-567)) (-144)) 59 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-1610 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-3790 (($ $) 91 (|has| $ (-6 -4423)))) (-3247 (($ $) 101)) (-3964 (($ $ (-1236 (-567)) $) 115)) (-3470 (($ $) 79 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ (-144) $) 78 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4422)))) (-2617 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4422)))) (-2036 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4423)))) (-1970 (((-144) $ (-567)) 52)) (-1694 (((-112) $ $) 120)) (-3932 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1102))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-3468 (((-645 (-144)) $) 31 (|has| $ (-6 -4422)))) (-4223 (($ (-772) (-144)) 70)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-2727 (($ $ $) 88 (|has| (-144) (-851)))) (-1315 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-4200 (((-645 (-144)) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-1446 (($ $ $) 87 (|has| (-144) (-851)))) (-3943 (((-112) $ $ (-144)) 116)) (-4016 (((-772) $ $ (-144)) 117)) (-2021 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-4158 (($ $) 123)) (-3371 (($ $) 124)) (-3421 (((-112) $ (-772)) 10)) (-1622 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1812 (((-1161) $) 22)) (-4222 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-3479 (((-1122) $) 21)) (-3436 (((-144) $) 43 (|has| (-567) (-851)))) (-2989 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2930 (($ $ (-144)) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1804 (((-645 (-144)) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1236 (-567))) 64) (($ $ $) 103)) (-4281 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-3486 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4422))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1102)) (|has| $ (-6 -4422))))) (-3161 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-2516 (($ (-645 (-144))) 71)) (-3644 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-2504 (($ (-144)) 112) (((-863) $) 18)) (-3858 (((-112) $ $) 23)) (-3450 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4422)))) (-2166 (((-1161) $) 132) (((-1161) $ (-112)) 131) (((-1274) (-823) $) 130) (((-1274) (-823) $ (-112)) 129)) (-3016 (((-112) $ $) 85 (|has| (-144) (-851)))) (-2996 (((-112) $ $) 84 (|has| (-144) (-851)))) (-2968 (((-112) $ $) 20)) (-3006 (((-112) $ $) 86 (|has| (-144) (-851)))) (-2986 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-1160) (-140)) (T -1160)) -((-3322 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1160))))) -(-13 (-1146) (-1102) (-829) (-10 -8 (-15 -3322 ($ (-567))))) -(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))) ((-652 #0#) . T) ((-19 #0#) . T) ((-829) . T) ((-851) |has| (-144) (-851)) ((-1102) . T) ((-1146) . T) ((-1219) . T)) -((-2487 (((-112) $ $) NIL)) (-3847 (($ $) NIL)) (-3860 (($ $) NIL)) (-1311 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-1670 (((-112) $ $) NIL)) (-1648 (((-112) $ $ (-567)) NIL)) (-3322 (($ (-567)) 8)) (-3601 (((-645 $) $ (-144)) NIL) (((-645 $) $ (-141)) NIL)) (-2051 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-2767 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| (-144) (-851))))) (-2080 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4423))) (((-144) $ (-1236 (-567)) (-144)) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-1610 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3964 (($ $ (-1236 (-567)) $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1695 (($ (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4422))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2036 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4423)))) (-1970 (((-144) $ (-567)) NIL)) (-1694 (((-112) $ $) NIL)) (-3932 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1102))) (((-567) (-144) $ (-567)) NIL (|has| (-144) (-1102))) (((-567) $ $ (-567)) NIL) (((-567) (-141) $ (-567)) NIL)) (-3468 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-4223 (($ (-772) (-144)) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| (-144) (-851)))) (-1315 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-4200 (((-645 (-144)) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| (-144) (-851)))) (-3943 (((-112) $ $ (-144)) NIL)) (-4016 (((-772) $ $ (-144)) NIL)) (-2021 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-4158 (($ $) NIL)) (-3371 (($ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1622 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1812 (((-1161) $) NIL)) (-4222 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-144) $) NIL (|has| (-567) (-851)))) (-2989 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2930 (($ $ (-144)) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-1804 (((-645 (-144)) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1236 (-567))) NIL) (($ $ $) NIL)) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-3486 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-144) (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-2516 (($ (-645 (-144))) NIL)) (-3644 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-2504 (($ (-144)) NIL) (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3450 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4422)))) (-2166 (((-1161) $) 19) (((-1161) $ (-112)) 21) (((-1274) (-823) $) 22) (((-1274) (-823) $ (-112)) 23)) (-3016 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2996 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2986 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1161) (-1160)) (T -1161)) -NIL -(-1160) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL)) (-3095 (((-1274) $ (-1161) (-1161)) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-1161) |#1|) NIL)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 |#1| "failed") (-1161) $) NIL)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102))))) (-4197 (($ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#1| "failed") (-1161) $) NIL)) (-1695 (($ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-1161) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-1161)) NIL)) (-3468 (((-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-1161) $) NIL (|has| (-1161) (-851)))) (-4200 (((-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-1161) $) NIL (|has| (-1161) (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-1512 (((-645 (-1161)) $) NIL)) (-1560 (((-112) (-1161) $) NIL)) (-3018 (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL)) (-3360 (((-645 (-1161)) $) NIL)) (-2919 (((-112) (-1161) $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-3436 ((|#1| $) NIL (|has| (-1161) (-851)))) (-2989 (((-3 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) "failed") (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (($ $ (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL (-12 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-310 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-1161)) NIL) ((|#1| $ (-1161) |#1|) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-614 (-863))) (|has| |#1| (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 (-1161)) (|:| -2265 |#1|)) (-1102)) (|has| |#1| (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1162 |#1|) (-13 (-1195 (-1161) |#1|) (-10 -7 (-6 -4422))) (-1102)) (T -1162)) -NIL -(-13 (-1195 (-1161) |#1|) (-10 -7 (-6 -4422))) -((-4127 (((-1159 |#1|) (-1159 |#1|)) 85)) (-1377 (((-3 (-1159 |#1|) "failed") (-1159 |#1|)) 42)) (-1815 (((-1159 |#1|) (-410 (-567)) (-1159 |#1|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3987 (((-1159 |#1|) |#1| (-1159 |#1|)) 142 (|has| |#1| (-365)))) (-2761 (((-1159 |#1|) (-1159 |#1|)) 100)) (-2922 (((-1159 (-567)) (-567)) 64)) (-3950 (((-1159 |#1|) (-1159 (-1159 |#1|))) 119 (|has| |#1| (-38 (-410 (-567)))))) (-4324 (((-1159 |#1|) (-567) (-567) (-1159 |#1|)) 105)) (-3245 (((-1159 |#1|) |#1| (-567)) 54)) (-4131 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 67)) (-2645 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 139 (|has| |#1| (-365)))) (-3034 (((-1159 |#1|) |#1| (-1 (-1159 |#1|))) 118 (|has| |#1| (-38 (-410 (-567)))))) (-1575 (((-1159 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1159 |#1|))) 140 (|has| |#1| (-365)))) (-2382 (((-1159 |#1|) (-1159 |#1|)) 99)) (-2490 (((-1159 |#1|) (-1159 |#1|)) 83)) (-2654 (((-1159 |#1|) (-567) (-567) (-1159 |#1|)) 106)) (-3670 (((-1159 |#1|) |#1| (-1159 |#1|)) 115 (|has| |#1| (-38 (-410 (-567)))))) (-3096 (((-1159 (-567)) (-567)) 63)) (-2371 (((-1159 |#1|) |#1|) 66)) (-3396 (((-1159 |#1|) (-1159 |#1|) (-567) (-567)) 102)) (-3849 (((-1159 |#1|) (-1 |#1| (-567)) (-1159 |#1|)) 73)) (-2478 (((-3 (-1159 |#1|) "failed") (-1159 |#1|) (-1159 |#1|)) 40)) (-3417 (((-1159 |#1|) (-1159 |#1|)) 101)) (-2913 (((-1159 |#1|) (-1159 |#1|) |#1|) 78)) (-3665 (((-1159 |#1|) (-1159 |#1|)) 69)) (-1639 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 79)) (-2504 (((-1159 |#1|) |#1|) 74)) (-2058 (((-1159 |#1|) (-1159 (-1159 |#1|))) 90)) (-3064 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 41)) (-3054 (((-1159 |#1|) (-1159 |#1|)) 21) (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 23)) (-3045 (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 17)) (* (((-1159 |#1|) (-1159 |#1|) |#1|) 29) (((-1159 |#1|) |#1| (-1159 |#1|)) 26) (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 27))) -(((-1163 |#1|) (-10 -7 (-15 -3045 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3054 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3054 ((-1159 |#1|) (-1159 |#1|))) (-15 * ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 * ((-1159 |#1|) |#1| (-1159 |#1|))) (-15 * ((-1159 |#1|) (-1159 |#1|) |#1|)) (-15 -2478 ((-3 (-1159 |#1|) "failed") (-1159 |#1|) (-1159 |#1|))) (-15 -3064 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1377 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3245 ((-1159 |#1|) |#1| (-567))) (-15 -3096 ((-1159 (-567)) (-567))) (-15 -2922 ((-1159 (-567)) (-567))) (-15 -2371 ((-1159 |#1|) |#1|)) (-15 -4131 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3665 ((-1159 |#1|) (-1159 |#1|))) (-15 -3849 ((-1159 |#1|) (-1 |#1| (-567)) (-1159 |#1|))) (-15 -2504 ((-1159 |#1|) |#1|)) (-15 -2913 ((-1159 |#1|) (-1159 |#1|) |#1|)) (-15 -1639 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -2490 ((-1159 |#1|) (-1159 |#1|))) (-15 -4127 ((-1159 |#1|) (-1159 |#1|))) (-15 -2058 ((-1159 |#1|) (-1159 (-1159 |#1|)))) (-15 -2382 ((-1159 |#1|) (-1159 |#1|))) (-15 -2761 ((-1159 |#1|) (-1159 |#1|))) (-15 -3417 ((-1159 |#1|) (-1159 |#1|))) (-15 -3396 ((-1159 |#1|) (-1159 |#1|) (-567) (-567))) (-15 -4324 ((-1159 |#1|) (-567) (-567) (-1159 |#1|))) (-15 -2654 ((-1159 |#1|) (-567) (-567) (-1159 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ((-1159 |#1|) |#1| (-1159 |#1|))) (-15 -3034 ((-1159 |#1|) |#1| (-1 (-1159 |#1|)))) (-15 -3950 ((-1159 |#1|) (-1159 (-1159 |#1|)))) (-15 -1815 ((-1159 |#1|) (-410 (-567)) (-1159 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2645 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1575 ((-1159 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1159 |#1|)))) (-15 -3987 ((-1159 |#1|) |#1| (-1159 |#1|)))) |%noBranch|)) (-1051)) (T -1163)) -((-3987 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-1575 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1159 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)))) (-2645 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-1815 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1051)) (-5 *3 (-410 (-567))) (-5 *1 (-1163 *4)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051)))) (-3034 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1159 *3))) (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))) (-3670 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2654 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1163 *4)))) (-4324 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1163 *4)))) (-3396 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) (-5 *1 (-1163 *4)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)) (-4 *4 (-1051)))) (-4127 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2490 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-1639 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2504 (*1 *2 *3) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051)))) (-3849 (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1051)) (-5 *1 (-1163 *4)))) (-3665 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-4131 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2371 (*1 *2 *3) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051)))) (-2922 (*1 *2 *3) (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1163 *4)) (-4 *4 (-1051)) (-5 *3 (-567)))) (-3096 (*1 *2 *3) (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1163 *4)) (-4 *4 (-1051)) (-5 *3 (-567)))) (-3245 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051)))) (-1377 (*1 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3064 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-2478 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3054 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3054 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) (-3045 (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))) -(-10 -7 (-15 -3045 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3054 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3054 ((-1159 |#1|) (-1159 |#1|))) (-15 * ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 * ((-1159 |#1|) |#1| (-1159 |#1|))) (-15 * ((-1159 |#1|) (-1159 |#1|) |#1|)) (-15 -2478 ((-3 (-1159 |#1|) "failed") (-1159 |#1|) (-1159 |#1|))) (-15 -3064 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1377 ((-3 (-1159 |#1|) "failed") (-1159 |#1|))) (-15 -3245 ((-1159 |#1|) |#1| (-567))) (-15 -3096 ((-1159 (-567)) (-567))) (-15 -2922 ((-1159 (-567)) (-567))) (-15 -2371 ((-1159 |#1|) |#1|)) (-15 -4131 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -3665 ((-1159 |#1|) (-1159 |#1|))) (-15 -3849 ((-1159 |#1|) (-1 |#1| (-567)) (-1159 |#1|))) (-15 -2504 ((-1159 |#1|) |#1|)) (-15 -2913 ((-1159 |#1|) (-1159 |#1|) |#1|)) (-15 -1639 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -2490 ((-1159 |#1|) (-1159 |#1|))) (-15 -4127 ((-1159 |#1|) (-1159 |#1|))) (-15 -2058 ((-1159 |#1|) (-1159 (-1159 |#1|)))) (-15 -2382 ((-1159 |#1|) (-1159 |#1|))) (-15 -2761 ((-1159 |#1|) (-1159 |#1|))) (-15 -3417 ((-1159 |#1|) (-1159 |#1|))) (-15 -3396 ((-1159 |#1|) (-1159 |#1|) (-567) (-567))) (-15 -4324 ((-1159 |#1|) (-567) (-567) (-1159 |#1|))) (-15 -2654 ((-1159 |#1|) (-567) (-567) (-1159 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ((-1159 |#1|) |#1| (-1159 |#1|))) (-15 -3034 ((-1159 |#1|) |#1| (-1 (-1159 |#1|)))) (-15 -3950 ((-1159 |#1|) (-1159 (-1159 |#1|)))) (-15 -1815 ((-1159 |#1|) (-410 (-567)) (-1159 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2645 ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1575 ((-1159 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1159 |#1|)))) (-15 -3987 ((-1159 |#1|) |#1| (-1159 |#1|)))) |%noBranch|)) -((-1406 (((-1159 |#1|) (-1159 |#1|)) 60)) (-2545 (((-1159 |#1|) (-1159 |#1|)) 42)) (-1380 (((-1159 |#1|) (-1159 |#1|)) 56)) (-2524 (((-1159 |#1|) (-1159 |#1|)) 38)) (-1431 (((-1159 |#1|) (-1159 |#1|)) 63)) (-2565 (((-1159 |#1|) (-1159 |#1|)) 45)) (-2734 (((-1159 |#1|) (-1159 |#1|)) 34)) (-4272 (((-1159 |#1|) (-1159 |#1|)) 29)) (-1443 (((-1159 |#1|) (-1159 |#1|)) 64)) (-2576 (((-1159 |#1|) (-1159 |#1|)) 46)) (-1418 (((-1159 |#1|) (-1159 |#1|)) 61)) (-2555 (((-1159 |#1|) (-1159 |#1|)) 43)) (-1394 (((-1159 |#1|) (-1159 |#1|)) 58)) (-2533 (((-1159 |#1|) (-1159 |#1|)) 40)) (-1481 (((-1159 |#1|) (-1159 |#1|)) 68)) (-2610 (((-1159 |#1|) (-1159 |#1|)) 50)) (-1456 (((-1159 |#1|) (-1159 |#1|)) 66)) (-2588 (((-1159 |#1|) (-1159 |#1|)) 48)) (-1505 (((-1159 |#1|) (-1159 |#1|)) 71)) (-2632 (((-1159 |#1|) (-1159 |#1|)) 53)) (-2090 (((-1159 |#1|) (-1159 |#1|)) 72)) (-1367 (((-1159 |#1|) (-1159 |#1|)) 54)) (-1492 (((-1159 |#1|) (-1159 |#1|)) 70)) (-2621 (((-1159 |#1|) (-1159 |#1|)) 52)) (-1468 (((-1159 |#1|) (-1159 |#1|)) 69)) (-2599 (((-1159 |#1|) (-1159 |#1|)) 51)) (** (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 36))) -(((-1164 |#1|) (-10 -7 (-15 -4272 ((-1159 |#1|) (-1159 |#1|))) (-15 -2734 ((-1159 |#1|) (-1159 |#1|))) (-15 ** ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -2524 ((-1159 |#1|) (-1159 |#1|))) (-15 -2533 ((-1159 |#1|) (-1159 |#1|))) (-15 -2545 ((-1159 |#1|) (-1159 |#1|))) (-15 -2555 ((-1159 |#1|) (-1159 |#1|))) (-15 -2565 ((-1159 |#1|) (-1159 |#1|))) (-15 -2576 ((-1159 |#1|) (-1159 |#1|))) (-15 -2588 ((-1159 |#1|) (-1159 |#1|))) (-15 -2599 ((-1159 |#1|) (-1159 |#1|))) (-15 -2610 ((-1159 |#1|) (-1159 |#1|))) (-15 -2621 ((-1159 |#1|) (-1159 |#1|))) (-15 -2632 ((-1159 |#1|) (-1159 |#1|))) (-15 -1367 ((-1159 |#1|) (-1159 |#1|))) (-15 -1380 ((-1159 |#1|) (-1159 |#1|))) (-15 -1394 ((-1159 |#1|) (-1159 |#1|))) (-15 -1406 ((-1159 |#1|) (-1159 |#1|))) (-15 -1418 ((-1159 |#1|) (-1159 |#1|))) (-15 -1431 ((-1159 |#1|) (-1159 |#1|))) (-15 -1443 ((-1159 |#1|) (-1159 |#1|))) (-15 -1456 ((-1159 |#1|) (-1159 |#1|))) (-15 -1468 ((-1159 |#1|) (-1159 |#1|))) (-15 -1481 ((-1159 |#1|) (-1159 |#1|))) (-15 -1492 ((-1159 |#1|) (-1159 |#1|))) (-15 -1505 ((-1159 |#1|) (-1159 |#1|))) (-15 -2090 ((-1159 |#1|) (-1159 |#1|)))) (-38 (-410 (-567)))) (T -1164)) -((-2090 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1431 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1380 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-1367 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2632 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2610 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2588 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2565 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2555 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1164 *3))))) -(-10 -7 (-15 -4272 ((-1159 |#1|) (-1159 |#1|))) (-15 -2734 ((-1159 |#1|) (-1159 |#1|))) (-15 ** ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -2524 ((-1159 |#1|) (-1159 |#1|))) (-15 -2533 ((-1159 |#1|) (-1159 |#1|))) (-15 -2545 ((-1159 |#1|) (-1159 |#1|))) (-15 -2555 ((-1159 |#1|) (-1159 |#1|))) (-15 -2565 ((-1159 |#1|) (-1159 |#1|))) (-15 -2576 ((-1159 |#1|) (-1159 |#1|))) (-15 -2588 ((-1159 |#1|) (-1159 |#1|))) (-15 -2599 ((-1159 |#1|) (-1159 |#1|))) (-15 -2610 ((-1159 |#1|) (-1159 |#1|))) (-15 -2621 ((-1159 |#1|) (-1159 |#1|))) (-15 -2632 ((-1159 |#1|) (-1159 |#1|))) (-15 -1367 ((-1159 |#1|) (-1159 |#1|))) (-15 -1380 ((-1159 |#1|) (-1159 |#1|))) (-15 -1394 ((-1159 |#1|) (-1159 |#1|))) (-15 -1406 ((-1159 |#1|) (-1159 |#1|))) (-15 -1418 ((-1159 |#1|) (-1159 |#1|))) (-15 -1431 ((-1159 |#1|) (-1159 |#1|))) (-15 -1443 ((-1159 |#1|) (-1159 |#1|))) (-15 -1456 ((-1159 |#1|) (-1159 |#1|))) (-15 -1468 ((-1159 |#1|) (-1159 |#1|))) (-15 -1481 ((-1159 |#1|) (-1159 |#1|))) (-15 -1492 ((-1159 |#1|) (-1159 |#1|))) (-15 -1505 ((-1159 |#1|) (-1159 |#1|))) (-15 -2090 ((-1159 |#1|) (-1159 |#1|)))) -((-1406 (((-1159 |#1|) (-1159 |#1|)) 108)) (-2545 (((-1159 |#1|) (-1159 |#1|)) 65)) (-2248 (((-2 (|:| -1380 (-1159 |#1|)) (|:| -1394 (-1159 |#1|))) (-1159 |#1|)) 104)) (-1380 (((-1159 |#1|) (-1159 |#1|)) 105)) (-1569 (((-2 (|:| -2524 (-1159 |#1|)) (|:| -2533 (-1159 |#1|))) (-1159 |#1|)) 54)) (-2524 (((-1159 |#1|) (-1159 |#1|)) 55)) (-1431 (((-1159 |#1|) (-1159 |#1|)) 110)) (-2565 (((-1159 |#1|) (-1159 |#1|)) 72)) (-2734 (((-1159 |#1|) (-1159 |#1|)) 40)) (-4272 (((-1159 |#1|) (-1159 |#1|)) 37)) (-1443 (((-1159 |#1|) (-1159 |#1|)) 111)) (-2576 (((-1159 |#1|) (-1159 |#1|)) 73)) (-1418 (((-1159 |#1|) (-1159 |#1|)) 109)) (-2555 (((-1159 |#1|) (-1159 |#1|)) 68)) (-1394 (((-1159 |#1|) (-1159 |#1|)) 106)) (-2533 (((-1159 |#1|) (-1159 |#1|)) 56)) (-1481 (((-1159 |#1|) (-1159 |#1|)) 119)) (-2610 (((-1159 |#1|) (-1159 |#1|)) 94)) (-1456 (((-1159 |#1|) (-1159 |#1|)) 113)) (-2588 (((-1159 |#1|) (-1159 |#1|)) 90)) (-1505 (((-1159 |#1|) (-1159 |#1|)) 123)) (-2632 (((-1159 |#1|) (-1159 |#1|)) 98)) (-2090 (((-1159 |#1|) (-1159 |#1|)) 125)) (-1367 (((-1159 |#1|) (-1159 |#1|)) 100)) (-1492 (((-1159 |#1|) (-1159 |#1|)) 121)) (-2621 (((-1159 |#1|) (-1159 |#1|)) 96)) (-1468 (((-1159 |#1|) (-1159 |#1|)) 115)) (-2599 (((-1159 |#1|) (-1159 |#1|)) 92)) (** (((-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) 41))) -(((-1165 |#1|) (-10 -7 (-15 -4272 ((-1159 |#1|) (-1159 |#1|))) (-15 -2734 ((-1159 |#1|) (-1159 |#1|))) (-15 ** ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1569 ((-2 (|:| -2524 (-1159 |#1|)) (|:| -2533 (-1159 |#1|))) (-1159 |#1|))) (-15 -2524 ((-1159 |#1|) (-1159 |#1|))) (-15 -2533 ((-1159 |#1|) (-1159 |#1|))) (-15 -2545 ((-1159 |#1|) (-1159 |#1|))) (-15 -2555 ((-1159 |#1|) (-1159 |#1|))) (-15 -2565 ((-1159 |#1|) (-1159 |#1|))) (-15 -2576 ((-1159 |#1|) (-1159 |#1|))) (-15 -2588 ((-1159 |#1|) (-1159 |#1|))) (-15 -2599 ((-1159 |#1|) (-1159 |#1|))) (-15 -2610 ((-1159 |#1|) (-1159 |#1|))) (-15 -2621 ((-1159 |#1|) (-1159 |#1|))) (-15 -2632 ((-1159 |#1|) (-1159 |#1|))) (-15 -1367 ((-1159 |#1|) (-1159 |#1|))) (-15 -2248 ((-2 (|:| -1380 (-1159 |#1|)) (|:| -1394 (-1159 |#1|))) (-1159 |#1|))) (-15 -1380 ((-1159 |#1|) (-1159 |#1|))) (-15 -1394 ((-1159 |#1|) (-1159 |#1|))) (-15 -1406 ((-1159 |#1|) (-1159 |#1|))) (-15 -1418 ((-1159 |#1|) (-1159 |#1|))) (-15 -1431 ((-1159 |#1|) (-1159 |#1|))) (-15 -1443 ((-1159 |#1|) (-1159 |#1|))) (-15 -1456 ((-1159 |#1|) (-1159 |#1|))) (-15 -1468 ((-1159 |#1|) (-1159 |#1|))) (-15 -1481 ((-1159 |#1|) (-1159 |#1|))) (-15 -1492 ((-1159 |#1|) (-1159 |#1|))) (-15 -1505 ((-1159 |#1|) (-1159 |#1|))) (-15 -2090 ((-1159 |#1|) (-1159 |#1|)))) (-38 (-410 (-567)))) (T -1165)) -((-2090 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1468 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1431 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1380 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2248 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -1380 (-1159 *4)) (|:| -1394 (-1159 *4)))) (-5 *1 (-1165 *4)) (-5 *3 (-1159 *4)))) (-1367 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2632 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2610 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2588 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2565 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2555 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-1569 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -2524 (-1159 *4)) (|:| -2533 (-1159 *4)))) (-5 *1 (-1165 *4)) (-5 *3 (-1159 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3)))) (-4272 (*1 *2 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1165 *3))))) -(-10 -7 (-15 -4272 ((-1159 |#1|) (-1159 |#1|))) (-15 -2734 ((-1159 |#1|) (-1159 |#1|))) (-15 ** ((-1159 |#1|) (-1159 |#1|) (-1159 |#1|))) (-15 -1569 ((-2 (|:| -2524 (-1159 |#1|)) (|:| -2533 (-1159 |#1|))) (-1159 |#1|))) (-15 -2524 ((-1159 |#1|) (-1159 |#1|))) (-15 -2533 ((-1159 |#1|) (-1159 |#1|))) (-15 -2545 ((-1159 |#1|) (-1159 |#1|))) (-15 -2555 ((-1159 |#1|) (-1159 |#1|))) (-15 -2565 ((-1159 |#1|) (-1159 |#1|))) (-15 -2576 ((-1159 |#1|) (-1159 |#1|))) (-15 -2588 ((-1159 |#1|) (-1159 |#1|))) (-15 -2599 ((-1159 |#1|) (-1159 |#1|))) (-15 -2610 ((-1159 |#1|) (-1159 |#1|))) (-15 -2621 ((-1159 |#1|) (-1159 |#1|))) (-15 -2632 ((-1159 |#1|) (-1159 |#1|))) (-15 -1367 ((-1159 |#1|) (-1159 |#1|))) (-15 -2248 ((-2 (|:| -1380 (-1159 |#1|)) (|:| -1394 (-1159 |#1|))) (-1159 |#1|))) (-15 -1380 ((-1159 |#1|) (-1159 |#1|))) (-15 -1394 ((-1159 |#1|) (-1159 |#1|))) (-15 -1406 ((-1159 |#1|) (-1159 |#1|))) (-15 -1418 ((-1159 |#1|) (-1159 |#1|))) (-15 -1431 ((-1159 |#1|) (-1159 |#1|))) (-15 -1443 ((-1159 |#1|) (-1159 |#1|))) (-15 -1456 ((-1159 |#1|) (-1159 |#1|))) (-15 -1468 ((-1159 |#1|) (-1159 |#1|))) (-15 -1481 ((-1159 |#1|) (-1159 |#1|))) (-15 -1492 ((-1159 |#1|) (-1159 |#1|))) (-15 -1505 ((-1159 |#1|) (-1159 |#1|))) (-15 -2090 ((-1159 |#1|) (-1159 |#1|)))) -((-3425 (((-960 |#2|) |#2| |#2|) 51)) (-1873 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308))))) -(((-1166 |#1| |#2|) (-10 -7 (-15 -3425 ((-960 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -1873 (|#2| |#2| |#1|)) |%noBranch|)) (-559) (-1245 |#1|)) (T -1166)) -((-1873 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1166 *3 *2)) (-4 *2 (-1245 *3)))) (-3425 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-960 *3)) (-5 *1 (-1166 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3425 ((-960 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -1873 (|#2| |#2| |#1|)) |%noBranch|)) -((-2487 (((-112) $ $) NIL)) (-4297 (($ $ (-645 (-772))) 81)) (-2107 (($) 33)) (-3297 (($ $) 51)) (-2170 (((-645 $) $) 60)) (-4110 (((-112) $) 19)) (-3326 (((-645 (-945 |#2|)) $) 88)) (-2121 (($ $) 82)) (-3710 (((-772) $) 47)) (-4223 (($) 32)) (-4224 (($ $ (-645 (-772)) (-945 |#2|)) 74) (($ $ (-645 (-772)) (-772)) 75) (($ $ (-772) (-945 |#2|)) 77)) (-1315 (($ $ $) 57) (($ (-645 $)) 59)) (-2411 (((-772) $) 89)) (-1972 (((-112) $) 15)) (-1812 (((-1161) $) NIL)) (-4135 (((-112) $) 22)) (-3479 (((-1122) $) NIL)) (-4322 (((-171) $) 87)) (-2842 (((-945 |#2|) $) 83)) (-3490 (((-772) $) 84)) (-2891 (((-112) $) 86)) (-2316 (($ $ (-645 (-772)) (-171)) 80)) (-3348 (($ $) 52)) (-2504 (((-863) $) 100)) (-2839 (($ $ (-645 (-772)) (-112)) 79)) (-2629 (((-645 $) $) 11)) (-3814 (($ $ (-772)) 46)) (-2780 (($ $) 43)) (-3858 (((-112) $ $) NIL)) (-1490 (($ $ $ (-945 |#2|) (-772)) 70)) (-3226 (($ $ (-945 |#2|)) 69)) (-3473 (($ $ (-645 (-772)) (-945 |#2|)) 66) (($ $ (-645 (-772)) (-772)) 72) (((-772) $ (-945 |#2|)) 73)) (-2968 (((-112) $ $) 94))) -(((-1167 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -1972 ((-112) $)) (-15 -4110 ((-112) $)) (-15 -4135 ((-112) $)) (-15 -4223 ($)) (-15 -2107 ($)) (-15 -2780 ($ $)) (-15 -3814 ($ $ (-772))) (-15 -2629 ((-645 $) $)) (-15 -3710 ((-772) $)) (-15 -3297 ($ $)) (-15 -3348 ($ $)) (-15 -1315 ($ $ $)) (-15 -1315 ($ (-645 $))) (-15 -2170 ((-645 $) $)) (-15 -3473 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -3226 ($ $ (-945 |#2|))) (-15 -1490 ($ $ $ (-945 |#2|) (-772))) (-15 -4224 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -3473 ($ $ (-645 (-772)) (-772))) (-15 -4224 ($ $ (-645 (-772)) (-772))) (-15 -3473 ((-772) $ (-945 |#2|))) (-15 -4224 ($ $ (-772) (-945 |#2|))) (-15 -2839 ($ $ (-645 (-772)) (-112))) (-15 -2316 ($ $ (-645 (-772)) (-171))) (-15 -4297 ($ $ (-645 (-772)))) (-15 -2842 ((-945 |#2|) $)) (-15 -3490 ((-772) $)) (-15 -2891 ((-112) $)) (-15 -4322 ((-171) $)) (-15 -2411 ((-772) $)) (-15 -2121 ($ $)) (-15 -3326 ((-645 (-945 |#2|)) $)))) (-923) (-1051)) (T -1167)) -((-1972 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4223 (*1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-2107 (*1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-2780 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3297 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-3348 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-1315 (*1 *1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-1315 (*1 *1 *2) (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3473 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-945 *4)) (-4 *4 (-1051)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)))) (-1490 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-945 *5)) (-5 *3 (-772)) (-4 *5 (-1051)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-4224 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-3473 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-4224 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-3473 (*1 *2 *1 *3) (-12 (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *2 (-772)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-4224 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) (-2839 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-2316 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)) (-4 *5 (-1051)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-945 *4)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051)))) (-2121 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-645 (-945 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) (-4 *4 (-1051))))) -(-13 (-1102) (-10 -8 (-15 -1972 ((-112) $)) (-15 -4110 ((-112) $)) (-15 -4135 ((-112) $)) (-15 -4223 ($)) (-15 -2107 ($)) (-15 -2780 ($ $)) (-15 -3814 ($ $ (-772))) (-15 -2629 ((-645 $) $)) (-15 -3710 ((-772) $)) (-15 -3297 ($ $)) (-15 -3348 ($ $)) (-15 -1315 ($ $ $)) (-15 -1315 ($ (-645 $))) (-15 -2170 ((-645 $) $)) (-15 -3473 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -3226 ($ $ (-945 |#2|))) (-15 -1490 ($ $ $ (-945 |#2|) (-772))) (-15 -4224 ($ $ (-645 (-772)) (-945 |#2|))) (-15 -3473 ($ $ (-645 (-772)) (-772))) (-15 -4224 ($ $ (-645 (-772)) (-772))) (-15 -3473 ((-772) $ (-945 |#2|))) (-15 -4224 ($ $ (-772) (-945 |#2|))) (-15 -2839 ($ $ (-645 (-772)) (-112))) (-15 -2316 ($ $ (-645 (-772)) (-171))) (-15 -4297 ($ $ (-645 (-772)))) (-15 -2842 ((-945 |#2|) $)) (-15 -3490 ((-772) $)) (-15 -2891 ((-112) $)) (-15 -4322 ((-171) $)) (-15 -2411 ((-772) $)) (-15 -2121 ($ $)) (-15 -3326 ((-645 (-945 |#2|)) $)))) -((-2487 (((-112) $ $) NIL)) (-2141 ((|#2| $) 11)) (-2128 ((|#1| $) 10)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2516 (($ |#1| |#2|) 9)) (-2504 (((-863) $) 16)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1168 |#1| |#2|) (-13 (-1102) (-10 -8 (-15 -2516 ($ |#1| |#2|)) (-15 -2128 (|#1| $)) (-15 -2141 (|#2| $)))) (-1102) (-1102)) (T -1168)) -((-2516 (*1 *1 *2 *3) (-12 (-5 *1 (-1168 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-2128 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-1168 *2 *3)) (-4 *3 (-1102)))) (-2141 (*1 *2 *1) (-12 (-4 *2 (-1102)) (-5 *1 (-1168 *3 *2)) (-4 *3 (-1102))))) -(-13 (-1102) (-10 -8 (-15 -2516 ($ |#1| |#2|)) (-15 -2128 (|#1| $)) (-15 -2141 (|#2| $)))) -((-2487 (((-112) $ $) NIL)) (-2301 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1169) (-13 (-1085) (-10 -8 (-15 -2301 ((-1137) $))))) (T -1169)) -((-2301 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1169))))) -(-13 (-1085) (-10 -8 (-15 -2301 ((-1137) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 (((-1177 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 11)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1987 (($ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3342 (((-112) $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3413 (($ $ (-567)) NIL) (($ $ (-567) (-567)) 75)) (-3785 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-4159 (((-1177 |#1| |#2| |#3|) $) 42)) (-3349 (((-3 (-1177 |#1| |#2| |#3|) "failed") $) 32)) (-3838 (((-1177 |#1| |#2| |#3|) $) 33)) (-1406 (($ $) 116 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1380 (($ $) 112 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-2777 (((-567) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2686 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-1431 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-1177 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1179) "failed") $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-3094 (((-1177 |#1| |#2| |#3|) $) 140) (((-1179) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-1881 (($ $) 37) (($ (-567) $) 38)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-1177 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2434 (-690 (-1177 |#1| |#2| |#3|))) (|:| |vec| (-1269 (-1177 |#1| |#2| |#3|)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-1377 (((-3 $ "failed") $) 54)) (-2343 (((-410 (-954 |#1|)) $ (-567)) 74 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 76 (|has| |#1| (-559)))) (-2119 (($) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3635 (((-112) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3219 (((-112) $) 28)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-888 (-567))) (|has| |#1| (-365))))) (-3905 (((-567) $) NIL) (((-567) $ (-567)) 26)) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-4294 (((-1177 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3104 (((-3 $ "failed") $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))))) (-2585 (((-112) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2240 (($ $ (-923)) NIL)) (-3172 (($ (-1 |#1| (-567)) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-567)) 19) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-2727 (($ $ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-1446 (($ $ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-2734 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1709 (($ (-567) (-1177 |#1| |#2| |#3|)) 36)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-3670 (($ $) 79 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 80 (|has| |#1| (-38 (-410 (-567)))))) (-2221 (($) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3989 (($ $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-1952 (((-1177 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-1678 (($ $ (-567)) 158)) (-2478 (((-3 $ "failed") $ $) 55 (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4272 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1179) (-1177 |#1| |#2| |#3|)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-517 (-1179) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 (-1177 |#1| |#2| |#3|))) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-517 (-1179) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1177 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1177 |#1| |#2| |#3|))) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1177 |#1| |#2| |#3|)) (-645 (-1177 |#1| |#2| |#3|))) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-310 (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ (-567)) NIL) (($ $ $) 61 (|has| (-567) (-1114))) (($ $ (-1177 |#1| |#2| |#3|)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-287 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-3592 (($ $ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1265 |#2|)) 57) (($ $ (-772)) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 56 (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-2964 (($ $) NIL (|has| |#1| (-365)))) (-4306 (((-1177 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-3380 (((-567) $) 43)) (-1443 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 118 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 114 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-1322 (((-539) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-4314 (($ $) NIL)) (-2504 (((-863) $) 162) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1177 |#1| |#2| |#3|)) 30) (($ (-1265 |#2|)) 25) (($ (-1179)) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (($ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-4038 ((|#1| $ (-567)) 77)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3118 ((|#1| $) 12)) (-3471 (((-1177 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1456 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 110 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 106 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-1368 (($ $) NIL (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1807 (($) 21 T CONST)) (-1820 (($) 16 T CONST)) (-2856 (($ $ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-3016 (((-112) $ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2996 (((-112) $ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2986 (((-112) $ $) NIL (-2836 (-12 (|has| (-1177 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1177 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1177 |#1| |#2| |#3|) (-1177 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 23)) (** (($ $ (-923)) NIL) (($ $ (-772)) 60) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1177 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1177 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1170 |#1| |#2| |#3|) (-13 (-1231 |#1| (-1177 |#1| |#2| |#3|)) (-10 -8 (-15 -2504 ($ (-1265 |#2|))) (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1170)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) -(-13 (-1231 |#1| (-1177 |#1| |#2| |#3|)) (-10 -8 (-15 -2504 ($ (-1265 |#2|))) (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) -((-3112 ((|#2| |#2| (-1094 |#2|)) 26) ((|#2| |#2| (-1179)) 28))) -(((-1171 |#1| |#2|) (-10 -7 (-15 -3112 (|#2| |#2| (-1179))) (-15 -3112 (|#2| |#2| (-1094 |#2|)))) (-13 (-559) (-1040 (-567)) (-640 (-567))) (-13 (-433 |#1|) (-160) (-27) (-1204))) (T -1171)) -((-3112 (*1 *2 *2 *3) (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1204))) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1171 *4 *2)))) (-3112 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1171 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1204)))))) -(-10 -7 (-15 -3112 (|#2| |#2| (-1179))) (-15 -3112 (|#2| |#2| (-1094 |#2|)))) -((-3112 (((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))) 31) (((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|))) 44) (((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1179)) 33) (((-410 (-954 |#1|)) (-954 |#1|) (-1179)) 36))) -(((-1172 |#1|) (-10 -7 (-15 -3112 ((-410 (-954 |#1|)) (-954 |#1|) (-1179))) (-15 -3112 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1179))) (-15 -3112 ((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|)))) (-15 -3112 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))))) (-13 (-559) (-1040 (-567)))) (T -1172)) -((-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1172 *5)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-954 *5))) (-5 *3 (-954 *5)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 *3)) (-5 *1 (-1172 *5)))) (-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 (-410 (-954 *5)) (-317 *5))) (-5 *1 (-1172 *5)) (-5 *3 (-410 (-954 *5))))) (-3112 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-954 *5))) (-5 *1 (-1172 *5)) (-5 *3 (-954 *5))))) -(-10 -7 (-15 -3112 ((-410 (-954 |#1|)) (-954 |#1|) (-1179))) (-15 -3112 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1179))) (-15 -3112 ((-410 (-954 |#1|)) (-954 |#1|) (-1094 (-954 |#1|)))) (-15 -3112 ((-3 (-410 (-954 |#1|)) (-317 |#1|)) (-410 (-954 |#1|)) (-1094 (-410 (-954 |#1|)))))) -((-4364 (((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)) 13))) -(((-1173 |#1| |#2|) (-10 -7 (-15 -4364 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)))) (-1051) (-1051)) (T -1173)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-5 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6))))) -(-10 -7 (-15 -4364 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)))) -((-1466 (((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|))) 51)) (-3661 (((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|))) 52))) -(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 ((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|)))) (-15 -1466 ((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|))))) (-794) (-851) (-455) (-951 |#3| |#1| |#2|)) (T -1174)) -((-1466 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 (-410 *7)))) (-5 *1 (-1174 *4 *5 *6 *7)) (-5 *3 (-1175 (-410 *7))))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 (-410 *7)))) (-5 *1 (-1174 *4 *5 *6 *7)) (-5 *3 (-1175 (-410 *7)))))) -(-10 -7 (-15 -3661 ((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|)))) (-15 -1466 ((-421 (-1175 (-410 |#4|))) (-1175 (-410 |#4|))))) -((-2487 (((-112) $ $) 171)) (-2684 (((-112) $) 43)) (-1995 (((-1269 |#1|) $ (-772)) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-3678 (($ (-1175 |#1|)) NIL)) (-3633 (((-1175 $) $ (-1084)) 82) (((-1175 |#1|) $) 71)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) 164 (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2717 (($ $ $) 158 (|has| |#1| (-559)))) (-2701 (((-421 (-1175 $)) (-1175 $)) 95 (|has| |#1| (-911)))) (-3864 (($ $) NIL (|has| |#1| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 115 (|has| |#1| (-911)))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1863 (($ $ (-772)) 61)) (-1751 (($ $ (-772)) 63)) (-2170 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-3094 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-1084) $) NIL)) (-2304 (($ $ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) 80)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-2497 (($ $ $) 131)) (-4228 (($ $ $) NIL (|has| |#1| (-559)))) (-3207 (((-2 (|:| -1344 |#1|) (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-559)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1873 (($ $) 165 (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#1| (-911)))) (-1978 (($ $ |#1| (-772) $) 69)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-2112 (((-863) $ (-863)) 148)) (-3905 (((-772) $ $) NIL (|has| |#1| (-559)))) (-4384 (((-112) $) 48)) (-1921 (((-772) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3772 (($ (-1175 |#1|) (-1084)) 73) (($ (-1175 $) (-1084)) 89)) (-2240 (($ $ (-772)) 51)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) 87) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-1084)) NIL) (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 153)) (-1562 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-2972 (($ (-1 (-772) (-772)) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-4163 (((-1175 |#1|) $) NIL)) (-2047 (((-3 (-1084) "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) 76)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1812 (((-1161) $) NIL)) (-3287 (((-2 (|:| -3693 $) (|:| -2642 $)) $ (-772)) 60)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-1084)) (|:| -2618 (-772))) "failed") $) NIL)) (-3670 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2221 (($) NIL (|has| |#1| (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) 50)) (-1774 ((|#1| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 103 (|has| |#1| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 167 (|has| |#1| (-455)))) (-2755 (($ $ (-772) |#1| $) 123)) (-2273 (((-421 (-1175 $)) (-1175 $)) 101 (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) 100 (|has| |#1| (-911)))) (-3661 (((-421 $) $) 108 (|has| |#1| (-911)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-2478 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#1|) NIL) (($ $ (-645 (-1084)) (-645 |#1|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2462 (((-3 $ "failed") $ (-772)) 54)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 172 (|has| |#1| (-365)))) (-2254 (($ $ (-1084)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-3592 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3380 (((-772) $) 78) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) 162 (|has| |#1| (-455))) (($ $ (-1084)) NIL (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-911))))) (-2557 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-2504 (((-863) $) 149) (($ (-567)) NIL) (($ |#1|) 77) (($ (-1084)) NIL) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) 41 (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) 17 T CONST)) (-1820 (($) 19 T CONST)) (-2856 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2968 (((-112) $ $) 120)) (-3064 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 90)) (** (($ $ (-923)) 14) (($ $ (-772)) 12)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1175 |#1|) (-13 (-1245 |#1|) (-10 -8 (-15 -2112 ((-863) $ (-863))) (-15 -2755 ($ $ (-772) |#1| $)))) (-1051)) (T -1175)) -((-2112 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-1175 *3)) (-4 *3 (-1051)))) (-2755 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1175 *3)) (-4 *3 (-1051))))) -(-13 (-1245 |#1|) (-10 -8 (-15 -2112 ((-863) $ (-863))) (-15 -2755 ($ $ (-772) |#1| $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 11)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3413 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3785 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-1406 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1380 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-1431 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-1170 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1177 |#1| |#2| |#3|) "failed") $) 36)) (-3094 (((-1170 |#1| |#2| |#3|) $) NIL) (((-1177 |#1| |#2| |#3|) $) NIL)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-4357 (((-410 (-567)) $) 59)) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-1726 (($ (-410 (-567)) (-1170 |#1| |#2| |#3|)) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3219 (((-112) $) NIL)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-410 (-567))) 20) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2197 (((-1170 |#1| |#2| |#3|) $) 41)) (-4258 (((-3 (-1170 |#1| |#2| |#3|) "failed") $) NIL)) (-1709 (((-1170 |#1| |#2| |#3|) $) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-3670 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-1678 (($ $ (-410 (-567))) NIL)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4272 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1265 |#2|)) 38)) (-3380 (((-410 (-567)) $) NIL)) (-1443 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) NIL)) (-2504 (((-863) $) 62) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1170 |#1| |#2| |#3|)) 30) (($ (-1177 |#1| |#2| |#3|)) 31) (($ (-1265 |#2|)) 26) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4038 ((|#1| $ (-410 (-567))) NIL)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3118 ((|#1| $) 12)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 22 T CONST)) (-1820 (($) 16 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 24)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1176 |#1| |#2| |#3|) (-13 (-1252 |#1| (-1170 |#1| |#2| |#3|)) (-1040 (-1177 |#1| |#2| |#3|)) (-617 (-1265 |#2|)) (-10 -8 (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1176)) -((-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) -(-13 (-1252 |#1| (-1170 |#1| |#2| |#3|)) (-1040 (-1177 |#1| |#2| |#3|)) (-617 (-1265 |#2|)) (-10 -8 (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 131)) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 121)) (-2923 (((-1242 |#2| |#1|) $ (-772)) 69)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3413 (($ $ (-772)) 85) (($ $ (-772) (-772)) 82)) (-3785 (((-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 107)) (-1406 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1380 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 120) (($ (-1159 |#1|)) 115)) (-1431 (($ $) 179 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) 25)) (-1419 (($ $) 28)) (-3204 (((-954 |#1|) $ (-772)) 81) (((-954 |#1|) $ (-772) (-772)) 83)) (-3219 (((-112) $) 126)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-772) $) 128) (((-772) $ (-772)) 130)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) NIL)) (-3172 (($ (-1 |#1| (-567)) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) 13) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2734 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3670 (($ $) 135 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) NIL)) (-1678 (($ $ (-772)) 15)) (-2478 (((-3 $ "failed") $ $) 26 (|has| |#1| (-559)))) (-4272 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1882 ((|#1| $ (-772)) 124) (($ $ $) 134 (|has| (-772) (-1114)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1265 |#2|)) 31)) (-3380 (((-772) $) NIL)) (-1443 (($ $) 181 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 157 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) NIL)) (-2504 (((-863) $) 208) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1242 |#2| |#1|)) 55) (($ (-1265 |#2|)) 36)) (-1516 (((-1159 |#1|) $) 103)) (-4038 ((|#1| $ (-772)) 123)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3118 ((|#1| $) 58)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) 187 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 159 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 191 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 167 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-772)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 193 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 169 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 189 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 165 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 185 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 161 (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 17 T CONST)) (-1820 (($) 20 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) 200)) (-3045 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 143 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1177 |#1| |#2| |#3|) (-13 (-1260 |#1|) (-10 -8 (-15 -2504 ($ (-1242 |#2| |#1|))) (-15 -2923 ((-1242 |#2| |#1|) $ (-772))) (-15 -2504 ($ (-1265 |#2|))) (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1177)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1242 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3) (-5 *1 (-1177 *3 *4 *5)))) (-2923 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1242 *5 *4)) (-5 *1 (-1177 *4 *5 *6)) (-4 *4 (-1051)) (-14 *5 (-1179)) (-14 *6 *4))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) -(-13 (-1260 |#1|) (-10 -8 (-15 -2504 ($ (-1242 |#2| |#1|))) (-15 -2923 ((-1242 |#2| |#1|) $ (-772))) (-15 -2504 ($ (-1265 |#2|))) (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) -((-2504 (((-863) $) 33) (($ (-1179)) 35)) (-2836 (($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2826 (($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-2738 (($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-2725 (($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-2714 (($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-2704 (($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2147 (($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45))) -(((-1178) (-13 (-614 (-863)) (-10 -8 (-15 -2504 ($ (-1179))) (-15 -2738 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2714 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2725 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2704 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2836 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2147 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2826 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2826 ($ $))))) (T -1178)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1178)))) (-2738 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2714 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2725 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2704 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2836 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2147 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2826 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) (-5 *1 (-1178)))) (-2826 (*1 *1 *1) (-5 *1 (-1178)))) -(-13 (-614 (-863)) (-10 -8 (-15 -2504 ($ (-1179))) (-15 -2738 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2714 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2725 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2704 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2836 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2147 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2826 ($ (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2826 ($ $)))) -((-2487 (((-112) $ $) NIL)) (-2153 (($ $ (-645 (-863))) 64)) (-1547 (($ $ (-645 (-863))) 62)) (-3322 (((-1161) $) 103)) (-3624 (((-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) (|:| |args| (-645 (-863)))) $) 110)) (-1973 (((-112) $) 23)) (-2468 (($ $ (-645 (-645 (-863)))) 61) (($ $ (-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) (|:| |args| (-645 (-863))))) 101)) (-3758 (($) 166 T CONST)) (-4256 (((-1274)) 138)) (-2959 (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 71) (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 78)) (-4223 (($) 124) (($ $) 133)) (-1646 (($ $) 102)) (-2727 (($ $ $) NIL)) (-1446 (($ $ $) NIL)) (-3316 (((-645 $) $) 139)) (-1812 (((-1161) $) 116)) (-3479 (((-1122) $) NIL)) (-1882 (($ $ (-645 (-863))) 63)) (-1322 (((-539) $) 48) (((-1179) $) 49) (((-894 (-567)) $) 82) (((-894 (-381)) $) 80)) (-2504 (((-863) $) 55) (($ (-1161)) 50)) (-3858 (((-112) $ $) NIL)) (-3903 (($ $ (-645 (-863))) 65)) (-2166 (((-1161) $) 34) (((-1161) $ (-112)) 35) (((-1274) (-823) $) 36) (((-1274) (-823) $ (-112)) 37)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 51)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) 52))) -(((-1179) (-13 (-851) (-615 (-539)) (-829) (-615 (-1179)) (-617 (-1161)) (-615 (-894 (-567))) (-615 (-894 (-381))) (-888 (-567)) (-888 (-381)) (-10 -8 (-15 -4223 ($)) (-15 -4223 ($ $)) (-15 -4256 ((-1274))) (-15 -1646 ($ $)) (-15 -1973 ((-112) $)) (-15 -3624 ((-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -2468 ($ $ (-645 (-645 (-863))))) (-15 -2468 ($ $ (-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -1547 ($ $ (-645 (-863)))) (-15 -2153 ($ $ (-645 (-863)))) (-15 -3903 ($ $ (-645 (-863)))) (-15 -1882 ($ $ (-645 (-863)))) (-15 -3322 ((-1161) $)) (-15 -3316 ((-645 $) $)) (-15 -3758 ($) -3562)))) (T -1179)) -((-4223 (*1 *1) (-5 *1 (-1179))) (-4223 (*1 *1 *1) (-5 *1 (-1179))) (-4256 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1179)))) (-1646 (*1 *1 *1) (-5 *1 (-1179))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1179)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1179)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1179)))) (-1547 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) (-2153 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) (-3903 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1179)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1179)))) (-3758 (*1 *1) (-5 *1 (-1179)))) -(-13 (-851) (-615 (-539)) (-829) (-615 (-1179)) (-617 (-1161)) (-615 (-894 (-567))) (-615 (-894 (-381))) (-888 (-567)) (-888 (-381)) (-10 -8 (-15 -4223 ($)) (-15 -4223 ($ $)) (-15 -4256 ((-1274))) (-15 -1646 ($ $)) (-15 -1973 ((-112) $)) (-15 -3624 ((-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -2468 ($ $ (-645 (-645 (-863))))) (-15 -2468 ($ $ (-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -1547 ($ $ (-645 (-863)))) (-15 -2153 ($ $ (-645 (-863)))) (-15 -3903 ($ $ (-645 (-863)))) (-15 -1882 ($ $ (-645 (-863)))) (-15 -3322 ((-1161) $)) (-15 -3316 ((-645 $) $)) (-15 -3758 ($) -3562))) -((-2137 (((-1269 |#1|) |#1| (-923)) 18) (((-1269 |#1|) (-645 |#1|)) 25))) -(((-1180 |#1|) (-10 -7 (-15 -2137 ((-1269 |#1|) (-645 |#1|))) (-15 -2137 ((-1269 |#1|) |#1| (-923)))) (-1051)) (T -1180)) -((-2137 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1269 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1051)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1051)) (-5 *2 (-1269 *4)) (-5 *1 (-1180 *4))))) -(-10 -7 (-15 -2137 ((-1269 |#1|) (-645 |#1|))) (-15 -2137 ((-1269 |#1|) |#1| (-923)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1040 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-3094 (((-567) $) NIL (|has| |#1| (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1040 (-410 (-567))))) ((|#1| $) NIL)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1873 (($ $) NIL (|has| |#1| (-455)))) (-1978 (($ $ |#1| (-973) $) NIL)) (-4384 (((-112) $) 17)) (-1921 (((-772) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-973)) NIL)) (-1562 (((-973) $) NIL)) (-2972 (($ (-1 (-973) (-973)) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#1| $) NIL)) (-2755 (($ $ (-973) |#1| $) NIL (-12 (|has| (-973) (-131)) (|has| |#1| (-559))))) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3380 (((-973) $) NIL)) (-1390 ((|#1| $) NIL (|has| |#1| (-455)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2836 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1040 (-410 (-567))))))) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ (-973)) NIL)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1807 (($) 11 T CONST)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 21)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1181 |#1|) (-13 (-327 |#1| (-973)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-973) (-131)) (-15 -2755 ($ $ (-973) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) (-1051)) (T -1181)) -((-2755 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-973)) (-4 *2 (-131)) (-5 *1 (-1181 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) -(-13 (-327 |#1| (-973)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-973) (-131)) (-15 -2755 ($ $ (-973) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) -((-1749 (((-1183) (-1179) $) 25)) (-3176 (($) 29)) (-3915 (((-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-1179) $) 22)) (-2983 (((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -2603 "void")) $) 41) (((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) 42) (((-1274) (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) 43)) (-1677 (((-1274) (-1179)) 58)) (-1674 (((-1274) (-1179) $) 55) (((-1274) (-1179)) 56) (((-1274)) 57)) (-2503 (((-1274) (-1179)) 37)) (-4076 (((-1179)) 36)) (-2973 (($) 34)) (-4074 (((-440) (-1179) (-440) (-1179) $) 45) (((-440) (-645 (-1179)) (-440) (-1179) $) 49) (((-440) (-1179) (-440)) 46) (((-440) (-1179) (-440) (-1179)) 50)) (-1331 (((-1179)) 35)) (-2504 (((-863) $) 28)) (-3420 (((-1274)) 30) (((-1274) (-1179)) 33)) (-4312 (((-645 (-1179)) (-1179) $) 24)) (-3959 (((-1274) (-1179) (-645 (-1179)) $) 38) (((-1274) (-1179) (-645 (-1179))) 39) (((-1274) (-645 (-1179))) 40))) -(((-1182) (-13 (-614 (-863)) (-10 -8 (-15 -3176 ($)) (-15 -3420 ((-1274))) (-15 -3420 ((-1274) (-1179))) (-15 -4074 ((-440) (-1179) (-440) (-1179) $)) (-15 -4074 ((-440) (-645 (-1179)) (-440) (-1179) $)) (-15 -4074 ((-440) (-1179) (-440))) (-15 -4074 ((-440) (-1179) (-440) (-1179))) (-15 -2503 ((-1274) (-1179))) (-15 -1331 ((-1179))) (-15 -4076 ((-1179))) (-15 -3959 ((-1274) (-1179) (-645 (-1179)) $)) (-15 -3959 ((-1274) (-1179) (-645 (-1179)))) (-15 -3959 ((-1274) (-645 (-1179)))) (-15 -2983 ((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -2603 "void")) $)) (-15 -2983 ((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -2603 "void")))) (-15 -2983 ((-1274) (-3 (|:| |fst| (-437)) (|:| -2603 "void")))) (-15 -1674 ((-1274) (-1179) $)) (-15 -1674 ((-1274) (-1179))) (-15 -1674 ((-1274))) (-15 -1677 ((-1274) (-1179))) (-15 -2973 ($)) (-15 -3915 ((-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-1179) $)) (-15 -4312 ((-645 (-1179)) (-1179) $)) (-15 -1749 ((-1183) (-1179) $))))) (T -1182)) -((-3176 (*1 *1) (-5 *1 (-1182))) (-3420 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1182)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-4074 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) (-4074 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1179))) (-5 *4 (-1179)) (-5 *1 (-1182)))) (-4074 (*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) (-4074 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-1331 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1182)))) (-4076 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1182)))) (-3959 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2983 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1179)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2983 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-1674 (*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-1674 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1182)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) (-2973 (*1 *1) (-5 *1 (-1182))) (-3915 (*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *1 (-1182)))) (-4312 (*1 *2 *3 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1182)) (-5 *3 (-1179)))) (-1749 (*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-1183)) (-5 *1 (-1182))))) -(-13 (-614 (-863)) (-10 -8 (-15 -3176 ($)) (-15 -3420 ((-1274))) (-15 -3420 ((-1274) (-1179))) (-15 -4074 ((-440) (-1179) (-440) (-1179) $)) (-15 -4074 ((-440) (-645 (-1179)) (-440) (-1179) $)) (-15 -4074 ((-440) (-1179) (-440))) (-15 -4074 ((-440) (-1179) (-440) (-1179))) (-15 -2503 ((-1274) (-1179))) (-15 -1331 ((-1179))) (-15 -4076 ((-1179))) (-15 -3959 ((-1274) (-1179) (-645 (-1179)) $)) (-15 -3959 ((-1274) (-1179) (-645 (-1179)))) (-15 -3959 ((-1274) (-645 (-1179)))) (-15 -2983 ((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -2603 "void")) $)) (-15 -2983 ((-1274) (-1179) (-3 (|:| |fst| (-437)) (|:| -2603 "void")))) (-15 -2983 ((-1274) (-3 (|:| |fst| (-437)) (|:| -2603 "void")))) (-15 -1674 ((-1274) (-1179) $)) (-15 -1674 ((-1274) (-1179))) (-15 -1674 ((-1274))) (-15 -1677 ((-1274) (-1179))) (-15 -2973 ($)) (-15 -3915 ((-3 (|:| |fst| (-437)) (|:| -2603 "void")) (-1179) $)) (-15 -4312 ((-645 (-1179)) (-1179) $)) (-15 -1749 ((-1183) (-1179) $)))) -((-2613 (((-645 (-645 (-3 (|:| -1646 (-1179)) (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) $) 66)) (-2528 (((-645 (-3 (|:| -1646 (-1179)) (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))) (-437) $) 47)) (-2179 (($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-440))))) 17)) (-1677 (((-1274) $) 74)) (-2249 (((-645 (-1179)) $) 22)) (-3252 (((-1106) $) 60)) (-4289 (((-440) (-1179) $) 27)) (-3706 (((-645 (-1179)) $) 30)) (-2973 (($) 19)) (-4074 (((-440) (-645 (-1179)) (-440) $) 25) (((-440) (-1179) (-440) $) 24)) (-2504 (((-863) $) 9) (((-1192 (-1179) (-440)) $) 13))) -(((-1183) (-13 (-614 (-863)) (-10 -8 (-15 -2504 ((-1192 (-1179) (-440)) $)) (-15 -2973 ($)) (-15 -4074 ((-440) (-645 (-1179)) (-440) $)) (-15 -4074 ((-440) (-1179) (-440) $)) (-15 -4289 ((-440) (-1179) $)) (-15 -2249 ((-645 (-1179)) $)) (-15 -2528 ((-645 (-3 (|:| -1646 (-1179)) (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))) (-437) $)) (-15 -3706 ((-645 (-1179)) $)) (-15 -2613 ((-645 (-645 (-3 (|:| -1646 (-1179)) (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) $)) (-15 -3252 ((-1106) $)) (-15 -1677 ((-1274) $)) (-15 -2179 ($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-440))))))))) (T -1183)) -((-2504 (*1 *2 *1) (-12 (-5 *2 (-1192 (-1179) (-440))) (-5 *1 (-1183)))) (-2973 (*1 *1) (-5 *1 (-1183))) (-4074 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1179))) (-5 *1 (-1183)))) (-4074 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1183)))) (-4289 (*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-440)) (-5 *1 (-1183)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1183)))) (-2528 (*1 *2 *3 *1) (-12 (-5 *3 (-437)) (-5 *2 (-645 (-3 (|:| -1646 (-1179)) (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) (-5 *1 (-1183)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1183)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-3 (|:| -1646 (-1179)) (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))))) (-5 *1 (-1183)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1183)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1183)))) (-2179 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-440))))) (-5 *1 (-1183))))) -(-13 (-614 (-863)) (-10 -8 (-15 -2504 ((-1192 (-1179) (-440)) $)) (-15 -2973 ($)) (-15 -4074 ((-440) (-645 (-1179)) (-440) $)) (-15 -4074 ((-440) (-1179) (-440) $)) (-15 -4289 ((-440) (-1179) $)) (-15 -2249 ((-645 (-1179)) $)) (-15 -2528 ((-645 (-3 (|:| -1646 (-1179)) (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))) (-437) $)) (-15 -3706 ((-645 (-1179)) $)) (-15 -2613 ((-645 (-645 (-3 (|:| -1646 (-1179)) (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) $)) (-15 -3252 ((-1106) $)) (-15 -1677 ((-1274) $)) (-15 -2179 ($ (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-440)))))))) -((-2487 (((-112) $ $) NIL)) (-4275 (((-3 (-567) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-509) "failed") $) 43) (((-3 (-1161) "failed") $) 47)) (-3094 (((-567) $) 30) (((-225) $) 36) (((-509) $) 40) (((-1161) $) 48)) (-3250 (((-112) $) 53)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3043 (((-3 (-567) (-225) (-509) (-1161) $) $) 55)) (-2056 (((-645 $) $) 57)) (-1322 (((-1106) $) 24) (($ (-1106)) 25)) (-3203 (((-112) $) 56)) (-2504 (((-863) $) 23) (($ (-567)) 26) (($ (-225)) 32) (($ (-509)) 38) (($ (-1161)) 44) (((-539) $) 59) (((-567) $) 31) (((-225) $) 37) (((-509) $) 41) (((-1161) $) 49)) (-1794 (((-112) $ (|[\|\|]| (-567))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-509))) 19) (((-112) $ (|[\|\|]| (-1161))) 16)) (-2456 (($ (-509) (-645 $)) 51) (($ $ (-645 $)) 52)) (-3858 (((-112) $ $) NIL)) (-3879 (((-567) $) 27) (((-225) $) 33) (((-509) $) 39) (((-1161) $) 45)) (-2968 (((-112) $ $) 7))) -(((-1184) (-13 (-1264) (-1102) (-1040 (-567)) (-1040 (-225)) (-1040 (-509)) (-1040 (-1161)) (-614 (-539)) (-10 -8 (-15 -1322 ((-1106) $)) (-15 -1322 ($ (-1106))) (-15 -2504 ((-567) $)) (-15 -3879 ((-567) $)) (-15 -2504 ((-225) $)) (-15 -3879 ((-225) $)) (-15 -2504 ((-509) $)) (-15 -3879 ((-509) $)) (-15 -2504 ((-1161) $)) (-15 -3879 ((-1161) $)) (-15 -2456 ($ (-509) (-645 $))) (-15 -2456 ($ $ (-645 $))) (-15 -3250 ((-112) $)) (-15 -3043 ((-3 (-567) (-225) (-509) (-1161) $) $)) (-15 -2056 ((-645 $) $)) (-15 -3203 ((-112) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-567)))) (-15 -1794 ((-112) $ (|[\|\|]| (-225)))) (-15 -1794 ((-112) $ (|[\|\|]| (-509)))) (-15 -1794 ((-112) $ (|[\|\|]| (-1161))))))) (T -1184)) -((-1322 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1184)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1184)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1184)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1184)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1184)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1184)))) (-2456 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1184))) (-5 *1 (-1184)))) (-2456 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1184)))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1161) (-1184))) (-5 *1 (-1184)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1184)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1184)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1184)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1184)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)) (-5 *1 (-1184))))) -(-13 (-1264) (-1102) (-1040 (-567)) (-1040 (-225)) (-1040 (-509)) (-1040 (-1161)) (-614 (-539)) (-10 -8 (-15 -1322 ((-1106) $)) (-15 -1322 ($ (-1106))) (-15 -2504 ((-567) $)) (-15 -3879 ((-567) $)) (-15 -2504 ((-225) $)) (-15 -3879 ((-225) $)) (-15 -2504 ((-509) $)) (-15 -3879 ((-509) $)) (-15 -2504 ((-1161) $)) (-15 -3879 ((-1161) $)) (-15 -2456 ($ (-509) (-645 $))) (-15 -2456 ($ $ (-645 $))) (-15 -3250 ((-112) $)) (-15 -3043 ((-3 (-567) (-225) (-509) (-1161) $) $)) (-15 -2056 ((-645 $) $)) (-15 -3203 ((-112) $)) (-15 -1794 ((-112) $ (|[\|\|]| (-567)))) (-15 -1794 ((-112) $ (|[\|\|]| (-225)))) (-15 -1794 ((-112) $ (|[\|\|]| (-509)))) (-15 -1794 ((-112) $ (|[\|\|]| (-1161)))))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) 22)) (-3758 (($) 12 T CONST)) (-2119 (($) 26)) (-2727 (($ $ $) NIL) (($) 19 T CONST)) (-1446 (($ $ $) NIL) (($) 20 T CONST)) (-2667 (((-923) $) 24)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) 23)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-1185 |#1|) (-13 (-845) (-10 -8 (-15 -3758 ($) -3562))) (-923)) (T -1185)) -((-3758 (*1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923))))) -(-13 (-845) (-10 -8 (-15 -3758 ($) -3562))) +((-3869 (*1 *1) (-4 *1 (-1154))) (-3868 (*1 *1 *1) (|partial| -4 *1 (-1154)))) +(-13 (-1104) (-10 -8 (-15 -3869 ($) -4384) (-15 -3868 ((-3 $ "failed") $)))) +(((-102) . T) ((-615 (-865)) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3871 (((-693 (-1138)) $) 27)) (-3870 (((-1138) $) 15)) (-3872 (((-1138) $) 17)) (-3663 (((-1162) $) NIL)) (-3873 (((-509) $) 13)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 37) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1155) (-13 (-1086) (-10 -8 (-15 -3873 ((-509) $)) (-15 -3872 ((-1138) $)) (-15 -3871 ((-693 (-1138)) $)) (-15 -3870 ((-1138) $))))) (T -1155)) +((-3873 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1155)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1155)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-693 (-1138))) (-5 *1 (-1155)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1155))))) +(-13 (-1086) (-10 -8 (-15 -3873 ((-509) $)) (-15 -3872 ((-1138) $)) (-15 -3871 ((-693 (-1138)) $)) (-15 -3870 ((-1138) $)))) +((-3876 (((-1157 |#1|) (-1157 |#1|)) 17)) (-3874 (((-1157 |#1|) (-1157 |#1|)) 13)) (-3877 (((-1157 |#1|) (-1157 |#1|) (-549) (-549)) 20)) (-3875 (((-1157 |#1|) (-1157 |#1|)) 15))) +(((-1156 |#1|) (-10 -7 (-15 -3874 ((-1157 |#1|) (-1157 |#1|))) (-15 -3875 ((-1157 |#1|) (-1157 |#1|))) (-15 -3876 ((-1157 |#1|) (-1157 |#1|))) (-15 -3877 ((-1157 |#1|) (-1157 |#1|) (-549) (-549)))) (-13 (-560) (-147))) (T -1156)) +((-3877 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-1156 *4)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3)))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3))))) +(-10 -7 (-15 -3874 ((-1157 |#1|) (-1157 |#1|))) (-15 -3875 ((-1157 |#1|) (-1157 |#1|))) (-15 -3876 ((-1157 |#1|) (-1157 |#1|))) (-15 -3877 ((-1157 |#1|) (-1157 |#1|) (-549) (-549)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) NIL)) (-4226 ((|#1| $) NIL)) (-4228 (($ $) 67)) (-2372 (((-1275) $ (-549) (-549)) 99 (|has| $ (-6 -4426)))) (-4216 (($ $ (-549)) 129 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-3882 (((-865) $) 56 (|has| |#1| (-1104)))) (-3881 (((-112)) 55 (|has| |#1| (-1104)))) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)))) (-4218 (($ $ $) 116 (|has| $ (-6 -4426))) (($ $ (-549) $) 142)) (-4217 ((|#1| $ |#1|) 126 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 121 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ #2="first" |#1|) 123 (|has| $ (-6 -4426))) (($ $ #3="rest" $) 125 (|has| $ (-6 -4426))) ((|#1| $ #4="last" |#1|) 128 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 113 (|has| $ (-6 -4426))) ((|#1| $ (-549) |#1|) 77 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 80)) (-4227 ((|#1| $) NIL)) (-4156 (($) NIL T CONST)) (-2468 (($ $) 14)) (-4230 (($ $) 42) (($ $ (-773)) 111)) (-3887 (((-112) (-643 |#1|) $) 135 (|has| |#1| (-1104)))) (-3888 (($ (-643 |#1|)) 131)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) 79)) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3866 (((-112) $) NIL)) (-2124 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3883 (((-1275) (-549) $) 141 (|has| |#1| (-1104)))) (-2467 (((-773) $) 138)) (-3432 (((-643 $) $) NIL)) (-3428 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4148 (((-112) $ (-773)) NIL)) (-3431 (((-643 |#1|) $) NIL)) (-3950 (((-112) $) NIL)) (-2470 (($ $) 114)) (-2471 (((-112) $) 13)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-4229 ((|#1| $) NIL) (($ $ (-773)) NIL)) (-2449 (($ $ $ (-549)) NIL) (($ |#1| $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) 96)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-3880 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2469 ((|#1| $) 10)) (-4232 ((|#1| $) 41) (($ $ (-773)) 65)) (-3886 (((-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773))) (-773) $) 36)) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3879 (($ (-1 (-112) |#1|) $) 146)) (-3878 (($ (-1 (-112) |#1|) $) 147)) (-2373 (($ $ |#1|) 90 (|has| $ (-6 -4426)))) (-4200 (($ $ (-549)) 45)) (-3867 (((-112) $) 94)) (-2472 (((-112) $) 12)) (-2473 (((-112) $) 137)) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 30)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) 20)) (-3996 (($) 60)) (-4231 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1236 (-549))) NIL) ((|#1| $ (-549)) 75) ((|#1| $ (-549) |#1|) NIL)) (-3430 (((-549) $ $) 64)) (-2450 (($ $ (-1236 (-549))) NIL) (($ $ (-549)) NIL)) (-3885 (($ (-1 $)) 63)) (-4065 (((-112) $) 91)) (-4223 (($ $) 92)) (-4221 (($ $) 117 (|has| $ (-6 -4426)))) (-4224 (((-773) $) NIL)) (-4225 (($ $) NIL)) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 59)) (-4402 (((-538) $) NIL (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 73)) (-3884 (($ |#1| $) 115)) (-4222 (($ $ $) 119 (|has| $ (-6 -4426))) (($ $ |#1|) 120 (|has| $ (-6 -4426)))) (-4233 (($ $ $) 101) (($ |#1| $) 61) (($ (-643 $)) 106) (($ $ |#1|) 100)) (-3292 (($ $) 66)) (-4378 (($ (-643 |#1|)) 130) (((-865) $) 57 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) NIL)) (-3429 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 133 (|has| |#1| (-1104)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1157 |#1|) (-13 (-676 |#1|) (-618 (-643 |#1|)) (-10 -8 (-6 -4426) (-15 -3888 ($ (-643 |#1|))) (IF (|has| |#1| (-1104)) (-15 -3887 ((-112) (-643 |#1|) $)) |%noBranch|) (-15 -3886 ((-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773))) (-773) $)) (-15 -3885 ($ (-1 $))) (-15 -3884 ($ |#1| $)) (IF (|has| |#1| (-1104)) (PROGN (-15 -3883 ((-1275) (-549) $)) (-15 -3882 ((-865) $)) (-15 -3881 ((-112)))) |%noBranch|) (-15 -4218 ($ $ (-549) $)) (-15 -3880 ($ (-1 |#1|))) (-15 -3880 ($ (-1 |#1| |#1|) |#1|)) (-15 -3879 ($ (-1 (-112) |#1|) $)) (-15 -3878 ($ (-1 (-112) |#1|) $)))) (-1219)) (T -1157)) +((-3888 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) (-3887 (*1 *2 *3 *1) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-4 *4 (-1219)) (-5 *2 (-112)) (-5 *1 (-1157 *4)))) (-3886 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773)))) (-5 *1 (-1157 *4)) (-4 *4 (-1219)) (-5 *3 (-773)))) (-3885 (*1 *1 *2) (-12 (-5 *2 (-1 (-1157 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1219)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *1 (-1157 *2)) (-4 *2 (-1219)))) (-3883 (*1 *2 *3 *1) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1157 *4)) (-4 *4 (-1104)) (-4 *4 (-1219)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1157 *3)) (-4 *3 (-1104)) (-4 *3 (-1219)))) (-3881 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3)) (-4 *3 (-1104)) (-4 *3 (-1219)))) (-4218 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1157 *3)) (-4 *3 (-1219)))) (-3880 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) (-3880 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) (-3878 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) +(-13 (-676 |#1|) (-618 (-643 |#1|)) (-10 -8 (-6 -4426) (-15 -3888 ($ (-643 |#1|))) (IF (|has| |#1| (-1104)) (-15 -3887 ((-112) (-643 |#1|) $)) |%noBranch|) (-15 -3886 ((-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773))) (-773) $)) (-15 -3885 ($ (-1 $))) (-15 -3884 ($ |#1| $)) (IF (|has| |#1| (-1104)) (PROGN (-15 -3883 ((-1275) (-549) $)) (-15 -3882 ((-865) $)) (-15 -3881 ((-112)))) |%noBranch|) (-15 -4218 ($ $ (-549) $)) (-15 -3880 ($ (-1 |#1|))) (-15 -3880 ($ (-1 |#1| |#1|) |#1|)) (-15 -3879 ($ (-1 (-112) |#1|) $)) (-15 -3878 ($ (-1 (-112) |#1|) $)))) +((-4233 (((-1157 |#1|) (-1157 (-1157 |#1|))) 15))) +(((-1158 |#1|) (-10 -7 (-15 -4233 ((-1157 |#1|) (-1157 (-1157 |#1|))))) (-1219)) (T -1158)) +((-4233 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1158 *4)) (-4 *4 (-1219))))) +(-10 -7 (-15 -4233 ((-1157 |#1|) (-1157 (-1157 |#1|))))) +((-4273 (((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)) 25)) (-4274 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)) 26)) (-4390 (((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|)) 16))) +(((-1159 |#1| |#2|) (-10 -7 (-15 -4390 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|))) (-15 -4273 ((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|))) (-15 -4274 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)))) (-1219) (-1219)) (T -1159)) +((-4274 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1157 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-1159 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1157 *6)) (-4 *6 (-1219)) (-4 *3 (-1219)) (-5 *2 (-1157 *3)) (-5 *1 (-1159 *6 *3)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1157 *6)) (-5 *1 (-1159 *5 *6))))) +(-10 -7 (-15 -4390 ((-1157 |#2|) (-1 |#2| |#1|) (-1157 |#1|))) (-15 -4273 ((-1157 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|))) (-15 -4274 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1157 |#1|)))) +((-4390 (((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)) 21))) +(((-1160 |#1| |#2| |#3|) (-10 -7 (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)))) (-1219) (-1219) (-1219)) (T -1160)) +((-4390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-1157 *7)) (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) (-5 *1 (-1160 *6 *7 *8))))) +(-10 -7 (-15 -4390 ((-1157 |#3|) (-1 |#3| |#1| |#2|) (-1157 |#1|) (-1157 |#2|)))) +((-2968 (((-112) $ $) 19)) (-3850 (($ $) 121)) (-3851 (($ $) 122)) (-3841 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-3848 (((-112) $ $) 119)) (-3847 (((-112) $ $ (-549)) 118)) (-3966 (($ (-549)) 128)) (-3842 (((-643 $) $ (-144)) 111) (((-643 $) $ (-141)) 110)) (-1900 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-852)))) (-1898 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| (-144) (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 (((-144) $ (-549) (-144)) 53 (|has| $ (-6 -4426))) (((-144) $ (-1236 (-549)) (-144)) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-3839 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-3844 (($ $ (-1236 (-549)) $) 115)) (-1440 (($ $) 79 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ (-144) $) 78 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4425)))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4425)))) (-1684 (((-144) $ (-549) (-144)) 54 (|has| $ (-6 -4426)))) (-3517 (((-144) $ (-549)) 52)) (-3849 (((-112) $ $) 120)) (-3843 (((-549) (-1 (-112) (-144)) $) 98) (((-549) (-144) $) 97 (|has| (-144) (-1104))) (((-549) (-144) $ (-549)) 96 (|has| (-144) (-1104))) (((-549) $ $ (-549)) 114) (((-549) (-141) $ (-549)) 113)) (-2124 (((-643 (-144)) $) 31 (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-144)) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| (-144) (-852)))) (-3941 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| (-144) (-852)))) (-3845 (((-112) $ $ (-144)) 116)) (-3846 (((-773) $ $ (-144)) 117)) (-2128 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-3852 (($ $) 123)) (-3853 (($ $) 124)) (-4148 (((-112) $ (-773)) 10)) (-3840 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3663 (((-1162) $) 22)) (-2449 (($ (-144) $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21)) (-4232 (((-144) $) 43 (|has| (-549) (-852)))) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2373 (($ $ (-144)) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-144)) (-643 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2379 (((-643 (-144)) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 (((-144) $ (-549) (-144)) 51) (((-144) $ (-549)) 50) (($ $ (-1236 (-549))) 64) (($ $ $) 103)) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-2125 (((-773) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4425))) (((-773) (-144) $) 29 (-12 (|has| (-144) (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| (-144) (-616 (-538))))) (-3953 (($ (-643 (-144))) 71)) (-4233 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (($ (-144)) 112) (((-865) $) 18)) (-3662 (((-112) $ $) 23)) (-2127 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4425)))) (-2900 (((-1162) $) 132) (((-1162) $ (-112)) 131) (((-1275) (-825) $) 130) (((-1275) (-825) $ (-112)) 129)) (-2966 (((-112) $ $) 85 (|has| (-144) (-852)))) (-2967 (((-112) $ $) 84 (|has| (-144) (-852)))) (-3455 (((-112) $ $) 20)) (-3087 (((-112) $ $) 86 (|has| (-144) (-852)))) (-3088 (((-112) $ $) 83 (|has| (-144) (-852)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-1161) (-140)) (T -1161)) +((-3966 (*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1161))))) +(-13 (-1147) (-1104) (-823) (-10 -8 (-15 -3966 ($ (-549))))) +(((-34) . T) ((-102) . T) ((-615 (-865)) . T) ((-151 #1=(-144)) . T) ((-616 (-538)) |has| (-144) (-616 (-538))) ((-287 #2=(-549) #1#) . T) ((-289 #2# #1#) . T) ((-310 #1#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))) ((-374 #1#) . T) ((-492 #1#) . T) ((-606 #2# #1#) . T) ((-517 #1# #1#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))) ((-653 #1#) . T) ((-19 #1#) . T) ((-823) . T) ((-852) |has| (-144) (-852)) ((-1104) . T) ((-1147) . T) ((-1219) . T)) +((-2968 (((-112) $ $) NIL)) (-3850 (($ $) NIL)) (-3851 (($ $) NIL)) (-3841 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-3848 (((-112) $ $) NIL)) (-3847 (((-112) $ $ (-549)) NIL)) (-3966 (($ (-549)) 8)) (-3842 (((-643 $) $ (-144)) NIL) (((-643 $) $ (-141)) NIL)) (-1900 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-852)))) (-1898 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-144) (-852))))) (-3310 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 (((-144) $ (-549) (-144)) NIL (|has| $ (-6 -4426))) (((-144) $ (-1236 (-549)) (-144)) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-3839 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-3844 (($ $ (-1236 (-549)) $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-3830 (($ (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4425))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4425)))) (-1684 (((-144) $ (-549) (-144)) NIL (|has| $ (-6 -4426)))) (-3517 (((-144) $ (-549)) NIL)) (-3849 (((-112) $ $) NIL)) (-3843 (((-549) (-1 (-112) (-144)) $) NIL) (((-549) (-144) $) NIL (|has| (-144) (-1104))) (((-549) (-144) $ (-549)) NIL (|has| (-144) (-1104))) (((-549) $ $ (-549)) NIL) (((-549) (-141) $ (-549)) NIL)) (-2124 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-4046 (($ (-773) (-144)) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| (-144) (-852)))) (-3941 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-852)))) (-3008 (((-643 (-144)) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2375 (((-549) $) NIL (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| (-144) (-852)))) (-3845 (((-112) $ $ (-144)) NIL)) (-3846 (((-773) $ $ (-144)) NIL)) (-2128 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-3852 (($ $) NIL)) (-3853 (($ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3840 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3663 (((-1162) $) NIL)) (-2449 (($ (-144) $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-144) $) NIL (|has| (-549) (-852)))) (-1441 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2373 (($ $ (-144)) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104)))) (($ $ (-643 (-144)) (-643 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-2379 (((-643 (-144)) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 (((-144) $ (-549) (-144)) NIL) (((-144) $ (-549)) NIL) (($ $ (-1236 (-549))) NIL) (($ $ $) NIL)) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-2125 (((-773) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425))) (((-773) (-144) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-144) (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-144) (-616 (-538))))) (-3953 (($ (-643 (-144))) NIL)) (-4233 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (($ (-144)) NIL) (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2127 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4425)))) (-2900 (((-1162) $) 19) (((-1162) $ (-112)) 21) (((-1275) (-825) $) 22) (((-1275) (-825) $ (-112)) 23)) (-2966 (((-112) $ $) NIL (|has| (-144) (-852)))) (-2967 (((-112) $ $) NIL (|has| (-144) (-852)))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (|has| (-144) (-852)))) (-3088 (((-112) $ $) NIL (|has| (-144) (-852)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1162) (-1161)) (T -1162)) +NIL +(-1161) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-2372 (((-1275) $ (-1162) (-1162)) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-1162) |#1|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#1| #1="failed") (-1162) $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#1| #1#) (-1162) $) NIL)) (-3830 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-1162) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-1162)) NIL)) (-2124 (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-1162) $) NIL (|has| (-1162) (-852)))) (-3008 (((-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-1162) $) NIL (|has| (-1162) (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-2816 (((-643 (-1162)) $) NIL)) (-2382 (((-112) (-1162) $) NIL)) (-1369 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-2377 (((-643 (-1162)) $) NIL)) (-2378 (((-112) (-1162) $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-4232 ((|#1| $) NIL (|has| (-1162) (-852)))) (-1441 (((-3 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) "failed") (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL (-12 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-310 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-1162)) NIL) ((|#1| $ (-1162) |#1|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-615 (-865))) (|has| |#1| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 (-1162)) (|:| -2254 |#1|)) (-1104)) (|has| |#1| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1163 |#1|) (-13 (-1196 (-1162) |#1|) (-10 -7 (-6 -4425))) (-1104)) (T -1163)) +NIL +(-13 (-1196 (-1162) |#1|) (-10 -7 (-6 -4425))) +((-4236 (((-1157 |#1|) (-1157 |#1|)) 84)) (-3890 (((-3 (-1157 |#1|) "failed") (-1157 |#1|)) 42)) (-3901 (((-1157 |#1|) (-410 (-549)) (-1157 |#1|)) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3904 (((-1157 |#1|) |#1| (-1157 |#1|)) 142 (|has| |#1| (-365)))) (-4239 (((-1157 |#1|) (-1157 |#1|)) 99)) (-3892 (((-1157 (-549)) (-549)) 64)) (-3900 (((-1157 |#1|) (-1157 (-1157 |#1|))) 118 (|has| |#1| (-38 (-410 (-549)))))) (-4235 (((-1157 |#1|) (-549) (-549) (-1157 |#1|)) 104)) (-4370 (((-1157 |#1|) |#1| (-549)) 54)) (-3894 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 67)) (-3902 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 139 (|has| |#1| (-365)))) (-3899 (((-1157 |#1|) |#1| (-1 (-1157 |#1|))) 117 (|has| |#1| (-38 (-410 (-549)))))) (-3903 (((-1157 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1157 |#1|))) 140 (|has| |#1| (-365)))) (-4240 (((-1157 |#1|) (-1157 |#1|)) 98)) (-4241 (((-1157 |#1|) (-1157 |#1|)) 83)) (-4234 (((-1157 |#1|) (-549) (-549) (-1157 |#1|)) 105)) (-4244 (((-1157 |#1|) |#1| (-1157 |#1|)) 114 (|has| |#1| (-38 (-410 (-549)))))) (-3891 (((-1157 (-549)) (-549)) 63)) (-3893 (((-1157 |#1|) |#1|) 66)) (-4237 (((-1157 |#1|) (-1157 |#1|) (-549) (-549)) 101)) (-3896 (((-1157 |#1|) (-1 |#1| (-549)) (-1157 |#1|)) 73)) (-3889 (((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|)) 40)) (-4238 (((-1157 |#1|) (-1157 |#1|)) 100)) (-4199 (((-1157 |#1|) (-1157 |#1|) |#1|) 78)) (-3895 (((-1157 |#1|) (-1157 |#1|)) 69)) (-3897 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 79)) (-4378 (((-1157 |#1|) |#1|) 74)) (-3898 (((-1157 |#1|) (-1157 (-1157 |#1|))) 89)) (-4381 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 41)) (-4269 (((-1157 |#1|) (-1157 |#1|)) 21) (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 23)) (-4271 (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 17)) (* (((-1157 |#1|) (-1157 |#1|) |#1|) 29) (((-1157 |#1|) |#1| (-1157 |#1|)) 26) (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 27))) +(((-1164 |#1|) (-10 -7 (-15 -4271 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4269 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4269 ((-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -3889 ((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|))) (-15 -4381 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3890 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -4370 ((-1157 |#1|) |#1| (-549))) (-15 -3891 ((-1157 (-549)) (-549))) (-15 -3892 ((-1157 (-549)) (-549))) (-15 -3893 ((-1157 |#1|) |#1|)) (-15 -3894 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3895 ((-1157 |#1|) (-1157 |#1|))) (-15 -3896 ((-1157 |#1|) (-1 |#1| (-549)) (-1157 |#1|))) (-15 -4378 ((-1157 |#1|) |#1|)) (-15 -4199 ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -3897 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4241 ((-1157 |#1|) (-1157 |#1|))) (-15 -4236 ((-1157 |#1|) (-1157 |#1|))) (-15 -3898 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -4240 ((-1157 |#1|) (-1157 |#1|))) (-15 -4239 ((-1157 |#1|) (-1157 |#1|))) (-15 -4238 ((-1157 |#1|) (-1157 |#1|))) (-15 -4237 ((-1157 |#1|) (-1157 |#1|) (-549) (-549))) (-15 -4235 ((-1157 |#1|) (-549) (-549) (-1157 |#1|))) (-15 -4234 ((-1157 |#1|) (-549) (-549) (-1157 |#1|))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 -3899 ((-1157 |#1|) |#1| (-1 (-1157 |#1|)))) (-15 -3900 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -3901 ((-1157 |#1|) (-410 (-549)) (-1157 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3902 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3903 ((-1157 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1157 |#1|)))) (-15 -3904 ((-1157 |#1|) |#1| (-1157 |#1|)))) |%noBranch|)) (-1052)) (T -1164)) +((-3904 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-549))) (-5 *5 (-1 (-1157 *4))) (-4 *4 (-365)) (-4 *4 (-1052)) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)))) (-3902 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3901 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1052)) (-5 *3 (-410 (-549))) (-5 *1 (-1164 *4)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)) (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052)))) (-3899 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1157 *3))) (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)))) (-4244 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4234 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) (-4235 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) (-4237 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) (-4238 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4240 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)) (-4 *4 (-1052)))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3897 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4199 (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) (-3896 (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1 *4 (-549))) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3894 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3893 (*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) (-3892 (*1 *2 *3) (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1164 *4)) (-4 *4 (-1052)) (-5 *3 (-549)))) (-3891 (*1 *2 *3) (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1164 *4)) (-4 *4 (-1052)) (-5 *3 (-549)))) (-4370 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) (-3890 (*1 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4381 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-3889 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4269 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) +(-10 -7 (-15 -4271 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4269 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4269 ((-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 * ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 * ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -3889 ((-3 (-1157 |#1|) "failed") (-1157 |#1|) (-1157 |#1|))) (-15 -4381 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3890 ((-3 (-1157 |#1|) "failed") (-1157 |#1|))) (-15 -4370 ((-1157 |#1|) |#1| (-549))) (-15 -3891 ((-1157 (-549)) (-549))) (-15 -3892 ((-1157 (-549)) (-549))) (-15 -3893 ((-1157 |#1|) |#1|)) (-15 -3894 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3895 ((-1157 |#1|) (-1157 |#1|))) (-15 -3896 ((-1157 |#1|) (-1 |#1| (-549)) (-1157 |#1|))) (-15 -4378 ((-1157 |#1|) |#1|)) (-15 -4199 ((-1157 |#1|) (-1157 |#1|) |#1|)) (-15 -3897 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4241 ((-1157 |#1|) (-1157 |#1|))) (-15 -4236 ((-1157 |#1|) (-1157 |#1|))) (-15 -3898 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -4240 ((-1157 |#1|) (-1157 |#1|))) (-15 -4239 ((-1157 |#1|) (-1157 |#1|))) (-15 -4238 ((-1157 |#1|) (-1157 |#1|))) (-15 -4237 ((-1157 |#1|) (-1157 |#1|) (-549) (-549))) (-15 -4235 ((-1157 |#1|) (-549) (-549) (-1157 |#1|))) (-15 -4234 ((-1157 |#1|) (-549) (-549) (-1157 |#1|))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ((-1157 |#1|) |#1| (-1157 |#1|))) (-15 -3899 ((-1157 |#1|) |#1| (-1 (-1157 |#1|)))) (-15 -3900 ((-1157 |#1|) (-1157 (-1157 |#1|)))) (-15 -3901 ((-1157 |#1|) (-410 (-549)) (-1157 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3902 ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3903 ((-1157 |#1|) (-1 |#1| (-549)) |#1| (-1 (-1157 |#1|)))) (-15 -3904 ((-1157 |#1|) |#1| (-1157 |#1|)))) |%noBranch|)) +((-3915 (((-1157 |#1|) (-1157 |#1|)) 107)) (-4071 (((-1157 |#1|) (-1157 |#1|)) 61)) (-3906 (((-2 (|:| -3913 (-1157 |#1|)) (|:| -3914 (-1157 |#1|))) (-1157 |#1|)) 103)) (-3913 (((-1157 |#1|) (-1157 |#1|)) 104)) (-3905 (((-2 (|:| -4070 (-1157 |#1|)) (|:| -4066 (-1157 |#1|))) (-1157 |#1|)) 54)) (-4070 (((-1157 |#1|) (-1157 |#1|)) 55)) (-3917 (((-1157 |#1|) (-1157 |#1|)) 109)) (-4069 (((-1157 |#1|) (-1157 |#1|)) 68)) (-4374 (((-1157 |#1|) (-1157 |#1|)) 40)) (-4375 (((-1157 |#1|) (-1157 |#1|)) 37)) (-3918 (((-1157 |#1|) (-1157 |#1|)) 110)) (-4068 (((-1157 |#1|) (-1157 |#1|)) 69)) (-3916 (((-1157 |#1|) (-1157 |#1|)) 108)) (-4067 (((-1157 |#1|) (-1157 |#1|)) 64)) (-3914 (((-1157 |#1|) (-1157 |#1|)) 105)) (-4066 (((-1157 |#1|) (-1157 |#1|)) 56)) (-3921 (((-1157 |#1|) (-1157 |#1|)) 118)) (-3909 (((-1157 |#1|) (-1157 |#1|)) 93)) (-3919 (((-1157 |#1|) (-1157 |#1|)) 112)) (-3907 (((-1157 |#1|) (-1157 |#1|)) 89)) (-3923 (((-1157 |#1|) (-1157 |#1|)) 122)) (-3911 (((-1157 |#1|) (-1157 |#1|)) 97)) (-3924 (((-1157 |#1|) (-1157 |#1|)) 124)) (-3912 (((-1157 |#1|) (-1157 |#1|)) 99)) (-3922 (((-1157 |#1|) (-1157 |#1|)) 120)) (-3910 (((-1157 |#1|) (-1157 |#1|)) 95)) (-3920 (((-1157 |#1|) (-1157 |#1|)) 114)) (-3908 (((-1157 |#1|) (-1157 |#1|)) 91)) (** (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 41))) +(((-1165 |#1|) (-10 -7 (-15 -4375 ((-1157 |#1|) (-1157 |#1|))) (-15 -4374 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3905 ((-2 (|:| -4070 (-1157 |#1|)) (|:| -4066 (-1157 |#1|))) (-1157 |#1|))) (-15 -4070 ((-1157 |#1|) (-1157 |#1|))) (-15 -4066 ((-1157 |#1|) (-1157 |#1|))) (-15 -4071 ((-1157 |#1|) (-1157 |#1|))) (-15 -4067 ((-1157 |#1|) (-1157 |#1|))) (-15 -4069 ((-1157 |#1|) (-1157 |#1|))) (-15 -4068 ((-1157 |#1|) (-1157 |#1|))) (-15 -3907 ((-1157 |#1|) (-1157 |#1|))) (-15 -3908 ((-1157 |#1|) (-1157 |#1|))) (-15 -3909 ((-1157 |#1|) (-1157 |#1|))) (-15 -3910 ((-1157 |#1|) (-1157 |#1|))) (-15 -3911 ((-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-1157 |#1|) (-1157 |#1|))) (-15 -3906 ((-2 (|:| -3913 (-1157 |#1|)) (|:| -3914 (-1157 |#1|))) (-1157 |#1|))) (-15 -3913 ((-1157 |#1|) (-1157 |#1|))) (-15 -3914 ((-1157 |#1|) (-1157 |#1|))) (-15 -3915 ((-1157 |#1|) (-1157 |#1|))) (-15 -3916 ((-1157 |#1|) (-1157 |#1|))) (-15 -3917 ((-1157 |#1|) (-1157 |#1|))) (-15 -3918 ((-1157 |#1|) (-1157 |#1|))) (-15 -3919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3920 ((-1157 |#1|) (-1157 |#1|))) (-15 -3921 ((-1157 |#1|) (-1157 |#1|))) (-15 -3922 ((-1157 |#1|) (-1157 |#1|))) (-15 -3923 ((-1157 |#1|) (-1157 |#1|))) (-15 -3924 ((-1157 |#1|) (-1157 |#1|)))) (-38 (-410 (-549)))) (T -1165)) +((-3924 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3906 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-2 (|:| -3913 (-1157 *4)) (|:| -3914 (-1157 *4)))) (-5 *1 (-1165 *4)) (-5 *3 (-1157 *4)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-3905 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-2 (|:| -4070 (-1157 *4)) (|:| -4066 (-1157 *4)))) (-5 *1 (-1165 *4)) (-5 *3 (-1157 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4374 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) (-4375 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3))))) +(-10 -7 (-15 -4375 ((-1157 |#1|) (-1157 |#1|))) (-15 -4374 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -3905 ((-2 (|:| -4070 (-1157 |#1|)) (|:| -4066 (-1157 |#1|))) (-1157 |#1|))) (-15 -4070 ((-1157 |#1|) (-1157 |#1|))) (-15 -4066 ((-1157 |#1|) (-1157 |#1|))) (-15 -4071 ((-1157 |#1|) (-1157 |#1|))) (-15 -4067 ((-1157 |#1|) (-1157 |#1|))) (-15 -4069 ((-1157 |#1|) (-1157 |#1|))) (-15 -4068 ((-1157 |#1|) (-1157 |#1|))) (-15 -3907 ((-1157 |#1|) (-1157 |#1|))) (-15 -3908 ((-1157 |#1|) (-1157 |#1|))) (-15 -3909 ((-1157 |#1|) (-1157 |#1|))) (-15 -3910 ((-1157 |#1|) (-1157 |#1|))) (-15 -3911 ((-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-1157 |#1|) (-1157 |#1|))) (-15 -3906 ((-2 (|:| -3913 (-1157 |#1|)) (|:| -3914 (-1157 |#1|))) (-1157 |#1|))) (-15 -3913 ((-1157 |#1|) (-1157 |#1|))) (-15 -3914 ((-1157 |#1|) (-1157 |#1|))) (-15 -3915 ((-1157 |#1|) (-1157 |#1|))) (-15 -3916 ((-1157 |#1|) (-1157 |#1|))) (-15 -3917 ((-1157 |#1|) (-1157 |#1|))) (-15 -3918 ((-1157 |#1|) (-1157 |#1|))) (-15 -3919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3920 ((-1157 |#1|) (-1157 |#1|))) (-15 -3921 ((-1157 |#1|) (-1157 |#1|))) (-15 -3922 ((-1157 |#1|) (-1157 |#1|))) (-15 -3923 ((-1157 |#1|) (-1157 |#1|))) (-15 -3924 ((-1157 |#1|) (-1157 |#1|)))) +((-3915 (((-1157 |#1|) (-1157 |#1|)) 60)) (-4071 (((-1157 |#1|) (-1157 |#1|)) 42)) (-3913 (((-1157 |#1|) (-1157 |#1|)) 56)) (-4070 (((-1157 |#1|) (-1157 |#1|)) 38)) (-3917 (((-1157 |#1|) (-1157 |#1|)) 63)) (-4069 (((-1157 |#1|) (-1157 |#1|)) 45)) (-4374 (((-1157 |#1|) (-1157 |#1|)) 34)) (-4375 (((-1157 |#1|) (-1157 |#1|)) 29)) (-3918 (((-1157 |#1|) (-1157 |#1|)) 64)) (-4068 (((-1157 |#1|) (-1157 |#1|)) 46)) (-3916 (((-1157 |#1|) (-1157 |#1|)) 61)) (-4067 (((-1157 |#1|) (-1157 |#1|)) 43)) (-3914 (((-1157 |#1|) (-1157 |#1|)) 58)) (-4066 (((-1157 |#1|) (-1157 |#1|)) 40)) (-3921 (((-1157 |#1|) (-1157 |#1|)) 68)) (-3909 (((-1157 |#1|) (-1157 |#1|)) 50)) (-3919 (((-1157 |#1|) (-1157 |#1|)) 66)) (-3907 (((-1157 |#1|) (-1157 |#1|)) 48)) (-3923 (((-1157 |#1|) (-1157 |#1|)) 71)) (-3911 (((-1157 |#1|) (-1157 |#1|)) 53)) (-3924 (((-1157 |#1|) (-1157 |#1|)) 72)) (-3912 (((-1157 |#1|) (-1157 |#1|)) 54)) (-3922 (((-1157 |#1|) (-1157 |#1|)) 70)) (-3910 (((-1157 |#1|) (-1157 |#1|)) 52)) (-3920 (((-1157 |#1|) (-1157 |#1|)) 69)) (-3908 (((-1157 |#1|) (-1157 |#1|)) 51)) (** (((-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) 36))) +(((-1166 |#1|) (-10 -7 (-15 -4375 ((-1157 |#1|) (-1157 |#1|))) (-15 -4374 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4070 ((-1157 |#1|) (-1157 |#1|))) (-15 -4066 ((-1157 |#1|) (-1157 |#1|))) (-15 -4071 ((-1157 |#1|) (-1157 |#1|))) (-15 -4067 ((-1157 |#1|) (-1157 |#1|))) (-15 -4069 ((-1157 |#1|) (-1157 |#1|))) (-15 -4068 ((-1157 |#1|) (-1157 |#1|))) (-15 -3907 ((-1157 |#1|) (-1157 |#1|))) (-15 -3908 ((-1157 |#1|) (-1157 |#1|))) (-15 -3909 ((-1157 |#1|) (-1157 |#1|))) (-15 -3910 ((-1157 |#1|) (-1157 |#1|))) (-15 -3911 ((-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-1157 |#1|) (-1157 |#1|))) (-15 -3913 ((-1157 |#1|) (-1157 |#1|))) (-15 -3914 ((-1157 |#1|) (-1157 |#1|))) (-15 -3915 ((-1157 |#1|) (-1157 |#1|))) (-15 -3916 ((-1157 |#1|) (-1157 |#1|))) (-15 -3917 ((-1157 |#1|) (-1157 |#1|))) (-15 -3918 ((-1157 |#1|) (-1157 |#1|))) (-15 -3919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3920 ((-1157 |#1|) (-1157 |#1|))) (-15 -3921 ((-1157 |#1|) (-1157 |#1|))) (-15 -3922 ((-1157 |#1|) (-1157 |#1|))) (-15 -3923 ((-1157 |#1|) (-1157 |#1|))) (-15 -3924 ((-1157 |#1|) (-1157 |#1|)))) (-38 (-410 (-549)))) (T -1166)) +((-3924 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3923 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3921 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4374 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) (-4375 (*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(-10 -7 (-15 -4375 ((-1157 |#1|) (-1157 |#1|))) (-15 -4374 ((-1157 |#1|) (-1157 |#1|))) (-15 ** ((-1157 |#1|) (-1157 |#1|) (-1157 |#1|))) (-15 -4070 ((-1157 |#1|) (-1157 |#1|))) (-15 -4066 ((-1157 |#1|) (-1157 |#1|))) (-15 -4071 ((-1157 |#1|) (-1157 |#1|))) (-15 -4067 ((-1157 |#1|) (-1157 |#1|))) (-15 -4069 ((-1157 |#1|) (-1157 |#1|))) (-15 -4068 ((-1157 |#1|) (-1157 |#1|))) (-15 -3907 ((-1157 |#1|) (-1157 |#1|))) (-15 -3908 ((-1157 |#1|) (-1157 |#1|))) (-15 -3909 ((-1157 |#1|) (-1157 |#1|))) (-15 -3910 ((-1157 |#1|) (-1157 |#1|))) (-15 -3911 ((-1157 |#1|) (-1157 |#1|))) (-15 -3912 ((-1157 |#1|) (-1157 |#1|))) (-15 -3913 ((-1157 |#1|) (-1157 |#1|))) (-15 -3914 ((-1157 |#1|) (-1157 |#1|))) (-15 -3915 ((-1157 |#1|) (-1157 |#1|))) (-15 -3916 ((-1157 |#1|) (-1157 |#1|))) (-15 -3917 ((-1157 |#1|) (-1157 |#1|))) (-15 -3918 ((-1157 |#1|) (-1157 |#1|))) (-15 -3919 ((-1157 |#1|) (-1157 |#1|))) (-15 -3920 ((-1157 |#1|) (-1157 |#1|))) (-15 -3921 ((-1157 |#1|) (-1157 |#1|))) (-15 -3922 ((-1157 |#1|) (-1157 |#1|))) (-15 -3923 ((-1157 |#1|) (-1157 |#1|))) (-15 -3924 ((-1157 |#1|) (-1157 |#1|)))) +((-3925 (((-961 |#2|) |#2| |#2|) 50)) (-3926 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308))))) +(((-1167 |#1| |#2|) (-10 -7 (-15 -3925 ((-961 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3926 (|#2| |#2| |#1|)) |%noBranch|)) (-560) (-1245 |#1|)) (T -1167)) +((-3926 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-560)) (-5 *1 (-1167 *3 *2)) (-4 *2 (-1245 *3)))) (-3925 (*1 *2 *3 *3) (-12 (-4 *4 (-560)) (-5 *2 (-961 *3)) (-5 *1 (-1167 *4 *3)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -3925 ((-961 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -3926 (|#2| |#2| |#1|)) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3934 (($ $ (-643 (-773))) 81)) (-4320 (($) 33)) (-3943 (($ $) 51)) (-4183 (((-643 $) $) 60)) (-3949 (((-112) $) 19)) (-3927 (((-643 (-946 |#2|)) $) 88)) (-3928 (($ $) 82)) (-3944 (((-773) $) 47)) (-4046 (($) 32)) (-3937 (($ $ (-643 (-773)) (-946 |#2|)) 74) (($ $ (-643 (-773)) (-773)) 75) (($ $ (-773) (-946 |#2|)) 77)) (-3941 (($ $ $) 57) (($ (-643 $)) 59)) (-3929 (((-773) $) 89)) (-3950 (((-112) $) 15)) (-3663 (((-1162) $) NIL)) (-3948 (((-112) $) 22)) (-3664 (((-1123) $) NIL)) (-3930 (((-171) $) 87)) (-3933 (((-946 |#2|) $) 83)) (-3932 (((-773) $) 84)) (-3931 (((-112) $) 86)) (-3935 (($ $ (-643 (-773)) (-171)) 80)) (-3942 (($ $) 52)) (-4378 (((-865) $) 100)) (-3936 (($ $ (-643 (-773)) (-112)) 79)) (-3945 (((-643 $) $) 11)) (-3946 (($ $ (-773)) 46)) (-3947 (($ $) 43)) (-3662 (((-112) $ $) NIL)) (-3938 (($ $ $ (-946 |#2|) (-773)) 70)) (-3939 (($ $ (-946 |#2|)) 69)) (-3940 (($ $ (-643 (-773)) (-946 |#2|)) 66) (($ $ (-643 (-773)) (-773)) 72) (((-773) $ (-946 |#2|)) 73)) (-3455 (((-112) $ $) 94))) +(((-1168 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -3950 ((-112) $)) (-15 -3949 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -4046 ($)) (-15 -4320 ($)) (-15 -3947 ($ $)) (-15 -3946 ($ $ (-773))) (-15 -3945 ((-643 $) $)) (-15 -3944 ((-773) $)) (-15 -3943 ($ $)) (-15 -3942 ($ $)) (-15 -3941 ($ $ $)) (-15 -3941 ($ (-643 $))) (-15 -4183 ((-643 $) $)) (-15 -3940 ($ $ (-643 (-773)) (-946 |#2|))) (-15 -3939 ($ $ (-946 |#2|))) (-15 -3938 ($ $ $ (-946 |#2|) (-773))) (-15 -3937 ($ $ (-643 (-773)) (-946 |#2|))) (-15 -3940 ($ $ (-643 (-773)) (-773))) (-15 -3937 ($ $ (-643 (-773)) (-773))) (-15 -3940 ((-773) $ (-946 |#2|))) (-15 -3937 ($ $ (-773) (-946 |#2|))) (-15 -3936 ($ $ (-643 (-773)) (-112))) (-15 -3935 ($ $ (-643 (-773)) (-171))) (-15 -3934 ($ $ (-643 (-773)))) (-15 -3933 ((-946 |#2|) $)) (-15 -3932 ((-773) $)) (-15 -3931 ((-112) $)) (-15 -3930 ((-171) $)) (-15 -3929 ((-773) $)) (-15 -3928 ($ $)) (-15 -3927 ((-643 (-946 |#2|)) $)))) (-922) (-1052)) (T -1168)) +((-3950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-4046 (*1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-4320 (*1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3947 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3942 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3941 (*1 *1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3940 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3939 (*1 *1 *1 *2) (-12 (-5 *2 (-946 *4)) (-4 *4 (-1052)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)))) (-3938 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-946 *5)) (-5 *3 (-773)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3940 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-773)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1052)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-773)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1052)))) (-3940 (*1 *2 *1 *3) (-12 (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *2 (-773)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)))) (-3936 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-112)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1052)))) (-3935 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-773))) (-5 *3 (-171)) (-5 *1 (-1168 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1052)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-946 *4)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052)))) (-3928 (*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-643 (-946 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(-13 (-1104) (-10 -8 (-15 -3950 ((-112) $)) (-15 -3949 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -4046 ($)) (-15 -4320 ($)) (-15 -3947 ($ $)) (-15 -3946 ($ $ (-773))) (-15 -3945 ((-643 $) $)) (-15 -3944 ((-773) $)) (-15 -3943 ($ $)) (-15 -3942 ($ $)) (-15 -3941 ($ $ $)) (-15 -3941 ($ (-643 $))) (-15 -4183 ((-643 $) $)) (-15 -3940 ($ $ (-643 (-773)) (-946 |#2|))) (-15 -3939 ($ $ (-946 |#2|))) (-15 -3938 ($ $ $ (-946 |#2|) (-773))) (-15 -3937 ($ $ (-643 (-773)) (-946 |#2|))) (-15 -3940 ($ $ (-643 (-773)) (-773))) (-15 -3937 ($ $ (-643 (-773)) (-773))) (-15 -3940 ((-773) $ (-946 |#2|))) (-15 -3937 ($ $ (-773) (-946 |#2|))) (-15 -3936 ($ $ (-643 (-773)) (-112))) (-15 -3935 ($ $ (-643 (-773)) (-171))) (-15 -3934 ($ $ (-643 (-773)))) (-15 -3933 ((-946 |#2|) $)) (-15 -3932 ((-773) $)) (-15 -3931 ((-112) $)) (-15 -3930 ((-171) $)) (-15 -3929 ((-773) $)) (-15 -3928 ($ $)) (-15 -3927 ((-643 (-946 |#2|)) $)))) +((-2968 (((-112) $ $) NIL)) (-3951 ((|#2| $) 11)) (-3952 ((|#1| $) 10)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-3953 (($ |#1| |#2|) 9)) (-4378 (((-865) $) 16)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1169 |#1| |#2|) (-13 (-1104) (-10 -8 (-15 -3953 ($ |#1| |#2|)) (-15 -3952 (|#1| $)) (-15 -3951 (|#2| $)))) (-1104) (-1104)) (T -1169)) +((-3953 (*1 *1 *2 *3) (-12 (-5 *1 (-1169 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-3952 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-1169 *2 *3)) (-4 *3 (-1104)))) (-3951 (*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-1169 *3 *2)) (-4 *3 (-1104))))) +(-13 (-1104) (-10 -8 (-15 -3953 ($ |#1| |#2|)) (-15 -3952 (|#1| $)) (-15 -3951 (|#2| $)))) +((-2968 (((-112) $ $) NIL)) (-3954 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1170) (-13 (-1086) (-10 -8 (-15 -3954 ((-1138) $))))) (T -1170)) +((-3954 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1170))))) +(-13 (-1086) (-10 -8 (-15 -3954 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-1178 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 11)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-2241 (($ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-2239 (((-112) $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-4202 (($ $ (-549)) NIL) (($ $ (-549) (-549)) 75)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) NIL)) (-4163 (((-1178 |#1| |#2| |#3|) $) 42)) (-4160 (((-3 (-1178 |#1| |#2| |#3|) "failed") $) 32)) (-4161 (((-1178 |#1| |#2| |#3|) $) 33)) (-3915 (($ $) 116 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 92 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) 112 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 88 (|has| |#1| (-38 (-410 (-549)))))) (-4055 (((-549) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) 120 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 96 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1178 |#1| |#2| |#3|) #2="failed") $) 34) (((-3 (-1180) #2#) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (((-3 (-410 (-549)) #2#) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365)))) (((-3 (-549) #2#) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))))) (-3576 (((-1178 |#1| |#2| |#3|) $) 140) (((-1180) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (((-410 (-549)) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365)))) (((-549) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))))) (-4162 (($ $) 37) (($ (-549) $) 38)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-1178 |#1| |#2| |#3|)) (-691 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-1178 |#1| |#2| |#3|))) (|:| |vec| (-1269 (-1178 |#1| |#2| |#3|)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-641 (-549))) (|has| |#1| (-365)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-641 (-549))) (|has| |#1| (-365))))) (-3890 (((-3 $ "failed") $) 54)) (-4159 (((-410 (-949 |#1|)) $ (-549)) 74 (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) 76 (|has| |#1| (-560)))) (-3395 (($) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3606 (((-112) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-3293 (((-112) $) 28)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-889 (-380))) (|has| |#1| (-365)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-889 (-549))) (|has| |#1| (-365))))) (-4203 (((-549) $) NIL) (((-549) $ (-549)) 26)) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL (|has| |#1| (-365)))) (-3399 (((-1178 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3868 (((-3 $ "failed") $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))))) (-3607 (((-112) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-4208 (($ $ (-922)) NIL)) (-4247 (($ (-1 |#1| (-549)) $) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-549)) 19) (($ $ (-1085) (-549)) NIL) (($ $ (-643 (-1085)) (-643 (-549))) NIL)) (-2934 (($ $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3260 (($ $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-4374 (($ $) 81 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4210 (($ (-549) (-1178 |#1| |#2| |#3|)) 36)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 79 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 80 (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3532 (($ $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3534 (((-1178 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-549)) 158)) (-3889 (((-3 $ "failed") $ $) 55 (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) 82 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1180) (-1178 |#1| |#2| |#3|)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-517 (-1180) (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 (-1178 |#1| |#2| |#3|))) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-517 (-1180) (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-294 (-1178 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-294 (-1178 |#1| |#2| |#3|))) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-1178 |#1| |#2| |#3|)) (-643 (-1178 |#1| |#2| |#3|))) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-310 (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) NIL) (($ $ $) 61 (|has| (-549) (-1115))) (($ $ (-1178 |#1| |#2| |#3|)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-287 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) (-773)) NIL (|has| |#1| (-365))) (($ $ (-1266 |#2|)) 57) (($ $ (-773)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 56 (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-3396 (($ $) NIL (|has| |#1| (-365)))) (-3398 (((-1178 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-4380 (((-549) $) 43)) (-3918 (($ $) 122 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 98 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 118 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 94 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 114 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 90 (|has| |#1| (-38 (-410 (-549)))))) (-4402 (((-538) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-616 (-538))) (|has| |#1| (-365)))) (((-380) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-893 (-380)) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-616 (-893 (-380)))) (|has| |#1| (-365)))) (((-893 (-549)) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-616 (-893 (-549)))) (|has| |#1| (-365))))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) 162) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1178 |#1| |#2| |#3|)) 30) (($ (-1266 |#2|)) 25) (($ (-1180)) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (($ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560)))) (($ (-410 (-549))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-549))))))) (-4109 ((|#1| $ (-549)) 77)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 12)) (-3535 (((-1178 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 128 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 104 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-3919 (($ $) 124 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 100 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 108 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 110 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 106 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 126 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 102 (|has| |#1| (-38 (-410 (-549)))))) (-3807 (($ $) NIL (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-3510 (($) 21 T CONST)) (-3067 (($) 16 T CONST)) (-3072 (($ $ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) (-773)) NIL (|has| |#1| (-365))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-2966 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-2967 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3088 (((-112) $ $) NIL (-3960 (-12 (|has| (-1178 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1178 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1178 |#1| |#2| |#3|) (-1178 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 23)) (** (($ $ (-922)) NIL) (($ $ (-773)) 60) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 137 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1178 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1178 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1171 |#1| |#2| |#3|) (-13 (-1233 |#1| (-1178 |#1| |#2| |#3|)) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1171)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) +(-13 (-1233 |#1| (-1178 |#1| |#2| |#3|)) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) +((-3955 ((|#2| |#2| (-1095 |#2|)) 26) ((|#2| |#2| (-1180)) 28))) +(((-1172 |#1| |#2|) (-10 -7 (-15 -3955 (|#2| |#2| (-1180))) (-15 -3955 (|#2| |#2| (-1095 |#2|)))) (-13 (-560) (-1041 (-549)) (-641 (-549))) (-13 (-424 |#1|) (-160) (-27) (-1205))) (T -1172)) +((-3955 (*1 *2 *2 *3) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-13 (-424 *4) (-160) (-27) (-1205))) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1172 *4 *2)))) (-3955 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1172 *4 *2)) (-4 *2 (-13 (-424 *4) (-160) (-27) (-1205)))))) +(-10 -7 (-15 -3955 (|#2| |#2| (-1180))) (-15 -3955 (|#2| |#2| (-1095 |#2|)))) +((-3955 (((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1095 (-410 (-949 |#1|)))) 31) (((-410 (-949 |#1|)) (-949 |#1|) (-1095 (-949 |#1|))) 44) (((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1180)) 33) (((-410 (-949 |#1|)) (-949 |#1|) (-1180)) 36))) +(((-1173 |#1|) (-10 -7 (-15 -3955 ((-410 (-949 |#1|)) (-949 |#1|) (-1180))) (-15 -3955 ((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1180))) (-15 -3955 ((-410 (-949 |#1|)) (-949 |#1|) (-1095 (-949 |#1|)))) (-15 -3955 ((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1095 (-410 (-949 |#1|)))))) (-13 (-560) (-1041 (-549)))) (T -1173)) +((-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-3 *3 (-315 *5))) (-5 *1 (-1173 *5)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1095 (-949 *5))) (-5 *3 (-949 *5)) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 *3)) (-5 *1 (-1173 *5)))) (-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-3 (-410 (-949 *5)) (-315 *5))) (-5 *1 (-1173 *5)) (-5 *3 (-410 (-949 *5))))) (-3955 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 (-949 *5))) (-5 *1 (-1173 *5)) (-5 *3 (-949 *5))))) +(-10 -7 (-15 -3955 ((-410 (-949 |#1|)) (-949 |#1|) (-1180))) (-15 -3955 ((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1180))) (-15 -3955 ((-410 (-949 |#1|)) (-949 |#1|) (-1095 (-949 |#1|)))) (-15 -3955 ((-3 (-410 (-949 |#1|)) (-315 |#1|)) (-410 (-949 |#1|)) (-1095 (-410 (-949 |#1|)))))) +((-2968 (((-112) $ $) 171)) (-3608 (((-112) $) 43)) (-4198 (((-1269 |#1|) $ (-773)) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4196 (($ (-1174 |#1|)) NIL)) (-3487 (((-1174 $) $ (-1085)) 82) (((-1174 |#1|) $) 71)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) 164 (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4187 (($ $ $) 158 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) 95 (|has| |#1| (-913)))) (-4206 (($ $) NIL (|has| |#1| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 115 (|has| |#1| (-913)))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-4192 (($ $ (-773)) 61)) (-4191 (($ $ (-773)) 63)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#1| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-1085) #2#) $) NIL)) (-3576 ((|#1| $) NIL) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-1085) $) NIL)) (-4188 (($ $ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) 80)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) NIL) (((-691 |#1|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4190 (($ $ $) 131)) (-4185 (($ $ $) NIL (|has| |#1| (-560)))) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-3926 (($ $) 165 (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-773) $) 69)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1085) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1085) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-3956 (((-865) $ (-865)) 148)) (-4203 (((-773) $ $) NIL (|has| |#1| (-560)))) (-2573 (((-112) $) 48)) (-2581 (((-773) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#1| (-1154)))) (-3488 (($ (-1174 |#1|) (-1085)) 73) (($ (-1174 $) (-1085)) 89)) (-4208 (($ $ (-773)) 51)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) 87) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) NIL) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 153)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-1770 (($ (-1 (-773) (-773)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4197 (((-1174 |#1|) $) NIL)) (-3486 (((-3 (-1085) #4="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) 76)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-3663 (((-1162) $) NIL)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) 60)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) NIL)) (-4244 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) 50)) (-1971 ((|#1| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 103 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-455))) (($ $ $) 167 (|has| |#1| (-455)))) (-4170 (($ $ (-773) |#1| $) 123)) (-3108 (((-408 (-1174 $)) (-1174 $)) 101 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 100 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 108 (|has| |#1| (-913)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#1|) NIL) (($ $ (-643 (-1085)) (-643 |#1|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-643 (-1085)) (-643 $)) NIL)) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-560))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-560)))) (-4195 (((-3 $ #5="failed") $ (-773)) 54)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 172 (|has| |#1| (-365)))) (-4189 (($ $ (-1085)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-4242 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4380 (((-773) $) 78) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1085) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) 162 (|has| |#1| (-455))) (($ $ (-1085)) NIL (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-913))))) (-4186 (((-3 $ #5#) $ $) NIL (|has| |#1| (-560))) (((-3 (-410 $) #5#) (-410 $) $) NIL (|has| |#1| (-560)))) (-4378 (((-865) $) 149) (($ (-549)) NIL) (($ |#1|) 77) (($ (-1085)) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) 41 (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 17 T CONST)) (-3067 (($) 19 T CONST)) (-3072 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3455 (((-112) $ $) 120)) (-4381 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 90)) (** (($ $ (-922)) 14) (($ $ (-773)) 12)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 39) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1174 |#1|) (-13 (-1245 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-865))) (-15 -4170 ($ $ (-773) |#1| $)))) (-1052)) (T -1174)) +((-3956 (*1 *2 *1 *2) (-12 (-5 *2 (-865)) (-5 *1 (-1174 *3)) (-4 *3 (-1052)))) (-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1174 *3)) (-4 *3 (-1052))))) +(-13 (-1245 |#1|) (-10 -8 (-15 -3956 ((-865) $ (-865))) (-15 -4170 ($ $ (-773) |#1| $)))) +((-4390 (((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)) 13))) +(((-1175 |#1| |#2|) (-10 -7 (-15 -4390 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)))) (-1052) (-1052)) (T -1175)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-5 *2 (-1174 *6)) (-5 *1 (-1175 *5 *6))))) +(-10 -7 (-15 -4390 ((-1174 |#2|) (-1 |#2| |#1|) (-1174 |#1|)))) +((-4401 (((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))) 51)) (-4164 (((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))) 52))) +(((-1176 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4164 ((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))) (-15 -4401 ((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))))) (-795) (-852) (-455) (-953 |#3| |#1| |#2|)) (T -1176)) +((-4401 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-455)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-408 (-1174 (-410 *7)))) (-5 *1 (-1176 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7))))) (-4164 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-455)) (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-408 (-1174 (-410 *7)))) (-5 *1 (-1176 *4 *5 *6 *7)) (-5 *3 (-1174 (-410 *7)))))) +(-10 -7 (-15 -4164 ((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|)))) (-15 -4401 ((-408 (-1174 (-410 |#4|))) (-1174 (-410 |#4|))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 11)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) NIL) (($ $ (-410 (-549)) (-410 (-549))) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1171 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1178 |#1| |#2| |#3|) #1#) $) 36)) (-3576 (((-1171 |#1| |#2| |#3|) $) NIL) (((-1178 |#1| |#2| |#3|) $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4212 (((-410 (-549)) $) 59)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4213 (($ (-410 (-549)) (-1171 |#1| |#2| |#3|)) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) NIL) (((-410 (-549)) $ (-410 (-549))) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL) (($ $ (-410 (-549))) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) 20) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4211 (((-1171 |#1| |#2| |#3|) $) 41)) (-4209 (((-3 (-1171 |#1| |#2| |#3|) "failed") $) NIL)) (-4210 (((-1171 |#1| |#2| |#3|) $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 39 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 40 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) NIL) (($ $ $) NIL (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $ (-1266 |#2|)) 38)) (-4380 (((-410 (-549)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) 62) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1171 |#1| |#2| |#3|)) 30) (($ (-1178 |#1| |#2| |#3|)) 31) (($ (-1266 |#2|)) 26) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 12)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 22 T CONST)) (-3067 (($) 16 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 24)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1177 |#1| |#2| |#3|) (-13 (-1254 |#1| (-1171 |#1| |#2| |#3|)) (-1041 (-1178 |#1| |#2| |#3|)) (-618 (-1266 |#2|)) (-10 -8 (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1177)) +((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) +(-13 (-1254 |#1| (-1171 |#1| |#2| |#3|)) (-1041 (-1178 |#1| |#2| |#3|)) (-618 (-1266 |#2|)) (-10 -8 (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 129)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 119)) (-4243 (((-1238 |#2| |#1|) $ (-773)) 69)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-773)) 85) (($ $ (-773) (-773)) 82)) (-4205 (((-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|))) $) 105)) (-3915 (($ $) 173 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) 169 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|)))) 118) (($ (-1157 |#1|)) 113)) (-3917 (($ $) 177 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) 25)) (-4248 (($ $) 28)) (-4246 (((-949 |#1|) $ (-773)) 81) (((-949 |#1|) $ (-773) (-773)) 83)) (-3293 (((-112) $) 124)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $) 126) (((-773) $ (-773)) 128)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL)) (-4247 (($ (-1 |#1| (-549)) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) 13) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4244 (($ $) 133 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-4200 (($ $ (-773)) 15)) (-3889 (((-3 $ "failed") $ $) 26 (|has| |#1| (-560)))) (-4375 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-773)))))) (-4231 ((|#1| $ (-773)) 122) (($ $ $) 132 (|has| (-773) (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $ (-1266 |#2|)) 31)) (-4380 (((-773) $) NIL)) (-3918 (($ $) 179 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 175 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 171 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) 206) (($ (-549)) NIL) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) 130 (|has| |#1| (-172))) (($ (-1238 |#2| |#1|)) 55) (($ (-1266 |#2|)) 36)) (-4249 (((-1157 |#1|) $) 101)) (-4109 ((|#1| $ (-773)) 121)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 58)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 185 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 161 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 181 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 157 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 189 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 165 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-773)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-773)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 191 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 167 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 187 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 163 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 183 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 159 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 17 T CONST)) (-3067 (($) 20 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) 198)) (-4271 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ |#1|) 203 (|has| |#1| (-365))) (($ $ $) 138 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 141 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1178 |#1| |#2| |#3|) (-13 (-1262 |#1|) (-10 -8 (-15 -4378 ($ (-1238 |#2| |#1|))) (-15 -4243 ((-1238 |#2| |#1|) $ (-773))) (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1178)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) (-5 *1 (-1178 *3 *4 *5)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1178 *4 *5 *6)) (-4 *4 (-1052)) (-14 *5 (-1180)) (-14 *6 *4))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) +(-13 (-1262 |#1|) (-10 -8 (-15 -4378 ($ (-1238 |#2| |#1|))) (-15 -4243 ((-1238 |#2| |#1|) $ (-773))) (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) +((-4378 (((-865) $) 33) (($ (-1180)) 35)) (-3960 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 46)) (-3957 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 39) (($ $) 40)) (-3964 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 41)) (-3962 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 43)) (-3963 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 42)) (-3961 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 44)) (-3959 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $))) 45))) +(((-1179) (-13 (-615 (-865)) (-10 -8 (-15 -4378 ($ (-1180))) (-15 -3964 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3963 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3962 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3961 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3960 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3959 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3957 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3957 ($ $))))) (T -1179)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1179)))) (-3964 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3963 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3962 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3961 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3960 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3959 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3957 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) (-5 *1 (-1179)))) (-3957 (*1 *1 *1) (-5 *1 (-1179)))) +(-13 (-615 (-865)) (-10 -8 (-15 -4378 ($ (-1180))) (-15 -3964 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3963 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3962 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3961 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3960 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3959 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)) (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3957 ($ (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) (|:| CF (-315 (-168 (-380)))) (|:| |switch| $)))) (-15 -3957 ($ $)))) +((-2968 (((-112) $ $) NIL)) (-3968 (($ $ (-643 (-865))) 62)) (-3969 (($ $ (-643 (-865))) 60)) (-3966 (((-1162) $) 101)) (-3971 (((-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))) $) 108)) (-3972 (((-112) $) 23)) (-3970 (($ $ (-643 (-643 (-865)))) 59) (($ $ (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865))))) 99)) (-4156 (($) 163 T CONST)) (-3974 (((-1275)) 135)) (-3199 (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 69) (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 76)) (-4046 (($) 122) (($ $) 131)) (-3973 (($ $) 100)) (-2934 (($ $ $) NIL)) (-3260 (($ $ $) NIL)) (-3965 (((-643 $) $) 136)) (-3663 (((-1162) $) 114)) (-3664 (((-1123) $) NIL)) (-4231 (($ $ (-643 (-865))) 61)) (-4402 (((-538) $) 48) (((-1180) $) 49) (((-893 (-549)) $) 80) (((-893 (-380)) $) 78)) (-4378 (((-865) $) 55) (($ (-1162)) 50)) (-3662 (((-112) $ $) NIL)) (-3967 (($ $ (-643 (-865))) 63)) (-2900 (((-1162) $) 34) (((-1162) $ (-112)) 35) (((-1275) (-825) $) 36) (((-1275) (-825) $ (-112)) 37)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 51)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) 52))) +(((-1180) (-13 (-852) (-616 (-538)) (-823) (-616 (-1180)) (-618 (-1162)) (-616 (-893 (-549))) (-616 (-893 (-380))) (-889 (-549)) (-889 (-380)) (-10 -8 (-15 -4046 ($)) (-15 -4046 ($ $)) (-15 -3974 ((-1275))) (-15 -3973 ($ $)) (-15 -3972 ((-112) $)) (-15 -3971 ((-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))) $)) (-15 -3970 ($ $ (-643 (-643 (-865))))) (-15 -3970 ($ $ (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))))) (-15 -3969 ($ $ (-643 (-865)))) (-15 -3968 ($ $ (-643 (-865)))) (-15 -3967 ($ $ (-643 (-865)))) (-15 -4231 ($ $ (-643 (-865)))) (-15 -3966 ((-1162) $)) (-15 -3965 ((-643 $) $)) (-15 -4156 ($) -4384)))) (T -1180)) +((-4046 (*1 *1) (-5 *1 (-1180))) (-4046 (*1 *1 *1) (-5 *1 (-1180))) (-3974 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1180)))) (-3973 (*1 *1 *1) (-5 *1 (-1180))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865))))) (-5 *1 (-1180)))) (-3970 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 (-865)))) (-5 *1 (-1180)))) (-3970 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865))))) (-5 *1 (-1180)))) (-3969 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) (-3968 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1180)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1180)))) (-4156 (*1 *1) (-5 *1 (-1180)))) +(-13 (-852) (-616 (-538)) (-823) (-616 (-1180)) (-618 (-1162)) (-616 (-893 (-549))) (-616 (-893 (-380))) (-889 (-549)) (-889 (-380)) (-10 -8 (-15 -4046 ($)) (-15 -4046 ($ $)) (-15 -3974 ((-1275))) (-15 -3973 ($ $)) (-15 -3972 ((-112) $)) (-15 -3971 ((-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))) $)) (-15 -3970 ($ $ (-643 (-643 (-865))))) (-15 -3970 ($ $ (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) (|:| |args| (-643 (-865)))))) (-15 -3969 ($ $ (-643 (-865)))) (-15 -3968 ($ $ (-643 (-865)))) (-15 -3967 ($ $ (-643 (-865)))) (-15 -4231 ($ $ (-643 (-865)))) (-15 -3966 ((-1162) $)) (-15 -3965 ((-643 $) $)) (-15 -4156 ($) -4384))) +((-3975 (((-1269 |#1|) |#1| (-922)) 18) (((-1269 |#1|) (-643 |#1|)) 25))) +(((-1181 |#1|) (-10 -7 (-15 -3975 ((-1269 |#1|) (-643 |#1|))) (-15 -3975 ((-1269 |#1|) |#1| (-922)))) (-1052)) (T -1181)) +((-3975 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-1269 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1052)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1052)) (-5 *2 (-1269 *4)) (-5 *1 (-1181 *4))))) +(-10 -7 (-15 -3975 ((-1269 |#1|) (-643 |#1|))) (-15 -3975 ((-1269 |#1|) |#1| (-922)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| |#1| (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| |#1| (-1041 (-410 (-549))))) (((-3 |#1| #1#) $) NIL)) (-3576 (((-549) $) NIL (|has| |#1| (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| |#1| (-1041 (-410 (-549))))) ((|#1| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-3926 (($ $) NIL (|has| |#1| (-455)))) (-1769 (($ $ |#1| (-974) $) NIL)) (-2573 (((-112) $) 17)) (-2581 (((-773) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-974)) NIL)) (-3223 (((-974) $) NIL)) (-1770 (($ (-1 (-974) (-974)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#1| $) NIL)) (-4170 (($ $ (-974) |#1| $) NIL (-12 (|has| (-974) (-131)) (|has| |#1| (-560))))) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-560)))) (-4380 (((-974) $) NIL)) (-3220 ((|#1| $) NIL (|has| |#1| (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) NIL) (($ (-410 (-549))) NIL (-3960 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-1041 (-410 (-549))))))) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ (-974)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#1| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3510 (($) 11 T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 21)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1182 |#1|) (-13 (-327 |#1| (-974)) (-10 -8 (IF (|has| |#1| (-560)) (IF (|has| (-974) (-131)) (-15 -4170 ($ $ (-974) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1052)) (T -1182)) +((-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-974)) (-4 *2 (-131)) (-5 *1 (-1182 *3)) (-4 *3 (-560)) (-4 *3 (-1052))))) +(-13 (-327 |#1| #1=(-974)) (-10 -8 (IF (|has| |#1| (-560)) (IF (|has| #1# (-131)) (-15 -4170 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) +((-3976 (((-1184) (-1180) $) 25)) (-3986 (($) 29)) (-3978 (((-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) (-1180) $) 22)) (-3980 (((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)) $) 41) (((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) 42) (((-1275) (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) 43)) (-3988 (((-1275) (-1180)) 58)) (-3979 (((-1275) (-1180) $) 55) (((-1275) (-1180)) 56) (((-1275)) 57)) (-3984 (((-1275) (-1180)) 37)) (-3982 (((-1180)) 36)) (-3996 (($) 34)) (-3995 (((-439) (-1180) (-439) (-1180) $) 45) (((-439) (-643 (-1180)) (-439) (-1180) $) 49) (((-439) (-1180) (-439)) 46) (((-439) (-1180) (-439) (-1180)) 50)) (-3983 (((-1180)) 35)) (-4378 (((-865) $) 28)) (-3985 (((-1275)) 30) (((-1275) (-1180)) 33)) (-3977 (((-643 (-1180)) (-1180) $) 24)) (-3981 (((-1275) (-1180) (-643 (-1180)) $) 38) (((-1275) (-1180) (-643 (-1180))) 39) (((-1275) (-643 (-1180))) 40))) +(((-1183) (-13 (-615 (-865)) (-10 -8 (-15 -3986 ($)) (-15 -3985 ((-1275))) (-15 -3985 ((-1275) (-1180))) (-15 -3995 ((-439) (-1180) (-439) (-1180) $)) (-15 -3995 ((-439) (-643 (-1180)) (-439) (-1180) $)) (-15 -3995 ((-439) (-1180) (-439))) (-15 -3995 ((-439) (-1180) (-439) (-1180))) (-15 -3984 ((-1275) (-1180))) (-15 -3983 ((-1180))) (-15 -3982 ((-1180))) (-15 -3981 ((-1275) (-1180) (-643 (-1180)) $)) (-15 -3981 ((-1275) (-1180) (-643 (-1180)))) (-15 -3981 ((-1275) (-643 (-1180)))) (-15 -3980 ((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $)) (-15 -3980 ((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)))) (-15 -3980 ((-1275) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)))) (-15 -3979 ((-1275) (-1180) $)) (-15 -3979 ((-1275) (-1180))) (-15 -3979 ((-1275))) (-15 -3988 ((-1275) (-1180))) (-15 -3996 ($)) (-15 -3978 ((-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-1180) $)) (-15 -3977 ((-643 (-1180)) (-1180) $)) (-15 -3976 ((-1184) (-1180) $))))) (T -1183)) +((-3986 (*1 *1) (-5 *1 (-1183))) (-3985 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3995 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) (-3995 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-439)) (-5 *3 (-643 (-1180))) (-5 *4 (-1180)) (-5 *1 (-1183)))) (-3995 (*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) (-3995 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3983 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1183)))) (-3982 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1183)))) (-3981 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3980 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1180)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3980 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3979 (*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3979 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) (-3996 (*1 *1) (-5 *1 (-1183))) (-3978 (*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *1 (-1183)))) (-3977 (*1 *2 *3 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1183)) (-5 *3 (-1180)))) (-3976 (*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-1184)) (-5 *1 (-1183))))) +(-13 (-615 (-865)) (-10 -8 (-15 -3986 ($)) (-15 -3985 ((-1275))) (-15 -3985 ((-1275) (-1180))) (-15 -3995 ((-439) (-1180) (-439) (-1180) $)) (-15 -3995 ((-439) (-643 (-1180)) (-439) (-1180) $)) (-15 -3995 ((-439) (-1180) (-439))) (-15 -3995 ((-439) (-1180) (-439) (-1180))) (-15 -3984 ((-1275) (-1180))) (-15 -3983 ((-1180))) (-15 -3982 ((-1180))) (-15 -3981 ((-1275) (-1180) (-643 (-1180)) $)) (-15 -3981 ((-1275) (-1180) (-643 (-1180)))) (-15 -3981 ((-1275) (-643 (-1180)))) (-15 -3980 ((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1="void")) $)) (-15 -3980 ((-1275) (-1180) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)))) (-15 -3980 ((-1275) (-3 (|:| |fst| (-437)) (|:| -4342 #1#)))) (-15 -3979 ((-1275) (-1180) $)) (-15 -3979 ((-1275) (-1180))) (-15 -3979 ((-1275))) (-15 -3988 ((-1275) (-1180))) (-15 -3996 ($)) (-15 -3978 ((-3 (|:| |fst| (-437)) (|:| -4342 #1#)) (-1180) $)) (-15 -3977 ((-643 (-1180)) (-1180) $)) (-15 -3976 ((-1184) (-1180) $)))) +((-3990 (((-643 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) $) 66)) (-3992 (((-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))) (-437) $) 47)) (-3987 (($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439))))) 17)) (-3988 (((-1275) $) 73)) (-3993 (((-643 (-1180)) $) 22)) (-3989 (((-1106) $) 60)) (-3994 (((-439) (-1180) $) 27)) (-3991 (((-643 (-1180)) $) 30)) (-3996 (($) 19)) (-3995 (((-439) (-643 (-1180)) (-439) $) 25) (((-439) (-1180) (-439) $) 24)) (-4378 (((-865) $) 9) (((-1192 (-1180) (-439)) $) 13))) +(((-1184) (-13 (-615 (-865)) (-10 -8 (-15 -4378 ((-1192 (-1180) (-439)) $)) (-15 -3996 ($)) (-15 -3995 ((-439) (-643 (-1180)) (-439) $)) (-15 -3995 ((-439) (-1180) (-439) $)) (-15 -3994 ((-439) (-1180) $)) (-15 -3993 ((-643 (-1180)) $)) (-15 -3992 ((-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))) (-437) $)) (-15 -3991 ((-643 (-1180)) $)) (-15 -3990 ((-643 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) $)) (-15 -3989 ((-1106) $)) (-15 -3988 ((-1275) $)) (-15 -3987 ($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439))))))))) (T -1184)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-1192 (-1180) (-439))) (-5 *1 (-1184)))) (-3996 (*1 *1) (-5 *1 (-1184))) (-3995 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-643 (-1180))) (-5 *1 (-1184)))) (-3995 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1184)))) (-3994 (*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-439)) (-5 *1 (-1184)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1184)))) (-3992 (*1 *2 *3 *1) (-12 (-5 *3 (-437)) (-5 *2 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) (-5 *1 (-1184)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1184)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))))) (-5 *1 (-1184)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1184)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1184)))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439))))) (-5 *1 (-1184))))) +(-13 (-615 (-865)) (-10 -8 (-15 -4378 ((-1192 (-1180) (-439)) $)) (-15 -3996 ($)) (-15 -3995 ((-439) (-643 (-1180)) (-439) $)) (-15 -3995 ((-439) (-1180) (-439) $)) (-15 -3994 ((-439) (-1180) $)) (-15 -3993 ((-643 (-1180)) $)) (-15 -3992 ((-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))) (-437) $)) (-15 -3991 ((-643 (-1180)) $)) (-15 -3990 ((-643 (-643 (-3 (|:| -3973 (-1180)) (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) $)) (-15 -3989 ((-1106) $)) (-15 -3988 ((-1275) $)) (-15 -3987 ($ (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439)))))))) +((-2968 (((-112) $ $) NIL)) (-3577 (((-3 (-549) #1="failed") $) 29) (((-3 (-225) #1#) $) 35) (((-3 (-509) #1#) $) 43) (((-3 (-1162) #1#) $) 47)) (-3576 (((-549) $) 30) (((-225) $) 36) (((-509) $) 40) (((-1162) $) 48)) (-4001 (((-112) $) 53)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4000 (((-3 (-549) (-225) (-509) (-1162) $) $) 55)) (-3999 (((-643 $) $) 57)) (-4402 (((-1106) $) 24) (($ (-1106)) 25)) (-3998 (((-112) $) 56)) (-4378 (((-865) $) 23) (($ (-549)) 26) (($ (-225)) 32) (($ (-509)) 38) (($ (-1162)) 44) (((-538) $) 59) (((-549) $) 31) (((-225) $) 37) (((-509) $) 41) (((-1162) $) 49)) (-3997 (((-112) $ (|[\|\|]| (-549))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-509))) 19) (((-112) $ (|[\|\|]| (-1162))) 16)) (-4002 (($ (-509) (-643 $)) 51) (($ $ (-643 $)) 52)) (-3662 (((-112) $ $) NIL)) (-4003 (((-549) $) 27) (((-225) $) 33) (((-509) $) 39) (((-1162) $) 45)) (-3455 (((-112) $ $) 7))) +(((-1185) (-13 (-1265) (-1104) (-1041 (-549)) (-1041 (-225)) (-1041 (-509)) (-1041 (-1162)) (-615 (-538)) (-10 -8 (-15 -4402 ((-1106) $)) (-15 -4402 ($ (-1106))) (-15 -4378 ((-549) $)) (-15 -4003 ((-549) $)) (-15 -4378 ((-225) $)) (-15 -4003 ((-225) $)) (-15 -4378 ((-509) $)) (-15 -4003 ((-509) $)) (-15 -4378 ((-1162) $)) (-15 -4003 ((-1162) $)) (-15 -4002 ($ (-509) (-643 $))) (-15 -4002 ($ $ (-643 $))) (-15 -4001 ((-112) $)) (-15 -4000 ((-3 (-549) (-225) (-509) (-1162) $) $)) (-15 -3999 ((-643 $) $)) (-15 -3998 ((-112) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-549)))) (-15 -3997 ((-112) $ (|[\|\|]| (-225)))) (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -3997 ((-112) $ (|[\|\|]| (-1162))))))) (T -1185)) +((-4402 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1185)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1185)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1185)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1185)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1185)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1185)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1185)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1185)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1185)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1185)))) (-4002 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-1185))) (-5 *1 (-1185)))) (-4002 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1185)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-3 (-549) (-225) (-509) (-1162) (-1185))) (-5 *1 (-1185)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1185)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)) (-5 *1 (-1185)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1185)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1185)))) (-3997 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)) (-5 *1 (-1185))))) +(-13 (-1265) (-1104) (-1041 (-549)) (-1041 (-225)) (-1041 (-509)) (-1041 (-1162)) (-615 (-538)) (-10 -8 (-15 -4402 ((-1106) $)) (-15 -4402 ($ (-1106))) (-15 -4378 ((-549) $)) (-15 -4003 ((-549) $)) (-15 -4378 ((-225) $)) (-15 -4003 ((-225) $)) (-15 -4378 ((-509) $)) (-15 -4003 ((-509) $)) (-15 -4378 ((-1162) $)) (-15 -4003 ((-1162) $)) (-15 -4002 ($ (-509) (-643 $))) (-15 -4002 ($ $ (-643 $))) (-15 -4001 ((-112) $)) (-15 -4000 ((-3 (-549) (-225) (-509) (-1162) $) $)) (-15 -3999 ((-643 $) $)) (-15 -3998 ((-112) $)) (-15 -3997 ((-112) $ (|[\|\|]| (-549)))) (-15 -3997 ((-112) $ (|[\|\|]| (-225)))) (-15 -3997 ((-112) $ (|[\|\|]| (-509)))) (-15 -3997 ((-112) $ (|[\|\|]| (-1162)))))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) 22)) (-4156 (($) 12 T CONST)) (-3395 (($) 26)) (-2934 (($ $ $) NIL) (($) 19 T CONST)) (-3260 (($ $ $) NIL) (($) 20 T CONST)) (-2188 (((-922) $) 24)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) 23)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-1186 |#1|) (-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) (-922)) (T -1186)) +((-4156 (*1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-922))))) +(-13 (-846) (-10 -8 (-15 -4156 ($) -4384))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) 19 T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) 12 T CONST)) (-1446 (($ $ $) NIL) (($) 18 T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-1355 (($ $ $) 21)) (-1343 (($ $ $) 20)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-1186 |#1|) (-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562))) (-923)) (T -1186)) -((-1343 (*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923)))) (-1355 (*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923)))) (-3758 (*1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923))))) -(-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) 19 T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) 12 T CONST)) (-3260 (($ $ $) NIL) (($) 18 T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) 21)) (-4158 (($ $ $) 20)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-1187 |#1|) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) (-922)) (T -1187)) +((-4158 (*1 *1 *1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) (-4157 (*1 *1 *1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) (-4156 (*1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922))))) +(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 9)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 7))) -(((-1187) (-1102)) (T -1187)) -NIL -(-1102) -((-1450 (((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179))) 67)) (-2510 (((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|)))) 78) (((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|))) 74) (((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179)) 79) (((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179)) 73) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|))))) 106) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|)))) 105) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179))) 107) (((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1179))) 104))) -(((-1188 |#1|) (-10 -7 (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179)))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -2510 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179))) (-15 -2510 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -2510 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)))) (-15 -2510 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))))) (-15 -1450 ((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179))))) (-559)) (T -1188)) -((-1450 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-954 *5)))) (-5 *1 (-1188 *5)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) (-5 *1 (-1188 *4)) (-5 *3 (-295 (-410 (-954 *4)))))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) (-5 *1 (-1188 *4)) (-5 *3 (-410 (-954 *4))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1188 *5)) (-5 *3 (-295 (-410 (-954 *5)))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *4 (-1179)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1188 *5)) (-5 *3 (-410 (-954 *5))))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1188 *4)) (-5 *3 (-645 (-295 (-410 (-954 *4))))))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1188 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1188 *5)) (-5 *3 (-645 (-295 (-410 (-954 *5))))))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1188 *5))))) -(-10 -7 (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))) (-645 (-1179)))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))) (-645 (-1179)))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-410 (-954 |#1|))))) (-15 -2510 ((-645 (-645 (-295 (-410 (-954 |#1|))))) (-645 (-295 (-410 (-954 |#1|)))))) (-15 -2510 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)) (-1179))) (-15 -2510 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))) (-1179))) (-15 -2510 ((-645 (-295 (-410 (-954 |#1|)))) (-410 (-954 |#1|)))) (-15 -2510 ((-645 (-295 (-410 (-954 |#1|)))) (-295 (-410 (-954 |#1|))))) (-15 -1450 ((-645 (-645 (-954 |#1|))) (-645 (-410 (-954 |#1|))) (-645 (-1179))))) -((-4184 (((-1161)) 7)) (-4083 (((-1161)) 11 T CONST)) (-3629 (((-1274) (-1161)) 13)) (-4111 (((-1161)) 8 T CONST)) (-1517 (((-130)) 10 T CONST))) -(((-1189) (-13 (-1219) (-10 -7 (-15 -4184 ((-1161))) (-15 -4111 ((-1161)) -3562) (-15 -1517 ((-130)) -3562) (-15 -4083 ((-1161)) -3562) (-15 -3629 ((-1274) (-1161)))))) (T -1189)) -((-4184 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))) (-4111 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))) (-1517 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1189)))) (-4083 (*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1189))))) -(-13 (-1219) (-10 -7 (-15 -4184 ((-1161))) (-15 -4111 ((-1161)) -3562) (-15 -1517 ((-130)) -3562) (-15 -4083 ((-1161)) -3562) (-15 -3629 ((-1274) (-1161))))) -((-3256 (((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 56)) (-2215 (((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|))) 38)) (-3705 (((-1191 (-645 |#1|)) (-645 |#1|)) 49)) (-1920 (((-645 (-645 |#1|)) (-645 |#1|)) 45)) (-3482 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))) 53)) (-4236 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|)))) 52)) (-3575 (((-645 (-645 |#1|)) (-645 (-645 |#1|))) 43)) (-1656 (((-645 |#1|) (-645 |#1|)) 46)) (-1996 (((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 32)) (-1447 (((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 29)) (-3051 (((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|))) 24)) (-2672 (((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 58)) (-1386 (((-645 (-645 |#1|)) (-1191 (-645 |#1|))) 60))) -(((-1190 |#1|) (-10 -7 (-15 -3051 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -1447 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1996 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -3256 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2672 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -1386 ((-645 (-645 |#1|)) (-1191 (-645 |#1|)))) (-15 -2215 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -3705 ((-1191 (-645 |#1|)) (-645 |#1|))) (-15 -3575 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -1920 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -1656 ((-645 |#1|) (-645 |#1|))) (-15 -4236 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -3482 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) (-851)) (T -1190)) -((-3482 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4)))) (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4)))))) (-5 *1 (-1190 *4)) (-5 *3 (-645 (-645 (-645 *4)))))) (-4236 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) (|:| |f4| (-645 *5)))) (-5 *1 (-1190 *6)) (-5 *4 (-645 *5)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1190 *3)))) (-1920 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4)) (-5 *3 (-645 *4)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1190 *3)))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-1191 (-645 *4))) (-5 *1 (-1190 *4)) (-5 *3 (-645 *4)))) (-2215 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) (-5 *1 (-1190 *4)) (-5 *3 (-645 (-645 *4))))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-1191 (-645 *4))) (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4)))) (-2672 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4)) (-4 *4 (-851)))) (-3256 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-4 *4 (-851)) (-5 *1 (-1190 *4)))) (-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *1 (-1190 *4)))) (-1447 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1190 *5)))) (-3051 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) (-5 *1 (-1190 *6)) (-5 *5 (-645 *4))))) -(-10 -7 (-15 -3051 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -1447 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1996 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -3256 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2672 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -1386 ((-645 (-645 |#1|)) (-1191 (-645 |#1|)))) (-15 -2215 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -3705 ((-1191 (-645 |#1|)) (-645 |#1|))) (-15 -3575 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -1920 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -1656 ((-645 |#1|) (-645 |#1|))) (-15 -4236 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -3482 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) -((-1923 (($ (-645 (-645 |#1|))) 10)) (-3298 (((-645 (-645 |#1|)) $) 11)) (-2504 (((-863) $) 38))) -(((-1191 |#1|) (-10 -8 (-15 -1923 ($ (-645 (-645 |#1|)))) (-15 -3298 ((-645 (-645 |#1|)) $)) (-15 -2504 ((-863) $))) (-1102)) (T -1191)) -((-2504 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1191 *3)) (-4 *3 (-1102)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1102)))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-1191 *3))))) -(-10 -8 (-15 -1923 ($ (-645 (-645 |#1|)))) (-15 -3298 ((-645 (-645 |#1|)) $)) (-15 -2504 ((-863) $))) -((-2487 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4212 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3095 (((-1274) $ |#1| |#1|) NIL (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#2| $ |#1| |#2|) NIL)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2412 (((-3 |#2| "failed") |#1| $) NIL)) (-3758 (($) NIL T CONST)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) NIL)) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) NIL)) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) NIL)) (-2407 ((|#1| $) NIL (|has| |#1| (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-645 |#2|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-2346 ((|#1| $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-1512 (((-645 |#1|) $) NIL)) (-1560 (((-112) |#1| $) NIL)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-3360 (((-645 |#1|) $) NIL)) (-2919 (((-112) |#1| $) NIL)) (-3479 (((-1122) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-3436 ((|#2| $) NIL (|has| |#1| (-851)))) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL)) (-2930 (($ $ |#2|) NIL (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2730 (($) NIL) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) NIL (-12 (|has| $ (-6 -4422)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-2504 (((-863) $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3858 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) NIL)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) NIL (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) NIL (-2836 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| |#2| (-1102))))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1192 |#1| |#2|) (-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) (-1102) (-1102)) (T -1192)) -NIL -(-13 (-1195 |#1| |#2|) (-10 -7 (-6 -4422))) -((-3294 ((|#1| (-645 |#1|)) 49)) (-2348 ((|#1| |#1| (-567)) 24)) (-3977 (((-1175 |#1|) |#1| (-923)) 20))) -(((-1193 |#1|) (-10 -7 (-15 -3294 (|#1| (-645 |#1|))) (-15 -3977 ((-1175 |#1|) |#1| (-923))) (-15 -2348 (|#1| |#1| (-567)))) (-365)) (T -1193)) -((-2348 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1193 *2)) (-4 *2 (-365)))) (-3977 (*1 *2 *3 *4) (-12 (-5 *4 (-923)) (-5 *2 (-1175 *3)) (-5 *1 (-1193 *3)) (-4 *3 (-365)))) (-3294 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1193 *2)) (-4 *2 (-365))))) -(-10 -7 (-15 -3294 (|#1| (-645 |#1|))) (-15 -3977 ((-1175 |#1|) |#1| (-923))) (-15 -2348 (|#1| |#1| (-567)))) -((-4212 (($) 10) (($ (-645 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)))) 14)) (-4197 (($ (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3468 (((-645 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) $) 39) (((-645 |#3|) $) 41)) (-2021 (($ (-1 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4364 (($ (-1 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3018 (((-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) $) 60)) (-3636 (($ (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) $) 16)) (-3360 (((-645 |#2|) $) 19)) (-2919 (((-112) |#2| $) 65)) (-2989 (((-3 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) "failed") (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) $) 64)) (-1713 (((-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) $) 69)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1804 (((-645 |#3|) $) 43)) (-1882 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) $) NIL) (((-772) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) $) NIL) (((-772) |#3| $) NIL) (((-772) (-1 (-112) |#3|) $) 79)) (-2504 (((-863) $) 27)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2968 (((-112) $ $) 51))) -(((-1194 |#1| |#2| |#3|) (-10 -8 (-15 -2968 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -4364 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4212 (|#1| (-645 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))))) (-15 -4212 (|#1|)) (-15 -4364 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2021 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3486 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -3468 ((-645 |#3|) |#1|)) (-15 -3486 ((-772) |#3| |#1|)) (-15 -1882 (|#3| |#1| |#2| |#3|)) (-15 -1882 (|#3| |#1| |#2|)) (-15 -1804 ((-645 |#3|) |#1|)) (-15 -2919 ((-112) |#2| |#1|)) (-15 -3360 ((-645 |#2|) |#1|)) (-15 -4197 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4197 (|#1| (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -4197 (|#1| (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -2989 ((-3 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) "failed") (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -3018 ((-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -3636 (|#1| (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -1713 ((-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -3486 ((-772) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -3468 ((-645 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -3486 ((-772) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -1430 ((-112) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -3450 ((-112) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -2021 (|#1| (-1 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -4364 (|#1| (-1 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|))) (-1195 |#2| |#3|) (-1102) (-1102)) (T -1194)) -NIL -(-10 -8 (-15 -2968 ((-112) |#1| |#1|)) (-15 -2504 ((-863) |#1|)) (-15 -4364 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4212 (|#1| (-645 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))))) (-15 -4212 (|#1|)) (-15 -4364 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2021 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3450 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1430 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3486 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -3468 ((-645 |#3|) |#1|)) (-15 -3486 ((-772) |#3| |#1|)) (-15 -1882 (|#3| |#1| |#2| |#3|)) (-15 -1882 (|#3| |#1| |#2|)) (-15 -1804 ((-645 |#3|) |#1|)) (-15 -2919 ((-112) |#2| |#1|)) (-15 -3360 ((-645 |#2|) |#1|)) (-15 -4197 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4197 (|#1| (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -4197 (|#1| (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -2989 ((-3 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) "failed") (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -3018 ((-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -3636 (|#1| (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -1713 ((-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -3486 ((-772) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) |#1|)) (-15 -3468 ((-645 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -3486 ((-772) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -1430 ((-112) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -3450 ((-112) (-1 (-112) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -2021 (|#1| (-1 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|)) (-15 -4364 (|#1| (-1 (-2 (|:| -2025 |#2|) (|:| -2265 |#3|)) (-2 (|:| -2025 |#2|) (|:| -2265 |#3|))) |#1|))) -((-2487 (((-112) $ $) 19 (-2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4212 (($) 73) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 72)) (-3095 (((-1274) $ |#1| |#1|) 100 (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#2| $ |#1| |#2|) 74)) (-2105 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 46 (|has| $ (-6 -4422)))) (-1316 (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 56 (|has| $ (-6 -4422)))) (-2412 (((-3 |#2| "failed") |#1| $) 62)) (-3758 (($) 7 T CONST)) (-3470 (($ $) 59 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422))))) (-4197 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 48 (|has| $ (-6 -4422))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 47 (|has| $ (-6 -4422))) (((-3 |#2| "failed") |#1| $) 63)) (-1695 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 55 (|has| $ (-6 -4422)))) (-2617 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 57 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 54 (|has| $ (-6 -4422))) (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 53 (|has| $ (-6 -4422)))) (-2036 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4423)))) (-1970 ((|#2| $ |#1|) 89)) (-3468 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 31 (|has| $ (-6 -4422))) (((-645 |#2|) $) 80 (|has| $ (-6 -4422)))) (-3753 (((-112) $ (-772)) 9)) (-2407 ((|#1| $) 97 (|has| |#1| (-851)))) (-4200 (((-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 30 (|has| $ (-6 -4422))) (((-645 |#2|) $) 81 (|has| $ (-6 -4422)))) (-2203 (((-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422))))) (-2346 ((|#1| $) 96 (|has| |#1| (-851)))) (-2021 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 35 (|has| $ (-6 -4423))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4423)))) (-4364 (($ (-1 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3421 (((-112) $ (-772)) 10)) (-1812 (((-1161) $) 22 (-2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-1512 (((-645 |#1|) $) 64)) (-1560 (((-112) |#1| $) 65)) (-3018 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 40)) (-3636 (($ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 41)) (-3360 (((-645 |#1|) $) 94)) (-2919 (((-112) |#1| $) 93)) (-3479 (((-1122) $) 21 (-2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-3436 ((|#2| $) 98 (|has| |#1| (-851)))) (-2989 (((-3 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) "failed") (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 52)) (-2930 (($ $ |#2|) 99 (|has| $ (-6 -4423)))) (-1713 (((-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 42)) (-1430 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 33 (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))))) 27 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-295 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 26 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) 25 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 24 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4422)) (|has| |#2| (-1102))))) (-1804 (((-645 |#2|) $) 92)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2730 (($) 50) (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 49)) (-3486 (((-772) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 32 (|has| $ (-6 -4422))) (((-772) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| $ (-6 -4422)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4422)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 60 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))))) (-2516 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 51)) (-2504 (((-863) $) 18 (-2836 (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863)))))) (-3858 (((-112) $ $) 23 (-2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-4225 (($ (-645 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) 43)) (-3450 (((-112) (-1 (-112) (-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) $) 34 (|has| $ (-6 -4422))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (-2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-1195 |#1| |#2|) (-140) (-1102) (-1102)) (T -1195)) -((-3824 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) (-4212 (*1 *1) (-12 (-4 *1 (-1195 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) (-4212 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -2025 *3) (|:| -2265 *4)))) (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *1 (-1195 *3 *4)))) (-4364 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1195 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))))) -(-13 (-611 |t#1| |t#2|) (-605 |t#1| |t#2|) (-10 -8 (-15 -3824 (|t#2| $ |t#1| |t#2|)) (-15 -4212 ($)) (-15 -4212 ($ (-645 (-2 (|:| -2025 |t#1|) (|:| -2265 |t#2|))))) (-15 -4364 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2025 |#1|) (|:| -2265 |#2|))) . T) ((-102) -2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) ((-614 (-863)) -2836 (|has| |#2| (-1102)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-492 #0#) . T) ((-492 |#2|) . T) ((-605 |#1| |#2|) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-310 (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)))) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1102))) ((-611 |#1| |#2|) . T) ((-1102) -2836 (|has| |#2| (-1102)) (|has| (-2 (|:| -2025 |#1|) (|:| -2265 |#2|)) (-1102))) ((-1219) . T)) -((-3124 (((-112)) 29)) (-2945 (((-1274) (-1161)) 31)) (-1859 (((-112)) 41)) (-3717 (((-1274)) 39)) (-1454 (((-1274) (-1161) (-1161)) 30)) (-3833 (((-112)) 42)) (-3636 (((-1274) |#1| |#2|) 53)) (-3804 (((-1274)) 27)) (-3467 (((-3 |#2| "failed") |#1|) 51)) (-4179 (((-1274)) 40))) -(((-1196 |#1| |#2|) (-10 -7 (-15 -3804 ((-1274))) (-15 -1454 ((-1274) (-1161) (-1161))) (-15 -2945 ((-1274) (-1161))) (-15 -3717 ((-1274))) (-15 -4179 ((-1274))) (-15 -3124 ((-112))) (-15 -1859 ((-112))) (-15 -3833 ((-112))) (-15 -3467 ((-3 |#2| "failed") |#1|)) (-15 -3636 ((-1274) |#1| |#2|))) (-1102) (-1102)) (T -1196)) -((-3636 (*1 *2 *3 *4) (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3467 (*1 *2 *3) (|partial| -12 (-4 *2 (-1102)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1102)))) (-3833 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-1859 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3124 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-4179 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-3717 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1196 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)))) (-1454 (*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1196 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)))) (-3804 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102))))) -(-10 -7 (-15 -3804 ((-1274))) (-15 -1454 ((-1274) (-1161) (-1161))) (-15 -2945 ((-1274) (-1161))) (-15 -3717 ((-1274))) (-15 -4179 ((-1274))) (-15 -3124 ((-112))) (-15 -1859 ((-112))) (-15 -3833 ((-112))) (-15 -3467 ((-3 |#2| "failed") |#1|)) (-15 -3636 ((-1274) |#1| |#2|))) -((-1574 (((-1161) (-1161)) 22)) (-3933 (((-52) (-1161)) 25))) -(((-1197) (-10 -7 (-15 -3933 ((-52) (-1161))) (-15 -1574 ((-1161) (-1161))))) (T -1197)) -((-1574 (*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1197)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-1197))))) -(-10 -7 (-15 -3933 ((-52) (-1161))) (-15 -1574 ((-1161) (-1161)))) -((-2504 (((-1199) |#1|) 11))) -(((-1198 |#1|) (-10 -7 (-15 -2504 ((-1199) |#1|))) (-1102)) (T -1198)) -((-2504 (*1 *2 *3) (-12 (-5 *2 (-1199)) (-5 *1 (-1198 *3)) (-4 *3 (-1102))))) -(-10 -7 (-15 -2504 ((-1199) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2499 (((-645 (-1161)) $) 40)) (-2162 (((-645 (-1161)) $ (-645 (-1161))) 43)) (-2045 (((-645 (-1161)) $ (-645 (-1161))) 42)) (-2901 (((-645 (-1161)) $ (-645 (-1161))) 44)) (-4342 (((-645 (-1161)) $) 39)) (-4223 (($) 28)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-4363 (((-645 (-1161)) $) 41)) (-4079 (((-1274) $ (-567)) 36) (((-1274) $) 37)) (-1322 (($ (-863) (-567)) 33) (($ (-863) (-567) (-863)) NIL)) (-2504 (((-863) $) 54) (($ (-863)) 32)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1199) (-13 (-1102) (-617 (-863)) (-10 -8 (-15 -1322 ($ (-863) (-567))) (-15 -1322 ($ (-863) (-567) (-863))) (-15 -4079 ((-1274) $ (-567))) (-15 -4079 ((-1274) $)) (-15 -4363 ((-645 (-1161)) $)) (-15 -2499 ((-645 (-1161)) $)) (-15 -4223 ($)) (-15 -4342 ((-645 (-1161)) $)) (-15 -2901 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -2162 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -2045 ((-645 (-1161)) $ (-645 (-1161))))))) (T -1199)) -((-1322 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1199)))) (-1322 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1199)))) (-4079 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1199)))) (-4079 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1199)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-4223 (*1 *1) (-5 *1 (-1199))) (-4342 (*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-2901 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-2162 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199)))) (-2045 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199))))) -(-13 (-1102) (-617 (-863)) (-10 -8 (-15 -1322 ($ (-863) (-567))) (-15 -1322 ($ (-863) (-567) (-863))) (-15 -4079 ((-1274) $ (-567))) (-15 -4079 ((-1274) $)) (-15 -4363 ((-645 (-1161)) $)) (-15 -2499 ((-645 (-1161)) $)) (-15 -4223 ($)) (-15 -4342 ((-645 (-1161)) $)) (-15 -2901 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -2162 ((-645 (-1161)) $ (-645 (-1161)))) (-15 -2045 ((-645 (-1161)) $ (-645 (-1161)))))) -((-2487 (((-112) $ $) NIL)) (-2193 (((-1161) $ (-1161)) 17) (((-1161) $) 16)) (-2060 (((-1161) $ (-1161)) 15)) (-3200 (($ $ (-1161)) NIL)) (-1909 (((-3 (-1161) "failed") $) 11)) (-1753 (((-1161) $) 8)) (-2149 (((-3 (-1161) "failed") $) 12)) (-4118 (((-1161) $) 9)) (-1692 (($ (-391)) NIL) (($ (-391) (-1161)) NIL)) (-1646 (((-391) $) NIL)) (-1812 (((-1161) $) NIL)) (-2696 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2428 (((-112) $) 21)) (-2504 (((-863) $) NIL)) (-4023 (($ $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1200) (-13 (-366 (-391) (-1161)) (-10 -8 (-15 -2193 ((-1161) $ (-1161))) (-15 -2193 ((-1161) $)) (-15 -1753 ((-1161) $)) (-15 -1909 ((-3 (-1161) "failed") $)) (-15 -2149 ((-3 (-1161) "failed") $)) (-15 -2428 ((-112) $))))) (T -1200)) -((-2193 (*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-1909 (*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-2149 (*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-1200)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200))))) -(-13 (-366 (-391) (-1161)) (-10 -8 (-15 -2193 ((-1161) $ (-1161))) (-15 -2193 ((-1161) $)) (-15 -1753 ((-1161) $)) (-15 -1909 ((-3 (-1161) "failed") $)) (-15 -2149 ((-3 (-1161) "failed") $)) (-15 -2428 ((-112) $)))) -((-2777 (((-3 (-567) "failed") |#1|) 19)) (-4161 (((-3 (-567) "failed") |#1|) 14)) (-2630 (((-567) (-1161)) 33))) -(((-1201 |#1|) (-10 -7 (-15 -2777 ((-3 (-567) "failed") |#1|)) (-15 -4161 ((-3 (-567) "failed") |#1|)) (-15 -2630 ((-567) (-1161)))) (-1051)) (T -1201)) -((-2630 (*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-567)) (-5 *1 (-1201 *4)) (-4 *4 (-1051)))) (-4161 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1201 *3)) (-4 *3 (-1051)))) (-2777 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1201 *3)) (-4 *3 (-1051))))) -(-10 -7 (-15 -2777 ((-3 (-567) "failed") |#1|)) (-15 -4161 ((-3 (-567) "failed") |#1|)) (-15 -2630 ((-567) (-1161)))) -((-3506 (((-1135 (-225))) 9))) -(((-1202) (-10 -7 (-15 -3506 ((-1135 (-225)))))) (T -1202)) -((-3506 (*1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1202))))) -(-10 -7 (-15 -3506 ((-1135 (-225))))) -((-4329 (($) 12)) (-1481 (($ $) 36)) (-1456 (($ $) 34)) (-2588 (($ $) 26)) (-1505 (($ $) 18)) (-2090 (($ $) 16)) (-1492 (($ $) 20)) (-2621 (($ $) 31)) (-1468 (($ $) 35)) (-2599 (($ $) 30))) -(((-1203 |#1|) (-10 -8 (-15 -4329 (|#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2621 (|#1| |#1|)) (-15 -2599 (|#1| |#1|))) (-1204)) (T -1203)) -NIL -(-10 -8 (-15 -4329 (|#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2621 (|#1| |#1|)) (-15 -2599 (|#1| |#1|))) -((-1406 (($ $) 26)) (-2545 (($ $) 11)) (-1380 (($ $) 27)) (-2524 (($ $) 10)) (-1431 (($ $) 28)) (-2565 (($ $) 9)) (-4329 (($) 16)) (-2734 (($ $) 19)) (-4272 (($ $) 18)) (-1443 (($ $) 29)) (-2576 (($ $) 8)) (-1418 (($ $) 30)) (-2555 (($ $) 7)) (-1394 (($ $) 31)) (-2533 (($ $) 6)) (-1481 (($ $) 20)) (-2610 (($ $) 32)) (-1456 (($ $) 21)) (-2588 (($ $) 33)) (-1505 (($ $) 22)) (-2632 (($ $) 34)) (-2090 (($ $) 23)) (-1367 (($ $) 35)) (-1492 (($ $) 24)) (-2621 (($ $) 36)) (-1468 (($ $) 25)) (-2599 (($ $) 37)) (** (($ $ $) 17))) -(((-1204) (-140)) (T -1204)) -((-4329 (*1 *1) (-4 *1 (-1204)))) -(-13 (-1207) (-95) (-496) (-35) (-285) (-10 -8 (-15 -4329 ($)))) -(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-1207) . T)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2233 ((|#1| $) 19)) (-2286 (($ |#1| (-645 $)) 28) (($ (-645 |#1|)) 35) (($ |#1|) 30)) (-1555 (((-112) $ (-772)) 72)) (-3647 ((|#1| $ |#1|) 14 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 13 (|has| $ (-6 -4423)))) (-3758 (($) NIL T CONST)) (-3468 (((-645 |#1|) $) 76 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 64)) (-2373 (((-112) $ $) 49 (|has| |#1| (-1102)))) (-3753 (((-112) $ (-772)) 62)) (-4200 (((-645 |#1|) $) 77 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2021 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 27)) (-3421 (((-112) $ (-772)) 60)) (-3895 (((-645 |#1|) $) 54)) (-1972 (((-112) $) 52)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1430 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 107)) (-2319 (((-112) $) 9)) (-2973 (($) 10)) (-1882 ((|#1| $ "value") NIL)) (-2721 (((-567) $ $) 48)) (-3327 (((-645 $) $) 89)) (-2831 (((-112) $ $) 110)) (-1542 (((-645 $) $) 105)) (-3304 (($ $) 106)) (-3625 (((-112) $) 84)) (-3486 (((-772) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4422))) (((-772) |#1| $) 17 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3846 (($ $) 88)) (-2504 (((-863) $) 91 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 12)) (-2049 (((-112) $ $) 39 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 37 (|has| |#1| (-1102)))) (-2498 (((-772) $) 58 (|has| $ (-6 -4422))))) -(((-1205 |#1|) (-13 (-1012 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -2286 ($ |#1| (-645 $))) (-15 -2286 ($ (-645 |#1|))) (-15 -2286 ($ |#1|)) (-15 -3625 ((-112) $)) (-15 -3304 ($ $)) (-15 -1542 ((-645 $) $)) (-15 -2831 ((-112) $ $)) (-15 -3327 ((-645 $) $)))) (-1102)) (T -1205)) -((-3625 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))) (-2286 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1205 *2))) (-5 *1 (-1205 *2)) (-4 *2 (-1102)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1205 *3)))) (-2286 (*1 *1 *2) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1102)))) (-3304 (*1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1102)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-645 (-1205 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))) (-2831 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1205 *3)) (-4 *3 (-1102)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-645 (-1205 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1102))))) -(-13 (-1012 |#1|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -2286 ($ |#1| (-645 $))) (-15 -2286 ($ (-645 |#1|))) (-15 -2286 ($ |#1|)) (-15 -3625 ((-112) $)) (-15 -3304 ($ $)) (-15 -1542 ((-645 $) $)) (-15 -2831 ((-112) $ $)) (-15 -3327 ((-645 $) $)))) -((-2545 (($ $) 15)) (-2565 (($ $) 12)) (-2576 (($ $) 10)) (-2555 (($ $) 17))) -(((-1206 |#1|) (-10 -8 (-15 -2555 (|#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -2545 (|#1| |#1|))) (-1207)) (T -1206)) -NIL -(-10 -8 (-15 -2555 (|#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -2545 (|#1| |#1|))) -((-2545 (($ $) 11)) (-2524 (($ $) 10)) (-2565 (($ $) 9)) (-2576 (($ $) 8)) (-2555 (($ $) 7)) (-2533 (($ $) 6))) -(((-1207) (-140)) (T -1207)) -((-2545 (*1 *1 *1) (-4 *1 (-1207))) (-2524 (*1 *1 *1) (-4 *1 (-1207))) (-2565 (*1 *1 *1) (-4 *1 (-1207))) (-2576 (*1 *1 *1) (-4 *1 (-1207))) (-2555 (*1 *1 *1) (-4 *1 (-1207))) (-2533 (*1 *1 *1) (-4 *1 (-1207)))) -(-13 (-10 -8 (-15 -2533 ($ $)) (-15 -2555 ($ $)) (-15 -2576 ($ $)) (-15 -2565 ($ $)) (-15 -2524 ($ $)) (-15 -2545 ($ $)))) -((-3826 ((|#2| |#2|) 98)) (-1503 (((-112) |#2|) 29)) (-3680 ((|#2| |#2|) 33)) (-3690 ((|#2| |#2|) 35)) (-2069 ((|#2| |#2| (-1179)) 92) ((|#2| |#2|) 93)) (-3274 (((-169 |#2|) |#2|) 31)) (-1362 ((|#2| |#2| (-1179)) 94) ((|#2| |#2|) 95))) -(((-1208 |#1| |#2|) (-10 -7 (-15 -2069 (|#2| |#2|)) (-15 -2069 (|#2| |#2| (-1179))) (-15 -1362 (|#2| |#2|)) (-15 -1362 (|#2| |#2| (-1179))) (-15 -3826 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -3690 (|#2| |#2|)) (-15 -1503 ((-112) |#2|)) (-15 -3274 ((-169 |#2|) |#2|))) (-13 (-455) (-1040 (-567)) (-640 (-567))) (-13 (-27) (-1204) (-433 |#1|))) (T -1208)) -((-3274 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-169 *3)) (-5 *1 (-1208 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-1503 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-1208 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) (-3690 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-3680 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-1362 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-1362 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) (-2069 (*1 *2 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) (-2069 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))) -(-10 -7 (-15 -2069 (|#2| |#2|)) (-15 -2069 (|#2| |#2| (-1179))) (-15 -1362 (|#2| |#2|)) (-15 -1362 (|#2| |#2| (-1179))) (-15 -3826 (|#2| |#2|)) (-15 -3680 (|#2| |#2|)) (-15 -3690 (|#2| |#2|)) (-15 -1503 ((-112) |#2|)) (-15 -3274 ((-169 |#2|) |#2|))) -((-4226 ((|#4| |#4| |#1|) 32)) (-4349 ((|#4| |#4| |#1|) 33))) -(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4226 (|#4| |#4| |#1|)) (-15 -4349 (|#4| |#4| |#1|))) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1209)) -((-4349 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1209 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-4226 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1209 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(-10 -7 (-15 -4226 (|#4| |#4| |#1|)) (-15 -4349 (|#4| |#4| |#1|))) -((-2843 ((|#2| |#2|) 148)) (-2976 ((|#2| |#2|) 145)) (-2008 ((|#2| |#2|) 136)) (-2616 ((|#2| |#2|) 133)) (-3411 ((|#2| |#2|) 141)) (-3525 ((|#2| |#2|) 129)) (-1685 ((|#2| |#2|) 44)) (-1840 ((|#2| |#2|) 105)) (-2805 ((|#2| |#2|) 88)) (-3984 ((|#2| |#2|) 143)) (-3721 ((|#2| |#2|) 131)) (-3597 ((|#2| |#2|) 153)) (-1509 ((|#2| |#2|) 151)) (-4027 ((|#2| |#2|) 152)) (-3435 ((|#2| |#2|) 150)) (-2429 ((|#2| |#2|) 163)) (-3559 ((|#2| |#2|) 30 (-12 (|has| |#2| (-615 (-894 |#1|))) (|has| |#2| (-888 |#1|)) (|has| |#1| (-615 (-894 |#1|))) (|has| |#1| (-888 |#1|))))) (-1345 ((|#2| |#2|) 89)) (-4054 ((|#2| |#2|) 154)) (-4382 ((|#2| |#2|) 155)) (-4048 ((|#2| |#2|) 142)) (-1903 ((|#2| |#2|) 130)) (-3515 ((|#2| |#2|) 149)) (-3354 ((|#2| |#2|) 147)) (-4227 ((|#2| |#2|) 137)) (-4107 ((|#2| |#2|) 135)) (-3231 ((|#2| |#2|) 139)) (-3885 ((|#2| |#2|) 127))) -(((-1210 |#1| |#2|) (-10 -7 (-15 -4382 (|#2| |#2|)) (-15 -2805 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -1840 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1345 (|#2| |#2|)) (-15 -4054 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3231 (|#2| |#2|)) (-15 -4227 (|#2| |#2|)) (-15 -3515 (|#2| |#2|)) (-15 -1903 (|#2| |#2|)) (-15 -4048 (|#2| |#2|)) (-15 -3721 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -2008 (|#2| |#2|)) (-15 -2843 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (IF (|has| |#1| (-888 |#1|)) (IF (|has| |#1| (-615 (-894 |#1|))) (IF (|has| |#2| (-615 (-894 |#1|))) (IF (|has| |#2| (-888 |#1|)) (-15 -3559 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-455) (-13 (-433 |#1|) (-1204))) (T -1210)) -((-3559 (*1 *2 *2) (-12 (-4 *3 (-615 (-894 *3))) (-4 *3 (-888 *3)) (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-615 (-894 *3))) (-4 *2 (-888 *3)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3597 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4027 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3354 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2976 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2843 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2008 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3411 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3525 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3721 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4048 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-1903 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3515 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4227 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3231 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4054 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-1345 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-1840 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-2805 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204))))) (-4382 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) (-4 *2 (-13 (-433 *3) (-1204)))))) -(-10 -7 (-15 -4382 (|#2| |#2|)) (-15 -2805 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -1840 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1345 (|#2| |#2|)) (-15 -4054 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3231 (|#2| |#2|)) (-15 -4227 (|#2| |#2|)) (-15 -3515 (|#2| |#2|)) (-15 -1903 (|#2| |#2|)) (-15 -4048 (|#2| |#2|)) (-15 -3721 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3525 (|#2| |#2|)) (-15 -3411 (|#2| |#2|)) (-15 -2008 (|#2| |#2|)) (-15 -2843 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2976 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (IF (|has| |#1| (-888 |#1|)) (IF (|has| |#1| (-615 (-894 |#1|))) (IF (|has| |#2| (-615 (-894 |#1|))) (IF (|has| |#2| (-888 |#1|)) (-15 -3559 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1650 (((-112) |#5| $) 68) (((-112) $) 110)) (-2688 ((|#5| |#5| $) 83)) (-1316 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4069 (((-645 |#5|) (-645 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4275 (((-3 $ "failed") (-645 |#5|)) 135)) (-3447 (((-3 $ "failed") $) 120)) (-2903 ((|#5| |#5| $) 102)) (-4115 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1861 ((|#5| |#5| $) 106)) (-2617 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3608 (((-2 (|:| -4057 (-645 |#5|)) (|:| -1692 (-645 |#5|))) $) 63)) (-3463 (((-112) |#5| $) 66) (((-112) $) 111)) (-3066 ((|#4| $) 116)) (-1725 (((-3 |#5| "failed") $) 118)) (-2290 (((-645 |#5|) $) 55)) (-1737 (((-112) |#5| $) 75) (((-112) $) 115)) (-2763 ((|#5| |#5| $) 89)) (-4009 (((-112) $ $) 29)) (-1927 (((-112) |#5| $) 71) (((-112) $) 113)) (-3893 ((|#5| |#5| $) 86)) (-3436 (((-3 |#5| "failed") $) 117)) (-1678 (($ $ |#5|) 136)) (-3380 (((-772) $) 60)) (-2516 (($ (-645 |#5|)) 133)) (-1582 (($ $ |#4|) 131)) (-2746 (($ $ |#4|) 129)) (-2012 (($ $) 128)) (-2504 (((-863) $) NIL) (((-645 |#5|) $) 121)) (-3312 (((-772) $) 140)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-4205 (((-112) $ (-1 (-112) |#5| (-645 |#5|))) 108)) (-3955 (((-645 |#4|) $) 123)) (-3392 (((-112) |#4| $) 126)) (-2968 (((-112) $ $) 20))) -(((-1211 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3312 ((-772) |#1|)) (-15 -1678 (|#1| |#1| |#5|)) (-15 -1316 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3392 ((-112) |#4| |#1|)) (-15 -3955 ((-645 |#4|) |#1|)) (-15 -3447 ((-3 |#1| "failed") |#1|)) (-15 -1725 ((-3 |#5| "failed") |#1|)) (-15 -3436 ((-3 |#5| "failed") |#1|)) (-15 -1861 (|#5| |#5| |#1|)) (-15 -2012 (|#1| |#1|)) (-15 -2903 (|#5| |#5| |#1|)) (-15 -2763 (|#5| |#5| |#1|)) (-15 -3893 (|#5| |#5| |#1|)) (-15 -2688 (|#5| |#5| |#1|)) (-15 -4069 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2617 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1737 ((-112) |#1|)) (-15 -1927 ((-112) |#1|)) (-15 -1650 ((-112) |#1|)) (-15 -4205 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -1737 ((-112) |#5| |#1|)) (-15 -1927 ((-112) |#5| |#1|)) (-15 -1650 ((-112) |#5| |#1|)) (-15 -4115 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3463 ((-112) |#1|)) (-15 -3463 ((-112) |#5| |#1|)) (-15 -3608 ((-2 (|:| -4057 (-645 |#5|)) (|:| -1692 (-645 |#5|))) |#1|)) (-15 -3380 ((-772) |#1|)) (-15 -2290 ((-645 |#5|) |#1|)) (-15 -3340 ((-3 (-2 (|:| |bas| |#1|) (|:| -3262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3340 ((-3 (-2 (|:| |bas| |#1|) (|:| -3262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4009 ((-112) |#1| |#1|)) (-15 -1582 (|#1| |#1| |#4|)) (-15 -2746 (|#1| |#1| |#4|)) (-15 -3066 (|#4| |#1|)) (-15 -4275 ((-3 |#1| "failed") (-645 |#5|))) (-15 -2504 ((-645 |#5|) |#1|)) (-15 -2516 (|#1| (-645 |#5|))) (-15 -2617 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2617 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1316 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2617 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) (-1212 |#2| |#3| |#4| |#5|) (-559) (-794) (-851) (-1067 |#2| |#3| |#4|)) (T -1211)) -NIL -(-10 -8 (-15 -3312 ((-772) |#1|)) (-15 -1678 (|#1| |#1| |#5|)) (-15 -1316 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3392 ((-112) |#4| |#1|)) (-15 -3955 ((-645 |#4|) |#1|)) (-15 -3447 ((-3 |#1| "failed") |#1|)) (-15 -1725 ((-3 |#5| "failed") |#1|)) (-15 -3436 ((-3 |#5| "failed") |#1|)) (-15 -1861 (|#5| |#5| |#1|)) (-15 -2012 (|#1| |#1|)) (-15 -2903 (|#5| |#5| |#1|)) (-15 -2763 (|#5| |#5| |#1|)) (-15 -3893 (|#5| |#5| |#1|)) (-15 -2688 (|#5| |#5| |#1|)) (-15 -4069 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2617 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1737 ((-112) |#1|)) (-15 -1927 ((-112) |#1|)) (-15 -1650 ((-112) |#1|)) (-15 -4205 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -1737 ((-112) |#5| |#1|)) (-15 -1927 ((-112) |#5| |#1|)) (-15 -1650 ((-112) |#5| |#1|)) (-15 -4115 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3463 ((-112) |#1|)) (-15 -3463 ((-112) |#5| |#1|)) (-15 -3608 ((-2 (|:| -4057 (-645 |#5|)) (|:| -1692 (-645 |#5|))) |#1|)) (-15 -3380 ((-772) |#1|)) (-15 -2290 ((-645 |#5|) |#1|)) (-15 -3340 ((-3 (-2 (|:| |bas| |#1|) (|:| -3262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3340 ((-3 (-2 (|:| |bas| |#1|) (|:| -3262 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4009 ((-112) |#1| |#1|)) (-15 -1582 (|#1| |#1| |#4|)) (-15 -2746 (|#1| |#1| |#4|)) (-15 -3066 (|#4| |#1|)) (-15 -4275 ((-3 |#1| "failed") (-645 |#5|))) (-15 -2504 ((-645 |#5|) |#1|)) (-15 -2516 (|#1| (-645 |#5|))) (-15 -2617 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2617 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1316 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2617 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2504 ((-863) |#1|)) (-15 -2968 ((-112) |#1| |#1|))) -((-2487 (((-112) $ $) 7)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) 86)) (-3148 (((-645 $) (-645 |#4|)) 87)) (-3783 (((-645 |#3|) $) 34)) (-2643 (((-112) $) 27)) (-2720 (((-112) $) 18 (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) 102) (((-112) $) 98)) (-2688 ((|#4| |#4| $) 93)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) 28)) (-1555 (((-112) $ (-772)) 45)) (-1316 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) 80)) (-3758 (($) 46 T CONST)) (-3731 (((-112) $) 23 (|has| |#1| (-559)))) (-4301 (((-112) $ $) 25 (|has| |#1| (-559)))) (-4089 (((-112) $ $) 24 (|has| |#1| (-559)))) (-3937 (((-112) $) 26 (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2160 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) 37)) (-3094 (($ (-645 |#4|)) 36)) (-3447 (((-3 $ "failed") $) 83)) (-2903 ((|#4| |#4| $) 90)) (-3470 (($ $) 69 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#4| $) 68 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1861 ((|#4| |#4| $) 88)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) 106)) (-3468 (((-645 |#4|) $) 53 (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) 105) (((-112) $) 104)) (-3066 ((|#3| $) 35)) (-3753 (((-112) $ (-772)) 44)) (-4200 (((-645 |#4|) $) 54 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) 48)) (-3870 (((-645 |#3|) $) 33)) (-2415 (((-112) |#3| $) 32)) (-3421 (((-112) $ (-772)) 43)) (-1812 (((-1161) $) 10)) (-1725 (((-3 |#4| "failed") $) 84)) (-2290 (((-645 |#4|) $) 108)) (-1737 (((-112) |#4| $) 100) (((-112) $) 96)) (-2763 ((|#4| |#4| $) 91)) (-4009 (((-112) $ $) 111)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) 101) (((-112) $) 97)) (-3893 ((|#4| |#4| $) 92)) (-3479 (((-1122) $) 11)) (-3436 (((-3 |#4| "failed") $) 85)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2806 (((-3 $ "failed") $ |#4|) 79)) (-1678 (($ $ |#4|) 78)) (-1430 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) 39)) (-2319 (((-112) $) 42)) (-2973 (($) 41)) (-3380 (((-772) $) 107)) (-3486 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1102)) (|has| $ (-6 -4422)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4422)))) (-3846 (($ $) 40)) (-1322 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) 61)) (-1582 (($ $ |#3|) 29)) (-2746 (($ $ |#3|) 31)) (-2012 (($ $) 89)) (-3975 (($ $ |#3|) 30)) (-2504 (((-863) $) 12) (((-645 |#4|) $) 38)) (-3312 (((-772) $) 77 (|has| |#3| (-370)))) (-3858 (((-112) $ $) 9)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3450 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) 82)) (-3392 (((-112) |#3| $) 81)) (-2968 (((-112) $ $) 6)) (-2498 (((-772) $) 47 (|has| $ (-6 -4422))))) -(((-1212 |#1| |#2| |#3| |#4|) (-140) (-559) (-794) (-851) (-1067 |t#1| |t#2| |t#3|)) (T -1212)) -((-4009 (*1 *2 *1 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-3340 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3262 (-645 *8)))) (-5 *3 (-645 *8)) (-4 *1 (-1212 *5 *6 *7 *8)))) (-3340 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3262 (-645 *9)))) (-5 *3 (-645 *9)) (-4 *1 (-1212 *6 *7 *8 *9)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *6)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-772)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-2 (|:| -4057 (-645 *6)) (|:| -1692 (-645 *6)))))) (-3463 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-4115 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1212 *5 *6 *7 *3)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)))) (-1650 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1927 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1737 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-4205 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1212 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) (-2617 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1212 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *2 (-1067 *5 *6 *7)))) (-4069 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1212 *5 *6 *7 *8)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)))) (-2688 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3893 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2763 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2903 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-2012 (*1 *1 *1) (-12 (-4 *1 (-1212 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) (-1861 (*1 *2 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1212 *4 *5 *6 *7)))) (-3956 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| -4057 *1) (|:| -1692 (-645 *7))))) (-5 *3 (-645 *7)) (-4 *1 (-1212 *4 *5 *6 *7)))) (-3436 (*1 *2 *1) (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-1725 (*1 *2 *1) (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3447 (*1 *1 *1) (|partial| -12 (-4 *1 (-1212 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) (-3392 (*1 *2 *3 *1) (-12 (-4 *1 (-1212 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) (-1316 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1212 *4 *5 *3 *2)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1067 *4 *5 *3)))) (-2806 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-1678 (*1 *1 *1 *2) (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-772))))) -(-13 (-978 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4422) (-6 -4423) (-15 -4009 ((-112) $ $)) (-15 -3340 ((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3340 ((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2290 ((-645 |t#4|) $)) (-15 -3380 ((-772) $)) (-15 -3608 ((-2 (|:| -4057 (-645 |t#4|)) (|:| -1692 (-645 |t#4|))) $)) (-15 -3463 ((-112) |t#4| $)) (-15 -3463 ((-112) $)) (-15 -4115 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1650 ((-112) |t#4| $)) (-15 -1927 ((-112) |t#4| $)) (-15 -1737 ((-112) |t#4| $)) (-15 -4205 ((-112) $ (-1 (-112) |t#4| (-645 |t#4|)))) (-15 -1650 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1737 ((-112) $)) (-15 -2617 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4069 ((-645 |t#4|) (-645 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2688 (|t#4| |t#4| $)) (-15 -3893 (|t#4| |t#4| $)) (-15 -2763 (|t#4| |t#4| $)) (-15 -2903 (|t#4| |t#4| $)) (-15 -2012 ($ $)) (-15 -1861 (|t#4| |t#4| $)) (-15 -3148 ((-645 $) (-645 |t#4|))) (-15 -3956 ((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |t#4|)))) (-645 |t#4|))) (-15 -3436 ((-3 |t#4| "failed") $)) (-15 -1725 ((-3 |t#4| "failed") $)) (-15 -3447 ((-3 $ "failed") $)) (-15 -3955 ((-645 |t#3|) $)) (-15 -3392 ((-112) |t#3| $)) (-15 -1316 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2806 ((-3 $ "failed") $ |t#4|)) (-15 -1678 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -3312 ((-772) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))) ((-978 |#1| |#2| |#3| |#4|) . T) ((-1102) . T) ((-1219) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-1179)) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-1406 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1380 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1431 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-3204 (((-954 |#1|) $ (-772)) 20) (((-954 |#1|) $ (-772) (-772)) NIL)) (-3219 (((-112) $) NIL)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-772) $ (-1179)) NIL) (((-772) $ (-1179) (-772)) NIL)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3615 (((-112) $) NIL)) (-3764 (($ $ (-645 (-1179)) (-645 (-534 (-1179)))) NIL) (($ $ (-1179) (-534 (-1179))) NIL) (($ |#1| (-534 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3670 (($ $ (-1179)) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) NIL)) (-4293 (($ (-1 $) (-1179) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1678 (($ $ (-772)) NIL)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-4272 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2913 (($ $ (-1179) $) NIL) (($ $ (-645 (-1179)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-3592 (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-3380 (((-534 (-1179)) $) NIL)) (-1443 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-1179)) NIL) (($ (-954 |#1|)) NIL)) (-4038 ((|#1| $ (-534 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (((-954 |#1|) $ (-772)) NIL)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2856 (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1213 |#1|) (-13 (-741 |#1| (-1179)) (-10 -8 (-15 -4038 ((-954 |#1|) $ (-772))) (-15 -2504 ($ (-1179))) (-15 -2504 ($ (-954 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $ (-1179) |#1|)) (-15 -4293 ($ (-1 $) (-1179) |#1|))) |%noBranch|))) (-1051)) (T -1213)) -((-4038 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-954 *4)) (-5 *1 (-1213 *4)) (-4 *4 (-1051)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1213 *3)) (-4 *3 (-1051)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-5 *1 (-1213 *3)))) (-3670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *1 (-1213 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)))) (-4293 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1213 *4))) (-5 *3 (-1179)) (-5 *1 (-1213 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051))))) -(-13 (-741 |#1| (-1179)) (-10 -8 (-15 -4038 ((-954 |#1|) $ (-772))) (-15 -2504 ($ (-1179))) (-15 -2504 ($ (-954 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $ (-1179) |#1|)) (-15 -4293 ($ (-1 $) (-1179) |#1|))) |%noBranch|))) -((-3637 (($ |#1| (-645 (-645 (-945 (-225)))) (-112)) 19)) (-3240 (((-112) $ (-112)) 18)) (-3376 (((-112) $) 17)) (-2175 (((-645 (-645 (-945 (-225)))) $) 13)) (-3027 ((|#1| $) 8)) (-2563 (((-112) $) 15))) -(((-1214 |#1|) (-10 -8 (-15 -3027 (|#1| $)) (-15 -2175 ((-645 (-645 (-945 (-225)))) $)) (-15 -2563 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -3240 ((-112) $ (-112))) (-15 -3637 ($ |#1| (-645 (-645 (-945 (-225)))) (-112)))) (-976)) (T -1214)) -((-3637 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-112)) (-5 *1 (-1214 *2)) (-4 *2 (-976)))) (-3240 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-1214 *3)) (-4 *3 (-976)))) (-3027 (*1 *2 *1) (-12 (-5 *1 (-1214 *2)) (-4 *2 (-976))))) -(-10 -8 (-15 -3027 (|#1| $)) (-15 -2175 ((-645 (-645 (-945 (-225)))) $)) (-15 -2563 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -3240 ((-112) $ (-112))) (-15 -3637 ($ |#1| (-645 (-645 (-945 (-225)))) (-112)))) -((-1771 (((-945 (-225)) (-945 (-225))) 31)) (-2657 (((-945 (-225)) (-225) (-225) (-225) (-225)) 10)) (-2349 (((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225)))) 60)) (-1336 (((-225) (-945 (-225)) (-945 (-225))) 27)) (-2934 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 28)) (-1953 (((-645 (-645 (-225))) (-567)) 48)) (-3054 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 26)) (-3045 (((-945 (-225)) (-945 (-225)) (-945 (-225))) 24)) (* (((-945 (-225)) (-225) (-945 (-225))) 22))) -(((-1215) (-10 -7 (-15 -2657 ((-945 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-945 (-225)) (-225) (-945 (-225)))) (-15 -3045 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3054 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -1336 ((-225) (-945 (-225)) (-945 (-225)))) (-15 -2934 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -1771 ((-945 (-225)) (-945 (-225)))) (-15 -1953 ((-645 (-645 (-225))) (-567))) (-15 -2349 ((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225))))))) (T -1215)) -((-2349 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 (-945 *4))) (-5 *1 (-1215)) (-5 *3 (-945 *4)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1215)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) (-2934 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) (-1336 (*1 *2 *3 *3) (-12 (-5 *3 (-945 (-225))) (-5 *2 (-225)) (-5 *1 (-1215)))) (-3054 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) (-3045 (*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-945 (-225))) (-5 *3 (-225)) (-5 *1 (-1215)))) (-2657 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)) (-5 *3 (-225))))) -(-10 -7 (-15 -2657 ((-945 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-945 (-225)) (-225) (-945 (-225)))) (-15 -3045 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -3054 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -1336 ((-225) (-945 (-225)) (-945 (-225)))) (-15 -2934 ((-945 (-225)) (-945 (-225)) (-945 (-225)))) (-15 -1771 ((-945 (-225)) (-945 (-225)))) (-15 -1953 ((-645 (-645 (-225))) (-567))) (-15 -2349 ((-645 (-945 (-225))) (-945 (-225)) (-945 (-225)) (-945 (-225)) (-225) (-645 (-645 (-225)))))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-1316 ((|#1| $ (-772)) 18)) (-3613 (((-772) $) 13)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-2504 (((-960 |#1|) $) 12) (($ (-960 |#1|)) 11) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-2968 (((-112) $ $) 22 (|has| |#1| (-1102))))) -(((-1216 |#1|) (-13 (-493 (-960 |#1|)) (-10 -8 (-15 -1316 (|#1| $ (-772))) (-15 -3613 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) (-1219)) (T -1216)) -((-1316 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-1216 *2)) (-4 *2 (-1219)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1216 *3)) (-4 *3 (-1219))))) -(-13 (-493 (-960 |#1|)) (-10 -8 (-15 -1316 (|#1| $ (-772))) (-15 -3613 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|))) -((-3993 (((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-567)) 94)) (-2813 (((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|))) 86)) (-3907 (((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|))) 70))) -(((-1217 |#1|) (-10 -7 (-15 -2813 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -3907 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -3993 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-567)))) (-351)) (T -1217)) -((-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1175 (-1175 *5)))) (-5 *1 (-1217 *5)) (-5 *3 (-1175 (-1175 *5))))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1175 (-1175 *4)))) (-5 *1 (-1217 *4)) (-5 *3 (-1175 (-1175 *4))))) (-2813 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1175 (-1175 *4)))) (-5 *1 (-1217 *4)) (-5 *3 (-1175 (-1175 *4)))))) -(-10 -7 (-15 -2813 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -3907 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)))) (-15 -3993 ((-421 (-1175 (-1175 |#1|))) (-1175 (-1175 |#1|)) (-567)))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 9) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1218) (-1085)) (T -1218)) -NIL -(-1085) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 9)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 7))) +(((-1188) (-1104)) (T -1188)) +NIL +(-1104) +((-4005 (((-643 (-643 (-949 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180))) 67)) (-4004 (((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|)))) 78) (((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|))) 74) (((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180)) 79) (((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180)) 73) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|))))) 106) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|)))) 105) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180))) 107) (((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))) (-643 (-1180))) 104))) +(((-1189 |#1|) (-10 -7 (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))))) (-15 -4005 ((-643 (-643 (-949 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180))))) (-560)) (T -1189)) +((-4005 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-949 *5)))) (-5 *1 (-1189 *5)))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *4))))) (-5 *1 (-1189 *4)) (-5 *3 (-294 (-410 (-949 *4)))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *4))))) (-5 *1 (-1189 *4)) (-5 *3 (-410 (-949 *4))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *5))))) (-5 *1 (-1189 *5)) (-5 *3 (-294 (-410 (-949 *5)))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *5))))) (-5 *1 (-1189 *5)) (-5 *3 (-410 (-949 *5))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-1189 *4)) (-5 *3 (-643 (-294 (-410 (-949 *4))))))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-643 (-410 (-949 *4)))) (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-1189 *4)))) (-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-1189 *5)) (-5 *3 (-643 (-294 (-410 (-949 *5))))))) (-4004 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-1189 *5))))) +(-10 -7 (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))) (-643 (-1180)))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-410 (-949 |#1|))))) (-15 -4004 ((-643 (-643 (-294 (-410 (-949 |#1|))))) (-643 (-294 (-410 (-949 |#1|)))))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)) (-1180))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))) (-1180))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-410 (-949 |#1|)))) (-15 -4004 ((-643 (-294 (-410 (-949 |#1|)))) (-294 (-410 (-949 |#1|))))) (-15 -4005 ((-643 (-643 (-949 |#1|))) (-643 (-410 (-949 |#1|))) (-643 (-1180))))) +((-4010 (((-1162)) 7)) (-4007 (((-1162)) 11 T CONST)) (-4006 (((-1275) (-1162)) 13)) (-4009 (((-1162)) 8 T CONST)) (-4008 (((-130)) 10 T CONST))) +(((-1190) (-13 (-1219) (-10 -7 (-15 -4010 ((-1162))) (-15 -4009 ((-1162)) -4384) (-15 -4008 ((-130)) -4384) (-15 -4007 ((-1162)) -4384) (-15 -4006 ((-1275) (-1162)))))) (T -1190)) +((-4010 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190)))) (-4009 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190)))) (-4008 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1190)))) (-4007 (*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1190))))) +(-13 (-1219) (-10 -7 (-15 -4010 ((-1162))) (-15 -4009 ((-1162)) -4384) (-15 -4008 ((-130)) -4384) (-15 -4007 ((-1162)) -4384) (-15 -4006 ((-1275) (-1162))))) +((-4014 (((-643 (-643 |#1|)) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|)))) 56)) (-4017 (((-643 (-643 (-643 |#1|))) (-643 (-643 |#1|))) 38)) (-4018 (((-1193 (-643 |#1|)) (-643 |#1|)) 49)) (-4020 (((-643 (-643 |#1|)) (-643 |#1|)) 45)) (-4023 (((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 (-643 (-643 |#1|)))) 53)) (-4022 (((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 |#1|) (-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|)))) 52)) (-4019 (((-643 (-643 |#1|)) (-643 (-643 |#1|))) 43)) (-4021 (((-643 |#1|) (-643 |#1|)) 46)) (-4013 (((-643 (-643 (-643 |#1|))) (-643 |#1|) (-643 (-643 (-643 |#1|)))) 32)) (-4012 (((-643 (-643 (-643 |#1|))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 (-643 |#1|)))) 29)) (-4011 (((-2 (|:| |fs| (-112)) (|:| |sd| (-643 |#1|)) (|:| |td| (-643 (-643 |#1|)))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 |#1|))) 24)) (-4015 (((-643 (-643 |#1|)) (-643 (-643 (-643 |#1|)))) 58)) (-4016 (((-643 (-643 |#1|)) (-1193 (-643 |#1|))) 60))) +(((-1191 |#1|) (-10 -7 (-15 -4011 ((-2 (|:| |fs| (-112)) (|:| |sd| (-643 |#1|)) (|:| |td| (-643 (-643 |#1|)))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 |#1|)))) (-15 -4012 ((-643 (-643 (-643 |#1|))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 (-643 |#1|))))) (-15 -4013 ((-643 (-643 (-643 |#1|))) (-643 |#1|) (-643 (-643 (-643 |#1|))))) (-15 -4014 ((-643 (-643 |#1|)) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))))) (-15 -4015 ((-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))))) (-15 -4016 ((-643 (-643 |#1|)) (-1193 (-643 |#1|)))) (-15 -4017 ((-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)))) (-15 -4018 ((-1193 (-643 |#1|)) (-643 |#1|))) (-15 -4019 ((-643 (-643 |#1|)) (-643 (-643 |#1|)))) (-15 -4020 ((-643 (-643 |#1|)) (-643 |#1|))) (-15 -4021 ((-643 |#1|) (-643 |#1|))) (-15 -4022 ((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 |#1|) (-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))))) (-15 -4023 ((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 (-643 (-643 |#1|)))))) (-852)) (T -1191)) +((-4023 (*1 *2 *3) (-12 (-4 *4 (-852)) (-5 *2 (-2 (|:| |f1| (-643 *4)) (|:| |f2| (-643 (-643 (-643 *4)))) (|:| |f3| (-643 (-643 *4))) (|:| |f4| (-643 (-643 (-643 *4)))))) (-5 *1 (-1191 *4)) (-5 *3 (-643 (-643 (-643 *4)))))) (-4022 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-852)) (-5 *3 (-643 *6)) (-5 *5 (-643 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-643 *5)) (|:| |f3| *5) (|:| |f4| (-643 *5)))) (-5 *1 (-1191 *6)) (-5 *4 (-643 *5)))) (-4021 (*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-1191 *3)))) (-4020 (*1 *2 *3) (-12 (-4 *4 (-852)) (-5 *2 (-643 (-643 *4))) (-5 *1 (-1191 *4)) (-5 *3 (-643 *4)))) (-4019 (*1 *2 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-852)) (-5 *1 (-1191 *3)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-852)) (-5 *2 (-1193 (-643 *4))) (-5 *1 (-1191 *4)) (-5 *3 (-643 *4)))) (-4017 (*1 *2 *3) (-12 (-4 *4 (-852)) (-5 *2 (-643 (-643 (-643 *4)))) (-5 *1 (-1191 *4)) (-5 *3 (-643 (-643 *4))))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-1193 (-643 *4))) (-4 *4 (-852)) (-5 *2 (-643 (-643 *4))) (-5 *1 (-1191 *4)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-643 *4)))) (-5 *2 (-643 (-643 *4))) (-5 *1 (-1191 *4)) (-4 *4 (-852)))) (-4014 (*1 *2 *2 *3) (-12 (-5 *3 (-643 (-643 (-643 *4)))) (-5 *2 (-643 (-643 *4))) (-4 *4 (-852)) (-5 *1 (-1191 *4)))) (-4013 (*1 *2 *3 *2) (-12 (-5 *2 (-643 (-643 (-643 *4)))) (-5 *3 (-643 *4)) (-4 *4 (-852)) (-5 *1 (-1191 *4)))) (-4012 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-643 (-643 (-643 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-643 *5)) (-4 *5 (-852)) (-5 *1 (-1191 *5)))) (-4011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-852)) (-5 *4 (-643 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-643 *4)))) (-5 *1 (-1191 *6)) (-5 *5 (-643 *4))))) +(-10 -7 (-15 -4011 ((-2 (|:| |fs| (-112)) (|:| |sd| (-643 |#1|)) (|:| |td| (-643 (-643 |#1|)))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 |#1|)))) (-15 -4012 ((-643 (-643 (-643 |#1|))) (-1 (-112) |#1| |#1|) (-643 |#1|) (-643 (-643 (-643 |#1|))))) (-15 -4013 ((-643 (-643 (-643 |#1|))) (-643 |#1|) (-643 (-643 (-643 |#1|))))) (-15 -4014 ((-643 (-643 |#1|)) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))))) (-15 -4015 ((-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))))) (-15 -4016 ((-643 (-643 |#1|)) (-1193 (-643 |#1|)))) (-15 -4017 ((-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)))) (-15 -4018 ((-1193 (-643 |#1|)) (-643 |#1|))) (-15 -4019 ((-643 (-643 |#1|)) (-643 (-643 |#1|)))) (-15 -4020 ((-643 (-643 |#1|)) (-643 |#1|))) (-15 -4021 ((-643 |#1|) (-643 |#1|))) (-15 -4022 ((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 |#1|) (-643 (-643 (-643 |#1|))) (-643 (-643 |#1|)) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))) (-643 (-643 (-643 |#1|))))) (-15 -4023 ((-2 (|:| |f1| (-643 |#1|)) (|:| |f2| (-643 (-643 (-643 |#1|)))) (|:| |f3| (-643 (-643 |#1|))) (|:| |f4| (-643 (-643 (-643 |#1|))))) (-643 (-643 (-643 |#1|)))))) +((-2968 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4029 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2372 (((-1275) $ |#1| |#1|) NIL (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#2| $ |#1| |#2|) NIL)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) NIL)) (-4156 (($) NIL T CONST)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) NIL)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) NIL)) (-2374 ((|#1| $) NIL (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-643 |#2|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2375 ((|#1| $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-2816 (((-643 |#1|) $) NIL)) (-2382 (((-112) |#1| $) NIL)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2377 (((-643 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-3664 (((-1123) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4232 ((|#2| $) NIL (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL)) (-2373 (($ $ |#2|) NIL (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1567 (($) NIL) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (((-773) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104)))) (((-773) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-4378 (((-865) $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-615 (-865)))))) (-3662 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) NIL)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) NIL (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) NIL (-3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1192 |#1| |#2|) (-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) (-1104) (-1104)) (T -1192)) +NIL +(-13 (-1196 |#1| |#2|) (-10 -7 (-6 -4425))) +((-4024 (($ (-643 (-643 |#1|))) 10)) (-4025 (((-643 (-643 |#1|)) $) 11)) (-4378 (((-865) $) 36))) +(((-1193 |#1|) (-10 -8 (-15 -4024 ($ (-643 (-643 |#1|)))) (-15 -4025 ((-643 (-643 |#1|)) $)) (-15 -4378 ((-865) $))) (-1104)) (T -1193)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1193 *3)) (-4 *3 (-1104)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1104)))) (-4024 (*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-1193 *3))))) +(-10 -8 (-15 -4024 ($ (-643 (-643 |#1|)))) (-15 -4025 ((-643 (-643 |#1|)) $)) (-15 -4378 ((-865) $))) +((-4026 ((|#1| (-643 |#1|)) 49)) (-4028 ((|#1| |#1| (-549)) 24)) (-4027 (((-1174 |#1|) |#1| (-922)) 20))) +(((-1194 |#1|) (-10 -7 (-15 -4026 (|#1| (-643 |#1|))) (-15 -4027 ((-1174 |#1|) |#1| (-922))) (-15 -4028 (|#1| |#1| (-549)))) (-365)) (T -1194)) +((-4028 (*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-1194 *2)) (-4 *2 (-365)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-1174 *3)) (-5 *1 (-1194 *3)) (-4 *3 (-365)))) (-4026 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-1194 *2)) (-4 *2 (-365))))) +(-10 -7 (-15 -4026 (|#1| (-643 |#1|))) (-15 -4027 ((-1174 |#1|) |#1| (-922))) (-15 -4028 (|#1| |#1| (-549)))) +((-4029 (($) 10) (($ (-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)))) 14)) (-3829 (($ (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2124 (((-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) 39) (((-643 |#3|) $) 41)) (-2128 (($ (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4390 (($ (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1369 (((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 60)) (-4039 (($ (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 16)) (-2377 (((-643 |#2|) $) 19)) (-2378 (((-112) |#2| $) 65)) (-1441 (((-3 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) "failed") (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) 64)) (-1370 (((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) 69)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2379 (((-643 |#3|) $) 43)) (-4231 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) NIL) (((-773) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) $) NIL) (((-773) |#3| $) NIL) (((-773) (-1 (-112) |#3|) $) 79)) (-4378 (((-865) $) 27)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3455 (((-112) $ $) 51))) +(((-1195 |#1| |#2| |#3|) (-10 -8 (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -4390 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4029 (|#1| (-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))))) (-15 -4029 (|#1|)) (-15 -4390 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2128 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#3|) |#1|)) (-15 -2124 ((-643 |#3|) |#1|)) (-15 -2125 ((-773) |#3| |#1|)) (-15 -4231 (|#3| |#1| |#2| |#3|)) (-15 -4231 (|#3| |#1| |#2|)) (-15 -2379 ((-643 |#3|) |#1|)) (-15 -2378 ((-112) |#2| |#1|)) (-15 -2377 ((-643 |#2|) |#1|)) (-15 -3829 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3829 (|#1| (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -3829 (|#1| (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -1441 ((-3 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) "failed") (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -1369 ((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -4039 (|#1| (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -1370 ((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -2125 ((-773) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -2124 ((-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2125 ((-773) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2126 ((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2127 ((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2128 (|#1| (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -4390 (|#1| (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|))) (-1196 |#2| |#3|) (-1104) (-1104)) (T -1195)) +NIL +(-10 -8 (-15 -3455 ((-112) |#1| |#1|)) (-15 -4378 ((-865) |#1|)) (-15 -4390 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4029 (|#1| (-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))))) (-15 -4029 (|#1|)) (-15 -4390 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2128 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2127 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2126 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2125 ((-773) (-1 (-112) |#3|) |#1|)) (-15 -2124 ((-643 |#3|) |#1|)) (-15 -2125 ((-773) |#3| |#1|)) (-15 -4231 (|#3| |#1| |#2| |#3|)) (-15 -4231 (|#3| |#1| |#2|)) (-15 -2379 ((-643 |#3|) |#1|)) (-15 -2378 ((-112) |#2| |#1|)) (-15 -2377 ((-643 |#2|) |#1|)) (-15 -3829 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3829 (|#1| (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -3829 (|#1| (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -1441 ((-3 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) "failed") (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -1369 ((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -4039 (|#1| (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -1370 ((-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -2125 ((-773) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) |#1|)) (-15 -2124 ((-643 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2125 ((-773) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2126 ((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2127 ((-112) (-1 (-112) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -2128 (|#1| (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|)) (-15 -4390 (|#1| (-1 (-2 (|:| -4292 |#2|) (|:| -2254 |#3|)) (-2 (|:| -4292 |#2|) (|:| -2254 |#3|))) |#1|))) +((-2968 (((-112) $ $) 19 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4029 (($) 73) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 72)) (-2372 (((-1275) $ |#1| |#1|) 100 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#2| $ |#1| |#2|) 74)) (-1678 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 46 (|has| $ (-6 -4425)))) (-4142 (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 56 (|has| $ (-6 -4425)))) (-2381 (((-3 |#2| #1="failed") |#1| $) 62)) (-4156 (($) 7 T CONST)) (-1440 (($ $) 59 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425))))) (-3829 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 48 (|has| $ (-6 -4425))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 47 (|has| $ (-6 -4425))) (((-3 |#2| #1#) |#1| $) 63)) (-3830 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 55 (|has| $ (-6 -4425)))) (-4274 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 57 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 54 (|has| $ (-6 -4425))) (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 53 (|has| $ (-6 -4425)))) (-1684 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4426)))) (-3517 ((|#2| $ |#1|) 89)) (-2124 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 31 (|has| $ (-6 -4425))) (((-643 |#2|) $) 80 (|has| $ (-6 -4425)))) (-4151 (((-112) $ (-773)) 9)) (-2374 ((|#1| $) 97 (|has| |#1| (-852)))) (-3008 (((-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 30 (|has| $ (-6 -4425))) (((-643 |#2|) $) 81 (|has| $ (-6 -4425)))) (-3666 (((-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425))))) (-2375 ((|#1| $) 96 (|has| |#1| (-852)))) (-2128 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 35 (|has| $ (-6 -4426))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4426)))) (-4390 (($ (-1 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4148 (((-112) $ (-773)) 10)) (-3663 (((-1162) $) 22 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-2816 (((-643 |#1|) $) 64)) (-2382 (((-112) |#1| $) 65)) (-1369 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 40)) (-4039 (($ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 41)) (-2377 (((-643 |#1|) $) 94)) (-2378 (((-112) |#1| $) 93)) (-3664 (((-1123) $) 21 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4232 ((|#2| $) 98 (|has| |#1| (-852)))) (-1441 (((-3 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) "failed") (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 52)) (-2373 (($ $ |#2|) 99 (|has| $ (-6 -4426)))) (-1370 (((-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 42)) (-2126 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 33 (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))))) 27 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-294 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 26 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) 25 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 24 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)))) (($ $ (-643 |#2|) (-643 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-294 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104)))) (($ $ (-643 (-294 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1104))))) (-2379 (((-643 |#2|) $) 92)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1567 (($) 50) (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 49)) (-2125 (((-773) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 32 (|has| $ (-6 -4425))) (((-773) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| $ (-6 -4425)))) (((-773) |#2| $) 82 (-12 (|has| |#2| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4425)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 60 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))))) (-3953 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 51)) (-4378 (((-865) $) 18 (-3960 (|has| |#2| (-615 (-865))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865)))))) (-3662 (((-112) $ $) 23 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-1371 (($ (-643 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) 43)) (-2127 (((-112) (-1 (-112) (-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) $) 34 (|has| $ (-6 -4425))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (-3960 (|has| |#2| (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-1196 |#1| |#2|) (-140) (-1104) (-1104)) (T -1196)) +((-4219 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) (-4029 (*1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) (-4029 (*1 *1 *2) (-12 (-5 *2 (-643 (-2 (|:| -4292 *3) (|:| -2254 *4)))) (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *1 (-1196 *3 *4)))) (-4390 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(-13 (-612 |t#1| |t#2|) (-606 |t#1| |t#2|) (-10 -8 (-15 -4219 (|t#2| $ |t#1| |t#2|)) (-15 -4029 ($)) (-15 -4029 ($ (-643 (-2 (|:| -4292 |t#1|) (|:| -2254 |t#2|))))) (-15 -4390 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #1=(-2 (|:| -4292 |#1|) (|:| -2254 |#2|))) . T) ((-102) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))) ((-615 (-865)) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-615 (-865))) (|has| |#2| (-1104)) (|has| |#2| (-615 (-865)))) ((-151 #1#) . T) ((-616 (-538)) |has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-616 (-538))) ((-229 #1#) . T) ((-235 #1#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-492 #1#) . T) ((-492 |#2|) . T) ((-606 |#1| |#2|) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-310 (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)))) (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1104))) ((-612 |#1| |#2|) . T) ((-1104) -3960 (|has| (-2 (|:| -4292 |#1|) (|:| -2254 |#2|)) (-1104)) (|has| |#2| (-1104))) ((-1219) . T)) +((-4035 (((-112)) 29)) (-4032 (((-1275) (-1162)) 31)) (-4036 (((-112)) 41)) (-4033 (((-1275)) 39)) (-4031 (((-1275) (-1162) (-1162)) 30)) (-4037 (((-112)) 42)) (-4039 (((-1275) |#1| |#2|) 53)) (-4030 (((-1275)) 26)) (-4038 (((-3 |#2| "failed") |#1|) 51)) (-4034 (((-1275)) 40))) +(((-1197 |#1| |#2|) (-10 -7 (-15 -4030 ((-1275))) (-15 -4031 ((-1275) (-1162) (-1162))) (-15 -4032 ((-1275) (-1162))) (-15 -4033 ((-1275))) (-15 -4034 ((-1275))) (-15 -4035 ((-112))) (-15 -4036 ((-112))) (-15 -4037 ((-112))) (-15 -4038 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-1275) |#1| |#2|))) (-1104) (-1104)) (T -1197)) +((-4039 (*1 *2 *3 *4) (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4038 (*1 *2 *3) (|partial| -12 (-4 *2 (-1104)) (-5 *1 (-1197 *3 *2)) (-4 *3 (-1104)))) (-4037 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4036 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4035 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4034 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4033 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1197 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)))) (-4031 (*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1197 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)))) (-4030 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(-10 -7 (-15 -4030 ((-1275))) (-15 -4031 ((-1275) (-1162) (-1162))) (-15 -4032 ((-1275) (-1162))) (-15 -4033 ((-1275))) (-15 -4034 ((-1275))) (-15 -4035 ((-112))) (-15 -4036 ((-112))) (-15 -4037 ((-112))) (-15 -4038 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-1275) |#1| |#2|))) +((-4041 (((-1162) (-1162)) 22)) (-4040 (((-51) (-1162)) 25))) +(((-1198) (-10 -7 (-15 -4040 ((-51) (-1162))) (-15 -4041 ((-1162) (-1162))))) (T -1198)) +((-4041 (*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1198)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-1198))))) +(-10 -7 (-15 -4040 ((-51) (-1162))) (-15 -4041 ((-1162) (-1162)))) +((-2968 (((-112) $ $) NIL)) (-4047 (((-643 (-1162)) $) 39)) (-4043 (((-643 (-1162)) $ (-643 (-1162))) 42)) (-4042 (((-643 (-1162)) $ (-643 (-1162))) 41)) (-4044 (((-643 (-1162)) $ (-643 (-1162))) 43)) (-4045 (((-643 (-1162)) $) 38)) (-4046 (($) 28)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4048 (((-643 (-1162)) $) 40)) (-4049 (((-1275) $ (-549)) 35) (((-1275) $) 36)) (-4402 (($ (-865) (-549)) 33) (($ (-865) (-549) (-865)) NIL)) (-4378 (((-865) $) 49) (($ (-865)) 32)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1199) (-13 (-1104) (-618 (-865)) (-10 -8 (-15 -4402 ($ (-865) (-549))) (-15 -4402 ($ (-865) (-549) (-865))) (-15 -4049 ((-1275) $ (-549))) (-15 -4049 ((-1275) $)) (-15 -4048 ((-643 (-1162)) $)) (-15 -4047 ((-643 (-1162)) $)) (-15 -4046 ($)) (-15 -4045 ((-643 (-1162)) $)) (-15 -4044 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4043 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4042 ((-643 (-1162)) $ (-643 (-1162))))))) (T -1199)) +((-4402 (*1 *1 *2 *3) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-1199)))) (-4402 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-1199)))) (-4049 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1199)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1199)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4046 (*1 *1) (-5 *1 (-1199))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4044 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4043 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199)))) (-4042 (*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) +(-13 (-1104) (-618 (-865)) (-10 -8 (-15 -4402 ($ (-865) (-549))) (-15 -4402 ($ (-865) (-549) (-865))) (-15 -4049 ((-1275) $ (-549))) (-15 -4049 ((-1275) $)) (-15 -4048 ((-643 (-1162)) $)) (-15 -4047 ((-643 (-1162)) $)) (-15 -4046 ($)) (-15 -4045 ((-643 (-1162)) $)) (-15 -4044 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4043 ((-643 (-1162)) $ (-643 (-1162)))) (-15 -4042 ((-643 (-1162)) $ (-643 (-1162)))))) +((-4378 (((-1199) |#1|) 11))) +(((-1200 |#1|) (-10 -7 (-15 -4378 ((-1199) |#1|))) (-1104)) (T -1200)) +((-4378 (*1 *2 *3) (-12 (-5 *2 (-1199)) (-5 *1 (-1200 *3)) (-4 *3 (-1104))))) +(-10 -7 (-15 -4378 ((-1199) |#1|))) +((-2968 (((-112) $ $) NIL)) (-4054 (((-1162) $ (-1162)) 17) (((-1162) $) 16)) (-1865 (((-1162) $ (-1162)) 15)) (-1869 (($ $ (-1162)) NIL)) (-4052 (((-3 (-1162) "failed") $) 11)) (-4053 (((-1162) $) 8)) (-4051 (((-3 (-1162) "failed") $) 12)) (-1866 (((-1162) $) 9)) (-1870 (($ (-391)) NIL) (($ (-391) (-1162)) NIL)) (-3973 (((-391) $) NIL)) (-3663 (((-1162) $) NIL)) (-1867 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4050 (((-112) $) 21)) (-4378 (((-865) $) NIL)) (-1868 (($ $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1201) (-13 (-367 (-391) (-1162)) (-10 -8 (-15 -4054 ((-1162) $ (-1162))) (-15 -4054 ((-1162) $)) (-15 -4053 ((-1162) $)) (-15 -4052 ((-3 (-1162) "failed") $)) (-15 -4051 ((-3 (-1162) "failed") $)) (-15 -4050 ((-112) $))))) (T -1201)) +((-4054 (*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4054 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4052 (*1 *2 *1) (|partial| -12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4051 (*1 *2 *1) (|partial| -12 (-5 *2 (-1162)) (-5 *1 (-1201)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) +(-13 (-367 (-391) (-1162)) (-10 -8 (-15 -4054 ((-1162) $ (-1162))) (-15 -4054 ((-1162) $)) (-15 -4053 ((-1162) $)) (-15 -4052 ((-3 (-1162) "failed") $)) (-15 -4051 ((-3 (-1162) "failed") $)) (-15 -4050 ((-112) $)))) +((-4055 (((-3 (-549) "failed") |#1|) 19)) (-4056 (((-3 (-549) "failed") |#1|) 14)) (-4057 (((-549) (-1162)) 33))) +(((-1202 |#1|) (-10 -7 (-15 -4055 ((-3 (-549) "failed") |#1|)) (-15 -4056 ((-3 (-549) "failed") |#1|)) (-15 -4057 ((-549) (-1162)))) (-1052)) (T -1202)) +((-4057 (*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-549)) (-5 *1 (-1202 *4)) (-4 *4 (-1052)))) (-4056 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1202 *3)) (-4 *3 (-1052)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1202 *3)) (-4 *3 (-1052))))) +(-10 -7 (-15 -4055 ((-3 (-549) "failed") |#1|)) (-15 -4056 ((-3 (-549) "failed") |#1|)) (-15 -4057 ((-549) (-1162)))) +((-4058 (((-1136 (-225))) 9))) +(((-1203) (-10 -7 (-15 -4058 ((-1136 (-225)))))) (T -1203)) +((-4058 (*1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1203))))) +(-10 -7 (-15 -4058 ((-1136 (-225))))) +((-4059 (($) 12)) (-3921 (($ $) 36)) (-3919 (($ $) 34)) (-3907 (($ $) 26)) (-3923 (($ $) 18)) (-3924 (($ $) 16)) (-3922 (($ $) 20)) (-3910 (($ $) 31)) (-3920 (($ $) 35)) (-3908 (($ $) 30))) +(((-1204 |#1|) (-10 -8 (-15 -4059 (|#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3908 (|#1| |#1|))) (-1205)) (T -1204)) +NIL +(-10 -8 (-15 -4059 (|#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3908 (|#1| |#1|))) +((-3915 (($ $) 26)) (-4071 (($ $) 11)) (-3913 (($ $) 27)) (-4070 (($ $) 10)) (-3917 (($ $) 28)) (-4069 (($ $) 9)) (-4059 (($) 16)) (-4374 (($ $) 19)) (-4375 (($ $) 18)) (-3918 (($ $) 29)) (-4068 (($ $) 8)) (-3916 (($ $) 30)) (-4067 (($ $) 7)) (-3914 (($ $) 31)) (-4066 (($ $) 6)) (-3921 (($ $) 20)) (-3909 (($ $) 32)) (-3919 (($ $) 21)) (-3907 (($ $) 33)) (-3923 (($ $) 22)) (-3911 (($ $) 34)) (-3924 (($ $) 23)) (-3912 (($ $) 35)) (-3922 (($ $) 24)) (-3910 (($ $) 36)) (-3920 (($ $) 25)) (-3908 (($ $) 37)) (** (($ $ $) 17))) +(((-1205) (-140)) (T -1205)) +((-4059 (*1 *1) (-4 *1 (-1205)))) +(-13 (-1208) (-95) (-496) (-35) (-285) (-10 -8 (-15 -4059 ($)))) +(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-1208) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3826 ((|#1| $) 19)) (-4064 (($ |#1| (-643 $)) 28) (($ (-643 |#1|)) 35) (($ |#1|) 30)) (-1309 (((-112) $ (-773)) 71)) (-3426 ((|#1| $ |#1|) 14 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 13 (|has| $ (-6 -4426)))) (-4156 (($) NIL T CONST)) (-2124 (((-643 |#1|) $) 75 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 63)) (-3428 (((-112) $ $) 49 (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) 61)) (-3008 (((-643 |#1|) $) 76 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2128 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 27)) (-4148 (((-112) $ (-773)) 59)) (-3431 (((-643 |#1|) $) 54)) (-3950 (((-112) $) 52)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-2126 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 105)) (-3827 (((-112) $) 9)) (-3996 (($) 10)) (-4231 ((|#1| $ #1#) NIL)) (-3430 (((-549) $ $) 48)) (-4060 (((-643 $) $) 87)) (-4061 (((-112) $ $) 108)) (-4062 (((-643 $) $) 103)) (-4063 (($ $) 104)) (-4065 (((-112) $) 82)) (-2125 (((-773) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4425))) (((-773) |#1| $) 17 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3824 (($ $) 86)) (-4378 (((-865) $) 89 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 12)) (-3429 (((-112) $ $) 39 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 37 (|has| |#1| (-1104)))) (-4389 (((-773) $) 57 (|has| $ (-6 -4425))))) +(((-1206 |#1|) (-13 (-1013 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -4064 ($ |#1| (-643 $))) (-15 -4064 ($ (-643 |#1|))) (-15 -4064 ($ |#1|)) (-15 -4065 ((-112) $)) (-15 -4063 ($ $)) (-15 -4062 ((-643 $) $)) (-15 -4061 ((-112) $ $)) (-15 -4060 ((-643 $) $)))) (-1104)) (T -1206)) +((-4065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1104)))) (-4064 (*1 *1 *2 *3) (-12 (-5 *3 (-643 (-1206 *2))) (-5 *1 (-1206 *2)) (-4 *2 (-1104)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-1206 *3)))) (-4064 (*1 *1 *2) (-12 (-5 *1 (-1206 *2)) (-4 *2 (-1104)))) (-4063 (*1 *1 *1) (-12 (-5 *1 (-1206 *2)) (-4 *2 (-1104)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-643 (-1206 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1104)))) (-4061 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1104)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-643 (-1206 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) +(-13 (-1013 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -4064 ($ |#1| (-643 $))) (-15 -4064 ($ (-643 |#1|))) (-15 -4064 ($ |#1|)) (-15 -4065 ((-112) $)) (-15 -4063 ($ $)) (-15 -4062 ((-643 $) $)) (-15 -4061 ((-112) $ $)) (-15 -4060 ((-643 $) $)))) +((-4071 (($ $) 15)) (-4069 (($ $) 12)) (-4068 (($ $) 10)) (-4067 (($ $) 17))) +(((-1207 |#1|) (-10 -8 (-15 -4067 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4071 (|#1| |#1|))) (-1208)) (T -1207)) +NIL +(-10 -8 (-15 -4067 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4071 (|#1| |#1|))) +((-4071 (($ $) 11)) (-4070 (($ $) 10)) (-4069 (($ $) 9)) (-4068 (($ $) 8)) (-4067 (($ $) 7)) (-4066 (($ $) 6))) +(((-1208) (-140)) (T -1208)) +((-4071 (*1 *1 *1) (-4 *1 (-1208))) (-4070 (*1 *1 *1) (-4 *1 (-1208))) (-4069 (*1 *1 *1) (-4 *1 (-1208))) (-4068 (*1 *1 *1) (-4 *1 (-1208))) (-4067 (*1 *1 *1) (-4 *1 (-1208))) (-4066 (*1 *1 *1) (-4 *1 (-1208)))) +(-13 (-10 -8 (-15 -4066 ($ $)) (-15 -4067 ($ $)) (-15 -4068 ($ $)) (-15 -4069 ($ $)) (-15 -4070 ($ $)) (-15 -4071 ($ $)))) +((-4074 ((|#2| |#2|) 98)) (-4077 (((-112) |#2|) 29)) (-4075 ((|#2| |#2|) 33)) (-4076 ((|#2| |#2|) 35)) (-4072 ((|#2| |#2| (-1180)) 92) ((|#2| |#2|) 93)) (-4078 (((-168 |#2|) |#2|) 31)) (-4073 ((|#2| |#2| (-1180)) 94) ((|#2| |#2|) 95))) +(((-1209 |#1| |#2|) (-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -4072 (|#2| |#2| (-1180))) (-15 -4073 (|#2| |#2|)) (-15 -4073 (|#2| |#2| (-1180))) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 ((-112) |#2|)) (-15 -4078 ((-168 |#2|) |#2|))) (-13 (-455) (-1041 (-549)) (-641 (-549))) (-13 (-27) (-1205) (-424 |#1|))) (T -1209)) +((-4078 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-168 *3)) (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4077 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-112)) (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-4075 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3))))) (-4072 (*1 *2 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) +(-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -4072 (|#2| |#2| (-1180))) (-15 -4073 (|#2| |#2|)) (-15 -4073 (|#2| |#2| (-1180))) (-15 -4074 (|#2| |#2|)) (-15 -4075 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4077 ((-112) |#2|)) (-15 -4078 ((-168 |#2|) |#2|))) +((-4079 ((|#4| |#4| |#1|) 32)) (-4080 ((|#4| |#4| |#1|) 33))) +(((-1210 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4079 (|#4| |#4| |#1|)) (-15 -4080 (|#4| |#4| |#1|))) (-560) (-374 |#1|) (-374 |#1|) (-688 |#1| |#2| |#3|)) (T -1210)) +((-4080 (*1 *2 *2 *3) (-12 (-4 *3 (-560)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-1210 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-4079 (*1 *2 *2 *3) (-12 (-4 *3 (-560)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) (-5 *1 (-1210 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(-10 -7 (-15 -4079 (|#4| |#4| |#1|)) (-15 -4080 (|#4| |#4| |#1|))) +((-4098 ((|#2| |#2|) 148)) (-4100 ((|#2| |#2|) 145)) (-4097 ((|#2| |#2|) 136)) (-4099 ((|#2| |#2|) 133)) (-4096 ((|#2| |#2|) 141)) (-4095 ((|#2| |#2|) 129)) (-4084 ((|#2| |#2|) 44)) (-4083 ((|#2| |#2|) 105)) (-4081 ((|#2| |#2|) 88)) (-4094 ((|#2| |#2|) 143)) (-4093 ((|#2| |#2|) 131)) (-4106 ((|#2| |#2|) 153)) (-4104 ((|#2| |#2|) 151)) (-4105 ((|#2| |#2|) 152)) (-4103 ((|#2| |#2|) 150)) (-4082 ((|#2| |#2|) 163)) (-4107 ((|#2| |#2|) 30 (-12 (|has| |#2| (-616 (-893 |#1|))) (|has| |#2| (-889 |#1|)) (|has| |#1| (-616 (-893 |#1|))) (|has| |#1| (-889 |#1|))))) (-4085 ((|#2| |#2|) 89)) (-4086 ((|#2| |#2|) 154)) (-4395 ((|#2| |#2|) 155)) (-4092 ((|#2| |#2|) 142)) (-4091 ((|#2| |#2|) 130)) (-4090 ((|#2| |#2|) 149)) (-4102 ((|#2| |#2|) 147)) (-4089 ((|#2| |#2|) 137)) (-4101 ((|#2| |#2|) 135)) (-4088 ((|#2| |#2|) 139)) (-4087 ((|#2| |#2|) 127))) +(((-1211 |#1| |#2|) (-10 -7 (-15 -4395 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (IF (|has| |#1| (-889 |#1|)) (IF (|has| |#1| (-616 (-893 |#1|))) (IF (|has| |#2| (-616 (-893 |#1|))) (IF (|has| |#2| (-889 |#1|)) (-15 -4107 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-455) (-13 (-424 |#1|) (-1205))) (T -1211)) +((-4107 (*1 *2 *2) (-12 (-4 *3 (-616 (-893 *3))) (-4 *3 (-889 *3)) (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-616 (-893 *3))) (-4 *2 (-889 *3)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4105 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) (-4395 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(-10 -7 (-15 -4395 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4105 (|#2| |#2|)) (-15 -4106 (|#2| |#2|)) (IF (|has| |#1| (-889 |#1|)) (IF (|has| |#1| (-616 (-893 |#1|))) (IF (|has| |#2| (-616 (-893 |#1|))) (IF (|has| |#2| (-889 |#1|)) (-15 -4107 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1180)) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4246 (((-949 |#1|) $ (-773)) 20) (((-949 |#1|) $ (-773) (-773)) NIL)) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $ (-1180)) NIL) (((-773) $ (-1180) (-773)) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4369 (((-112) $) NIL)) (-3294 (($ $ (-643 (-1180)) (-643 (-534 (-1180)))) NIL) (($ $ (-1180) (-534 (-1180))) NIL) (($ |#1| (-534 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4244 (($ $ (-1180)) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180) |#1|) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-4108 (($ (-1 $) (-1180) |#1|) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4200 (($ $ (-773)) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (($ $ (-1180) $) NIL) (($ $ (-643 (-1180)) (-643 $)) NIL) (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL)) (-4242 (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-4380 (((-534 (-1180)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-560))) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-1180)) NIL) (($ (-949 |#1|)) NIL)) (-4109 ((|#1| $ (-534 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (((-949 |#1|) $ (-773)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3072 (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1212 |#1|) (-13 (-742 |#1| (-1180)) (-10 -8 (-15 -4109 ((-949 |#1|) $ (-773))) (-15 -4378 ($ (-1180))) (-15 -4378 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ (-1180) |#1|)) (-15 -4108 ($ (-1 $) (-1180) |#1|))) |%noBranch|))) (-1052)) (T -1212)) +((-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-949 *4)) (-5 *1 (-1212 *4)) (-4 *4 (-1052)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1212 *3)) (-4 *3 (-1052)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1052)) (-5 *1 (-1212 *3)))) (-4244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *1 (-1212 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)))) (-4108 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1212 *4))) (-5 *3 (-1180)) (-5 *1 (-1212 *4)) (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052))))) +(-13 (-742 |#1| (-1180)) (-10 -8 (-15 -4109 ((-949 |#1|) $ (-773))) (-15 -4378 ($ (-1180))) (-15 -4378 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $ (-1180) |#1|)) (-15 -4108 ($ (-1 $) (-1180) |#1|))) |%noBranch|))) +((-4125 (((-112) |#5| $) 68) (((-112) $) 110)) (-4120 ((|#5| |#5| $) 83)) (-4142 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4121 (((-643 |#5|) (-643 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3577 (((-3 $ "failed") (-643 |#5|)) 135)) (-4230 (((-3 $ "failed") $) 120)) (-4117 ((|#5| |#5| $) 102)) (-4126 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4115 ((|#5| |#5| $) 106)) (-4274 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4128 (((-2 (|:| -4293 (-643 |#5|)) (|:| -1870 (-643 |#5|))) $) 63)) (-4127 (((-112) |#5| $) 66) (((-112) $) 111)) (-3600 ((|#4| $) 116)) (-4229 (((-3 |#5| "failed") $) 118)) (-4129 (((-643 |#5|) $) 55)) (-4123 (((-112) |#5| $) 75) (((-112) $) 115)) (-4118 ((|#5| |#5| $) 89)) (-4131 (((-112) $ $) 29)) (-4124 (((-112) |#5| $) 71) (((-112) $) 113)) (-4119 ((|#5| |#5| $) 86)) (-4232 (((-3 |#5| "failed") $) 117)) (-4200 (($ $ |#5|) 136)) (-4380 (((-773) $) 60)) (-3953 (($ (-643 |#5|)) 133)) (-3311 (($ $ |#4|) 131)) (-3313 (($ $ |#4|) 129)) (-4116 (($ $) 128)) (-4378 (((-865) $) NIL) (((-643 |#5|) $) 121)) (-4110 (((-773) $) 140)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-4122 (((-112) $ (-1 (-112) |#5| (-643 |#5|))) 108)) (-4112 (((-643 |#4|) $) 123)) (-4365 (((-112) |#4| $) 126)) (-3455 (((-112) $ $) 20))) +(((-1213 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4110 ((-773) |#1|)) (-15 -4200 (|#1| |#1| |#5|)) (-15 -4142 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4365 ((-112) |#4| |#1|)) (-15 -4112 ((-643 |#4|) |#1|)) (-15 -4230 ((-3 |#1| "failed") |#1|)) (-15 -4229 ((-3 |#5| "failed") |#1|)) (-15 -4232 ((-3 |#5| "failed") |#1|)) (-15 -4115 (|#5| |#5| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -4117 (|#5| |#5| |#1|)) (-15 -4118 (|#5| |#5| |#1|)) (-15 -4119 (|#5| |#5| |#1|)) (-15 -4120 (|#5| |#5| |#1|)) (-15 -4121 ((-643 |#5|) (-643 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4274 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4123 ((-112) |#1|)) (-15 -4124 ((-112) |#1|)) (-15 -4125 ((-112) |#1|)) (-15 -4122 ((-112) |#1| (-1 (-112) |#5| (-643 |#5|)))) (-15 -4123 ((-112) |#5| |#1|)) (-15 -4124 ((-112) |#5| |#1|)) (-15 -4125 ((-112) |#5| |#1|)) (-15 -4126 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4127 ((-112) |#1|)) (-15 -4127 ((-112) |#5| |#1|)) (-15 -4128 ((-2 (|:| -4293 (-643 |#5|)) (|:| -1870 (-643 |#5|))) |#1|)) (-15 -4380 ((-773) |#1|)) (-15 -4129 ((-643 |#5|) |#1|)) (-15 -4130 ((-3 (-2 (|:| |bas| |#1|) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4130 ((-3 (-2 (|:| |bas| |#1|) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4131 ((-112) |#1| |#1|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3600 (|#4| |#1|)) (-15 -3577 ((-3 |#1| "failed") (-643 |#5|))) (-15 -4378 ((-643 |#5|) |#1|)) (-15 -3953 (|#1| (-643 |#5|))) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4142 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) (-1214 |#2| |#3| |#4| |#5|) (-560) (-795) (-852) (-1068 |#2| |#3| |#4|)) (T -1213)) +NIL +(-10 -8 (-15 -4110 ((-773) |#1|)) (-15 -4200 (|#1| |#1| |#5|)) (-15 -4142 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4365 ((-112) |#4| |#1|)) (-15 -4112 ((-643 |#4|) |#1|)) (-15 -4230 ((-3 |#1| "failed") |#1|)) (-15 -4229 ((-3 |#5| "failed") |#1|)) (-15 -4232 ((-3 |#5| "failed") |#1|)) (-15 -4115 (|#5| |#5| |#1|)) (-15 -4116 (|#1| |#1|)) (-15 -4117 (|#5| |#5| |#1|)) (-15 -4118 (|#5| |#5| |#1|)) (-15 -4119 (|#5| |#5| |#1|)) (-15 -4120 (|#5| |#5| |#1|)) (-15 -4121 ((-643 |#5|) (-643 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4274 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4123 ((-112) |#1|)) (-15 -4124 ((-112) |#1|)) (-15 -4125 ((-112) |#1|)) (-15 -4122 ((-112) |#1| (-1 (-112) |#5| (-643 |#5|)))) (-15 -4123 ((-112) |#5| |#1|)) (-15 -4124 ((-112) |#5| |#1|)) (-15 -4125 ((-112) |#5| |#1|)) (-15 -4126 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4127 ((-112) |#1|)) (-15 -4127 ((-112) |#5| |#1|)) (-15 -4128 ((-2 (|:| -4293 (-643 |#5|)) (|:| -1870 (-643 |#5|))) |#1|)) (-15 -4380 ((-773) |#1|)) (-15 -4129 ((-643 |#5|) |#1|)) (-15 -4130 ((-3 (-2 (|:| |bas| |#1|) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4130 ((-3 (-2 (|:| |bas| |#1|) (|:| -3748 (-643 |#5|))) "failed") (-643 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4131 ((-112) |#1| |#1|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3600 (|#4| |#1|)) (-15 -3577 ((-3 |#1| "failed") (-643 |#5|))) (-15 -4378 ((-643 |#5|) |#1|)) (-15 -3953 (|#1| (-643 |#5|))) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4142 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4274 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4378 ((-865) |#1|)) (-15 -3455 ((-112) |#1| |#1|))) +((-2968 (((-112) $ $) 7)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) 86)) (-4114 (((-643 $) (-643 |#4|)) 87)) (-3485 (((-643 |#3|) $) 34)) (-3309 (((-112) $) 27)) (-3300 (((-112) $) 18 (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) 102) (((-112) $) 98)) (-4120 ((|#4| |#4| $) 93)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) 28)) (-1309 (((-112) $ (-773)) 45)) (-4142 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4425))) (((-3 |#4| "failed") $ |#3|) 80)) (-4156 (($) 46 T CONST)) (-3305 (((-112) $) 23 (|has| |#1| (-560)))) (-3307 (((-112) $ $) 25 (|has| |#1| (-560)))) (-3306 (((-112) $ $) 24 (|has| |#1| (-560)))) (-3308 (((-112) $) 26 (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3301 (((-643 |#4|) (-643 |#4|) $) 19 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) 20 (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) 37)) (-3576 (($ (-643 |#4|)) 36)) (-4230 (((-3 $ "failed") $) 83)) (-4117 ((|#4| |#4| $) 90)) (-1440 (($ $) 69 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#4| $) 68 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4115 ((|#4| |#4| $) 88)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) 106)) (-2124 (((-643 |#4|) $) 53 (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) 105) (((-112) $) 104)) (-3600 ((|#3| $) 35)) (-4151 (((-112) $ (-773)) 44)) (-3008 (((-643 |#4|) $) 54 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) 48)) (-3315 (((-643 |#3|) $) 33)) (-3314 (((-112) |#3| $) 32)) (-4148 (((-112) $ (-773)) 43)) (-3663 (((-1162) $) 10)) (-4229 (((-3 |#4| "failed") $) 84)) (-4129 (((-643 |#4|) $) 108)) (-4123 (((-112) |#4| $) 100) (((-112) $) 96)) (-4118 ((|#4| |#4| $) 91)) (-4131 (((-112) $ $) 111)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) 101) (((-112) $) 97)) (-4119 ((|#4| |#4| $) 92)) (-3664 (((-1123) $) 11)) (-4232 (((-3 |#4| "failed") $) 85)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4111 (((-3 $ "failed") $ |#4|) 79)) (-4200 (($ $ |#4|) 78)) (-2126 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) 39)) (-3827 (((-112) $) 42)) (-3996 (($) 41)) (-4380 (((-773) $) 107)) (-2125 (((-773) |#4| $) 55 (-12 (|has| |#4| (-1104)) (|has| $ (-6 -4425)))) (((-773) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4425)))) (-3824 (($ $) 40)) (-4402 (((-538) $) 70 (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) 61)) (-3311 (($ $ |#3|) 29)) (-3313 (($ $ |#3|) 31)) (-4116 (($ $) 89)) (-3312 (($ $ |#3|) 30)) (-4378 (((-865) $) 12) (((-643 |#4|) $) 38)) (-4110 (((-773) $) 77 (|has| |#3| (-370)))) (-3662 (((-112) $ $) 9)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) "failed") (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) 99)) (-2127 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) 82)) (-4365 (((-112) |#3| $) 81)) (-3455 (((-112) $ $) 6)) (-4389 (((-773) $) 47 (|has| $ (-6 -4425))))) +(((-1214 |#1| |#2| |#3| |#4|) (-140) (-560) (-795) (-852) (-1068 |t#1| |t#2| |t#3|)) (T -1214)) +((-4131 (*1 *2 *1 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4130 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3748 (-643 *8)))) (-5 *3 (-643 *8)) (-4 *1 (-1214 *5 *6 *7 *8)))) (-4130 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3748 (-643 *9)))) (-5 *3 (-643 *9)) (-4 *1 (-1214 *6 *7 *8 *9)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *6)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-773)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-2 (|:| -4293 (-643 *6)) (|:| -1870 (-643 *6)))))) (-4127 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4126 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1214 *5 *6 *7 *3)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-112)))) (-4125 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4124 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4123 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4122 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-643 *7))) (-4 *1 (-1214 *4 *5 *6 *7)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4123 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) (-4274 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1214 *5 *6 *7 *2)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *2 (-1068 *5 *6 *7)))) (-4121 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-643 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1214 *5 *6 *7 *8)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)))) (-4120 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4119 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4118 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4117 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4116 (*1 *1 *1) (-12 (-4 *1 (-1214 *2 *3 *4 *5)) (-4 *2 (-560)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-1068 *2 *3 *4)))) (-4115 (*1 *2 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1214 *4 *5 *6 *7)))) (-4113 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-643 (-2 (|:| -4293 *1) (|:| -1870 (-643 *7))))) (-5 *3 (-643 *7)) (-4 *1 (-1214 *4 *5 *6 *7)))) (-4232 (*1 *2 *1) (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4229 (*1 *2 *1) (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4230 (*1 *1 *1) (|partial| -12 (-4 *1 (-1214 *2 *3 *4 *5)) (-4 *2 (-560)) (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-1068 *2 *3 *4)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5)))) (-4365 (*1 *2 *3 *1) (-12 (-4 *1 (-1214 *4 *5 *3 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-112)))) (-4142 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1214 *4 *5 *3 *2)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *2 (-1068 *4 *5 *3)))) (-4111 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4200 (*1 *1 *1 *2) (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-773))))) +(-13 (-979 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -4131 ((-112) $ $)) (-15 -4130 ((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |t#4|))) "failed") (-643 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4130 ((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |t#4|))) "failed") (-643 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4129 ((-643 |t#4|) $)) (-15 -4380 ((-773) $)) (-15 -4128 ((-2 (|:| -4293 (-643 |t#4|)) (|:| -1870 (-643 |t#4|))) $)) (-15 -4127 ((-112) |t#4| $)) (-15 -4127 ((-112) $)) (-15 -4126 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4125 ((-112) |t#4| $)) (-15 -4124 ((-112) |t#4| $)) (-15 -4123 ((-112) |t#4| $)) (-15 -4122 ((-112) $ (-1 (-112) |t#4| (-643 |t#4|)))) (-15 -4125 ((-112) $)) (-15 -4124 ((-112) $)) (-15 -4123 ((-112) $)) (-15 -4274 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4121 ((-643 |t#4|) (-643 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4120 (|t#4| |t#4| $)) (-15 -4119 (|t#4| |t#4| $)) (-15 -4118 (|t#4| |t#4| $)) (-15 -4117 (|t#4| |t#4| $)) (-15 -4116 ($ $)) (-15 -4115 (|t#4| |t#4| $)) (-15 -4114 ((-643 $) (-643 |t#4|))) (-15 -4113 ((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |t#4|)))) (-643 |t#4|))) (-15 -4232 ((-3 |t#4| "failed") $)) (-15 -4229 ((-3 |t#4| "failed") $)) (-15 -4230 ((-3 $ "failed") $)) (-15 -4112 ((-643 |t#3|) $)) (-15 -4365 ((-112) |t#3| $)) (-15 -4142 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4111 ((-3 $ "failed") $ |t#4|)) (-15 -4200 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -4110 ((-773) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-615 (-643 |#4|)) . T) ((-615 (-865)) . T) ((-151 |#4|) . T) ((-616 (-538)) |has| |#4| (-616 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))) ((-979 |#1| |#2| |#3| |#4|) . T) ((-1104) . T) ((-1219) . T)) +((-4137 (($ |#1| (-643 (-643 (-946 (-225)))) (-112)) 19)) (-4136 (((-112) $ (-112)) 18)) (-4135 (((-112) $) 17)) (-4133 (((-643 (-643 (-946 (-225)))) $) 13)) (-4132 ((|#1| $) 8)) (-4134 (((-112) $) 15))) +(((-1215 |#1|) (-10 -8 (-15 -4132 (|#1| $)) (-15 -4133 ((-643 (-643 (-946 (-225)))) $)) (-15 -4134 ((-112) $)) (-15 -4135 ((-112) $)) (-15 -4136 ((-112) $ (-112))) (-15 -4137 ($ |#1| (-643 (-643 (-946 (-225)))) (-112)))) (-977)) (T -1215)) +((-4137 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-112)) (-5 *1 (-1215 *2)) (-4 *2 (-977)))) (-4136 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-1215 *3)) (-4 *3 (-977)))) (-4132 (*1 *2 *1) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-977))))) +(-10 -8 (-15 -4132 (|#1| $)) (-15 -4133 ((-643 (-643 (-946 (-225)))) $)) (-15 -4134 ((-112) $)) (-15 -4135 ((-112) $)) (-15 -4136 ((-112) $ (-112))) (-15 -4137 ($ |#1| (-643 (-643 (-946 (-225)))) (-112)))) +((-4139 (((-946 (-225)) (-946 (-225))) 31)) (-4138 (((-946 (-225)) (-225) (-225) (-225) (-225)) 10)) (-4141 (((-643 (-946 (-225))) (-946 (-225)) (-946 (-225)) (-946 (-225)) (-225) (-643 (-643 (-225)))) 60)) (-4268 (((-225) (-946 (-225)) (-946 (-225))) 27)) (-4266 (((-946 (-225)) (-946 (-225)) (-946 (-225))) 28)) (-4140 (((-643 (-643 (-225))) (-549)) 48)) (-4269 (((-946 (-225)) (-946 (-225)) (-946 (-225))) 26)) (-4271 (((-946 (-225)) (-946 (-225)) (-946 (-225))) 24)) (* (((-946 (-225)) (-225) (-946 (-225))) 22))) +(((-1216) (-10 -7 (-15 -4138 ((-946 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-946 (-225)) (-225) (-946 (-225)))) (-15 -4271 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4269 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4268 ((-225) (-946 (-225)) (-946 (-225)))) (-15 -4266 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4139 ((-946 (-225)) (-946 (-225)))) (-15 -4140 ((-643 (-643 (-225))) (-549))) (-15 -4141 ((-643 (-946 (-225))) (-946 (-225)) (-946 (-225)) (-946 (-225)) (-225) (-643 (-643 (-225))))))) (T -1216)) +((-4141 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-643 (-643 (-225)))) (-5 *4 (-225)) (-5 *2 (-643 (-946 *4))) (-5 *1 (-1216)) (-5 *3 (-946 *4)))) (-4140 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-643 (-643 (-225)))) (-5 *1 (-1216)))) (-4139 (*1 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) (-4266 (*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) (-4268 (*1 *2 *3 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-225)) (-5 *1 (-1216)))) (-4269 (*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) (-4271 (*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-946 (-225))) (-5 *3 (-225)) (-5 *1 (-1216)))) (-4138 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)) (-5 *3 (-225))))) +(-10 -7 (-15 -4138 ((-946 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-946 (-225)) (-225) (-946 (-225)))) (-15 -4271 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4269 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4268 ((-225) (-946 (-225)) (-946 (-225)))) (-15 -4266 ((-946 (-225)) (-946 (-225)) (-946 (-225)))) (-15 -4139 ((-946 (-225)) (-946 (-225)))) (-15 -4140 ((-643 (-643 (-225))) (-549))) (-15 -4141 ((-643 (-946 (-225))) (-946 (-225)) (-946 (-225)) (-946 (-225)) (-225) (-643 (-643 (-225)))))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4142 ((|#1| $ (-773)) 18)) (-4265 (((-773) $) 13)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4378 (((-961 |#1|) $) 12) (($ (-961 |#1|)) 11) (((-865) $) 29 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3455 (((-112) $ $) 22 (|has| |#1| (-1104))))) +(((-1217 |#1|) (-13 (-493 (-961 |#1|)) (-10 -8 (-15 -4142 (|#1| $ (-773))) (-15 -4265 ((-773) $)) (IF (|has| |#1| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) (-1219)) (T -1217)) +((-4142 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-1217 *2)) (-4 *2 (-1219)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1217 *3)) (-4 *3 (-1219))))) +(-13 (-493 (-961 |#1|)) (-10 -8 (-15 -4142 (|#1| $ (-773))) (-15 -4265 ((-773) $)) (IF (|has| |#1| (-615 (-865))) (-6 (-615 (-865))) |%noBranch|) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|))) +((-4145 (((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-549)) 94)) (-4143 (((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|))) 86)) (-4144 (((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|))) 70))) +(((-1218 |#1|) (-10 -7 (-15 -4143 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4144 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4145 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-549)))) (-352)) (T -1218)) +((-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-549)) (-4 *5 (-352)) (-5 *2 (-408 (-1174 (-1174 *5)))) (-5 *1 (-1218 *5)) (-5 *3 (-1174 (-1174 *5))))) (-4144 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-408 (-1174 (-1174 *4)))) (-5 *1 (-1218 *4)) (-5 *3 (-1174 (-1174 *4))))) (-4143 (*1 *2 *3) (-12 (-4 *4 (-352)) (-5 *2 (-408 (-1174 (-1174 *4)))) (-5 *1 (-1218 *4)) (-5 *3 (-1174 (-1174 *4)))))) +(-10 -7 (-15 -4143 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4144 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)))) (-15 -4145 ((-408 (-1174 (-1174 |#1|))) (-1174 (-1174 |#1|)) (-549)))) NIL (((-1219) (-140)) (T -1219)) NIL -(-13 (-10 -7 (-6 -3062))) -((-1515 (((-112)) 18)) (-2665 (((-1274) (-645 |#1|) (-645 |#1|)) 22) (((-1274) (-645 |#1|)) 23)) (-3753 (((-112) |#1| |#1|) 38 (|has| |#1| (-851)))) (-3421 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-2685 ((|#1| (-645 |#1|)) 39 (|has| |#1| (-851))) ((|#1| (-645 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-1634 (((-2 (|:| -1448 (-645 |#1|)) (|:| -1425 (-645 |#1|)))) 20))) -(((-1220 |#1|) (-10 -7 (-15 -2665 ((-1274) (-645 |#1|))) (-15 -2665 ((-1274) (-645 |#1|) (-645 |#1|))) (-15 -1634 ((-2 (|:| -1448 (-645 |#1|)) (|:| -1425 (-645 |#1|))))) (-15 -3421 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3421 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2685 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1515 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -2685 (|#1| (-645 |#1|))) (-15 -3753 ((-112) |#1| |#1|))) |%noBranch|)) (-1102)) (T -1220)) -((-3753 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-851)) (-4 *3 (-1102)))) (-2685 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-851)) (-5 *1 (-1220 *2)))) (-1515 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1102)))) (-2685 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1220 *2)) (-4 *2 (-1102)))) (-3421 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-1220 *3)))) (-3421 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1102)))) (-1634 (*1 *2) (-12 (-5 *2 (-2 (|:| -1448 (-645 *3)) (|:| -1425 (-645 *3)))) (-5 *1 (-1220 *3)) (-4 *3 (-1102)))) (-2665 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1274)) (-5 *1 (-1220 *4)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1274)) (-5 *1 (-1220 *4))))) -(-10 -7 (-15 -2665 ((-1274) (-645 |#1|))) (-15 -2665 ((-1274) (-645 |#1|) (-645 |#1|))) (-15 -1634 ((-2 (|:| -1448 (-645 |#1|)) (|:| -1425 (-645 |#1|))))) (-15 -3421 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3421 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2685 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1515 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -2685 (|#1| (-645 |#1|))) (-15 -3753 ((-112) |#1| |#1|))) |%noBranch|)) -((-3829 (((-1274) (-645 (-1179)) (-645 (-1179))) 14) (((-1274) (-645 (-1179))) 12)) (-1947 (((-1274)) 16)) (-3251 (((-2 (|:| -1425 (-645 (-1179))) (|:| -1448 (-645 (-1179))))) 20))) -(((-1221) (-10 -7 (-15 -3829 ((-1274) (-645 (-1179)))) (-15 -3829 ((-1274) (-645 (-1179)) (-645 (-1179)))) (-15 -3251 ((-2 (|:| -1425 (-645 (-1179))) (|:| -1448 (-645 (-1179)))))) (-15 -1947 ((-1274))))) (T -1221)) -((-1947 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1221)))) (-3251 (*1 *2) (-12 (-5 *2 (-2 (|:| -1425 (-645 (-1179))) (|:| -1448 (-645 (-1179))))) (-5 *1 (-1221)))) (-3829 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1221)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1221))))) -(-10 -7 (-15 -3829 ((-1274) (-645 (-1179)))) (-15 -3829 ((-1274) (-645 (-1179)) (-645 (-1179)))) (-15 -3251 ((-2 (|:| -1425 (-645 (-1179))) (|:| -1448 (-645 (-1179)))))) (-15 -1947 ((-1274)))) -((-3864 (($ $) 17)) (-2946 (((-112) $) 28))) -(((-1222 |#1|) (-10 -8 (-15 -3864 (|#1| |#1|)) (-15 -2946 ((-112) |#1|))) (-1223)) (T -1222)) -NIL -(-10 -8 (-15 -3864 (|#1| |#1|)) (-15 -2946 ((-112) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 57)) (-1466 (((-421 $) $) 58)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-2946 (((-112) $) 59)) (-4384 (((-112) $) 35)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3661 (((-421 $) $) 56)) (-2478 (((-3 $ "failed") $ $) 48)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27))) -(((-1223) (-140)) (T -1223)) -((-2946 (*1 *2 *1) (-12 (-4 *1 (-1223)) (-5 *2 (-112)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1223)))) (-3864 (*1 *1 *1) (-4 *1 (-1223))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1223))))) -(-13 (-455) (-10 -8 (-15 -2946 ((-112) $)) (-15 -1466 ((-421 $) $)) (-15 -3864 ($ $)) (-15 -3661 ((-421 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1053 $) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-1355 (($ $ $) NIL)) (-1343 (($ $ $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-1224) (-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562)))) (T -1224)) -((-1343 (*1 *1 *1 *1) (-5 *1 (-1224))) (-1355 (*1 *1 *1 *1) (-5 *1 (-1224))) (-3758 (*1 *1) (-5 *1 (-1224)))) -(-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562))) +(-13 (-10 -7 (-6 -2433))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 9) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1220) (-1086)) (T -1220)) +NIL +(-1086) +((-4149 (((-112)) 18)) (-4146 (((-1275) (-643 |#1|) (-643 |#1|)) 22) (((-1275) (-643 |#1|)) 23)) (-4151 (((-112) |#1| |#1|) 37 (|has| |#1| (-852)))) (-4148 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-4150 ((|#1| (-643 |#1|)) 38 (|has| |#1| (-852))) ((|#1| (-643 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4147 (((-2 (|:| -3649 (-643 |#1|)) (|:| -3648 (-643 |#1|)))) 20))) +(((-1221 |#1|) (-10 -7 (-15 -4146 ((-1275) (-643 |#1|))) (-15 -4146 ((-1275) (-643 |#1|) (-643 |#1|))) (-15 -4147 ((-2 (|:| -3649 (-643 |#1|)) (|:| -3648 (-643 |#1|))))) (-15 -4148 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4148 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4150 (|#1| (-643 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4149 ((-112))) (IF (|has| |#1| (-852)) (PROGN (-15 -4150 (|#1| (-643 |#1|))) (-15 -4151 ((-112) |#1| |#1|))) |%noBranch|)) (-1104)) (T -1221)) +((-4151 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-852)) (-4 *3 (-1104)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-852)) (-5 *1 (-1221 *2)))) (-4149 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1104)))) (-4150 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1221 *2)) (-4 *2 (-1104)))) (-4148 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1104)) (-5 *2 (-112)) (-5 *1 (-1221 *3)))) (-4148 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1104)))) (-4147 (*1 *2) (-12 (-5 *2 (-2 (|:| -3649 (-643 *3)) (|:| -3648 (-643 *3)))) (-5 *1 (-1221 *3)) (-4 *3 (-1104)))) (-4146 (*1 *2 *3 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-5 *2 (-1275)) (-5 *1 (-1221 *4)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-5 *2 (-1275)) (-5 *1 (-1221 *4))))) +(-10 -7 (-15 -4146 ((-1275) (-643 |#1|))) (-15 -4146 ((-1275) (-643 |#1|) (-643 |#1|))) (-15 -4147 ((-2 (|:| -3649 (-643 |#1|)) (|:| -3648 (-643 |#1|))))) (-15 -4148 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4148 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4150 (|#1| (-643 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4149 ((-112))) (IF (|has| |#1| (-852)) (PROGN (-15 -4150 (|#1| (-643 |#1|))) (-15 -4151 ((-112) |#1| |#1|))) |%noBranch|)) +((-4152 (((-1275) (-643 (-1180)) (-643 (-1180))) 14) (((-1275) (-643 (-1180))) 12)) (-4154 (((-1275)) 16)) (-4153 (((-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180))))) 20))) +(((-1222) (-10 -7 (-15 -4152 ((-1275) (-643 (-1180)))) (-15 -4152 ((-1275) (-643 (-1180)) (-643 (-1180)))) (-15 -4153 ((-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180)))))) (-15 -4154 ((-1275))))) (T -1222)) +((-4154 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1222)))) (-4153 (*1 *2) (-12 (-5 *2 (-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180))))) (-5 *1 (-1222)))) (-4152 (*1 *2 *3 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1222)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1222))))) +(-10 -7 (-15 -4152 ((-1275) (-643 (-1180)))) (-15 -4152 ((-1275) (-643 (-1180)) (-643 (-1180)))) (-15 -4153 ((-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180)))))) (-15 -4154 ((-1275)))) +((-4206 (($ $) 17)) (-4155 (((-112) $) 28))) +(((-1223 |#1|) (-10 -8 (-15 -4206 (|#1| |#1|)) (-15 -4155 ((-112) |#1|))) (-1224)) (T -1223)) +NIL +(-10 -8 (-15 -4206 (|#1| |#1|)) (-15 -4155 ((-112) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 57)) (-4401 (((-408 $) $) 58)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-4155 (((-112) $) 59)) (-2573 (((-112) $) 35)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 56)) (-3889 (((-3 $ "failed") $ $) 48)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27))) +(((-1224) (-140)) (T -1224)) +((-4155 (*1 *2 *1) (-12 (-4 *1 (-1224)) (-5 *2 (-112)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-408 *1)) (-4 *1 (-1224)))) (-4206 (*1 *1 *1) (-4 *1 (-1224))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-408 *1)) (-4 *1 (-1224))))) +(-13 (-455) (-10 -8 (-15 -4155 ((-112) $)) (-15 -4401 ((-408 $) $)) (-15 -4206 ($ $)) (-15 -4164 ((-408 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-560) . T) ((-648 (-549)) . T) ((-648 $) . T) ((-650 $) . T) ((-642 $) . T) ((-719 $) . T) ((-728) . T) ((-1054 $) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-1225) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -1225)) +((-4158 (*1 *1 *1 *1) (-5 *1 (-1225))) (-4157 (*1 *1 *1 *1) (-5 *1 (-1225))) (-4156 (*1 *1) (-5 *1 (-1225)))) +(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-1355 (($ $ $) NIL)) (-1343 (($ $ $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-1225) (-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562)))) (T -1225)) -((-1343 (*1 *1 *1 *1) (-5 *1 (-1225))) (-1355 (*1 *1 *1 *1) (-5 *1 (-1225))) (-3758 (*1 *1) (-5 *1 (-1225)))) -(-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-1226) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -1226)) +((-4158 (*1 *1 *1 *1) (-5 *1 (-1226))) (-4157 (*1 *1 *1 *1) (-5 *1 (-1226))) (-4156 (*1 *1) (-5 *1 (-1226)))) +(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-1355 (($ $ $) NIL)) (-1343 (($ $ $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-1226) (-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562)))) (T -1226)) -((-1343 (*1 *1 *1 *1) (-5 *1 (-1226))) (-1355 (*1 *1 *1 *1) (-5 *1 (-1226))) (-3758 (*1 *1) (-5 *1 (-1226)))) -(-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-1227) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -1227)) +((-4158 (*1 *1 *1 *1) (-5 *1 (-1227))) (-4157 (*1 *1 *1 *1) (-5 *1 (-1227))) (-4156 (*1 *1) (-5 *1 (-1227)))) +(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-2487 (((-112) $ $) NIL)) (-3404 (((-772)) NIL)) (-3758 (($) NIL T CONST)) (-2119 (($) NIL)) (-2727 (($ $ $) NIL) (($) NIL T CONST)) (-1446 (($ $ $) NIL) (($) NIL T CONST)) (-2667 (((-923) $) NIL)) (-1812 (((-1161) $) NIL)) (-2188 (($ (-923)) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) NIL)) (-1355 (($ $ $) NIL)) (-1343 (($ $ $) NIL)) (-3858 (((-112) $ $) NIL)) (-3016 (((-112) $ $) NIL)) (-2996 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL)) (-2986 (((-112) $ $) NIL))) -(((-1227) (-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562)))) (T -1227)) -((-1343 (*1 *1 *1 *1) (-5 *1 (-1227))) (-1355 (*1 *1 *1 *1) (-5 *1 (-1227))) (-3758 (*1 *1) (-5 *1 (-1227)))) -(-13 (-845) (-10 -8 (-15 -1343 ($ $ $)) (-15 -1355 ($ $ $)) (-15 -3758 ($) -3562))) +((-2968 (((-112) $ $) NIL)) (-3540 (((-773)) NIL)) (-4156 (($) NIL T CONST)) (-3395 (($) NIL)) (-2934 (($ $ $) NIL) (($) NIL T CONST)) (-3260 (($ $ $) NIL) (($) NIL T CONST)) (-2188 (((-922) $) NIL)) (-3663 (((-1162) $) NIL)) (-2563 (($ (-922)) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) NIL)) (-4157 (($ $ $) NIL)) (-4158 (($ $ $) NIL)) (-3662 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2967 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL)) (-3088 (((-112) $ $) NIL))) +(((-1228) (-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384)))) (T -1228)) +((-4158 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4157 (*1 *1 *1 *1) (-5 *1 (-1228))) (-4156 (*1 *1) (-5 *1 (-1228)))) +(-13 (-846) (-10 -8 (-15 -4158 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -4156 ($) -4384))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-4364 (((-1233 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1233 |#1| |#3| |#5|)) 23))) -(((-1228 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4364 ((-1233 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1233 |#1| |#3| |#5|)))) (-1051) (-1051) (-1179) (-1179) |#1| |#2|) (T -1228)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1233 *5 *7 *9)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-14 *7 (-1179)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1233 *6 *8 *10)) (-5 *1 (-1228 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1179))))) -(-10 -7 (-15 -4364 ((-1233 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1233 |#1| |#3| |#5|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 (-1084)) $) 86)) (-2722 (((-1179) $) 115)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-3413 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-3785 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-1406 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 174 (|has| |#1| (-365)))) (-1466 (((-421 $) $) 175 (|has| |#1| (-365)))) (-3671 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-4175 (((-112) $ $) 165 (|has| |#1| (-365)))) (-1380 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-1431 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) 18 T CONST)) (-2432 (($ $ $) 169 (|has| |#1| (-365)))) (-1833 (($ $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-2343 (((-410 (-954 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-2443 (($ $ $) 168 (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-2946 (((-112) $) 176 (|has| |#1| (-365)))) (-3219 (((-112) $) 85)) (-4329 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-567) $) 112) (((-567) $ (-567)) 111)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) 113)) (-3172 (($ (-1 |#1| (-567)) $) 184)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3615 (((-112) $) 74)) (-3764 (($ |#1| (-567)) 73) (($ $ (-1084) (-567)) 88) (($ $ (-645 (-1084)) (-645 (-567))) 87)) (-4364 (($ (-1 |#1| |#1|) $) 75)) (-2734 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1831 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1812 (((-1161) $) 10)) (-1752 (($ $) 177 (|has| |#1| (-365)))) (-3670 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 180 (-2836 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-365)))) (-1870 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3661 (((-421 $) $) 173 (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 170 (|has| |#1| (-365)))) (-1678 (($ $ (-567)) 107)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-4272 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-2465 (((-772) $) 166 (|has| |#1| (-365)))) (-1882 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1114)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 167 (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3380 (((-567) $) 76)) (-1443 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 84)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4038 ((|#1| $ (-567)) 71)) (-2318 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3118 ((|#1| $) 114)) (-3858 (((-112) $ $) 9)) (-1481 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1456 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1229 |#1|) (-140) (-1051)) (T -1229)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1051)) (-4 *1 (-1229 *3)))) (-3172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1229 *3)) (-4 *3 (-1051)))) (-2343 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1229 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) (-5 *2 (-410 (-954 *4))))) (-2343 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1229 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) (-5 *2 (-410 (-954 *4))))) (-3670 (*1 *1 *1) (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-3670 (*1 *1 *1 *2) (-2836 (-12 (-5 *2 (-1179)) (-4 *1 (-1229 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1179)) (-4 *1 (-1229 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -3783 ((-645 *2) *3))) (|has| *3 (-15 -3670 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) -(-13 (-1247 |t#1| (-567)) (-10 -8 (-15 -2686 ($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |t#1|))))) (-15 -3172 ($ (-1 |t#1| (-567)) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -2343 ((-410 (-954 |t#1|)) $ (-567))) (-15 -2343 ((-410 (-954 |t#1|)) $ (-567) (-567)))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $)) (IF (|has| |t#1| (-15 -3670 (|t#1| |t#1| (-1179)))) (IF (|has| |t#1| (-15 -3783 ((-645 (-1179)) |t#1|))) (-15 -3670 ($ $ (-1179))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1204)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -3670 ($ $ (-1179))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1204))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-567) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-567) (-1114)) ((-291) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1223) |has| |#1| (-365)) ((-1247 |#1| #0#) . T)) -((-2684 (((-112) $) 12)) (-4275 (((-3 |#3| "failed") $) 17) (((-3 (-1179) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL)) (-3094 ((|#3| $) 14) (((-1179) $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL))) -(((-1230 |#1| |#2| |#3|) (-10 -8 (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-1179) "failed") |#1|)) (-15 -3094 ((-1179) |#1|)) (-15 -4275 ((-3 |#3| "failed") |#1|)) (-15 -3094 (|#3| |#1|)) (-15 -2684 ((-112) |#1|))) (-1231 |#2| |#3|) (-1051) (-1260 |#2|)) (T -1230)) -NIL -(-10 -8 (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -4275 ((-3 (-1179) "failed") |#1|)) (-15 -3094 ((-1179) |#1|)) (-15 -4275 ((-3 |#3| "failed") |#1|)) (-15 -3094 (|#3| |#1|)) (-15 -2684 ((-112) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-4199 ((|#2| $) 242 (-1750 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3783 (((-645 (-1084)) $) 86)) (-2722 (((-1179) $) 115)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-3413 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-3785 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-4159 ((|#2| $) 278)) (-3349 (((-3 |#2| "failed") $) 274)) (-3838 ((|#2| $) 275)) (-1406 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) 20)) (-2701 (((-421 (-1175 $)) (-1175 $)) 251 (-1750 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3864 (($ $) 174 (|has| |#1| (-365)))) (-1466 (((-421 $) $) 175 (|has| |#1| (-365)))) (-3671 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 248 (-1750 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-4175 (((-112) $ $) 165 (|has| |#1| (-365)))) (-1380 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2777 (((-567) $) 260 (-1750 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2686 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-1431 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#2| "failed") $) 281) (((-3 (-567) "failed") $) 271 (-1750 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) 269 (-1750 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-1179) "failed") $) 253 (-1750 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365))))) (-3094 ((|#2| $) 282) (((-567) $) 270 (-1750 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) 268 (-1750 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-1179) $) 252 (-1750 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365))))) (-1881 (($ $) 277) (($ (-567) $) 276)) (-2432 (($ $ $) 169 (|has| |#1| (-365)))) (-1833 (($ $) 72)) (-2690 (((-690 |#2|) (-690 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 230 (-1750 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) 229 (-1750 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-1377 (((-3 $ "failed") $) 37)) (-2343 (((-410 (-954 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-2119 (($) 244 (-1750 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2443 (($ $ $) 168 (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-2946 (((-112) $) 176 (|has| |#1| (-365)))) (-3635 (((-112) $) 258 (-1750 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3219 (((-112) $) 85)) (-4329 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 236 (-1750 (|has| |#2| (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 235 (-1750 (|has| |#2| (-888 (-567))) (|has| |#1| (-365))))) (-3905 (((-567) $) 112) (((-567) $ (-567)) 111)) (-4384 (((-112) $) 35)) (-1550 (($ $) 240 (|has| |#1| (-365)))) (-4294 ((|#2| $) 238 (|has| |#1| (-365)))) (-4203 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-3104 (((-3 $ "failed") $) 272 (-1750 (|has| |#2| (-1154)) (|has| |#1| (-365))))) (-2585 (((-112) $) 259 (-1750 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2240 (($ $ (-923)) 113)) (-3172 (($ (-1 |#1| (-567)) $) 184)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3615 (((-112) $) 74)) (-3764 (($ |#1| (-567)) 73) (($ $ (-1084) (-567)) 88) (($ $ (-645 (-1084)) (-645 (-567))) 87)) (-2727 (($ $ $) 262 (-1750 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-1446 (($ $ $) 263 (-1750 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-4364 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-2734 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1831 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1709 (($ (-567) |#2|) 279)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 177 (|has| |#1| (-365)))) (-3670 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 180 (-2836 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-2221 (($) 273 (-1750 (|has| |#2| (-1154)) (|has| |#1| (-365))) CONST)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-365)))) (-1870 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3989 (($ $) 243 (-1750 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-1952 ((|#2| $) 246 (-1750 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2273 (((-421 (-1175 $)) (-1175 $)) 249 (-1750 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2579 (((-421 (-1175 $)) (-1175 $)) 250 (-1750 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3661 (((-421 $) $) 173 (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 170 (|has| |#1| (-365)))) (-1678 (($ $ (-567)) 107)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-4272 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1179) |#2|) 223 (-1750 (|has| |#2| (-517 (-1179) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 |#2|)) 222 (-1750 (|has| |#2| (-517 (-1179) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) 221 (-1750 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-1750 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-1750 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) 218 (-1750 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-2465 (((-772) $) 166 (|has| |#1| (-365)))) (-1882 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1114))) (($ $ |#2|) 217 (-1750 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 167 (|has| |#1| (-365)))) (-3592 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 227 (|has| |#1| (-365))) (($ $ (-772)) 96 (-2836 (-1750 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 94 (-2836 (-1750 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) 101 (-2836 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1179) (-772)) 100 (-2836 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1179))) 99 (-2836 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1179)) 98 (-2836 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-2964 (($ $) 241 (|has| |#1| (-365)))) (-4306 ((|#2| $) 239 (|has| |#1| (-365)))) (-3380 (((-567) $) 76)) (-1443 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-1322 (((-225) $) 257 (-1750 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-381) $) 256 (-1750 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-539) $) 255 (-1750 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-894 (-381)) $) 234 (-1750 (|has| |#2| (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) 233 (-1750 (|has| |#2| (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 247 (-1750 (-1750 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#1| (-365))))) (-4314 (($ $) 84)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1179)) 254 (-1750 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365)))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4038 ((|#1| $ (-567)) 71)) (-2318 (((-3 $ "failed") $) 60 (-2836 (-1750 (-2836 (|has| |#2| (-145)) (-1750 (|has| $ (-145)) (|has| |#2| (-911)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2214 (((-772)) 32 T CONST)) (-3118 ((|#1| $) 114)) (-3471 ((|#2| $) 245 (-1750 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3858 (((-112) $ $) 9)) (-1481 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1456 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1368 (($ $) 261 (-1750 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 225 (|has| |#1| (-365))) (($ $ (-772)) 97 (-2836 (-1750 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 95 (-2836 (-1750 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) 105 (-2836 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1179) (-772)) 104 (-2836 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1179))) 103 (-2836 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1179)) 102 (-2836 (-1750 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-3016 (((-112) $ $) 265 (-1750 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2996 (((-112) $ $) 266 (-1750 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2968 (((-112) $ $) 6)) (-3006 (((-112) $ $) 264 (-1750 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2986 (((-112) $ $) 267 (-1750 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1231 |#1| |#2|) (-140) (-1051) (-1260 |t#1|)) (T -1231)) -((-3380 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1260 *3)) (-5 *2 (-567)))) (-1709 (*1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *4 (-1051)) (-4 *1 (-1231 *4 *3)) (-4 *3 (-1260 *4)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3)))) (-1881 (*1 *1 *1) (-12 (-4 *1 (-1231 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1260 *2)))) (-1881 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1231 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1260 *3)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3)))) (-3349 (*1 *2 *1) (|partial| -12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3))))) -(-13 (-1229 |t#1|) (-1040 |t#2|) (-617 |t#2|) (-10 -8 (-15 -1709 ($ (-567) |t#2|)) (-15 -3380 ((-567) $)) (-15 -4159 (|t#2| $)) (-15 -1881 ($ $)) (-15 -1881 ($ (-567) $)) (-15 -3838 (|t#2| $)) (-15 -3349 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-994 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2836 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2836 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-617 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1179)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1179)))) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-615 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-615 (-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-894 (-567))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2836 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-567) (-1114)) ((-291) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-403 |#2|) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 (-1179) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1179) |#2|))) ((-517 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-559) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 |#2|) |has| |#1| (-365)) ((-647 $) . T) ((-649 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 |#2|) |has| |#1| (-365)) ((-649 $) . T) ((-641 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 |#2|) |has| |#1| (-365)) ((-641 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-640 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((-640 |#2|) |has| |#1| (-365)) ((-718 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 |#2|) |has| |#1| (-365)) ((-718 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-793) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-796) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-821) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-849) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-851) -2836 (-12 (|has| |#1| (-365)) (|has| |#2| (-851))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821)))) ((-902 (-1179)) -2836 (-12 (|has| |#1| (-365)) (|has| |#2| (-902 (-1179)))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))) ((-888 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-381)))) ((-888 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-888 (-567)))) ((-886 |#2|) |has| |#1| (-365)) ((-911) -12 (|has| |#1| (-365)) (|has| |#2| (-911))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-994 |#2|) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1024) -12 (|has| |#1| (-365)) (|has| |#2| (-1024))) ((-1040 (-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) ((-1040 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-567)))) ((-1040 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1040 (-1179)))) ((-1040 |#2|) . T) ((-1053 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 |#2|) |has| |#1| (-365)) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 |#2|) |has| |#1| (-365)) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) -12 (|has| |#1| (-365)) (|has| |#2| (-1154))) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1219) |has| |#1| (-365)) ((-1223) |has| |#1| (-365)) ((-1229 |#1|) . T) ((-1247 |#1| #0#) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 81)) (-4199 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 100)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3413 (($ $ (-567)) 109) (($ $ (-567) (-567)) 111)) (-3785 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 51)) (-4159 ((|#2| $) 11)) (-3349 (((-3 |#2| "failed") $) 35)) (-3838 ((|#2| $) 36)) (-1406 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1380 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-2777 (((-567) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2686 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 59)) (-1431 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) 157) (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-1179) "failed") $) NIL (-12 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365))))) (-3094 ((|#2| $) 156) (((-567) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1040 (-567))) (|has| |#1| (-365)))) (((-1179) $) NIL (-12 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365))))) (-1881 (($ $) 65) (($ (-567) $) 28)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) NIL)) (-2690 (((-690 |#2|) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-1377 (((-3 $ "failed") $) 88)) (-2343 (((-410 (-954 |#1|)) $ (-567)) 124 (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) 126 (|has| |#1| (-559)))) (-2119 (($) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3635 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-3219 (((-112) $) 74)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| |#2| (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| |#2| (-888 (-567))) (|has| |#1| (-365))))) (-3905 (((-567) $) 105) (((-567) $ (-567)) 107)) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-4294 ((|#2| $) 165 (|has| |#1| (-365)))) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3104 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1154)) (|has| |#1| (-365))))) (-2585 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2240 (($ $ (-923)) 148)) (-3172 (($ (-1 |#1| (-567)) $) 144)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-567)) 20) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-2727 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-1446 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-4364 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-2734 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1709 (($ (-567) |#2|) 10)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 159 (|has| |#1| (-365)))) (-3670 (($ $) 228 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 233 (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204)))))) (-2221 (($) NIL (-12 (|has| |#2| (-1154)) (|has| |#1| (-365))) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3989 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-1952 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| |#2| (-911)) (|has| |#1| (-365))))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-1678 (($ $ (-567)) 138)) (-2478 (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4272 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1179) |#2|) NIL (-12 (|has| |#2| (-517 (-1179) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 |#2|)) NIL (-12 (|has| |#2| (-517 (-1179) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ (-567)) 103) (($ $ $) 90 (|has| (-567) (-1114))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-3592 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2836 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 149 (-2836 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2836 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2836 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2836 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) 153 (-2836 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-2964 (($ $) NIL (|has| |#1| (-365)))) (-4306 ((|#2| $) 166 (|has| |#1| (-365)))) (-3380 (((-567) $) 12)) (-1443 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-1322 (((-225) $) NIL (-12 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1024)) (|has| |#1| (-365)))) (((-539) $) NIL (-12 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| |#2| (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| |#2| (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911)) (|has| |#1| (-365))))) (-4314 (($ $) 136)) (-2504 (((-863) $) 267) (($ (-567)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1179)) NIL (-12 (|has| |#2| (-1040 (-1179))) (|has| |#1| (-365)))) (($ (-410 (-567))) 169 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4038 ((|#1| $ (-567)) 85)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#2| (-911)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2214 (((-772)) 155 T CONST)) (-3118 ((|#1| $) 102)) (-3471 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 222 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-567)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 224 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 220 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-1368 (($ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1807 (($) 13 T CONST)) (-1820 (($) 18 T CONST)) (-2856 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2836 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2836 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2836 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2836 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2836 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| |#2| (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-3016 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2996 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2968 (((-112) $ $) 72)) (-3006 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-2986 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3054 (($ $) 227) (($ $ $) 78)) (-3045 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-772)) 84) (($ $ (-567)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 172 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1232 |#1| |#2|) (-1231 |#1| |#2|) (-1051) (-1260 |#1|)) (T -1232)) -NIL -(-1231 |#1| |#2|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-4199 (((-1261 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 10)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1987 (($ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3342 (((-112) $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3413 (($ $ (-567)) NIL) (($ $ (-567) (-567)) NIL)) (-3785 (((-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-4159 (((-1261 |#1| |#2| |#3|) $) NIL)) (-3349 (((-3 (-1261 |#1| |#2| |#3|) "failed") $) NIL)) (-3838 (((-1261 |#1| |#2| |#3|) $) NIL)) (-1406 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1380 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2777 (((-567) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2686 (($ (-1159 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-1431 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-1261 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1179) "failed") $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-3094 (((-1261 |#1| |#2| |#3|) $) NIL) (((-1179) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))))) (-1881 (($ $) NIL) (($ (-567) $) NIL)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-1261 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2434 (-690 (-1261 |#1| |#2| |#3|))) (|:| |vec| (-1269 (-1261 |#1| |#2| |#3|)))) (-690 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-1377 (((-3 $ "failed") $) NIL)) (-2343 (((-410 (-954 |#1|)) $ (-567)) NIL (|has| |#1| (-559))) (((-410 (-954 |#1|)) $ (-567) (-567)) NIL (|has| |#1| (-559)))) (-2119 (($) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3635 (((-112) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-3219 (((-112) $) NIL)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-888 (-381))) (|has| |#1| (-365)))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-888 (-567))) (|has| |#1| (-365))))) (-3905 (((-567) $) NIL) (((-567) $ (-567)) NIL)) (-4384 (((-112) $) NIL)) (-1550 (($ $) NIL (|has| |#1| (-365)))) (-4294 (((-1261 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3104 (((-3 $ "failed") $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))))) (-2585 (((-112) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2240 (($ $ (-923)) NIL)) (-3172 (($ (-1 |#1| (-567)) $) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-567)) 18) (($ $ (-1084) (-567)) NIL) (($ $ (-645 (-1084)) (-645 (-567))) NIL)) (-2727 (($ $ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-1446 (($ $ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-2734 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1709 (($ (-567) (-1261 |#1| |#2| |#3|)) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-3670 (($ $) 27 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 28 (|has| |#1| (-38 (-410 (-567)))))) (-2221 (($) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))) CONST)) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3989 (($ $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-1952 (((-1261 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-1678 (($ $ (-567)) NIL)) (-2478 (((-3 $ "failed") $ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4272 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1179) (-1261 |#1| |#2| |#3|)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-517 (-1179) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1179)) (-645 (-1261 |#1| |#2| |#3|))) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-517 (-1179) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1261 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1261 |#1| |#2| |#3|))) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1261 |#1| |#2| |#3|)) (-645 (-1261 |#1| |#2| |#3|))) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-310 (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ (-567)) NIL) (($ $ $) NIL (|has| (-567) (-1114))) (($ $ (-1261 |#1| |#2| |#3|)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-287 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-3592 (($ $ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1265 |#2|)) 26) (($ $ (-772)) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 25 (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-2964 (($ $) NIL (|has| |#1| (-365)))) (-4306 (((-1261 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3380 (((-567) $) NIL)) (-1443 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1322 (((-539) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1024)) (|has| |#1| (-365)))) (((-894 (-381)) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-615 (-894 (-381)))) (|has| |#1| (-365)))) (((-894 (-567)) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-615 (-894 (-567)))) (|has| |#1| (-365))))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))))) (-4314 (($ $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1261 |#1| |#2| |#3|)) NIL) (($ (-1265 |#2|)) 24) (($ (-1179)) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-1179))) (|has| |#1| (-365)))) (($ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-1040 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-4038 ((|#1| $ (-567)) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3118 ((|#1| $) 11)) (-3471 (((-1261 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-911)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1368 (($ $) NIL (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1807 (($) 20 T CONST)) (-1820 (($) 15 T CONST)) (-2856 (($ $ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179) (-772)) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-645 (-1179))) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179)))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-902 (-1179))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-902 (-1179))))))) (-3016 (((-112) $ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2996 (((-112) $ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2968 (((-112) $ $) NIL)) (-3006 (((-112) $ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-2986 (((-112) $ $) NIL (-2836 (-12 (|has| (-1261 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1261 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1261 |#1| |#2| |#3|) (-1261 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 22)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1261 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1261 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1233 |#1| |#2| |#3|) (-13 (-1231 |#1| (-1261 |#1| |#2| |#3|)) (-10 -8 (-15 -2504 ($ (-1265 |#2|))) (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1233)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) -(-13 (-1231 |#1| (-1261 |#1| |#2| |#3|)) (-10 -8 (-15 -2504 ($ (-1265 |#2|))) (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) -((-3443 (((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112)) 13)) (-3761 (((-421 |#1|) |#1|) 26)) (-3661 (((-421 |#1|) |#1|) 24))) -(((-1234 |#1|) (-10 -7 (-15 -3661 ((-421 |#1|) |#1|)) (-15 -3761 ((-421 |#1|) |#1|)) (-15 -3443 ((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112)))) (-1245 (-567))) (T -1234)) -((-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| *3) (|:| -3451 (-567))))))) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567))))) (-3761 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567))))) (-3661 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567)))))) -(-10 -7 (-15 -3661 ((-421 |#1|) |#1|)) (-15 -3761 ((-421 |#1|) |#1|)) (-15 -3443 ((-2 (|:| |contp| (-567)) (|:| -1444 (-645 (-2 (|:| |irr| |#1|) (|:| -3451 (-567)))))) |#1| (-112)))) -((-4364 (((-1159 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 23 (|has| |#1| (-849))) (((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 17))) -(((-1235 |#1| |#2|) (-10 -7 (-15 -4364 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (IF (|has| |#1| (-849)) (-15 -4364 ((-1159 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) |%noBranch|)) (-1219) (-1219)) (T -1235)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-849)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1159 *6)) (-5 *1 (-1235 *5 *6)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1236 *6)) (-5 *1 (-1235 *5 *6))))) -(-10 -7 (-15 -4364 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (IF (|has| |#1| (-849)) (-15 -4364 ((-1159 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) |%noBranch|)) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-4150 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4364 (((-1159 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-849)))) (-1448 ((|#1| $) 15)) (-1744 ((|#1| $) 12)) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-1758 (((-567) $) 19)) (-1425 ((|#1| $) 18)) (-2521 ((|#1| $) 13)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-1452 (((-112) $) 17)) (-4382 (((-1159 |#1|) $) 41 (|has| |#1| (-849))) (((-1159 |#1|) (-645 $)) 40 (|has| |#1| (-849)))) (-1322 (($ |#1|) 26)) (-2504 (($ (-1096 |#1|)) 25) (((-863) $) 37 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3553 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2765 (($ $ (-567)) 14)) (-2968 (((-112) $ $) 30 (|has| |#1| (-1102))))) -(((-1236 |#1|) (-13 (-1095 |#1|) (-10 -8 (-15 -3553 ($ |#1|)) (-15 -4150 ($ |#1|)) (-15 -2504 ($ (-1096 |#1|))) (-15 -1452 ((-112) $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-1159 |#1|))) |%noBranch|))) (-1219)) (T -1236)) -((-3553 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))) (-4150 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1096 *3)) (-4 *3 (-1219)) (-5 *1 (-1236 *3)))) (-1452 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1219))))) -(-13 (-1095 |#1|) (-10 -8 (-15 -3553 ($ |#1|)) (-15 -4150 ($ |#1|)) (-15 -2504 ($ (-1096 |#1|))) (-15 -1452 ((-112) $)) (IF (|has| |#1| (-1102)) (-6 (-1102)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1097 |#1| (-1159 |#1|))) |%noBranch|))) -((-4364 (((-1242 |#3| |#4|) (-1 |#4| |#2|) (-1242 |#1| |#2|)) 15))) -(((-1237 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 ((-1242 |#3| |#4|) (-1 |#4| |#2|) (-1242 |#1| |#2|)))) (-1179) (-1051) (-1179) (-1051)) (T -1237)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1242 *5 *6)) (-14 *5 (-1179)) (-4 *6 (-1051)) (-4 *8 (-1051)) (-5 *2 (-1242 *7 *8)) (-5 *1 (-1237 *5 *6 *7 *8)) (-14 *7 (-1179))))) -(-10 -7 (-15 -4364 ((-1242 |#3| |#4|) (-1 |#4| |#2|) (-1242 |#1| |#2|)))) -((-2985 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3228 ((|#1| |#3|) 13)) (-2448 ((|#3| |#3|) 19))) -(((-1238 |#1| |#2| |#3|) (-10 -7 (-15 -3228 (|#1| |#3|)) (-15 -2448 (|#3| |#3|)) (-15 -2985 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-994 |#1|) (-1245 |#2|)) (T -1238)) -((-2985 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1238 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-1238 *3 *4 *2)) (-4 *2 (-1245 *4)))) (-3228 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-1238 *2 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3228 (|#1| |#3|)) (-15 -2448 (|#3| |#3|)) (-15 -2985 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3232 (((-3 |#2| "failed") |#2| (-772) |#1|) 37)) (-3347 (((-3 |#2| "failed") |#2| (-772)) 38)) (-3182 (((-3 (-2 (|:| -4335 |#2|) (|:| -4347 |#2|)) "failed") |#2|) 52)) (-2293 (((-645 |#2|) |#2|) 54)) (-1711 (((-3 |#2| "failed") |#2| |#2|) 48))) -(((-1239 |#1| |#2|) (-10 -7 (-15 -3347 ((-3 |#2| "failed") |#2| (-772))) (-15 -3232 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -1711 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3182 ((-3 (-2 (|:| -4335 |#2|) (|:| -4347 |#2|)) "failed") |#2|)) (-15 -2293 ((-645 |#2|) |#2|))) (-13 (-559) (-147)) (-1245 |#1|)) (T -1239)) -((-2293 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) (-5 *1 (-1239 *4 *3)) (-4 *3 (-1245 *4)))) (-3182 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| -4335 *3) (|:| -4347 *3))) (-5 *1 (-1239 *4 *3)) (-4 *3 (-1245 *4)))) (-1711 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1239 *3 *2)) (-4 *2 (-1245 *3)))) (-3232 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1239 *4 *2)) (-4 *2 (-1245 *4)))) (-3347 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1239 *4 *2)) (-4 *2 (-1245 *4))))) -(-10 -7 (-15 -3347 ((-3 |#2| "failed") |#2| (-772))) (-15 -3232 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -1711 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3182 ((-3 (-2 (|:| -4335 |#2|) (|:| -4347 |#2|)) "failed") |#2|)) (-15 -2293 ((-645 |#2|) |#2|))) -((-3003 (((-3 (-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) "failed") |#2| |#2|) 30))) -(((-1240 |#1| |#2|) (-10 -7 (-15 -3003 ((-3 (-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) "failed") |#2| |#2|))) (-559) (-1245 |#1|)) (T -1240)) -((-3003 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-1240 *4 *3)) (-4 *3 (-1245 *4))))) -(-10 -7 (-15 -3003 ((-3 (-2 (|:| -3693 |#2|) (|:| -2642 |#2|)) "failed") |#2| |#2|))) -((-2213 ((|#2| |#2| |#2|) 22)) (-1458 ((|#2| |#2| |#2|) 36)) (-3484 ((|#2| |#2| |#2| (-772) (-772)) 44))) -(((-1241 |#1| |#2|) (-10 -7 (-15 -2213 (|#2| |#2| |#2|)) (-15 -1458 (|#2| |#2| |#2|)) (-15 -3484 (|#2| |#2| |#2| (-772) (-772)))) (-1051) (-1245 |#1|)) (T -1241)) -((-3484 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4)))) (-1458 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3)))) (-2213 (*1 *2 *2 *2) (-12 (-4 *3 (-1051)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3))))) -(-10 -7 (-15 -2213 (|#2| |#2| |#2|)) (-15 -1458 (|#2| |#2| |#2|)) (-15 -3484 (|#2| |#2| |#2| (-772) (-772)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-1995 (((-1269 |#2|) $ (-772)) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-3678 (($ (-1175 |#2|)) NIL)) (-3633 (((-1175 $) $ (-1084)) NIL) (((-1175 |#2|) $) NIL)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-1987 (($ $) NIL (|has| |#2| (-559)))) (-3342 (((-112) $) NIL (|has| |#2| (-559)))) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-1084))) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-2717 (($ $ $) NIL (|has| |#2| (-559)))) (-2701 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3864 (($ $) NIL (|has| |#2| (-455)))) (-1466 (((-421 $) $) NIL (|has| |#2| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-4175 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1863 (($ $ (-772)) NIL)) (-1751 (($ $ (-772)) NIL)) (-2170 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-455)))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1040 (-567)))) (((-3 (-1084) "failed") $) NIL)) (-3094 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1040 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1040 (-567)))) (((-1084) $) NIL)) (-2304 (($ $ $ (-1084)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2432 (($ $ $) NIL (|has| |#2| (-365)))) (-1833 (($ $) NIL)) (-2690 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#2|)) (|:| |vec| (-1269 |#2|))) (-690 $) (-1269 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-2443 (($ $ $) NIL (|has| |#2| (-365)))) (-2497 (($ $ $) NIL)) (-4228 (($ $ $) NIL (|has| |#2| (-559)))) (-3207 (((-2 (|:| -1344 |#2|) (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#2| (-559)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-1873 (($ $) NIL (|has| |#2| (-455))) (($ $ (-1084)) NIL (|has| |#2| (-455)))) (-1818 (((-645 $) $) NIL)) (-2946 (((-112) $) NIL (|has| |#2| (-911)))) (-1978 (($ $ |#2| (-772) $) NIL)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) NIL (-12 (|has| (-1084) (-888 (-381))) (|has| |#2| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) NIL (-12 (|has| (-1084) (-888 (-567))) (|has| |#2| (-888 (-567)))))) (-3905 (((-772) $ $) NIL (|has| |#2| (-559)))) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-3104 (((-3 $ "failed") $) NIL (|has| |#2| (-1154)))) (-3772 (($ (-1175 |#2|) (-1084)) NIL) (($ (-1175 $) (-1084)) NIL)) (-2240 (($ $ (-772)) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3764 (($ |#2| (-772)) 18) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-1084)) NIL) (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL)) (-1562 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-2972 (($ (-1 (-772) (-772)) $) NIL)) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-4163 (((-1175 |#2|) $) NIL)) (-2047 (((-3 (-1084) "failed") $) NIL)) (-1796 (($ $) NIL)) (-1809 ((|#2| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1812 (((-1161) $) NIL)) (-3287 (((-2 (|:| -3693 $) (|:| -2642 $)) $ (-772)) NIL)) (-4056 (((-3 (-645 $) "failed") $) NIL)) (-3655 (((-3 (-645 $) "failed") $) NIL)) (-2873 (((-3 (-2 (|:| |var| (-1084)) (|:| -2618 (-772))) "failed") $) NIL)) (-3670 (($ $) NIL (|has| |#2| (-38 (-410 (-567)))))) (-2221 (($) NIL (|has| |#2| (-1154)) CONST)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 ((|#2| $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#2| (-455)))) (-1870 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2755 (($ $ (-772) |#2| $) NIL)) (-2273 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) NIL (|has| |#2| (-911)))) (-3661 (((-421 $) $) NIL (|has| |#2| (-911)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#2| (-365)))) (-2478 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2913 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#2|) NIL) (($ $ (-645 (-1084)) (-645 |#2|)) NIL) (($ $ (-1084) $) NIL) (($ $ (-645 (-1084)) (-645 $)) NIL)) (-2465 (((-772) $) NIL (|has| |#2| (-365)))) (-1882 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#2| (-559))) ((|#2| (-410 $) |#2|) NIL (|has| |#2| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#2| (-559)))) (-2462 (((-3 $ "failed") $ (-772)) NIL)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#2| (-365)))) (-2254 (($ $ (-1084)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3592 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3380 (((-772) $) NIL) (((-772) $ (-1084)) NIL) (((-645 (-772)) $ (-645 (-1084))) NIL)) (-1322 (((-894 (-381)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#2| (-615 (-894 (-381)))))) (((-894 (-567)) $) NIL (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#2| (-615 (-894 (-567)))))) (((-539) $) NIL (-12 (|has| (-1084) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1390 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-1084)) NIL (|has| |#2| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-911))))) (-2557 (((-3 $ "failed") $ $) NIL (|has| |#2| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#2| (-559)))) (-2504 (((-863) $) 13) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1084)) NIL) (($ (-1265 |#1|)) 20) (($ (-410 (-567))) NIL (-2836 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1040 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ (-772)) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-2318 (((-3 $ "failed") $) NIL (-2836 (-12 (|has| $ (-145)) (|has| |#2| (-911))) (|has| |#2| (-145))))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1807 (($) NIL T CONST)) (-1820 (($) 14 T CONST)) (-2856 (($ $ (-1084)) NIL) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1179)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1179) (-772)) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) NIL (|has| |#2| (-902 (-1179)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1242 |#1| |#2|) (-13 (-1245 |#2|) (-617 (-1265 |#1|)) (-10 -8 (-15 -2755 ($ $ (-772) |#2| $)))) (-1179) (-1051)) (T -1242)) -((-2755 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1242 *4 *3)) (-14 *4 (-1179)) (-4 *3 (-1051))))) -(-13 (-1245 |#2|) (-617 (-1265 |#1|)) (-10 -8 (-15 -2755 ($ $ (-772) |#2| $)))) -((-4364 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1243 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#4| (-1 |#3| |#1|) |#2|))) (-1051) (-1245 |#1|) (-1051) (-1245 |#3|)) (T -1243)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-1245 *6)) (-5 *1 (-1243 *5 *4 *6 *2)) (-4 *4 (-1245 *5))))) -(-10 -7 (-15 -4364 (|#4| (-1 |#3| |#1|) |#2|))) -((-1995 (((-1269 |#2|) $ (-772)) 129)) (-3783 (((-645 (-1084)) $) 16)) (-3678 (($ (-1175 |#2|)) 80)) (-3153 (((-772) $) NIL) (((-772) $ (-645 (-1084))) 21)) (-2701 (((-421 (-1175 $)) (-1175 $)) 204)) (-3864 (($ $) 194)) (-1466 (((-421 $) $) 192)) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 95)) (-1863 (($ $ (-772)) 84)) (-1751 (($ $ (-772)) 86)) (-2170 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4275 (((-3 |#2| "failed") $) 132) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-1084) "failed") $) NIL)) (-3094 ((|#2| $) 130) (((-410 (-567)) $) NIL) (((-567) $) NIL) (((-1084) $) NIL)) (-4228 (($ $ $) 170)) (-3207 (((-2 (|:| -1344 |#2|) (|:| -3693 $) (|:| -2642 $)) $ $) 172)) (-3905 (((-772) $ $) 189)) (-3104 (((-3 $ "failed") $) 138)) (-3764 (($ |#2| (-772)) NIL) (($ $ (-1084) (-772)) 59) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-1562 (((-772) $) NIL) (((-772) $ (-1084)) 54) (((-645 (-772)) $ (-645 (-1084))) 55)) (-4163 (((-1175 |#2|) $) 72)) (-2047 (((-3 (-1084) "failed") $) 52)) (-3287 (((-2 (|:| -3693 $) (|:| -2642 $)) $ (-772)) 83)) (-3670 (($ $) 219)) (-2221 (($) 134)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 201)) (-2273 (((-421 (-1175 $)) (-1175 $)) 101)) (-2579 (((-421 (-1175 $)) (-1175 $)) 99)) (-3661 (((-421 $) $) 120)) (-2913 (($ $ (-645 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1084) |#2|) 39) (($ $ (-645 (-1084)) (-645 |#2|)) 36) (($ $ (-1084) $) 32) (($ $ (-645 (-1084)) (-645 $)) 30)) (-2465 (((-772) $) 207)) (-1882 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) 164) ((|#2| (-410 $) |#2|) 206) (((-410 $) $ (-410 $)) 188)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 212)) (-3592 (($ $ (-1084)) 157) (($ $ (-645 (-1084))) NIL) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) 155) (($ $ (-1179)) NIL) (($ $ (-645 (-1179))) NIL) (($ $ (-1179) (-772)) NIL) (($ $ (-645 (-1179)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3380 (((-772) $) NIL) (((-772) $ (-1084)) 17) (((-645 (-772)) $ (-645 (-1084))) 23)) (-1390 ((|#2| $) NIL) (($ $ (-1084)) 140)) (-2557 (((-3 $ "failed") $ $) 180) (((-3 (-410 $) "failed") (-410 $) $) 176)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1084)) 64) (($ (-410 (-567))) NIL) (($ $) NIL))) -(((-1244 |#1| |#2|) (-10 -8 (-15 -2504 (|#1| |#1|)) (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2221 (|#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -2465 ((-772) |#1|)) (-15 -2401 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -1882 (|#2| (-410 |#1|) |#2|)) (-15 -2170 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3207 ((-2 (|:| -1344 |#2|) (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -4228 (|#1| |#1| |#1|)) (-15 -2557 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -2557 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3905 ((-772) |#1| |#1|)) (-15 -1882 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1751 (|#1| |#1| (-772))) (-15 -1863 (|#1| |#1| (-772))) (-15 -3287 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| (-772))) (-15 -3678 (|#1| (-1175 |#2|))) (-15 -4163 ((-1175 |#2|) |#1|)) (-15 -1995 ((-1269 |#2|) |#1| (-772))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -1882 (|#1| |#1| |#1|)) (-15 -1882 (|#2| |#1| |#2|)) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -2701 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2579 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2273 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -1621 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -1390 (|#1| |#1| (-1084))) (-15 -3783 ((-645 (-1084)) |#1|)) (-15 -3153 ((-772) |#1| (-645 (-1084)))) (-15 -3153 ((-772) |#1|)) (-15 -3764 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -3764 (|#1| |#1| (-1084) (-772))) (-15 -1562 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -1562 ((-772) |#1| (-1084))) (-15 -2047 ((-3 (-1084) "failed") |#1|)) (-15 -3380 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -3380 ((-772) |#1| (-1084))) (-15 -2504 (|#1| (-1084))) (-15 -4275 ((-3 (-1084) "failed") |#1|)) (-15 -3094 ((-1084) |#1|)) (-15 -2913 (|#1| |#1| (-645 (-1084)) (-645 |#1|))) (-15 -2913 (|#1| |#1| (-1084) |#1|)) (-15 -2913 (|#1| |#1| (-645 (-1084)) (-645 |#2|))) (-15 -2913 (|#1| |#1| (-1084) |#2|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3380 ((-772) |#1|)) (-15 -3764 (|#1| |#2| (-772))) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -1562 ((-772) |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1084) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1084)))) (-15 -3592 (|#1| |#1| (-1084))) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) (-1245 |#2|) (-1051)) (T -1244)) -NIL -(-10 -8 (-15 -2504 (|#1| |#1|)) (-15 -3857 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -1466 ((-421 |#1|) |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2221 (|#1|)) (-15 -3104 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -2465 ((-772) |#1|)) (-15 -2401 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -1882 (|#2| (-410 |#1|) |#2|)) (-15 -2170 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3207 ((-2 (|:| -1344 |#2|) (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| |#1|)) (-15 -4228 (|#1| |#1| |#1|)) (-15 -2557 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -2557 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3905 ((-772) |#1| |#1|)) (-15 -1882 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1751 (|#1| |#1| (-772))) (-15 -1863 (|#1| |#1| (-772))) (-15 -3287 ((-2 (|:| -3693 |#1|) (|:| -2642 |#1|)) |#1| (-772))) (-15 -3678 (|#1| (-1175 |#2|))) (-15 -4163 ((-1175 |#2|) |#1|)) (-15 -1995 ((-1269 |#2|) |#1| (-772))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3592 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1179) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1179)))) (-15 -3592 (|#1| |#1| (-1179))) (-15 -3592 (|#1| |#1|)) (-15 -3592 (|#1| |#1| (-772))) (-15 -1882 (|#1| |#1| |#1|)) (-15 -1882 (|#2| |#1| |#2|)) (-15 -3661 ((-421 |#1|) |#1|)) (-15 -2701 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2579 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -2273 ((-421 (-1175 |#1|)) (-1175 |#1|))) (-15 -1621 ((-3 (-645 (-1175 |#1|)) "failed") (-645 (-1175 |#1|)) (-1175 |#1|))) (-15 -1390 (|#1| |#1| (-1084))) (-15 -3783 ((-645 (-1084)) |#1|)) (-15 -3153 ((-772) |#1| (-645 (-1084)))) (-15 -3153 ((-772) |#1|)) (-15 -3764 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -3764 (|#1| |#1| (-1084) (-772))) (-15 -1562 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -1562 ((-772) |#1| (-1084))) (-15 -2047 ((-3 (-1084) "failed") |#1|)) (-15 -3380 ((-645 (-772)) |#1| (-645 (-1084)))) (-15 -3380 ((-772) |#1| (-1084))) (-15 -2504 (|#1| (-1084))) (-15 -4275 ((-3 (-1084) "failed") |#1|)) (-15 -3094 ((-1084) |#1|)) (-15 -2913 (|#1| |#1| (-645 (-1084)) (-645 |#1|))) (-15 -2913 (|#1| |#1| (-1084) |#1|)) (-15 -2913 (|#1| |#1| (-645 (-1084)) (-645 |#2|))) (-15 -2913 (|#1| |#1| (-1084) |#2|)) (-15 -2913 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -2913 (|#1| |#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| (-295 |#1|))) (-15 -2913 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3380 ((-772) |#1|)) (-15 -3764 (|#1| |#2| (-772))) (-15 -4275 ((-3 (-567) "failed") |#1|)) (-15 -3094 ((-567) |#1|)) (-15 -4275 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3094 ((-410 (-567)) |#1|)) (-15 -3094 (|#2| |#1|)) (-15 -4275 ((-3 |#2| "failed") |#1|)) (-15 -2504 (|#1| |#2|)) (-15 -1562 ((-772) |#1|)) (-15 -1390 (|#2| |#1|)) (-15 -3592 (|#1| |#1| (-645 (-1084)) (-645 (-772)))) (-15 -3592 (|#1| |#1| (-1084) (-772))) (-15 -3592 (|#1| |#1| (-645 (-1084)))) (-15 -3592 (|#1| |#1| (-1084))) (-15 -2504 (|#1| (-567))) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-1995 (((-1269 |#1|) $ (-772)) 240)) (-3783 (((-645 (-1084)) $) 112)) (-3678 (($ (-1175 |#1|)) 238)) (-3633 (((-1175 $) $ (-1084)) 127) (((-1175 |#1|) $) 126)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-1987 (($ $) 90 (|has| |#1| (-559)))) (-3342 (((-112) $) 92 (|has| |#1| (-559)))) (-3153 (((-772) $) 114) (((-772) $ (-645 (-1084))) 113)) (-2932 (((-3 $ "failed") $ $) 20)) (-2717 (($ $ $) 225 (|has| |#1| (-559)))) (-2701 (((-421 (-1175 $)) (-1175 $)) 102 (|has| |#1| (-911)))) (-3864 (($ $) 100 (|has| |#1| (-455)))) (-1466 (((-421 $) $) 99 (|has| |#1| (-455)))) (-1621 (((-3 (-645 (-1175 $)) "failed") (-645 (-1175 $)) (-1175 $)) 105 (|has| |#1| (-911)))) (-4175 (((-112) $ $) 210 (|has| |#1| (-365)))) (-1863 (($ $ (-772)) 233)) (-1751 (($ $ (-772)) 232)) (-2170 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-455)))) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1040 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1040 (-567)))) (((-3 (-1084) "failed") $) 138)) (-3094 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1040 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1040 (-567)))) (((-1084) $) 139)) (-2304 (($ $ $ (-1084)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2432 (($ $ $) 214 (|has| |#1| (-365)))) (-1833 (($ $) 156)) (-2690 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 (-567))) (|:| |vec| (-1269 (-567)))) (-690 $) (-1269 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -2434 (-690 |#1|)) (|:| |vec| (-1269 |#1|))) (-690 $) (-1269 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 213 (|has| |#1| (-365)))) (-2497 (($ $ $) 231)) (-4228 (($ $ $) 222 (|has| |#1| (-559)))) (-3207 (((-2 (|:| -1344 |#1|) (|:| -3693 $) (|:| -2642 $)) $ $) 221 (|has| |#1| (-559)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 208 (|has| |#1| (-365)))) (-1873 (($ $) 178 (|has| |#1| (-455))) (($ $ (-1084)) 107 (|has| |#1| (-455)))) (-1818 (((-645 $) $) 111)) (-2946 (((-112) $) 98 (|has| |#1| (-911)))) (-1978 (($ $ |#1| (-772) $) 174)) (-2959 (((-891 (-381) $) $ (-894 (-381)) (-891 (-381) $)) 86 (-12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381))))) (((-891 (-567) $) $ (-894 (-567)) (-891 (-567) $)) 85 (-12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))))) (-3905 (((-772) $ $) 226 (|has| |#1| (-559)))) (-4384 (((-112) $) 35)) (-1921 (((-772) $) 171)) (-3104 (((-3 $ "failed") $) 206 (|has| |#1| (-1154)))) (-3772 (($ (-1175 |#1|) (-1084)) 119) (($ (-1175 $) (-1084)) 118)) (-2240 (($ $ (-772)) 237)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 217 (|has| |#1| (-365)))) (-2615 (((-645 $) $) 128)) (-3615 (((-112) $) 154)) (-3764 (($ |#1| (-772)) 155) (($ $ (-1084) (-772)) 121) (($ $ (-645 (-1084)) (-645 (-772))) 120)) (-2177 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $ (-1084)) 122) (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 235)) (-1562 (((-772) $) 172) (((-772) $ (-1084)) 124) (((-645 (-772)) $ (-645 (-1084))) 123)) (-2972 (($ (-1 (-772) (-772)) $) 173)) (-4364 (($ (-1 |#1| |#1|) $) 153)) (-4163 (((-1175 |#1|) $) 239)) (-2047 (((-3 (-1084) "failed") $) 125)) (-1796 (($ $) 151)) (-1809 ((|#1| $) 150)) (-1831 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1812 (((-1161) $) 10)) (-3287 (((-2 (|:| -3693 $) (|:| -2642 $)) $ (-772)) 234)) (-4056 (((-3 (-645 $) "failed") $) 116)) (-3655 (((-3 (-645 $) "failed") $) 117)) (-2873 (((-3 (-2 (|:| |var| (-1084)) (|:| -2618 (-772))) "failed") $) 115)) (-3670 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-2221 (($) 205 (|has| |#1| (-1154)) CONST)) (-3479 (((-1122) $) 11)) (-1762 (((-112) $) 168)) (-1774 ((|#1| $) 169)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 97 (|has| |#1| (-455)))) (-1870 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-2273 (((-421 (-1175 $)) (-1175 $)) 104 (|has| |#1| (-911)))) (-2579 (((-421 (-1175 $)) (-1175 $)) 103 (|has| |#1| (-911)))) (-3661 (((-421 $) $) 101 (|has| |#1| (-911)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 215 (|has| |#1| (-365)))) (-2478 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 209 (|has| |#1| (-365)))) (-2913 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ (-1084) |#1|) 143) (($ $ (-645 (-1084)) (-645 |#1|)) 142) (($ $ (-1084) $) 141) (($ $ (-645 (-1084)) (-645 $)) 140)) (-2465 (((-772) $) 211 (|has| |#1| (-365)))) (-1882 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-410 $) (-410 $) (-410 $)) 227 (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) 219 (|has| |#1| (-365))) (((-410 $) $ (-410 $)) 207 (|has| |#1| (-559)))) (-2462 (((-3 $ "failed") $ (-772)) 236)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 212 (|has| |#1| (-365)))) (-2254 (($ $ (-1084)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-3592 (($ $ (-1084)) 46) (($ $ (-645 (-1084))) 45) (($ $ (-1084) (-772)) 44) (($ $ (-645 (-1084)) (-645 (-772))) 43) (($ $ (-772)) 255) (($ $) 253) (($ $ (-1179)) 252 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 251 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 250 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 249 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3380 (((-772) $) 152) (((-772) $ (-1084)) 132) (((-645 (-772)) $ (-645 (-1084))) 131)) (-1322 (((-894 (-381)) $) 84 (-12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381)))))) (((-894 (-567)) $) 83 (-12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567)))))) (((-539) $) 82 (-12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1390 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ (-1084)) 108 (|has| |#1| (-455)))) (-3369 (((-3 (-1269 $) "failed") (-690 $)) 106 (-1750 (|has| $ (-145)) (|has| |#1| (-911))))) (-2557 (((-3 $ "failed") $ $) 224 (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) 223 (|has| |#1| (-559)))) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ (-1084)) 137) (($ (-410 (-567))) 80 (-2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-1516 (((-645 |#1|) $) 170)) (-4038 ((|#1| $ (-772)) 157) (($ $ (-1084) (-772)) 130) (($ $ (-645 (-1084)) (-645 (-772))) 129)) (-2318 (((-3 $ "failed") $) 81 (-2836 (-1750 (|has| $ (-145)) (|has| |#1| (-911))) (|has| |#1| (-145))))) (-2214 (((-772)) 32 T CONST)) (-3852 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-1084)) 42) (($ $ (-645 (-1084))) 41) (($ $ (-1084) (-772)) 40) (($ $ (-645 (-1084)) (-645 (-772))) 39) (($ $ (-772)) 256) (($ $) 254) (($ $ (-1179)) 248 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179))) 247 (|has| |#1| (-902 (-1179)))) (($ $ (-1179) (-772)) 246 (|has| |#1| (-902 (-1179)))) (($ $ (-645 (-1179)) (-645 (-772))) 245 (|has| |#1| (-902 (-1179)))) (($ $ (-1 |#1| |#1|) (-772)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1245 |#1|) (-140) (-1051)) (T -1245)) -((-1995 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1245 *4)) (-4 *4 (-1051)) (-5 *2 (-1269 *4)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-5 *2 (-1175 *3)))) (-3678 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1051)) (-4 *1 (-1245 *3)))) (-2240 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-2462 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-2177 (*1 *2 *1 *1) (-12 (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-1245 *3)))) (-3287 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-1245 *4)))) (-1863 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-2497 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)))) (-3592 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) (-2254 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))) (-2304 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-172)))) (-1882 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) (-3905 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-4 *3 (-559)) (-5 *2 (-772)))) (-2717 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-2557 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-2557 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-4 *3 (-559)))) (-4228 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) (-3207 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| -1344 *3) (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-1245 *3)))) (-2170 (*1 *2 *1 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1245 *3)))) (-1882 (*1 *2 *3 *2) (-12 (-5 *3 (-410 *1)) (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3670 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567))))))) -(-13 (-951 |t#1| (-772) (-1084)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -1995 ((-1269 |t#1|) $ (-772))) (-15 -4163 ((-1175 |t#1|) $)) (-15 -3678 ($ (-1175 |t#1|))) (-15 -2240 ($ $ (-772))) (-15 -2462 ((-3 $ "failed") $ (-772))) (-15 -2177 ((-2 (|:| -3693 $) (|:| -2642 $)) $ $)) (-15 -3287 ((-2 (|:| -3693 $) (|:| -2642 $)) $ (-772))) (-15 -1863 ($ $ (-772))) (-15 -1751 ($ $ (-772))) (-15 -2497 ($ $ $)) (-15 -3592 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1154)) (-6 (-1154)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2254 (|t#1| $)) (-15 -2304 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-287 (-410 $) (-410 $))) (-15 -1882 ((-410 $) (-410 $) (-410 $))) (-15 -3905 ((-772) $ $)) (-15 -2717 ($ $ $)) (-15 -2557 ((-3 $ "failed") $ $)) (-15 -2557 ((-3 (-410 $) "failed") (-410 $) $)) (-15 -4228 ($ $ $)) (-15 -3207 ((-2 (|:| -1344 |t#1|) (|:| -3693 $) (|:| -2642 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (-15 -2170 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4418) (-15 -1882 (|t#1| (-410 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-15 -3670 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2836 (|has| |#1| (-1040 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1084)) . T) ((-617 |#1|) . T) ((-617 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| (-1084) (-615 (-539))) (|has| |#1| (-615 (-539)))) ((-615 (-894 (-381))) -12 (|has| (-1084) (-615 (-894 (-381)))) (|has| |#1| (-615 (-894 (-381))))) ((-615 (-894 (-567))) -12 (|has| (-1084) (-615 (-894 (-567)))) (|has| |#1| (-615 (-894 (-567))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-410 $) (-410 $)) |has| |#1| (-559)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2836 (|has| |#1| (-911)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-517 #2# |#1|) . T) ((-517 #2# $) . T) ((-517 $ $) . T) ((-559) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-727) . T) ((-902 #2#) . T) ((-902 (-1179)) |has| |#1| (-902 (-1179))) ((-888 (-381)) -12 (|has| (-1084) (-888 (-381))) (|has| |#1| (-888 (-381)))) ((-888 (-567)) -12 (|has| (-1084) (-888 (-567))) (|has| |#1| (-888 (-567)))) ((-951 |#1| #0# #2#) . T) ((-911) |has| |#1| (-911)) ((-922) |has| |#1| (-365)) ((-1040 (-410 (-567))) |has| |#1| (-1040 (-410 (-567)))) ((-1040 (-567)) |has| |#1| (-1040 (-567))) ((-1040 #2#) . T) ((-1040 |#1|) . T) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-911)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1154) |has| |#1| (-1154)) ((-1223) |has| |#1| (-911))) -((-3783 (((-645 (-1084)) $) 34)) (-1833 (($ $) 31)) (-3764 (($ |#2| |#3|) NIL) (($ $ (-1084) |#3|) 28) (($ $ (-645 (-1084)) (-645 |#3|)) 27)) (-1796 (($ $) 14)) (-1809 ((|#2| $) 12)) (-3380 ((|#3| $) 10))) -(((-1246 |#1| |#2| |#3|) (-10 -8 (-15 -3783 ((-645 (-1084)) |#1|)) (-15 -3764 (|#1| |#1| (-645 (-1084)) (-645 |#3|))) (-15 -3764 (|#1| |#1| (-1084) |#3|)) (-15 -1833 (|#1| |#1|)) (-15 -3764 (|#1| |#2| |#3|)) (-15 -3380 (|#3| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1809 (|#2| |#1|))) (-1247 |#2| |#3|) (-1051) (-793)) (T -1246)) -NIL -(-10 -8 (-15 -3783 ((-645 (-1084)) |#1|)) (-15 -3764 (|#1| |#1| (-645 (-1084)) (-645 |#3|))) (-15 -3764 (|#1| |#1| (-1084) |#3|)) (-15 -1833 (|#1| |#1|)) (-15 -3764 (|#1| |#2| |#3|)) (-15 -3380 (|#3| |#1|)) (-15 -1796 (|#1| |#1|)) (-15 -1809 (|#2| |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 (-1084)) $) 86)) (-2722 (((-1179) $) 115)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-3413 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-3785 (((-1159 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1833 (($ $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-3219 (((-112) $) 85)) (-3905 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-4384 (((-112) $) 35)) (-2240 (($ $ (-923)) 113)) (-3615 (((-112) $) 74)) (-3764 (($ |#1| |#2|) 73) (($ $ (-1084) |#2|) 88) (($ $ (-645 (-1084)) (-645 |#2|)) 87)) (-4364 (($ (-1 |#1| |#1|) $) 75)) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-1678 (($ $ |#2|) 107)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2913 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1882 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1114)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3380 ((|#2| $) 76)) (-4314 (($ $) 84)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4038 ((|#1| $ |#2|) 71)) (-2318 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3118 ((|#1| $) 114)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-3092 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1247 |#1| |#2|) (-140) (-1051) (-793)) (T -1247)) -((-3785 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-1159 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1882 (*1 *2 *1 *3) (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-2722 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (-5 *2 (-1179)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) (-2240 (*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3905 (*1 *2 *1 *2) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3413 (*1 *1 *1 *2) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3413 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-3092 (*1 *2 *1 *3) (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2504 (*2 (-1179)))) (-4 *2 (-1051)))) (-1678 (*1 *1 *1 *2) (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) (-2913 (*1 *2 *1 *3) (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1159 *3))))) -(-13 (-975 |t#1| |t#2| (-1084)) (-10 -8 (-15 -3785 ((-1159 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1882 (|t#1| $ |t#2|)) (-15 -2722 ((-1179) $)) (-15 -3118 (|t#1| $)) (-15 -2240 ($ $ (-923))) (-15 -3905 (|t#2| $)) (-15 -3905 (|t#2| $ |t#2|)) (-15 -3413 ($ $ |t#2|)) (-15 -3413 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2504 (|t#1| (-1179)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3092 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1678 ($ $ |t#2|)) (IF (|has| |t#2| (-1114)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-902 (-1179))) (-6 (-902 (-1179))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2913 ((-1159 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1114)) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| |#2| (-1084)) . T) ((-1053 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-3864 ((|#2| |#2|) 12)) (-1466 (((-421 |#2|) |#2|) 14)) (-3098 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))) 30))) -(((-1248 |#1| |#2|) (-10 -7 (-15 -1466 ((-421 |#2|) |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -3098 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) (-559) (-13 (-1245 |#1|) (-559) (-10 -8 (-15 -1870 ($ $ $))))) (T -1248)) -((-3098 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-567)))) (-4 *4 (-13 (-1245 *3) (-559) (-10 -8 (-15 -1870 ($ $ $))))) (-4 *3 (-559)) (-5 *1 (-1248 *3 *4)))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-1248 *3 *2)) (-4 *2 (-13 (-1245 *3) (-559) (-10 -8 (-15 -1870 ($ $ $))))))) (-1466 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1248 *4 *3)) (-4 *3 (-13 (-1245 *4) (-559) (-10 -8 (-15 -1870 ($ $ $)))))))) -(-10 -7 (-15 -1466 ((-421 |#2|) |#2|)) (-15 -3864 (|#2| |#2|)) (-15 -3098 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) -((-4364 (((-1254 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1254 |#1| |#3| |#5|)) 24))) -(((-1249 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4364 ((-1254 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1254 |#1| |#3| |#5|)))) (-1051) (-1051) (-1179) (-1179) |#1| |#2|) (T -1249)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5 *7 *9)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-14 *7 (-1179)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1254 *6 *8 *10)) (-5 *1 (-1249 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1179))))) -(-10 -7 (-15 -4364 ((-1254 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1254 |#1| |#3| |#5|)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 (-1084)) $) 86)) (-2722 (((-1179) $) 115)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-3413 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-3785 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-1406 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 174 (|has| |#1| (-365)))) (-1466 (((-421 $) $) 175 (|has| |#1| (-365)))) (-3671 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-4175 (((-112) $ $) 165 (|has| |#1| (-365)))) (-1380 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-1431 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) 18 T CONST)) (-2432 (($ $ $) 169 (|has| |#1| (-365)))) (-1833 (($ $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 168 (|has| |#1| (-365)))) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-2946 (((-112) $) 176 (|has| |#1| (-365)))) (-3219 (((-112) $) 85)) (-4329 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) 113) (($ $ (-410 (-567))) 182)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3615 (((-112) $) 74)) (-3764 (($ |#1| (-410 (-567))) 73) (($ $ (-1084) (-410 (-567))) 88) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) 87)) (-4364 (($ (-1 |#1| |#1|) $) 75)) (-2734 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1831 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1812 (((-1161) $) 10)) (-1752 (($ $) 177 (|has| |#1| (-365)))) (-3670 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 180 (-2836 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-365)))) (-1870 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3661 (((-421 $) $) 173 (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 170 (|has| |#1| (-365)))) (-1678 (($ $ (-410 (-567))) 107)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-4272 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2465 (((-772) $) 166 (|has| |#1| (-365)))) (-1882 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1114)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 167 (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3380 (((-410 (-567)) $) 76)) (-1443 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 84)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4038 ((|#1| $ (-410 (-567))) 71)) (-2318 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3118 ((|#1| $) 114)) (-3858 (((-112) $ $) 9)) (-1481 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1456 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1250 |#1|) (-140) (-1051)) (T -1250)) -((-2686 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) (-4 *4 (-1051)) (-4 *1 (-1250 *4)))) (-2240 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1250 *3)) (-4 *3 (-1051)))) (-3670 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-3670 (*1 *1 *1 *2) (-2836 (-12 (-5 *2 (-1179)) (-4 *1 (-1250 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1179)) (-4 *1 (-1250 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -3783 ((-645 *2) *3))) (|has| *3 (-15 -3670 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) -(-13 (-1247 |t#1| (-410 (-567))) (-10 -8 (-15 -2686 ($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |t#1|))))) (-15 -2240 ($ $ (-410 (-567)))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $)) (IF (|has| |t#1| (-15 -3670 (|t#1| |t#1| (-1179)))) (IF (|has| |t#1| (-15 -3783 ((-645 (-1179)) |t#1|))) (-15 -3670 ($ $ (-1179))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1204)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -3670 ($ $ (-1179))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1204))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1114)) ((-291) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1223) |has| |#1| (-365)) ((-1247 |#1| #0#) . T)) -((-2684 (((-112) $) 12)) (-4275 (((-3 |#3| "failed") $) 17)) (-3094 ((|#3| $) 14))) -(((-1251 |#1| |#2| |#3|) (-10 -8 (-15 -4275 ((-3 |#3| "failed") |#1|)) (-15 -3094 (|#3| |#1|)) (-15 -2684 ((-112) |#1|))) (-1252 |#2| |#3|) (-1051) (-1229 |#2|)) (T -1251)) -NIL -(-10 -8 (-15 -4275 ((-3 |#3| "failed") |#1|)) (-15 -3094 (|#3| |#1|)) (-15 -2684 ((-112) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 (-1084)) $) 86)) (-2722 (((-1179) $) 115)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-3413 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-3785 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-1406 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 174 (|has| |#1| (-365)))) (-1466 (((-421 $) $) 175 (|has| |#1| (-365)))) (-3671 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-4175 (((-112) $ $) 165 (|has| |#1| (-365)))) (-1380 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-1431 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#2| "failed") $) 194)) (-3094 ((|#2| $) 195)) (-2432 (($ $ $) 169 (|has| |#1| (-365)))) (-1833 (($ $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-4357 (((-410 (-567)) $) 191)) (-2443 (($ $ $) 168 (|has| |#1| (-365)))) (-1726 (($ (-410 (-567)) |#2|) 192)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-2946 (((-112) $) 176 (|has| |#1| (-365)))) (-3219 (((-112) $) 85)) (-4329 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) 113) (($ $ (-410 (-567))) 182)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3615 (((-112) $) 74)) (-3764 (($ |#1| (-410 (-567))) 73) (($ $ (-1084) (-410 (-567))) 88) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) 87)) (-4364 (($ (-1 |#1| |#1|) $) 75)) (-2734 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1831 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2197 ((|#2| $) 190)) (-4258 (((-3 |#2| "failed") $) 188)) (-1709 ((|#2| $) 189)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 177 (|has| |#1| (-365)))) (-3670 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 180 (-2836 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 162 (|has| |#1| (-365)))) (-1870 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3661 (((-421 $) $) 173 (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 170 (|has| |#1| (-365)))) (-1678 (($ $ (-410 (-567))) 107)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-4272 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2465 (((-772) $) 166 (|has| |#1| (-365)))) (-1882 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1114)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 167 (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3380 (((-410 (-567)) $) 76)) (-1443 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 84)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-4038 ((|#1| $ (-410 (-567))) 71)) (-2318 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3118 ((|#1| $) 114)) (-3858 (((-112) $ $) 9)) (-1481 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1456 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1252 |#1| |#2|) (-140) (-1051) (-1229 |t#1|)) (T -1252)) -((-3380 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1229 *3)) (-5 *2 (-410 (-567))))) (-1726 (*1 *1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1051)) (-4 *1 (-1252 *4 *3)) (-4 *3 (-1229 *4)))) (-4357 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1229 *3)) (-5 *2 (-410 (-567))))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3)))) (-4258 (*1 *2 *1) (|partial| -12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3))))) -(-13 (-1250 |t#1|) (-1040 |t#2|) (-617 |t#2|) (-10 -8 (-15 -1726 ($ (-410 (-567)) |t#2|)) (-15 -4357 ((-410 (-567)) $)) (-15 -2197 (|t#2| $)) (-15 -3380 ((-410 (-567)) $)) (-15 -1709 (|t#2| $)) (-15 -4258 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1114)) ((-291) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| #0# (-1084)) . T) ((-922) |has| |#1| (-365)) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1040 |#2|) . T) ((-1053 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1058 #1#) -2836 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1223) |has| |#1| (-365)) ((-1247 |#1| #0#) . T) ((-1250 |#1|) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 104)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3413 (($ $ (-410 (-567))) 116) (($ $ (-410 (-567)) (-410 (-567))) 118)) (-3785 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 54)) (-1406 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1380 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 65)) (-1431 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 172 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) NIL)) (-3094 ((|#2| $) NIL)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) 85)) (-4357 (((-410 (-567)) $) 13)) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-1726 (($ (-410 (-567)) |#2|) 11)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3219 (((-112) $) 74)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-410 (-567)) $) 113) (((-410 (-567)) $ (-410 (-567))) 114)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) 130) (($ $ (-410 (-567))) 128)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-410 (-567))) 33) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) 125)) (-2734 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2197 ((|#2| $) 12)) (-4258 (((-3 |#2| "failed") $) 44)) (-1709 ((|#2| $) 45)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) 101 (|has| |#1| (-365)))) (-3670 (($ $) 146 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 151 (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204)))))) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-1678 (($ $ (-410 (-567))) 122)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4272 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ (-410 (-567))) 108) (($ $ $) 94 (|has| (-410 (-567)) (-1114)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) 138 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3380 (((-410 (-567)) $) 16)) (-1443 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 120)) (-2504 (((-863) $) NIL) (($ (-567)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-410 (-567))) 139 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4038 ((|#1| $ (-410 (-567))) 107)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) 127 T CONST)) (-3118 ((|#1| $) 106)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 21 T CONST)) (-1820 (($) 17 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2968 (((-112) $ $) 72)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3054 (($ $) 142) (($ $ $) 78)) (-3045 (($ $ $) 76)) (** (($ $ (-923)) NIL) (($ $ (-772)) 82) (($ $ (-567)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 158 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1253 |#1| |#2|) (-1252 |#1| |#2|) (-1051) (-1229 |#1|)) (T -1253)) -NIL -(-1252 |#1| |#2|) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 11)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) NIL (|has| |#1| (-559)))) (-3413 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3785 (((-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-1406 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3864 (($ $) NIL (|has| |#1| (-365)))) (-1466 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4175 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1380 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-772) (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-1431 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-1233 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1261 |#1| |#2| |#3|) "failed") $) 22)) (-3094 (((-1233 |#1| |#2| |#3|) $) NIL) (((-1261 |#1| |#2| |#3|) $) NIL)) (-2432 (($ $ $) NIL (|has| |#1| (-365)))) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-4357 (((-410 (-567)) $) 69)) (-2443 (($ $ $) NIL (|has| |#1| (-365)))) (-1726 (($ (-410 (-567)) (-1233 |#1| |#2| |#3|)) NIL)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2946 (((-112) $) NIL (|has| |#1| (-365)))) (-3219 (((-112) $) NIL)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-4384 (((-112) $) NIL)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) NIL) (($ $ (-410 (-567))) NIL)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-410 (-567))) 30) (($ $ (-1084) (-410 (-567))) NIL) (($ $ (-645 (-1084)) (-645 (-410 (-567)))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1831 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2197 (((-1233 |#1| |#2| |#3|) $) 72)) (-4258 (((-3 (-1233 |#1| |#2| |#3|) "failed") $) NIL)) (-1709 (((-1233 |#1| |#2| |#3|) $) NIL)) (-1812 (((-1161) $) NIL)) (-1752 (($ $) NIL (|has| |#1| (-365)))) (-3670 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) NIL (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) NIL)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) NIL (|has| |#1| (-365)))) (-1870 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3661 (((-421 $) $) NIL (|has| |#1| (-365)))) (-4266 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-365)))) (-1678 (($ $ (-410 (-567))) NIL)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2897 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4272 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-2465 (((-772) $) NIL (|has| |#1| (-365)))) (-1882 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1114)))) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) NIL (|has| |#1| (-365)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1265 |#2|)) 38)) (-3380 (((-410 (-567)) $) NIL)) (-1443 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) NIL)) (-2504 (((-863) $) 109) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1233 |#1| |#2| |#3|)) 16) (($ (-1261 |#1| |#2| |#3|)) 17) (($ (-1265 |#2|)) 36) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-4038 ((|#1| $ (-410 (-567))) NIL)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3118 ((|#1| $) 12)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-410 (-567))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 32 T CONST)) (-1820 (($) 26 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 34)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1254 |#1| |#2| |#3|) (-13 (-1252 |#1| (-1233 |#1| |#2| |#3|)) (-1040 (-1261 |#1| |#2| |#3|)) (-617 (-1265 |#2|)) (-10 -8 (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1254)) -((-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1254 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) -(-13 (-1252 |#1| (-1233 |#1| |#2| |#3|)) (-1040 (-1261 |#1| |#2| |#3|)) (-617 (-1265 |#2|)) (-10 -8 (-15 -3592 ($ $ (-1265 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 37)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL)) (-1987 (($ $) NIL)) (-3342 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 (-567) "failed") $) NIL (|has| (-1254 |#2| |#3| |#4|) (-1040 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1254 |#2| |#3| |#4|) (-1040 (-410 (-567))))) (((-3 (-1254 |#2| |#3| |#4|) "failed") $) 22)) (-3094 (((-567) $) NIL (|has| (-1254 |#2| |#3| |#4|) (-1040 (-567)))) (((-410 (-567)) $) NIL (|has| (-1254 |#2| |#3| |#4|) (-1040 (-410 (-567))))) (((-1254 |#2| |#3| |#4|) $) NIL)) (-1833 (($ $) 41)) (-1377 (((-3 $ "failed") $) 27)) (-1873 (($ $) NIL (|has| (-1254 |#2| |#3| |#4|) (-455)))) (-1978 (($ $ (-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) 11)) (-3615 (((-112) $) NIL)) (-3764 (($ (-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-1562 (((-320 |#2| |#3| |#4|) $) NIL)) (-2972 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-4364 (($ (-1 (-1254 |#2| |#3| |#4|) (-1254 |#2| |#3| |#4|)) $) NIL)) (-2320 (((-3 (-844 |#2|) "failed") $) 90)) (-1796 (($ $) NIL)) (-1809 (((-1254 |#2| |#3| |#4|) $) 20)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-1762 (((-112) $) NIL)) (-1774 (((-1254 |#2| |#3| |#4|) $) NIL)) (-2478 (((-3 $ "failed") $ (-1254 |#2| |#3| |#4|)) NIL (|has| (-1254 |#2| |#3| |#4|) (-559))) (((-3 $ "failed") $ $) NIL)) (-3457 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1254 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1161))) "failed") $) 74)) (-3380 (((-320 |#2| |#3| |#4|) $) 17)) (-1390 (((-1254 |#2| |#3| |#4|) $) NIL (|has| (-1254 |#2| |#3| |#4|) (-455)))) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ (-1254 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL (-2836 (|has| (-1254 |#2| |#3| |#4|) (-38 (-410 (-567)))) (|has| (-1254 |#2| |#3| |#4|) (-1040 (-410 (-567))))))) (-1516 (((-645 (-1254 |#2| |#3| |#4|)) $) NIL)) (-4038 (((-1254 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-2318 (((-3 $ "failed") $) NIL (|has| (-1254 |#2| |#3| |#4|) (-145)))) (-2214 (((-772)) NIL T CONST)) (-3852 (($ $ $ (-772)) NIL (|has| (-1254 |#2| |#3| |#4|) (-172)))) (-3858 (((-112) $ $) NIL)) (-3269 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ (-1254 |#2| |#3| |#4|)) NIL (|has| (-1254 |#2| |#3| |#4|) (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-1254 |#2| |#3| |#4|)) NIL) (($ (-1254 |#2| |#3| |#4|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-1254 |#2| |#3| |#4|) (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| (-1254 |#2| |#3| |#4|) (-38 (-410 (-567))))))) -(((-1255 |#1| |#2| |#3| |#4|) (-13 (-327 (-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -2320 ((-3 (-844 |#2|) "failed") $)) (-15 -3457 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1254 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1161))) "failed") $)))) (-13 (-1040 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1204) (-433 |#1|)) (-1179) |#2|) (T -1255)) -((-2320 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) (-14 *6 *4))) (-3457 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1254 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) (|:| |%type| (-1161)))) (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) (-14 *6 *4)))) -(-13 (-327 (-1254 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -2320 ((-3 (-844 |#2|) "failed") $)) (-15 -3457 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1254 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1161))) "failed") $)))) -((-2233 ((|#2| $) 34)) (-2587 ((|#2| $) 18)) (-1493 (($ $) 52)) (-1358 (($ $ (-567)) 85)) (-1555 (((-112) $ (-772)) 46)) (-3647 ((|#2| $ |#2|) 82)) (-2718 ((|#2| $ |#2|) 78)) (-3824 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1727 (($ $ (-645 $)) 81)) (-2574 ((|#2| $) 17)) (-3447 (($ $) NIL) (($ $ (-772)) 59)) (-3047 (((-645 $) $) 31)) (-2373 (((-112) $ $) 69)) (-3753 (((-112) $ (-772)) 45)) (-3421 (((-112) $ (-772)) 43)) (-1972 (((-112) $) 33)) (-1725 ((|#2| $) 25) (($ $ (-772)) 64)) (-1882 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3625 (((-112) $) 23)) (-4121 (($ $) 55)) (-3277 (($ $) 86)) (-3880 (((-772) $) 58)) (-1908 (($ $) 57)) (-3644 (($ $ $) 77) (($ |#2| $) NIL)) (-2629 (((-645 $) $) 32)) (-2968 (((-112) $ $) 67)) (-2498 (((-772) $) 51))) -(((-1256 |#1| |#2|) (-10 -8 (-15 -1358 (|#1| |#1| (-567))) (-15 -3824 (|#2| |#1| "last" |#2|)) (-15 -2718 (|#2| |#1| |#2|)) (-15 -3824 (|#1| |#1| "rest" |#1|)) (-15 -3824 (|#2| |#1| "first" |#2|)) (-15 -3277 (|#1| |#1|)) (-15 -4121 (|#1| |#1|)) (-15 -3880 ((-772) |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -2587 (|#2| |#1|)) (-15 -2574 (|#2| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-772))) (-15 -1882 (|#2| |#1| "last")) (-15 -1725 (|#2| |#1|)) (-15 -3447 (|#1| |#1| (-772))) (-15 -1882 (|#1| |#1| "rest")) (-15 -3447 (|#1| |#1|)) (-15 -1882 (|#2| |#1| "first")) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3647 (|#2| |#1| |#2|)) (-15 -3824 (|#2| |#1| "value" |#2|)) (-15 -1727 (|#1| |#1| (-645 |#1|))) (-15 -2373 ((-112) |#1| |#1|)) (-15 -3625 ((-112) |#1|)) (-15 -1882 (|#2| |#1| "value")) (-15 -2233 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -3047 ((-645 |#1|) |#1|)) (-15 -2629 ((-645 |#1|) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2498 ((-772) |#1|)) (-15 -1555 ((-112) |#1| (-772))) (-15 -3753 ((-112) |#1| (-772))) (-15 -3421 ((-112) |#1| (-772)))) (-1257 |#2|) (-1219)) (T -1256)) -NIL -(-10 -8 (-15 -1358 (|#1| |#1| (-567))) (-15 -3824 (|#2| |#1| "last" |#2|)) (-15 -2718 (|#2| |#1| |#2|)) (-15 -3824 (|#1| |#1| "rest" |#1|)) (-15 -3824 (|#2| |#1| "first" |#2|)) (-15 -3277 (|#1| |#1|)) (-15 -4121 (|#1| |#1|)) (-15 -3880 ((-772) |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -2587 (|#2| |#1|)) (-15 -2574 (|#2| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-772))) (-15 -1882 (|#2| |#1| "last")) (-15 -1725 (|#2| |#1|)) (-15 -3447 (|#1| |#1| (-772))) (-15 -1882 (|#1| |#1| "rest")) (-15 -3447 (|#1| |#1|)) (-15 -1882 (|#2| |#1| "first")) (-15 -3644 (|#1| |#2| |#1|)) (-15 -3644 (|#1| |#1| |#1|)) (-15 -3647 (|#2| |#1| |#2|)) (-15 -3824 (|#2| |#1| "value" |#2|)) (-15 -1727 (|#1| |#1| (-645 |#1|))) (-15 -2373 ((-112) |#1| |#1|)) (-15 -3625 ((-112) |#1|)) (-15 -1882 (|#2| |#1| "value")) (-15 -2233 (|#2| |#1|)) (-15 -1972 ((-112) |#1|)) (-15 -3047 ((-645 |#1|) |#1|)) (-15 -2629 ((-645 |#1|) |#1|)) (-15 -2968 ((-112) |#1| |#1|)) (-15 -2498 ((-772) |#1|)) (-15 -1555 ((-112) |#1| (-772))) (-15 -3753 ((-112) |#1| (-772))) (-15 -3421 ((-112) |#1| (-772)))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-2233 ((|#1| $) 49)) (-2587 ((|#1| $) 66)) (-1493 (($ $) 68)) (-1358 (($ $ (-567)) 53 (|has| $ (-6 -4423)))) (-1555 (((-112) $ (-772)) 8)) (-3647 ((|#1| $ |#1|) 40 (|has| $ (-6 -4423)))) (-4234 (($ $ $) 57 (|has| $ (-6 -4423)))) (-2718 ((|#1| $ |#1|) 55 (|has| $ (-6 -4423)))) (-1588 ((|#1| $ |#1|) 59 (|has| $ (-6 -4423)))) (-3824 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4423))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4423))) (($ $ "rest" $) 56 (|has| $ (-6 -4423))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4423)))) (-1727 (($ $ (-645 $)) 42 (|has| $ (-6 -4423)))) (-2574 ((|#1| $) 67)) (-3758 (($) 7 T CONST)) (-3447 (($ $) 74) (($ $ (-772)) 72)) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-3047 (((-645 $) $) 51)) (-2373 (((-112) $ $) 43 (|has| |#1| (-1102)))) (-3753 (((-112) $ (-772)) 9)) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36)) (-3421 (((-112) $ (-772)) 10)) (-3895 (((-645 |#1|) $) 46)) (-1972 (((-112) $) 50)) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-1725 ((|#1| $) 71) (($ $ (-772)) 69)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 77) (($ $ (-772)) 75)) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2721 (((-567) $ $) 45)) (-3625 (((-112) $) 47)) (-4121 (($ $) 63)) (-3277 (($ $) 60 (|has| $ (-6 -4423)))) (-3880 (((-772) $) 64)) (-1908 (($ $) 65)) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3846 (($ $) 13)) (-3416 (($ $ $) 62 (|has| $ (-6 -4423))) (($ $ |#1|) 61 (|has| $ (-6 -4423)))) (-3644 (($ $ $) 79) (($ |#1| $) 78)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2629 (((-645 $) $) 52)) (-2049 (((-112) $ $) 44 (|has| |#1| (-1102)))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-1257 |#1|) (-140) (-1219)) (T -1257)) -((-3644 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3644 (*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3436 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-3447 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1882 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-3447 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1882 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-1493 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-2574 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-2587 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1908 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3880 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) (-4121 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3416 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3416 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3277 (*1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1588 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3824 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-4234 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3824 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) (-2718 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-3824 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) (-1358 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4423)) (-4 *1 (-1257 *3)) (-4 *3 (-1219))))) -(-13 (-1012 |t#1|) (-10 -8 (-15 -3644 ($ $ $)) (-15 -3644 ($ |t#1| $)) (-15 -3436 (|t#1| $)) (-15 -1882 (|t#1| $ "first")) (-15 -3436 ($ $ (-772))) (-15 -3447 ($ $)) (-15 -1882 ($ $ "rest")) (-15 -3447 ($ $ (-772))) (-15 -1725 (|t#1| $)) (-15 -1882 (|t#1| $ "last")) (-15 -1725 ($ $ (-772))) (-15 -1493 ($ $)) (-15 -2574 (|t#1| $)) (-15 -2587 (|t#1| $)) (-15 -1908 ($ $)) (-15 -3880 ((-772) $)) (-15 -4121 ($ $)) (IF (|has| $ (-6 -4423)) (PROGN (-15 -3416 ($ $ $)) (-15 -3416 ($ $ |t#1|)) (-15 -3277 ($ $)) (-15 -1588 (|t#1| $ |t#1|)) (-15 -3824 (|t#1| $ "first" |t#1|)) (-15 -4234 ($ $ $)) (-15 -3824 ($ $ "rest" $)) (-15 -2718 (|t#1| $ |t#1|)) (-15 -3824 (|t#1| $ "last" |t#1|)) (-15 -1358 ($ $ (-567)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1102)) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-1012 |#1|) . T) ((-1102) |has| |#1| (-1102)) ((-1219) . T)) -((-4364 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1258 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4364 (|#4| (-1 |#2| |#1|) |#3|))) (-1051) (-1051) (-1260 |#1|) (-1260 |#2|)) (T -1258)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) (-4 *2 (-1260 *6)) (-5 *1 (-1258 *5 *6 *4 *2)) (-4 *4 (-1260 *5))))) -(-10 -7 (-15 -4364 (|#4| (-1 |#2| |#1|) |#3|))) -((-2684 (((-112) $) 17)) (-1406 (($ $) 106)) (-2545 (($ $) 82)) (-1380 (($ $) 102)) (-2524 (($ $) 78)) (-1431 (($ $) 110)) (-2565 (($ $) 86)) (-2734 (($ $) 76)) (-4272 (($ $) 74)) (-1443 (($ $) 112)) (-2576 (($ $) 88)) (-1418 (($ $) 108)) (-2555 (($ $) 84)) (-1394 (($ $) 104)) (-2533 (($ $) 80)) (-2504 (((-863) $) 62) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1481 (($ $) 118)) (-2610 (($ $) 94)) (-1456 (($ $) 114)) (-2588 (($ $) 90)) (-1505 (($ $) 122)) (-2632 (($ $) 98)) (-2090 (($ $) 124)) (-1367 (($ $) 100)) (-1492 (($ $) 120)) (-2621 (($ $) 96)) (-1468 (($ $) 116)) (-2599 (($ $) 92)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-410 (-567))) 72))) -(((-1259 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2545 (|#1| |#1|)) (-15 -2524 (|#1| |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -2599 (|#1| |#1|)) (-15 -2621 (|#1| |#1|)) (-15 -1367 (|#1| |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -1380 (|#1| |#1|)) (-15 -1406 (|#1| |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -2684 ((-112) |#1|)) (-15 -2504 ((-863) |#1|))) (-1260 |#2|) (-1051)) (T -1259)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -2545 (|#1| |#1|)) (-15 -2524 (|#1| |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -2576 (|#1| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -2599 (|#1| |#1|)) (-15 -2621 (|#1| |#1|)) (-15 -1367 (|#1| |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -2588 (|#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -1394 (|#1| |#1|)) (-15 -1418 (|#1| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -1380 (|#1| |#1|)) (-15 -1406 (|#1| |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -1505 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2504 (|#1| |#2|)) (-15 -2504 (|#1| |#1|)) (-15 -2504 (|#1| (-410 (-567)))) (-15 -2504 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-923))) (-15 -2684 ((-112) |#1|)) (-15 -2504 ((-863) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3783 (((-645 (-1084)) $) 86)) (-2722 (((-1179) $) 115)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-1987 (($ $) 64 (|has| |#1| (-559)))) (-3342 (((-112) $) 66 (|has| |#1| (-559)))) (-3413 (($ $ (-772)) 110) (($ $ (-772) (-772)) 109)) (-3785 (((-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 117)) (-1406 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) 20)) (-3671 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-1380 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 167) (($ (-1159 |#1|)) 165)) (-1431 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) 18 T CONST)) (-1833 (($ $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-1419 (($ $) 164)) (-3204 (((-954 |#1|) $ (-772)) 162) (((-954 |#1|) $ (-772) (-772)) 161)) (-3219 (((-112) $) 85)) (-4329 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-772) $) 112) (((-772) $ (-772)) 111)) (-4384 (((-112) $) 35)) (-4203 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-2240 (($ $ (-923)) 113)) (-3172 (($ (-1 |#1| (-567)) $) 163)) (-3615 (((-112) $) 74)) (-3764 (($ |#1| (-772)) 73) (($ $ (-1084) (-772)) 88) (($ $ (-645 (-1084)) (-645 (-772))) 87)) (-4364 (($ (-1 |#1| |#1|) $) 75)) (-2734 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) 77)) (-1809 ((|#1| $) 78)) (-1812 (((-1161) $) 10)) (-3670 (($ $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 158 (-2836 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-961)) (|has| |#1| (-1204)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3479 (((-1122) $) 11)) (-1678 (($ $ (-772)) 107)) (-2478 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-4272 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-2913 (((-1159 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1882 ((|#1| $ (-772)) 116) (($ $ $) 93 (|has| (-772) (-1114)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) 101 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1179) (-772)) 100 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1179))) 99 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1179)) 98 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-3380 (((-772) $) 76)) (-1443 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 84)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-1516 (((-1159 |#1|) $) 166)) (-4038 ((|#1| $ (-772)) 71)) (-2318 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2214 (((-772)) 32 T CONST)) (-3118 ((|#1| $) 114)) (-3858 (((-112) $ $) 9)) (-1481 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1456 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-772)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) 105 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1179) (-772)) 104 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1179))) 103 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1179)) 102 (-12 (|has| |#1| (-902 (-1179))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567))))))) -(((-1260 |#1|) (-140) (-1051)) (T -1260)) -((-2686 (*1 *1 *2) (-12 (-5 *2 (-1159 (-2 (|:| |k| (-772)) (|:| |c| *3)))) (-4 *3 (-1051)) (-4 *1 (-1260 *3)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1051)) (-5 *2 (-1159 *3)))) (-2686 (*1 *1 *2) (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-4 *1 (-1260 *3)))) (-1419 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)))) (-3172 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1260 *3)) (-4 *3 (-1051)))) (-3204 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1260 *4)) (-4 *4 (-1051)) (-5 *2 (-954 *4)))) (-3204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1260 *4)) (-4 *4 (-1051)) (-5 *2 (-954 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) (-3670 (*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) (-3670 (*1 *1 *1 *2) (-2836 (-12 (-5 *2 (-1179)) (-4 *1 (-1260 *3)) (-4 *3 (-1051)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1179)) (-4 *1 (-1260 *3)) (-4 *3 (-1051)) (-12 (|has| *3 (-15 -3783 ((-645 *2) *3))) (|has| *3 (-15 -3670 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))) -(-13 (-1247 |t#1| (-772)) (-10 -8 (-15 -2686 ($ (-1159 (-2 (|:| |k| (-772)) (|:| |c| |t#1|))))) (-15 -1516 ((-1159 |t#1|) $)) (-15 -2686 ($ (-1159 |t#1|))) (-15 -1419 ($ $)) (-15 -3172 ($ (-1 |t#1| (-567)) $)) (-15 -3204 ((-954 |t#1|) $ (-772))) (-15 -3204 ((-954 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3670 ($ $)) (IF (|has| |t#1| (-15 -3670 (|t#1| |t#1| (-1179)))) (IF (|has| |t#1| (-15 -3783 ((-645 (-1179)) |t#1|))) (-15 -3670 ($ $ (-1179))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1204)) (IF (|has| |t#1| (-961)) (IF (|has| |t#1| (-29 (-567))) (-15 -3670 ($ $ (-1179))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1004)) (-6 (-1204))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-772) |#1|))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-772) (-1114)) ((-291) |has| |#1| (-559)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-902 (-1179)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179)))) ((-975 |#1| #0# (-1084)) . T) ((-1004) |has| |#1| (-38 (-410 (-567)))) ((-1053 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1053 |#1|) . T) ((-1053 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1058 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1058 |#1|) . T) ((-1058 $) -2836 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1207) |has| |#1| (-38 (-410 (-567)))) ((-1247 |#1| #0#) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3783 (((-645 (-1084)) $) NIL)) (-2722 (((-1179) $) 93)) (-2923 (((-1242 |#2| |#1|) $ (-772)) 74)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-1987 (($ $) NIL (|has| |#1| (-559)))) (-3342 (((-112) $) 145 (|has| |#1| (-559)))) (-3413 (($ $ (-772)) 130) (($ $ (-772) (-772)) 133)) (-3785 (((-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 43)) (-1406 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2545 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2932 (((-3 $ "failed") $ $) NIL)) (-3671 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1380 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2524 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2686 (($ (-1159 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 53) (($ (-1159 |#1|)) NIL)) (-1431 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2565 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3758 (($) NIL T CONST)) (-4127 (($ $) 137)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1419 (($ $) 143)) (-3204 (((-954 |#1|) $ (-772)) 64) (((-954 |#1|) $ (-772) (-772)) 66)) (-3219 (((-112) $) NIL)) (-4329 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3905 (((-772) $) NIL) (((-772) $ (-772)) NIL)) (-4384 (((-112) $) NIL)) (-2761 (($ $) 120)) (-4203 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4324 (($ (-567) (-567) $) 139)) (-2240 (($ $ (-923)) 142)) (-3172 (($ (-1 |#1| (-567)) $) 114)) (-3615 (((-112) $) NIL)) (-3764 (($ |#1| (-772)) 16) (($ $ (-1084) (-772)) NIL) (($ $ (-645 (-1084)) (-645 (-772))) NIL)) (-4364 (($ (-1 |#1| |#1|) $) 101)) (-2734 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1796 (($ $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-2382 (($ $) 118)) (-2490 (($ $) 116)) (-2654 (($ (-567) (-567) $) 141)) (-3670 (($ $) 153 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1179)) 159 (-2836 (-12 (|has| |#1| (-15 -3670 (|#1| |#1| (-1179)))) (|has| |#1| (-15 -3783 ((-645 (-1179)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-961)) (|has| |#1| (-1204))))) (($ $ (-1265 |#2|)) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3479 (((-1122) $) NIL)) (-3396 (($ $ (-567) (-567)) 124)) (-1678 (($ $ (-772)) 126)) (-2478 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-4272 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3417 (($ $) 122)) (-2913 (((-1159 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1882 ((|#1| $ (-772)) 98) (($ $ $) 135 (|has| (-772) (-1114)))) (-3592 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) 111 (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1265 |#2|)) 106)) (-3380 (((-772) $) NIL)) (-1443 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2576 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1418 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2555 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1394 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2533 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4314 (($ $) 128)) (-2504 (((-863) $) NIL) (($ (-567)) 26) (($ (-410 (-567))) 151 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1242 |#2| |#1|)) 84) (($ (-1265 |#2|)) 22)) (-1516 (((-1159 |#1|) $) NIL)) (-4038 ((|#1| $ (-772)) 97)) (-2318 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2214 (((-772)) NIL T CONST)) (-3118 ((|#1| $) 94)) (-3858 (((-112) $ $) NIL)) (-1481 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2610 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3269 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1456 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2588 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1505 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3092 ((|#1| $ (-772)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -2504 (|#1| (-1179))))))) (-2090 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1367 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2621 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1807 (($) 18 T CONST)) (-1820 (($) 13 T CONST)) (-2856 (($ $ (-645 (-1179)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-645 (-1179))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-1179)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-902 (-1179))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-2968 (((-112) $ $) NIL)) (-3064 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) 110)) (-3045 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))))) -(((-1261 |#1| |#2| |#3|) (-13 (-1260 |#1|) (-10 -8 (-15 -2504 ($ (-1242 |#2| |#1|))) (-15 -2923 ((-1242 |#2| |#1|) $ (-772))) (-15 -2504 ($ (-1265 |#2|))) (-15 -3592 ($ $ (-1265 |#2|))) (-15 -2490 ($ $)) (-15 -2382 ($ $)) (-15 -2761 ($ $)) (-15 -3417 ($ $)) (-15 -3396 ($ $ (-567) (-567))) (-15 -4127 ($ $)) (-15 -4324 ($ (-567) (-567) $)) (-15 -2654 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) (-1051) (-1179) |#1|) (T -1261)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-1242 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3) (-5 *1 (-1261 *3 *4 *5)))) (-2923 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1242 *5 *4)) (-5 *1 (-1261 *4 *5 *6)) (-4 *4 (-1051)) (-14 *5 (-1179)) (-14 *6 *4))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-3592 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *5 *3))) (-2490 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-2382 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-2761 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-3417 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-3396 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) (-14 *4 *2))) (-4324 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3))) (-2654 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) (-14 *5 *3))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) -(-13 (-1260 |#1|) (-10 -8 (-15 -2504 ($ (-1242 |#2| |#1|))) (-15 -2923 ((-1242 |#2| |#1|) $ (-772))) (-15 -2504 ($ (-1265 |#2|))) (-15 -3592 ($ $ (-1265 |#2|))) (-15 -2490 ($ $)) (-15 -2382 ($ $)) (-15 -2761 ($ $)) (-15 -3417 ($ $)) (-15 -3396 ($ $ (-567) (-567))) (-15 -4127 ($ $)) (-15 -4324 ($ (-567) (-567) $)) (-15 -2654 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -3670 ($ $ (-1265 |#2|))) |%noBranch|))) -((-3794 (((-1 (-1159 |#1|) (-645 (-1159 |#1|))) (-1 |#2| (-645 |#2|))) 24)) (-1993 (((-1 (-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3853 (((-1 (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2|)) 13)) (-1944 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1372 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4265 ((|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|)) 60)) (-2811 (((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))) 66)) (-2993 ((|#2| |#2| |#2|) 43))) -(((-1262 |#1| |#2|) (-10 -7 (-15 -3853 ((-1 (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2|))) (-15 -1993 ((-1 (-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3794 ((-1 (-1159 |#1|) (-645 (-1159 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -2993 (|#2| |#2| |#2|)) (-15 -1372 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1944 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4265 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -2811 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) (-38 (-410 (-567))) (-1260 |#1|)) (T -1262)) -((-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1260 *5)) (-5 *2 (-645 *6)) (-5 *1 (-1262 *5 *6)))) (-4265 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1260 *5)) (-5 *1 (-1262 *5 *2)))) (-1944 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1262 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1262 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-2993 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1262 *3 *2)) (-4 *2 (-1260 *3)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1260 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1159 *4) (-645 (-1159 *4)))) (-5 *1 (-1262 *4 *5)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1159 *4) (-1159 *4) (-1159 *4))) (-5 *1 (-1262 *4 *5)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1260 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1159 *4) (-1159 *4))) (-5 *1 (-1262 *4 *5))))) -(-10 -7 (-15 -3853 ((-1 (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2|))) (-15 -1993 ((-1 (-1159 |#1|) (-1159 |#1|) (-1159 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3794 ((-1 (-1159 |#1|) (-645 (-1159 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -2993 (|#2| |#2| |#2|)) (-15 -1372 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1944 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4265 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -2811 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) -((-1363 ((|#2| |#4| (-772)) 34)) (-1599 ((|#4| |#2|) 29)) (-1723 ((|#4| (-410 |#2|)) 53 (|has| |#1| (-559)))) (-2358 (((-1 |#4| (-645 |#4|)) |#3|) 46))) -(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1599 (|#4| |#2|)) (-15 -1363 (|#2| |#4| (-772))) (-15 -2358 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -1723 (|#4| (-410 |#2|))) |%noBranch|)) (-1051) (-1245 |#1|) (-657 |#2|) (-1260 |#1|)) (T -1263)) -((-1723 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-559)) (-4 *4 (-1051)) (-4 *2 (-1260 *4)) (-5 *1 (-1263 *4 *5 *6 *2)) (-4 *6 (-657 *5)))) (-2358 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *5 (-1245 *4)) (-5 *2 (-1 *6 (-645 *6))) (-5 *1 (-1263 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1260 *4)))) (-1363 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-4 *2 (-1245 *5)) (-5 *1 (-1263 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1260 *5)))) (-1599 (*1 *2 *3) (-12 (-4 *4 (-1051)) (-4 *3 (-1245 *4)) (-4 *2 (-1260 *4)) (-5 *1 (-1263 *4 *3 *5 *2)) (-4 *5 (-657 *3))))) -(-10 -7 (-15 -1599 (|#4| |#2|)) (-15 -1363 (|#2| |#4| (-772))) (-15 -2358 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -1723 (|#4| (-410 |#2|))) |%noBranch|)) -NIL -(((-1264) (-140)) (T -1264)) -NIL -(-13 (-10 -7 (-6 -3062))) -((-2487 (((-112) $ $) NIL)) (-2722 (((-1179)) 12)) (-1812 (((-1161) $) 18)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 11) (((-1179) $) 8)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) 15))) -(((-1265 |#1|) (-13 (-1102) (-614 (-1179)) (-10 -8 (-15 -2504 ((-1179) $)) (-15 -2722 ((-1179))))) (-1179)) (T -1265)) -((-2504 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1265 *3)) (-14 *3 *2))) (-2722 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1265 *3)) (-14 *3 *2)))) -(-13 (-1102) (-614 (-1179)) (-10 -8 (-15 -2504 ((-1179) $)) (-15 -2722 ((-1179))))) -((-3398 (($ (-772)) 19)) (-1896 (((-690 |#2|) $ $) 41)) (-4207 ((|#2| $) 51)) (-3613 ((|#2| $) 50)) (-1336 ((|#2| $ $) 36)) (-2934 (($ $ $) 47)) (-3054 (($ $) 23) (($ $ $) 29)) (-3045 (($ $ $) 15)) (* (($ (-567) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1266 |#1| |#2|) (-10 -8 (-15 -4207 (|#2| |#1|)) (-15 -3613 (|#2| |#1|)) (-15 -2934 (|#1| |#1| |#1|)) (-15 -1896 ((-690 |#2|) |#1| |#1|)) (-15 -1336 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -3398 (|#1| (-772))) (-15 -3045 (|#1| |#1| |#1|))) (-1267 |#2|) (-1219)) (T -1266)) -NIL -(-10 -8 (-15 -4207 (|#2| |#1|)) (-15 -3613 (|#2| |#1|)) (-15 -2934 (|#1| |#1| |#1|)) (-15 -1896 ((-690 |#2|) |#1| |#1|)) (-15 -1336 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3054 (|#1| |#1| |#1|)) (-15 -3054 (|#1| |#1|)) (-15 -3398 (|#1| (-772))) (-15 -3045 (|#1| |#1| |#1|))) -((-2487 (((-112) $ $) 19 (|has| |#1| (-1102)))) (-3398 (($ (-772)) 113 (|has| |#1| (-23)))) (-3095 (((-1274) $ (-567) (-567)) 41 (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4423))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4423))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) 8)) (-3824 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) 59 (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4422)))) (-3758 (($) 7 T CONST)) (-3790 (($ $) 91 (|has| $ (-6 -4423)))) (-3247 (($ $) 101)) (-3470 (($ $) 79 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-1695 (($ |#1| $) 78 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) 52)) (-3932 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1102)))) (-3468 (((-645 |#1|) $) 31 (|has| $ (-6 -4422)))) (-1896 (((-690 |#1|) $ $) 106 (|has| |#1| (-1051)))) (-4223 (($ (-772) |#1|) 70)) (-3753 (((-112) $ (-772)) 9)) (-2407 (((-567) $) 44 (|has| (-567) (-851)))) (-2727 (($ $ $) 88 (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) 30 (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-2346 (((-567) $) 45 (|has| (-567) (-851)))) (-1446 (($ $ $) 87 (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4207 ((|#1| $) 103 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-3421 (((-112) $ (-772)) 10)) (-3613 ((|#1| $) 104 (-12 (|has| |#1| (-1051)) (|has| |#1| (-1004))))) (-1812 (((-1161) $) 22 (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3360 (((-645 (-567)) $) 47)) (-2919 (((-112) (-567) $) 48)) (-3479 (((-1122) $) 21 (|has| |#1| (-1102)))) (-3436 ((|#1| $) 43 (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2930 (($ $ |#1|) 42 (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) 14)) (-3428 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) 49)) (-2319 (((-112) $) 11)) (-2973 (($) 12)) (-1882 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1236 (-567))) 64)) (-1336 ((|#1| $ $) 107 (|has| |#1| (-1051)))) (-4281 (($ $ (-567)) 63) (($ $ (-1236 (-567))) 62)) (-2934 (($ $ $) 105 (|has| |#1| (-1051)))) (-3486 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4422))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1102)) (|has| $ (-6 -4422))))) (-3161 (($ $ $ (-567)) 92 (|has| $ (-6 -4423)))) (-3846 (($ $) 13)) (-1322 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 71)) (-3644 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-2504 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) 23 (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) 85 (|has| |#1| (-851)))) (-2996 (((-112) $ $) 84 (|has| |#1| (-851)))) (-2968 (((-112) $ $) 20 (|has| |#1| (-1102)))) (-3006 (((-112) $ $) 86 (|has| |#1| (-851)))) (-2986 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3054 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3045 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2498 (((-772) $) 6 (|has| $ (-6 -4422))))) -(((-1267 |#1|) (-140) (-1219)) (T -1267)) -((-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-25)))) (-3398 (*1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1267 *3)) (-4 *3 (-23)) (-4 *3 (-1219)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) (-3054 (*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1267 *3)) (-4 *3 (-1219)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) (-1336 (*1 *2 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))) (-1896 (*1 *2 *1 *1) (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1219)) (-4 *3 (-1051)) (-5 *2 (-690 *3)))) (-2934 (*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1004)) (-4 *2 (-1051)))) (-4207 (*1 *2 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1004)) (-4 *2 (-1051))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3045 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3398 ($ (-772))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3054 ($ $)) (-15 -3054 ($ $ $)) (-15 * ($ (-567) $))) |%noBranch|) (IF (|has| |t#1| (-727)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-15 -1336 (|t#1| $ $)) (-15 -1896 ((-690 |t#1|) $ $)) (-15 -2934 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1004)) (IF (|has| |t#1| (-1051)) (PROGN (-15 -3613 (|t#1| $)) (-15 -4207 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-614 (-863)) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1102) -2836 (|has| |#1| (-1102)) (|has| |#1| (-851))) ((-1219) . T)) -((-4309 (((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|) 13)) (-2617 ((|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|) 15)) (-4364 (((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)) 30) (((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|)) 18))) -(((-1268 |#1| |#2|) (-10 -7 (-15 -4309 ((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -2617 (|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4364 ((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|))) (-15 -4364 ((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)))) (-1219) (-1219)) (T -1268)) -((-4364 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1268 *5 *6)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1268 *5 *6)))) (-2617 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-1268 *5 *2)))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1269 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-1269 *5)) (-5 *1 (-1268 *6 *5))))) -(-10 -7 (-15 -4309 ((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -2617 (|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4364 ((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|))) (-15 -4364 ((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)))) -((-2487 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3398 (($ (-772)) NIL (|has| |#1| (-23)))) (-3583 (($ (-645 |#1|)) 11)) (-3095 (((-1274) $ (-567) (-567)) NIL (|has| $ (-6 -4423)))) (-2051 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-2767 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4423))) (($ $) NIL (-12 (|has| $ (-6 -4423)) (|has| |#1| (-851))))) (-2080 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1555 (((-112) $ (-772)) NIL)) (-3824 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423))) ((|#1| $ (-1236 (-567)) |#1|) NIL (|has| $ (-6 -4423)))) (-1316 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3758 (($) NIL T CONST)) (-3790 (($ $) NIL (|has| $ (-6 -4423)))) (-3247 (($ $) NIL)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1695 (($ |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2617 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4422))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4422)))) (-2036 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4423)))) (-1970 ((|#1| $ (-567)) NIL)) (-3932 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1102))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1102)))) (-3468 (((-645 |#1|) $) 15 (|has| $ (-6 -4422)))) (-1896 (((-690 |#1|) $ $) NIL (|has| |#1| (-1051)))) (-4223 (($ (-772) |#1|) NIL)) (-3753 (((-112) $ (-772)) NIL)) (-2407 (((-567) $) NIL (|has| (-567) (-851)))) (-2727 (($ $ $) NIL (|has| |#1| (-851)))) (-1315 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-4200 (((-645 |#1|) $) NIL (|has| $ (-6 -4422)))) (-2203 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-2346 (((-567) $) NIL (|has| (-567) (-851)))) (-1446 (($ $ $) NIL (|has| |#1| (-851)))) (-2021 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4207 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-3421 (((-112) $ (-772)) NIL)) (-3613 ((|#1| $) NIL (-12 (|has| |#1| (-1004)) (|has| |#1| (-1051))))) (-1812 (((-1161) $) NIL (|has| |#1| (-1102)))) (-4222 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3360 (((-645 (-567)) $) NIL)) (-2919 (((-112) (-567) $) NIL)) (-3479 (((-1122) $) NIL (|has| |#1| (-1102)))) (-3436 ((|#1| $) NIL (|has| (-567) (-851)))) (-2989 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2930 (($ $ |#1|) NIL (|has| $ (-6 -4423)))) (-1430 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1102))))) (-2222 (((-112) $ $) NIL)) (-3428 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-1804 (((-645 |#1|) $) NIL)) (-2319 (((-112) $) NIL)) (-2973 (($) NIL)) (-1882 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-1336 ((|#1| $ $) NIL (|has| |#1| (-1051)))) (-4281 (($ $ (-567)) NIL) (($ $ (-1236 (-567))) NIL)) (-2934 (($ $ $) NIL (|has| |#1| (-1051)))) (-3486 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#1| (-1102))))) (-3161 (($ $ $ (-567)) NIL (|has| $ (-6 -4423)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) 19 (|has| |#1| (-615 (-539))))) (-2516 (($ (-645 |#1|)) 10)) (-3644 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-2504 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3858 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3450 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4422)))) (-3016 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2996 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2968 (((-112) $ $) NIL (|has| |#1| (-1102)))) (-3006 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2986 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3054 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3045 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1269 |#1|) (-13 (-1267 |#1|) (-10 -8 (-15 -3583 ($ (-645 |#1|))))) (-1219)) (T -1269)) -((-3583 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1269 *3))))) -(-13 (-1267 |#1|) (-10 -8 (-15 -3583 ($ (-645 |#1|))))) -((-2487 (((-112) $ $) NIL)) (-1663 (((-1161) $ (-1161)) 110) (((-1161) $ (-1161) (-1161)) 108) (((-1161) $ (-1161) (-645 (-1161))) 107)) (-3817 (($) 70)) (-3875 (((-1274) $ (-471) (-923)) 55)) (-3138 (((-1274) $ (-923) (-1161)) 92) (((-1274) $ (-923) (-875)) 93)) (-2884 (((-1274) $ (-923) (-381) (-381)) 58)) (-3275 (((-1274) $ (-1161)) 87)) (-3115 (((-1274) $ (-923) (-1161)) 97)) (-3260 (((-1274) $ (-923) (-381) (-381)) 59)) (-2093 (((-1274) $ (-923) (-923)) 56)) (-1640 (((-1274) $) 88)) (-2807 (((-1274) $ (-923) (-1161)) 96)) (-3370 (((-1274) $ (-471) (-923)) 41)) (-1629 (((-1274) $ (-923) (-1161)) 95)) (-3289 (((-645 (-264)) $) 29) (($ $ (-645 (-264))) 30)) (-3186 (((-1274) $ (-772) (-772)) 53)) (-1712 (($ $) 72) (($ (-471) (-645 (-264))) 73)) (-1812 (((-1161) $) NIL)) (-2025 (((-567) $) 48)) (-3479 (((-1122) $) NIL)) (-2837 (((-1269 (-3 (-471) "undefined")) $) 47)) (-4327 (((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1629 (-567)) (|:| -2413 (-567)) (|:| |spline| (-567)) (|:| -3560 (-567)) (|:| |axesColor| (-875)) (|:| -3138 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $) 46)) (-2257 (((-1274) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567)) 86)) (-2841 (((-645 (-945 (-225))) $) NIL)) (-1981 (((-471) $ (-923)) 43)) (-4380 (((-1274) $ (-772) (-772) (-923) (-923)) 51)) (-1731 (((-1274) $ (-1161)) 98)) (-2413 (((-1274) $ (-923) (-1161)) 94)) (-2504 (((-863) $) 105)) (-4057 (((-1274) $) 99)) (-3858 (((-112) $ $) NIL)) (-3560 (((-1274) $ (-923) (-1161)) 90) (((-1274) $ (-923) (-875)) 91)) (-2968 (((-112) $ $) NIL))) -(((-1270) (-13 (-1102) (-10 -8 (-15 -2841 ((-645 (-945 (-225))) $)) (-15 -3817 ($)) (-15 -1712 ($ $)) (-15 -3289 ((-645 (-264)) $)) (-15 -3289 ($ $ (-645 (-264)))) (-15 -1712 ($ (-471) (-645 (-264)))) (-15 -2257 ((-1274) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -4327 ((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1629 (-567)) (|:| -2413 (-567)) (|:| |spline| (-567)) (|:| -3560 (-567)) (|:| |axesColor| (-875)) (|:| -3138 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -2837 ((-1269 (-3 (-471) "undefined")) $)) (-15 -3275 ((-1274) $ (-1161))) (-15 -3370 ((-1274) $ (-471) (-923))) (-15 -1981 ((-471) $ (-923))) (-15 -3560 ((-1274) $ (-923) (-1161))) (-15 -3560 ((-1274) $ (-923) (-875))) (-15 -3138 ((-1274) $ (-923) (-1161))) (-15 -3138 ((-1274) $ (-923) (-875))) (-15 -1629 ((-1274) $ (-923) (-1161))) (-15 -2807 ((-1274) $ (-923) (-1161))) (-15 -2413 ((-1274) $ (-923) (-1161))) (-15 -1731 ((-1274) $ (-1161))) (-15 -4057 ((-1274) $)) (-15 -4380 ((-1274) $ (-772) (-772) (-923) (-923))) (-15 -3260 ((-1274) $ (-923) (-381) (-381))) (-15 -2884 ((-1274) $ (-923) (-381) (-381))) (-15 -3115 ((-1274) $ (-923) (-1161))) (-15 -3186 ((-1274) $ (-772) (-772))) (-15 -3875 ((-1274) $ (-471) (-923))) (-15 -2093 ((-1274) $ (-923) (-923))) (-15 -1663 ((-1161) $ (-1161))) (-15 -1663 ((-1161) $ (-1161) (-1161))) (-15 -1663 ((-1161) $ (-1161) (-645 (-1161)))) (-15 -1640 ((-1274) $)) (-15 -2025 ((-567) $)) (-15 -2504 ((-863) $))))) (T -1270)) -((-2504 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1270)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-645 (-945 (-225)))) (-5 *1 (-1270)))) (-3817 (*1 *1) (-5 *1 (-1270))) (-1712 (*1 *1 *1) (-5 *1 (-1270))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) (-1712 (*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1270)))) (-2257 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-923)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-4327 (*1 *2 *1) (-12 (-5 *2 (-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1629 (-567)) (|:| -2413 (-567)) (|:| |spline| (-567)) (|:| -3560 (-567)) (|:| |axesColor| (-875)) (|:| -3138 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) (-5 *1 (-1270)))) (-2837 (*1 *2 *1) (-12 (-5 *2 (-1269 (-3 (-471) "undefined"))) (-5 *1 (-1270)))) (-3275 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3370 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1981 (*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-471)) (-5 *1 (-1270)))) (-3560 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3560 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3138 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3138 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1629 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2807 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2413 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1731 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1270)))) (-4380 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3260 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2884 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3115 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3186 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-3875 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2093 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) (-1663 (*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1270)))) (-1663 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1270)))) (-1663 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-1270)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1270)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1270))))) -(-13 (-1102) (-10 -8 (-15 -2841 ((-645 (-945 (-225))) $)) (-15 -3817 ($)) (-15 -1712 ($ $)) (-15 -3289 ((-645 (-264)) $)) (-15 -3289 ($ $ (-645 (-264)))) (-15 -1712 ($ (-471) (-645 (-264)))) (-15 -2257 ((-1274) $ (-923) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -4327 ((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1629 (-567)) (|:| -2413 (-567)) (|:| |spline| (-567)) (|:| -3560 (-567)) (|:| |axesColor| (-875)) (|:| -3138 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -2837 ((-1269 (-3 (-471) "undefined")) $)) (-15 -3275 ((-1274) $ (-1161))) (-15 -3370 ((-1274) $ (-471) (-923))) (-15 -1981 ((-471) $ (-923))) (-15 -3560 ((-1274) $ (-923) (-1161))) (-15 -3560 ((-1274) $ (-923) (-875))) (-15 -3138 ((-1274) $ (-923) (-1161))) (-15 -3138 ((-1274) $ (-923) (-875))) (-15 -1629 ((-1274) $ (-923) (-1161))) (-15 -2807 ((-1274) $ (-923) (-1161))) (-15 -2413 ((-1274) $ (-923) (-1161))) (-15 -1731 ((-1274) $ (-1161))) (-15 -4057 ((-1274) $)) (-15 -4380 ((-1274) $ (-772) (-772) (-923) (-923))) (-15 -3260 ((-1274) $ (-923) (-381) (-381))) (-15 -2884 ((-1274) $ (-923) (-381) (-381))) (-15 -3115 ((-1274) $ (-923) (-1161))) (-15 -3186 ((-1274) $ (-772) (-772))) (-15 -3875 ((-1274) $ (-471) (-923))) (-15 -2093 ((-1274) $ (-923) (-923))) (-15 -1663 ((-1161) $ (-1161))) (-15 -1663 ((-1161) $ (-1161) (-1161))) (-15 -1663 ((-1161) $ (-1161) (-645 (-1161)))) (-15 -1640 ((-1274) $)) (-15 -2025 ((-567) $)) (-15 -2504 ((-863) $)))) -((-2487 (((-112) $ $) NIL)) (-3935 (((-1274) $ (-381)) 172) (((-1274) $ (-381) (-381) (-381)) 173)) (-1663 (((-1161) $ (-1161)) 182) (((-1161) $ (-1161) (-1161)) 180) (((-1161) $ (-1161) (-645 (-1161))) 179)) (-2522 (($) 67)) (-2381 (((-1274) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1274) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1274) $ (-567) (-567) (-381) (-381) (-381)) 147) (((-1274) $ (-381) (-381)) 148) (((-1274) $ (-381) (-381) (-381)) 155)) (-3951 (((-381)) 125) (((-381) (-381)) 126)) (-1404 (((-381)) 120) (((-381) (-381)) 122)) (-4259 (((-381)) 123) (((-381) (-381)) 124)) (-3456 (((-381)) 129) (((-381) (-381)) 130)) (-1853 (((-381)) 127) (((-381) (-381)) 128)) (-2884 (((-1274) $ (-381) (-381)) 174)) (-3275 (((-1274) $ (-1161)) 156)) (-2107 (((-1135 (-225)) $) 68) (($ $ (-1135 (-225))) 69)) (-3886 (((-1274) $ (-1161)) 190)) (-1961 (((-1274) $ (-1161)) 191)) (-2751 (((-1274) $ (-381) (-381)) 154) (((-1274) $ (-567) (-567)) 171)) (-2093 (((-1274) $ (-923) (-923)) 163)) (-1640 (((-1274) $) 140)) (-4249 (((-1274) $ (-1161)) 189)) (-2425 (((-1274) $ (-1161)) 137)) (-3289 (((-645 (-264)) $) 70) (($ $ (-645 (-264))) 71)) (-3186 (((-1274) $ (-772) (-772)) 162)) (-1633 (((-1274) $ (-772) (-945 (-225))) 196)) (-3481 (($ $) 73) (($ (-1135 (-225)) (-1161)) 74) (($ (-1135 (-225)) (-645 (-264))) 75)) (-1977 (((-1274) $ (-381) (-381) (-381)) 134)) (-1812 (((-1161) $) NIL)) (-2025 (((-567) $) 131)) (-4042 (((-1274) $ (-381)) 177)) (-3013 (((-1274) $ (-381)) 194)) (-3479 (((-1122) $) NIL)) (-3724 (((-1274) $ (-381)) 193)) (-1704 (((-1274) $ (-1161)) 139)) (-4380 (((-1274) $ (-772) (-772) (-923) (-923)) 161)) (-2556 (((-1274) $ (-1161)) 136)) (-1731 (((-1274) $ (-1161)) 138)) (-2568 (((-1274) $ (-157) (-157)) 160)) (-2504 (((-863) $) 169)) (-4057 (((-1274) $) 141)) (-3930 (((-1274) $ (-1161)) 192)) (-3858 (((-112) $ $) NIL)) (-3560 (((-1274) $ (-1161)) 135)) (-2968 (((-112) $ $) NIL))) -(((-1271) (-13 (-1102) (-10 -8 (-15 -1404 ((-381))) (-15 -1404 ((-381) (-381))) (-15 -4259 ((-381))) (-15 -4259 ((-381) (-381))) (-15 -3951 ((-381))) (-15 -3951 ((-381) (-381))) (-15 -1853 ((-381))) (-15 -1853 ((-381) (-381))) (-15 -3456 ((-381))) (-15 -3456 ((-381) (-381))) (-15 -2522 ($)) (-15 -3481 ($ $)) (-15 -3481 ($ (-1135 (-225)) (-1161))) (-15 -3481 ($ (-1135 (-225)) (-645 (-264)))) (-15 -2107 ((-1135 (-225)) $)) (-15 -2107 ($ $ (-1135 (-225)))) (-15 -1633 ((-1274) $ (-772) (-945 (-225)))) (-15 -3289 ((-645 (-264)) $)) (-15 -3289 ($ $ (-645 (-264)))) (-15 -3186 ((-1274) $ (-772) (-772))) (-15 -2093 ((-1274) $ (-923) (-923))) (-15 -3275 ((-1274) $ (-1161))) (-15 -4380 ((-1274) $ (-772) (-772) (-923) (-923))) (-15 -2381 ((-1274) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2381 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2381 ((-1274) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2381 ((-1274) $ (-567) (-567) (-381) (-381) (-381))) (-15 -2381 ((-1274) $ (-381) (-381))) (-15 -2381 ((-1274) $ (-381) (-381) (-381))) (-15 -1731 ((-1274) $ (-1161))) (-15 -3560 ((-1274) $ (-1161))) (-15 -2556 ((-1274) $ (-1161))) (-15 -2425 ((-1274) $ (-1161))) (-15 -1704 ((-1274) $ (-1161))) (-15 -2751 ((-1274) $ (-381) (-381))) (-15 -2751 ((-1274) $ (-567) (-567))) (-15 -3935 ((-1274) $ (-381))) (-15 -3935 ((-1274) $ (-381) (-381) (-381))) (-15 -2884 ((-1274) $ (-381) (-381))) (-15 -4249 ((-1274) $ (-1161))) (-15 -3724 ((-1274) $ (-381))) (-15 -3013 ((-1274) $ (-381))) (-15 -3886 ((-1274) $ (-1161))) (-15 -1961 ((-1274) $ (-1161))) (-15 -3930 ((-1274) $ (-1161))) (-15 -1977 ((-1274) $ (-381) (-381) (-381))) (-15 -4042 ((-1274) $ (-381))) (-15 -1640 ((-1274) $)) (-15 -2568 ((-1274) $ (-157) (-157))) (-15 -1663 ((-1161) $ (-1161))) (-15 -1663 ((-1161) $ (-1161) (-1161))) (-15 -1663 ((-1161) $ (-1161) (-645 (-1161)))) (-15 -4057 ((-1274) $)) (-15 -2025 ((-567) $))))) (T -1271)) -((-1404 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-1404 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-4259 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3951 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-1853 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3456 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) (-2522 (*1 *1) (-5 *1 (-1271))) (-3481 (*1 *1 *1) (-5 *1 (-1271))) (-3481 (*1 *1 *2 *3) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1161)) (-5 *1 (-1271)))) (-3481 (*1 *1 *2 *3) (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1271)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1271)))) (-2107 (*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1271)))) (-1633 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1271)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1271)))) (-3186 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2093 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3275 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-4380 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2381 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1271)))) (-2381 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2381 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2381 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1731 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3560 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2556 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2425 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1704 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2751 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2751 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3935 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3935 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2884 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-4249 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3886 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1961 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-3930 (*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1977 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-4042 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1640 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2568 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1274)) (-5 *1 (-1271)))) (-1663 (*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1271)))) (-1663 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1271)))) (-1663 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-1271)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1271)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1271))))) -(-13 (-1102) (-10 -8 (-15 -1404 ((-381))) (-15 -1404 ((-381) (-381))) (-15 -4259 ((-381))) (-15 -4259 ((-381) (-381))) (-15 -3951 ((-381))) (-15 -3951 ((-381) (-381))) (-15 -1853 ((-381))) (-15 -1853 ((-381) (-381))) (-15 -3456 ((-381))) (-15 -3456 ((-381) (-381))) (-15 -2522 ($)) (-15 -3481 ($ $)) (-15 -3481 ($ (-1135 (-225)) (-1161))) (-15 -3481 ($ (-1135 (-225)) (-645 (-264)))) (-15 -2107 ((-1135 (-225)) $)) (-15 -2107 ($ $ (-1135 (-225)))) (-15 -1633 ((-1274) $ (-772) (-945 (-225)))) (-15 -3289 ((-645 (-264)) $)) (-15 -3289 ($ $ (-645 (-264)))) (-15 -3186 ((-1274) $ (-772) (-772))) (-15 -2093 ((-1274) $ (-923) (-923))) (-15 -3275 ((-1274) $ (-1161))) (-15 -4380 ((-1274) $ (-772) (-772) (-923) (-923))) (-15 -2381 ((-1274) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2381 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2381 ((-1274) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2381 ((-1274) $ (-567) (-567) (-381) (-381) (-381))) (-15 -2381 ((-1274) $ (-381) (-381))) (-15 -2381 ((-1274) $ (-381) (-381) (-381))) (-15 -1731 ((-1274) $ (-1161))) (-15 -3560 ((-1274) $ (-1161))) (-15 -2556 ((-1274) $ (-1161))) (-15 -2425 ((-1274) $ (-1161))) (-15 -1704 ((-1274) $ (-1161))) (-15 -2751 ((-1274) $ (-381) (-381))) (-15 -2751 ((-1274) $ (-567) (-567))) (-15 -3935 ((-1274) $ (-381))) (-15 -3935 ((-1274) $ (-381) (-381) (-381))) (-15 -2884 ((-1274) $ (-381) (-381))) (-15 -4249 ((-1274) $ (-1161))) (-15 -3724 ((-1274) $ (-381))) (-15 -3013 ((-1274) $ (-381))) (-15 -3886 ((-1274) $ (-1161))) (-15 -1961 ((-1274) $ (-1161))) (-15 -3930 ((-1274) $ (-1161))) (-15 -1977 ((-1274) $ (-381) (-381) (-381))) (-15 -4042 ((-1274) $ (-381))) (-15 -1640 ((-1274) $)) (-15 -2568 ((-1274) $ (-157) (-157))) (-15 -1663 ((-1161) $ (-1161))) (-15 -1663 ((-1161) $ (-1161) (-1161))) (-15 -1663 ((-1161) $ (-1161) (-645 (-1161)))) (-15 -4057 ((-1274) $)) (-15 -2025 ((-567) $)))) -((-3756 (((-645 (-1161)) (-645 (-1161))) 104) (((-645 (-1161))) 96)) (-4377 (((-645 (-1161))) 94)) (-2086 (((-645 (-923)) (-645 (-923))) 69) (((-645 (-923))) 64)) (-1798 (((-645 (-772)) (-645 (-772))) 61) (((-645 (-772))) 55)) (-3167 (((-1274)) 71)) (-3997 (((-923) (-923)) 87) (((-923)) 86)) (-2439 (((-923) (-923)) 85) (((-923)) 84)) (-4218 (((-875) (-875)) 81) (((-875)) 80)) (-2403 (((-225)) 91) (((-225) (-381)) 93)) (-3362 (((-923)) 88) (((-923) (-923)) 89)) (-3474 (((-923) (-923)) 83) (((-923)) 82)) (-3491 (((-875) (-875)) 75) (((-875)) 73)) (-2076 (((-875) (-875)) 77) (((-875)) 76)) (-2529 (((-875) (-875)) 79) (((-875)) 78))) -(((-1272) (-10 -7 (-15 -3491 ((-875))) (-15 -3491 ((-875) (-875))) (-15 -2076 ((-875))) (-15 -2076 ((-875) (-875))) (-15 -2529 ((-875))) (-15 -2529 ((-875) (-875))) (-15 -4218 ((-875))) (-15 -4218 ((-875) (-875))) (-15 -3474 ((-923))) (-15 -3474 ((-923) (-923))) (-15 -1798 ((-645 (-772)))) (-15 -1798 ((-645 (-772)) (-645 (-772)))) (-15 -2086 ((-645 (-923)))) (-15 -2086 ((-645 (-923)) (-645 (-923)))) (-15 -3167 ((-1274))) (-15 -3756 ((-645 (-1161)))) (-15 -3756 ((-645 (-1161)) (-645 (-1161)))) (-15 -4377 ((-645 (-1161)))) (-15 -2439 ((-923))) (-15 -3997 ((-923))) (-15 -2439 ((-923) (-923))) (-15 -3997 ((-923) (-923))) (-15 -3362 ((-923) (-923))) (-15 -3362 ((-923))) (-15 -2403 ((-225) (-381))) (-15 -2403 ((-225))))) (T -1272)) -((-2403 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1272)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1272)))) (-3362 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-3997 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-2439 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-4377 (*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))) (-3756 (*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))) (-3756 (*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))) (-3167 (*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1272)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1272)))) (-2086 (*1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1272)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1272)))) (-1798 (*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1272)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-3474 (*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) (-4218 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-4218 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-2529 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-2076 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) (-3491 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))) -(-10 -7 (-15 -3491 ((-875))) (-15 -3491 ((-875) (-875))) (-15 -2076 ((-875))) (-15 -2076 ((-875) (-875))) (-15 -2529 ((-875))) (-15 -2529 ((-875) (-875))) (-15 -4218 ((-875))) (-15 -4218 ((-875) (-875))) (-15 -3474 ((-923))) (-15 -3474 ((-923) (-923))) (-15 -1798 ((-645 (-772)))) (-15 -1798 ((-645 (-772)) (-645 (-772)))) (-15 -2086 ((-645 (-923)))) (-15 -2086 ((-645 (-923)) (-645 (-923)))) (-15 -3167 ((-1274))) (-15 -3756 ((-645 (-1161)))) (-15 -3756 ((-645 (-1161)) (-645 (-1161)))) (-15 -4377 ((-645 (-1161)))) (-15 -2439 ((-923))) (-15 -3997 ((-923))) (-15 -2439 ((-923) (-923))) (-15 -3997 ((-923) (-923))) (-15 -3362 ((-923) (-923))) (-15 -3362 ((-923))) (-15 -2403 ((-225) (-381))) (-15 -2403 ((-225)))) -((-2363 (((-471) (-645 (-645 (-945 (-225)))) (-645 (-264))) 22) (((-471) (-645 (-645 (-945 (-225))))) 21) (((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264))) 20)) (-4310 (((-1270) (-645 (-645 (-945 (-225)))) (-645 (-264))) 33) (((-1270) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264))) 32)) (-2504 (((-1270) (-471)) 48))) -(((-1273) (-10 -7 (-15 -2363 ((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -2363 ((-471) (-645 (-645 (-945 (-225)))))) (-15 -2363 ((-471) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4310 ((-1270) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -4310 ((-1270) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -2504 ((-1270) (-471))))) (T -1273)) -((-2504 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1270)) (-5 *1 (-1273)))) (-4310 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-1273)))) (-4310 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-1273)))) (-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1273)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-471)) (-5 *1 (-1273)))) (-2363 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1273))))) -(-10 -7 (-15 -2363 ((-471) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -2363 ((-471) (-645 (-645 (-945 (-225)))))) (-15 -2363 ((-471) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -4310 ((-1270) (-645 (-645 (-945 (-225)))) (-875) (-875) (-923) (-645 (-264)))) (-15 -4310 ((-1270) (-645 (-645 (-945 (-225)))) (-645 (-264)))) (-15 -2504 ((-1270) (-471)))) -((-2603 (($) 6)) (-2504 (((-863) $) 9))) -(((-1274) (-13 (-614 (-863)) (-10 -8 (-15 -2603 ($))))) (T -1274)) -((-2603 (*1 *1) (-5 *1 (-1274)))) -(-13 (-614 (-863)) (-10 -8 (-15 -2603 ($)))) -((-3064 (($ $ |#2|) 10))) -(((-1275 |#1| |#2|) (-10 -8 (-15 -3064 (|#1| |#1| |#2|))) (-1276 |#2|) (-365)) (T -1275)) -NIL -(-10 -8 (-15 -3064 (|#1| |#1| |#2|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2589 (((-134)) 33)) (-2504 (((-863) $) 12)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-2968 (((-112) $ $) 6)) (-3064 (($ $ |#1|) 34)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1276 |#1|) (-140) (-365)) (T -1276)) -((-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-365)))) (-2589 (*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) -(-13 (-718 |t#1|) (-10 -8 (-15 -3064 ($ $ |t#1|)) (-15 -2589 ((-134))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1102) . T)) -((-1841 (((-645 (-1213 |#1|)) (-1179) (-1213 |#1|)) 83)) (-2854 (((-1159 (-1159 (-954 |#1|))) (-1179) (-1159 (-954 |#1|))) 63)) (-4274 (((-1 (-1159 (-1213 |#1|)) (-1159 (-1213 |#1|))) (-772) (-1213 |#1|) (-1159 (-1213 |#1|))) 74)) (-2483 (((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772)) 65)) (-3830 (((-1 (-1175 (-954 |#1|)) (-954 |#1|)) (-1179)) 32)) (-3934 (((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772)) 64))) -(((-1277 |#1|) (-10 -7 (-15 -2483 ((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772))) (-15 -3934 ((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772))) (-15 -2854 ((-1159 (-1159 (-954 |#1|))) (-1179) (-1159 (-954 |#1|)))) (-15 -3830 ((-1 (-1175 (-954 |#1|)) (-954 |#1|)) (-1179))) (-15 -1841 ((-645 (-1213 |#1|)) (-1179) (-1213 |#1|))) (-15 -4274 ((-1 (-1159 (-1213 |#1|)) (-1159 (-1213 |#1|))) (-772) (-1213 |#1|) (-1159 (-1213 |#1|))))) (-365)) (T -1277)) -((-4274 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1213 *6)) (-5 *2 (-1 (-1159 *4) (-1159 *4))) (-5 *1 (-1277 *6)) (-5 *5 (-1159 *4)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-4 *5 (-365)) (-5 *2 (-645 (-1213 *5))) (-5 *1 (-1277 *5)) (-5 *4 (-1213 *5)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1 (-1175 (-954 *4)) (-954 *4))) (-5 *1 (-1277 *4)) (-4 *4 (-365)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-4 *5 (-365)) (-5 *2 (-1159 (-1159 (-954 *5)))) (-5 *1 (-1277 *5)) (-5 *4 (-1159 (-954 *5))))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1159 (-954 *4)) (-1159 (-954 *4)))) (-5 *1 (-1277 *4)) (-4 *4 (-365)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1159 (-954 *4)) (-1159 (-954 *4)))) (-5 *1 (-1277 *4)) (-4 *4 (-365))))) -(-10 -7 (-15 -2483 ((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772))) (-15 -3934 ((-1 (-1159 (-954 |#1|)) (-1159 (-954 |#1|))) (-772))) (-15 -2854 ((-1159 (-1159 (-954 |#1|))) (-1179) (-1159 (-954 |#1|)))) (-15 -3830 ((-1 (-1175 (-954 |#1|)) (-954 |#1|)) (-1179))) (-15 -1841 ((-645 (-1213 |#1|)) (-1179) (-1213 |#1|))) (-15 -4274 ((-1 (-1159 (-1213 |#1|)) (-1159 (-1213 |#1|))) (-772) (-1213 |#1|) (-1159 (-1213 |#1|))))) -((-4112 (((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 82)) (-2171 (((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 81))) -(((-1278 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2171 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -4112 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) (-351) (-1245 |#1|) (-1245 |#2|) (-412 |#2| |#3|)) (T -1278)) -((-4112 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-1278 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))) (-2171 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -4374 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5))))) -(-10 -7 (-15 -2171 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -4112 ((-2 (|:| -4374 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) -((-2487 (((-112) $ $) NIL)) (-2244 (((-1137) $) 11)) (-1686 (((-1137) $) 9)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 17) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1279) (-13 (-1085) (-10 -8 (-15 -1686 ((-1137) $)) (-15 -2244 ((-1137) $))))) (T -1279)) -((-1686 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279))))) -(-13 (-1085) (-10 -8 (-15 -1686 ((-1137) $)) (-15 -2244 ((-1137) $)))) -((-2487 (((-112) $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2388 (((-1137) $) 9)) (-2504 (((-863) $) 15) (($ (-1184)) NIL) (((-1184) $) NIL)) (-3858 (((-112) $ $) NIL)) (-2968 (((-112) $ $) NIL))) -(((-1280) (-13 (-1085) (-10 -8 (-15 -2388 ((-1137) $))))) (T -1280)) -((-2388 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1280))))) -(-13 (-1085) (-10 -8 (-15 -2388 ((-1137) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 58)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) NIL)) (-4384 (((-112) $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2504 (((-863) $) 81) (($ (-567)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-2214 (((-772)) NIL T CONST)) (-3008 (((-1274) (-772)) 16)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 37 T CONST)) (-1820 (($) 84 T CONST)) (-2968 (((-112) $ $) 87)) (-3064 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3054 (($ $) 89) (($ $ $) NIL)) (-3045 (($ $ $) 63)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-1281 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1051) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3064 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3008 ((-1274) (-772))))) (-1051) (-851) (-794) (-951 |#1| |#3| |#2|) (-645 |#2|) (-645 (-772)) (-772)) (T -1281)) -((-3064 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-851)) (-4 *4 (-794)) (-14 *6 (-645 *3)) (-5 *1 (-1281 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-951 *2 *4 *3)) (-14 *7 (-645 (-772))) (-14 *8 (-772)))) (-3008 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) (-14 *8 (-645 *5)) (-5 *2 (-1274)) (-5 *1 (-1281 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-951 *4 *6 *5)) (-14 *9 (-645 *3)) (-14 *10 *3)))) -(-13 (-1051) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3064 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3008 ((-1274) (-772))))) -((-2487 (((-112) $ $) NIL)) (-3956 (((-645 (-2 (|:| -4057 $) (|:| -1692 (-645 |#4|)))) (-645 |#4|)) NIL)) (-3148 (((-645 $) (-645 |#4|)) 96)) (-3783 (((-645 |#3|) $) NIL)) (-2643 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| |#1| (-559)))) (-1650 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2688 ((|#4| |#4| $) NIL)) (-2080 (((-2 (|:| |under| $) (|:| -1952 $) (|:| |upper| $)) $ |#3|) NIL)) (-1555 (((-112) $ (-772)) NIL)) (-1316 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3758 (($) NIL T CONST)) (-3731 (((-112) $) NIL (|has| |#1| (-559)))) (-4301 (((-112) $ $) NIL (|has| |#1| (-559)))) (-4089 (((-112) $ $) NIL (|has| |#1| (-559)))) (-3937 (((-112) $) NIL (|has| |#1| (-559)))) (-4069 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2160 (((-645 |#4|) (-645 |#4|) $) 28 (|has| |#1| (-559)))) (-3264 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-4275 (((-3 $ "failed") (-645 |#4|)) NIL)) (-3094 (($ (-645 |#4|)) NIL)) (-3447 (((-3 $ "failed") $) 78)) (-2903 ((|#4| |#4| $) 83)) (-3470 (($ $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-1695 (($ |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2642 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-4115 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1861 ((|#4| |#4| $) NIL)) (-2617 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4422))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4422))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3608 (((-2 (|:| -4057 (-645 |#4|)) (|:| -1692 (-645 |#4|))) $) NIL)) (-3468 (((-645 |#4|) $) NIL (|has| $ (-6 -4422)))) (-3463 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3066 ((|#3| $) 84)) (-3753 (((-112) $ (-772)) NIL)) (-4200 (((-645 |#4|) $) 32 (|has| $ (-6 -4422)))) (-2203 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102))))) (-4105 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-645 |#4|)) 38)) (-2021 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4423)))) (-4364 (($ (-1 |#4| |#4|) $) NIL)) (-3870 (((-645 |#3|) $) NIL)) (-2415 (((-112) |#3| $) NIL)) (-3421 (((-112) $ (-772)) NIL)) (-1812 (((-1161) $) NIL)) (-1725 (((-3 |#4| "failed") $) NIL)) (-2290 (((-645 |#4|) $) 54)) (-1737 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2763 ((|#4| |#4| $) 82)) (-4009 (((-112) $ $) 93)) (-3530 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1927 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3893 ((|#4| |#4| $) NIL)) (-3479 (((-1122) $) NIL)) (-3436 (((-3 |#4| "failed") $) 77)) (-2989 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2806 (((-3 $ "failed") $ |#4|) NIL)) (-1678 (($ $ |#4|) NIL)) (-1430 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-2913 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1102))))) (-2222 (((-112) $ $) NIL)) (-2319 (((-112) $) 75)) (-2973 (($) 46)) (-3380 (((-772) $) NIL)) (-3486 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4422)) (|has| |#4| (-1102)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3846 (($ $) NIL)) (-1322 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-2516 (($ (-645 |#4|)) NIL)) (-1582 (($ $ |#3|) NIL)) (-2746 (($ $ |#3|) NIL)) (-2012 (($ $) NIL)) (-3975 (($ $ |#3|) NIL)) (-2504 (((-863) $) NIL) (((-645 |#4|) $) 63)) (-3312 (((-772) $) NIL (|has| |#3| (-370)))) (-1603 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-645 |#4|)) 45)) (-3208 (((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-645 $) (-645 |#4|)) 74)) (-3858 (((-112) $ $) NIL)) (-3340 (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3262 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4205 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3450 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4422)))) (-3955 (((-645 |#3|) $) NIL)) (-3392 (((-112) |#3| $) NIL)) (-2968 (((-112) $ $) NIL)) (-2498 (((-772) $) NIL (|has| $ (-6 -4422))))) -(((-1282 |#1| |#2| |#3| |#4|) (-13 (-1212 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4105 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4105 ((-3 $ "failed") (-645 |#4|))) (-15 -1603 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1603 ((-3 $ "failed") (-645 |#4|))) (-15 -3208 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3208 ((-645 $) (-645 |#4|))))) (-559) (-794) (-851) (-1067 |#1| |#2| |#3|)) (T -1282)) -((-4105 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1282 *5 *6 *7 *8)))) (-4105 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1282 *3 *4 *5 *6)))) (-1603 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1282 *5 *6 *7 *8)))) (-1603 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1282 *3 *4 *5 *6)))) (-3208 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1282 *6 *7 *8 *9))) (-5 *1 (-1282 *6 *7 *8 *9)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1282 *4 *5 *6 *7))) (-5 *1 (-1282 *4 *5 *6 *7))))) -(-13 (-1212 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4105 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4105 ((-3 $ "failed") (-645 |#4|))) (-15 -1603 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1603 ((-3 $ "failed") (-645 |#4|))) (-15 -3208 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3208 ((-645 $) (-645 |#4|))))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2932 (((-3 $ "failed") $ $) 20)) (-3758 (($) 18 T CONST)) (-1377 (((-3 $ "failed") $) 37)) (-4384 (((-112) $) 35)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1283 |#1|) (-140) (-1051)) (T -1283)) -NIL -(-13 (-1051) (-111 |t#1| |t#1|) (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1053 |#1|) . T) ((-1058 |#1|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T)) -((-2487 (((-112) $ $) 67)) (-2684 (((-112) $) NIL)) (-3055 (((-645 |#1|) $) 52)) (-2003 (($ $ (-772)) 46)) (-2932 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $ (-772)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-3758 (($) NIL T CONST)) (-3917 (($ $ $) 70) (($ $ (-820 |#1|)) 56) (($ $ |#1|) 60)) (-4275 (((-3 (-820 |#1|) "failed") $) NIL)) (-3094 (((-820 |#1|) $) NIL)) (-1833 (($ $) 39)) (-1377 (((-3 $ "failed") $) NIL)) (-1540 (((-112) $) NIL)) (-4061 (($ $) NIL)) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3245 (($ (-820 |#1|) |#2|) 38)) (-2247 (($ $) 40)) (-2118 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 12)) (-1613 (((-820 |#1|) $) NIL)) (-4252 (((-820 |#1|) $) 41)) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-4040 (($ $ $) 69) (($ $ (-820 |#1|)) 58) (($ $ |#1|) 62)) (-3622 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1796 (((-820 |#1|) $) 35)) (-1809 ((|#2| $) 37)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-3380 (((-772) $) 43)) (-2622 (((-112) $) 47)) (-3562 ((|#2| $) NIL)) (-2504 (((-863) $) NIL) (($ (-820 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-567)) NIL)) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ (-820 |#1|)) NIL)) (-1344 ((|#2| $ $) 76) ((|#2| $ (-820 |#1|)) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 13 T CONST)) (-1820 (($) 19 T CONST)) (-1848 (((-645 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2968 (((-112) $ $) 44)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 28)) (** (($ $ (-772)) NIL) (($ $ (-923)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-820 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1284 |#1| |#2|) (-13 (-384 |#2| (-820 |#1|)) (-1290 |#1| |#2|)) (-851) (-1051)) (T -1284)) -NIL -(-13 (-384 |#2| (-820 |#1|)) (-1290 |#1| |#2|)) -((-2734 ((|#3| |#3| (-772)) 30)) (-4272 ((|#3| |#3| (-772)) 36)) (-1836 ((|#3| |#3| |#3| (-772)) 37))) -(((-1285 |#1| |#2| |#3|) (-10 -7 (-15 -4272 (|#3| |#3| (-772))) (-15 -2734 (|#3| |#3| (-772))) (-15 -1836 (|#3| |#3| |#3| (-772)))) (-13 (-1051) (-718 (-410 (-567)))) (-851) (-1290 |#2| |#1|)) (T -1285)) -((-1836 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4)))) (-2734 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4)))) (-4272 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4))))) -(-10 -7 (-15 -4272 (|#3| |#3| (-772))) (-15 -2734 (|#3| |#3| (-772))) (-15 -1836 (|#3| |#3| |#3| (-772)))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3055 (((-645 |#1|) $) 47)) (-2932 (((-3 $ "failed") $ $) 20)) (-1328 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-3758 (($) 18 T CONST)) (-3917 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-4275 (((-3 (-820 |#1|) "failed") $) 71)) (-3094 (((-820 |#1|) $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-1540 (((-112) $) 52)) (-4061 (($ $) 51)) (-4384 (((-112) $) 35)) (-3615 (((-112) $) 57)) (-3245 (($ (-820 |#1|) |#2|) 58)) (-2247 (($ $) 56)) (-2118 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-1613 (((-820 |#1|) $) 68)) (-4364 (($ (-1 |#2| |#2|) $) 48)) (-4040 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-2622 (((-112) $) 54)) (-3562 ((|#2| $) 53)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-1344 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1286 |#1| |#2|) (-140) (-851) (-1051)) (T -1286)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-820 *3)))) (-2118 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))) (-1344 (*1 *2 *1 *3) (-12 (-5 *3 (-820 *4)) (-4 *1 (-1286 *4 *2)) (-4 *4 (-851)) (-4 *2 (-1051)))) (-1344 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (-4040 (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-4040 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-4040 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-3917 (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-3245 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1286 *4 *3)) (-4 *3 (-1051)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-2247 (*1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2504 (*1 *1 *2) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-112)))) (-4061 (*1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) (-1328 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)) (-4 *3 (-172)))) (-1328 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-4 *4 (-172)))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-645 *3))))) -(-13 (-1051) (-1283 |t#2|) (-1040 (-820 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1613 ((-820 |t#1|) $)) (-15 -2118 ((-2 (|:| |k| (-820 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1344 (|t#2| $ (-820 |t#1|))) (-15 -1344 (|t#2| $ $)) (-15 -4040 ($ $ |t#1|)) (-15 -4040 ($ $ (-820 |t#1|))) (-15 -4040 ($ $ $)) (-15 -3917 ($ $ |t#1|)) (-15 -3917 ($ $ (-820 |t#1|))) (-15 -3917 ($ $ $)) (-15 -3245 ($ (-820 |t#1|) |t#2|)) (-15 -3615 ((-112) $)) (-15 -2247 ($ $)) (-15 -2504 ($ |t#1|)) (-15 -2622 ((-112) $)) (-15 -3562 (|t#2| $)) (-15 -1540 ((-112) $)) (-15 -4061 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1328 ($ $ $)) (-15 -1328 ($ $ (-772)))) |%noBranch|) (-15 -4364 ($ (-1 |t#2| |t#2|) $)) (-15 -3055 ((-645 |t#1|) $)) (IF (|has| |t#2| (-6 -4415)) (-6 -4415) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1040 #0#) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1283 |#2|) . T)) -((-2784 (((-112) $) 15)) (-3392 (((-112) $) 14)) (-1620 (($ $) 19) (($ $ (-772)) 21))) -(((-1287 |#1| |#2|) (-10 -8 (-15 -1620 (|#1| |#1| (-772))) (-15 -1620 (|#1| |#1|)) (-15 -2784 ((-112) |#1|)) (-15 -3392 ((-112) |#1|))) (-1288 |#2|) (-365)) (T -1287)) -NIL -(-10 -8 (-15 -1620 (|#1| |#1| (-772))) (-15 -1620 (|#1| |#1|)) (-15 -2784 ((-112) |#1|)) (-15 -3392 ((-112) |#1|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-2054 (((-2 (|:| -3414 $) (|:| -4409 $) (|:| |associate| $)) $) 47)) (-1987 (($ $) 46)) (-3342 (((-112) $) 44)) (-2784 (((-112) $) 104)) (-3261 (((-772)) 100)) (-2932 (((-3 $ "failed") $ $) 20)) (-3864 (($ $) 81)) (-1466 (((-421 $) $) 80)) (-4175 (((-112) $ $) 65)) (-3758 (($) 18 T CONST)) (-4275 (((-3 |#1| "failed") $) 111)) (-3094 ((|#1| $) 112)) (-2432 (($ $ $) 61)) (-1377 (((-3 $ "failed") $) 37)) (-2443 (($ $ $) 62)) (-3393 (((-2 (|:| -1344 (-645 $)) (|:| -2335 $)) (-645 $)) 57)) (-2559 (($ $ (-772)) 97 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2946 (((-112) $) 79)) (-3905 (((-834 (-923)) $) 94 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4384 (((-112) $) 35)) (-1865 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-1831 (($ $ $) 52) (($ (-645 $)) 51)) (-1812 (((-1161) $) 10)) (-1752 (($ $) 78)) (-3626 (((-112) $) 103)) (-3479 (((-1122) $) 11)) (-3857 (((-1175 $) (-1175 $) (-1175 $)) 50)) (-1870 (($ $ $) 54) (($ (-645 $)) 53)) (-3661 (((-421 $) $) 82)) (-1884 (((-834 (-923))) 101)) (-4266 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2478 (((-3 $ "failed") $ $) 48)) (-2897 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2465 (((-772) $) 64)) (-2401 (((-2 (|:| -3693 $) (|:| -2642 $)) $ $) 63)) (-2943 (((-3 (-772) "failed") $ $) 95 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2589 (((-134)) 109)) (-3380 (((-834 (-923)) $) 102)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-2318 (((-3 $ "failed") $) 93 (-2836 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-3269 (((-112) $ $) 45)) (-3392 (((-112) $) 105)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-1620 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2968 (((-112) $ $) 6)) (-3064 (($ $ $) 73) (($ $ |#1|) 108)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3533 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 10)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-2241 (($ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-2239 (((-112) $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-4202 (($ $ (-549)) NIL) (($ $ (-549) (-549)) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) NIL)) (-4163 (((-1259 |#1| |#2| |#3|) $) NIL)) (-4160 (((-3 (-1259 |#1| |#2| |#3|) "failed") $) NIL)) (-4161 (((-1259 |#1| |#2| |#3|) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4055 (((-549) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1259 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1180) #2#) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (((-3 (-410 (-549)) #2#) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365)))) (((-3 (-549) #2#) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))))) (-3576 (((-1259 |#1| |#2| |#3|) $) NIL) (((-1180) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (((-410 (-549)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365)))) (((-549) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))))) (-4162 (($ $) NIL) (($ (-549) $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-1259 |#1| |#2| |#3|)) (-691 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-1259 |#1| |#2| |#3|))) (|:| |vec| (-1269 (-1259 |#1| |#2| |#3|)))) (-691 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-641 (-549))) (|has| |#1| (-365)))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-641 (-549))) (|has| |#1| (-365))))) (-3890 (((-3 $ "failed") $) NIL)) (-4159 (((-410 (-949 |#1|)) $ (-549)) NIL (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) NIL (|has| |#1| (-560)))) (-3395 (($) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3606 (((-112) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-889 (-380))) (|has| |#1| (-365)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-889 (-549))) (|has| |#1| (-365))))) (-4203 (((-549) $) NIL) (((-549) $ (-549)) NIL)) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL (|has| |#1| (-365)))) (-3399 (((-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3868 (((-3 $ "failed") $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))))) (-3607 (((-112) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-4208 (($ $ (-922)) NIL)) (-4247 (($ (-1 |#1| (-549)) $) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-549)) 18) (($ $ (-1085) (-549)) NIL) (($ $ (-643 (-1085)) (-643 (-549))) NIL)) (-2934 (($ $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3260 (($ $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4210 (($ (-549) (-1259 |#1| |#2| |#3|)) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 27 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 28 (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1154)) (|has| |#1| (-365))) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3532 (($ $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3534 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-549)) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1180) (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-517 (-1180) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-517 (-1180) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-294 (-1259 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-294 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-643 (-1259 |#1| |#2| |#3|)) (-643 (-1259 |#1| |#2| |#3|))) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-310 (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) NIL) (($ $ $) NIL (|has| (-549) (-1115))) (($ $ (-1259 |#1| |#2| |#3|)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-287 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) (-773)) NIL (|has| |#1| (-365))) (($ $ (-1266 |#2|)) 26) (($ $ (-773)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 25 (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-3396 (($ $) NIL (|has| |#1| (-365)))) (-3398 (((-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-4380 (((-549) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4402 (((-538) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-616 (-538))) (|has| |#1| (-365)))) (((-380) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-893 (-380)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-616 (-893 (-380)))) (|has| |#1| (-365)))) (((-893 (-549)) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-616 (-893 (-549)))) (|has| |#1| (-365))))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1259 |#1| |#2| |#3|)) NIL) (($ (-1266 |#2|)) 24) (($ (-1180)) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-1180))) (|has| |#1| (-365)))) (($ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560)))) (($ (-410 (-549))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-1041 (-549))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-549))))))) (-4109 ((|#1| $ (-549)) NIL)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 11)) (-3535 (((-1259 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-913)) (|has| |#1| (-365))) (|has| |#1| (-560))))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3807 (($ $) NIL (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))))) (-3510 (($) 20 T CONST)) (-3067 (($) 15 T CONST)) (-3072 (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) (-773)) NIL (|has| |#1| (-365))) (($ $ (-773)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-2966 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-2967 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3455 (((-112) $ $) NIL)) (-3087 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-3088 (((-112) $ $) NIL (-3960 (-12 (|has| (-1259 |#1| |#2| |#3|) (-822)) (|has| |#1| (-365))) (-12 (|has| (-1259 |#1| |#2| |#3|) (-852)) (|has| |#1| (-365)))))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1259 |#1| |#2| |#3|) (-1259 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 22)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1259 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1259 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1229 |#1| |#2| |#3|) (-13 (-1233 |#1| (-1259 |#1| |#2| |#3|)) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1229)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) +(-13 (-1233 |#1| (-1259 |#1| |#2| |#3|)) (-10 -8 (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) +((-4390 (((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|)) 23))) +(((-1230 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4390 ((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|)))) (-1052) (-1052) (-1180) (-1180) |#1| |#2|) (T -1230)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5 *7 *9)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-14 *7 (-1180)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1229 *6 *8 *10)) (-5 *1 (-1230 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1180))))) +(-10 -7 (-15 -4390 ((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-549)) 110) (($ $ (-549) (-549)) 109)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 174 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 175 (|has| |#1| (-365)))) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 185)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 169 (|has| |#1| (-365)))) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4159 (((-410 (-949 |#1|)) $ (-549)) 183 (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) 182 (|has| |#1| (-560)))) (-2963 (($ $ $) 168 (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 163 (|has| |#1| (-365)))) (-4155 (((-112) $) 176 (|has| |#1| (-365)))) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-549) $) 112) (((-549) $ (-549)) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 113)) (-4247 (($ (-1 |#1| (-549)) $) 184)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 172 (|has| |#1| (-365)))) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-549)) 73) (($ $ (-1085) (-549)) 88) (($ $ (-643 (-1085)) (-643 (-549))) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-2069 (($ (-643 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 177 (|has| |#1| (-365)))) (-4244 (($ $) 181 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 180 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4164 (((-408 $) $) 173 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 170 (|has| |#1| (-365)))) (-4200 (($ $ (-549)) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 164 (|has| |#1| (-365)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-549)))))) (-1752 (((-773) $) 166 (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) 116) (($ $ $) 93 (|has| (-549) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 167 (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-4380 (((-549) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560)))) (-4109 ((|#1| $ (-549)) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-1231 |#1|) (-140) (-1052)) (T -1231)) +((-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1052)) (-4 *1 (-1231 *3)))) (-4247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1231 *3)) (-4 *3 (-1052)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1231 *4)) (-4 *4 (-1052)) (-4 *4 (-560)) (-5 *2 (-410 (-949 *4))))) (-4159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-4 *1 (-1231 *4)) (-4 *4 (-1052)) (-4 *4 (-560)) (-5 *2 (-410 (-949 *4))))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) (-4244 (*1 *1 *1 *2) (-3960 (-12 (-5 *2 (-1180)) (-4 *1 (-1231 *3)) (-4 *3 (-1052)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) (-4 *3 (-38 (-410 (-549)))))) (-12 (-5 *2 (-1180)) (-4 *1 (-1231 *3)) (-4 *3 (-1052)) (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549))))))))) +(-13 (-1248 |t#1| (-549)) (-10 -8 (-15 -4250 ($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |t#1|))))) (-15 -4247 ($ (-1 |t#1| (-549)) $)) (IF (|has| |t#1| (-560)) (PROGN (-15 -4159 ((-410 (-949 |t#1|)) $ (-549))) (-15 -4159 ((-410 (-949 |t#1|)) $ (-549) (-549)))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (IF (|has| |t#1| (-15 -4244 (|t#1| |t#1| (-1180)))) (IF (|has| |t#1| (-15 -3485 ((-643 (-1180)) |t#1|))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1205)) (IF (|has| |t#1| (-963)) (IF (|has| |t#1| (-29 (-549))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1005)) (-6 (-1205))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-549)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-549) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 $ $) |has| (-549) (-1115)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-648 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-719 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) ((-976 |#1| #1# (-1085)) . T) ((-924) |has| |#1| (-365)) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1054 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1224) |has| |#1| (-365)) ((-1248 |#1| #1#) . T)) +((-3608 (((-112) $) 12)) (-3577 (((-3 |#3| #1="failed") $) 17) (((-3 (-1180) #1#) $) NIL) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) NIL)) (-3576 ((|#3| $) 14) (((-1180) $) NIL) (((-410 (-549)) $) NIL) (((-549) $) NIL))) +(((-1232 |#1| |#2| |#3|) (-10 -8 (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -3577 ((-3 |#3| #1#) |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3608 ((-112) |#1|))) (-1233 |#2| |#3|) (-1052) (-1262 |#2|)) (T -1232)) +NIL +(-10 -8 (-15 -3577 ((-3 (-549) #1="failed") |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3577 ((-3 (-1180) #1#) |#1|)) (-15 -3576 ((-1180) |#1|)) (-15 -3577 ((-3 |#3| #1#) |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3608 ((-112) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3533 ((|#2| $) 242 (-3256 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-549)) 110) (($ $ (-549) (-549)) 109)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 117)) (-4163 ((|#2| $) 278)) (-4160 (((-3 |#2| "failed") $) 274)) (-4161 ((|#2| $) 275)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-3110 (((-408 (-1174 $)) (-1174 $)) 251 (-3256 (|has| |#2| (-913)) (|has| |#1| (-365))))) (-4206 (($ $) 174 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 175 (|has| |#1| (-365)))) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 248 (-3256 (|has| |#2| (-913)) (|has| |#1| (-365))))) (-1753 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4055 (((-549) $) 260 (-3256 (|has| |#2| (-822)) (|has| |#1| (-365))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 185)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#2| #2="failed") $) 281) (((-3 (-549) #2#) $) 271 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#1| (-365)))) (((-3 (-410 (-549)) #2#) $) 269 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#1| (-365)))) (((-3 (-1180) #2#) $) 253 (-3256 (|has| |#2| (-1041 (-1180))) (|has| |#1| (-365))))) (-3576 ((|#2| $) 282) (((-549) $) 270 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#1| (-365)))) (((-410 (-549)) $) 268 (-3256 (|has| |#2| (-1041 (-549))) (|has| |#1| (-365)))) (((-1180) $) 252 (-3256 (|has| |#2| (-1041 (-1180))) (|has| |#1| (-365))))) (-4162 (($ $) 277) (($ (-549) $) 276)) (-2964 (($ $ $) 169 (|has| |#1| (-365)))) (-4391 (($ $) 72)) (-2427 (((-691 |#2|) (-691 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 230 (-3256 (|has| |#2| (-641 (-549))) (|has| |#1| (-365)))) (((-691 (-549)) (-691 $)) 229 (-3256 (|has| |#2| (-641 (-549))) (|has| |#1| (-365))))) (-3890 (((-3 $ "failed") $) 37)) (-4159 (((-410 (-949 |#1|)) $ (-549)) 183 (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) 182 (|has| |#1| (-560)))) (-3395 (($) 244 (-3256 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2963 (($ $ $) 168 (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 163 (|has| |#1| (-365)))) (-4155 (((-112) $) 176 (|has| |#1| (-365)))) (-3606 (((-112) $) 258 (-3256 (|has| |#2| (-822)) (|has| |#1| (-365))))) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 236 (-3256 (|has| |#2| (-889 (-380))) (|has| |#1| (-365)))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 235 (-3256 (|has| |#2| (-889 (-549))) (|has| |#1| (-365))))) (-4203 (((-549) $) 112) (((-549) $ (-549)) 111)) (-2573 (((-112) $) 35)) (-3397 (($ $) 240 (|has| |#1| (-365)))) (-3399 ((|#2| $) 238 (|has| |#1| (-365)))) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-3868 (((-3 $ "failed") $) 272 (-3256 (|has| |#2| (-1154)) (|has| |#1| (-365))))) (-3607 (((-112) $) 259 (-3256 (|has| |#2| (-822)) (|has| |#1| (-365))))) (-4208 (($ $ (-922)) 113)) (-4247 (($ (-1 |#1| (-549)) $) 184)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) 172 (|has| |#1| (-365)))) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-549)) 73) (($ $ (-1085) (-549)) 88) (($ $ (-643 (-1085)) (-643 (-549))) 87)) (-2934 (($ $ $) 262 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-3260 (($ $ $) 263 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-4390 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-2069 (($ (-643 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-4210 (($ (-549) |#2|) 279)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 177 (|has| |#1| (-365)))) (-4244 (($ $) 181 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 180 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3869 (($) 273 (-3256 (|has| |#2| (-1154)) (|has| |#1| (-365))) CONST)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-3532 (($ $) 243 (-3256 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3534 ((|#2| $) 246 (-3256 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3108 (((-408 (-1174 $)) (-1174 $)) 249 (-3256 (|has| |#2| (-913)) (|has| |#1| (-365))))) (-3109 (((-408 (-1174 $)) (-1174 $)) 250 (-3256 (|has| |#2| (-913)) (|has| |#1| (-365))))) (-4164 (((-408 $) $) 173 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 170 (|has| |#1| (-365)))) (-4200 (($ $ (-549)) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 164 (|has| |#1| (-365)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1180) |#2|) 223 (-3256 (|has| |#2| (-517 (-1180) |#2|)) (|has| |#1| (-365)))) (($ $ (-643 (-1180)) (-643 |#2|)) 222 (-3256 (|has| |#2| (-517 (-1180) |#2|)) (|has| |#1| (-365)))) (($ $ (-643 (-294 |#2|))) 221 (-3256 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-294 |#2|)) 220 (-3256 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-3256 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-643 |#2|) (-643 |#2|)) 218 (-3256 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-1752 (((-773) $) 166 (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) 116) (($ $ $) 93 (|has| (-549) (-1115))) (($ $ |#2|) 217 (-3256 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 167 (|has| |#1| (-365)))) (-4242 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-773)) 227 (|has| |#1| (-365))) (($ $ (-773)) 96 (-3960 (-3256 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 94 (-3960 (-3256 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) 101 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) 100 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) 99 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) 98 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-3396 (($ $) 241 (|has| |#1| (-365)))) (-3398 ((|#2| $) 239 (|has| |#1| (-365)))) (-4380 (((-549) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-4402 (((-225) $) 257 (-3256 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-380) $) 256 (-3256 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-538) $) 255 (-3256 (|has| |#2| (-616 (-538))) (|has| |#1| (-365)))) (((-893 (-380)) $) 234 (-3256 (|has| |#2| (-616 (-893 (-380)))) (|has| |#1| (-365)))) (((-893 (-549)) $) 233 (-3256 (|has| |#2| (-616 (-893 (-549)))) (|has| |#1| (-365))))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 247 (-3256 (-3256 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#1| (-365))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1180)) 254 (-3256 (|has| |#2| (-1041 (-1180))) (|has| |#1| (-365)))) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560)))) (-4109 ((|#1| $ (-549)) 71)) (-3105 (((-3 $ "failed") $) 60 (-3960 (-3256 (-3960 (|has| |#2| (-145)) (-3256 (|has| $ (-145)) (|has| |#2| (-913)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3535 ((|#2| $) 245 (-3256 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3807 (($ $) 261 (-3256 (|has| |#2| (-822)) (|has| |#1| (-365))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-773)) 225 (|has| |#1| (-365))) (($ $ (-773)) 97 (-3960 (-3256 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 95 (-3960 (-3256 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) 105 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180) (-773)) 104 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-643 (-1180))) 103 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))))) (($ $ (-1180)) 102 (-3960 (-3256 (|has| |#2| (-903 (-1180))) (|has| |#1| (-365))) (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))))) (-2966 (((-112) $ $) 265 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-2967 (((-112) $ $) 266 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-3455 (((-112) $ $) 6)) (-3087 (((-112) $ $) 264 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-3088 (((-112) $ $) 267 (-3256 (|has| |#2| (-852)) (|has| |#1| (-365))))) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-1233 |#1| |#2|) (-140) (-1052) (-1262 |t#1|)) (T -1233)) +((-4380 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1262 *3)) (-5 *2 (-549)))) (-4210 (*1 *1 *2 *3) (-12 (-5 *2 (-549)) (-4 *4 (-1052)) (-4 *1 (-1233 *4 *3)) (-4 *3 (-1262 *4)))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3)))) (-4162 (*1 *1 *1) (-12 (-4 *1 (-1233 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1262 *2)))) (-4162 (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-1233 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1262 *3)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3))))) +(-13 (-1231 |t#1|) (-1041 |t#2|) (-618 |t#2|) (-10 -8 (-15 -4210 ($ (-549) |t#2|)) (-15 -4380 ((-549) $)) (-15 -4163 (|t#2| $)) (-15 -4162 ($ $)) (-15 -4162 ($ (-549) $)) (-15 -4161 (|t#2| $)) (-15 -4160 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-994 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-549)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-618 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 #3=(-1180)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))) ((-618 |#1|) |has| |#1| (-172)) ((-618 |#2|) . T) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-616 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-616 (-380)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-616 (-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-549))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -3960 (|has| |#1| (-15 * (|#1| (-549) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-549) (-1115)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-403 |#2|) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-517 (-1180) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1180) |#2|))) ((-517 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-648 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 |#2|) |has| |#1| (-365)) ((-648 $) . T) ((-650 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-650 |#1|) . T) ((-650 |#2|) |has| |#1| (-365)) ((-650 $) . T) ((-642 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-642 |#1|) |has| |#1| (-172)) ((-642 |#2|) |has| |#1| (-365)) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-641 (-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-641 (-549)))) ((-641 |#2|) |has| |#1| (-365)) ((-719 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-719 |#1|) |has| |#1| (-172)) ((-719 |#2|) |has| |#1| (-365)) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-728) . T) ((-793) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-794) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-796) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-799) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-822) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-850) -12 (|has| |#1| (-365)) (|has| |#2| (-822))) ((-852) -3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-852))) (-12 (|has| |#1| (-365)) (|has| |#2| (-822)))) ((-903 (-1180)) -3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180))))) ((-889 (-380)) -12 (|has| |#1| (-365)) (|has| |#2| (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-889 (-549)))) ((-887 |#2|) |has| |#1| (-365)) ((-913) -12 (|has| |#1| (-365)) (|has| |#2| (-913))) ((-976 |#1| #1# (-1085)) . T) ((-924) |has| |#1| (-365)) ((-994 |#2|) |has| |#1| (-365)) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1023) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-1041 (-410 (-549))) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549)))) ((-1041 (-549)) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549)))) ((-1041 #3#) -12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))) ((-1041 |#2|) . T) ((-1054 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1054 |#1|) . T) ((-1054 |#2|) |has| |#1| (-365)) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1059 |#1|) . T) ((-1059 |#2|) |has| |#1| (-365)) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) -12 (|has| |#1| (-365)) (|has| |#2| (-1154))) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1219) |has| |#1| (-365)) ((-1224) |has| |#1| (-365)) ((-1231 |#1|) . T) ((-1248 |#1| #1#) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 81)) (-3533 ((|#2| $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-308))))) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 100)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-549)) 109) (($ $ (-549) (-549)) 111)) (-4205 (((-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|))) $) 51)) (-4163 ((|#2| $) 11)) (-4160 (((-3 |#2| "failed") $) 35)) (-4161 ((|#2| $) 36)) (-3915 (($ $) 206 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 182 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-913))))) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-913))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) 202 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 178 (|has| |#1| (-38 (-410 (-549)))))) (-4055 (((-549) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-822))))) (-4250 (($ (-1157 (-2 (|:| |k| (-549)) (|:| |c| |#1|)))) 59)) (-3917 (($ $) 210 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 186 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) 157) (((-3 (-549) #2#) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) (((-3 (-410 (-549)) #2#) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) (((-3 (-1180) #2#) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))))) (-3576 ((|#2| $) 156) (((-549) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) (((-410 (-549)) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-549))))) (((-1180) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180)))))) (-4162 (($ $) 65) (($ (-549) $) 28)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 |#2|) (-691 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-641 (-549))))) (((-691 (-549)) (-691 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-641 (-549)))))) (-3890 (((-3 $ "failed") $) 88)) (-4159 (((-410 (-949 |#1|)) $ (-549)) 124 (|has| |#1| (-560))) (((-410 (-949 |#1|)) $ (-549) (-549)) 126 (|has| |#1| (-560)))) (-3395 (($) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-548))))) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3606 (((-112) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-822))))) (-3293 (((-112) $) 74)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-889 (-549)))))) (-4203 (((-549) $) 105) (((-549) $ (-549)) 107)) (-2573 (((-112) $) NIL)) (-3397 (($ $) NIL (|has| |#1| (-365)))) (-3399 ((|#2| $) 165 (|has| |#1| (-365)))) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3868 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1154))))) (-3607 (((-112) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-822))))) (-4208 (($ $ (-922)) 148)) (-4247 (($ (-1 |#1| (-549)) $) 144)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-549)) 20) (($ $ (-1085) (-549)) NIL) (($ $ (-643 (-1085)) (-643 (-549))) NIL)) (-2934 (($ $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-3260 (($ $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-4390 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-4374 (($ $) 176 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4210 (($ (-549) |#2|) 10)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 159 (|has| |#1| (-365)))) (-4244 (($ $) 228 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 233 (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))))))) (-3869 (($) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1154))) CONST)) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3532 (($ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-308))))) (-3534 ((|#2| $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-548))))) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-913))))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-913))))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-549)) 138)) (-3889 (((-3 $ "failed") $ $) 128 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) 174 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-549))))) (($ $ (-1180) |#2|) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1180) |#2|)))) (($ $ (-643 (-1180)) (-643 |#2|)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1180) |#2|)))) (($ $ (-643 (-294 |#2|))) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|)))) (($ $ (-643 |#2|) (-643 |#2|)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-549)) 103) (($ $ $) 90 (|has| (-549) (-1115))) (($ $ |#2|) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#1| (-365))) (($ $ (-773)) NIL (-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) 149 (-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-1180)) 153 (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180))))))) (-3396 (($ $) NIL (|has| |#1| (-365)))) (-3398 ((|#2| $) 166 (|has| |#1| (-365)))) (-4380 (((-549) $) 12)) (-3918 (($ $) 212 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 188 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 208 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 184 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 204 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 180 (|has| |#1| (-38 (-410 (-549)))))) (-4402 (((-225) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1023)))) (((-380) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1023)))) (((-538) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-616 (-538))))) (((-893 (-380)) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-616 (-893 (-549))))))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-365)) (|has| |#2| (-913))))) (-3292 (($ $) 136)) (-4378 (((-865) $) 267) (($ (-549)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1180)) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-1041 (-1180))))) (($ (-410 (-549))) 169 (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-549)) 85)) (-3105 (((-3 $ "failed") $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#1| (-365)) (|has| |#2| (-913))) (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145)))))) (-3530 (((-773)) 155 T CONST)) (-4204 ((|#1| $) 102)) (-3535 ((|#2| $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-548))))) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 218 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 194 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 214 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 190 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 222 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 198 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-549)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-549)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 224 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 200 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 220 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 196 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 216 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 192 (|has| |#1| (-38 (-410 (-549)))))) (-3807 (($ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-822))))) (-3510 (($) 13 T CONST)) (-3067 (($) 18 T CONST)) (-3072 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-773)) NIL (|has| |#1| (-365))) (($ $ (-773)) NIL (-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $) NIL (-3960 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-549) |#1|))))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-1180) (-773)) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-643 (-1180))) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180)))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-549) |#1|)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-903 (-1180))))))) (-2966 (((-112) $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-2967 (((-112) $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-3455 (((-112) $ $) 72)) (-3087 (((-112) $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-3088 (((-112) $ $) NIL (-12 (|has| |#1| (-365)) (|has| |#2| (-852))))) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-4269 (($ $) 227) (($ $ $) 78)) (-4271 (($ $ $) 76)) (** (($ $ (-922)) NIL) (($ $ (-773)) 84) (($ $ (-549)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 172 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1234 |#1| |#2|) (-1233 |#1| |#2|) (-1052) (-1262 |#1|)) (T -1234)) +NIL +(-1233 |#1| |#2|) +((-4166 (((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112)) 13)) (-4165 (((-408 |#1|) |#1|) 26)) (-4164 (((-408 |#1|) |#1|) 24))) +(((-1235 |#1|) (-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1|)) (-15 -4166 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112)))) (-1245 (-549))) (T -1235)) +((-4166 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549))))) (-4165 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549))))) (-4164 (*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549)))))) +(-10 -7 (-15 -4164 ((-408 |#1|) |#1|)) (-15 -4165 ((-408 |#1|) |#1|)) (-15 -4166 ((-2 (|:| |contp| (-549)) (|:| -1954 (-643 (-2 (|:| |irr| |#1|) (|:| -2558 (-549)))))) |#1| (-112)))) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4168 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4390 (((-1157 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-850)))) (-3649 ((|#1| $) 15)) (-3651 ((|#1| $) 12)) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-3647 (((-549) $) 19)) (-3648 ((|#1| $) 18)) (-3650 ((|#1| $) 13)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4167 (((-112) $) 17)) (-4395 (((-1157 |#1|) $) 41 (|has| |#1| (-850))) (((-1157 |#1|) (-643 $)) 40 (|has| |#1| (-850)))) (-4402 (($ |#1|) 26)) (-4378 (($ (-1092 |#1|)) 25) (((-865) $) 37 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4169 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3652 (($ $ (-549)) 14)) (-3455 (((-112) $ $) 30 (|has| |#1| (-1104))))) +(((-1236 |#1|) (-13 (-1097 |#1|) (-10 -8 (-15 -4169 ($ |#1|)) (-15 -4168 ($ |#1|)) (-15 -4378 ($ (-1092 |#1|))) (-15 -4167 ((-112) $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-1098 |#1| (-1157 |#1|))) |%noBranch|))) (-1219)) (T -1236)) +((-4169 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))) (-4168 (*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219)))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-1219)) (-5 *1 (-1236 *3)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1219))))) +(-13 (-1097 |#1|) (-10 -8 (-15 -4169 ($ |#1|)) (-15 -4168 ($ |#1|)) (-15 -4378 ($ (-1092 |#1|))) (-15 -4167 ((-112) $)) (IF (|has| |#1| (-1104)) (-6 (-1104)) |%noBranch|) (IF (|has| |#1| (-850)) (-6 (-1098 |#1| (-1157 |#1|))) |%noBranch|))) +((-4390 (((-1157 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 23 (|has| |#1| (-850))) (((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|)) 17))) +(((-1237 |#1| |#2|) (-10 -7 (-15 -4390 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (IF (|has| |#1| (-850)) (-15 -4390 ((-1157 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) |%noBranch|)) (-1219) (-1219)) (T -1237)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-850)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1157 *6)) (-5 *1 (-1237 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1236 *6)) (-5 *1 (-1237 *5 *6))))) +(-10 -7 (-15 -4390 ((-1236 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) (IF (|has| |#1| (-850)) (-15 -4390 ((-1157 |#2|) (-1 |#2| |#1|) (-1236 |#1|))) |%noBranch|)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4198 (((-1269 |#2|) $ (-773)) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4196 (($ (-1174 |#2|)) NIL)) (-3487 (((-1174 $) $ (-1085)) NIL) (((-1174 |#2|) $) NIL)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-560)))) (-2241 (($ $) NIL (|has| |#2| (-560)))) (-2239 (((-112) $) NIL (|has| |#2| (-560)))) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4187 (($ $ $) NIL (|has| |#2| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4206 (($ $) NIL (|has| |#2| (-455)))) (-4401 (((-408 $) $) NIL (|has| |#2| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-1753 (((-112) $ $) NIL (|has| |#2| (-365)))) (-4192 (($ $ (-773)) NIL)) (-4191 (($ $ (-773)) NIL)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-455)))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| #2="failed") $) NIL) (((-3 (-410 (-549)) #2#) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) NIL (|has| |#2| (-1041 (-549)))) (((-3 (-1085) #2#) $) NIL)) (-3576 ((|#2| $) NIL) (((-410 (-549)) $) NIL (|has| |#2| (-1041 (-410 (-549))))) (((-549) $) NIL (|has| |#2| (-1041 (-549)))) (((-1085) $) NIL)) (-4188 (($ $ $ (-1085)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2964 (($ $ $) NIL (|has| |#2| (-365)))) (-4391 (($ $) NIL)) (-2427 (((-691 (-549)) (-691 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) NIL (|has| |#2| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#2|)) (|:| |vec| (-1269 |#2|))) (-691 $) (-1269 $)) NIL) (((-691 |#2|) (-691 $)) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-2963 (($ $ $) NIL (|has| |#2| (-365)))) (-4190 (($ $ $) NIL)) (-4185 (($ $ $) NIL (|has| |#2| (-560)))) (-4184 (((-2 (|:| -4386 |#2|) (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#2| (-365)))) (-3926 (($ $) NIL (|has| |#2| (-455))) (($ $ (-1085)) NIL (|has| |#2| (-455)))) (-3221 (((-643 $) $) NIL)) (-4155 (((-112) $) NIL (|has| |#2| (-913)))) (-1769 (($ $ |#2| (-773) $) NIL)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) NIL (-12 (|has| (-1085) (-889 (-380))) (|has| |#2| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) NIL (-12 (|has| (-1085) (-889 (-549))) (|has| |#2| (-889 (-549)))))) (-4203 (((-773) $ $) NIL (|has| |#2| (-560)))) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3868 (((-3 $ "failed") $) NIL (|has| |#2| (-1154)))) (-3488 (($ (-1174 |#2|) (-1085)) NIL) (($ (-1174 $) (-1085)) NIL)) (-4208 (($ $ (-773)) NIL)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) NIL (|has| |#2| (-365)))) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-3294 (($ |#2| (-773)) 18) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) NIL) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-1770 (($ (-1 (-773) (-773)) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-4197 (((-1174 |#2|) $) NIL)) (-3486 (((-3 (-1085) #4="failed") $) NIL)) (-3295 (($ $) NIL)) (-3594 ((|#2| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-3663 (((-1162) $) NIL)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) NIL)) (-3226 (((-3 (-643 $) #4#) $) NIL)) (-3225 (((-3 (-643 $) #4#) $) NIL)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) NIL)) (-4244 (($ $) NIL (|has| |#2| (-38 (-410 (-549)))))) (-3869 (($) NIL (|has| |#2| (-1154)) CONST)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 ((|#2| $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#2| (-455)))) (-3564 (($ (-643 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-4170 (($ $ (-773) |#2| $) NIL)) (-3108 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) NIL (|has| |#2| (-913)))) (-4164 (((-408 $) $) NIL (|has| |#2| (-913)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#2| (-365)))) (-3889 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-560))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#2| (-365)))) (-4199 (($ $ (-643 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#2|) NIL) (($ $ (-643 (-1085)) (-643 |#2|)) NIL) (($ $ (-1085) $) NIL) (($ $ (-643 (-1085)) (-643 $)) NIL)) (-1752 (((-773) $) NIL (|has| |#2| (-365)))) (-4231 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#2| (-560))) ((|#2| (-410 $) |#2|) NIL (|has| |#2| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#2| (-560)))) (-4195 (((-3 $ #5="failed") $ (-773)) NIL)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-365)))) (-4189 (($ $ (-1085)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-4242 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4380 (((-773) $) NIL) (((-773) $ (-1085)) NIL) (((-643 (-773)) $ (-643 (-1085))) NIL)) (-4402 (((-893 (-380)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#2| (-616 (-893 (-380)))))) (((-893 (-549)) $) NIL (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#2| (-616 (-893 (-549)))))) (((-538) $) NIL (-12 (|has| (-1085) (-616 (-538))) (|has| |#2| (-616 (-538)))))) (-3220 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-1085)) NIL (|has| |#2| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-913))))) (-4186 (((-3 $ #5#) $ $) NIL (|has| |#2| (-560))) (((-3 (-410 $) #5#) (-410 $) $) NIL (|has| |#2| (-560)))) (-4378 (((-865) $) 13) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-1085)) NIL) (($ (-1266 |#1|)) 20) (($ (-410 (-549))) NIL (-3960 (|has| |#2| (-38 (-410 (-549)))) (|has| |#2| (-1041 (-410 (-549)))))) (($ $) NIL (|has| |#2| (-560)))) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-773)) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3105 (((-3 $ #1#) $) NIL (-3960 (-12 (|has| $ (-145)) (|has| |#2| (-913))) (|has| |#2| (-145))))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| |#2| (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL (|has| |#2| (-560)))) (-3510 (($) NIL T CONST)) (-3067 (($) 14 T CONST)) (-3072 (($ $ (-1085)) NIL) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) NIL) (($ $ (-1180)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1180) (-773)) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) NIL (|has| |#2| (-903 (-1180)))) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-410 (-549))) NIL (|has| |#2| (-38 (-410 (-549))))) (($ (-410 (-549)) $) NIL (|has| |#2| (-38 (-410 (-549))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1238 |#1| |#2|) (-13 (-1245 |#2|) (-618 (-1266 |#1|)) (-10 -8 (-15 -4170 ($ $ (-773) |#2| $)))) (-1180) (-1052)) (T -1238)) +((-4170 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1238 *4 *3)) (-14 *4 (-1180)) (-4 *3 (-1052))))) +(-13 (-1245 |#2|) (-618 (-1266 |#1|)) (-10 -8 (-15 -4170 ($ $ (-773) |#2| $)))) +((-4390 (((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|)) 15))) +(((-1239 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 ((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|)))) (-1180) (-1052) (-1180) (-1052)) (T -1239)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1238 *5 *6)) (-14 *5 (-1180)) (-4 *6 (-1052)) (-4 *8 (-1052)) (-5 *2 (-1238 *7 *8)) (-5 *1 (-1239 *5 *6 *7 *8)) (-14 *7 (-1180))))) +(-10 -7 (-15 -4390 ((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|)))) +((-4173 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4171 ((|#1| |#3|) 13)) (-4172 ((|#3| |#3|) 19))) +(((-1240 |#1| |#2| |#3|) (-10 -7 (-15 -4171 (|#1| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-560) (-994 |#1|) (-1245 |#2|)) (T -1240)) +((-4173 (*1 *2 *3) (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1240 *4 *5 *3)) (-4 *3 (-1245 *5)))) (-4172 (*1 *2 *2) (-12 (-4 *3 (-560)) (-4 *4 (-994 *3)) (-5 *1 (-1240 *3 *4 *2)) (-4 *2 (-1245 *4)))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-1240 *2 *4 *3)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -4171 (|#1| |#3|)) (-15 -4172 (|#3| |#3|)) (-15 -4173 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4175 (((-3 |#2| "failed") |#2| (-773) |#1|) 37)) (-4174 (((-3 |#2| "failed") |#2| (-773)) 38)) (-4177 (((-3 (-2 (|:| -3542 |#2|) (|:| -3541 |#2|)) "failed") |#2|) 52)) (-4178 (((-643 |#2|) |#2|) 54)) (-4176 (((-3 |#2| "failed") |#2| |#2|) 48))) +(((-1241 |#1| |#2|) (-10 -7 (-15 -4174 ((-3 |#2| "failed") |#2| (-773))) (-15 -4175 ((-3 |#2| "failed") |#2| (-773) |#1|)) (-15 -4176 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4177 ((-3 (-2 (|:| -3542 |#2|) (|:| -3541 |#2|)) "failed") |#2|)) (-15 -4178 ((-643 |#2|) |#2|))) (-13 (-560) (-147)) (-1245 |#1|)) (T -1241)) +((-4178 (*1 *2 *3) (-12 (-4 *4 (-13 (-560) (-147))) (-5 *2 (-643 *3)) (-5 *1 (-1241 *4 *3)) (-4 *3 (-1245 *4)))) (-4177 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-560) (-147))) (-5 *2 (-2 (|:| -3542 *3) (|:| -3541 *3))) (-5 *1 (-1241 *4 *3)) (-4 *3 (-1245 *4)))) (-4176 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3)))) (-4175 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-773)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4)))) (-4174 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-773)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4))))) +(-10 -7 (-15 -4174 ((-3 |#2| "failed") |#2| (-773))) (-15 -4175 ((-3 |#2| "failed") |#2| (-773) |#1|)) (-15 -4176 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4177 ((-3 (-2 (|:| -3542 |#2|) (|:| -3541 |#2|)) "failed") |#2|)) (-15 -4178 ((-643 |#2|) |#2|))) +((-4179 (((-3 (-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) "failed") |#2| |#2|) 30))) +(((-1242 |#1| |#2|) (-10 -7 (-15 -4179 ((-3 (-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) "failed") |#2| |#2|))) (-560) (-1245 |#1|)) (T -1242)) +((-4179 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-1242 *4 *3)) (-4 *3 (-1245 *4))))) +(-10 -7 (-15 -4179 ((-3 (-2 (|:| -2152 |#2|) (|:| -3303 |#2|)) "failed") |#2| |#2|))) +((-4180 ((|#2| |#2| |#2|) 22)) (-4181 ((|#2| |#2| |#2|) 36)) (-4182 ((|#2| |#2| |#2| (-773) (-773)) 44))) +(((-1243 |#1| |#2|) (-10 -7 (-15 -4180 (|#2| |#2| |#2|)) (-15 -4181 (|#2| |#2| |#2|)) (-15 -4182 (|#2| |#2| |#2| (-773) (-773)))) (-1052) (-1245 |#1|)) (T -1243)) +((-4182 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-1243 *4 *2)) (-4 *2 (-1245 *4)))) (-4181 (*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1245 *3)))) (-4180 (*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1245 *3))))) +(-10 -7 (-15 -4180 (|#2| |#2| |#2|)) (-15 -4181 (|#2| |#2| |#2|)) (-15 -4182 (|#2| |#2| |#2| (-773) (-773)))) +((-4198 (((-1269 |#2|) $ (-773)) 129)) (-3485 (((-643 (-1085)) $) 16)) (-4196 (($ (-1174 |#2|)) 80)) (-3222 (((-773) $) NIL) (((-773) $ (-643 (-1085))) 21)) (-3110 (((-408 (-1174 $)) (-1174 $)) 204)) (-4206 (($ $) 194)) (-4401 (((-408 $) $) 192)) (-3107 (((-3 (-643 (-1174 $)) "failed") (-643 (-1174 $)) (-1174 $)) 95)) (-4192 (($ $ (-773)) 84)) (-4191 (($ $ (-773)) 86)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3577 (((-3 |#2| #1="failed") $) 132) (((-3 (-410 (-549)) #1#) $) NIL) (((-3 (-549) #1#) $) NIL) (((-3 (-1085) #1#) $) NIL)) (-3576 ((|#2| $) 130) (((-410 (-549)) $) NIL) (((-549) $) NIL) (((-1085) $) NIL)) (-4185 (($ $ $) 170)) (-4184 (((-2 (|:| -4386 |#2|) (|:| -2152 $) (|:| -3303 $)) $ $) 172)) (-4203 (((-773) $ $) 189)) (-3868 (((-3 $ "failed") $) 138)) (-3294 (($ |#2| (-773)) NIL) (($ $ (-1085) (-773)) 59) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-3223 (((-773) $) NIL) (((-773) $ (-1085)) 54) (((-643 (-773)) $ (-643 (-1085))) 55)) (-4197 (((-1174 |#2|) $) 72)) (-3486 (((-3 (-1085) "failed") $) 52)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) 83)) (-4244 (($ $) 219)) (-3869 (($) 134)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 201)) (-3108 (((-408 (-1174 $)) (-1174 $)) 101)) (-3109 (((-408 (-1174 $)) (-1174 $)) 99)) (-4164 (((-408 $) $) 120)) (-4199 (($ $ (-643 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-643 $) (-643 $)) NIL) (($ $ (-1085) |#2|) 39) (($ $ (-643 (-1085)) (-643 |#2|)) 36) (($ $ (-1085) $) 32) (($ $ (-643 (-1085)) (-643 $)) 30)) (-1752 (((-773) $) 207)) (-4231 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) 164) ((|#2| (-410 $) |#2|) 206) (((-410 $) $ (-410 $)) 188)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 212)) (-4242 (($ $ (-1085)) 157) (($ $ (-643 (-1085))) NIL) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL) (($ $ (-773)) NIL) (($ $) 155) (($ $ (-1180)) NIL) (($ $ (-643 (-1180))) NIL) (($ $ (-1180) (-773)) NIL) (($ $ (-643 (-1180)) (-643 (-773))) NIL) (($ $ (-1 |#2| |#2|) (-773)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4380 (((-773) $) NIL) (((-773) $ (-1085)) 17) (((-643 (-773)) $ (-643 (-1085))) 23)) (-3220 ((|#2| $) NIL) (($ $ (-1085)) 140)) (-4186 (((-3 $ "failed") $ $) 180) (((-3 (-410 $) "failed") (-410 $) $) 176)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#2|) NIL) (($ (-1085)) 64) (($ (-410 (-549))) NIL) (($ $) NIL))) +(((-1244 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -4231 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -1752 ((-773) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4231 (|#2| (-410 |#1|) |#2|)) (-15 -4183 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4184 ((-2 (|:| -4386 |#2|) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4185 (|#1| |#1| |#1|)) (-15 -4186 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -4186 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4203 ((-773) |#1| |#1|)) (-15 -4231 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4191 (|#1| |#1| (-773))) (-15 -4192 (|#1| |#1| (-773))) (-15 -4193 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| (-773))) (-15 -4196 (|#1| (-1174 |#2|))) (-15 -4197 ((-1174 |#2|) |#1|)) (-15 -4198 ((-1269 |#2|) |#1| (-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| |#1|)) (-15 -4231 (|#2| |#1| |#2|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3110 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3220 (|#1| |#1| (-1085))) (-15 -3485 ((-643 (-1085)) |#1|)) (-15 -3222 ((-773) |#1| (-643 (-1085)))) (-15 -3222 ((-773) |#1|)) (-15 -3294 (|#1| |#1| (-643 (-1085)) (-643 (-773)))) (-15 -3294 (|#1| |#1| (-1085) (-773))) (-15 -3223 ((-643 (-773)) |#1| (-643 (-1085)))) (-15 -3223 ((-773) |#1| (-1085))) (-15 -3486 ((-3 (-1085) "failed") |#1|)) (-15 -4380 ((-643 (-773)) |#1| (-643 (-1085)))) (-15 -4380 ((-773) |#1| (-1085))) (-15 -4378 (|#1| (-1085))) (-15 -3577 ((-3 (-1085) #1="failed") |#1|)) (-15 -3576 ((-1085) |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1085)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-1085) |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1085)) (-643 |#2|))) (-15 -4199 (|#1| |#1| (-1085) |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4380 ((-773) |#1|)) (-15 -3294 (|#1| |#2| (-773))) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3223 ((-773) |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -4242 (|#1| |#1| (-643 (-1085)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1085) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1085)))) (-15 -4242 (|#1| |#1| (-1085))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) (-1245 |#2|) (-1052)) (T -1244)) +NIL +(-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -3111 ((-1174 |#1|) (-1174 |#1|) (-1174 |#1|))) (-15 -4401 ((-408 |#1|) |#1|)) (-15 -4206 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -3869 (|#1|)) (-15 -3868 ((-3 |#1| "failed") |#1|)) (-15 -4231 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -1752 ((-773) |#1|)) (-15 -3282 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4244 (|#1| |#1|)) (-15 -4231 (|#2| (-410 |#1|) |#2|)) (-15 -4183 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4184 ((-2 (|:| -4386 |#2|) (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4185 (|#1| |#1| |#1|)) (-15 -4186 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -4186 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4203 ((-773) |#1| |#1|)) (-15 -4231 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4191 (|#1| |#1| (-773))) (-15 -4192 (|#1| |#1| (-773))) (-15 -4193 ((-2 (|:| -2152 |#1|) (|:| -3303 |#1|)) |#1| (-773))) (-15 -4196 (|#1| (-1174 |#2|))) (-15 -4197 ((-1174 |#2|) |#1|)) (-15 -4198 ((-1269 |#2|) |#1| (-773))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4242 (|#1| |#1| (-1 |#2| |#2|) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1180) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1180)))) (-15 -4242 (|#1| |#1| (-1180))) (-15 -4242 (|#1| |#1|)) (-15 -4242 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| |#1|)) (-15 -4231 (|#2| |#1| |#2|)) (-15 -4164 ((-408 |#1|) |#1|)) (-15 -3110 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3109 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3108 ((-408 (-1174 |#1|)) (-1174 |#1|))) (-15 -3107 ((-3 (-643 (-1174 |#1|)) "failed") (-643 (-1174 |#1|)) (-1174 |#1|))) (-15 -3220 (|#1| |#1| (-1085))) (-15 -3485 ((-643 (-1085)) |#1|)) (-15 -3222 ((-773) |#1| (-643 (-1085)))) (-15 -3222 ((-773) |#1|)) (-15 -3294 (|#1| |#1| (-643 (-1085)) (-643 (-773)))) (-15 -3294 (|#1| |#1| (-1085) (-773))) (-15 -3223 ((-643 (-773)) |#1| (-643 (-1085)))) (-15 -3223 ((-773) |#1| (-1085))) (-15 -3486 ((-3 (-1085) "failed") |#1|)) (-15 -4380 ((-643 (-773)) |#1| (-643 (-1085)))) (-15 -4380 ((-773) |#1| (-1085))) (-15 -4378 (|#1| (-1085))) (-15 -3577 ((-3 (-1085) #1="failed") |#1|)) (-15 -3576 ((-1085) |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1085)) (-643 |#1|))) (-15 -4199 (|#1| |#1| (-1085) |#1|)) (-15 -4199 (|#1| |#1| (-643 (-1085)) (-643 |#2|))) (-15 -4199 (|#1| |#1| (-1085) |#2|)) (-15 -4199 (|#1| |#1| (-643 |#1|) (-643 |#1|))) (-15 -4199 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| (-294 |#1|))) (-15 -4199 (|#1| |#1| (-643 (-294 |#1|)))) (-15 -4380 ((-773) |#1|)) (-15 -3294 (|#1| |#2| (-773))) (-15 -3577 ((-3 (-549) #1#) |#1|)) (-15 -3576 ((-549) |#1|)) (-15 -3577 ((-3 (-410 (-549)) #1#) |#1|)) (-15 -3576 ((-410 (-549)) |#1|)) (-15 -3576 (|#2| |#1|)) (-15 -3577 ((-3 |#2| #1#) |#1|)) (-15 -4378 (|#1| |#2|)) (-15 -3223 ((-773) |#1|)) (-15 -3220 (|#2| |#1|)) (-15 -4242 (|#1| |#1| (-643 (-1085)) (-643 (-773)))) (-15 -4242 (|#1| |#1| (-1085) (-773))) (-15 -4242 (|#1| |#1| (-643 (-1085)))) (-15 -4242 (|#1| |#1| (-1085))) (-15 -4378 (|#1| (-549))) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4198 (((-1269 |#1|) $ (-773)) 240)) (-3485 (((-643 (-1085)) $) 112)) (-4196 (($ (-1174 |#1|)) 238)) (-3487 (((-1174 $) $ (-1085)) 127) (((-1174 |#1|) $) 126)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 89 (|has| |#1| (-560)))) (-2241 (($ $) 90 (|has| |#1| (-560)))) (-2239 (((-112) $) 92 (|has| |#1| (-560)))) (-3222 (((-773) $) 114) (((-773) $ (-643 (-1085))) 113)) (-1407 (((-3 $ "failed") $ $) 20)) (-4187 (($ $ $) 225 (|has| |#1| (-560)))) (-3110 (((-408 (-1174 $)) (-1174 $)) 102 (|has| |#1| (-913)))) (-4206 (($ $) 100 (|has| |#1| (-455)))) (-4401 (((-408 $) $) 99 (|has| |#1| (-455)))) (-3107 (((-3 (-643 (-1174 $)) #1="failed") (-643 (-1174 $)) (-1174 $)) 105 (|has| |#1| (-913)))) (-1753 (((-112) $ $) 210 (|has| |#1| (-365)))) (-4192 (($ $ (-773)) 233)) (-4191 (($ $ (-773)) 232)) (-4183 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-455)))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| #2="failed") $) 166) (((-3 (-410 (-549)) #2#) $) 163 (|has| |#1| (-1041 (-410 (-549))))) (((-3 (-549) #2#) $) 161 (|has| |#1| (-1041 (-549)))) (((-3 (-1085) #2#) $) 138)) (-3576 ((|#1| $) 165) (((-410 (-549)) $) 164 (|has| |#1| (-1041 (-410 (-549))))) (((-549) $) 162 (|has| |#1| (-1041 (-549)))) (((-1085) $) 139)) (-4188 (($ $ $ (-1085)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2964 (($ $ $) 214 (|has| |#1| (-365)))) (-4391 (($ $) 156)) (-2427 (((-691 (-549)) (-691 $)) 136 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 (-549))) (|:| |vec| (-1269 (-549)))) (-691 $) (-1269 $)) 135 (|has| |#1| (-641 (-549)))) (((-2 (|:| -1748 (-691 |#1|)) (|:| |vec| (-1269 |#1|))) (-691 $) (-1269 $)) 134) (((-691 |#1|) (-691 $)) 133)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 213 (|has| |#1| (-365)))) (-4190 (($ $ $) 231)) (-4185 (($ $ $) 222 (|has| |#1| (-560)))) (-4184 (((-2 (|:| -4386 |#1|) (|:| -2152 $) (|:| -3303 $)) $ $) 221 (|has| |#1| (-560)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 208 (|has| |#1| (-365)))) (-3926 (($ $) 178 (|has| |#1| (-455))) (($ $ (-1085)) 107 (|has| |#1| (-455)))) (-3221 (((-643 $) $) 111)) (-4155 (((-112) $) 98 (|has| |#1| (-913)))) (-1769 (($ $ |#1| (-773) $) 174)) (-3199 (((-891 (-380) $) $ (-893 (-380)) (-891 (-380) $)) 86 (-12 (|has| (-1085) (-889 (-380))) (|has| |#1| (-889 (-380))))) (((-891 (-549) $) $ (-893 (-549)) (-891 (-549) $)) 85 (-12 (|has| (-1085) (-889 (-549))) (|has| |#1| (-889 (-549)))))) (-4203 (((-773) $ $) 226 (|has| |#1| (-560)))) (-2573 (((-112) $) 35)) (-2581 (((-773) $) 171)) (-3868 (((-3 $ "failed") $) 206 (|has| |#1| (-1154)))) (-3488 (($ (-1174 |#1|) (-1085)) 119) (($ (-1174 $) (-1085)) 118)) (-4208 (($ $ (-773)) 237)) (-1750 (((-3 (-643 $) #3="failed") (-643 $) $) 217 (|has| |#1| (-365)))) (-3224 (((-643 $) $) 128)) (-4369 (((-112) $) 154)) (-3294 (($ |#1| (-773)) 155) (($ $ (-1085) (-773)) 121) (($ $ (-643 (-1085)) (-643 (-773))) 120)) (-4194 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $ (-1085)) 122) (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 235)) (-3223 (((-773) $) 172) (((-773) $ (-1085)) 124) (((-643 (-773)) $ (-643 (-1085))) 123)) (-1770 (($ (-1 (-773) (-773)) $) 173)) (-4390 (($ (-1 |#1| |#1|) $) 153)) (-4197 (((-1174 |#1|) $) 239)) (-3486 (((-3 (-1085) #4="failed") $) 125)) (-3295 (($ $) 151)) (-3594 ((|#1| $) 150)) (-2069 (($ (-643 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-3663 (((-1162) $) 10)) (-4193 (((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773)) 234)) (-3226 (((-3 (-643 $) #4#) $) 116)) (-3225 (((-3 (-643 $) #4#) $) 117)) (-3227 (((-3 (-2 (|:| |var| (-1085)) (|:| -2564 (-773))) #4#) $) 115)) (-4244 (($ $) 218 (|has| |#1| (-38 (-410 (-549)))))) (-3869 (($) 205 (|has| |#1| (-1154)) CONST)) (-3664 (((-1123) $) 11)) (-1972 (((-112) $) 168)) (-1971 ((|#1| $) 169)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 97 (|has| |#1| (-455)))) (-3564 (($ (-643 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-3108 (((-408 (-1174 $)) (-1174 $)) 104 (|has| |#1| (-913)))) (-3109 (((-408 (-1174 $)) (-1174 $)) 103 (|has| |#1| (-913)))) (-4164 (((-408 $) $) 101 (|has| |#1| (-913)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 215 (|has| |#1| (-365)))) (-3889 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-560))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 209 (|has| |#1| (-365)))) (-4199 (($ $ (-643 (-294 $))) 147) (($ $ (-294 $)) 146) (($ $ $ $) 145) (($ $ (-643 $) (-643 $)) 144) (($ $ (-1085) |#1|) 143) (($ $ (-643 (-1085)) (-643 |#1|)) 142) (($ $ (-1085) $) 141) (($ $ (-643 (-1085)) (-643 $)) 140)) (-1752 (((-773) $) 211 (|has| |#1| (-365)))) (-4231 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-410 $) (-410 $) (-410 $)) 227 (|has| |#1| (-560))) ((|#1| (-410 $) |#1|) 219 (|has| |#1| (-365))) (((-410 $) $ (-410 $)) 207 (|has| |#1| (-560)))) (-4195 (((-3 $ "failed") $ (-773)) 236)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 212 (|has| |#1| (-365)))) (-4189 (($ $ (-1085)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-4242 (($ $ (-1085)) 46) (($ $ (-643 (-1085))) 45) (($ $ (-1085) (-773)) 44) (($ $ (-643 (-1085)) (-643 (-773))) 43) (($ $ (-773)) 255) (($ $) 253) (($ $ (-1180)) 252 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 251 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 250 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 249 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-4380 (((-773) $) 152) (((-773) $ (-1085)) 132) (((-643 (-773)) $ (-643 (-1085))) 131)) (-4402 (((-893 (-380)) $) 84 (-12 (|has| (-1085) (-616 (-893 (-380)))) (|has| |#1| (-616 (-893 (-380)))))) (((-893 (-549)) $) 83 (-12 (|has| (-1085) (-616 (-893 (-549)))) (|has| |#1| (-616 (-893 (-549)))))) (((-538) $) 82 (-12 (|has| (-1085) (-616 (-538))) (|has| |#1| (-616 (-538)))))) (-3220 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ (-1085)) 108 (|has| |#1| (-455)))) (-3106 (((-3 (-1269 $) #1#) (-691 $)) 106 (-3256 (|has| $ (-145)) (|has| |#1| (-913))))) (-4186 (((-3 $ "failed") $ $) 224 (|has| |#1| (-560))) (((-3 (-410 $) "failed") (-410 $) $) 223 (|has| |#1| (-560)))) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 167) (($ (-1085)) 137) (($ (-410 (-549))) 80 (-3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549)))))) (($ $) 87 (|has| |#1| (-560)))) (-4249 (((-643 |#1|) $) 170)) (-4109 ((|#1| $ (-773)) 157) (($ $ (-1085) (-773)) 130) (($ $ (-643 (-1085)) (-643 (-773))) 129)) (-3105 (((-3 $ #1#) $) 81 (-3960 (-3256 (|has| $ (-145)) (|has| |#1| (-913))) (|has| |#1| (-145))))) (-3530 (((-773)) 32 T CONST)) (-1768 (($ $ $ (-773)) 175 (|has| |#1| (-172)))) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 91 (|has| |#1| (-560)))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-1085)) 42) (($ $ (-643 (-1085))) 41) (($ $ (-1085) (-773)) 40) (($ $ (-643 (-1085)) (-643 (-773))) 39) (($ $ (-773)) 256) (($ $) 254) (($ $ (-1180)) 248 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180))) 247 (|has| |#1| (-903 (-1180)))) (($ $ (-1180) (-773)) 246 (|has| |#1| (-903 (-1180)))) (($ $ (-643 (-1180)) (-643 (-773))) 245 (|has| |#1| (-903 (-1180)))) (($ $ (-1 |#1| |#1|) (-773)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 160 (|has| |#1| (-38 (-410 (-549))))) (($ (-410 (-549)) $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1245 |#1|) (-140) (-1052)) (T -1245)) +((-4198 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-1245 *4)) (-4 *4 (-1052)) (-5 *2 (-1269 *4)))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-5 *2 (-1174 *3)))) (-4196 (*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1052)) (-4 *1 (-1245 *3)))) (-4208 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4195 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4194 (*1 *2 *1 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1245 *3)))) (-4193 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1245 *4)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4190 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)))) (-4242 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-172)))) (-4188 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-172)))) (-4231 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)))) (-4203 (*1 *2 *1 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)) (-5 *2 (-773)))) (-4187 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) (-4186 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) (-4186 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)))) (-4185 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) (-4184 (*1 *2 *1 *1) (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| -4386 *3) (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1245 *3)))) (-4183 (*1 *2 *1 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1052)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1245 *3)))) (-4231 (*1 *2 *3 *2) (-12 (-5 *3 (-410 *1)) (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549))))))) +(-13 (-953 |t#1| (-773) (-1085)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -4198 ((-1269 |t#1|) $ (-773))) (-15 -4197 ((-1174 |t#1|) $)) (-15 -4196 ($ (-1174 |t#1|))) (-15 -4208 ($ $ (-773))) (-15 -4195 ((-3 $ "failed") $ (-773))) (-15 -4194 ((-2 (|:| -2152 $) (|:| -3303 $)) $ $)) (-15 -4193 ((-2 (|:| -2152 $) (|:| -3303 $)) $ (-773))) (-15 -4192 ($ $ (-773))) (-15 -4191 ($ $ (-773))) (-15 -4190 ($ $ $)) (-15 -4242 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1154)) (-6 (-1154)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4189 (|t#1| $)) (-15 -4188 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-560)) (PROGN (-6 (-287 (-410 $) (-410 $))) (-15 -4231 ((-410 $) (-410 $) (-410 $))) (-15 -4203 ((-773) $ $)) (-15 -4187 ($ $ $)) (-15 -4186 ((-3 $ "failed") $ $)) (-15 -4186 ((-3 (-410 $) "failed") (-410 $) $)) (-15 -4185 ($ $ $)) (-15 -4184 ((-2 (|:| -4386 |t#1|) (|:| -2152 $) (|:| -3303 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (-15 -4183 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4421) (-15 -4231 (|t#1| (-410 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-549)))) (-15 -4244 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-773)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) -3960 (|has| |#1| (-1041 (-410 (-549)))) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 #3=(-1085)) . T) ((-618 |#1|) . T) ((-618 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-616 (-538)) -12 (|has| |#1| (-616 (-538))) (|has| (-1085) (-616 (-538)))) ((-616 (-893 (-380))) -12 (|has| |#1| (-616 (-893 (-380)))) (|has| (-1085) (-616 (-893 (-380))))) ((-616 (-893 (-549))) -12 (|has| |#1| (-616 (-893 (-549)))) (|has| (-1085) (-616 (-893 (-549))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-410 $) (-410 $)) |has| |#1| (-560)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #1#) . T) ((-379 |#1|) . T) ((-415 |#1|) . T) ((-455) -3960 (|has| |#1| (-913)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-517 #3# |#1|) . T) ((-517 #3# $) . T) ((-517 $ $) . T) ((-560) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-648 #2#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-641 (-549)) |has| |#1| (-641 (-549))) ((-641 |#1|) . T) ((-719 #2#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-728) . T) ((-903 #3#) . T) ((-903 (-1180)) |has| |#1| (-903 (-1180))) ((-889 (-380)) -12 (|has| |#1| (-889 (-380))) (|has| (-1085) (-889 (-380)))) ((-889 (-549)) -12 (|has| |#1| (-889 (-549))) (|has| (-1085) (-889 (-549)))) ((-953 |#1| #1# #3#) . T) ((-913) |has| |#1| (-913)) ((-924) |has| |#1| (-365)) ((-1041 (-410 (-549))) |has| |#1| (-1041 (-410 (-549)))) ((-1041 (-549)) |has| |#1| (-1041 (-549))) ((-1041 #3#) . T) ((-1041 |#1|) . T) ((-1054 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-913)) (|has| |#1| (-560)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1154) |has| |#1| (-1154)) ((-1224) |has| |#1| (-913))) +((-4390 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1246 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|))) (-1052) (-1245 |#1|) (-1052) (-1245 |#3|)) (T -1246)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1245 *6)) (-5 *1 (-1246 *5 *4 *6 *2)) (-4 *4 (-1245 *5))))) +(-10 -7 (-15 -4390 (|#4| (-1 |#3| |#1|) |#2|))) +((-3485 (((-643 (-1085)) $) 34)) (-4391 (($ $) 31)) (-3294 (($ |#2| |#3|) NIL) (($ $ (-1085) |#3|) 28) (($ $ (-643 (-1085)) (-643 |#3|)) 27)) (-3295 (($ $) 14)) (-3594 ((|#2| $) 12)) (-4380 ((|#3| $) 10))) +(((-1247 |#1| |#2| |#3|) (-10 -8 (-15 -3485 ((-643 (-1085)) |#1|)) (-15 -3294 (|#1| |#1| (-643 (-1085)) (-643 |#3|))) (-15 -3294 (|#1| |#1| (-1085) |#3|)) (-15 -4391 (|#1| |#1|)) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4380 (|#3| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3594 (|#2| |#1|))) (-1248 |#2| |#3|) (-1052) (-794)) (T -1247)) +NIL +(-10 -8 (-15 -3485 ((-643 (-1085)) |#1|)) (-15 -3294 (|#1| |#1| (-643 (-1085)) (-643 |#3|))) (-15 -3294 (|#1| |#1| (-1085) |#3|)) (-15 -4391 (|#1| |#1|)) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4380 (|#3| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3594 (|#2| |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-4205 (((-1157 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-3293 (((-112) $) 85)) (-4203 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2573 (((-112) $) 35)) (-4208 (($ $ (-922)) 113)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| |#2|) 73) (($ $ (-1085) |#2|) 88) (($ $ (-643 (-1085)) (-643 |#2|)) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4200 (($ $ |#2|) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4231 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4380 ((|#2| $) 76)) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4109 ((|#1| $ |#2|) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-4201 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-1248 |#1| |#2|) (-140) (-1052) (-794)) (T -1248)) +((-4205 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-1157 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-1180)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) (-4208 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4203 (*1 *2 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4202 (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4202 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4201 (*1 *2 *1 *3) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4378 (*2 (-1180)))) (-4 *2 (-1052)))) (-4200 (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) (-4199 (*1 *2 *1 *3) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1157 *3))))) +(-13 (-976 |t#1| |t#2| (-1085)) (-10 -8 (-15 -4205 ((-1157 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4231 (|t#1| $ |t#2|)) (-15 -4263 ((-1180) $)) (-15 -4204 (|t#1| $)) (-15 -4208 ($ $ (-922))) (-15 -4203 (|t#2| $)) (-15 -4203 (|t#2| $ |t#2|)) (-15 -4202 ($ $ |t#2|)) (-15 -4202 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4378 (|t#1| (-1180)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4201 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4200 ($ $ |t#2|)) (IF (|has| |t#2| (-1115)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-903 (-1180))) (-6 (-903 (-1180))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4199 ((-1157 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #1#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1115)) ((-291) |has| |#1| (-560)) ((-560) |has| |#1| (-560)) ((-648 #1#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #1#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-976 |#1| |#2| (-1085)) . T) ((-1054 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #1#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-4206 ((|#2| |#2|) 12)) (-4401 (((-408 |#2|) |#2|) 14)) (-4207 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))) 30))) +(((-1249 |#1| |#2|) (-10 -7 (-15 -4401 ((-408 |#2|) |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4207 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))))) (-560) (-13 (-1245 |#1|) (-560) (-10 -8 (-15 -3564 ($ $ $))))) (T -1249)) +((-4207 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-549)))) (-4 *4 (-13 (-1245 *3) (-560) (-10 -8 (-15 -3564 ($ $ $))))) (-4 *3 (-560)) (-5 *1 (-1249 *3 *4)))) (-4206 (*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-1249 *3 *2)) (-4 *2 (-13 (-1245 *3) (-560) (-10 -8 (-15 -3564 ($ $ $))))))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-1249 *4 *3)) (-4 *3 (-13 (-1245 *4) (-560) (-10 -8 (-15 -3564 ($ $ $)))))))) +(-10 -7 (-15 -4401 ((-408 |#2|) |#2|)) (-15 -4206 (|#2| |#2|)) (-15 -4207 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-549))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-549)))))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 11)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) NIL) (($ $ (-410 (-549)) (-410 (-549))) NIL)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) NIL)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-1229 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1259 |#1| |#2| |#3|) #1#) $) 22)) (-3576 (((-1229 |#1| |#2| |#3|) $) NIL) (((-1259 |#1| |#2| |#3|) $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4212 (((-410 (-549)) $) 69)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4213 (($ (-410 (-549)) (-1229 |#1| |#2| |#3|)) NIL)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) NIL) (((-410 (-549)) $ (-410 (-549))) NIL)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) NIL) (($ $ (-410 (-549))) NIL)) (-1750 (((-3 (-643 $) #2="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) 30) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4211 (((-1229 |#1| |#2| |#3|) $) 72)) (-4209 (((-3 (-1229 |#1| |#2| |#3|) "failed") $) NIL)) (-4210 (((-1229 |#1| |#2| |#3|) $) NIL)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) NIL (|has| |#1| (-365)))) (-4244 (($ $) 39 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) NIL (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 40 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) NIL)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) NIL) (($ $ $) NIL (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $ (-1266 |#2|)) 38)) (-4380 (((-410 (-549)) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) NIL)) (-4378 (((-865) $) 109) (($ (-549)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1229 |#1| |#2| |#3|)) 16) (($ (-1259 |#1| |#2| |#3|)) 17) (($ (-1266 |#2|)) 36) (($ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 12)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 32 T CONST)) (-3067 (($) 26 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 34)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ (-549)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1250 |#1| |#2| |#3|) (-13 (-1254 |#1| (-1229 |#1| |#2| |#3|)) (-1041 (-1259 |#1| |#2| |#3|)) (-618 (-1266 |#2|)) (-10 -8 (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1250)) +((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) +(-13 (-1254 |#1| (-1229 |#1| |#2| |#3|)) (-1041 (-1259 |#1| |#2| |#3|)) (-618 (-1266 |#2|)) (-10 -8 (-15 -4242 ($ $ (-1266 |#2|))) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) +((-4390 (((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)) 24))) +(((-1251 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4390 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) (-1052) (-1052) (-1180) (-1180) |#1| |#2|) (T -1251)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-14 *7 (-1180)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1251 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1180))))) +(-10 -7 (-15 -4390 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) 110) (($ $ (-410 (-549)) (-410 (-549))) 109)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 174 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 175 (|has| |#1| (-365)))) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) 183)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-2964 (($ $ $) 169 (|has| |#1| (-365)))) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 168 (|has| |#1| (-365)))) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 163 (|has| |#1| (-365)))) (-4155 (((-112) $) 176 (|has| |#1| (-365)))) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) 112) (((-410 (-549)) $ (-410 (-549))) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 113) (($ $ (-410 (-549))) 182)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 172 (|has| |#1| (-365)))) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-410 (-549))) 73) (($ $ (-1085) (-410 (-549))) 88) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-2069 (($ (-643 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-3663 (((-1162) $) 10)) (-2806 (($ $) 177 (|has| |#1| (-365)))) (-4244 (($ $) 181 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 180 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4164 (((-408 $) $) 173 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 170 (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 164 (|has| |#1| (-365)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) 166 (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) 116) (($ $ $) 93 (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 167 (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-4380 (((-410 (-549)) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-1252 |#1|) (-140) (-1052)) (T -1252)) +((-4250 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| *4)))) (-4 *4 (-1052)) (-4 *1 (-1252 *4)))) (-4208 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-1252 *3)) (-4 *3 (-1052)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) (-4244 (*1 *1 *1 *2) (-3960 (-12 (-5 *2 (-1180)) (-4 *1 (-1252 *3)) (-4 *3 (-1052)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) (-4 *3 (-38 (-410 (-549)))))) (-12 (-5 *2 (-1180)) (-4 *1 (-1252 *3)) (-4 *3 (-1052)) (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549))))))))) +(-13 (-1248 |t#1| (-410 (-549))) (-10 -8 (-15 -4250 ($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |t#1|))))) (-15 -4208 ($ $ (-410 (-549)))) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (IF (|has| |t#1| (-15 -4244 (|t#1| |t#1| (-1180)))) (IF (|has| |t#1| (-15 -3485 ((-643 (-1180)) |t#1|))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1205)) (IF (|has| |t#1| (-963)) (IF (|has| |t#1| (-29 (-549))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1005)) (-6 (-1205))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-410 (-549))) . T) ((-25) . T) ((-38 #2=(-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 $ $) |has| (-410 (-549)) (-1115)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-648 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-719 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) ((-976 |#1| #1# (-1085)) . T) ((-924) |has| |#1| (-365)) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1054 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1224) |has| |#1| (-365)) ((-1248 |#1| #1#) . T)) +((-3608 (((-112) $) 12)) (-3577 (((-3 |#3| "failed") $) 17)) (-3576 ((|#3| $) 14))) +(((-1253 |#1| |#2| |#3|) (-10 -8 (-15 -3577 ((-3 |#3| "failed") |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3608 ((-112) |#1|))) (-1254 |#2| |#3|) (-1052) (-1231 |#2|)) (T -1253)) +NIL +(-10 -8 (-15 -3577 ((-3 |#3| "failed") |#1|)) (-15 -3576 (|#3| |#1|)) (-15 -3608 ((-112) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) 110) (($ $ (-410 (-549)) (-410 (-549))) 109)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 174 (|has| |#1| (-365)))) (-4401 (((-408 $) $) 175 (|has| |#1| (-365)))) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) 183)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#2| "failed") $) 194)) (-3576 ((|#2| $) 195)) (-2964 (($ $ $) 169 (|has| |#1| (-365)))) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4212 (((-410 (-549)) $) 191)) (-2963 (($ $ $) 168 (|has| |#1| (-365)))) (-4213 (($ (-410 (-549)) |#2|) 192)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 163 (|has| |#1| (-365)))) (-4155 (((-112) $) 176 (|has| |#1| (-365)))) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) 112) (((-410 (-549)) $ (-410 (-549))) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 113) (($ $ (-410 (-549))) 182)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 172 (|has| |#1| (-365)))) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-410 (-549))) 73) (($ $ (-1085) (-410 (-549))) 88) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-2069 (($ (-643 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-4211 ((|#2| $) 190)) (-4209 (((-3 |#2| "failed") $) 188)) (-4210 ((|#2| $) 189)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 177 (|has| |#1| (-365)))) (-4244 (($ $) 181 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 180 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 162 (|has| |#1| (-365)))) (-3564 (($ (-643 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4164 (((-408 $) $) 173 (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 170 (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 164 (|has| |#1| (-365)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) 166 (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) 116) (($ $ $) 93 (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 167 (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-4380 (((-410 (-549)) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-1254 |#1| |#2|) (-140) (-1052) (-1231 |t#1|)) (T -1254)) +((-4380 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1231 *3)) (-5 *2 (-410 (-549))))) (-4213 (*1 *1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-4 *4 (-1052)) (-4 *1 (-1254 *4 *3)) (-4 *3 (-1231 *4)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1231 *3)) (-5 *2 (-410 (-549))))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3)))) (-4209 (*1 *2 *1) (|partial| -12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3))))) +(-13 (-1252 |t#1|) (-1041 |t#2|) (-618 |t#2|) (-10 -8 (-15 -4213 ($ (-410 (-549)) |t#2|)) (-15 -4212 ((-410 (-549)) $)) (-15 -4211 (|t#2| $)) (-15 -4380 ((-410 (-549)) $)) (-15 -4210 (|t#2| $)) (-15 -4209 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-410 (-549))) . T) ((-25) . T) ((-38 #2=(-410 (-549))) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 |#2|) . T) ((-618 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 $ $) |has| (-410 (-549)) (-1115)) ((-291) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-560) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-648 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-719 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365))) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) ((-976 |#1| #1# (-1085)) . T) ((-924) |has| |#1| (-365)) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1041 |#2|) . T) ((-1054 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1059 #2#) -3960 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-549))))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1224) |has| |#1| (-365)) ((-1248 |#1| #1#) . T) ((-1252 |#1|) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 104)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) NIL (|has| |#1| (-560)))) (-4202 (($ $ (-410 (-549))) 116) (($ $ (-410 (-549)) (-410 (-549))) 118)) (-4205 (((-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|))) $) 54)) (-3915 (($ $) 192 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 168 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-4206 (($ $) NIL (|has| |#1| (-365)))) (-4401 (((-408 $) $) NIL (|has| |#1| (-365)))) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1753 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3913 (($ $) 188 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 164 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-773) (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#1|)))) 65)) (-3917 (($ $) 196 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 172 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| "failed") $) NIL)) (-3576 ((|#2| $) NIL)) (-2964 (($ $ $) NIL (|has| |#1| (-365)))) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) 85)) (-4212 (((-410 (-549)) $) 13)) (-2963 (($ $ $) NIL (|has| |#1| (-365)))) (-4213 (($ (-410 (-549)) |#2|) 11)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) NIL (|has| |#1| (-365)))) (-4155 (((-112) $) NIL (|has| |#1| (-365)))) (-3293 (((-112) $) 74)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-410 (-549)) $) 113) (((-410 (-549)) $ (-410 (-549))) 114)) (-2573 (((-112) $) NIL)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 130) (($ $ (-410 (-549))) 128)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-410 (-549))) 33) (($ $ (-1085) (-410 (-549))) NIL) (($ $ (-643 (-1085)) (-643 (-410 (-549)))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 125)) (-4374 (($ $) 162 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-2069 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4211 ((|#2| $) 12)) (-4209 (((-3 |#2| "failed") $) 44)) (-4210 ((|#2| $) 45)) (-3663 (((-1162) $) NIL)) (-2806 (($ $) 101 (|has| |#1| (-365)))) (-4244 (($ $) 146 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 151 (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))))))) (-3664 (((-1123) $) NIL)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) NIL (|has| |#1| (-365)))) (-3564 (($ (-643 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4164 (((-408 $) $) NIL (|has| |#1| (-365)))) (-1751 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) NIL (|has| |#1| (-365)))) (-4200 (($ $ (-410 (-549))) 122)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-3143 (((-3 (-643 $) "failed") (-643 $) $) NIL (|has| |#1| (-365)))) (-4375 (($ $) 160 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))))) (-1752 (((-773) $) NIL (|has| |#1| (-365)))) (-4231 ((|#1| $ (-410 (-549))) 108) (($ $ $) 94 (|has| (-410 (-549)) (-1115)))) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-365)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) 138 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-4380 (((-410 (-549)) $) 16)) (-3918 (($ $) 198 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 174 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 194 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 170 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 190 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 166 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 120)) (-4378 (((-865) $) NIL) (($ (-549)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-410 (-549))) 139 (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560)))) (-4109 ((|#1| $ (-410 (-549))) 107)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) 127 T CONST)) (-4204 ((|#1| $) 106)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) 204 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 180 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) 200 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 176 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 208 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 184 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-410 (-549))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-549))))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 210 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 186 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 206 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 182 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 202 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 178 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 21 T CONST)) (-3067 (($) 17 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-549)) |#1|))))) (-3455 (((-112) $ $) 72)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-4269 (($ $) 142) (($ $ $) 78)) (-4271 (($ $ $) 76)) (** (($ $ (-922)) NIL) (($ $ (-773)) 82) (($ $ (-549)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 158 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1255 |#1| |#2|) (-1254 |#1| |#2|) (-1052) (-1231 |#1|)) (T -1255)) +NIL +(-1254 |#1| |#2|) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 37)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL)) (-2241 (($ $) NIL)) (-2239 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 (-549) #1="failed") $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1041 (-549)))) (((-3 (-410 (-549)) #1#) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1041 (-410 (-549))))) (((-3 (-1250 |#2| |#3| |#4|) #1#) $) 22)) (-3576 (((-549) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1041 (-549)))) (((-410 (-549)) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1041 (-410 (-549))))) (((-1250 |#2| |#3| |#4|) $) NIL)) (-4391 (($ $) 41)) (-3890 (((-3 $ "failed") $) 27)) (-3926 (($ $) NIL (|has| (-1250 |#2| |#3| |#4|) (-455)))) (-1769 (($ $ (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) 11)) (-4369 (((-112) $) NIL)) (-3294 (($ (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-3223 (((-320 |#2| |#3| |#4|) $) NIL)) (-1770 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-4390 (($ (-1 (-1250 |#2| |#3| |#4|) (-1250 |#2| |#3| |#4|)) $) NIL)) (-4215 (((-3 (-844 |#2|) "failed") $) 90)) (-3295 (($ $) NIL)) (-3594 (((-1250 |#2| |#3| |#4|) $) 20)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-1972 (((-112) $) NIL)) (-1971 (((-1250 |#2| |#3| |#4|) $) NIL)) (-3889 (((-3 $ "failed") $ (-1250 |#2| |#3| |#4|)) NIL (|has| (-1250 |#2| |#3| |#4|) (-560))) (((-3 $ "failed") $ $) NIL)) (-4214 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1162))) "failed") $) 74)) (-4380 (((-320 |#2| |#3| |#4|) $) 17)) (-3220 (((-1250 |#2| |#3| |#4|) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-455)))) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ (-1250 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-410 (-549))) NIL (-3960 (|has| (-1250 |#2| |#3| |#4|) (-1041 (-410 (-549)))) (|has| (-1250 |#2| |#3| |#4|) (-38 (-410 (-549))))))) (-4249 (((-643 (-1250 |#2| |#3| |#4|)) $) NIL)) (-4109 (((-1250 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-3105 (((-3 $ "failed") $) NIL (|has| (-1250 |#2| |#3| |#4|) (-145)))) (-3530 (((-773)) NIL T CONST)) (-1768 (($ $ $ (-773)) NIL (|has| (-1250 |#2| |#3| |#4|) (-172)))) (-3662 (((-112) $ $) NIL)) (-2240 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ (-1250 |#2| |#3| |#4|)) NIL (|has| (-1250 |#2| |#3| |#4|) (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ (-1250 |#2| |#3| |#4|)) NIL) (($ (-1250 |#2| |#3| |#4|) $) NIL) (($ (-410 (-549)) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| (-1250 |#2| |#3| |#4|) (-38 (-410 (-549))))))) +(((-1256 |#1| |#2| |#3| |#4|) (-13 (-327 (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-560) (-10 -8 (-15 -4215 ((-3 (-844 |#2|) "failed") $)) (-15 -4214 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1162))) "failed") $)))) (-13 (-1041 (-549)) (-641 (-549)) (-455)) (-13 (-27) (-1205) (-424 |#1|)) (-1180) |#2|) (T -1256)) +((-4215 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-1256 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4))) (-4214 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| *4)))))) (|:| |%type| (-1162)))) (-5 *1 (-1256 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4)))) +(-13 (-327 (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-560) (-10 -8 (-15 -4215 ((-3 (-844 |#2|) "failed") $)) (-15 -4214 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| |#2|)))))) (|:| |%type| (-1162))) "failed") $)))) +((-3826 ((|#2| $) 34)) (-4226 ((|#2| $) 18)) (-4228 (($ $) 52)) (-4216 (($ $ (-549)) 85)) (-1309 (((-112) $ (-773)) 46)) (-3426 ((|#2| $ |#2|) 82)) (-4217 ((|#2| $ |#2|) 78)) (-4219 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3427 (($ $ (-643 $)) 81)) (-4227 ((|#2| $) 17)) (-4230 (($ $) NIL) (($ $ (-773)) 59)) (-3432 (((-643 $) $) 31)) (-3428 (((-112) $ $) 69)) (-4151 (((-112) $ (-773)) 45)) (-4148 (((-112) $ (-773)) 43)) (-3950 (((-112) $) 33)) (-4229 ((|#2| $) 25) (($ $ (-773)) 64)) (-4231 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4065 (((-112) $) 23)) (-4223 (($ $) 55)) (-4221 (($ $) 86)) (-4224 (((-773) $) 58)) (-4225 (($ $) 57)) (-4233 (($ $ $) 77) (($ |#2| $) NIL)) (-3945 (((-643 $) $) 32)) (-3455 (((-112) $ $) 67)) (-4389 (((-773) $) 51))) +(((-1257 |#1| |#2|) (-10 -8 (-15 -4216 (|#1| |#1| (-549))) (-15 -4219 (|#2| |#1| "last" |#2|)) (-15 -4217 (|#2| |#1| |#2|)) (-15 -4219 (|#1| |#1| "rest" |#1|)) (-15 -4219 (|#2| |#1| "first" |#2|)) (-15 -4221 (|#1| |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4224 ((-773) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4226 (|#2| |#1|)) (-15 -4227 (|#2| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "last")) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| "rest")) (-15 -4230 (|#1| |#1|)) (-15 -4231 (|#2| |#1| "first")) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -3426 (|#2| |#1| |#2|)) (-15 -4219 (|#2| |#1| #1="value" |#2|)) (-15 -3427 (|#1| |#1| (-643 |#1|))) (-15 -3428 ((-112) |#1| |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -3826 (|#2| |#1|)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773)))) (-1258 |#2|) (-1219)) (T -1257)) +NIL +(-10 -8 (-15 -4216 (|#1| |#1| (-549))) (-15 -4219 (|#2| |#1| "last" |#2|)) (-15 -4217 (|#2| |#1| |#2|)) (-15 -4219 (|#1| |#1| "rest" |#1|)) (-15 -4219 (|#2| |#1| "first" |#2|)) (-15 -4221 (|#1| |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4224 ((-773) |#1|)) (-15 -4225 (|#1| |#1|)) (-15 -4226 (|#2| |#1|)) (-15 -4227 (|#2| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-773))) (-15 -4231 (|#2| |#1| "last")) (-15 -4229 (|#2| |#1|)) (-15 -4230 (|#1| |#1| (-773))) (-15 -4231 (|#1| |#1| "rest")) (-15 -4230 (|#1| |#1|)) (-15 -4231 (|#2| |#1| "first")) (-15 -4233 (|#1| |#2| |#1|)) (-15 -4233 (|#1| |#1| |#1|)) (-15 -3426 (|#2| |#1| |#2|)) (-15 -4219 (|#2| |#1| #1="value" |#2|)) (-15 -3427 (|#1| |#1| (-643 |#1|))) (-15 -3428 ((-112) |#1| |#1|)) (-15 -4065 ((-112) |#1|)) (-15 -4231 (|#2| |#1| #1#)) (-15 -3826 (|#2| |#1|)) (-15 -3950 ((-112) |#1|)) (-15 -3432 ((-643 |#1|) |#1|)) (-15 -3945 ((-643 |#1|) |#1|)) (-15 -3455 ((-112) |#1| |#1|)) (-15 -4389 ((-773) |#1|)) (-15 -1309 ((-112) |#1| (-773))) (-15 -4151 ((-112) |#1| (-773))) (-15 -4148 ((-112) |#1| (-773)))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-3826 ((|#1| $) 49)) (-4226 ((|#1| $) 66)) (-4228 (($ $) 68)) (-4216 (($ $ (-549)) 53 (|has| $ (-6 -4426)))) (-1309 (((-112) $ (-773)) 8)) (-3426 ((|#1| $ |#1|) 40 (|has| $ (-6 -4426)))) (-4218 (($ $ $) 57 (|has| $ (-6 -4426)))) (-4217 ((|#1| $ |#1|) 55 (|has| $ (-6 -4426)))) (-4220 ((|#1| $ |#1|) 59 (|has| $ (-6 -4426)))) (-4219 ((|#1| $ #1="value" |#1|) 41 (|has| $ (-6 -4426))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4426))) (($ $ "rest" $) 56 (|has| $ (-6 -4426))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4426)))) (-3427 (($ $ (-643 $)) 42 (|has| $ (-6 -4426)))) (-4227 ((|#1| $) 67)) (-4156 (($) 7 T CONST)) (-4230 (($ $) 74) (($ $ (-773)) 72)) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-3432 (((-643 $) $) 51)) (-3428 (((-112) $ $) 43 (|has| |#1| (-1104)))) (-4151 (((-112) $ (-773)) 9)) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36)) (-4148 (((-112) $ (-773)) 10)) (-3431 (((-643 |#1|) $) 46)) (-3950 (((-112) $) 50)) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-4229 ((|#1| $) 71) (($ $ (-773)) 69)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 77) (($ $ (-773)) 75)) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ #1#) 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3430 (((-549) $ $) 45)) (-4065 (((-112) $) 47)) (-4223 (($ $) 63)) (-4221 (($ $) 60 (|has| $ (-6 -4426)))) (-4224 (((-773) $) 64)) (-4225 (($ $) 65)) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3824 (($ $) 13)) (-4222 (($ $ $) 62 (|has| $ (-6 -4426))) (($ $ |#1|) 61 (|has| $ (-6 -4426)))) (-4233 (($ $ $) 79) (($ |#1| $) 78)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3945 (((-643 $) $) 52)) (-3429 (((-112) $ $) 44 (|has| |#1| (-1104)))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-1258 |#1|) (-140) (-1219)) (T -1258)) +((-4233 (*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4233 (*1 *1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4232 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4230 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4225 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1258 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) (-4223 (*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4222 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4221 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4220 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4218 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4219 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) (-4217 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4219 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-549)) (|has| *1 (-6 -4426)) (-4 *1 (-1258 *3)) (-4 *3 (-1219))))) +(-13 (-1013 |t#1|) (-10 -8 (-15 -4233 ($ $ $)) (-15 -4233 ($ |t#1| $)) (-15 -4232 (|t#1| $)) (-15 -4231 (|t#1| $ "first")) (-15 -4232 ($ $ (-773))) (-15 -4230 ($ $)) (-15 -4231 ($ $ "rest")) (-15 -4230 ($ $ (-773))) (-15 -4229 (|t#1| $)) (-15 -4231 (|t#1| $ "last")) (-15 -4229 ($ $ (-773))) (-15 -4228 ($ $)) (-15 -4227 (|t#1| $)) (-15 -4226 (|t#1| $)) (-15 -4225 ($ $)) (-15 -4224 ((-773) $)) (-15 -4223 ($ $)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4222 ($ $ $)) (-15 -4222 ($ $ |t#1|)) (-15 -4221 ($ $)) (-15 -4220 (|t#1| $ |t#1|)) (-15 -4219 (|t#1| $ "first" |t#1|)) (-15 -4218 ($ $ $)) (-15 -4219 ($ $ "rest" $)) (-15 -4217 (|t#1| $ |t#1|)) (-15 -4219 (|t#1| $ "last" |t#1|)) (-15 -4216 ($ $ (-549)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1104)) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-615 (-865)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-1013 |#1|) . T) ((-1104) |has| |#1| (-1104)) ((-1219) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-3485 (((-643 (-1085)) $) NIL)) (-4263 (((-1180) $) 92)) (-4243 (((-1238 |#2| |#1|) $ (-773)) 73)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-560)))) (-2241 (($ $) NIL (|has| |#1| (-560)))) (-2239 (((-112) $) 144 (|has| |#1| (-560)))) (-4202 (($ $ (-773)) 129) (($ $ (-773) (-773)) 132)) (-4205 (((-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|))) $) 43)) (-3915 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) NIL)) (-3438 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|)))) 52) (($ (-1157 |#1|)) NIL)) (-3917 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) NIL T CONST)) (-4236 (($ $) 136)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4248 (($ $) 142)) (-4246 (((-949 |#1|) $ (-773)) 63) (((-949 |#1|) $ (-773) (-773)) 65)) (-3293 (((-112) $) NIL)) (-4059 (($) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $) NIL) (((-773) $ (-773)) NIL)) (-2573 (((-112) $) NIL)) (-4239 (($ $) 119)) (-3412 (($ $ (-549)) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4235 (($ (-549) (-549) $) 138)) (-4208 (($ $ (-922)) 141)) (-4247 (($ (-1 |#1| (-549)) $) 113)) (-4369 (((-112) $) NIL)) (-3294 (($ |#1| (-773)) 16) (($ $ (-1085) (-773)) NIL) (($ $ (-643 (-1085)) (-643 (-773))) NIL)) (-4390 (($ (-1 |#1| |#1|) $) 100)) (-4374 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-4240 (($ $) 117)) (-4241 (($ $) 115)) (-4234 (($ (-549) (-549) $) 140)) (-4244 (($ $) 152 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 158 (-3960 (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205))) (-12 (|has| |#1| (-38 (-410 (-549)))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|)))))) (($ $ (-1266 |#2|)) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3664 (((-1123) $) NIL)) (-4237 (($ $ (-549) (-549)) 123)) (-4200 (($ $ (-773)) 125)) (-3889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-560)))) (-4375 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4238 (($ $) 121)) (-4199 (((-1157 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-773)))))) (-4231 ((|#1| $ (-773)) 97) (($ $ $) 134 (|has| (-773) (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) 110 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $ (-1266 |#2|)) 105)) (-4380 (((-773) $) NIL)) (-3918 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 127)) (-4378 (((-865) $) NIL) (($ (-549)) 26) (($ (-410 (-549))) 150 (|has| |#1| (-38 (-410 (-549))))) (($ $) NIL (|has| |#1| (-560))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1238 |#2| |#1|)) 83) (($ (-1266 |#2|)) 22)) (-4249 (((-1157 |#1|) $) NIL)) (-4109 ((|#1| $ (-773)) 96)) (-3105 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3530 (((-773)) NIL T CONST)) (-4204 ((|#1| $) 93)) (-3662 (((-112) $ $) NIL)) (-3921 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3919 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-773)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-773)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) NIL (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 18 T CONST)) (-3067 (($) 13 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) NIL (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (-3455 (((-112) $ $) NIL)) (-4381 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) 109)) (-4271 (($ $ $) 20)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ |#1|) 147 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-410 (-549)) $) NIL (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) NIL (|has| |#1| (-38 (-410 (-549))))))) +(((-1259 |#1| |#2| |#3|) (-13 (-1262 |#1|) (-10 -8 (-15 -4378 ($ (-1238 |#2| |#1|))) (-15 -4243 ((-1238 |#2| |#1|) $ (-773))) (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (-15 -4241 ($ $)) (-15 -4240 ($ $)) (-15 -4239 ($ $)) (-15 -4238 ($ $)) (-15 -4237 ($ $ (-549) (-549))) (-15 -4236 ($ $)) (-15 -4235 ($ (-549) (-549) $)) (-15 -4234 ($ (-549) (-549) $)) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) (-1052) (-1180) |#1|) (T -1259)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) (-5 *1 (-1259 *3 *4 *5)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1259 *4 *5 *6)) (-4 *4 (-1052)) (-14 *5 (-1180)) (-14 *6 *4))) (-4378 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *5 *3))) (-4241 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4237 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3))) (-4236 (*1 *1 *1) (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2))) (-4235 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3))) (-4234 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3)))) +(-13 (-1262 |#1|) (-10 -8 (-15 -4378 ($ (-1238 |#2| |#1|))) (-15 -4243 ((-1238 |#2| |#1|) $ (-773))) (-15 -4378 ($ (-1266 |#2|))) (-15 -4242 ($ $ (-1266 |#2|))) (-15 -4241 ($ $)) (-15 -4240 ($ $)) (-15 -4239 ($ $)) (-15 -4238 ($ $)) (-15 -4237 ($ $ (-549) (-549))) (-15 -4236 ($ $)) (-15 -4235 ($ (-549) (-549) $)) (-15 -4234 ($ (-549) (-549) $)) (IF (|has| |#1| (-38 (-410 (-549)))) (-15 -4244 ($ $ (-1266 |#2|))) |%noBranch|))) +((-4390 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1260 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 (|#4| (-1 |#2| |#1|) |#3|))) (-1052) (-1052) (-1262 |#1|) (-1262 |#2|)) (T -1260)) +((-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1262 *6)) (-5 *1 (-1260 *5 *6 *4 *2)) (-4 *4 (-1262 *5))))) +(-10 -7 (-15 -4390 (|#4| (-1 |#2| |#1|) |#3|))) +((-3608 (((-112) $) 17)) (-3915 (($ $) 106)) (-4071 (($ $) 82)) (-3913 (($ $) 102)) (-4070 (($ $) 78)) (-3917 (($ $) 110)) (-4069 (($ $) 86)) (-4374 (($ $) 76)) (-4375 (($ $) 74)) (-3918 (($ $) 112)) (-4068 (($ $) 88)) (-3916 (($ $) 108)) (-4067 (($ $) 84)) (-3914 (($ $) 104)) (-4066 (($ $) 80)) (-4378 (((-865) $) 62) (($ (-549)) NIL) (($ (-410 (-549))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3921 (($ $) 118)) (-3909 (($ $) 94)) (-3919 (($ $) 114)) (-3907 (($ $) 90)) (-3923 (($ $) 122)) (-3911 (($ $) 98)) (-3924 (($ $) 124)) (-3912 (($ $) 100)) (-3922 (($ $) 120)) (-3910 (($ $) 96)) (-3920 (($ $) 116)) (-3908 (($ $) 92)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-410 (-549))) 72))) +(((-1261 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922))) (-15 -3608 ((-112) |#1|)) (-15 -4378 ((-865) |#1|))) (-1262 |#2|) (-1052)) (T -1261)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-410 (-549)))) (-15 -4071 (|#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4375 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4378 (|#1| |#2|)) (-15 -4378 (|#1| |#1|)) (-15 -4378 (|#1| (-410 (-549)))) (-15 -4378 (|#1| (-549))) (-15 ** (|#1| |#1| (-773))) (-15 ** (|#1| |#1| (-922))) (-15 -3608 ((-112) |#1|)) (-15 -4378 ((-865) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-3485 (((-643 (-1085)) $) 86)) (-4263 (((-1180) $) 115)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 63 (|has| |#1| (-560)))) (-2241 (($ $) 64 (|has| |#1| (-560)))) (-2239 (((-112) $) 66 (|has| |#1| (-560)))) (-4202 (($ $ (-773)) 110) (($ $ (-773) (-773)) 109)) (-4205 (((-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|))) $) 117)) (-3915 (($ $) 147 (|has| |#1| (-38 (-410 (-549)))))) (-4071 (($ $) 130 (|has| |#1| (-38 (-410 (-549)))))) (-1407 (((-3 $ "failed") $ $) 20)) (-3438 (($ $) 129 (|has| |#1| (-38 (-410 (-549)))))) (-3913 (($ $) 146 (|has| |#1| (-38 (-410 (-549)))))) (-4070 (($ $) 131 (|has| |#1| (-38 (-410 (-549)))))) (-4250 (($ (-1157 (-2 (|:| |k| (-773)) (|:| |c| |#1|)))) 167) (($ (-1157 |#1|)) 165)) (-3917 (($ $) 145 (|has| |#1| (-38 (-410 (-549)))))) (-4069 (($ $) 132 (|has| |#1| (-38 (-410 (-549)))))) (-4156 (($) 18 T CONST)) (-4391 (($ $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4248 (($ $) 164)) (-4246 (((-949 |#1|) $ (-773)) 162) (((-949 |#1|) $ (-773) (-773)) 161)) (-3293 (((-112) $) 85)) (-4059 (($) 157 (|has| |#1| (-38 (-410 (-549)))))) (-4203 (((-773) $) 112) (((-773) $ (-773)) 111)) (-2573 (((-112) $) 35)) (-3412 (($ $ (-549)) 128 (|has| |#1| (-38 (-410 (-549)))))) (-4208 (($ $ (-922)) 113)) (-4247 (($ (-1 |#1| (-549)) $) 163)) (-4369 (((-112) $) 74)) (-3294 (($ |#1| (-773)) 73) (($ $ (-1085) (-773)) 88) (($ $ (-643 (-1085)) (-643 (-773))) 87)) (-4390 (($ (-1 |#1| |#1|) $) 75)) (-4374 (($ $) 154 (|has| |#1| (-38 (-410 (-549)))))) (-3295 (($ $) 77)) (-3594 ((|#1| $) 78)) (-3663 (((-1162) $) 10)) (-4244 (($ $) 159 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-1180)) 158 (-3960 (-12 (|has| |#1| (-29 (-549))) (|has| |#1| (-963)) (|has| |#1| (-1205)) (|has| |#1| (-38 (-410 (-549))))) (-12 (|has| |#1| (-15 -3485 ((-643 (-1180)) |#1|))) (|has| |#1| (-15 -4244 (|#1| |#1| (-1180)))) (|has| |#1| (-38 (-410 (-549)))))))) (-3664 (((-1123) $) 11)) (-4200 (($ $ (-773)) 107)) (-3889 (((-3 $ "failed") $ $) 62 (|has| |#1| (-560)))) (-4375 (($ $) 155 (|has| |#1| (-38 (-410 (-549)))))) (-4199 (((-1157 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-773)))))) (-4231 ((|#1| $ (-773)) 116) (($ $ $) 93 (|has| (-773) (-1115)))) (-4242 (($ $ (-643 (-1180)) (-643 (-773))) 101 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) 100 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) 99 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) 98 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) 96 (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (-4380 (((-773) $) 76)) (-3918 (($ $) 144 (|has| |#1| (-38 (-410 (-549)))))) (-4068 (($ $) 133 (|has| |#1| (-38 (-410 (-549)))))) (-3916 (($ $) 143 (|has| |#1| (-38 (-410 (-549)))))) (-4067 (($ $) 134 (|has| |#1| (-38 (-410 (-549)))))) (-3914 (($ $) 142 (|has| |#1| (-38 (-410 (-549)))))) (-4066 (($ $) 135 (|has| |#1| (-38 (-410 (-549)))))) (-3292 (($ $) 84)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ (-410 (-549))) 69 (|has| |#1| (-38 (-410 (-549))))) (($ $) 61 (|has| |#1| (-560))) (($ |#1|) 59 (|has| |#1| (-172)))) (-4249 (((-1157 |#1|) $) 166)) (-4109 ((|#1| $ (-773)) 71)) (-3105 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-3530 (((-773)) 32 T CONST)) (-4204 ((|#1| $) 114)) (-3662 (((-112) $ $) 9)) (-3921 (($ $) 153 (|has| |#1| (-38 (-410 (-549)))))) (-3909 (($ $) 141 (|has| |#1| (-38 (-410 (-549)))))) (-2240 (((-112) $ $) 65 (|has| |#1| (-560)))) (-3919 (($ $) 152 (|has| |#1| (-38 (-410 (-549)))))) (-3907 (($ $) 140 (|has| |#1| (-38 (-410 (-549)))))) (-3923 (($ $) 151 (|has| |#1| (-38 (-410 (-549)))))) (-3911 (($ $) 139 (|has| |#1| (-38 (-410 (-549)))))) (-4201 ((|#1| $ (-773)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-773)))) (|has| |#1| (-15 -4378 (|#1| (-1180))))))) (-3924 (($ $) 150 (|has| |#1| (-38 (-410 (-549)))))) (-3912 (($ $) 138 (|has| |#1| (-38 (-410 (-549)))))) (-3922 (($ $) 149 (|has| |#1| (-38 (-410 (-549)))))) (-3910 (($ $) 137 (|has| |#1| (-38 (-410 (-549)))))) (-3920 (($ $) 148 (|has| |#1| (-38 (-410 (-549)))))) (-3908 (($ $) 136 (|has| |#1| (-38 (-410 (-549)))))) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3072 (($ $ (-643 (-1180)) (-643 (-773))) 105 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180) (-773)) 104 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-643 (-1180))) 103 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-1180)) 102 (-12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (($ $ (-773)) 97 (|has| |#1| (-15 * (|#1| (-773) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-773) |#1|))))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 127 (|has| |#1| (-38 (-410 (-549)))))) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-549)) $) 68 (|has| |#1| (-38 (-410 (-549))))) (($ $ (-410 (-549))) 67 (|has| |#1| (-38 (-410 (-549))))))) +(((-1262 |#1|) (-140) (-1052)) (T -1262)) +((-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 (-2 (|:| |k| (-773)) (|:| |c| *3)))) (-4 *3 (-1052)) (-4 *1 (-1262 *3)))) (-4249 (*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1052)) (-5 *2 (-1157 *3)))) (-4250 (*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-4 *1 (-1262 *3)))) (-4248 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)))) (-4247 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1262 *3)) (-4 *3 (-1052)))) (-4246 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-1262 *4)) (-4 *4 (-1052)) (-5 *2 (-949 *4)))) (-4246 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-4 *1 (-1262 *4)) (-4 *4 (-1052)) (-5 *2 (-949 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) (-4244 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) (-4244 (*1 *1 *1 *2) (-3960 (-12 (-5 *2 (-1180)) (-4 *1 (-1262 *3)) (-4 *3 (-1052)) (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) (-4 *3 (-38 (-410 (-549)))))) (-12 (-5 *2 (-1180)) (-4 *1 (-1262 *3)) (-4 *3 (-1052)) (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549))))))))) +(-13 (-1248 |t#1| (-773)) (-10 -8 (-15 -4250 ($ (-1157 (-2 (|:| |k| (-773)) (|:| |c| |t#1|))))) (-15 -4249 ((-1157 |t#1|) $)) (-15 -4250 ($ (-1157 |t#1|))) (-15 -4248 ($ $)) (-15 -4247 ($ (-1 |t#1| (-549)) $)) (-15 -4246 ((-949 |t#1|) $ (-773))) (-15 -4246 ((-949 |t#1|) $ (-773) (-773))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-549)))) (PROGN (-15 -4244 ($ $)) (IF (|has| |t#1| (-15 -4244 (|t#1| |t#1| (-1180)))) (IF (|has| |t#1| (-15 -3485 ((-643 (-1180)) |t#1|))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1205)) (IF (|has| |t#1| (-963)) (IF (|has| |t#1| (-29 (-549))) (-15 -4244 ($ $ (-1180))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1005)) (-6 (-1205))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-773)) . T) ((-25) . T) ((-38 #2=(-410 (-549))) |has| |#1| (-38 (-410 (-549)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-560)) ((-35) |has| |#1| (-38 (-410 (-549)))) ((-95) |has| |#1| (-38 (-410 (-549)))) ((-102) . T) ((-111 #2# #2#) |has| |#1| (-38 (-410 (-549)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-618 #2#) |has| |#1| (-38 (-410 (-549)))) ((-618 (-549)) . T) ((-618 |#1|) |has| |#1| (-172)) ((-618 $) |has| |#1| (-560)) ((-615 (-865)) . T) ((-172) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-773) |#1|))) ((-285) |has| |#1| (-38 (-410 (-549)))) ((-287 $ $) |has| (-773) (-1115)) ((-291) |has| |#1| (-560)) ((-496) |has| |#1| (-38 (-410 (-549)))) ((-560) |has| |#1| (-560)) ((-648 #2#) |has| |#1| (-38 (-410 (-549)))) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #2#) |has| |#1| (-38 (-410 (-549)))) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #2#) |has| |#1| (-38 (-410 (-549)))) ((-642 |#1|) |has| |#1| (-172)) ((-642 $) |has| |#1| (-560)) ((-719 #2#) |has| |#1| (-38 (-410 (-549)))) ((-719 |#1|) |has| |#1| (-172)) ((-719 $) |has| |#1| (-560)) ((-728) . T) ((-903 (-1180)) -12 (|has| |#1| (-903 (-1180))) (|has| |#1| (-15 * (|#1| (-773) |#1|)))) ((-976 |#1| #1# (-1085)) . T) ((-1005) |has| |#1| (-38 (-410 (-549)))) ((-1054 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1054 |#1|) . T) ((-1054 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1059 #2#) |has| |#1| (-38 (-410 (-549)))) ((-1059 |#1|) . T) ((-1059 $) -3960 (|has| |#1| (-560)) (|has| |#1| (-172))) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1205) |has| |#1| (-38 (-410 (-549)))) ((-1208) |has| |#1| (-38 (-410 (-549)))) ((-1248 |#1| #1#) . T)) +((-4253 (((-1 (-1157 |#1|) (-643 (-1157 |#1|))) (-1 |#2| (-643 |#2|))) 24)) (-4252 (((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4251 (((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|)) 13)) (-4256 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4255 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4257 ((|#2| (-1 |#2| (-643 |#2|)) (-643 |#1|)) 60)) (-4258 (((-643 |#2|) (-643 |#1|) (-643 (-1 |#2| (-643 |#2|)))) 66)) (-4254 ((|#2| |#2| |#2|) 43))) +(((-1263 |#1| |#2|) (-10 -7 (-15 -4251 ((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|))) (-15 -4252 ((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4253 ((-1 (-1157 |#1|) (-643 (-1157 |#1|))) (-1 |#2| (-643 |#2|)))) (-15 -4254 (|#2| |#2| |#2|)) (-15 -4255 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4256 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4257 (|#2| (-1 |#2| (-643 |#2|)) (-643 |#1|))) (-15 -4258 ((-643 |#2|) (-643 |#1|) (-643 (-1 |#2| (-643 |#2|)))))) (-38 (-410 (-549))) (-1262 |#1|)) (T -1263)) +((-4258 (*1 *2 *3 *4) (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 (-1 *6 (-643 *6)))) (-4 *5 (-38 (-410 (-549)))) (-4 *6 (-1262 *5)) (-5 *2 (-643 *6)) (-5 *1 (-1263 *5 *6)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-643 *2))) (-5 *4 (-643 *5)) (-4 *5 (-38 (-410 (-549)))) (-4 *2 (-1262 *5)) (-5 *1 (-1263 *5 *2)))) (-4256 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1263 *4 *2)) (-4 *4 (-38 (-410 (-549)))))) (-4255 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1263 *4 *2)) (-4 *4 (-38 (-410 (-549)))))) (-4254 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1263 *3 *2)) (-4 *2 (-1262 *3)))) (-4253 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-643 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-1 (-1157 *4) (-643 (-1157 *4)))) (-5 *1 (-1263 *4 *5)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-1 (-1157 *4) (-1157 *4) (-1157 *4))) (-5 *1 (-1263 *4 *5)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1263 *4 *5))))) +(-10 -7 (-15 -4251 ((-1 (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2|))) (-15 -4252 ((-1 (-1157 |#1|) (-1157 |#1|) (-1157 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4253 ((-1 (-1157 |#1|) (-643 (-1157 |#1|))) (-1 |#2| (-643 |#2|)))) (-15 -4254 (|#2| |#2| |#2|)) (-15 -4255 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4256 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4257 (|#2| (-1 |#2| (-643 |#2|)) (-643 |#1|))) (-15 -4258 ((-643 |#2|) (-643 |#1|) (-643 (-1 |#2| (-643 |#2|)))))) +((-4260 ((|#2| |#4| (-773)) 34)) (-4259 ((|#4| |#2|) 29)) (-4262 ((|#4| (-410 |#2|)) 53 (|has| |#1| (-560)))) (-4261 (((-1 |#4| (-643 |#4|)) |#3|) 46))) +(((-1264 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4259 (|#4| |#2|)) (-15 -4260 (|#2| |#4| (-773))) (-15 -4261 ((-1 |#4| (-643 |#4|)) |#3|)) (IF (|has| |#1| (-560)) (-15 -4262 (|#4| (-410 |#2|))) |%noBranch|)) (-1052) (-1245 |#1|) (-660 |#2|) (-1262 |#1|)) (T -1264)) +((-4262 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-560)) (-4 *4 (-1052)) (-4 *2 (-1262 *4)) (-5 *1 (-1264 *4 *5 *6 *2)) (-4 *6 (-660 *5)))) (-4261 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *5 (-1245 *4)) (-5 *2 (-1 *6 (-643 *6))) (-5 *1 (-1264 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-1262 *4)))) (-4260 (*1 *2 *3 *4) (-12 (-5 *4 (-773)) (-4 *5 (-1052)) (-4 *2 (-1245 *5)) (-5 *1 (-1264 *5 *2 *6 *3)) (-4 *6 (-660 *2)) (-4 *3 (-1262 *5)))) (-4259 (*1 *2 *3) (-12 (-4 *4 (-1052)) (-4 *3 (-1245 *4)) (-4 *2 (-1262 *4)) (-5 *1 (-1264 *4 *3 *5 *2)) (-4 *5 (-660 *3))))) +(-10 -7 (-15 -4259 (|#4| |#2|)) (-15 -4260 (|#2| |#4| (-773))) (-15 -4261 ((-1 |#4| (-643 |#4|)) |#3|)) (IF (|has| |#1| (-560)) (-15 -4262 (|#4| (-410 |#2|))) |%noBranch|)) +NIL +(((-1265) (-140)) (T -1265)) +NIL +(-13 (-10 -7 (-6 -2433))) +((-2968 (((-112) $ $) NIL)) (-4263 (((-1180)) 12)) (-3663 (((-1162) $) 18)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 11) (((-1180) $) 8)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) 15))) +(((-1266 |#1|) (-13 (-1104) (-615 (-1180)) (-10 -8 (-15 -4378 ((-1180) $)) (-15 -4263 ((-1180))))) (-1180)) (T -1266)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1266 *3)) (-14 *3 *2))) (-4263 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1266 *3)) (-14 *3 *2)))) +(-13 (-1104) (-615 (-1180)) (-10 -8 (-15 -4378 ((-1180) $)) (-15 -4263 ((-1180))))) +((-4270 (($ (-773)) 19)) (-4267 (((-691 |#2|) $ $) 41)) (-4264 ((|#2| $) 51)) (-4265 ((|#2| $) 50)) (-4268 ((|#2| $ $) 36)) (-4266 (($ $ $) 47)) (-4269 (($ $) 23) (($ $ $) 29)) (-4271 (($ $ $) 15)) (* (($ (-549) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1267 |#1| |#2|) (-10 -8 (-15 -4264 (|#2| |#1|)) (-15 -4265 (|#2| |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4267 ((-691 |#2|) |#1| |#1|)) (-15 -4268 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -4270 (|#1| (-773))) (-15 -4271 (|#1| |#1| |#1|))) (-1268 |#2|) (-1219)) (T -1267)) +NIL +(-10 -8 (-15 -4264 (|#2| |#1|)) (-15 -4265 (|#2| |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4267 ((-691 |#2|) |#1| |#1|)) (-15 -4268 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-549) |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1|)) (-15 -4270 (|#1| (-773))) (-15 -4271 (|#1| |#1| |#1|))) +((-2968 (((-112) $ $) 19 (|has| |#1| (-1104)))) (-4270 (($ (-773)) 113 (|has| |#1| (-23)))) (-2372 (((-1275) $ (-549) (-549)) 41 (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4426))) (($ $) 89 (-12 (|has| |#1| (-852)) (|has| $ (-6 -4426))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) 8)) (-4219 ((|#1| $ (-549) |#1|) 53 (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) 59 (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4425)))) (-4156 (($) 7 T CONST)) (-2442 (($ $) 91 (|has| $ (-6 -4426)))) (-2443 (($ $) 101)) (-1440 (($ $) 79 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-3830 (($ |#1| $) 78 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) 54 (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) 52)) (-3843 (((-549) (-1 (-112) |#1|) $) 98) (((-549) |#1| $) 97 (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) 96 (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) 31 (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) 106 (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) 70)) (-4151 (((-112) $ (-773)) 9)) (-2374 (((-549) $) 44 (|has| (-549) (-852)))) (-2934 (($ $ $) 88 (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) 30 (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-2375 (((-549) $) 45 (|has| (-549) (-852)))) (-3260 (($ $ $) 87 (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4264 ((|#1| $) 103 (-12 (|has| |#1| (-1052)) (|has| |#1| (-1005))))) (-4148 (((-112) $ (-773)) 10)) (-4265 ((|#1| $) 104 (-12 (|has| |#1| (-1052)) (|has| |#1| (-1005))))) (-3663 (((-1162) $) 22 (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) 61) (($ $ $ (-549)) 60)) (-2377 (((-643 (-549)) $) 47)) (-2378 (((-112) (-549) $) 48)) (-3664 (((-1123) $) 21 (|has| |#1| (-1104)))) (-4232 ((|#1| $) 43 (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2373 (($ $ |#1|) 42 (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) 14)) (-2376 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) 49)) (-3827 (((-112) $) 11)) (-3996 (($) 12)) (-4231 ((|#1| $ (-549) |#1|) 51) ((|#1| $ (-549)) 50) (($ $ (-1236 (-549))) 64)) (-4268 ((|#1| $ $) 107 (|has| |#1| (-1052)))) (-2450 (($ $ (-549)) 63) (($ $ (-1236 (-549))) 62)) (-4266 (($ $ $) 105 (|has| |#1| (-1052)))) (-2125 (((-773) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4425))) (((-773) |#1| $) 29 (-12 (|has| |#1| (-1104)) (|has| $ (-6 -4425))))) (-1899 (($ $ $ (-549)) 92 (|has| $ (-6 -4426)))) (-3824 (($ $) 13)) (-4402 (((-538) $) 80 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 71)) (-4233 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-643 $)) 66)) (-4378 (((-865) $) 18 (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) 23 (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) 85 (|has| |#1| (-852)))) (-2967 (((-112) $ $) 84 (|has| |#1| (-852)))) (-3455 (((-112) $ $) 20 (|has| |#1| (-1104)))) (-3087 (((-112) $ $) 86 (|has| |#1| (-852)))) (-3088 (((-112) $ $) 83 (|has| |#1| (-852)))) (-4269 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-4271 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-549) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-728))) (($ $ |#1|) 108 (|has| |#1| (-728)))) (-4389 (((-773) $) 6 (|has| $ (-6 -4425))))) +(((-1268 |#1|) (-140) (-1219)) (T -1268)) +((-4271 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-25)))) (-4270 (*1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1268 *3)) (-4 *3 (-23)) (-4 *3 (-1219)))) (-4269 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-4 *1 (-1268 *3)) (-4 *3 (-1219)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) (-4268 (*1 *2 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1052)))) (-4267 (*1 *2 *1 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1219)) (-4 *3 (-1052)) (-5 *2 (-691 *3)))) (-4266 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1052)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1005)) (-4 *2 (-1052)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1005)) (-4 *2 (-1052))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4271 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4270 ($ (-773))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4269 ($ $)) (-15 -4269 ($ $ $)) (-15 * ($ (-549) $))) |%noBranch|) (IF (|has| |t#1| (-728)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1052)) (PROGN (-15 -4268 (|t#1| $ $)) (-15 -4267 ((-691 |t#1|) $ $)) (-15 -4266 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1005)) (IF (|has| |t#1| (-1052)) (PROGN (-15 -4265 (|t#1| $)) (-15 -4264 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-615 (-865)) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852)) (|has| |#1| (-615 (-865)))) ((-151 |#1|) . T) ((-616 (-538)) |has| |#1| (-616 (-538))) ((-287 #1=(-549) |#1|) . T) ((-289 #1# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-374 |#1|) . T) ((-492 |#1|) . T) ((-606 #1# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))) ((-653 |#1|) . T) ((-19 |#1|) . T) ((-852) |has| |#1| (-852)) ((-1104) -3960 (|has| |#1| (-1104)) (|has| |#1| (-852))) ((-1219) . T)) +((-2968 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-4270 (($ (-773)) NIL (|has| |#1| (-23)))) (-4272 (($ (-643 |#1|)) 11)) (-2372 (((-1275) $ (-549) (-549)) NIL (|has| $ (-6 -4426)))) (-1900 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-852)))) (-1898 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4426))) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-852))))) (-3310 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-852)))) (-1309 (((-112) $ (-773)) NIL)) (-4219 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426))) ((|#1| $ (-1236 (-549)) |#1|) NIL (|has| $ (-6 -4426)))) (-4142 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4156 (($) NIL T CONST)) (-2442 (($ $) NIL (|has| $ (-6 -4426)))) (-2443 (($ $) NIL)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-3830 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4274 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)))) (-1684 ((|#1| $ (-549) |#1|) NIL (|has| $ (-6 -4426)))) (-3517 ((|#1| $ (-549)) NIL)) (-3843 (((-549) (-1 (-112) |#1|) $) NIL) (((-549) |#1| $) NIL (|has| |#1| (-1104))) (((-549) |#1| $ (-549)) NIL (|has| |#1| (-1104)))) (-2124 (((-643 |#1|) $) 16 (|has| $ (-6 -4425)))) (-4267 (((-691 |#1|) $ $) NIL (|has| |#1| (-1052)))) (-4046 (($ (-773) |#1|) NIL)) (-4151 (((-112) $ (-773)) NIL)) (-2374 (((-549) $) NIL (|has| (-549) (-852)))) (-2934 (($ $ $) NIL (|has| |#1| (-852)))) (-3941 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-852)))) (-3008 (((-643 |#1|) $) NIL (|has| $ (-6 -4425)))) (-3666 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2375 (((-549) $) 12 (|has| (-549) (-852)))) (-3260 (($ $ $) NIL (|has| |#1| (-852)))) (-2128 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4264 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-4148 (((-112) $ (-773)) NIL)) (-4265 ((|#1| $) NIL (-12 (|has| |#1| (-1005)) (|has| |#1| (-1052))))) (-3663 (((-1162) $) NIL (|has| |#1| (-1104)))) (-2449 (($ |#1| $ (-549)) NIL) (($ $ $ (-549)) NIL)) (-2377 (((-643 (-549)) $) NIL)) (-2378 (((-112) (-549) $) NIL)) (-3664 (((-1123) $) NIL (|has| |#1| (-1104)))) (-4232 ((|#1| $) NIL (|has| (-549) (-852)))) (-1441 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2373 (($ $ |#1|) NIL (|has| $ (-6 -4426)))) (-2126 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 (-294 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104)))) (($ $ (-643 |#1|) (-643 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1104))))) (-1310 (((-112) $ $) NIL)) (-2376 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-2379 (((-643 |#1|) $) NIL)) (-3827 (((-112) $) NIL)) (-3996 (($) NIL)) (-4231 ((|#1| $ (-549) |#1|) NIL) ((|#1| $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4268 ((|#1| $ $) NIL (|has| |#1| (-1052)))) (-2450 (($ $ (-549)) NIL) (($ $ (-1236 (-549))) NIL)) (-4266 (($ $ $) NIL (|has| |#1| (-1052)))) (-2125 (((-773) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425))) (((-773) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1104))))) (-1899 (($ $ $ (-549)) NIL (|has| $ (-6 -4426)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) 20 (|has| |#1| (-616 (-538))))) (-3953 (($ (-643 |#1|)) 10)) (-4233 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-643 $)) NIL)) (-4378 (((-865) $) NIL (|has| |#1| (-615 (-865))))) (-3662 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-2127 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4425)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-852)))) (-2967 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3455 (((-112) $ $) NIL (|has| |#1| (-1104)))) (-3087 (((-112) $ $) NIL (|has| |#1| (-852)))) (-3088 (((-112) $ $) NIL (|has| |#1| (-852)))) (-4269 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4271 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-549) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-728))) (($ $ |#1|) NIL (|has| |#1| (-728)))) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1269 |#1|) (-13 (-1268 |#1|) (-10 -8 (-15 -4272 ($ (-643 |#1|))))) (-1219)) (T -1269)) +((-4272 (*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1269 *3))))) +(-13 (-1268 |#1|) (-10 -8 (-15 -4272 ($ (-643 |#1|))))) +((-4273 (((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|) 13)) (-4274 ((|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|) 15)) (-4390 (((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)) 30) (((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|)) 18))) +(((-1270 |#1| |#2|) (-10 -7 (-15 -4273 ((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4390 ((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|))) (-15 -4390 ((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)))) (-1219) (-1219)) (T -1270)) +((-4390 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1270 *5 *6)))) (-4390 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1270 *5 *6)))) (-4274 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) (-5 *1 (-1270 *5 *2)))) (-4273 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1269 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-5 *2 (-1269 *5)) (-5 *1 (-1270 *6 *5))))) +(-10 -7 (-15 -4273 ((-1269 |#2|) (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4274 (|#2| (-1 |#2| |#1| |#2|) (-1269 |#1|) |#2|)) (-15 -4390 ((-1269 |#2|) (-1 |#2| |#1|) (-1269 |#1|))) (-15 -4390 ((-3 (-1269 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1269 |#1|)))) +((-4275 (((-471) (-643 (-643 (-946 (-225)))) (-643 (-262))) 22) (((-471) (-643 (-643 (-946 (-225))))) 21) (((-471) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262))) 20)) (-4276 (((-1272) (-643 (-643 (-946 (-225)))) (-643 (-262))) 33) (((-1272) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262))) 32)) (-4378 (((-1272) (-471)) 48))) +(((-1271) (-10 -7 (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262)))) (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))))) (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))) (-643 (-262)))) (-15 -4276 ((-1272) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262)))) (-15 -4276 ((-1272) (-643 (-643 (-946 (-225)))) (-643 (-262)))) (-15 -4378 ((-1272) (-471))))) (T -1271)) +((-4378 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1272)) (-5 *1 (-1271)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-1271)))) (-4276 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *6 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-1271)))) (-4275 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-643 (-262))) (-5 *2 (-471)) (-5 *1 (-1271)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-471)) (-5 *1 (-1271)))) (-4275 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *6 (-643 (-262))) (-5 *2 (-471)) (-5 *1 (-1271))))) +(-10 -7 (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262)))) (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))))) (-15 -4275 ((-471) (-643 (-643 (-946 (-225)))) (-643 (-262)))) (-15 -4276 ((-1272) (-643 (-643 (-946 (-225)))) (-876) (-876) (-922) (-643 (-262)))) (-15 -4276 ((-1272) (-643 (-643 (-946 (-225)))) (-643 (-262)))) (-15 -4378 ((-1272) (-471)))) +((-2968 (((-112) $ $) NIL)) (-4294 (((-1162) $ (-1162)) 107) (((-1162) $ (-1162) (-1162)) 105) (((-1162) $ (-1162) (-643 (-1162))) 104)) (-4290 (($) 69)) (-4277 (((-1275) $ (-471) (-922)) 54)) (-4283 (((-1275) $ (-922) (-1162)) 89) (((-1275) $ (-922) (-876)) 90)) (-4305 (((-1275) $ (-922) (-380) (-380)) 57)) (-4315 (((-1275) $ (-1162)) 84)) (-4278 (((-1275) $ (-922) (-1162)) 94)) (-4279 (((-1275) $ (-922) (-380) (-380)) 58)) (-4316 (((-1275) $ (-922) (-922)) 55)) (-4296 (((-1275) $) 85)) (-4281 (((-1275) $ (-922) (-1162)) 93)) (-4285 (((-1275) $ (-471) (-922)) 41)) (-4282 (((-1275) $ (-922) (-1162)) 92)) (-4318 (((-643 (-262)) $) 29) (($ $ (-643 (-262))) 30)) (-4317 (((-1275) $ (-773) (-773)) 52)) (-4289 (($ $) 70) (($ (-471) (-643 (-262))) 71)) (-3663 (((-1162) $) NIL)) (-4292 (((-549) $) 48)) (-3664 (((-1123) $) NIL)) (-4286 (((-1269 (-3 (-471) "undefined")) $) 47)) (-4287 (((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549)))) $) 46)) (-4288 (((-1275) $ (-922) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-876) (-549) (-876) (-549)) 83)) (-4291 (((-643 (-946 (-225))) $) NIL)) (-4284 (((-471) $ (-922)) 43)) (-4314 (((-1275) $ (-773) (-773) (-922) (-922)) 50)) (-4312 (((-1275) $ (-1162)) 95)) (-4280 (((-1275) $ (-922) (-1162)) 91)) (-4378 (((-865) $) 102)) (-4293 (((-1275) $) 96)) (-3662 (((-112) $ $) NIL)) (-4311 (((-1275) $ (-922) (-1162)) 87) (((-1275) $ (-922) (-876)) 88)) (-3455 (((-112) $ $) NIL))) +(((-1272) (-13 (-1104) (-10 -8 (-15 -4291 ((-643 (-946 (-225))) $)) (-15 -4290 ($)) (-15 -4289 ($ $)) (-15 -4318 ((-643 (-262)) $)) (-15 -4318 ($ $ (-643 (-262)))) (-15 -4289 ($ (-471) (-643 (-262)))) (-15 -4288 ((-1275) $ (-922) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-876) (-549) (-876) (-549))) (-15 -4287 ((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549)))) $)) (-15 -4286 ((-1269 (-3 (-471) "undefined")) $)) (-15 -4315 ((-1275) $ (-1162))) (-15 -4285 ((-1275) $ (-471) (-922))) (-15 -4284 ((-471) $ (-922))) (-15 -4311 ((-1275) $ (-922) (-1162))) (-15 -4311 ((-1275) $ (-922) (-876))) (-15 -4283 ((-1275) $ (-922) (-1162))) (-15 -4283 ((-1275) $ (-922) (-876))) (-15 -4282 ((-1275) $ (-922) (-1162))) (-15 -4281 ((-1275) $ (-922) (-1162))) (-15 -4280 ((-1275) $ (-922) (-1162))) (-15 -4312 ((-1275) $ (-1162))) (-15 -4293 ((-1275) $)) (-15 -4314 ((-1275) $ (-773) (-773) (-922) (-922))) (-15 -4279 ((-1275) $ (-922) (-380) (-380))) (-15 -4305 ((-1275) $ (-922) (-380) (-380))) (-15 -4278 ((-1275) $ (-922) (-1162))) (-15 -4317 ((-1275) $ (-773) (-773))) (-15 -4277 ((-1275) $ (-471) (-922))) (-15 -4316 ((-1275) $ (-922) (-922))) (-15 -4294 ((-1162) $ (-1162))) (-15 -4294 ((-1162) $ (-1162) (-1162))) (-15 -4294 ((-1162) $ (-1162) (-643 (-1162)))) (-15 -4296 ((-1275) $)) (-15 -4292 ((-549) $)) (-15 -4378 ((-865) $))))) (T -1272)) +((-4378 (*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1272)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-643 (-946 (-225)))) (-5 *1 (-1272)))) (-4290 (*1 *1) (-5 *1 (-1272))) (-4289 (*1 *1 *1) (-5 *1 (-1272))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1272)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1272)))) (-4289 (*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-643 (-262))) (-5 *1 (-1272)))) (-4288 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-922)) (-5 *4 (-225)) (-5 *5 (-549)) (-5 *6 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549))))) (-5 *1 (-1272)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-1269 (-3 (-471) "undefined"))) (-5 *1 (-1272)))) (-4315 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4284 (*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-5 *2 (-471)) (-5 *1 (-1272)))) (-4311 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4311 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4283 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4283 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4282 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4281 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4280 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4314 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-773)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4279 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4305 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4278 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4317 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4277 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4316 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4294 (*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1272)))) (-4294 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1272)))) (-4294 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-1272)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1272)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1272))))) +(-13 (-1104) (-10 -8 (-15 -4291 ((-643 (-946 (-225))) $)) (-15 -4290 ($)) (-15 -4289 ($ $)) (-15 -4318 ((-643 (-262)) $)) (-15 -4318 ($ $ (-643 (-262)))) (-15 -4289 ($ (-471) (-643 (-262)))) (-15 -4288 ((-1275) $ (-922) (-225) (-225) (-225) (-225) (-549) (-549) (-549) (-549) (-876) (-549) (-876) (-549))) (-15 -4287 ((-1269 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549)))) $)) (-15 -4286 ((-1269 (-3 (-471) "undefined")) $)) (-15 -4315 ((-1275) $ (-1162))) (-15 -4285 ((-1275) $ (-471) (-922))) (-15 -4284 ((-471) $ (-922))) (-15 -4311 ((-1275) $ (-922) (-1162))) (-15 -4311 ((-1275) $ (-922) (-876))) (-15 -4283 ((-1275) $ (-922) (-1162))) (-15 -4283 ((-1275) $ (-922) (-876))) (-15 -4282 ((-1275) $ (-922) (-1162))) (-15 -4281 ((-1275) $ (-922) (-1162))) (-15 -4280 ((-1275) $ (-922) (-1162))) (-15 -4312 ((-1275) $ (-1162))) (-15 -4293 ((-1275) $)) (-15 -4314 ((-1275) $ (-773) (-773) (-922) (-922))) (-15 -4279 ((-1275) $ (-922) (-380) (-380))) (-15 -4305 ((-1275) $ (-922) (-380) (-380))) (-15 -4278 ((-1275) $ (-922) (-1162))) (-15 -4317 ((-1275) $ (-773) (-773))) (-15 -4277 ((-1275) $ (-471) (-922))) (-15 -4316 ((-1275) $ (-922) (-922))) (-15 -4294 ((-1162) $ (-1162))) (-15 -4294 ((-1162) $ (-1162) (-1162))) (-15 -4294 ((-1162) $ (-1162) (-643 (-1162)))) (-15 -4296 ((-1275) $)) (-15 -4292 ((-549) $)) (-15 -4378 ((-865) $)))) +((-2968 (((-112) $ $) NIL)) (-4306 (((-1275) $ (-380)) 169) (((-1275) $ (-380) (-380) (-380)) 170)) (-4294 (((-1162) $ (-1162)) 179) (((-1162) $ (-1162) (-1162)) 177) (((-1162) $ (-1162) (-643 (-1162))) 176)) (-4322 (($) 67)) (-4313 (((-1275) $ (-380) (-380) (-380) (-380) (-380)) 141) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 139) (((-1275) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 140) (((-1275) $ (-549) (-549) (-380) (-380) (-380)) 144) (((-1275) $ (-380) (-380)) 145) (((-1275) $ (-380) (-380) (-380)) 152)) (-4325 (((-380)) 122) (((-380) (-380)) 123)) (-4327 (((-380)) 117) (((-380) (-380)) 119)) (-4326 (((-380)) 120) (((-380) (-380)) 121)) (-4323 (((-380)) 126) (((-380) (-380)) 127)) (-4324 (((-380)) 124) (((-380) (-380)) 125)) (-4305 (((-1275) $ (-380) (-380)) 171)) (-4315 (((-1275) $ (-1162)) 153)) (-4320 (((-1136 (-225)) $) 68) (($ $ (-1136 (-225))) 69)) (-4301 (((-1275) $ (-1162)) 187)) (-4300 (((-1275) $ (-1162)) 188)) (-4307 (((-1275) $ (-380) (-380)) 151) (((-1275) $ (-549) (-549)) 168)) (-4316 (((-1275) $ (-922) (-922)) 160)) (-4296 (((-1275) $) 137)) (-4304 (((-1275) $ (-1162)) 186)) (-4309 (((-1275) $ (-1162)) 134)) (-4318 (((-643 (-262)) $) 70) (($ $ (-643 (-262))) 71)) (-4317 (((-1275) $ (-773) (-773)) 159)) (-4319 (((-1275) $ (-773) (-946 (-225))) 193)) (-4321 (($ $) 73) (($ (-1136 (-225)) (-1162)) 74) (($ (-1136 (-225)) (-643 (-262))) 75)) (-4298 (((-1275) $ (-380) (-380) (-380)) 131)) (-3663 (((-1162) $) NIL)) (-4292 (((-549) $) 128)) (-4297 (((-1275) $ (-380)) 174)) (-4302 (((-1275) $ (-380)) 191)) (-3664 (((-1123) $) NIL)) (-4303 (((-1275) $ (-380)) 190)) (-4308 (((-1275) $ (-1162)) 136)) (-4314 (((-1275) $ (-773) (-773) (-922) (-922)) 158)) (-4310 (((-1275) $ (-1162)) 133)) (-4312 (((-1275) $ (-1162)) 135)) (-4295 (((-1275) $ (-157) (-157)) 157)) (-4378 (((-865) $) 166)) (-4293 (((-1275) $) 138)) (-4299 (((-1275) $ (-1162)) 189)) (-3662 (((-112) $ $) NIL)) (-4311 (((-1275) $ (-1162)) 132)) (-3455 (((-112) $ $) NIL))) +(((-1273) (-13 (-1104) (-10 -8 (-15 -4327 ((-380))) (-15 -4327 ((-380) (-380))) (-15 -4326 ((-380))) (-15 -4326 ((-380) (-380))) (-15 -4325 ((-380))) (-15 -4325 ((-380) (-380))) (-15 -4324 ((-380))) (-15 -4324 ((-380) (-380))) (-15 -4323 ((-380))) (-15 -4323 ((-380) (-380))) (-15 -4322 ($)) (-15 -4321 ($ $)) (-15 -4321 ($ (-1136 (-225)) (-1162))) (-15 -4321 ($ (-1136 (-225)) (-643 (-262)))) (-15 -4320 ((-1136 (-225)) $)) (-15 -4320 ($ $ (-1136 (-225)))) (-15 -4319 ((-1275) $ (-773) (-946 (-225)))) (-15 -4318 ((-643 (-262)) $)) (-15 -4318 ($ $ (-643 (-262)))) (-15 -4317 ((-1275) $ (-773) (-773))) (-15 -4316 ((-1275) $ (-922) (-922))) (-15 -4315 ((-1275) $ (-1162))) (-15 -4314 ((-1275) $ (-773) (-773) (-922) (-922))) (-15 -4313 ((-1275) $ (-380) (-380) (-380) (-380) (-380))) (-15 -4313 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -4313 ((-1275) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4313 ((-1275) $ (-549) (-549) (-380) (-380) (-380))) (-15 -4313 ((-1275) $ (-380) (-380))) (-15 -4313 ((-1275) $ (-380) (-380) (-380))) (-15 -4312 ((-1275) $ (-1162))) (-15 -4311 ((-1275) $ (-1162))) (-15 -4310 ((-1275) $ (-1162))) (-15 -4309 ((-1275) $ (-1162))) (-15 -4308 ((-1275) $ (-1162))) (-15 -4307 ((-1275) $ (-380) (-380))) (-15 -4307 ((-1275) $ (-549) (-549))) (-15 -4306 ((-1275) $ (-380))) (-15 -4306 ((-1275) $ (-380) (-380) (-380))) (-15 -4305 ((-1275) $ (-380) (-380))) (-15 -4304 ((-1275) $ (-1162))) (-15 -4303 ((-1275) $ (-380))) (-15 -4302 ((-1275) $ (-380))) (-15 -4301 ((-1275) $ (-1162))) (-15 -4300 ((-1275) $ (-1162))) (-15 -4299 ((-1275) $ (-1162))) (-15 -4298 ((-1275) $ (-380) (-380) (-380))) (-15 -4297 ((-1275) $ (-380))) (-15 -4296 ((-1275) $)) (-15 -4295 ((-1275) $ (-157) (-157))) (-15 -4294 ((-1162) $ (-1162))) (-15 -4294 ((-1162) $ (-1162) (-1162))) (-15 -4294 ((-1162) $ (-1162) (-643 (-1162)))) (-15 -4293 ((-1275) $)) (-15 -4292 ((-549) $))))) (T -1273)) +((-4327 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4327 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4326 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4325 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4324 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4323 (*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) (-4322 (*1 *1) (-5 *1 (-1273))) (-4321 (*1 *1 *1) (-5 *1 (-1273))) (-4321 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-1162)) (-5 *1 (-1273)))) (-4321 (*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-643 (-262))) (-5 *1 (-1273)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1273)))) (-4320 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1273)))) (-4319 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-773)) (-5 *4 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1273)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1273)))) (-4317 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4316 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4315 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4314 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-773)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-549)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4313 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4307 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4307 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4306 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4305 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4303 (*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4298 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4297 (*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4295 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4294 (*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1273)))) (-4294 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1273)))) (-4294 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-1273)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1273)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1273))))) +(-13 (-1104) (-10 -8 (-15 -4327 ((-380))) (-15 -4327 ((-380) (-380))) (-15 -4326 ((-380))) (-15 -4326 ((-380) (-380))) (-15 -4325 ((-380))) (-15 -4325 ((-380) (-380))) (-15 -4324 ((-380))) (-15 -4324 ((-380) (-380))) (-15 -4323 ((-380))) (-15 -4323 ((-380) (-380))) (-15 -4322 ($)) (-15 -4321 ($ $)) (-15 -4321 ($ (-1136 (-225)) (-1162))) (-15 -4321 ($ (-1136 (-225)) (-643 (-262)))) (-15 -4320 ((-1136 (-225)) $)) (-15 -4320 ($ $ (-1136 (-225)))) (-15 -4319 ((-1275) $ (-773) (-946 (-225)))) (-15 -4318 ((-643 (-262)) $)) (-15 -4318 ($ $ (-643 (-262)))) (-15 -4317 ((-1275) $ (-773) (-773))) (-15 -4316 ((-1275) $ (-922) (-922))) (-15 -4315 ((-1275) $ (-1162))) (-15 -4314 ((-1275) $ (-773) (-773) (-922) (-922))) (-15 -4313 ((-1275) $ (-380) (-380) (-380) (-380) (-380))) (-15 -4313 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -4313 ((-1275) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -4313 ((-1275) $ (-549) (-549) (-380) (-380) (-380))) (-15 -4313 ((-1275) $ (-380) (-380))) (-15 -4313 ((-1275) $ (-380) (-380) (-380))) (-15 -4312 ((-1275) $ (-1162))) (-15 -4311 ((-1275) $ (-1162))) (-15 -4310 ((-1275) $ (-1162))) (-15 -4309 ((-1275) $ (-1162))) (-15 -4308 ((-1275) $ (-1162))) (-15 -4307 ((-1275) $ (-380) (-380))) (-15 -4307 ((-1275) $ (-549) (-549))) (-15 -4306 ((-1275) $ (-380))) (-15 -4306 ((-1275) $ (-380) (-380) (-380))) (-15 -4305 ((-1275) $ (-380) (-380))) (-15 -4304 ((-1275) $ (-1162))) (-15 -4303 ((-1275) $ (-380))) (-15 -4302 ((-1275) $ (-380))) (-15 -4301 ((-1275) $ (-1162))) (-15 -4300 ((-1275) $ (-1162))) (-15 -4299 ((-1275) $ (-1162))) (-15 -4298 ((-1275) $ (-380) (-380) (-380))) (-15 -4297 ((-1275) $ (-380))) (-15 -4296 ((-1275) $)) (-15 -4295 ((-1275) $ (-157) (-157))) (-15 -4294 ((-1162) $ (-1162))) (-15 -4294 ((-1162) $ (-1162) (-1162))) (-15 -4294 ((-1162) $ (-1162) (-643 (-1162)))) (-15 -4293 ((-1275) $)) (-15 -4292 ((-549) $)))) +((-4336 (((-643 (-1162)) (-643 (-1162))) 104) (((-643 (-1162))) 96)) (-4337 (((-643 (-1162))) 94)) (-4334 (((-643 (-922)) (-643 (-922))) 69) (((-643 (-922))) 64)) (-4333 (((-643 (-773)) (-643 (-773))) 61) (((-643 (-773))) 55)) (-4335 (((-1275)) 71)) (-4339 (((-922) (-922)) 87) (((-922)) 86)) (-4338 (((-922) (-922)) 85) (((-922)) 84)) (-4331 (((-876) (-876)) 81) (((-876)) 80)) (-4341 (((-225)) 91) (((-225) (-380)) 93)) (-4340 (((-922)) 88) (((-922) (-922)) 89)) (-4332 (((-922) (-922)) 83) (((-922)) 82)) (-4328 (((-876) (-876)) 75) (((-876)) 73)) (-4329 (((-876) (-876)) 77) (((-876)) 76)) (-4330 (((-876) (-876)) 79) (((-876)) 78))) +(((-1274) (-10 -7 (-15 -4328 ((-876))) (-15 -4328 ((-876) (-876))) (-15 -4329 ((-876))) (-15 -4329 ((-876) (-876))) (-15 -4330 ((-876))) (-15 -4330 ((-876) (-876))) (-15 -4331 ((-876))) (-15 -4331 ((-876) (-876))) (-15 -4332 ((-922))) (-15 -4332 ((-922) (-922))) (-15 -4333 ((-643 (-773)))) (-15 -4333 ((-643 (-773)) (-643 (-773)))) (-15 -4334 ((-643 (-922)))) (-15 -4334 ((-643 (-922)) (-643 (-922)))) (-15 -4335 ((-1275))) (-15 -4336 ((-643 (-1162)))) (-15 -4336 ((-643 (-1162)) (-643 (-1162)))) (-15 -4337 ((-643 (-1162)))) (-15 -4338 ((-922))) (-15 -4339 ((-922))) (-15 -4338 ((-922) (-922))) (-15 -4339 ((-922) (-922))) (-15 -4340 ((-922) (-922))) (-15 -4340 ((-922))) (-15 -4341 ((-225) (-380))) (-15 -4341 ((-225))))) (T -1274)) +((-4341 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1274)))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-225)) (-5 *1 (-1274)))) (-4340 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4340 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4339 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4338 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4339 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4338 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4337 (*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274)))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274)))) (-4336 (*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274)))) (-4335 (*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1274)))) (-4334 (*1 *2 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1274)))) (-4334 (*1 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1274)))) (-4333 (*1 *2 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1274)))) (-4333 (*1 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1274)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4332 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) (-4331 (*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4331 (*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4330 (*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4330 (*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4329 (*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4329 (*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) (-4328 (*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) +(-10 -7 (-15 -4328 ((-876))) (-15 -4328 ((-876) (-876))) (-15 -4329 ((-876))) (-15 -4329 ((-876) (-876))) (-15 -4330 ((-876))) (-15 -4330 ((-876) (-876))) (-15 -4331 ((-876))) (-15 -4331 ((-876) (-876))) (-15 -4332 ((-922))) (-15 -4332 ((-922) (-922))) (-15 -4333 ((-643 (-773)))) (-15 -4333 ((-643 (-773)) (-643 (-773)))) (-15 -4334 ((-643 (-922)))) (-15 -4334 ((-643 (-922)) (-643 (-922)))) (-15 -4335 ((-1275))) (-15 -4336 ((-643 (-1162)))) (-15 -4336 ((-643 (-1162)) (-643 (-1162)))) (-15 -4337 ((-643 (-1162)))) (-15 -4338 ((-922))) (-15 -4339 ((-922))) (-15 -4338 ((-922) (-922))) (-15 -4339 ((-922) (-922))) (-15 -4340 ((-922) (-922))) (-15 -4340 ((-922))) (-15 -4341 ((-225) (-380))) (-15 -4341 ((-225)))) +((-4342 (($) 6)) (-4378 (((-865) $) 9))) +(((-1275) (-13 (-615 (-865)) (-10 -8 (-15 -4342 ($))))) (T -1275)) +((-4342 (*1 *1) (-5 *1 (-1275)))) +(-13 (-615 (-865)) (-10 -8 (-15 -4342 ($)))) +((-4381 (($ $ |#2|) 10))) +(((-1276 |#1| |#2|) (-10 -8 (-15 -4381 (|#1| |#1| |#2|))) (-1277 |#2|) (-365)) (T -1276)) +NIL +(-10 -8 (-15 -4381 (|#1| |#1| |#2|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4343 (((-134)) 33)) (-4378 (((-865) $) 12)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3455 (((-112) $ $) 6)) (-4381 (($ $ |#1|) 34)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1277 |#1|) (-140) (-365)) (T -1277)) +((-4381 (*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-365)))) (-4343 (*1 *2) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) +(-13 (-719 |t#1|) (-10 -8 (-15 -4381 ($ $ |t#1|)) (-15 -4343 ((-134))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-650 |#1|) . T) ((-642 |#1|) . T) ((-719 |#1|) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1104) . T)) +((-4348 (((-643 (-1212 |#1|)) (-1180) (-1212 |#1|)) 83)) (-4346 (((-1157 (-1157 (-949 |#1|))) (-1180) (-1157 (-949 |#1|))) 63)) (-4349 (((-1 (-1157 (-1212 |#1|)) (-1157 (-1212 |#1|))) (-773) (-1212 |#1|) (-1157 (-1212 |#1|))) 74)) (-4344 (((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773)) 65)) (-4347 (((-1 (-1174 (-949 |#1|)) (-949 |#1|)) (-1180)) 32)) (-4345 (((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773)) 64))) +(((-1278 |#1|) (-10 -7 (-15 -4344 ((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773))) (-15 -4345 ((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773))) (-15 -4346 ((-1157 (-1157 (-949 |#1|))) (-1180) (-1157 (-949 |#1|)))) (-15 -4347 ((-1 (-1174 (-949 |#1|)) (-949 |#1|)) (-1180))) (-15 -4348 ((-643 (-1212 |#1|)) (-1180) (-1212 |#1|))) (-15 -4349 ((-1 (-1157 (-1212 |#1|)) (-1157 (-1212 |#1|))) (-773) (-1212 |#1|) (-1157 (-1212 |#1|))))) (-365)) (T -1278)) +((-4349 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-773)) (-4 *6 (-365)) (-5 *4 (-1212 *6)) (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1278 *6)) (-5 *5 (-1157 *4)))) (-4348 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-4 *5 (-365)) (-5 *2 (-643 (-1212 *5))) (-5 *1 (-1278 *5)) (-5 *4 (-1212 *5)))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1 (-1174 (-949 *4)) (-949 *4))) (-5 *1 (-1278 *4)) (-4 *4 (-365)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-4 *5 (-365)) (-5 *2 (-1157 (-1157 (-949 *5)))) (-5 *1 (-1278 *5)) (-5 *4 (-1157 (-949 *5))))) (-4345 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-1157 (-949 *4)) (-1157 (-949 *4)))) (-5 *1 (-1278 *4)) (-4 *4 (-365)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-1157 (-949 *4)) (-1157 (-949 *4)))) (-5 *1 (-1278 *4)) (-4 *4 (-365))))) +(-10 -7 (-15 -4344 ((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773))) (-15 -4345 ((-1 (-1157 (-949 |#1|)) (-1157 (-949 |#1|))) (-773))) (-15 -4346 ((-1157 (-1157 (-949 |#1|))) (-1180) (-1157 (-949 |#1|)))) (-15 -4347 ((-1 (-1174 (-949 |#1|)) (-949 |#1|)) (-1180))) (-15 -4348 ((-643 (-1212 |#1|)) (-1180) (-1212 |#1|))) (-15 -4349 ((-1 (-1157 (-1212 |#1|)) (-1157 (-1212 |#1|))) (-773) (-1212 |#1|) (-1157 (-1212 |#1|))))) +((-4351 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|) 82)) (-4350 (((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|)))) 81))) +(((-1279 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|))) (-352) (-1245 |#1|) (-1245 |#2|) (-413 |#2| |#3|)) (T -1279)) +((-4351 (*1 *2 *3) (-12 (-4 *4 (-352)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) (-5 *1 (-1279 *4 *3 *5 *6)) (-4 *6 (-413 *3 *5)))) (-4350 (*1 *2) (-12 (-4 *3 (-352)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-2 (|:| -2190 (-691 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-691 *4)))) (-5 *1 (-1279 *3 *4 *5 *6)) (-4 *6 (-413 *4 *5))))) +(-10 -7 (-15 -4350 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))))) (-15 -4351 ((-2 (|:| -2190 (-691 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-691 |#2|))) |#2|))) +((-2968 (((-112) $ $) NIL)) (-4352 (((-1138) $) 11)) (-4353 (((-1138) $) 9)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 17) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1280) (-13 (-1086) (-10 -8 (-15 -4353 ((-1138) $)) (-15 -4352 ((-1138) $))))) (T -1280)) +((-4353 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1280)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1280))))) +(-13 (-1086) (-10 -8 (-15 -4353 ((-1138) $)) (-15 -4352 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4354 (((-1138) $) 9)) (-4378 (((-865) $) 15) (($ (-1185)) NIL) (((-1185) $) NIL)) (-3662 (((-112) $ $) NIL)) (-3455 (((-112) $ $) NIL))) +(((-1281) (-13 (-1086) (-10 -8 (-15 -4354 ((-1138) $))))) (T -1281)) +((-4354 (*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1281))))) +(-13 (-1086) (-10 -8 (-15 -4354 ((-1138) $)))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 58)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) NIL)) (-2573 (((-112) $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4378 (((-865) $) 81) (($ (-549)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-3530 (((-773)) NIL T CONST)) (-4355 (((-1275) (-773)) 16)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 37 T CONST)) (-3067 (($) 84 T CONST)) (-3455 (((-112) $ $) 87)) (-4381 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4269 (($ $) 89) (($ $ $) NIL)) (-4271 (($ $ $) 63)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-1282 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1052) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4381 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4355 ((-1275) (-773))))) (-1052) (-852) (-795) (-953 |#1| |#3| |#2|) (-643 |#2|) (-643 (-773)) (-773)) (T -1282)) +((-4381 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1052)) (-4 *3 (-852)) (-4 *4 (-795)) (-14 *6 (-643 *3)) (-5 *1 (-1282 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-953 *2 *4 *3)) (-14 *7 (-643 (-773))) (-14 *8 (-773)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) (-14 *8 (-643 *5)) (-5 *2 (-1275)) (-5 *1 (-1282 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-953 *4 *6 *5)) (-14 *9 (-643 *3)) (-14 *10 *3)))) +(-13 (-1052) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -4381 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4355 ((-1275) (-773))))) +((-2968 (((-112) $ $) NIL)) (-4113 (((-643 (-2 (|:| -4293 $) (|:| -1870 (-643 |#4|)))) (-643 |#4|)) NIL)) (-4114 (((-643 $) (-643 |#4|)) 96)) (-3485 (((-643 |#3|) $) NIL)) (-3309 (((-112) $) NIL)) (-3300 (((-112) $) NIL (|has| |#1| (-560)))) (-4125 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4120 ((|#4| |#4| $) NIL)) (-3310 (((-2 (|:| |under| $) (|:| -3534 $) (|:| |upper| $)) $ |#3|) NIL)) (-1309 (((-112) $ (-773)) NIL)) (-4142 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-4156 (($) NIL T CONST)) (-3305 (((-112) $) NIL (|has| |#1| (-560)))) (-3307 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3306 (((-112) $ $) NIL (|has| |#1| (-560)))) (-3308 (((-112) $) NIL (|has| |#1| (-560)))) (-4121 (((-643 |#4|) (-643 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3301 (((-643 |#4|) (-643 |#4|) $) 28 (|has| |#1| (-560)))) (-3302 (((-643 |#4|) (-643 |#4|) $) NIL (|has| |#1| (-560)))) (-3577 (((-3 $ "failed") (-643 |#4|)) NIL)) (-3576 (($ (-643 |#4|)) NIL)) (-4230 (((-3 $ #1#) $) 78)) (-4117 ((|#4| |#4| $) 83)) (-1440 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-3830 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4126 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4115 ((|#4| |#4| $) NIL)) (-4274 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4128 (((-2 (|:| -4293 (-643 |#4|)) (|:| -1870 (-643 |#4|))) $) NIL)) (-2124 (((-643 |#4|) $) NIL (|has| $ (-6 -4425)))) (-4127 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3600 ((|#3| $) 84)) (-4151 (((-112) $ (-773)) NIL)) (-3008 (((-643 |#4|) $) 32 (|has| $ (-6 -4425)))) (-3666 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104))))) (-4358 (((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-643 |#4|)) 38)) (-2128 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4426)))) (-4390 (($ (-1 |#4| |#4|) $) NIL)) (-3315 (((-643 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-4148 (((-112) $ (-773)) NIL)) (-3663 (((-1162) $) NIL)) (-4229 (((-3 |#4| #1#) $) NIL)) (-4129 (((-643 |#4|) $) 54)) (-4123 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4118 ((|#4| |#4| $) 82)) (-4131 (((-112) $ $) 93)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-560)))) (-4124 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4119 ((|#4| |#4| $) NIL)) (-3664 (((-1123) $) NIL)) (-4232 (((-3 |#4| #1#) $) 77)) (-1441 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4111 (((-3 $ #1#) $ |#4|) NIL)) (-4200 (($ $ |#4|) NIL)) (-2126 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4199 (($ $ (-643 |#4|) (-643 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104)))) (($ $ (-643 (-294 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1104))))) (-1310 (((-112) $ $) NIL)) (-3827 (((-112) $) 75)) (-3996 (($) 46)) (-4380 (((-773) $) NIL)) (-2125 (((-773) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1104)))) (((-773) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-3824 (($ $) NIL)) (-4402 (((-538) $) NIL (|has| |#4| (-616 (-538))))) (-3953 (($ (-643 |#4|)) NIL)) (-3311 (($ $ |#3|) NIL)) (-3313 (($ $ |#3|) NIL)) (-4116 (($ $) NIL)) (-3312 (($ $ |#3|) NIL)) (-4378 (((-865) $) NIL) (((-643 |#4|) $) 63)) (-4110 (((-773) $) NIL (|has| |#3| (-370)))) (-4357 (((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-643 |#4|)) 45)) (-4356 (((-643 $) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-643 $) (-643 |#4|)) 74)) (-3662 (((-112) $ $) NIL)) (-4130 (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3748 (-643 |#4|))) #1#) (-643 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4122 (((-112) $ (-1 (-112) |#4| (-643 |#4|))) NIL)) (-2127 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4425)))) (-4112 (((-643 |#3|) $) NIL)) (-4365 (((-112) |#3| $) NIL)) (-3455 (((-112) $ $) NIL)) (-4389 (((-773) $) NIL (|has| $ (-6 -4425))))) +(((-1283 |#1| |#2| |#3| |#4|) (-13 (-1214 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4358 ((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4358 ((-3 $ "failed") (-643 |#4|))) (-15 -4357 ((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4357 ((-3 $ "failed") (-643 |#4|))) (-15 -4356 ((-643 $) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4356 ((-643 $) (-643 |#4|))))) (-560) (-795) (-852) (-1068 |#1| |#2| |#3|)) (T -1283)) +((-4358 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1283 *5 *6 *7 *8)))) (-4358 (*1 *1 *2) (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1283 *3 *4 *5 *6)))) (-4357 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1283 *5 *6 *7 *8)))) (-4357 (*1 *1 *2) (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1283 *3 *4 *5 *6)))) (-4356 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-643 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) (-5 *2 (-643 (-1283 *6 *7 *8 *9))) (-5 *1 (-1283 *6 *7 *8 *9)))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 (-1283 *4 *5 *6 *7))) (-5 *1 (-1283 *4 *5 *6 *7))))) +(-13 (-1214 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4358 ((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4358 ((-3 $ "failed") (-643 |#4|))) (-15 -4357 ((-3 $ "failed") (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4357 ((-3 $ "failed") (-643 |#4|))) (-15 -4356 ((-643 $) (-643 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4356 ((-643 $) (-643 |#4|))))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-1407 (((-3 $ "failed") $ $) 20)) (-4156 (($) 18 T CONST)) (-3890 (((-3 $ "failed") $) 37)) (-2573 (((-112) $) 35)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#1|) 45)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1284 |#1|) (-140) (-1052)) (T -1284)) +NIL +(-13 (-1052) (-111 |t#1| |t#1|) (-618 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 |#1|) |has| |#1| (-172)) ((-719 |#1|) |has| |#1| (-172)) ((-728) . T) ((-1054 |#1|) . T) ((-1059 |#1|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T)) +((-2968 (((-112) $ $) 67)) (-3608 (((-112) $) NIL)) (-4366 (((-643 |#1|) $) 52)) (-4379 (($ $ (-773)) 46)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4367 (($ $ (-773)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-4156 (($) NIL T CONST)) (-4371 (($ $ $) 70) (($ $ (-821 |#1|)) 56) (($ $ |#1|) 60)) (-3577 (((-3 (-821 |#1|) "failed") $) NIL)) (-3576 (((-821 |#1|) $) NIL)) (-4391 (($ $) 39)) (-3890 (((-3 $ "failed") $) NIL)) (-4383 (((-112) $) NIL)) (-4382 (($ $) NIL)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-821 |#1|) |#2|) 38)) (-4368 (($ $) 40)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) 12)) (-4387 (((-821 |#1|) $) NIL)) (-4388 (((-821 |#1|) $) 41)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (($ $ $) 69) (($ $ (-821 |#1|)) 58) (($ $ |#1|) 62)) (-1917 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3295 (((-821 |#1|) $) 35)) (-3594 ((|#2| $) 37)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4380 (((-773) $) 43)) (-4385 (((-112) $) 47)) (-4384 ((|#2| $) NIL)) (-4378 (((-865) $) NIL) (($ (-821 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-549)) NIL)) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-821 |#1|)) NIL)) (-4386 ((|#2| $ $) 76) ((|#2| $ (-821 |#1|)) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 13 T CONST)) (-3067 (($) 19 T CONST)) (-3066 (((-643 (-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3455 (((-112) $ $) 44)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 28)) (** (($ $ (-773)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-821 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1285 |#1| |#2|) (-13 (-386 |#2| (-821 |#1|)) (-1292 |#1| |#2|)) (-852) (-1052)) (T -1285)) +NIL +(-13 (-386 |#2| (-821 |#1|)) (-1292 |#1| |#2|)) +((-4374 ((|#3| |#3| (-773)) 30)) (-4375 ((|#3| |#3| (-773)) 36)) (-4359 ((|#3| |#3| |#3| (-773)) 37))) +(((-1286 |#1| |#2| |#3|) (-10 -7 (-15 -4375 (|#3| |#3| (-773))) (-15 -4374 (|#3| |#3| (-773))) (-15 -4359 (|#3| |#3| |#3| (-773)))) (-13 (-1052) (-719 (-410 (-549)))) (-852) (-1292 |#2| |#1|)) (T -1286)) +((-4359 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4)))) (-4374 (*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4)))) (-4375 (*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4))))) +(-10 -7 (-15 -4375 (|#3| |#3| (-773))) (-15 -4374 (|#3| |#3| (-773))) (-15 -4359 (|#3| |#3| |#3| (-773)))) +((-4364 (((-112) $) 15)) (-4365 (((-112) $) 14)) (-4360 (($ $) 19) (($ $ (-773)) 21))) +(((-1287 |#1| |#2|) (-10 -8 (-15 -4360 (|#1| |#1| (-773))) (-15 -4360 (|#1| |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -4365 ((-112) |#1|))) (-1288 |#2|) (-365)) (T -1287)) +NIL +(-10 -8 (-15 -4360 (|#1| |#1| (-773))) (-15 -4360 (|#1| |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -4365 ((-112) |#1|))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-2242 (((-2 (|:| -1947 $) (|:| -4412 $) (|:| |associate| $)) $) 47)) (-2241 (($ $) 46)) (-2239 (((-112) $) 44)) (-4364 (((-112) $) 104)) (-4361 (((-773)) 100)) (-1407 (((-3 $ "failed") $ $) 20)) (-4206 (($ $) 81)) (-4401 (((-408 $) $) 80)) (-1753 (((-112) $ $) 65)) (-4156 (($) 18 T CONST)) (-3577 (((-3 |#1| "failed") $) 111)) (-3576 ((|#1| $) 112)) (-2964 (($ $ $) 61)) (-3890 (((-3 $ "failed") $) 37)) (-2963 (($ $ $) 62)) (-3144 (((-2 (|:| -4386 (-643 $)) (|:| -2572 $)) (-643 $)) 57)) (-1941 (($ $ (-773)) 97 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4155 (((-112) $) 79)) (-4203 (((-834 (-922)) $) 94 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2573 (((-112) $) 35)) (-1750 (((-3 (-643 $) #1="failed") (-643 $) $) 58)) (-2069 (($ $ $) 52) (($ (-643 $)) 51)) (-3663 (((-1162) $) 10)) (-2806 (($ $) 78)) (-4363 (((-112) $) 103)) (-3664 (((-1123) $) 11)) (-3111 (((-1174 $) (-1174 $) (-1174 $)) 50)) (-3564 (($ $ $) 54) (($ (-643 $)) 53)) (-4164 (((-408 $) $) 82)) (-4362 (((-834 (-922))) 101)) (-1751 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2572 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 59)) (-3889 (((-3 $ "failed") $ $) 48)) (-3143 (((-3 (-643 $) "failed") (-643 $) $) 56)) (-1752 (((-773) $) 64)) (-3282 (((-2 (|:| -2152 $) (|:| -3303 $)) $ $) 63)) (-1942 (((-3 (-773) "failed") $ $) 95 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4343 (((-134)) 109)) (-4380 (((-834 (-922)) $) 102)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ $) 49) (($ (-410 (-549))) 74) (($ |#1|) 110)) (-3105 (((-3 $ "failed") $) 93 (-3960 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-2240 (((-112) $ $) 45)) (-4365 (((-112) $) 105)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-4360 (($ $) 99 (|has| |#1| (-370))) (($ $ (-773)) 98 (|has| |#1| (-370)))) (-3455 (((-112) $ $) 6)) (-4381 (($ $ $) 73) (($ $ |#1|) 108)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36) (($ $ (-549)) 77)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ $ (-410 (-549))) 76) (($ (-410 (-549)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-1288 |#1|) (-140) (-365)) (T -1288)) -((-3392 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-2784 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) (-1884 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) (-3261 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-772)))) (-1620 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) -(-13 (-365) (-1040 |t#1|) (-1276 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-405)) |%noBranch|) (-15 -3392 ((-112) $)) (-15 -2784 ((-112) $)) (-15 -3626 ((-112) $)) (-15 -3380 ((-834 (-923)) $)) (-15 -1884 ((-834 (-923)))) (-15 -3261 ((-772))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-405)) (-15 -1620 ($ $)) (-15 -1620 ($ $ (-772)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2836 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) -2836 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-922) . T) ((-1040 |#1|) . T) ((-1053 #0#) . T) ((-1053 |#1|) . T) ((-1053 $) . T) ((-1058 #0#) . T) ((-1058 |#1|) . T) ((-1058 $) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1223) . T) ((-1276 |#1|) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3055 (((-645 |#1|) $) 99)) (-2003 (($ $ (-772)) 103)) (-2932 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-772)) NIL (|has| |#2| (-172)))) (-3758 (($) NIL T CONST)) (-3917 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-4275 (((-3 (-820 |#1|) "failed") $) NIL) (((-3 (-895 |#1|) "failed") $) NIL)) (-3094 (((-820 |#1|) $) NIL) (((-895 |#1|) $) NIL)) (-1833 (($ $) 102)) (-1377 (((-3 $ "failed") $) NIL)) (-1540 (((-112) $) 91)) (-4061 (($ $) 94)) (-2822 (($ $ $ (-772)) 104)) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3245 (($ (-820 |#1|) |#2|) NIL) (($ (-895 |#1|) |#2|) 29)) (-2247 (($ $) 121)) (-2118 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1613 (((-820 |#1|) $) NIL)) (-4252 (((-820 |#1|) $) NIL)) (-4364 (($ (-1 |#2| |#2|) $) NIL)) (-4040 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-2734 (($ $ (-772)) 114 (|has| |#2| (-718 (-410 (-567)))))) (-3622 (((-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1796 (((-895 |#1|) $) 84)) (-1809 ((|#2| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-4272 (($ $ (-772)) 111 (|has| |#2| (-718 (-410 (-567)))))) (-3380 (((-772) $) 100)) (-2622 (((-112) $) 85)) (-3562 ((|#2| $) 89)) (-2504 (((-863) $) 70) (($ (-567)) NIL) (($ |#2|) 60) (($ (-820 |#1|)) NIL) (($ |#1|) 72) (($ (-895 |#1|)) NIL) (($ (-665 |#1| |#2|)) 48) (((-1284 |#1| |#2|) $) 77) (((-1293 |#1| |#2|) $) 82)) (-1516 (((-645 |#2|) $) NIL)) (-4038 ((|#2| $ (-895 |#1|)) NIL)) (-1344 ((|#2| $ (-820 |#1|)) NIL) ((|#2| $ $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 21 T CONST)) (-1820 (($) 28 T CONST)) (-1848 (((-645 (-2 (|:| |k| (-895 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2271 (((-3 (-665 |#1| |#2|) "failed") $) 120)) (-2968 (((-112) $ $) 78)) (-3054 (($ $) 113) (($ $ $) 112)) (-3045 (($ $ $) 20)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-895 |#1|)) NIL))) -(((-1289 |#1| |#2|) (-13 (-1290 |#1| |#2|) (-384 |#2| (-895 |#1|)) (-10 -8 (-15 -2504 ($ (-665 |#1| |#2|))) (-15 -2504 ((-1284 |#1| |#2|) $)) (-15 -2504 ((-1293 |#1| |#2|) $)) (-15 -2271 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -2822 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -4272 ($ $ (-772))) (-15 -2734 ($ $ (-772)))) |%noBranch|))) (-851) (-172)) (T -1289)) -((-2504 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-1289 *3 *4)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2271 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2822 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4272 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))) (-2734 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172))))) -(-13 (-1290 |#1| |#2|) (-384 |#2| (-895 |#1|)) (-10 -8 (-15 -2504 ($ (-665 |#1| |#2|))) (-15 -2504 ((-1284 |#1| |#2|) $)) (-15 -2504 ((-1293 |#1| |#2|) $)) (-15 -2271 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -2822 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -4272 ($ $ (-772))) (-15 -2734 ($ $ (-772)))) |%noBranch|))) -((-2487 (((-112) $ $) 7)) (-2684 (((-112) $) 17)) (-3055 (((-645 |#1|) $) 47)) (-2003 (($ $ (-772)) 80)) (-2932 (((-3 $ "failed") $ $) 20)) (-1328 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-3758 (($) 18 T CONST)) (-3917 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-4275 (((-3 (-820 |#1|) "failed") $) 71)) (-3094 (((-820 |#1|) $) 72)) (-1377 (((-3 $ "failed") $) 37)) (-1540 (((-112) $) 52)) (-4061 (($ $) 51)) (-4384 (((-112) $) 35)) (-3615 (((-112) $) 57)) (-3245 (($ (-820 |#1|) |#2|) 58)) (-2247 (($ $) 56)) (-2118 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-1613 (((-820 |#1|) $) 68)) (-4252 (((-820 |#1|) $) 82)) (-4364 (($ (-1 |#2| |#2|) $) 48)) (-4040 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-1812 (((-1161) $) 10)) (-3479 (((-1122) $) 11)) (-3380 (((-772) $) 81)) (-2622 (((-112) $) 54)) (-3562 ((|#2| $) 53)) (-2504 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-1344 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-2214 (((-772)) 32 T CONST)) (-3858 (((-112) $ $) 9)) (-1807 (($) 19 T CONST)) (-1820 (($) 34 T CONST)) (-2968 (((-112) $ $) 6)) (-3054 (($ $) 23) (($ $ $) 22)) (-3045 (($ $ $) 15)) (** (($ $ (-923)) 28) (($ $ (-772)) 36)) (* (($ (-923) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1290 |#1| |#2|) (-140) (-851) (-1051)) (T -1290)) -((-4252 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-820 *3)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *2 (-772)))) (-2003 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))))) -(-13 (-1286 |t#1| |t#2|) (-10 -8 (-15 -4252 ((-820 |t#1|) $)) (-15 -3380 ((-772) $)) (-15 -2003 ($ $ (-772))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1040 #0#) . T) ((-1053 |#2|) . T) ((-1058 |#2|) . T) ((-1051) . T) ((-1060) . T) ((-1114) . T) ((-1102) . T) ((-1283 |#2|) . T) ((-1286 |#1| |#2|) . T)) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-3055 (((-645 (-1179)) $) NIL)) (-2129 (($ (-1284 (-1179) |#1|)) NIL)) (-2003 (($ $ (-772)) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-772)) NIL (|has| |#1| (-172)))) (-3758 (($) NIL T CONST)) (-3917 (($ $ (-1179)) NIL) (($ $ (-820 (-1179))) NIL) (($ $ $) NIL)) (-4275 (((-3 (-820 (-1179)) "failed") $) NIL)) (-3094 (((-820 (-1179)) $) NIL)) (-1377 (((-3 $ "failed") $) NIL)) (-1540 (((-112) $) NIL)) (-4061 (($ $) NIL)) (-4384 (((-112) $) NIL)) (-3615 (((-112) $) NIL)) (-3245 (($ (-820 (-1179)) |#1|) NIL)) (-2247 (($ $) NIL)) (-2118 (((-2 (|:| |k| (-820 (-1179))) (|:| |c| |#1|)) $) NIL)) (-1613 (((-820 (-1179)) $) NIL)) (-4252 (((-820 (-1179)) $) NIL)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-4040 (($ $ (-1179)) NIL) (($ $ (-820 (-1179))) NIL) (($ $ $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-4382 (((-1284 (-1179) |#1|) $) NIL)) (-3380 (((-772) $) NIL)) (-2622 (((-112) $) NIL)) (-3562 ((|#1| $) NIL)) (-2504 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-820 (-1179))) NIL) (($ (-1179)) NIL)) (-1344 ((|#1| $ (-820 (-1179))) NIL) ((|#1| $ $) NIL)) (-2214 (((-772)) NIL T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) NIL T CONST)) (-1576 (((-645 (-2 (|:| |k| (-1179)) (|:| |c| $))) $) NIL)) (-1820 (($) NIL T CONST)) (-2968 (((-112) $ $) NIL)) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) NIL)) (** (($ $ (-923)) NIL) (($ $ (-772)) NIL)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1179) $) NIL))) -(((-1291 |#1|) (-13 (-1290 (-1179) |#1|) (-10 -8 (-15 -4382 ((-1284 (-1179) |#1|) $)) (-15 -2129 ($ (-1284 (-1179) |#1|))) (-15 -1576 ((-645 (-2 (|:| |k| (-1179)) (|:| |c| $))) $)))) (-1051)) (T -1291)) -((-4382 (*1 *2 *1) (-12 (-5 *2 (-1284 (-1179) *3)) (-5 *1 (-1291 *3)) (-4 *3 (-1051)))) (-2129 (*1 *1 *2) (-12 (-5 *2 (-1284 (-1179) *3)) (-4 *3 (-1051)) (-5 *1 (-1291 *3)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-1179)) (|:| |c| (-1291 *3))))) (-5 *1 (-1291 *3)) (-4 *3 (-1051))))) -(-13 (-1290 (-1179) |#1|) (-10 -8 (-15 -4382 ((-1284 (-1179) |#1|) $)) (-15 -2129 ($ (-1284 (-1179) |#1|))) (-15 -1576 ((-645 (-2 (|:| |k| (-1179)) (|:| |c| $))) $)))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) NIL)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3758 (($) NIL T CONST)) (-4275 (((-3 |#2| "failed") $) NIL)) (-3094 ((|#2| $) NIL)) (-1833 (($ $) NIL)) (-1377 (((-3 $ "failed") $) 42)) (-1540 (((-112) $) 35)) (-4061 (($ $) 37)) (-4384 (((-112) $) NIL)) (-1921 (((-772) $) NIL)) (-2615 (((-645 $) $) NIL)) (-3615 (((-112) $) NIL)) (-3245 (($ |#2| |#1|) NIL)) (-1613 ((|#2| $) 24)) (-4252 ((|#2| $) 22)) (-4364 (($ (-1 |#1| |#1|) $) NIL)) (-3622 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1796 ((|#2| $) NIL)) (-1809 ((|#1| $) NIL)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-2622 (((-112) $) 32)) (-3562 ((|#1| $) 33)) (-2504 (((-863) $) 65) (($ (-567)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-1516 (((-645 |#1|) $) NIL)) (-4038 ((|#1| $ |#2|) NIL)) (-1344 ((|#1| $ |#2|) 28)) (-2214 (((-772)) 14 T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 29 T CONST)) (-1820 (($) 11 T CONST)) (-1848 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2968 (((-112) $ $) 30)) (-3064 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3054 (($ $) NIL) (($ $ $) NIL)) (-3045 (($ $ $) 50)) (** (($ $ (-923)) NIL) (($ $ (-772)) 52)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2498 (((-772) $) 16))) -(((-1292 |#1| |#2|) (-13 (-1051) (-1283 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2498 ((-772) $)) (-15 -4252 (|#2| $)) (-15 -1613 (|#2| $)) (-15 -1833 ($ $)) (-15 -1344 (|#1| $ |#2|)) (-15 -2622 ((-112) $)) (-15 -3562 (|#1| $)) (-15 -1540 ((-112) $)) (-15 -4061 ($ $)) (-15 -4364 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3064 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |#1| (-6 -4419)) (-6 -4419) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) (-1051) (-847)) (T -1292)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-1833 (*1 *1 *1) (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-4364 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-1292 *3 *4)) (-4 *4 (-847)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-4252 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1292 *3 *2)) (-4 *3 (-1051)))) (-1613 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1292 *3 *2)) (-4 *3 (-1051)))) (-1344 (*1 *2 *1 *3) (-12 (-4 *2 (-1051)) (-5 *1 (-1292 *2 *3)) (-4 *3 (-847)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-3562 (*1 *2 *1) (-12 (-4 *2 (-1051)) (-5 *1 (-1292 *2 *3)) (-4 *3 (-847)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-847)))) (-4061 (*1 *1 *1) (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847)))) (-3064 (*1 *1 *1 *2) (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-847))))) -(-13 (-1051) (-1283 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2498 ((-772) $)) (-15 -4252 (|#2| $)) (-15 -1613 (|#2| $)) (-15 -1833 ($ $)) (-15 -1344 (|#1| $ |#2|)) (-15 -2622 ((-112) $)) (-15 -3562 (|#1| $)) (-15 -1540 ((-112) $)) (-15 -4061 ($ $)) (-15 -4364 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3064 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |#1| (-6 -4419)) (-6 -4419) |%noBranch|) (IF (|has| |#1| (-6 -4420)) (-6 -4420) |%noBranch|))) -((-2487 (((-112) $ $) 27)) (-2684 (((-112) $) NIL)) (-3055 (((-645 |#1|) $) 132)) (-2129 (($ (-1284 |#1| |#2|)) 50)) (-2003 (($ $ (-772)) 38)) (-2932 (((-3 $ "failed") $ $) NIL)) (-1328 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-772)) 52 (|has| |#2| (-172)))) (-3758 (($) NIL T CONST)) (-3917 (($ $ |#1|) 114) (($ $ (-820 |#1|)) 115) (($ $ $) 26)) (-4275 (((-3 (-820 |#1|) "failed") $) NIL)) (-3094 (((-820 |#1|) $) NIL)) (-1377 (((-3 $ "failed") $) 122)) (-1540 (((-112) $) 117)) (-4061 (($ $) 118)) (-4384 (((-112) $) NIL)) (-3615 (((-112) $) NIL)) (-3245 (($ (-820 |#1|) |#2|) 20)) (-2247 (($ $) NIL)) (-2118 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1613 (((-820 |#1|) $) 123)) (-4252 (((-820 |#1|) $) 126)) (-4364 (($ (-1 |#2| |#2|) $) 131)) (-4040 (($ $ |#1|) 112) (($ $ (-820 |#1|)) 113) (($ $ $) 62)) (-1812 (((-1161) $) NIL)) (-3479 (((-1122) $) NIL)) (-4382 (((-1284 |#1| |#2|) $) 94)) (-3380 (((-772) $) 129)) (-2622 (((-112) $) 81)) (-3562 ((|#2| $) 32)) (-2504 (((-863) $) 73) (($ (-567)) 87) (($ |#2|) 85) (($ (-820 |#1|)) 18) (($ |#1|) 84)) (-1344 ((|#2| $ (-820 |#1|)) 116) ((|#2| $ $) 28)) (-2214 (((-772)) 120 T CONST)) (-3858 (((-112) $ $) NIL)) (-1807 (($) 15 T CONST)) (-1576 (((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1820 (($) 33 T CONST)) (-2968 (((-112) $ $) 14)) (-3054 (($ $) 98) (($ $ $) 101)) (-3045 (($ $ $) 61)) (** (($ $ (-923)) NIL) (($ $ (-772)) 55)) (* (($ (-923) $) NIL) (($ (-772) $) 53) (($ (-567) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1293 |#1| |#2|) (-13 (-1290 |#1| |#2|) (-10 -8 (-15 -4382 ((-1284 |#1| |#2|) $)) (-15 -2129 ($ (-1284 |#1| |#2|))) (-15 -1576 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-851) (-1051)) (T -1293)) -((-4382 (*1 *2 *1) (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)))) (-2129 (*1 *1 *2) (-12 (-5 *2 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) (-5 *1 (-1293 *3 *4)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1293 *3 *4))))) (-5 *1 (-1293 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))))) -(-13 (-1290 |#1| |#2|) (-10 -8 (-15 -4382 ((-1284 |#1| |#2|) $)) (-15 -2129 ($ (-1284 |#1| |#2|))) (-15 -1576 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1535 (((-645 (-1159 |#1|)) (-1 (-645 (-1159 |#1|)) (-645 (-1159 |#1|))) (-567)) 20) (((-1159 |#1|) (-1 (-1159 |#1|) (-1159 |#1|))) 13))) -(((-1294 |#1|) (-10 -7 (-15 -1535 ((-1159 |#1|) (-1 (-1159 |#1|) (-1159 |#1|)))) (-15 -1535 ((-645 (-1159 |#1|)) (-1 (-645 (-1159 |#1|)) (-645 (-1159 |#1|))) (-567)))) (-1219)) (T -1294)) -((-1535 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 (-1159 *5)) (-645 (-1159 *5)))) (-5 *4 (-567)) (-5 *2 (-645 (-1159 *5))) (-5 *1 (-1294 *5)) (-4 *5 (-1219)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-1 (-1159 *4) (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1294 *4)) (-4 *4 (-1219))))) -(-10 -7 (-15 -1535 ((-1159 |#1|) (-1 (-1159 |#1|) (-1159 |#1|)))) (-15 -1535 ((-645 (-1159 |#1|)) (-1 (-645 (-1159 |#1|)) (-645 (-1159 |#1|))) (-567)))) -((-2756 (((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|))) 174) (((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112)) 173) (((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112)) 172) (((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112)) 171) (((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-1048 |#1| |#2|)) 156)) (-1964 (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|))) 85) (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112)) 84) (((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112)) 83)) (-1466 (((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|)) 73)) (-3747 (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|))) 140) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112)) 139) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112)) 138) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112)) 137) (((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|)) 132)) (-2757 (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|))) 145) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112)) 144) (((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112)) 143) (((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|)) 142)) (-1322 (((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) 111) (((-1175 (-1026 (-410 |#1|))) (-1175 |#1|)) 102) (((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|))) 109) (((-954 (-1026 (-410 |#1|))) (-954 |#1|)) 107) (((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|))) 33))) -(((-1295 |#1| |#2| |#3|) (-10 -7 (-15 -1964 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112))) (-15 -1964 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112))) (-15 -1964 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-1048 |#1| |#2|))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -2757 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -2757 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2757 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -2757 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -1466 ((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|))) (-15 -1322 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -1322 ((-954 (-1026 (-410 |#1|))) (-954 |#1|))) (-15 -1322 ((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -1322 ((-1175 (-1026 (-410 |#1|))) (-1175 |#1|))) (-15 -1322 ((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) (-13 (-849) (-308) (-147) (-1024)) (-645 (-1179)) (-645 (-1179))) (T -1295)) -((-1322 (*1 *2 *3) (-12 (-5 *3 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-1175 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-1175 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *6))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1179))) (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *5))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-2757 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-3747 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-3747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-3747 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -2380 (-1175 *4)) (|:| -3237 (-645 (-954 *4)))))) (-5 *1 (-1295 *4 *5 *6)) (-5 *3 (-645 (-954 *4))) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-2756 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-2756 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-2756 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-2 (|:| -2380 (-1175 *4)) (|:| -3237 (-645 (-954 *4)))))) (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *4 *5))) (-5 *1 (-1295 *4 *5 *6)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) (-1964 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) (-1964 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1295 *5 *6 *7)) (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179)))))) -(-10 -7 (-15 -1964 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112) (-112))) (-15 -1964 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)) (-112))) (-15 -1964 ((-645 (-1048 |#1| |#2|)) (-645 (-954 |#1|)))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-1048 |#1| |#2|))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)) (-112))) (-15 -2756 ((-645 (-2 (|:| -2380 (-1175 |#1|)) (|:| -3237 (-645 (-954 |#1|))))) (-645 (-954 |#1|)))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112) (-112))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -3747 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -2757 ((-645 (-645 (-1026 (-410 |#1|)))) (-1048 |#1| |#2|))) (-15 -2757 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112) (-112))) (-15 -2757 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)) (-112))) (-15 -2757 ((-645 (-645 (-1026 (-410 |#1|)))) (-645 (-954 |#1|)))) (-15 -1466 ((-645 (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1048 |#1| |#2|))) (-15 -1322 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -1322 ((-954 (-1026 (-410 |#1|))) (-954 |#1|))) (-15 -1322 ((-954 (-1026 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -1322 ((-1175 (-1026 (-410 |#1|))) (-1175 |#1|))) (-15 -1322 ((-645 (-781 |#1| (-865 |#3|))) (-1148 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) -((-2802 (((-3 (-1269 (-410 (-567))) "failed") (-1269 |#1|) |#1|) 21)) (-1348 (((-112) (-1269 |#1|)) 12)) (-1360 (((-3 (-1269 (-567)) "failed") (-1269 |#1|)) 16))) -(((-1296 |#1|) (-10 -7 (-15 -1348 ((-112) (-1269 |#1|))) (-15 -1360 ((-3 (-1269 (-567)) "failed") (-1269 |#1|))) (-15 -2802 ((-3 (-1269 (-410 (-567))) "failed") (-1269 |#1|) |#1|))) (-640 (-567))) (T -1296)) -((-2802 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1269 (-410 (-567)))) (-5 *1 (-1296 *4)))) (-1360 (*1 *2 *3) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1269 (-567))) (-5 *1 (-1296 *4)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) (-5 *1 (-1296 *4))))) -(-10 -7 (-15 -1348 ((-112) (-1269 |#1|))) (-15 -1360 ((-3 (-1269 (-567)) "failed") (-1269 |#1|))) (-15 -2802 ((-3 (-1269 (-410 (-567))) "failed") (-1269 |#1|) |#1|))) -((-2487 (((-112) $ $) NIL)) (-2684 (((-112) $) 11)) (-2932 (((-3 $ "failed") $ $) NIL)) (-3404 (((-772)) 8)) (-3758 (($) NIL T CONST)) (-1377 (((-3 $ "failed") $) 58)) (-2119 (($) 49)) (-4384 (((-112) $) 57)) (-3104 (((-3 $ "failed") $) 40)) (-2667 (((-923) $) 15)) (-1812 (((-1161) $) NIL)) (-2221 (($) 32 T CONST)) (-2188 (($ (-923)) 50)) (-3479 (((-1122) $) NIL)) (-1322 (((-567) $) 13)) (-2504 (((-863) $) 27) (($ (-567)) 24)) (-2214 (((-772)) 9 T CONST)) (-3858 (((-112) $ $) 60)) (-1807 (($) 29 T CONST)) (-1820 (($) 31 T CONST)) (-2968 (((-112) $ $) 38)) (-3054 (($ $) 52) (($ $ $) 47)) (-3045 (($ $ $) 35)) (** (($ $ (-923)) NIL) (($ $ (-772)) 54)) (* (($ (-923) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 44) (($ $ $) 43))) -(((-1297 |#1|) (-13 (-172) (-370) (-615 (-567)) (-1154)) (-923)) (T -1297)) -NIL -(-13 (-172) (-370) (-615 (-567)) (-1154)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3223634 3223639 3223644 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3223619 3223624 3223629 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3223604 3223609 3223614 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3223589 3223594 3223599 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1297 3222732 3223464 3223541 "ZMOD" 3223546 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1296 3221842 3222006 3222215 "ZLINDEP" 3222564 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1295 3211142 3212910 3214882 "ZDSOLVE" 3219972 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1294 3210388 3210529 3210718 "YSTREAM" 3210988 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1293 3208162 3209689 3209893 "XRPOLY" 3210231 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1292 3204715 3206033 3206608 "XPR" 3207634 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1291 3202436 3204046 3204250 "XPOLY" 3204546 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1290 3200089 3201457 3201512 "XPOLYC" 3201800 NIL XPOLYC (NIL T T) -9 NIL 3201913 NIL) (-1289 3196464 3198606 3198994 "XPBWPOLY" 3199747 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1288 3192159 3194454 3194496 "XF" 3195117 NIL XF (NIL T) -9 NIL 3195517 NIL) (-1287 3191780 3191868 3192037 "XF-" 3192042 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1286 3186976 3188265 3188320 "XFALG" 3190492 NIL XFALG (NIL T T) -9 NIL 3191281 NIL) (-1285 3186109 3186213 3186418 "XEXPPKG" 3186868 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1284 3184218 3185959 3186055 "XDPOLY" 3186060 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1283 3183025 3183625 3183668 "XALG" 3183673 NIL XALG (NIL T) -9 NIL 3183784 NIL) (-1282 3176467 3181002 3181496 "WUTSET" 3182617 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1281 3174723 3175519 3175842 "WP" 3176278 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1280 3174325 3174545 3174615 "WHILEAST" 3174675 T WHILEAST (NIL) -8 NIL NIL NIL) (-1279 3173797 3174042 3174136 "WHEREAST" 3174253 T WHEREAST (NIL) -8 NIL NIL NIL) (-1278 3172683 3172881 3173176 "WFFINTBS" 3173594 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1277 3170587 3171014 3171476 "WEIER" 3172255 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1276 3169633 3170083 3170125 "VSPACE" 3170261 NIL VSPACE (NIL T) -9 NIL 3170335 NIL) (-1275 3169471 3169498 3169589 "VSPACE-" 3169594 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1274 3169280 3169322 3169390 "VOID" 3169425 T VOID (NIL) -8 NIL NIL NIL) (-1273 3167416 3167775 3168181 "VIEW" 3168896 T VIEW (NIL) -7 NIL NIL NIL) (-1272 3163840 3164479 3165216 "VIEWDEF" 3166701 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1271 3153144 3155388 3157561 "VIEW3D" 3161689 T VIEW3D (NIL) -8 NIL NIL NIL) (-1270 3145395 3147055 3148634 "VIEW2D" 3151587 T VIEW2D (NIL) -8 NIL NIL NIL) (-1269 3140747 3145165 3145257 "VECTOR" 3145338 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1268 3139324 3139583 3139901 "VECTOR2" 3140477 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1267 3132798 3137105 3137148 "VECTCAT" 3138143 NIL VECTCAT (NIL T) -9 NIL 3138730 NIL) (-1266 3131812 3132066 3132456 "VECTCAT-" 3132461 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1265 3131266 3131463 3131583 "VARIABLE" 3131727 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1264 3131199 3131204 3131234 "UTYPE" 3131239 T UTYPE (NIL) -9 NIL NIL NIL) (-1263 3130029 3130183 3130445 "UTSODETL" 3131025 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1262 3127469 3127929 3128453 "UTSODE" 3129570 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1261 3119306 3125095 3125584 "UTS" 3127038 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1260 3110180 3115547 3115590 "UTSCAT" 3116702 NIL UTSCAT (NIL T) -9 NIL 3117460 NIL) (-1259 3107527 3108250 3109239 "UTSCAT-" 3109244 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1258 3107154 3107197 3107330 "UTS2" 3107478 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1257 3101380 3103992 3104035 "URAGG" 3106105 NIL URAGG (NIL T) -9 NIL 3106828 NIL) (-1256 3098319 3099182 3100305 "URAGG-" 3100310 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1255 3094028 3096954 3097419 "UPXSSING" 3097983 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1254 3086094 3093275 3093548 "UPXS" 3093813 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1253 3079167 3085998 3086070 "UPXSCONS" 3086075 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1252 3068912 3075705 3075767 "UPXSCCA" 3076341 NIL UPXSCCA (NIL T T) -9 NIL 3076574 NIL) (-1251 3068550 3068635 3068809 "UPXSCCA-" 3068814 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1250 3058147 3064713 3064756 "UPXSCAT" 3065404 NIL UPXSCAT (NIL T) -9 NIL 3066013 NIL) (-1249 3057577 3057656 3057835 "UPXS2" 3058062 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1248 3056231 3056484 3056835 "UPSQFREE" 3057320 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1247 3049652 3052709 3052764 "UPSCAT" 3053925 NIL UPSCAT (NIL T T) -9 NIL 3054699 NIL) (-1246 3048856 3049063 3049390 "UPSCAT-" 3049395 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1245 3034511 3042279 3042322 "UPOLYC" 3044423 NIL UPOLYC (NIL T) -9 NIL 3045644 NIL) (-1244 3025839 3028265 3031412 "UPOLYC-" 3031417 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1243 3025466 3025509 3025642 "UPOLYC2" 3025790 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1242 3017277 3025149 3025278 "UP" 3025385 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1241 3016616 3016723 3016887 "UPMP" 3017166 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1240 3016169 3016250 3016389 "UPDIVP" 3016529 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1239 3014737 3014986 3015302 "UPDECOMP" 3015918 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1238 3013972 3014084 3014269 "UPCDEN" 3014621 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1237 3013491 3013560 3013709 "UP2" 3013897 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1236 3011958 3012695 3012972 "UNISEG" 3013249 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1235 3011173 3011300 3011505 "UNISEG2" 3011801 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1234 3010233 3010413 3010639 "UNIFACT" 3010989 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1233 2994165 3009410 3009661 "ULS" 3010040 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1232 2982163 2994069 2994141 "ULSCONS" 2994146 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1231 2964182 2976167 2976229 "ULSCCAT" 2976867 NIL ULSCCAT (NIL T T) -9 NIL 2977155 NIL) (-1230 2963232 2963477 2963865 "ULSCCAT-" 2963870 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1229 2952606 2959086 2959129 "ULSCAT" 2959992 NIL ULSCAT (NIL T) -9 NIL 2960723 NIL) (-1228 2952036 2952115 2952294 "ULS2" 2952521 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1227 2951163 2951673 2951780 "UINT8" 2951891 T UINT8 (NIL) -8 NIL NIL 2951976) (-1226 2950289 2950799 2950906 "UINT64" 2951017 T UINT64 (NIL) -8 NIL NIL 2951102) (-1225 2949415 2949925 2950032 "UINT32" 2950143 T UINT32 (NIL) -8 NIL NIL 2950228) (-1224 2948541 2949051 2949158 "UINT16" 2949269 T UINT16 (NIL) -8 NIL NIL 2949354) (-1223 2946844 2947801 2947831 "UFD" 2948043 T UFD (NIL) -9 NIL 2948157 NIL) (-1222 2946638 2946684 2946779 "UFD-" 2946784 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1221 2945720 2945903 2946119 "UDVO" 2946444 T UDVO (NIL) -7 NIL NIL NIL) (-1220 2943536 2943945 2944416 "UDPO" 2945284 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1219 2943469 2943474 2943504 "TYPE" 2943509 T TYPE (NIL) -9 NIL NIL NIL) (-1218 2943229 2943424 2943455 "TYPEAST" 2943460 T TYPEAST (NIL) -8 NIL NIL NIL) (-1217 2942200 2942402 2942642 "TWOFACT" 2943023 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1216 2941223 2941609 2941844 "TUPLE" 2942000 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1215 2938914 2939433 2939972 "TUBETOOL" 2940706 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1214 2937763 2937968 2938209 "TUBE" 2938707 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1213 2932492 2936735 2937018 "TS" 2937515 NIL TS (NIL T) -8 NIL NIL NIL) (-1212 2921132 2925251 2925348 "TSETCAT" 2930617 NIL TSETCAT (NIL T T T T) -9 NIL 2932148 NIL) (-1211 2915864 2917464 2919355 "TSETCAT-" 2919360 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1210 2910503 2911350 2912279 "TRMANIP" 2915000 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1209 2909944 2910007 2910170 "TRIMAT" 2910435 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1208 2907810 2908047 2908404 "TRIGMNIP" 2909693 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1207 2907330 2907443 2907473 "TRIGCAT" 2907686 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1206 2906999 2907078 2907219 "TRIGCAT-" 2907224 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1205 2903844 2905857 2906138 "TREE" 2906753 NIL TREE (NIL T) -8 NIL NIL NIL) (-1204 2903118 2903646 2903676 "TRANFUN" 2903711 T TRANFUN (NIL) -9 NIL 2903777 NIL) (-1203 2902397 2902588 2902868 "TRANFUN-" 2902873 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1202 2902201 2902233 2902294 "TOPSP" 2902358 T TOPSP (NIL) -7 NIL NIL NIL) (-1201 2901549 2901664 2901818 "TOOLSIGN" 2902082 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1200 2900183 2900726 2900965 "TEXTFILE" 2901332 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1199 2898095 2898636 2899065 "TEX" 2899776 T TEX (NIL) -8 NIL NIL NIL) (-1198 2897876 2897907 2897979 "TEX1" 2898058 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1197 2897524 2897587 2897677 "TEMUTL" 2897808 T TEMUTL (NIL) -7 NIL NIL NIL) (-1196 2895678 2895958 2896283 "TBCMPPK" 2897247 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1195 2887455 2893838 2893894 "TBAGG" 2894294 NIL TBAGG (NIL T T) -9 NIL 2894505 NIL) (-1194 2882525 2884013 2885767 "TBAGG-" 2885772 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1193 2881909 2882016 2882161 "TANEXP" 2882414 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1192 2875299 2881766 2881859 "TABLE" 2881864 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1191 2874711 2874810 2874948 "TABLEAU" 2875196 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1190 2869319 2870539 2871787 "TABLBUMP" 2873497 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1189 2868541 2868688 2868869 "SYSTEM" 2869160 T SYSTEM (NIL) -8 NIL NIL NIL) (-1188 2865000 2865699 2866482 "SYSSOLP" 2867792 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1187 2864798 2864955 2864986 "SYSPTR" 2864991 T SYSPTR (NIL) -8 NIL NIL NIL) (-1186 2863842 2864347 2864466 "SYSNNI" 2864652 NIL SYSNNI (NIL NIL) -8 NIL NIL 2864737) (-1185 2863149 2863608 2863687 "SYSINT" 2863747 NIL SYSINT (NIL NIL) -8 NIL NIL 2863792) (-1184 2859481 2860427 2861137 "SYNTAX" 2862461 T SYNTAX (NIL) -8 NIL NIL NIL) (-1183 2856639 2857241 2857873 "SYMTAB" 2858871 T SYMTAB (NIL) -8 NIL NIL NIL) (-1182 2851888 2852790 2853773 "SYMS" 2855678 T SYMS (NIL) -8 NIL NIL NIL) (-1181 2849123 2851346 2851576 "SYMPOLY" 2851693 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1180 2848640 2848715 2848838 "SYMFUNC" 2849035 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1179 2844659 2845952 2846765 "SYMBOL" 2847849 T SYMBOL (NIL) -8 NIL NIL NIL) (-1178 2838198 2839887 2841607 "SWITCH" 2842961 T SWITCH (NIL) -8 NIL NIL NIL) (-1177 2831432 2837019 2837322 "SUTS" 2837953 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1176 2823498 2830679 2830952 "SUPXS" 2831217 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1175 2815257 2823116 2823242 "SUP" 2823407 NIL SUP (NIL T) -8 NIL NIL NIL) (-1174 2814416 2814543 2814760 "SUPFRACF" 2815125 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1173 2814037 2814096 2814209 "SUP2" 2814351 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1172 2812485 2812759 2813115 "SUMRF" 2813736 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1171 2811820 2811886 2812078 "SUMFS" 2812406 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1170 2795787 2810997 2811248 "SULS" 2811627 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2795389 2795609 2795679 "SUCHTAST" 2795739 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1168 2794684 2794914 2795054 "SUCH" 2795297 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1167 2788550 2789590 2790549 "SUBSPACE" 2793772 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1166 2787980 2788070 2788234 "SUBRESP" 2788438 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1165 2781345 2782645 2783956 "STTF" 2786716 NIL STTF (NIL T) -7 NIL NIL NIL) (-1164 2775518 2776638 2777785 "STTFNC" 2780245 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1163 2766828 2768700 2770494 "STTAYLOR" 2773759 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1162 2759958 2766692 2766775 "STRTBL" 2766780 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1161 2755322 2759913 2759944 "STRING" 2759949 T STRING (NIL) -8 NIL NIL NIL) (-1160 2750183 2754695 2754725 "STRICAT" 2754784 T STRICAT (NIL) -9 NIL 2754846 NIL) (-1159 2742936 2747802 2748413 "STREAM" 2749607 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1158 2742446 2742523 2742667 "STREAM3" 2742853 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1157 2741428 2741611 2741846 "STREAM2" 2742259 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1156 2741116 2741168 2741261 "STREAM1" 2741370 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1155 2740132 2740313 2740544 "STINPROD" 2740932 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1154 2739684 2739894 2739924 "STEP" 2740004 T STEP (NIL) -9 NIL 2740082 NIL) (-1153 2738871 2739173 2739321 "STEPAST" 2739558 T STEPAST (NIL) -8 NIL NIL NIL) (-1152 2732303 2738770 2738847 "STBL" 2738852 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1151 2727429 2731524 2731567 "STAGG" 2731720 NIL STAGG (NIL T) -9 NIL 2731809 NIL) (-1150 2725131 2725733 2726605 "STAGG-" 2726610 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1149 2723278 2724901 2724993 "STACK" 2725074 NIL STACK (NIL T) -8 NIL NIL NIL) (-1148 2715973 2721419 2721875 "SREGSET" 2722908 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1147 2708398 2709767 2711280 "SRDCMPK" 2714579 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1146 2701315 2705838 2705868 "SRAGG" 2707171 T SRAGG (NIL) -9 NIL 2707779 NIL) (-1145 2700332 2700587 2700966 "SRAGG-" 2700971 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1144 2694792 2699279 2699700 "SQMATRIX" 2699958 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1143 2688477 2691510 2692237 "SPLTREE" 2694137 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1142 2684440 2685133 2685779 "SPLNODE" 2687903 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1141 2683487 2683720 2683750 "SPFCAT" 2684194 T SPFCAT (NIL) -9 NIL NIL NIL) (-1140 2682224 2682434 2682698 "SPECOUT" 2683245 T SPECOUT (NIL) -7 NIL NIL NIL) (-1139 2673334 2675206 2675236 "SPADXPT" 2679912 T SPADXPT (NIL) -9 NIL 2682076 NIL) (-1138 2673095 2673135 2673204 "SPADPRSR" 2673287 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1137 2671144 2673050 2673081 "SPADAST" 2673086 T SPADAST (NIL) -8 NIL NIL NIL) (-1136 2663089 2664862 2664905 "SPACEC" 2669278 NIL SPACEC (NIL T) -9 NIL 2671094 NIL) (-1135 2661219 2663021 2663070 "SPACE3" 2663075 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1134 2659971 2660142 2660433 "SORTPAK" 2661024 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1133 2658063 2658366 2658778 "SOLVETRA" 2659635 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1132 2657113 2657335 2657596 "SOLVESER" 2657836 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1131 2652417 2653305 2654300 "SOLVERAD" 2656165 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1130 2648232 2648841 2649570 "SOLVEFOR" 2651784 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1129 2642502 2647581 2647678 "SNTSCAT" 2647683 NIL SNTSCAT (NIL T T T T) -9 NIL 2647753 NIL) (-1128 2636608 2640825 2641216 "SMTS" 2642192 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1127 2631292 2636496 2636573 "SMP" 2636578 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1126 2629451 2629752 2630150 "SMITH" 2630989 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1125 2622164 2626360 2626463 "SMATCAT" 2627814 NIL SMATCAT (NIL NIL T T T) -9 NIL 2628364 NIL) (-1124 2619104 2619927 2621105 "SMATCAT-" 2621110 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1123 2616770 2618340 2618383 "SKAGG" 2618644 NIL SKAGG (NIL T) -9 NIL 2618779 NIL) (-1122 2613081 2616186 2616381 "SINT" 2616568 T SINT (NIL) -8 NIL NIL 2616741) (-1121 2612853 2612891 2612957 "SIMPAN" 2613037 T SIMPAN (NIL) -7 NIL NIL NIL) (-1120 2612132 2612388 2612528 "SIG" 2612735 T SIG (NIL) -8 NIL NIL NIL) (-1119 2610970 2611191 2611466 "SIGNRF" 2611891 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1118 2609803 2609954 2610238 "SIGNEF" 2610799 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1117 2609109 2609386 2609510 "SIGAST" 2609701 T SIGAST (NIL) -8 NIL NIL NIL) (-1116 2606798 2607253 2607759 "SHP" 2608650 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1115 2600650 2606699 2606775 "SHDP" 2606780 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1114 2600223 2600415 2600445 "SGROUP" 2600538 T SGROUP (NIL) -9 NIL 2600600 NIL) (-1113 2600081 2600107 2600180 "SGROUP-" 2600185 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1112 2596916 2597614 2598337 "SGCF" 2599380 T SGCF (NIL) -7 NIL NIL NIL) (-1111 2591284 2596363 2596460 "SFRTCAT" 2596465 NIL SFRTCAT (NIL T T T T) -9 NIL 2596504 NIL) (-1110 2584705 2585723 2586859 "SFRGCD" 2590267 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1109 2577831 2578904 2580090 "SFQCMPK" 2583638 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1108 2577451 2577540 2577651 "SFORT" 2577772 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1107 2576569 2577291 2577412 "SEXOF" 2577417 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1106 2575676 2576450 2576518 "SEX" 2576523 T SEX (NIL) -8 NIL NIL NIL) (-1105 2571189 2571904 2571999 "SEXCAT" 2574936 NIL SEXCAT (NIL T T T T T) -9 NIL 2575514 NIL) (-1104 2568342 2571123 2571171 "SET" 2571176 NIL SET (NIL T) -8 NIL NIL NIL) (-1103 2566566 2567055 2567360 "SETMN" 2568083 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1102 2566062 2566214 2566244 "SETCAT" 2566420 T SETCAT (NIL) -9 NIL 2566530 NIL) (-1101 2565754 2565832 2565962 "SETCAT-" 2565967 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1100 2562115 2564215 2564258 "SETAGG" 2565128 NIL SETAGG (NIL T) -9 NIL 2565468 NIL) (-1099 2561573 2561689 2561926 "SETAGG-" 2561931 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1098 2561016 2561269 2561370 "SEQAST" 2561494 T SEQAST (NIL) -8 NIL NIL NIL) (-1097 2560215 2560509 2560570 "SEGXCAT" 2560856 NIL SEGXCAT (NIL T T) -9 NIL 2560976 NIL) (-1096 2559221 2559881 2560063 "SEG" 2560068 NIL SEG (NIL T) -8 NIL NIL NIL) (-1095 2558200 2558414 2558457 "SEGCAT" 2558979 NIL SEGCAT (NIL T) -9 NIL 2559200 NIL) (-1094 2557132 2557563 2557771 "SEGBIND" 2558027 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1093 2556753 2556812 2556925 "SEGBIND2" 2557067 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1092 2556326 2556554 2556631 "SEGAST" 2556698 T SEGAST (NIL) -8 NIL NIL NIL) (-1091 2555545 2555671 2555875 "SEG2" 2556170 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1090 2554955 2555480 2555527 "SDVAR" 2555532 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1089 2547482 2554725 2554855 "SDPOL" 2554860 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1088 2546075 2546341 2546660 "SCPKG" 2547197 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1087 2545239 2545411 2545603 "SCOPE" 2545905 T SCOPE (NIL) -8 NIL NIL NIL) (-1086 2544459 2544593 2544772 "SCACHE" 2545094 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1085 2544105 2544291 2544321 "SASTCAT" 2544326 T SASTCAT (NIL) -9 NIL 2544339 NIL) (-1084 2543592 2543940 2544016 "SAOS" 2544051 T SAOS (NIL) -8 NIL NIL NIL) (-1083 2543157 2543192 2543365 "SAERFFC" 2543551 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1082 2537096 2543054 2543134 "SAE" 2543139 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1081 2536689 2536724 2536883 "SAEFACT" 2537055 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1080 2535010 2535324 2535725 "RURPK" 2536355 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1079 2533647 2533953 2534258 "RULESET" 2534844 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1078 2530870 2531400 2531858 "RULE" 2533328 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1077 2530482 2530664 2530747 "RULECOLD" 2530822 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1076 2530272 2530300 2530371 "RTVALUE" 2530433 T RTVALUE (NIL) -8 NIL NIL NIL) (-1075 2529743 2529989 2530083 "RSTRCAST" 2530200 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1074 2524591 2525386 2526306 "RSETGCD" 2528942 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1073 2513821 2518900 2518997 "RSETCAT" 2523116 NIL RSETCAT (NIL T T T T) -9 NIL 2524213 NIL) (-1072 2511748 2512287 2513111 "RSETCAT-" 2513116 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1071 2504133 2505510 2507030 "RSDCMPK" 2510347 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1070 2502112 2502579 2502653 "RRCC" 2503739 NIL RRCC (NIL T T) -9 NIL 2504083 NIL) (-1069 2501463 2501637 2501916 "RRCC-" 2501921 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1068 2500906 2501159 2501260 "RPTAST" 2501384 T RPTAST (NIL) -8 NIL NIL NIL) (-1067 2474757 2484114 2484181 "RPOLCAT" 2494845 NIL RPOLCAT (NIL T T T) -9 NIL 2498004 NIL) (-1066 2466255 2468595 2471717 "RPOLCAT-" 2471722 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1065 2457186 2464466 2464948 "ROUTINE" 2465795 T ROUTINE (NIL) -8 NIL NIL NIL) (-1064 2453984 2456812 2456952 "ROMAN" 2457068 T ROMAN (NIL) -8 NIL NIL NIL) (-1063 2452228 2452844 2453104 "ROIRC" 2453789 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1062 2448460 2450744 2450774 "RNS" 2451078 T RNS (NIL) -9 NIL 2451352 NIL) (-1061 2446969 2447352 2447886 "RNS-" 2447961 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1060 2446372 2446780 2446810 "RNG" 2446815 T RNG (NIL) -9 NIL 2446836 NIL) (-1059 2445375 2445737 2445939 "RNGBIND" 2446223 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1058 2444774 2445162 2445205 "RMODULE" 2445210 NIL RMODULE (NIL T) -9 NIL 2445237 NIL) (-1057 2443610 2443704 2444040 "RMCAT2" 2444675 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1056 2440460 2442956 2443253 "RMATRIX" 2443372 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1055 2433287 2435547 2435662 "RMATCAT" 2439021 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2440003 NIL) (-1054 2432662 2432809 2433116 "RMATCAT-" 2433121 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1053 2432063 2432284 2432327 "RLINSET" 2432521 NIL RLINSET (NIL T) -9 NIL 2432612 NIL) (-1052 2431630 2431705 2431833 "RINTERP" 2431982 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1051 2430688 2431242 2431272 "RING" 2431328 T RING (NIL) -9 NIL 2431420 NIL) (-1050 2430480 2430524 2430621 "RING-" 2430626 NIL RING- (NIL T) -8 NIL NIL NIL) (-1049 2429321 2429558 2429816 "RIDIST" 2430244 T RIDIST (NIL) -7 NIL NIL NIL) (-1048 2420610 2428789 2428995 "RGCHAIN" 2429169 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1047 2419960 2420366 2420407 "RGBCSPC" 2420465 NIL RGBCSPC (NIL T) -9 NIL 2420517 NIL) (-1046 2419118 2419499 2419540 "RGBCMDL" 2419772 NIL RGBCMDL (NIL T) -9 NIL 2419886 NIL) (-1045 2416112 2416726 2417396 "RF" 2418482 NIL RF (NIL T) -7 NIL NIL NIL) (-1044 2415758 2415821 2415924 "RFFACTOR" 2416043 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1043 2415483 2415518 2415615 "RFFACT" 2415717 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1042 2413600 2413964 2414346 "RFDIST" 2415123 T RFDIST (NIL) -7 NIL NIL NIL) (-1041 2413053 2413145 2413308 "RETSOL" 2413502 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1040 2412689 2412769 2412812 "RETRACT" 2412945 NIL RETRACT (NIL T) -9 NIL 2413032 NIL) (-1039 2412538 2412563 2412650 "RETRACT-" 2412655 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1038 2412140 2412360 2412430 "RETAST" 2412490 T RETAST (NIL) -8 NIL NIL NIL) (-1037 2404878 2411793 2411920 "RESULT" 2412035 T RESULT (NIL) -8 NIL NIL NIL) (-1036 2403469 2404147 2404346 "RESRING" 2404781 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1035 2403105 2403154 2403252 "RESLATC" 2403406 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1034 2402810 2402845 2402952 "REPSQ" 2403064 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1033 2400232 2400812 2401414 "REP" 2402230 T REP (NIL) -7 NIL NIL NIL) (-1032 2399929 2399964 2400075 "REPDB" 2400191 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1031 2393829 2395218 2396441 "REP2" 2398741 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1030 2390206 2390887 2391695 "REP1" 2393056 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1029 2382902 2388347 2388803 "REGSET" 2389836 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1028 2381667 2382050 2382300 "REF" 2382687 NIL REF (NIL T) -8 NIL NIL NIL) (-1027 2381044 2381147 2381314 "REDORDER" 2381551 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1026 2377012 2380257 2380484 "RECLOS" 2380872 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1025 2376064 2376245 2376460 "REALSOLV" 2376819 T REALSOLV (NIL) -7 NIL NIL NIL) (-1024 2375910 2375951 2375981 "REAL" 2375986 T REAL (NIL) -9 NIL 2376021 NIL) (-1023 2372393 2373195 2374079 "REAL0Q" 2375075 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1022 2367994 2368982 2370043 "REAL0" 2371374 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1021 2367465 2367711 2367805 "RDUCEAST" 2367922 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1020 2366870 2366942 2367149 "RDIV" 2367387 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1019 2365938 2366112 2366325 "RDIST" 2366692 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1018 2364535 2364822 2365194 "RDETRS" 2365646 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1017 2362347 2362801 2363339 "RDETR" 2364077 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1016 2360972 2361250 2361647 "RDEEFS" 2362063 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1015 2359481 2359787 2360212 "RDEEF" 2360660 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1014 2353542 2356462 2356492 "RCFIELD" 2357787 T RCFIELD (NIL) -9 NIL 2358518 NIL) (-1013 2351606 2352110 2352806 "RCFIELD-" 2352881 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1012 2347875 2349707 2349750 "RCAGG" 2350834 NIL RCAGG (NIL T) -9 NIL 2351299 NIL) (-1011 2347503 2347597 2347760 "RCAGG-" 2347765 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1010 2346838 2346950 2347115 "RATRET" 2347387 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1009 2346391 2346458 2346579 "RATFACT" 2346766 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1008 2345699 2345819 2345971 "RANDSRC" 2346261 T RANDSRC (NIL) -7 NIL NIL NIL) (-1007 2345433 2345477 2345550 "RADUTIL" 2345648 T RADUTIL (NIL) -7 NIL NIL NIL) (-1006 2338549 2344266 2344576 "RADIX" 2345157 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1005 2330168 2338391 2338521 "RADFF" 2338526 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1004 2329815 2329890 2329920 "RADCAT" 2330080 T RADCAT (NIL) -9 NIL NIL NIL) (-1003 2329597 2329645 2329745 "RADCAT-" 2329750 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1002 2327697 2329369 2329460 "QUEUE" 2329541 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1001 2324236 2327632 2327679 "QUAT" 2327684 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1000 2323871 2323914 2324043 "QUATCT2" 2324187 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-999 2317333 2320678 2320718 "QUATCAT" 2321498 NIL QUATCAT (NIL T) -9 NIL 2322264 NIL) (-998 2313477 2314514 2315901 "QUATCAT-" 2315995 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-997 2310950 2312561 2312602 "QUAGG" 2312977 NIL QUAGG (NIL T) -9 NIL 2313152 NIL) (-996 2310555 2310775 2310843 "QQUTAST" 2310902 T QQUTAST (NIL) -8 NIL NIL NIL) (-995 2309453 2309953 2310125 "QFORM" 2310427 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-994 2300458 2305697 2305737 "QFCAT" 2306395 NIL QFCAT (NIL T) -9 NIL 2307396 NIL) (-993 2296030 2297231 2298822 "QFCAT-" 2298916 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-992 2295668 2295711 2295838 "QFCAT2" 2295981 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-991 2295128 2295238 2295368 "QEQUAT" 2295558 T QEQUAT (NIL) -8 NIL NIL NIL) (-990 2288274 2289347 2290531 "QCMPACK" 2294061 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-989 2285823 2286271 2286699 "QALGSET" 2287929 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-988 2285068 2285242 2285474 "QALGSET2" 2285643 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-987 2283758 2283982 2284299 "PWFFINTB" 2284841 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-986 2281940 2282108 2282462 "PUSHVAR" 2283572 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-985 2277858 2278912 2278953 "PTRANFN" 2280837 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-984 2276260 2276551 2276873 "PTPACK" 2277569 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-983 2275892 2275949 2276058 "PTFUNC2" 2276197 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-982 2270369 2274764 2274805 "PTCAT" 2275101 NIL PTCAT (NIL T) -9 NIL 2275254 NIL) (-981 2270027 2270062 2270186 "PSQFR" 2270328 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-980 2268622 2268920 2269254 "PSEUDLIN" 2269725 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-979 2255385 2257756 2260080 "PSETPK" 2266382 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-978 2248403 2251143 2251239 "PSETCAT" 2254260 NIL PSETCAT (NIL T T T T) -9 NIL 2255074 NIL) (-977 2246239 2246873 2247694 "PSETCAT-" 2247699 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-976 2245588 2245753 2245781 "PSCURVE" 2246049 T PSCURVE (NIL) -9 NIL 2246216 NIL) (-975 2241586 2243102 2243167 "PSCAT" 2244011 NIL PSCAT (NIL T T T) -9 NIL 2244251 NIL) (-974 2240649 2240865 2241265 "PSCAT-" 2241270 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-973 2239354 2240014 2240219 "PRTITION" 2240464 T PRTITION (NIL) -8 NIL NIL NIL) (-972 2238829 2239075 2239167 "PRTDAST" 2239282 T PRTDAST (NIL) -8 NIL NIL NIL) (-971 2227918 2230133 2232321 "PRS" 2236691 NIL PRS (NIL T T) -7 NIL NIL NIL) (-970 2225729 2227268 2227308 "PRQAGG" 2227491 NIL PRQAGG (NIL T) -9 NIL 2227593 NIL) (-969 2224933 2225238 2225266 "PROPLOG" 2225513 T PROPLOG (NIL) -9 NIL 2225679 NIL) (-968 2223363 2223884 2224141 "PROPFRML" 2224709 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-967 2222832 2222939 2223067 "PROPERTY" 2223255 T PROPERTY (NIL) -8 NIL NIL NIL) (-966 2216890 2220998 2221818 "PRODUCT" 2222058 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-965 2214168 2216348 2216582 "PR" 2216701 NIL PR (NIL T T) -8 NIL NIL NIL) (-964 2213964 2213996 2214055 "PRINT" 2214129 T PRINT (NIL) -7 NIL NIL NIL) (-963 2213304 2213421 2213573 "PRIMES" 2213844 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-962 2211369 2211770 2212236 "PRIMELT" 2212883 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-961 2211098 2211147 2211175 "PRIMCAT" 2211299 T PRIMCAT (NIL) -9 NIL NIL NIL) (-960 2207213 2211036 2211081 "PRIMARR" 2211086 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-959 2206220 2206398 2206626 "PRIMARR2" 2207031 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-958 2205863 2205919 2206030 "PREASSOC" 2206158 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-957 2205338 2205471 2205499 "PPCURVE" 2205704 T PPCURVE (NIL) -9 NIL 2205840 NIL) (-956 2204933 2205133 2205216 "PORTNUM" 2205275 T PORTNUM (NIL) -8 NIL NIL NIL) (-955 2202292 2202691 2203283 "POLYROOT" 2204514 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-954 2196474 2201896 2202056 "POLY" 2202165 NIL POLY (NIL T) -8 NIL NIL NIL) (-953 2195857 2195915 2196149 "POLYLIFT" 2196410 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-952 2192132 2192581 2193210 "POLYCATQ" 2195402 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-951 2178844 2183972 2184037 "POLYCAT" 2187551 NIL POLYCAT (NIL T T T) -9 NIL 2189429 NIL) (-950 2172293 2174155 2176539 "POLYCAT-" 2176544 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-949 2171880 2171948 2172068 "POLY2UP" 2172219 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-948 2171512 2171569 2171678 "POLY2" 2171817 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-947 2170197 2170436 2170712 "POLUTIL" 2171286 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-946 2168552 2168829 2169160 "POLTOPOL" 2169919 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-945 2164017 2168488 2168534 "POINT" 2168539 NIL POINT (NIL T) -8 NIL NIL NIL) (-944 2162204 2162561 2162936 "PNTHEORY" 2163662 T PNTHEORY (NIL) -7 NIL NIL NIL) (-943 2160662 2160959 2161358 "PMTOOLS" 2161902 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-942 2160255 2160333 2160450 "PMSYM" 2160578 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-941 2159765 2159834 2160008 "PMQFCAT" 2160180 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-940 2159120 2159230 2159386 "PMPRED" 2159642 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-939 2158513 2158599 2158761 "PMPREDFS" 2159021 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-938 2157177 2157385 2157763 "PMPLCAT" 2158275 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-937 2156709 2156788 2156940 "PMLSAGG" 2157092 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-936 2156182 2156258 2156440 "PMKERNEL" 2156627 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-935 2155799 2155874 2155987 "PMINS" 2156101 NIL PMINS (NIL T) -7 NIL NIL NIL) (-934 2155241 2155310 2155519 "PMFS" 2155724 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-933 2154469 2154587 2154792 "PMDOWN" 2155118 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-932 2153636 2153794 2153975 "PMASS" 2154308 T PMASS (NIL) -7 NIL NIL NIL) (-931 2152909 2153019 2153182 "PMASSFS" 2153523 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-930 2152564 2152632 2152726 "PLOTTOOL" 2152835 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-929 2147171 2148375 2149523 "PLOT" 2151436 T PLOT (NIL) -8 NIL NIL NIL) (-928 2142975 2144019 2144940 "PLOT3D" 2146270 T PLOT3D (NIL) -8 NIL NIL NIL) (-927 2141887 2142064 2142299 "PLOT1" 2142779 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-926 2117276 2121953 2126804 "PLEQN" 2137153 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-925 2116594 2116716 2116896 "PINTERP" 2117141 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-924 2116287 2116334 2116437 "PINTERPA" 2116541 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-923 2115508 2116056 2116143 "PI" 2116183 T PI (NIL) -8 NIL NIL 2116250) (-922 2113805 2114780 2114808 "PID" 2114990 T PID (NIL) -9 NIL 2115124 NIL) (-921 2113556 2113593 2113668 "PICOERCE" 2113762 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-920 2112876 2113015 2113191 "PGROEB" 2113412 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-919 2108463 2109277 2110182 "PGE" 2111991 T PGE (NIL) -7 NIL NIL NIL) (-918 2106586 2106833 2107199 "PGCD" 2108180 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-917 2105924 2106027 2106188 "PFRPAC" 2106470 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-916 2102564 2104472 2104825 "PFR" 2105603 NIL PFR (NIL T) -8 NIL NIL NIL) (-915 2100953 2101197 2101522 "PFOTOOLS" 2102311 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-914 2099486 2099725 2100076 "PFOQ" 2100710 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-913 2097987 2098199 2098555 "PFO" 2099270 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-912 2094540 2097876 2097945 "PF" 2097950 NIL PF (NIL NIL) -8 NIL NIL NIL) (-911 2091874 2093145 2093173 "PFECAT" 2093758 T PFECAT (NIL) -9 NIL 2094142 NIL) (-910 2091319 2091473 2091687 "PFECAT-" 2091692 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-909 2089922 2090174 2090475 "PFBRU" 2091068 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-908 2087788 2088140 2088572 "PFBR" 2089573 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-907 2083670 2085164 2085840 "PERM" 2087145 NIL PERM (NIL T) -8 NIL NIL NIL) (-906 2078904 2079877 2080747 "PERMGRP" 2082833 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-905 2077010 2077967 2078008 "PERMCAT" 2078454 NIL PERMCAT (NIL T) -9 NIL 2078759 NIL) (-904 2076663 2076704 2076828 "PERMAN" 2076963 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-903 2074151 2076328 2076450 "PENDTREE" 2076574 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-902 2072175 2072943 2072984 "PDRING" 2073641 NIL PDRING (NIL T) -9 NIL 2073927 NIL) (-901 2071278 2071496 2071858 "PDRING-" 2071863 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-900 2068493 2069271 2069939 "PDEPROB" 2070630 T PDEPROB (NIL) -8 NIL NIL NIL) (-899 2066038 2066542 2067097 "PDEPACK" 2067958 T PDEPACK (NIL) -7 NIL NIL NIL) (-898 2064950 2065140 2065391 "PDECOMP" 2065837 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-897 2062529 2063372 2063400 "PDECAT" 2064187 T PDECAT (NIL) -9 NIL 2064900 NIL) (-896 2062280 2062313 2062403 "PCOMP" 2062490 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-895 2060458 2061081 2061378 "PBWLB" 2062009 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-894 2052931 2054531 2055869 "PATTERN" 2059141 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-893 2052563 2052620 2052729 "PATTERN2" 2052868 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-892 2050320 2050708 2051165 "PATTERN1" 2052152 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-891 2047688 2048269 2048750 "PATRES" 2049885 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-890 2047252 2047319 2047451 "PATRES2" 2047615 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-889 2045135 2045540 2045947 "PATMATCH" 2046919 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-888 2044645 2044854 2044895 "PATMAB" 2045002 NIL PATMAB (NIL T) -9 NIL 2045085 NIL) (-887 2043163 2043499 2043757 "PATLRES" 2044450 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-886 2042709 2042832 2042873 "PATAB" 2042878 NIL PATAB (NIL T) -9 NIL 2043050 NIL) (-885 2040190 2040722 2041295 "PARTPERM" 2042156 T PARTPERM (NIL) -7 NIL NIL NIL) (-884 2039811 2039874 2039976 "PARSURF" 2040121 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-883 2039443 2039500 2039609 "PARSU2" 2039748 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-882 2039207 2039247 2039314 "PARSER" 2039396 T PARSER (NIL) -7 NIL NIL NIL) (-881 2038828 2038891 2038993 "PARSCURV" 2039138 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-880 2038460 2038517 2038626 "PARSC2" 2038765 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-879 2038099 2038157 2038254 "PARPCURV" 2038396 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-878 2037731 2037788 2037897 "PARPC2" 2038036 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-877 2036792 2037104 2037286 "PARAMAST" 2037569 T PARAMAST (NIL) -8 NIL NIL NIL) (-876 2036312 2036398 2036517 "PAN2EXPR" 2036693 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-875 2035089 2035433 2035661 "PALETTE" 2036104 T PALETTE (NIL) -8 NIL NIL NIL) (-874 2033482 2034094 2034454 "PAIR" 2034775 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-873 2027352 2032741 2032935 "PADICRC" 2033337 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-872 2020581 2026698 2026882 "PADICRAT" 2027200 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-871 2018896 2020518 2020563 "PADIC" 2020568 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-870 2016006 2017570 2017610 "PADICCT" 2018191 NIL PADICCT (NIL NIL) -9 NIL 2018473 NIL) (-869 2014963 2015163 2015431 "PADEPAC" 2015793 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-868 2014175 2014308 2014514 "PADE" 2014825 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-867 2012562 2013383 2013663 "OWP" 2013979 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-866 2012055 2012268 2012365 "OVERSET" 2012485 T OVERSET (NIL) -8 NIL NIL NIL) (-865 2011101 2011660 2011832 "OVAR" 2011923 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-864 2010365 2010486 2010647 "OUT" 2010960 T OUT (NIL) -7 NIL NIL NIL) (-863 1999237 2001474 2003674 "OUTFORM" 2008185 T OUTFORM (NIL) -8 NIL NIL NIL) (-862 1998573 1998834 1998961 "OUTBFILE" 1999130 T OUTBFILE (NIL) -8 NIL NIL NIL) (-861 1997880 1998045 1998073 "OUTBCON" 1998391 T OUTBCON (NIL) -9 NIL 1998557 NIL) (-860 1997481 1997593 1997750 "OUTBCON-" 1997755 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-859 1996861 1997210 1997299 "OSI" 1997412 T OSI (NIL) -8 NIL NIL NIL) (-858 1996391 1996729 1996757 "OSGROUP" 1996762 T OSGROUP (NIL) -9 NIL 1996784 NIL) (-857 1995136 1995363 1995648 "ORTHPOL" 1996138 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-856 1992687 1994971 1995092 "OREUP" 1995097 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-855 1990090 1992378 1992505 "ORESUP" 1992629 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-854 1987618 1988118 1988679 "OREPCTO" 1989579 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-853 1981304 1983505 1983546 "OREPCAT" 1985894 NIL OREPCAT (NIL T) -9 NIL 1986998 NIL) (-852 1978451 1979233 1980291 "OREPCAT-" 1980296 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-851 1977602 1977900 1977928 "ORDSET" 1978237 T ORDSET (NIL) -9 NIL 1978401 NIL) (-850 1977033 1977181 1977405 "ORDSET-" 1977410 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-849 1975598 1976389 1976417 "ORDRING" 1976619 T ORDRING (NIL) -9 NIL 1976744 NIL) (-848 1975243 1975337 1975481 "ORDRING-" 1975486 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-847 1974623 1975086 1975114 "ORDMON" 1975119 T ORDMON (NIL) -9 NIL 1975140 NIL) (-846 1973785 1973932 1974127 "ORDFUNS" 1974472 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-845 1973123 1973542 1973570 "ORDFIN" 1973635 T ORDFIN (NIL) -9 NIL 1973709 NIL) (-844 1969682 1971709 1972118 "ORDCOMP" 1972747 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-843 1968948 1969075 1969261 "ORDCOMP2" 1969542 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-842 1965529 1966439 1967253 "OPTPROB" 1968154 T OPTPROB (NIL) -8 NIL NIL NIL) (-841 1962331 1962970 1963674 "OPTPACK" 1964845 T OPTPACK (NIL) -7 NIL NIL NIL) (-840 1960018 1960784 1960812 "OPTCAT" 1961631 T OPTCAT (NIL) -9 NIL 1962281 NIL) (-839 1959402 1959695 1959800 "OPSIG" 1959933 T OPSIG (NIL) -8 NIL NIL NIL) (-838 1959170 1959209 1959275 "OPQUERY" 1959356 T OPQUERY (NIL) -7 NIL NIL NIL) (-837 1956301 1957481 1957985 "OP" 1958699 NIL OP (NIL T) -8 NIL NIL NIL) (-836 1955675 1955901 1955942 "OPERCAT" 1956154 NIL OPERCAT (NIL T) -9 NIL 1956251 NIL) (-835 1955430 1955486 1955603 "OPERCAT-" 1955608 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-834 1952243 1954227 1954596 "ONECOMP" 1955094 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-833 1951548 1951663 1951837 "ONECOMP2" 1952115 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-832 1950967 1951073 1951203 "OMSERVER" 1951438 T OMSERVER (NIL) -7 NIL NIL NIL) (-831 1947829 1950407 1950447 "OMSAGG" 1950508 NIL OMSAGG (NIL T) -9 NIL 1950572 NIL) (-830 1946452 1946715 1946997 "OMPKG" 1947567 T OMPKG (NIL) -7 NIL NIL NIL) (-829 1945882 1945985 1946013 "OM" 1946312 T OM (NIL) -9 NIL NIL NIL) (-828 1944429 1945431 1945600 "OMLO" 1945763 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-827 1943389 1943536 1943756 "OMEXPR" 1944255 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-826 1942680 1942935 1943071 "OMERR" 1943273 T OMERR (NIL) -8 NIL NIL NIL) (-825 1941831 1942101 1942261 "OMERRK" 1942540 T OMERRK (NIL) -8 NIL NIL NIL) (-824 1941282 1941508 1941616 "OMENC" 1941743 T OMENC (NIL) -8 NIL NIL NIL) (-823 1935177 1936362 1937533 "OMDEV" 1940131 T OMDEV (NIL) -8 NIL NIL NIL) (-822 1934246 1934417 1934611 "OMCONN" 1935003 T OMCONN (NIL) -8 NIL NIL NIL) (-821 1932767 1933743 1933771 "OINTDOM" 1933776 T OINTDOM (NIL) -9 NIL 1933797 NIL) (-820 1930105 1931455 1931792 "OFMONOID" 1932462 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-819 1929516 1930042 1930087 "ODVAR" 1930092 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-818 1926939 1929261 1929416 "ODR" 1929421 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-817 1919520 1926715 1926841 "ODPOL" 1926846 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-816 1913342 1919392 1919497 "ODP" 1919502 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-815 1912108 1912323 1912598 "ODETOOLS" 1913116 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-814 1909075 1909733 1910449 "ODESYS" 1911441 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-813 1903957 1904865 1905890 "ODERTRIC" 1908150 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-812 1903383 1903465 1903659 "ODERED" 1903869 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-811 1900271 1900819 1901496 "ODERAT" 1902806 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-810 1897228 1897695 1898292 "ODEPRRIC" 1899800 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-809 1895171 1895767 1896253 "ODEPROB" 1896762 T ODEPROB (NIL) -8 NIL NIL NIL) (-808 1891691 1892176 1892823 "ODEPRIM" 1894650 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-807 1890940 1891042 1891302 "ODEPAL" 1891583 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-806 1887102 1887893 1888757 "ODEPACK" 1890096 T ODEPACK (NIL) -7 NIL NIL NIL) (-805 1886163 1886270 1886492 "ODEINT" 1886991 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-804 1880264 1881689 1883136 "ODEIFTBL" 1884736 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-803 1875662 1876448 1877400 "ODEEF" 1879423 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-802 1875011 1875100 1875323 "ODECONST" 1875567 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-801 1873136 1873797 1873825 "ODECAT" 1874430 T ODECAT (NIL) -9 NIL 1874961 NIL) (-800 1869991 1872841 1872963 "OCT" 1873046 NIL OCT (NIL T) -8 NIL NIL NIL) (-799 1869629 1869672 1869799 "OCTCT2" 1869942 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-798 1864278 1866713 1866753 "OC" 1867850 NIL OC (NIL T) -9 NIL 1868708 NIL) (-797 1861505 1862253 1863243 "OC-" 1863337 NIL OC- (NIL T T) -8 NIL NIL NIL) (-796 1860857 1861325 1861353 "OCAMON" 1861358 T OCAMON (NIL) -9 NIL 1861379 NIL) (-795 1860388 1860729 1860757 "OASGP" 1860762 T OASGP (NIL) -9 NIL 1860782 NIL) (-794 1859649 1860138 1860166 "OAMONS" 1860206 T OAMONS (NIL) -9 NIL 1860249 NIL) (-793 1859063 1859496 1859524 "OAMON" 1859529 T OAMON (NIL) -9 NIL 1859549 NIL) (-792 1858321 1858839 1858867 "OAGROUP" 1858872 T OAGROUP (NIL) -9 NIL 1858892 NIL) (-791 1858011 1858061 1858149 "NUMTUBE" 1858265 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-790 1851584 1853102 1854638 "NUMQUAD" 1856495 T NUMQUAD (NIL) -7 NIL NIL NIL) (-789 1847340 1848328 1849353 "NUMODE" 1850579 T NUMODE (NIL) -7 NIL NIL NIL) (-788 1844695 1845575 1845603 "NUMINT" 1846526 T NUMINT (NIL) -9 NIL 1847290 NIL) (-787 1843643 1843840 1844058 "NUMFMT" 1844497 T NUMFMT (NIL) -7 NIL NIL NIL) (-786 1830002 1832947 1835479 "NUMERIC" 1841150 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-785 1824372 1829451 1829546 "NTSCAT" 1829551 NIL NTSCAT (NIL T T T T) -9 NIL 1829590 NIL) (-784 1823566 1823731 1823924 "NTPOLFN" 1824211 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-783 1811643 1820391 1821203 "NSUP" 1822787 NIL NSUP (NIL T) -8 NIL NIL NIL) (-782 1811275 1811332 1811441 "NSUP2" 1811580 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-781 1801503 1811049 1811182 "NSMP" 1811187 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-780 1799935 1800236 1800593 "NREP" 1801191 NIL NREP (NIL T) -7 NIL NIL NIL) (-779 1798526 1798778 1799136 "NPCOEF" 1799678 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-778 1797592 1797707 1797923 "NORMRETR" 1798407 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-777 1795633 1795923 1796332 "NORMPK" 1797300 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-776 1795318 1795346 1795470 "NORMMA" 1795599 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-775 1795118 1795275 1795304 "NONE" 1795309 T NONE (NIL) -8 NIL NIL NIL) (-774 1794907 1794936 1795005 "NONE1" 1795082 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-773 1794404 1794466 1794645 "NODE1" 1794839 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-772 1792689 1793540 1793795 "NNI" 1794142 T NNI (NIL) -8 NIL NIL 1794377) (-771 1791109 1791422 1791786 "NLINSOL" 1792357 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-770 1787350 1788345 1789244 "NIPROB" 1790230 T NIPROB (NIL) -8 NIL NIL NIL) (-769 1786107 1786341 1786643 "NFINTBAS" 1787112 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-768 1785281 1785757 1785798 "NETCLT" 1785970 NIL NETCLT (NIL T) -9 NIL 1786052 NIL) (-767 1783989 1784220 1784501 "NCODIV" 1785049 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-766 1783751 1783788 1783863 "NCNTFRAC" 1783946 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-765 1781931 1782295 1782715 "NCEP" 1783376 NIL NCEP (NIL T) -7 NIL NIL NIL) (-764 1780782 1781555 1781583 "NASRING" 1781693 T NASRING (NIL) -9 NIL 1781773 NIL) (-763 1780577 1780621 1780715 "NASRING-" 1780720 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-762 1779684 1780209 1780237 "NARNG" 1780354 T NARNG (NIL) -9 NIL 1780445 NIL) (-761 1779376 1779443 1779577 "NARNG-" 1779582 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-760 1778255 1778462 1778697 "NAGSP" 1779161 T NAGSP (NIL) -7 NIL NIL NIL) (-759 1769527 1771211 1772884 "NAGS" 1776602 T NAGS (NIL) -7 NIL NIL NIL) (-758 1768075 1768383 1768714 "NAGF07" 1769216 T NAGF07 (NIL) -7 NIL NIL NIL) (-757 1762613 1763904 1765211 "NAGF04" 1766788 T NAGF04 (NIL) -7 NIL NIL NIL) (-756 1755581 1757195 1758828 "NAGF02" 1761000 T NAGF02 (NIL) -7 NIL NIL NIL) (-755 1750805 1751905 1753022 "NAGF01" 1754484 T NAGF01 (NIL) -7 NIL NIL NIL) (-754 1744433 1745999 1747584 "NAGE04" 1749240 T NAGE04 (NIL) -7 NIL NIL NIL) (-753 1735602 1737723 1739853 "NAGE02" 1742323 T NAGE02 (NIL) -7 NIL NIL NIL) (-752 1731555 1732502 1733466 "NAGE01" 1734658 T NAGE01 (NIL) -7 NIL NIL NIL) (-751 1729350 1729884 1730442 "NAGD03" 1731017 T NAGD03 (NIL) -7 NIL NIL NIL) (-750 1721100 1723028 1724982 "NAGD02" 1727416 T NAGD02 (NIL) -7 NIL NIL NIL) (-749 1714911 1716336 1717776 "NAGD01" 1719680 T NAGD01 (NIL) -7 NIL NIL NIL) (-748 1711120 1711942 1712779 "NAGC06" 1714094 T NAGC06 (NIL) -7 NIL NIL NIL) (-747 1709585 1709917 1710273 "NAGC05" 1710784 T NAGC05 (NIL) -7 NIL NIL NIL) (-746 1708961 1709080 1709224 "NAGC02" 1709461 T NAGC02 (NIL) -7 NIL NIL NIL) (-745 1707920 1708503 1708543 "NAALG" 1708622 NIL NAALG (NIL T) -9 NIL 1708683 NIL) (-744 1707755 1707784 1707874 "NAALG-" 1707879 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-743 1701705 1702813 1704000 "MULTSQFR" 1706651 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-742 1701024 1701099 1701283 "MULTFACT" 1701617 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-741 1693748 1697661 1697714 "MTSCAT" 1698784 NIL MTSCAT (NIL T T) -9 NIL 1699299 NIL) (-740 1693460 1693514 1693606 "MTHING" 1693688 NIL MTHING (NIL T) -7 NIL NIL NIL) (-739 1693252 1693285 1693345 "MSYSCMD" 1693420 T MSYSCMD (NIL) -7 NIL NIL NIL) (-738 1689334 1692007 1692327 "MSET" 1692965 NIL MSET (NIL T) -8 NIL NIL NIL) (-737 1686403 1688895 1688936 "MSETAGG" 1688941 NIL MSETAGG (NIL T) -9 NIL 1688975 NIL) (-736 1682244 1683782 1684527 "MRING" 1685703 NIL MRING (NIL T T) -8 NIL NIL NIL) (-735 1681810 1681877 1682008 "MRF2" 1682171 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-734 1681428 1681463 1681607 "MRATFAC" 1681769 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-733 1679040 1679335 1679766 "MPRFF" 1681133 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-732 1673337 1678894 1678991 "MPOLY" 1678996 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-731 1672827 1672862 1673070 "MPCPF" 1673296 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-730 1672341 1672384 1672568 "MPC3" 1672778 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-729 1671536 1671617 1671838 "MPC2" 1672256 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1669837 1670174 1670564 "MONOTOOL" 1671196 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-727 1669062 1669379 1669407 "MONOID" 1669626 T MONOID (NIL) -9 NIL 1669773 NIL) (-726 1668608 1668727 1668908 "MONOID-" 1668913 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-725 1659083 1665034 1665093 "MONOGEN" 1665767 NIL MONOGEN (NIL T T) -9 NIL 1666223 NIL) (-724 1656301 1657036 1658036 "MONOGEN-" 1658155 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-723 1655134 1655580 1655608 "MONADWU" 1656000 T MONADWU (NIL) -9 NIL 1656238 NIL) (-722 1654506 1654665 1654913 "MONADWU-" 1654918 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-721 1653865 1654109 1654137 "MONAD" 1654344 T MONAD (NIL) -9 NIL 1654456 NIL) (-720 1653550 1653628 1653760 "MONAD-" 1653765 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-719 1651839 1652463 1652742 "MOEBIUS" 1653303 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-718 1651117 1651521 1651561 "MODULE" 1651566 NIL MODULE (NIL T) -9 NIL 1651605 NIL) (-717 1650685 1650781 1650971 "MODULE-" 1650976 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-716 1648365 1649049 1649376 "MODRING" 1650509 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1645309 1646470 1646991 "MODOP" 1647894 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-714 1643897 1644376 1644653 "MODMONOM" 1645172 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-713 1633938 1642188 1642602 "MODMON" 1643534 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-712 1631094 1632782 1633058 "MODFIELD" 1633813 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1630071 1630375 1630565 "MMLFORM" 1630924 T MMLFORM (NIL) -8 NIL NIL NIL) (-710 1629597 1629640 1629819 "MMAP" 1630022 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-709 1627676 1628443 1628484 "MLO" 1628907 NIL MLO (NIL T) -9 NIL 1629149 NIL) (-708 1625042 1625558 1626160 "MLIFT" 1627157 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-707 1624433 1624517 1624671 "MKUCFUNC" 1624953 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-706 1624032 1624102 1624225 "MKRECORD" 1624356 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-705 1623079 1623241 1623469 "MKFUNC" 1623843 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-704 1622467 1622571 1622727 "MKFLCFN" 1622962 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-703 1621744 1621846 1622031 "MKBCFUNC" 1622360 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-702 1618451 1621298 1621434 "MINT" 1621628 T MINT (NIL) -8 NIL NIL NIL) (-701 1617263 1617506 1617783 "MHROWRED" 1618206 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-700 1612642 1615798 1616203 "MFLOAT" 1616878 T MFLOAT (NIL) -8 NIL NIL NIL) (-699 1611999 1612075 1612246 "MFINFACT" 1612554 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-698 1608314 1609162 1610046 "MESH" 1611135 T MESH (NIL) -7 NIL NIL NIL) (-697 1606704 1607016 1607369 "MDDFACT" 1608001 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-696 1603499 1605863 1605904 "MDAGG" 1606159 NIL MDAGG (NIL T) -9 NIL 1606302 NIL) (-695 1593239 1602792 1602999 "MCMPLX" 1603312 T MCMPLX (NIL) -8 NIL NIL NIL) (-694 1592380 1592526 1592726 "MCDEN" 1593088 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-693 1590270 1590540 1590920 "MCALCFN" 1592110 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-692 1589195 1589435 1589668 "MAYBE" 1590076 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-691 1586807 1587330 1587892 "MATSTOR" 1588666 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-690 1582764 1586179 1586427 "MATRIX" 1586592 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-689 1578528 1579237 1579973 "MATLIN" 1582121 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-688 1568634 1571820 1571897 "MATCAT" 1576777 NIL MATCAT (NIL T T T) -9 NIL 1578194 NIL) (-687 1564990 1566011 1567367 "MATCAT-" 1567372 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-686 1563584 1563737 1564070 "MATCAT2" 1564825 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-685 1561696 1562020 1562404 "MAPPKG3" 1563259 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-684 1560677 1560850 1561072 "MAPPKG2" 1561520 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-683 1559176 1559460 1559787 "MAPPKG1" 1560383 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-682 1558255 1558582 1558759 "MAPPAST" 1559019 T MAPPAST (NIL) -8 NIL NIL NIL) (-681 1557866 1557924 1558047 "MAPHACK3" 1558191 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-680 1557458 1557519 1557633 "MAPHACK2" 1557798 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-679 1556895 1556999 1557141 "MAPHACK1" 1557349 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-678 1554974 1555595 1555899 "MAGMA" 1556623 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-677 1554453 1554698 1554789 "MACROAST" 1554903 T MACROAST (NIL) -8 NIL NIL NIL) (-676 1550871 1552692 1553153 "M3D" 1554025 NIL M3D (NIL T) -8 NIL NIL NIL) (-675 1544977 1549240 1549281 "LZSTAGG" 1550063 NIL LZSTAGG (NIL T) -9 NIL 1550358 NIL) (-674 1540934 1542108 1543565 "LZSTAGG-" 1543570 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-673 1538021 1538825 1539312 "LWORD" 1540479 NIL LWORD (NIL T) -8 NIL NIL NIL) (-672 1537597 1537825 1537900 "LSTAST" 1537966 T LSTAST (NIL) -8 NIL NIL NIL) (-671 1530763 1537368 1537502 "LSQM" 1537507 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-670 1529987 1530126 1530354 "LSPP" 1530618 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-669 1527799 1528100 1528556 "LSMP" 1529676 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-668 1524578 1525252 1525982 "LSMP1" 1527101 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-667 1518455 1523745 1523786 "LSAGG" 1523848 NIL LSAGG (NIL T) -9 NIL 1523926 NIL) (-666 1515150 1516074 1517287 "LSAGG-" 1517292 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-665 1512749 1514294 1514543 "LPOLY" 1514945 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-664 1512331 1512416 1512539 "LPEFRAC" 1512658 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-663 1510652 1511425 1511678 "LO" 1512163 NIL LO (NIL T T T) -8 NIL NIL NIL) (-662 1510304 1510416 1510444 "LOGIC" 1510555 T LOGIC (NIL) -9 NIL 1510636 NIL) (-661 1510166 1510189 1510260 "LOGIC-" 1510265 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-660 1509359 1509499 1509692 "LODOOPS" 1510022 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-659 1506782 1509275 1509341 "LODO" 1509346 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-658 1505320 1505555 1505908 "LODOF" 1506529 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-657 1501538 1503969 1504010 "LODOCAT" 1504448 NIL LODOCAT (NIL T) -9 NIL 1504659 NIL) (-656 1501271 1501329 1501456 "LODOCAT-" 1501461 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-655 1498591 1501112 1501230 "LODO2" 1501235 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-654 1496026 1498528 1498573 "LODO1" 1498578 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-653 1494907 1495072 1495377 "LODEEF" 1495849 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-652 1490146 1493037 1493078 "LNAGG" 1494025 NIL LNAGG (NIL T) -9 NIL 1494469 NIL) (-651 1489293 1489507 1489849 "LNAGG-" 1489854 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-650 1485429 1486218 1486857 "LMOPS" 1488708 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-649 1484832 1485220 1485261 "LMODULE" 1485266 NIL LMODULE (NIL T) -9 NIL 1485292 NIL) (-648 1482030 1484477 1484600 "LMDICT" 1484742 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-647 1481436 1481657 1481698 "LLINSET" 1481889 NIL LLINSET (NIL T) -9 NIL 1481980 NIL) (-646 1481135 1481344 1481404 "LITERAL" 1481409 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-645 1474298 1480069 1480373 "LIST" 1480864 NIL LIST (NIL T) -8 NIL NIL NIL) (-644 1473823 1473897 1474036 "LIST3" 1474218 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-643 1472830 1473008 1473236 "LIST2" 1473641 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-642 1470964 1471276 1471675 "LIST2MAP" 1472477 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-641 1470560 1470797 1470838 "LINSET" 1470843 NIL LINSET (NIL T) -9 NIL 1470877 NIL) (-640 1469221 1469891 1469932 "LINEXP" 1470187 NIL LINEXP (NIL T) -9 NIL 1470336 NIL) (-639 1467868 1468128 1468425 "LINDEP" 1468973 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-638 1464635 1465354 1466131 "LIMITRF" 1467123 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-637 1462938 1463234 1463643 "LIMITPS" 1464330 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-636 1457366 1462449 1462677 "LIE" 1462759 NIL LIE (NIL T T) -8 NIL NIL NIL) (-635 1456314 1456783 1456823 "LIECAT" 1456963 NIL LIECAT (NIL T) -9 NIL 1457114 NIL) (-634 1456155 1456182 1456270 "LIECAT-" 1456275 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-633 1448651 1455604 1455769 "LIB" 1456010 T LIB (NIL) -8 NIL NIL NIL) (-632 1444286 1445169 1446104 "LGROBP" 1447768 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-631 1442284 1442558 1442908 "LF" 1444007 NIL LF (NIL T T) -7 NIL NIL NIL) (-630 1441124 1441816 1441844 "LFCAT" 1442051 T LFCAT (NIL) -9 NIL 1442190 NIL) (-629 1438026 1438656 1439344 "LEXTRIPK" 1440488 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-628 1434770 1435596 1436099 "LEXP" 1437606 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-627 1434246 1434491 1434583 "LETAST" 1434698 T LETAST (NIL) -8 NIL NIL NIL) (-626 1432644 1432957 1433358 "LEADCDET" 1433928 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-625 1431834 1431908 1432137 "LAZM3PK" 1432565 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-624 1426751 1429911 1430449 "LAUPOL" 1431346 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-623 1426330 1426374 1426535 "LAPLACE" 1426701 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-622 1424269 1425431 1425682 "LA" 1426163 NIL LA (NIL T T T) -8 NIL NIL NIL) (-621 1423263 1423847 1423888 "LALG" 1423950 NIL LALG (NIL T) -9 NIL 1424009 NIL) (-620 1422977 1423036 1423172 "LALG-" 1423177 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-619 1422812 1422836 1422877 "KVTFROM" 1422939 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-618 1421735 1422179 1422364 "KTVLOGIC" 1422647 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-617 1421570 1421594 1421635 "KRCFROM" 1421697 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-616 1420474 1420661 1420960 "KOVACIC" 1421370 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-615 1420309 1420333 1420374 "KONVERT" 1420436 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-614 1420144 1420168 1420209 "KOERCE" 1420271 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-613 1417974 1418737 1419114 "KERNEL" 1419800 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-612 1417470 1417551 1417683 "KERNEL2" 1417888 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-611 1411240 1416009 1416063 "KDAGG" 1416440 NIL KDAGG (NIL T T) -9 NIL 1416646 NIL) (-610 1410769 1410893 1411098 "KDAGG-" 1411103 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-609 1403917 1410430 1410585 "KAFILE" 1410647 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-608 1398345 1403428 1403656 "JORDAN" 1403738 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-607 1397724 1397994 1398115 "JOINAST" 1398244 T JOINAST (NIL) -8 NIL NIL NIL) (-606 1397570 1397629 1397684 "JAVACODE" 1397689 T JAVACODE (NIL) -8 NIL NIL NIL) (-605 1393822 1395775 1395829 "IXAGG" 1396758 NIL IXAGG (NIL T T) -9 NIL 1397217 NIL) (-604 1392741 1393047 1393466 "IXAGG-" 1393471 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1388271 1392663 1392722 "IVECTOR" 1392727 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-602 1387037 1387274 1387540 "ITUPLE" 1388038 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-601 1385539 1385716 1386011 "ITRIGMNP" 1386859 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-600 1384284 1384488 1384771 "ITFUN3" 1385315 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-599 1383916 1383973 1384082 "ITFUN2" 1384221 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-598 1381877 1382936 1383214 "ITAYLOR" 1383671 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-597 1370822 1376014 1377177 "ISUPS" 1380747 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-596 1369926 1370066 1370302 "ISUMP" 1370669 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-595 1365301 1369871 1369912 "ISTRING" 1369917 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-594 1364777 1365022 1365114 "ISAST" 1365229 T ISAST (NIL) -8 NIL NIL NIL) (-593 1363986 1364068 1364284 "IRURPK" 1364691 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-592 1362922 1363123 1363363 "IRSN" 1363766 T IRSN (NIL) -7 NIL NIL NIL) (-591 1360993 1361348 1361777 "IRRF2F" 1362560 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-590 1360740 1360778 1360854 "IRREDFFX" 1360949 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-589 1359355 1359614 1359913 "IROOT" 1360473 NIL IROOT (NIL T) -7 NIL NIL NIL) (-588 1355959 1357039 1357731 "IR" 1358695 NIL IR (NIL T) -8 NIL NIL NIL) (-587 1353572 1354067 1354633 "IR2" 1355437 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-586 1352672 1352785 1352999 "IR2F" 1353455 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-585 1352463 1352497 1352557 "IPRNTPK" 1352632 T IPRNTPK (NIL) -7 NIL NIL NIL) (-584 1349044 1352352 1352421 "IPF" 1352426 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-583 1347371 1348969 1349026 "IPADIC" 1349031 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-582 1346683 1346931 1347061 "IP4ADDR" 1347261 T IP4ADDR (NIL) -8 NIL NIL NIL) (-581 1346156 1346387 1346497 "IOMODE" 1346593 T IOMODE (NIL) -8 NIL NIL NIL) (-580 1345229 1345753 1345880 "IOBFILE" 1346049 T IOBFILE (NIL) -8 NIL NIL NIL) (-579 1344717 1345133 1345161 "IOBCON" 1345166 T IOBCON (NIL) -9 NIL 1345187 NIL) (-578 1344228 1344286 1344469 "INVLAPLA" 1344653 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-577 1333876 1336230 1338616 "INTTR" 1341892 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-576 1330211 1330953 1331818 "INTTOOLS" 1333061 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-575 1329797 1329888 1330005 "INTSLPE" 1330114 T INTSLPE (NIL) -7 NIL NIL NIL) (-574 1327750 1329720 1329779 "INTRVL" 1329784 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-573 1325352 1325864 1326439 "INTRF" 1327235 NIL INTRF (NIL T) -7 NIL NIL NIL) (-572 1324763 1324860 1325002 "INTRET" 1325250 NIL INTRET (NIL T) -7 NIL NIL NIL) (-571 1322760 1323149 1323619 "INTRAT" 1324371 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-570 1320023 1320606 1321225 "INTPM" 1322245 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-569 1316768 1317367 1318105 "INTPAF" 1319409 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-568 1311947 1312909 1313960 "INTPACK" 1315737 T INTPACK (NIL) -7 NIL NIL NIL) (-567 1308895 1311744 1311853 "INT" 1311858 T INT (NIL) -8 NIL NIL NIL) (-566 1308147 1308299 1308507 "INTHERTR" 1308737 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-565 1307586 1307666 1307854 "INTHERAL" 1308061 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-564 1305432 1305875 1306332 "INTHEORY" 1307149 T INTHEORY (NIL) -7 NIL NIL NIL) (-563 1296838 1298459 1300231 "INTG0" 1303784 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-562 1277411 1282201 1287011 "INTFTBL" 1292048 T INTFTBL (NIL) -8 NIL NIL NIL) (-561 1276660 1276798 1276971 "INTFACT" 1277270 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-560 1274087 1274533 1275090 "INTEF" 1276214 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-559 1272454 1273193 1273221 "INTDOM" 1273522 T INTDOM (NIL) -9 NIL 1273729 NIL) (-558 1271823 1271997 1272239 "INTDOM-" 1272244 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-557 1268211 1270139 1270193 "INTCAT" 1270992 NIL INTCAT (NIL T) -9 NIL 1271313 NIL) (-556 1267683 1267786 1267914 "INTBIT" 1268103 T INTBIT (NIL) -7 NIL NIL NIL) (-555 1266382 1266536 1266843 "INTALG" 1267528 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-554 1265865 1265955 1266112 "INTAF" 1266286 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-553 1259208 1265675 1265815 "INTABL" 1265820 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-552 1258549 1259015 1259080 "INT8" 1259114 T INT8 (NIL) -8 NIL NIL 1259159) (-551 1257889 1258355 1258420 "INT64" 1258454 T INT64 (NIL) -8 NIL NIL 1258499) (-550 1257229 1257695 1257760 "INT32" 1257794 T INT32 (NIL) -8 NIL NIL 1257839) (-549 1256569 1257035 1257100 "INT16" 1257134 T INT16 (NIL) -8 NIL NIL 1257179) (-548 1251479 1254192 1254220 "INS" 1255154 T INS (NIL) -9 NIL 1255819 NIL) (-547 1248719 1249490 1250464 "INS-" 1250537 NIL INS- (NIL T) -8 NIL NIL NIL) (-546 1247494 1247721 1248019 "INPSIGN" 1248472 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-545 1246612 1246729 1246926 "INPRODPF" 1247374 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-544 1245506 1245623 1245860 "INPRODFF" 1246492 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-543 1244506 1244658 1244918 "INNMFACT" 1245342 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-542 1243703 1243800 1243988 "INMODGCD" 1244405 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-541 1242211 1242456 1242780 "INFSP" 1243448 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-540 1241395 1241512 1241695 "INFPROD0" 1242091 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-539 1238250 1239460 1239975 "INFORM" 1240888 T INFORM (NIL) -8 NIL NIL NIL) (-538 1237860 1237920 1238018 "INFORM1" 1238185 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-537 1237383 1237472 1237586 "INFINITY" 1237766 T INFINITY (NIL) -7 NIL NIL NIL) (-536 1236559 1237103 1237204 "INETCLTS" 1237302 T INETCLTS (NIL) -8 NIL NIL NIL) (-535 1235175 1235425 1235746 "INEP" 1236307 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-534 1234424 1235072 1235137 "INDE" 1235142 NIL INDE (NIL T) -8 NIL NIL NIL) (-533 1233988 1234056 1234173 "INCRMAPS" 1234351 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-532 1232806 1233257 1233463 "INBFILE" 1233802 T INBFILE (NIL) -8 NIL NIL NIL) (-531 1228105 1229042 1229986 "INBFF" 1231894 NIL INBFF (NIL T) -7 NIL NIL NIL) (-530 1227013 1227282 1227310 "INBCON" 1227823 T INBCON (NIL) -9 NIL 1228089 NIL) (-529 1226265 1226488 1226764 "INBCON-" 1226769 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-528 1225744 1225989 1226080 "INAST" 1226194 T INAST (NIL) -8 NIL NIL NIL) (-527 1225171 1225423 1225529 "IMPTAST" 1225658 T IMPTAST (NIL) -8 NIL NIL NIL) (-526 1221617 1225015 1225119 "IMATRIX" 1225124 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-525 1220329 1220452 1220767 "IMATQF" 1221473 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-524 1218549 1218776 1219113 "IMATLIN" 1220085 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-523 1213127 1218473 1218531 "ILIST" 1218536 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-522 1211032 1212987 1213100 "IIARRAY2" 1213105 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-521 1206430 1210943 1211007 "IFF" 1211012 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-520 1205777 1206047 1206163 "IFAST" 1206334 T IFAST (NIL) -8 NIL NIL NIL) (-519 1200772 1205069 1205257 "IFARRAY" 1205634 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-518 1199952 1200676 1200749 "IFAMON" 1200754 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-517 1199536 1199601 1199655 "IEVALAB" 1199862 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-516 1199211 1199279 1199439 "IEVALAB-" 1199444 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-515 1198842 1199125 1199188 "IDPO" 1199193 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-514 1198092 1198731 1198806 "IDPOAMS" 1198811 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-513 1197399 1197981 1198056 "IDPOAM" 1198061 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-512 1196458 1196734 1196787 "IDPC" 1197200 NIL IDPC (NIL T T) -9 NIL 1197349 NIL) (-511 1195927 1196350 1196423 "IDPAM" 1196428 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-510 1195303 1195819 1195892 "IDPAG" 1195897 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-509 1194948 1195139 1195214 "IDENT" 1195248 T IDENT (NIL) -8 NIL NIL NIL) (-508 1191203 1192051 1192946 "IDECOMP" 1194105 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-507 1184041 1185126 1186173 "IDEAL" 1190239 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-506 1183205 1183317 1183516 "ICDEN" 1183925 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-505 1182276 1182685 1182832 "ICARD" 1183078 T ICARD (NIL) -8 NIL NIL NIL) (-504 1180336 1180649 1181054 "IBPTOOLS" 1181953 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-503 1175943 1179956 1180069 "IBITS" 1180255 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-502 1172666 1173242 1173937 "IBATOOL" 1175360 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-501 1170445 1170907 1171440 "IBACHIN" 1172201 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-500 1168274 1170291 1170394 "IARRAY2" 1170399 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-499 1164380 1168200 1168257 "IARRAY1" 1168262 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-498 1158489 1162792 1163273 "IAN" 1163919 T IAN (NIL) -8 NIL NIL NIL) (-497 1158000 1158057 1158230 "IALGFACT" 1158426 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-496 1157528 1157641 1157669 "HYPCAT" 1157876 T HYPCAT (NIL) -9 NIL NIL NIL) (-495 1157066 1157183 1157369 "HYPCAT-" 1157374 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-494 1156661 1156861 1156944 "HOSTNAME" 1157003 T HOSTNAME (NIL) -8 NIL NIL NIL) (-493 1156506 1156543 1156584 "HOMOTOP" 1156589 NIL HOMOTOP (NIL T) -9 NIL 1156622 NIL) (-492 1153138 1154516 1154557 "HOAGG" 1155538 NIL HOAGG (NIL T) -9 NIL 1156217 NIL) (-491 1151732 1152131 1152657 "HOAGG-" 1152662 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-490 1145736 1151327 1151476 "HEXADEC" 1151603 T HEXADEC (NIL) -8 NIL NIL NIL) (-489 1144483 1144706 1144969 "HEUGCD" 1145513 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-488 1143559 1144320 1144450 "HELLFDIV" 1144455 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-487 1141738 1143336 1143424 "HEAP" 1143503 NIL HEAP (NIL T) -8 NIL NIL NIL) (-486 1141001 1141290 1141424 "HEADAST" 1141624 T HEADAST (NIL) -8 NIL NIL NIL) (-485 1134867 1140916 1140978 "HDP" 1140983 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-484 1128855 1134502 1134654 "HDMP" 1134768 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-483 1128179 1128319 1128483 "HB" 1128711 T HB (NIL) -7 NIL NIL NIL) (-482 1121565 1128025 1128129 "HASHTBL" 1128134 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-481 1121041 1121286 1121378 "HASAST" 1121493 T HASAST (NIL) -8 NIL NIL NIL) (-480 1118819 1120663 1120845 "HACKPI" 1120879 T HACKPI (NIL) -8 NIL NIL NIL) (-479 1114487 1118672 1118785 "GTSET" 1118790 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-478 1107902 1114365 1114463 "GSTBL" 1114468 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-477 1100180 1106933 1107198 "GSERIES" 1107693 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-476 1099321 1099738 1099766 "GROUP" 1099969 T GROUP (NIL) -9 NIL 1100103 NIL) (-475 1098687 1098846 1099097 "GROUP-" 1099102 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-474 1097054 1097375 1097762 "GROEBSOL" 1098364 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-473 1095968 1096256 1096307 "GRMOD" 1096836 NIL GRMOD (NIL T T) -9 NIL 1097004 NIL) (-472 1095736 1095772 1095900 "GRMOD-" 1095905 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-471 1091026 1092090 1093090 "GRIMAGE" 1094756 T GRIMAGE (NIL) -8 NIL NIL NIL) (-470 1089492 1089753 1090077 "GRDEF" 1090722 T GRDEF (NIL) -7 NIL NIL NIL) (-469 1088936 1089052 1089193 "GRAY" 1089371 T GRAY (NIL) -7 NIL NIL NIL) (-468 1088123 1088529 1088580 "GRALG" 1088733 NIL GRALG (NIL T T) -9 NIL 1088826 NIL) (-467 1087784 1087857 1088020 "GRALG-" 1088025 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-466 1084561 1087369 1087547 "GPOLSET" 1087691 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-465 1083915 1083972 1084230 "GOSPER" 1084498 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-464 1079647 1080353 1080879 "GMODPOL" 1083614 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-463 1078652 1078836 1079074 "GHENSEL" 1079459 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-462 1072808 1073651 1074671 "GENUPS" 1077736 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-461 1072505 1072556 1072645 "GENUFACT" 1072751 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-460 1071917 1071994 1072159 "GENPGCD" 1072423 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-459 1071391 1071426 1071639 "GENMFACT" 1071876 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-458 1069957 1070214 1070521 "GENEEZ" 1071134 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-457 1064103 1069568 1069730 "GDMP" 1069880 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-456 1053445 1057874 1058980 "GCNAALG" 1063086 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-455 1051772 1052634 1052662 "GCDDOM" 1052917 T GCDDOM (NIL) -9 NIL 1053074 NIL) (-454 1051242 1051369 1051584 "GCDDOM-" 1051589 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-453 1049914 1050099 1050403 "GB" 1051021 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-452 1038530 1040860 1043252 "GBINTERN" 1047605 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-451 1036367 1036659 1037080 "GBF" 1038205 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-450 1035148 1035313 1035580 "GBEUCLID" 1036183 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-449 1034497 1034622 1034771 "GAUSSFAC" 1035019 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-448 1032864 1033166 1033480 "GALUTIL" 1034216 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-447 1031172 1031446 1031770 "GALPOLYU" 1032591 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-446 1028537 1028827 1029234 "GALFACTU" 1030869 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-445 1020342 1021842 1023450 "GALFACT" 1026969 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-444 1017730 1018388 1018416 "FVFUN" 1019572 T FVFUN (NIL) -9 NIL 1020292 NIL) (-443 1016996 1017178 1017206 "FVC" 1017497 T FVC (NIL) -9 NIL 1017680 NIL) (-442 1016639 1016821 1016889 "FUNDESC" 1016948 T FUNDESC (NIL) -8 NIL NIL NIL) (-441 1016254 1016436 1016517 "FUNCTION" 1016591 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-440 1013998 1014576 1015042 "FT" 1015808 T FT (NIL) -8 NIL NIL NIL) (-439 1012789 1013299 1013502 "FTEM" 1013815 T FTEM (NIL) -8 NIL NIL NIL) (-438 1011080 1011369 1011766 "FSUPFACT" 1012480 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-437 1009477 1009766 1010098 "FST" 1010768 T FST (NIL) -8 NIL NIL NIL) (-436 1008676 1008782 1008970 "FSRED" 1009359 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-435 1007375 1007631 1007978 "FSPRMELT" 1008391 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-434 1004681 1005119 1005605 "FSPECF" 1006938 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-433 986319 994650 994691 "FS" 998575 NIL FS (NIL T) -9 NIL 1000864 NIL) (-432 974962 977955 982012 "FS-" 982312 NIL FS- (NIL T T) -8 NIL NIL NIL) (-431 974490 974544 974714 "FSINT" 974903 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-430 972782 973483 973786 "FSERIES" 974269 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-429 971824 971940 972164 "FSCINT" 972662 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-428 968032 970768 970809 "FSAGG" 971179 NIL FSAGG (NIL T) -9 NIL 971438 NIL) (-427 965794 966395 967191 "FSAGG-" 967286 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-426 964836 964979 965206 "FSAGG2" 965647 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-425 962518 962798 963345 "FS2UPS" 964554 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-424 962152 962195 962324 "FS2" 962469 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-423 961030 961201 961503 "FS2EXPXP" 961977 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-422 960456 960571 960723 "FRUTIL" 960910 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-421 951869 955951 957309 "FR" 959130 NIL FR (NIL T) -8 NIL NIL NIL) (-420 946838 949512 949552 "FRNAALG" 950948 NIL FRNAALG (NIL T) -9 NIL 951555 NIL) (-419 942511 943587 944862 "FRNAALG-" 945612 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-418 942149 942192 942319 "FRNAAF2" 942462 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-417 940529 941003 941298 "FRMOD" 941961 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-416 938280 938912 939229 "FRIDEAL" 940320 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-415 937475 937562 937851 "FRIDEAL2" 938187 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-414 936608 937022 937063 "FRETRCT" 937068 NIL FRETRCT (NIL T) -9 NIL 937244 NIL) (-413 935720 935951 936302 "FRETRCT-" 936307 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-412 932808 934018 934077 "FRAMALG" 934959 NIL FRAMALG (NIL T T) -9 NIL 935251 NIL) (-411 930942 931397 932027 "FRAMALG-" 932250 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-410 924863 930417 930693 "FRAC" 930698 NIL FRAC (NIL T) -8 NIL NIL NIL) (-409 924499 924556 924663 "FRAC2" 924800 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-408 924135 924192 924299 "FR2" 924436 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-407 918648 921541 921569 "FPS" 922688 T FPS (NIL) -9 NIL 923245 NIL) (-406 918097 918206 918370 "FPS-" 918516 NIL FPS- (NIL T) -8 NIL NIL NIL) (-405 915399 917068 917096 "FPC" 917321 T FPC (NIL) -9 NIL 917463 NIL) (-404 915192 915232 915329 "FPC-" 915334 NIL FPC- (NIL T) -8 NIL NIL NIL) (-403 913982 914680 914721 "FPATMAB" 914726 NIL FPATMAB (NIL T) -9 NIL 914878 NIL) (-402 911655 912158 912584 "FPARFRAC" 913619 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-401 907048 907547 908229 "FORTRAN" 911087 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-400 904764 905264 905803 "FORT" 906529 T FORT (NIL) -7 NIL NIL NIL) (-399 902440 903002 903030 "FORTFN" 904090 T FORTFN (NIL) -9 NIL 904714 NIL) (-398 902204 902254 902282 "FORTCAT" 902341 T FORTCAT (NIL) -9 NIL 902403 NIL) (-397 900310 900820 901210 "FORMULA" 901834 T FORMULA (NIL) -8 NIL NIL NIL) (-396 900098 900128 900197 "FORMULA1" 900274 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-395 899621 899673 899846 "FORDER" 900040 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-394 898717 898881 899074 "FOP" 899448 T FOP (NIL) -7 NIL NIL NIL) (-393 897298 897997 898171 "FNLA" 898599 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-392 896027 896442 896470 "FNCAT" 896930 T FNCAT (NIL) -9 NIL 897190 NIL) (-391 895566 895986 896014 "FNAME" 896019 T FNAME (NIL) -8 NIL NIL NIL) (-390 894129 895092 895120 "FMTC" 895125 T FMTC (NIL) -9 NIL 895161 NIL) (-389 892875 894065 894111 "FMONOID" 894116 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-388 889703 890871 890912 "FMONCAT" 892129 NIL FMONCAT (NIL T) -9 NIL 892734 NIL) (-387 888895 889445 889594 "FM" 889599 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886319 886965 886993 "FMFUN" 888137 T FMFUN (NIL) -9 NIL 888845 NIL) (-385 885588 885769 885797 "FMC" 886087 T FMC (NIL) -9 NIL 886269 NIL) (-384 882667 883527 883581 "FMCAT" 884776 NIL FMCAT (NIL T T) -9 NIL 885271 NIL) (-383 881533 882433 882533 "FM1" 882612 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879307 879723 880217 "FLOATRP" 881084 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872882 877036 877657 "FLOAT" 878706 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870320 870820 871398 "FLOATCP" 872349 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869060 869898 869939 "FLINEXP" 869944 NIL FLINEXP (NIL T) -9 NIL 870037 NIL) (-378 868214 868449 868777 "FLINEXP-" 868782 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867290 867434 867658 "FLASORT" 868066 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864406 865274 865326 "FLALG" 866553 NIL FLALG (NIL T T) -9 NIL 867020 NIL) (-375 858142 861892 861933 "FLAGG" 863195 NIL FLAGG (NIL T) -9 NIL 863847 NIL) (-374 856868 857207 857697 "FLAGG-" 857702 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855910 856053 856280 "FLAGG2" 856721 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852761 853769 853828 "FINRALG" 854956 NIL FINRALG (NIL T T) -9 NIL 855464 NIL) (-371 851921 852150 852489 "FINRALG-" 852494 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851301 851540 851568 "FINITE" 851764 T FINITE (NIL) -9 NIL 851871 NIL) (-369 843658 845845 845885 "FINAALG" 849552 NIL FINAALG (NIL T) -9 NIL 851005 NIL) (-368 838990 840040 841184 "FINAALG-" 842563 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838358 838745 838848 "FILE" 838920 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837016 837354 837408 "FILECAT" 838092 NIL FILECAT (NIL T T) -9 NIL 838308 NIL) (-365 834732 836260 836288 "FIELD" 836328 T FIELD (NIL) -9 NIL 836408 NIL) (-364 833352 833737 834248 "FIELD-" 834253 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831202 831987 832334 "FGROUP" 833038 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830292 830456 830676 "FGLMICPK" 831034 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826124 830217 830274 "FFX" 830279 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825725 825786 825921 "FFSLPE" 826057 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821714 822497 823293 "FFPOLY" 824961 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821218 821254 821463 "FFPOLY2" 821672 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817061 821137 821200 "FFP" 821205 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812459 816972 817036 "FF" 817041 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807585 811802 811992 "FFNBX" 812313 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802514 806720 806978 "FFNBP" 807439 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797147 801798 802009 "FFNB" 802347 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795979 796177 796492 "FFINTBAS" 796944 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792048 794268 794296 "FFIELDC" 794916 T FFIELDC (NIL) -9 NIL 795292 NIL) (-350 790710 791081 791578 "FFIELDC-" 791583 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790279 790325 790449 "FFHOM" 790652 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787974 788461 788978 "FFF" 789794 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783592 787716 787817 "FFCGX" 787917 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779213 783324 783431 "FFCGP" 783535 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774396 778940 779048 "FFCG" 779149 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755792 764873 764959 "FFCAT" 770124 NIL FFCAT (NIL T T T) -9 NIL 771575 NIL) (-343 750990 752037 753351 "FFCAT-" 754581 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750401 750444 750679 "FFCAT2" 750941 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739722 743373 744593 "FEXPR" 749253 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738722 739157 739198 "FEVALAB" 739282 NIL FEVALAB (NIL T) -9 NIL 739543 NIL) (-339 737881 738091 738429 "FEVALAB-" 738434 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736447 737264 737467 "FDIV" 737780 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733467 734208 734323 "FDIVCAT" 735891 NIL FDIVCAT (NIL T T T T) -9 NIL 736328 NIL) (-336 733229 733256 733426 "FDIVCAT-" 733431 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732449 732536 732813 "FDIV2" 733136 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731423 731744 731946 "FCTRDATA" 732267 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730109 730368 730657 "FCPAK1" 731154 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729208 729609 729750 "FCOMP" 730000 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712910 716358 719896 "FC" 725690 T FC (NIL) -8 NIL NIL NIL) (-330 705273 709301 709341 "FAXF" 711143 NIL FAXF (NIL T) -9 NIL 711835 NIL) (-329 702549 703207 704032 "FAXF-" 704497 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697601 701925 702101 "FARRAY" 702406 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692495 694562 694615 "FAMR" 695638 NIL FAMR (NIL T T) -9 NIL 696098 NIL) (-326 691385 691687 692122 "FAMR-" 692127 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690554 691307 691360 "FAMONOID" 691365 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688340 689050 689103 "FAMONC" 690044 NIL FAMONC (NIL T T) -9 NIL 690430 NIL) (-323 687004 688094 688231 "FAGROUP" 688236 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684799 685118 685521 "FACUTIL" 686685 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683898 684083 684305 "FACTFUNC" 684609 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676320 683201 683400 "EXPUPXS" 683754 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673803 674343 674929 "EXPRTUBE" 675754 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670074 670666 671396 "EXPRODE" 673142 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655559 668723 669152 "EXPR" 669678 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650113 650700 651506 "EXPR2UPS" 654857 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649745 649802 649911 "EXPR2" 650050 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641135 648898 649188 "EXPEXPAN" 649582 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640935 641092 641121 "EXIT" 641126 T EXIT (NIL) -8 NIL NIL NIL) (-312 640415 640659 640750 "EXITAST" 640864 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640042 640104 640217 "EVALCYC" 640347 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639583 639701 639742 "EVALAB" 639912 NIL EVALAB (NIL T) -9 NIL 640016 NIL) (-309 639064 639186 639407 "EVALAB-" 639412 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636432 637734 637762 "EUCDOM" 638317 T EUCDOM (NIL) -9 NIL 638667 NIL) (-307 634837 635279 635869 "EUCDOM-" 635874 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622375 625135 627885 "ESTOOLS" 632107 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622007 622064 622173 "ESTOOLS2" 622312 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621758 621800 621880 "ESTOOLS1" 621959 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615795 617403 617431 "ES" 620199 T ES (NIL) -9 NIL 621609 NIL) (-302 610742 612029 613846 "ES-" 614010 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607116 607877 608657 "ESCONT" 609982 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606861 606893 606975 "ESCONT1" 607078 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606536 606586 606686 "ES2" 606805 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606166 606224 606333 "ES1" 606472 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605382 605511 605687 "ERROR" 606010 T ERROR (NIL) -7 NIL NIL NIL) (-296 598774 605241 605332 "EQTBL" 605337 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591277 594088 595537 "EQ" 597358 NIL -2147 (NIL T) -8 NIL NIL NIL) (-294 590909 590966 591075 "EQ2" 591214 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586198 587247 588340 "EP" 589848 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584798 585089 585395 "ENV" 585912 T ENV (NIL) -8 NIL NIL NIL) (-291 583892 584446 584474 "ENTIRER" 584479 T ENTIRER (NIL) -9 NIL 584525 NIL) (-290 580359 581847 582217 "EMR" 583691 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579503 579688 579742 "ELTAGG" 580122 NIL ELTAGG (NIL T T) -9 NIL 580333 NIL) (-288 579222 579284 579425 "ELTAGG-" 579430 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579011 579040 579094 "ELTAB" 579178 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578137 578283 578482 "ELFUTS" 578862 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577879 577935 577963 "ELEMFUN" 578068 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577749 577770 577838 "ELEMFUN-" 577843 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572593 575849 575890 "ELAGG" 576830 NIL ELAGG (NIL T) -9 NIL 577293 NIL) (-282 570878 571312 571975 "ELAGG-" 571980 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569539 569818 570112 "ELABEXPR" 570604 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562403 564206 565033 "EFUPXS" 568815 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555853 557654 558464 "EFULS" 561679 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553338 553696 554168 "EFSTRUC" 555485 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543129 544695 546243 "EF" 551853 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542203 542614 542763 "EAB" 543000 T EAB (NIL) -8 NIL NIL NIL) (-275 541385 542162 542190 "E04UCFA" 542195 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540567 541344 541372 "E04NAFA" 541377 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539749 540526 540554 "E04MBFA" 540559 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538931 539708 539736 "E04JAFA" 539741 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538115 538890 538918 "E04GCFA" 538923 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537299 538074 538102 "E04FDFA" 538107 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536481 537258 537286 "E04DGFA" 537291 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530654 532006 533370 "E04AGNT" 535137 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529334 529840 529880 "DVARCAT" 530355 NIL DVARCAT (NIL T) -9 NIL 530554 NIL) (-266 528538 528750 529064 "DVARCAT-" 529069 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521675 528337 528466 "DSMP" 528471 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516456 517620 518688 "DROPT" 520627 T DROPT (NIL) -8 NIL NIL NIL) (-263 516121 516180 516278 "DROPT1" 516391 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511236 512362 513499 "DROPT0" 515004 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509581 509906 510292 "DRAWPT" 510870 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504168 505091 506170 "DRAW" 508555 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503801 503854 503972 "DRAWHACK" 504109 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502532 502801 503092 "DRAWCX" 503530 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502047 502116 502267 "DRAWCURV" 502458 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492515 494477 496592 "DRAWCFUN" 499952 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489281 491210 491251 "DQAGG" 491880 NIL DQAGG (NIL T) -9 NIL 492153 NIL) (-254 477405 483874 483957 "DPOLCAT" 485809 NIL DPOLCAT (NIL T T T T) -9 NIL 486354 NIL) (-253 472241 473590 475548 "DPOLCAT-" 475553 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465363 472102 472200 "DPMO" 472205 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458388 465143 465310 "DPMM" 465315 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457866 458080 458178 "DOMTMPLT" 458310 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457299 457668 457748 "DOMCTOR" 457806 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456511 456779 456930 "DOMAIN" 457168 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450499 456146 456298 "DMP" 456412 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450099 450155 450299 "DLP" 450437 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443921 449426 449616 "DLIST" 449941 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440718 442774 442815 "DLAGG" 443365 NIL DLAGG (NIL T) -9 NIL 443595 NIL) (-243 439394 440058 440086 "DIVRING" 440178 T DIVRING (NIL) -9 NIL 440261 NIL) (-242 438631 438821 439121 "DIVRING-" 439126 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436733 437090 437496 "DISPLAY" 438245 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430621 436647 436710 "DIRPROD" 436715 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429469 429672 429937 "DIRPROD2" 430414 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418244 424250 424303 "DIRPCAT" 424713 NIL DIRPCAT (NIL NIL T) -9 NIL 425553 NIL) (-237 415570 416212 417093 "DIRPCAT-" 417430 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414857 415017 415203 "DIOSP" 415404 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411512 413769 413810 "DIOPS" 414244 NIL DIOPS (NIL T) -9 NIL 414473 NIL) (-234 411061 411175 411366 "DIOPS-" 411371 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409884 410512 410540 "DIFRING" 410727 T DIFRING (NIL) -9 NIL 410837 NIL) (-232 409530 409607 409759 "DIFRING-" 409764 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407266 408538 408579 "DIFEXT" 408942 NIL DIFEXT (NIL T) -9 NIL 409236 NIL) (-230 405551 405979 406645 "DIFEXT-" 406650 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402826 405083 405124 "DIAGG" 405129 NIL DIAGG (NIL T) -9 NIL 405149 NIL) (-228 402210 402367 402619 "DIAGG-" 402624 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397627 401169 401446 "DHMATRIX" 401979 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393239 394148 395158 "DFSFUN" 396637 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388317 392170 392482 "DFLOAT" 392947 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386580 386861 387250 "DFINTTLS" 388025 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383609 384601 385001 "DERHAM" 386246 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381410 383384 383473 "DEQUEUE" 383553 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380664 380797 380980 "DEGRED" 381272 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377094 377839 378685 "DEFINTRF" 379892 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374649 375118 375710 "DEFINTEF" 376613 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373999 374269 374384 "DEFAST" 374554 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368003 373594 373743 "DECIMAL" 373870 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365515 365973 366479 "DDFACT" 367547 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365111 365154 365305 "DBLRESP" 365466 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362983 363344 363704 "DBASE" 364878 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362225 362463 362609 "DATAARY" 362882 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361331 362184 362212 "D03FAFA" 362217 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360438 361290 361318 "D03EEFA" 361323 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358388 358854 359343 "D03AGNT" 359969 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357677 358347 358375 "D02EJFA" 358380 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356966 357636 357664 "D02CJFA" 357669 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356255 356925 356953 "D02BHFA" 356958 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355544 356214 356242 "D02BBFA" 356247 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348741 350330 351936 "D02AGNT" 353958 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346509 347032 347578 "D01WGTS" 348215 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345576 346468 346496 "D01TRNS" 346501 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344644 345535 345563 "D01GBFA" 345568 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343712 344603 344631 "D01FCFA" 344636 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342780 343671 343699 "D01ASFA" 343704 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341848 342739 342767 "D01AQFA" 342772 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340916 341807 341835 "D01APFA" 341840 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339984 340875 340903 "D01ANFA" 340908 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339052 339943 339971 "D01AMFA" 339976 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338120 339011 339039 "D01ALFA" 339044 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337188 338079 338107 "D01AKFA" 338112 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336256 337147 337175 "D01AJFA" 337180 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329551 331104 332665 "D01AGNT" 334715 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328888 329016 329168 "CYCLOTOM" 329419 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325622 326336 327063 "CYCLES" 328181 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324934 325068 325239 "CVMP" 325483 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322775 323033 323402 "CTRIGMNP" 324662 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322211 322569 322642 "CTOR" 322722 T CTOR (NIL) -8 NIL NIL NIL) (-186 321720 321942 322043 "CTORKIND" 322130 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321011 321327 321355 "CTORCAT" 321537 T CTORCAT (NIL) -9 NIL 321650 NIL) (-184 320609 320720 320879 "CTORCAT-" 320884 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320071 320283 320391 "CTORCALL" 320533 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319445 319544 319697 "CSTTOOLS" 319968 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315244 315901 316659 "CRFP" 318757 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314719 314965 315057 "CRCEAST" 315172 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313766 313951 314179 "CRAPACK" 314523 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313150 313251 313455 "CPMATCH" 313642 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312875 312903 313009 "CPIMA" 313116 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309223 309895 310614 "COORDSYS" 312210 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308635 308756 308898 "CONTOUR" 309101 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304526 306638 307130 "CONTFRAC" 308175 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304406 304427 304455 "CONDUIT" 304492 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303494 304048 304076 "COMRING" 304081 T COMRING (NIL) -9 NIL 304133 NIL) (-171 302548 302852 303036 "COMPPROP" 303330 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302209 302244 302372 "COMPLPAT" 302507 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292500 302018 302127 "COMPLEX" 302132 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292136 292193 292300 "COMPLEX2" 292437 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291854 291889 291987 "COMPFACT" 292095 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275934 285928 285968 "COMPCAT" 286972 NIL COMPCAT (NIL T) -9 NIL 288320 NIL) (-165 265446 268373 272000 "COMPCAT-" 272356 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265175 265203 265306 "COMMUPC" 265412 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264969 265003 265062 "COMMONOP" 265136 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264525 264720 264807 "COMM" 264902 T COMM (NIL) -8 NIL NIL NIL) (-161 264101 264329 264404 "COMMAAST" 264470 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263350 263544 263572 "COMBOPC" 263910 T COMBOPC (NIL) -9 NIL 264085 NIL) (-159 262246 262456 262698 "COMBINAT" 263140 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258703 259277 259904 "COMBF" 261668 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257461 257819 258054 "COLOR" 258488 T COLOR (NIL) -8 NIL NIL NIL) (-156 256937 257182 257274 "COLONAST" 257389 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256577 256624 256749 "CMPLXRT" 256884 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256025 256277 256376 "CLLCTAST" 256498 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251523 252555 253635 "CLIP" 254965 T CLIP (NIL) -7 NIL NIL NIL) (-152 249869 250629 250868 "CLIF" 251350 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246044 248015 248056 "CLAGG" 248985 NIL CLAGG (NIL T) -9 NIL 249521 NIL) (-150 244466 244923 245506 "CLAGG-" 245511 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244010 244095 244235 "CINTSLPE" 244375 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241511 241982 242530 "CHVAR" 243538 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240685 241239 241267 "CHARZ" 241272 T CHARZ (NIL) -9 NIL 241287 NIL) (-146 240439 240479 240557 "CHARPOL" 240639 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239497 240084 240112 "CHARNZ" 240159 T CHARNZ (NIL) -9 NIL 240215 NIL) (-144 237403 238151 238504 "CHAR" 239164 T CHAR (NIL) -8 NIL NIL NIL) (-143 237129 237190 237218 "CFCAT" 237329 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236374 236485 236667 "CDEN" 237013 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232339 235527 235807 "CCLASS" 236114 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231590 231747 231924 "CATEGORY" 232182 T -10 (NIL) -8 NIL NIL NIL) (-139 231163 231509 231557 "CATCTOR" 231562 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230614 230866 230964 "CATAST" 231085 T CATAST (NIL) -8 NIL NIL NIL) (-137 230090 230335 230427 "CASEAST" 230542 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225099 226119 226872 "CARTEN" 229393 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224207 224355 224576 "CARTEN2" 224946 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222523 223357 223614 "CARD" 223970 T CARD (NIL) -8 NIL NIL NIL) (-133 222099 222327 222402 "CAPSLAST" 222468 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221603 221811 221839 "CACHSET" 221971 T CACHSET (NIL) -9 NIL 222049 NIL) (-131 221073 221395 221423 "CABMON" 221473 T CABMON (NIL) -9 NIL 221529 NIL) (-130 220546 220777 220887 "BYTEORD" 220983 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220080 220222 "BYTE" 220385 T BYTE (NIL) -8 NIL NIL 220507) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-4365 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) (-4362 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) (-4361 (*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-773)))) (-4360 (*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-4360 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-4 *3 (-370))))) +(-13 (-365) (-1041 |t#1|) (-1277 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-405)) |%noBranch|) (-15 -4365 ((-112) $)) (-15 -4364 ((-112) $)) (-15 -4363 ((-112) $)) (-15 -4380 ((-834 (-922)) $)) (-15 -4362 ((-834 (-922)))) (-15 -4361 ((-773))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-405)) (-15 -4360 ($ $)) (-15 -4360 ($ $ (-773)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-410 (-549))) . T) ((-38 $) . T) ((-102) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -3960 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-618 #1#) . T) ((-618 (-549)) . T) ((-618 |#1|) . T) ((-618 $) . T) ((-615 (-865)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) -3960 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-455) . T) ((-560) . T) ((-648 #1#) . T) ((-648 (-549)) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-650 #1#) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-642 #1#) . T) ((-642 |#1|) . T) ((-642 $) . T) ((-719 #1#) . T) ((-719 |#1|) . T) ((-719 $) . T) ((-728) . T) ((-924) . T) ((-1041 |#1|) . T) ((-1054 #1#) . T) ((-1054 |#1|) . T) ((-1054 $) . T) ((-1059 #1#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1224) . T) ((-1277 |#1|) . T)) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4366 (((-643 |#1|) $) 47)) (-1407 (((-3 $ "failed") $ $) 20)) (-4367 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-773)) 49 (|has| |#2| (-172)))) (-4156 (($) 18 T CONST)) (-4371 (($ $ |#1|) 61) (($ $ (-821 |#1|)) 60) (($ $ $) 59)) (-3577 (((-3 (-821 |#1|) "failed") $) 71)) (-3576 (((-821 |#1|) $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4383 (((-112) $) 52)) (-4382 (($ $) 51)) (-2573 (((-112) $) 35)) (-4369 (((-112) $) 57)) (-4370 (($ (-821 |#1|) |#2|) 58)) (-4368 (($ $) 56)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) 67)) (-4387 (((-821 |#1|) $) 68)) (-4390 (($ (-1 |#2| |#2|) $) 48)) (-4372 (($ $ |#1|) 64) (($ $ (-821 |#1|)) 63) (($ $ $) 62)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4385 (((-112) $) 54)) (-4384 ((|#2| $) 53)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#2|) 75) (($ (-821 |#1|)) 70) (($ |#1|) 55)) (-4386 ((|#2| $ (-821 |#1|)) 66) ((|#2| $ $) 65)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1289 |#1| |#2|) (-140) (-852) (-1052)) (T -1289)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-821 *3)))) (-4373 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-2 (|:| |k| (-821 *3)) (|:| |c| *4))))) (-4386 (*1 *2 *1 *3) (-12 (-5 *3 (-821 *4)) (-4 *1 (-1289 *4 *2)) (-4 *4 (-852)) (-4 *2 (-1052)))) (-4386 (*1 *2 *1 *1) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) (-4372 (*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-821 *3)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) (-4372 (*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4371 (*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-821 *3)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) (-4371 (*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4370 (*1 *1 *2 *3) (-12 (-5 *2 (-821 *4)) (-4 *4 (-852)) (-4 *1 (-1289 *4 *3)) (-4 *3 (-1052)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) (-4368 (*1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4378 (*1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) (-4382 (*1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) (-4367 (*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)) (-4 *3 (-172)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-4 *4 (-172)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-643 *3))))) +(-13 (-1052) (-1284 |t#2|) (-1041 (-821 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4387 ((-821 |t#1|) $)) (-15 -4373 ((-2 (|:| |k| (-821 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4386 (|t#2| $ (-821 |t#1|))) (-15 -4386 (|t#2| $ $)) (-15 -4372 ($ $ |t#1|)) (-15 -4372 ($ $ (-821 |t#1|))) (-15 -4372 ($ $ $)) (-15 -4371 ($ $ |t#1|)) (-15 -4371 ($ $ (-821 |t#1|))) (-15 -4371 ($ $ $)) (-15 -4370 ($ (-821 |t#1|) |t#2|)) (-15 -4369 ((-112) $)) (-15 -4368 ($ $)) (-15 -4378 ($ |t#1|)) (-15 -4385 ((-112) $)) (-15 -4384 (|t#2| $)) (-15 -4383 ((-112) $)) (-15 -4382 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -4367 ($ $ $)) (-15 -4367 ($ $ (-773)))) |%noBranch|) (-15 -4390 ($ (-1 |t#2| |t#2|) $)) (-15 -4366 ((-643 |t#1|) $)) (IF (|has| |t#2| (-6 -4418)) (-6 -4418) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 #1=(-821 |#1|)) . T) ((-618 |#2|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-650 |#2|) . T) ((-650 $) . T) ((-642 |#2|) |has| |#2| (-172)) ((-719 |#2|) |has| |#2| (-172)) ((-728) . T) ((-1041 #1#) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1284 |#2|) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4366 (((-643 |#1|) $) 98)) (-4379 (($ $ (-773)) 102)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4367 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-773)) NIL (|has| |#2| (-172)))) (-4156 (($) NIL T CONST)) (-4371 (($ $ |#1|) NIL) (($ $ (-821 |#1|)) NIL) (($ $ $) NIL)) (-3577 (((-3 (-821 |#1|) #1="failed") $) NIL) (((-3 (-896 |#1|) #1#) $) NIL)) (-3576 (((-821 |#1|) $) NIL) (((-896 |#1|) $) NIL)) (-4391 (($ $) 101)) (-3890 (((-3 $ "failed") $) NIL)) (-4383 (((-112) $) 90)) (-4382 (($ $) 93)) (-4376 (($ $ $ (-773)) 103)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-821 |#1|) |#2|) NIL) (($ (-896 |#1|) |#2|) 29)) (-4368 (($ $) 120)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4387 (((-821 |#1|) $) NIL)) (-4388 (((-821 |#1|) $) NIL)) (-4390 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (($ $ |#1|) NIL) (($ $ (-821 |#1|)) NIL) (($ $ $) NIL)) (-4374 (($ $ (-773)) 113 (|has| |#2| (-719 (-410 (-549)))))) (-1917 (((-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3295 (((-896 |#1|) $) 83)) (-3594 ((|#2| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4375 (($ $ (-773)) 110 (|has| |#2| (-719 (-410 (-549)))))) (-4380 (((-773) $) 99)) (-4385 (((-112) $) 84)) (-4384 ((|#2| $) 88)) (-4378 (((-865) $) 69) (($ (-549)) NIL) (($ |#2|) 60) (($ (-821 |#1|)) NIL) (($ |#1|) 71) (($ (-896 |#1|)) NIL) (($ (-666 |#1| |#2|)) 48) (((-1285 |#1| |#2|) $) 76) (((-1294 |#1| |#2|) $) 81)) (-4249 (((-643 |#2|) $) NIL)) (-4109 ((|#2| $ (-896 |#1|)) NIL)) (-4386 ((|#2| $ (-821 |#1|)) NIL) ((|#2| $ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 21 T CONST)) (-3067 (($) 28 T CONST)) (-3066 (((-643 (-2 (|:| |k| (-896 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4377 (((-3 (-666 |#1| |#2|) "failed") $) 119)) (-3455 (((-112) $ $) 77)) (-4269 (($ $) 112) (($ $ $) 111)) (-4271 (($ $ $) 20)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-896 |#1|)) NIL))) +(((-1290 |#1| |#2|) (-13 (-1292 |#1| |#2|) (-386 |#2| (-896 |#1|)) (-10 -8 (-15 -4378 ($ (-666 |#1| |#2|))) (-15 -4378 ((-1285 |#1| |#2|) $)) (-15 -4378 ((-1294 |#1| |#2|) $)) (-15 -4377 ((-3 (-666 |#1| |#2|) "failed") $)) (-15 -4376 ($ $ $ (-773))) (IF (|has| |#2| (-719 (-410 (-549)))) (PROGN (-15 -4375 ($ $ (-773))) (-15 -4374 ($ $ (-773)))) |%noBranch|))) (-852) (-172)) (T -1290)) +((-4378 (*1 *1 *2) (-12 (-5 *2 (-666 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *1 (-1290 *3 *4)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4377 (*1 *2 *1) (|partial| -12 (-5 *2 (-666 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4376 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) (-4375 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-719 (-410 (-549)))) (-4 *3 (-852)) (-4 *4 (-172)))) (-4374 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-719 (-410 (-549)))) (-4 *3 (-852)) (-4 *4 (-172))))) +(-13 (-1292 |#1| |#2|) (-386 |#2| (-896 |#1|)) (-10 -8 (-15 -4378 ($ (-666 |#1| |#2|))) (-15 -4378 ((-1285 |#1| |#2|) $)) (-15 -4378 ((-1294 |#1| |#2|) $)) (-15 -4377 ((-3 (-666 |#1| |#2|) "failed") $)) (-15 -4376 ($ $ $ (-773))) (IF (|has| |#2| (-719 (-410 (-549)))) (PROGN (-15 -4375 ($ $ (-773))) (-15 -4374 ($ $ (-773)))) |%noBranch|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-4366 (((-643 (-1180)) $) NIL)) (-4394 (($ (-1285 (-1180) |#1|)) NIL)) (-4379 (($ $ (-773)) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4367 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-773)) NIL (|has| |#1| (-172)))) (-4156 (($) NIL T CONST)) (-4371 (($ $ (-1180)) NIL) (($ $ (-821 (-1180))) NIL) (($ $ $) NIL)) (-3577 (((-3 (-821 (-1180)) "failed") $) NIL)) (-3576 (((-821 (-1180)) $) NIL)) (-3890 (((-3 $ "failed") $) NIL)) (-4383 (((-112) $) NIL)) (-4382 (($ $) NIL)) (-2573 (((-112) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-821 (-1180)) |#1|) NIL)) (-4368 (($ $) NIL)) (-4373 (((-2 (|:| |k| (-821 (-1180))) (|:| |c| |#1|)) $) NIL)) (-4387 (((-821 (-1180)) $) NIL)) (-4388 (((-821 (-1180)) $) NIL)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (($ $ (-1180)) NIL) (($ $ (-821 (-1180))) NIL) (($ $ $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4395 (((-1285 (-1180) |#1|) $) NIL)) (-4380 (((-773) $) NIL)) (-4385 (((-112) $) NIL)) (-4384 ((|#1| $) NIL)) (-4378 (((-865) $) NIL) (($ (-549)) NIL) (($ |#1|) NIL) (($ (-821 (-1180))) NIL) (($ (-1180)) NIL)) (-4386 ((|#1| $ (-821 (-1180))) NIL) ((|#1| $ $) NIL)) (-3530 (((-773)) NIL T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) NIL T CONST)) (-4393 (((-643 (-2 (|:| |k| (-1180)) (|:| |c| $))) $) NIL)) (-3067 (($) NIL T CONST)) (-3455 (((-112) $ $) NIL)) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-773)) NIL)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1180) $) NIL))) +(((-1291 |#1|) (-13 (-1292 (-1180) |#1|) (-10 -8 (-15 -4395 ((-1285 (-1180) |#1|) $)) (-15 -4394 ($ (-1285 (-1180) |#1|))) (-15 -4393 ((-643 (-2 (|:| |k| (-1180)) (|:| |c| $))) $)))) (-1052)) (T -1291)) +((-4395 (*1 *2 *1) (-12 (-5 *2 (-1285 (-1180) *3)) (-5 *1 (-1291 *3)) (-4 *3 (-1052)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-1285 (-1180) *3)) (-4 *3 (-1052)) (-5 *1 (-1291 *3)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |k| (-1180)) (|:| |c| (-1291 *3))))) (-5 *1 (-1291 *3)) (-4 *3 (-1052))))) +(-13 (-1292 #1=(-1180) |#1|) (-10 -8 (-15 -4395 ((-1285 #1# |#1|) $)) (-15 -4394 ($ (-1285 #1# |#1|))) (-15 -4393 ((-643 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) +((-2968 (((-112) $ $) 7)) (-3608 (((-112) $) 17)) (-4366 (((-643 |#1|) $) 47)) (-4379 (($ $ (-773)) 80)) (-1407 (((-3 $ "failed") $ $) 20)) (-4367 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-773)) 49 (|has| |#2| (-172)))) (-4156 (($) 18 T CONST)) (-4371 (($ $ |#1|) 61) (($ $ (-821 |#1|)) 60) (($ $ $) 59)) (-3577 (((-3 (-821 |#1|) "failed") $) 71)) (-3576 (((-821 |#1|) $) 72)) (-3890 (((-3 $ "failed") $) 37)) (-4383 (((-112) $) 52)) (-4382 (($ $) 51)) (-2573 (((-112) $) 35)) (-4369 (((-112) $) 57)) (-4370 (($ (-821 |#1|) |#2|) 58)) (-4368 (($ $) 56)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) 67)) (-4387 (((-821 |#1|) $) 68)) (-4388 (((-821 |#1|) $) 82)) (-4390 (($ (-1 |#2| |#2|) $) 48)) (-4372 (($ $ |#1|) 64) (($ $ (-821 |#1|)) 63) (($ $ $) 62)) (-3663 (((-1162) $) 10)) (-3664 (((-1123) $) 11)) (-4380 (((-773) $) 81)) (-4385 (((-112) $) 54)) (-4384 ((|#2| $) 53)) (-4378 (((-865) $) 12) (($ (-549)) 33) (($ |#2|) 75) (($ (-821 |#1|)) 70) (($ |#1|) 55)) (-4386 ((|#2| $ (-821 |#1|)) 66) ((|#2| $ $) 65)) (-3530 (((-773)) 32 T CONST)) (-3662 (((-112) $ $) 9)) (-3510 (($) 19 T CONST)) (-3067 (($) 34 T CONST)) (-3455 (((-112) $ $) 6)) (-4269 (($ $) 23) (($ $ $) 22)) (-4271 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-773)) 36)) (* (($ (-922) $) 14) (($ (-773) $) 16) (($ (-549) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1292 |#1| |#2|) (-140) (-852) (-1052)) (T -1292)) +((-4388 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-821 *3)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-773)))) (-4379 (*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052))))) +(-13 (-1289 |t#1| |t#2|) (-10 -8 (-15 -4388 ((-821 |t#1|) $)) (-15 -4380 ((-773) $)) (-15 -4379 ($ $ (-773))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-549)) . T) ((-618 #1=(-821 |#1|)) . T) ((-618 |#2|) . T) ((-615 (-865)) . T) ((-648 (-549)) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-650 |#2|) . T) ((-650 $) . T) ((-642 |#2|) |has| |#2| (-172)) ((-719 |#2|) |has| |#2| (-172)) ((-728) . T) ((-1041 #1#) . T) ((-1054 |#2|) . T) ((-1059 |#2|) . T) ((-1052) . T) ((-1060) . T) ((-1115) . T) ((-1104) . T) ((-1284 |#2|) . T) ((-1289 |#1| |#2|) . T)) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) NIL)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4156 (($) NIL T CONST)) (-3577 (((-3 |#2| "failed") $) NIL)) (-3576 ((|#2| $) NIL)) (-4391 (($ $) NIL)) (-3890 (((-3 $ "failed") $) 42)) (-4383 (((-112) $) 35)) (-4382 (($ $) 37)) (-2573 (((-112) $) NIL)) (-2581 (((-773) $) NIL)) (-3224 (((-643 $) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ |#2| |#1|) NIL)) (-4387 ((|#2| $) 24)) (-4388 ((|#2| $) 22)) (-4390 (($ (-1 |#1| |#1|) $) NIL)) (-1917 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3295 ((|#2| $) NIL)) (-3594 ((|#1| $) NIL)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4385 (((-112) $) 32)) (-4384 ((|#1| $) 33)) (-4378 (((-865) $) 65) (($ (-549)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-4249 (((-643 |#1|) $) NIL)) (-4109 ((|#1| $ |#2|) NIL)) (-4386 ((|#1| $ |#2|) 28)) (-3530 (((-773)) 14 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 29 T CONST)) (-3067 (($) 11 T CONST)) (-3066 (((-643 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3455 (((-112) $ $) 30)) (-4381 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-4269 (($ $) NIL) (($ $ $) NIL)) (-4271 (($ $ $) 50)) (** (($ $ (-922)) NIL) (($ $ (-773)) 52)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4389 (((-773) $) 16))) +(((-1293 |#1| |#2|) (-13 (-1052) (-1284 |#1|) (-386 |#1| |#2|) (-618 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4389 ((-773) $)) (-15 -4388 (|#2| $)) (-15 -4387 (|#2| $)) (-15 -4391 ($ $)) (-15 -4386 (|#1| $ |#2|)) (-15 -4385 ((-112) $)) (-15 -4384 (|#1| $)) (-15 -4383 ((-112) $)) (-15 -4382 ($ $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -4381 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4418)) (-6 -4418) |%noBranch|) (IF (|has| |#1| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1052) (-848)) (T -1293)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848)))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848)))) (-4390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-1293 *3 *4)) (-4 *4 (-848)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848)))) (-4388 (*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-1293 *3 *2)) (-4 *3 (-1052)))) (-4387 (*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-1293 *3 *2)) (-4 *3 (-1052)))) (-4386 (*1 *2 *1 *3) (-12 (-4 *2 (-1052)) (-5 *1 (-1293 *2 *3)) (-4 *3 (-848)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848)))) (-4384 (*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1293 *2 *3)) (-4 *3 (-848)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848)))) (-4382 (*1 *1 *1) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848)))) (-4381 (*1 *1 *1 *2) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1052)) (-4 *3 (-848))))) +(-13 (-1052) (-1284 |#1|) (-386 |#1| |#2|) (-618 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4389 ((-773) $)) (-15 -4388 (|#2| $)) (-15 -4387 (|#2| $)) (-15 -4391 ($ $)) (-15 -4386 (|#1| $ |#2|)) (-15 -4385 ((-112) $)) (-15 -4384 (|#1| $)) (-15 -4383 ((-112) $)) (-15 -4382 ($ $)) (-15 -4390 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -4381 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4418)) (-6 -4418) |%noBranch|) (IF (|has| |#1| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) +((-2968 (((-112) $ $) 27)) (-3608 (((-112) $) NIL)) (-4366 (((-643 |#1|) $) 132)) (-4394 (($ (-1285 |#1| |#2|)) 50)) (-4379 (($ $ (-773)) 38)) (-1407 (((-3 $ "failed") $ $) NIL)) (-4367 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-773)) 52 (|has| |#2| (-172)))) (-4156 (($) NIL T CONST)) (-4371 (($ $ |#1|) 114) (($ $ (-821 |#1|)) 115) (($ $ $) 26)) (-3577 (((-3 (-821 |#1|) "failed") $) NIL)) (-3576 (((-821 |#1|) $) NIL)) (-3890 (((-3 $ "failed") $) 122)) (-4383 (((-112) $) 117)) (-4382 (($ $) 118)) (-2573 (((-112) $) NIL)) (-4369 (((-112) $) NIL)) (-4370 (($ (-821 |#1|) |#2|) 20)) (-4368 (($ $) NIL)) (-4373 (((-2 (|:| |k| (-821 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4387 (((-821 |#1|) $) 123)) (-4388 (((-821 |#1|) $) 126)) (-4390 (($ (-1 |#2| |#2|) $) 131)) (-4372 (($ $ |#1|) 112) (($ $ (-821 |#1|)) 113) (($ $ $) 62)) (-3663 (((-1162) $) NIL)) (-3664 (((-1123) $) NIL)) (-4395 (((-1285 |#1| |#2|) $) 94)) (-4380 (((-773) $) 129)) (-4385 (((-112) $) 81)) (-4384 ((|#2| $) 32)) (-4378 (((-865) $) 73) (($ (-549)) 87) (($ |#2|) 85) (($ (-821 |#1|)) 18) (($ |#1|) 84)) (-4386 ((|#2| $ (-821 |#1|)) 116) ((|#2| $ $) 28)) (-3530 (((-773)) 120 T CONST)) (-3662 (((-112) $ $) NIL)) (-3510 (($) 15 T CONST)) (-4393 (((-643 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-3067 (($) 33 T CONST)) (-3455 (((-112) $ $) 14)) (-4269 (($ $) 98) (($ $ $) 101)) (-4271 (($ $ $) 61)) (** (($ $ (-922)) NIL) (($ $ (-773)) 55)) (* (($ (-922) $) NIL) (($ (-773) $) 53) (($ (-549) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1294 |#1| |#2|) (-13 (-1292 |#1| |#2|) (-10 -8 (-15 -4395 ((-1285 |#1| |#2|) $)) (-15 -4394 ($ (-1285 |#1| |#2|))) (-15 -4393 ((-643 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-852) (-1052)) (T -1294)) +((-4395 (*1 *2 *1) (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-1285 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *1 (-1294 *3 *4)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-643 (-2 (|:| |k| *3) (|:| |c| (-1294 *3 *4))))) (-5 *1 (-1294 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052))))) +(-13 (-1292 |#1| |#2|) (-10 -8 (-15 -4395 ((-1285 |#1| |#2|) $)) (-15 -4394 ($ (-1285 |#1| |#2|))) (-15 -4393 ((-643 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-4396 (((-643 (-1157 |#1|)) (-1 (-643 (-1157 |#1|)) (-643 (-1157 |#1|))) (-549)) 20) (((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|))) 13))) +(((-1295 |#1|) (-10 -7 (-15 -4396 ((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|)))) (-15 -4396 ((-643 (-1157 |#1|)) (-1 (-643 (-1157 |#1|)) (-643 (-1157 |#1|))) (-549)))) (-1219)) (T -1295)) +((-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-643 (-1157 *5)) (-643 (-1157 *5)))) (-5 *4 (-549)) (-5 *2 (-643 (-1157 *5))) (-5 *1 (-1295 *5)) (-4 *5 (-1219)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-1 (-1157 *4) (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1295 *4)) (-4 *4 (-1219))))) +(-10 -7 (-15 -4396 ((-1157 |#1|) (-1 (-1157 |#1|) (-1157 |#1|)))) (-15 -4396 ((-643 (-1157 |#1|)) (-1 (-643 (-1157 |#1|)) (-643 (-1157 |#1|))) (-549)))) +((-4398 (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|))) 174) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112)) 173) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112)) 172) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112) (-112)) 171) (((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-1049 |#1| |#2|)) 156)) (-4397 (((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|))) 85) (((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112)) 84) (((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112) (-112)) 83)) (-4401 (((-643 (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))) (-1049 |#1| |#2|)) 73)) (-4399 (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|))) 140) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112)) 139) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112)) 138) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112) (-112)) 137) (((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|)) 132)) (-4400 (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|))) 145) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112)) 144) (((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112)) 143) (((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|)) 142)) (-4402 (((-643 (-782 |#1| (-866 |#3|))) (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))) 111) (((-1174 (-1027 (-410 |#1|))) (-1174 |#1|)) 102) (((-949 (-1027 (-410 |#1|))) (-782 |#1| (-866 |#3|))) 109) (((-949 (-1027 (-410 |#1|))) (-949 |#1|)) 107) (((-782 |#1| (-866 |#3|)) (-782 |#1| (-866 |#2|))) 33))) +(((-1296 |#1| |#2| |#3|) (-10 -7 (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112))) (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-1049 |#1| |#2|))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)))) (-15 -4401 ((-643 (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))) (-1049 |#1| |#2|))) (-15 -4402 ((-782 |#1| (-866 |#3|)) (-782 |#1| (-866 |#2|)))) (-15 -4402 ((-949 (-1027 (-410 |#1|))) (-949 |#1|))) (-15 -4402 ((-949 (-1027 (-410 |#1|))) (-782 |#1| (-866 |#3|)))) (-15 -4402 ((-1174 (-1027 (-410 |#1|))) (-1174 |#1|))) (-15 -4402 ((-643 (-782 |#1| (-866 |#3|))) (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))))) (-13 (-850) (-308) (-147) (-1023)) (-643 (-1180)) (-643 (-1180))) (T -1296)) +((-4402 (*1 *2 *3) (-12 (-5 *3 (-1149 *4 (-534 (-866 *6)) (-866 *6) (-782 *4 (-866 *6)))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-782 *4 (-866 *6)))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1174 *4)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-1174 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-782 *4 (-866 *6))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *6 (-643 (-1180))) (-5 *2 (-949 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-949 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-782 *4 (-866 *5))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-782 *4 (-866 *6))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-1149 *4 (-534 (-866 *6)) (-866 *6) (-782 *4 (-866 *6))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4400 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4399 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4399 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4398 (*1 *2 *3) (-12 (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) (-5 *1 (-1296 *4 *5 *6)) (-5 *3 (-643 (-949 *4))) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4398 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4398 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4398 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *4 *5))) (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) (-4397 (*1 *2 *3 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) (-4397 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180)))))) +(-10 -7 (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)) (-112))) (-15 -4397 ((-643 (-1049 |#1| |#2|)) (-643 (-949 |#1|)))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-1049 |#1| |#2|))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)) (-112))) (-15 -4398 ((-643 (-2 (|:| -1915 (-1174 |#1|)) (|:| -3644 (-643 (-949 |#1|))))) (-643 (-949 |#1|)))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112))) (-15 -4399 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-1049 |#1| |#2|))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112) (-112))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)) (-112))) (-15 -4400 ((-643 (-643 (-1027 (-410 |#1|)))) (-643 (-949 |#1|)))) (-15 -4401 ((-643 (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))) (-1049 |#1| |#2|))) (-15 -4402 ((-782 |#1| (-866 |#3|)) (-782 |#1| (-866 |#2|)))) (-15 -4402 ((-949 (-1027 (-410 |#1|))) (-949 |#1|))) (-15 -4402 ((-949 (-1027 (-410 |#1|))) (-782 |#1| (-866 |#3|)))) (-15 -4402 ((-1174 (-1027 (-410 |#1|))) (-1174 |#1|))) (-15 -4402 ((-643 (-782 |#1| (-866 |#3|))) (-1149 |#1| (-534 (-866 |#3|)) (-866 |#3|) (-782 |#1| (-866 |#3|)))))) +((-4405 (((-3 (-1269 (-410 (-549))) "failed") (-1269 |#1|) |#1|) 21)) (-4403 (((-112) (-1269 |#1|)) 12)) (-4404 (((-3 (-1269 (-549)) "failed") (-1269 |#1|)) 16))) +(((-1297 |#1|) (-10 -7 (-15 -4403 ((-112) (-1269 |#1|))) (-15 -4404 ((-3 (-1269 (-549)) "failed") (-1269 |#1|))) (-15 -4405 ((-3 (-1269 (-410 (-549))) "failed") (-1269 |#1|) |#1|))) (-641 (-549))) (T -1297)) +((-4405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) (-5 *2 (-1269 (-410 (-549)))) (-5 *1 (-1297 *4)))) (-4404 (*1 *2 *3) (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) (-5 *2 (-1269 (-549))) (-5 *1 (-1297 *4)))) (-4403 (*1 *2 *3) (-12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) (-5 *2 (-112)) (-5 *1 (-1297 *4))))) +(-10 -7 (-15 -4403 ((-112) (-1269 |#1|))) (-15 -4404 ((-3 (-1269 (-549)) "failed") (-1269 |#1|))) (-15 -4405 ((-3 (-1269 (-410 (-549))) "failed") (-1269 |#1|) |#1|))) +((-2968 (((-112) $ $) NIL)) (-3608 (((-112) $) 11)) (-1407 (((-3 $ "failed") $ $) NIL)) (-3540 (((-773)) 8)) (-4156 (($) NIL T CONST)) (-3890 (((-3 $ "failed") $) 58)) (-3395 (($) 49)) (-2573 (((-112) $) 57)) (-3868 (((-3 $ "failed") $) 40)) (-2188 (((-922) $) 15)) (-3663 (((-1162) $) NIL)) (-3869 (($) 32 T CONST)) (-2563 (($ (-922)) 50)) (-3664 (((-1123) $) NIL)) (-4402 (((-549) $) 13)) (-4378 (((-865) $) 27) (($ (-549)) 24)) (-3530 (((-773)) 9 T CONST)) (-3662 (((-112) $ $) 60)) (-3510 (($) 29 T CONST)) (-3067 (($) 31 T CONST)) (-3455 (((-112) $ $) 38)) (-4269 (($ $) 52) (($ $ $) 47)) (-4271 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-773)) 54)) (* (($ (-922) $) NIL) (($ (-773) $) NIL) (($ (-549) $) 44) (($ $ $) 43))) +(((-1298 |#1|) (-13 (-172) (-370) (-616 (-549)) (-1154)) (-922)) (T -1298)) +NIL +(-13 (-172) (-370) (-616 (-549)) (-1154)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3213794 3213799 3213804 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3213779 3213784 3213789 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3213764 3213769 3213774 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3213749 3213754 3213759 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1298 3212892 3213624 3213701 "ZMOD" 3213706 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1297 3212002 3212166 3212375 "ZLINDEP" 3212724 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1296 3201302 3203070 3205042 "ZDSOLVE" 3210132 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1295 3200548 3200689 3200878 "YSTREAM" 3201148 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1294 3198322 3199849 3200053 "XRPOLY" 3200391 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1293 3194875 3196193 3196768 "XPR" 3197794 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1292 3192528 3193896 3193951 "XPOLYC" 3194239 NIL XPOLYC (NIL T T) -9 NIL 3194352 NIL) (-1291 3190258 3191868 3192072 "XPOLY" 3192368 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1290 3186636 3188775 3189163 "XPBWPOLY" 3189916 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1289 3181832 3183121 3183176 "XFALG" 3185348 NIL XFALG (NIL T T) -9 NIL 3186137 NIL) (-1288 3177529 3179822 3179864 "XF" 3180485 NIL XF (NIL T) -9 NIL 3180885 NIL) (-1287 3177150 3177238 3177407 "XF-" 3177412 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1286 3176283 3176387 3176592 "XEXPPKG" 3177042 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1285 3174392 3176133 3176229 "XDPOLY" 3176234 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1284 3173199 3173799 3173842 "XALG" 3173847 NIL XALG (NIL T) -9 NIL 3173958 NIL) (-1283 3166668 3171176 3171670 "WUTSET" 3172791 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1282 3164924 3165720 3166043 "WP" 3166479 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1281 3164526 3164746 3164816 "WHILEAST" 3164876 T WHILEAST (NIL) -8 NIL NIL NIL) (-1280 3163998 3164243 3164337 "WHEREAST" 3164454 T WHEREAST (NIL) -8 NIL NIL NIL) (-1279 3162884 3163082 3163377 "WFFINTBS" 3163795 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1278 3160788 3161215 3161677 "WEIER" 3162456 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1277 3159834 3160284 3160326 "VSPACE" 3160462 NIL VSPACE (NIL T) -9 NIL 3160536 NIL) (-1276 3159672 3159699 3159790 "VSPACE-" 3159795 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1275 3159481 3159523 3159591 "VOID" 3159626 T VOID (NIL) -8 NIL NIL NIL) (-1274 3155905 3156544 3157281 "VIEWDEF" 3158766 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1273 3145209 3147453 3149626 "VIEW3D" 3153754 T VIEW3D (NIL) -8 NIL NIL NIL) (-1272 3137460 3139120 3140699 "VIEW2D" 3143652 T VIEW2D (NIL) -8 NIL NIL NIL) (-1271 3135596 3135955 3136361 "VIEW" 3137076 T VIEW (NIL) -7 NIL NIL NIL) (-1270 3134173 3134432 3134750 "VECTOR2" 3135326 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1269 3129526 3133943 3134035 "VECTOR" 3134116 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1268 3123000 3127307 3127350 "VECTCAT" 3128345 NIL VECTCAT (NIL T) -9 NIL 3128932 NIL) (-1267 3122014 3122268 3122658 "VECTCAT-" 3122663 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1266 3121468 3121665 3121785 "VARIABLE" 3121929 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1265 3121401 3121406 3121436 "UTYPE" 3121441 T UTYPE (NIL) -9 NIL NIL NIL) (-1264 3120231 3120385 3120647 "UTSODETL" 3121227 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1263 3117671 3118131 3118655 "UTSODE" 3119772 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1262 3108545 3113912 3113955 "UTSCAT" 3115067 NIL UTSCAT (NIL T) -9 NIL 3115825 NIL) (-1261 3105892 3106615 3107604 "UTSCAT-" 3107609 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1260 3105519 3105562 3105695 "UTS2" 3105843 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1259 3097356 3103145 3103634 "UTS" 3105088 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1258 3091583 3094194 3094237 "URAGG" 3096307 NIL URAGG (NIL T) -9 NIL 3097030 NIL) (-1257 3088525 3089387 3090509 "URAGG-" 3090514 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1256 3084241 3087160 3087625 "UPXSSING" 3088189 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1255 3077316 3084145 3084217 "UPXSCONS" 3084222 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1254 3067063 3073854 3073916 "UPXSCCA" 3074490 NIL UPXSCCA (NIL T T) -9 NIL 3074723 NIL) (-1253 3066701 3066786 3066960 "UPXSCCA-" 3066965 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1252 3056300 3062864 3062907 "UPXSCAT" 3063555 NIL UPXSCAT (NIL T) -9 NIL 3064164 NIL) (-1251 3055730 3055809 3055988 "UPXS2" 3056215 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1250 3047800 3054977 3055250 "UPXS" 3055515 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1249 3046457 3046709 3047059 "UPSQFREE" 3047544 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1248 3039878 3042935 3042990 "UPSCAT" 3044151 NIL UPSCAT (NIL T T) -9 NIL 3044925 NIL) (-1247 3039082 3039289 3039616 "UPSCAT-" 3039621 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1246 3038709 3038752 3038885 "UPOLYC2" 3039033 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1245 3024397 3032132 3032175 "UPOLYC" 3034276 NIL UPOLYC (NIL T) -9 NIL 3035497 NIL) (-1244 3015761 3018175 3021310 "UPOLYC-" 3021315 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1243 3015100 3015207 3015371 "UPMP" 3015650 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1242 3014653 3014734 3014873 "UPDIVP" 3015013 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1241 3013221 3013470 3013786 "UPDECOMP" 3014402 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1240 3012456 3012568 3012753 "UPCDEN" 3013105 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1239 3011975 3012044 3012193 "UP2" 3012381 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1238 3003826 3011658 3011787 "UP" 3011894 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1237 3003041 3003168 3003373 "UNISEG2" 3003669 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1236 3001508 3002245 3002522 "UNISEG" 3002799 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1235 3000568 3000748 3000974 "UNIFACT" 3001324 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1234 2988582 3000472 3000544 "ULSCONS" 3000549 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1233 2970617 2982586 2982648 "ULSCCAT" 2983286 NIL ULSCCAT (NIL T T) -9 NIL 2983574 NIL) (-1232 2969703 2969936 2970312 "ULSCCAT-" 2970317 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1231 2959079 2965557 2965600 "ULSCAT" 2966463 NIL ULSCAT (NIL T) -9 NIL 2967194 NIL) (-1230 2958509 2958588 2958767 "ULS2" 2958994 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1229 2942457 2957686 2957937 "ULS" 2958316 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1228 2941584 2942094 2942201 "UINT8" 2942312 T UINT8 (NIL) -8 NIL NIL 2942397) (-1227 2940710 2941220 2941327 "UINT64" 2941438 T UINT64 (NIL) -8 NIL NIL 2941523) (-1226 2939836 2940346 2940453 "UINT32" 2940564 T UINT32 (NIL) -8 NIL NIL 2940649) (-1225 2938962 2939472 2939579 "UINT16" 2939690 T UINT16 (NIL) -8 NIL NIL 2939775) (-1224 2937265 2938222 2938252 "UFD" 2938464 T UFD (NIL) -9 NIL 2938578 NIL) (-1223 2937059 2937105 2937200 "UFD-" 2937205 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1222 2936141 2936324 2936540 "UDVO" 2936865 T UDVO (NIL) -7 NIL NIL NIL) (-1221 2933957 2934366 2934837 "UDPO" 2935705 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1220 2933717 2933912 2933943 "TYPEAST" 2933948 T TYPEAST (NIL) -8 NIL NIL NIL) (-1219 2933650 2933655 2933685 "TYPE" 2933690 T TYPE (NIL) -9 NIL NIL NIL) (-1218 2932621 2932823 2933063 "TWOFACT" 2933444 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1217 2931644 2932030 2932265 "TUPLE" 2932421 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1216 2929335 2929854 2930393 "TUBETOOL" 2931127 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1215 2928184 2928389 2928630 "TUBE" 2929128 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1214 2916824 2920943 2921040 "TSETCAT" 2926309 NIL TSETCAT (NIL T T T T) -9 NIL 2927840 NIL) (-1213 2911556 2913156 2915047 "TSETCAT-" 2915052 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1212 2906285 2910528 2910811 "TS" 2911308 NIL TS (NIL T) -8 NIL NIL NIL) (-1211 2900924 2901771 2902700 "TRMANIP" 2905421 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1210 2900365 2900428 2900591 "TRIMAT" 2900856 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1209 2898231 2898468 2898825 "TRIGMNIP" 2900114 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1208 2897751 2897864 2897894 "TRIGCAT" 2898107 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1207 2897420 2897499 2897640 "TRIGCAT-" 2897645 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1206 2894266 2896278 2896559 "TREE" 2897174 NIL TREE (NIL T) -8 NIL NIL NIL) (-1205 2893540 2894068 2894098 "TRANFUN" 2894133 T TRANFUN (NIL) -9 NIL 2894199 NIL) (-1204 2892819 2893010 2893290 "TRANFUN-" 2893295 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1203 2892623 2892655 2892716 "TOPSP" 2892780 T TOPSP (NIL) -7 NIL NIL NIL) (-1202 2891971 2892086 2892240 "TOOLSIGN" 2892504 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1201 2890605 2891148 2891387 "TEXTFILE" 2891754 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1200 2890386 2890417 2890489 "TEX1" 2890568 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1199 2888298 2888839 2889268 "TEX" 2889979 T TEX (NIL) -8 NIL NIL NIL) (-1198 2887946 2888009 2888099 "TEMUTL" 2888230 T TEMUTL (NIL) -7 NIL NIL NIL) (-1197 2886100 2886380 2886705 "TBCMPPK" 2887669 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1196 2877879 2884260 2884316 "TBAGG" 2884716 NIL TBAGG (NIL T T) -9 NIL 2884927 NIL) (-1195 2872949 2874437 2876191 "TBAGG-" 2876196 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1194 2872333 2872440 2872585 "TANEXP" 2872838 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1193 2871745 2871844 2871982 "TABLEAU" 2872230 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1192 2865137 2871602 2871695 "TABLE" 2871700 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1191 2859745 2860965 2862213 "TABLBUMP" 2863923 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1190 2858967 2859114 2859295 "SYSTEM" 2859586 T SYSTEM (NIL) -8 NIL NIL NIL) (-1189 2855426 2856125 2856908 "SYSSOLP" 2858218 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1188 2855224 2855381 2855412 "SYSPTR" 2855417 T SYSPTR (NIL) -8 NIL NIL NIL) (-1187 2854268 2854773 2854892 "SYSNNI" 2855078 NIL SYSNNI (NIL NIL) -8 NIL NIL 2855163) (-1186 2853575 2854034 2854113 "SYSINT" 2854173 NIL SYSINT (NIL NIL) -8 NIL NIL 2854218) (-1185 2849919 2850853 2851563 "SYNTAX" 2852887 T SYNTAX (NIL) -8 NIL NIL NIL) (-1184 2847077 2847679 2848311 "SYMTAB" 2849309 T SYMTAB (NIL) -8 NIL NIL NIL) (-1183 2842350 2843246 2844223 "SYMS" 2846122 T SYMS (NIL) -8 NIL NIL NIL) (-1182 2839595 2841811 2842041 "SYMPOLY" 2842158 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1181 2839112 2839187 2839310 "SYMFUNC" 2839507 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1180 2835132 2836424 2837237 "SYMBOL" 2838321 T SYMBOL (NIL) -8 NIL NIL NIL) (-1179 2828671 2830360 2832080 "SWITCH" 2833434 T SWITCH (NIL) -8 NIL NIL NIL) (-1178 2821905 2827492 2827795 "SUTS" 2828426 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1177 2813975 2821152 2821425 "SUPXS" 2821690 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1176 2813134 2813261 2813478 "SUPFRACF" 2813843 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1175 2812755 2812814 2812927 "SUP2" 2813069 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1174 2804554 2812373 2812499 "SUP" 2812664 NIL SUP (NIL T) -8 NIL NIL NIL) (-1173 2803002 2803276 2803632 "SUMRF" 2804253 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1172 2802337 2802403 2802595 "SUMFS" 2802923 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1171 2786320 2801514 2801765 "SULS" 2802144 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1170 2785922 2786142 2786212 "SUCHTAST" 2786272 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1169 2785217 2785447 2785587 "SUCH" 2785830 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1168 2779083 2780123 2781082 "SUBSPACE" 2784305 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1167 2778513 2778603 2778767 "SUBRESP" 2778971 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1166 2772686 2773806 2774953 "STTFNC" 2777413 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1165 2766052 2767351 2768662 "STTF" 2771422 NIL STTF (NIL T) -7 NIL NIL NIL) (-1164 2757363 2759234 2761028 "STTAYLOR" 2764293 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1163 2750495 2757227 2757310 "STRTBL" 2757315 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1162 2745859 2750450 2750481 "STRING" 2750486 T STRING (NIL) -8 NIL NIL NIL) (-1161 2740720 2745232 2745262 "STRICAT" 2745321 T STRICAT (NIL) -9 NIL 2745383 NIL) (-1160 2740230 2740307 2740451 "STREAM3" 2740637 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1159 2739212 2739395 2739630 "STREAM2" 2740043 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1158 2738900 2738952 2739045 "STREAM1" 2739154 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1157 2731655 2736519 2737130 "STREAM" 2738324 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1156 2730671 2730852 2731083 "STINPROD" 2731471 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1155 2729858 2730160 2730308 "STEPAST" 2730545 T STEPAST (NIL) -8 NIL NIL NIL) (-1154 2729410 2729620 2729650 "STEP" 2729730 T STEP (NIL) -9 NIL 2729808 NIL) (-1153 2722844 2729309 2729386 "STBL" 2729391 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1152 2717972 2722065 2722108 "STAGG" 2722261 NIL STAGG (NIL T) -9 NIL 2722350 NIL) (-1151 2715680 2716280 2717150 "STAGG-" 2717155 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1150 2713827 2715450 2715542 "STACK" 2715623 NIL STACK (NIL T) -8 NIL NIL NIL) (-1149 2706549 2711968 2712424 "SREGSET" 2713457 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1148 2698974 2700343 2701856 "SRDCMPK" 2705155 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1147 2691891 2696414 2696444 "SRAGG" 2697747 T SRAGG (NIL) -9 NIL 2698355 NIL) (-1146 2690908 2691163 2691542 "SRAGG-" 2691547 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1145 2685372 2689855 2690276 "SQMATRIX" 2690534 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1144 2679058 2682090 2682817 "SPLTREE" 2684717 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1143 2675021 2675714 2676360 "SPLNODE" 2678484 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1142 2674068 2674301 2674331 "SPFCAT" 2674775 T SPFCAT (NIL) -9 NIL NIL NIL) (-1141 2672805 2673015 2673279 "SPECOUT" 2673826 T SPECOUT (NIL) -7 NIL NIL NIL) (-1140 2663915 2665787 2665817 "SPADXPT" 2670493 T SPADXPT (NIL) -9 NIL 2672657 NIL) (-1139 2663676 2663716 2663785 "SPADPRSR" 2663868 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1138 2661725 2663631 2663662 "SPADAST" 2663667 T SPADAST (NIL) -8 NIL NIL NIL) (-1137 2653670 2655443 2655486 "SPACEC" 2659859 NIL SPACEC (NIL T) -9 NIL 2661675 NIL) (-1136 2651800 2653602 2653651 "SPACE3" 2653656 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1135 2650552 2650723 2651014 "SORTPAK" 2651605 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1134 2648644 2648947 2649359 "SOLVETRA" 2650216 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1133 2647694 2647916 2648177 "SOLVESER" 2648417 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1132 2642998 2643886 2644881 "SOLVERAD" 2646746 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1131 2638813 2639422 2640151 "SOLVEFOR" 2642365 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1130 2633110 2638162 2638259 "SNTSCAT" 2638264 NIL SNTSCAT (NIL T T T T) -9 NIL 2638334 NIL) (-1129 2627216 2631433 2631824 "SMTS" 2632800 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1128 2621927 2627104 2627181 "SMP" 2627186 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1127 2620086 2620387 2620785 "SMITH" 2621624 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1126 2612797 2616989 2617092 "SMATCAT" 2618446 NIL SMATCAT (NIL NIL T T T) -9 NIL 2618996 NIL) (-1125 2609758 2610574 2611745 "SMATCAT-" 2611750 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1124 2607424 2608994 2609037 "SKAGG" 2609298 NIL SKAGG (NIL T) -9 NIL 2609433 NIL) (-1123 2603737 2606840 2607035 "SINT" 2607222 T SINT (NIL) -8 NIL NIL 2607395) (-1122 2603509 2603547 2603613 "SIMPAN" 2603693 T SIMPAN (NIL) -7 NIL NIL NIL) (-1121 2602368 2602582 2602850 "SIGNRF" 2603275 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1120 2601222 2601366 2601643 "SIGNEF" 2602204 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1119 2600528 2600805 2600929 "SIGAST" 2601120 T SIGAST (NIL) -8 NIL NIL NIL) (-1118 2599807 2600063 2600203 "SIG" 2600410 T SIG (NIL) -8 NIL NIL NIL) (-1117 2597497 2597951 2598457 "SHP" 2599348 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1116 2591356 2597398 2597474 "SHDP" 2597479 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1115 2590929 2591121 2591151 "SGROUP" 2591244 T SGROUP (NIL) -9 NIL 2591306 NIL) (-1114 2590787 2590813 2590886 "SGROUP-" 2590891 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1113 2587622 2588320 2589043 "SGCF" 2590086 T SGCF (NIL) -7 NIL NIL NIL) (-1112 2582017 2587069 2587166 "SFRTCAT" 2587171 NIL SFRTCAT (NIL T T T T) -9 NIL 2587210 NIL) (-1111 2575438 2576456 2577592 "SFRGCD" 2581000 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1110 2568564 2569637 2570823 "SFQCMPK" 2574371 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1109 2568184 2568273 2568384 "SFORT" 2568505 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1108 2567302 2568024 2568145 "SEXOF" 2568150 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1107 2562815 2563530 2563625 "SEXCAT" 2566562 NIL SEXCAT (NIL T T T T T) -9 NIL 2567140 NIL) (-1106 2561922 2562696 2562764 "SEX" 2562769 T SEX (NIL) -8 NIL NIL NIL) (-1105 2560152 2560639 2560942 "SETMN" 2561665 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1104 2559648 2559800 2559830 "SETCAT" 2560006 T SETCAT (NIL) -9 NIL 2560116 NIL) (-1103 2559340 2559418 2559548 "SETCAT-" 2559553 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1102 2555701 2557801 2557844 "SETAGG" 2558714 NIL SETAGG (NIL T) -9 NIL 2559054 NIL) (-1101 2555159 2555275 2555512 "SETAGG-" 2555517 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1100 2552312 2555093 2555141 "SET" 2555146 NIL SET (NIL T) -8 NIL NIL NIL) (-1099 2551755 2552008 2552109 "SEQAST" 2552233 T SEQAST (NIL) -8 NIL NIL NIL) (-1098 2550954 2551248 2551309 "SEGXCAT" 2551595 NIL SEGXCAT (NIL T T) -9 NIL 2551715 NIL) (-1097 2549933 2550147 2550190 "SEGCAT" 2550712 NIL SEGCAT (NIL T) -9 NIL 2550933 NIL) (-1096 2549554 2549613 2549726 "SEGBIND2" 2549868 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1095 2548486 2548917 2549125 "SEGBIND" 2549381 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1094 2548059 2548287 2548364 "SEGAST" 2548431 T SEGAST (NIL) -8 NIL NIL NIL) (-1093 2547278 2547404 2547608 "SEG2" 2547903 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1092 2546284 2546944 2547126 "SEG" 2547131 NIL SEG (NIL T) -8 NIL NIL NIL) (-1091 2545694 2546219 2546266 "SDVAR" 2546271 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1090 2538262 2545464 2545594 "SDPOL" 2545599 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1089 2536855 2537121 2537440 "SCPKG" 2537977 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1088 2536019 2536191 2536383 "SCOPE" 2536685 T SCOPE (NIL) -8 NIL NIL NIL) (-1087 2535239 2535373 2535552 "SCACHE" 2535874 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1086 2534885 2535071 2535101 "SASTCAT" 2535106 T SASTCAT (NIL) -9 NIL 2535119 NIL) (-1085 2534372 2534720 2534796 "SAOS" 2534831 T SAOS (NIL) -8 NIL NIL NIL) (-1084 2533937 2533972 2534145 "SAERFFC" 2534331 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1083 2533530 2533565 2533724 "SAEFACT" 2533896 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1082 2527478 2533427 2533507 "SAE" 2533512 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1081 2525799 2526113 2526514 "RURPK" 2527144 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1080 2524436 2524742 2525047 "RULESET" 2525633 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1079 2524048 2524230 2524313 "RULECOLD" 2524388 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1078 2521271 2521801 2522259 "RULE" 2523729 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1077 2521061 2521089 2521160 "RTVALUE" 2521222 T RTVALUE (NIL) -8 NIL NIL NIL) (-1076 2520532 2520778 2520872 "RSTRCAST" 2520989 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1075 2515380 2516175 2517095 "RSETGCD" 2519731 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1074 2504637 2509689 2509786 "RSETCAT" 2513905 NIL RSETCAT (NIL T T T T) -9 NIL 2515002 NIL) (-1073 2502564 2503103 2503927 "RSETCAT-" 2503932 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1072 2494950 2496326 2497846 "RSDCMPK" 2501163 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1071 2492929 2493396 2493470 "RRCC" 2494556 NIL RRCC (NIL T T) -9 NIL 2494900 NIL) (-1070 2492280 2492454 2492733 "RRCC-" 2492738 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1069 2491723 2491976 2492077 "RPTAST" 2492201 T RPTAST (NIL) -8 NIL NIL NIL) (-1068 2465605 2474931 2474998 "RPOLCAT" 2485662 NIL RPOLCAT (NIL T T T) -9 NIL 2488821 NIL) (-1067 2457139 2459467 2462577 "RPOLCAT-" 2462582 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1066 2448072 2455350 2455832 "ROUTINE" 2456679 T ROUTINE (NIL) -8 NIL NIL NIL) (-1065 2444872 2447698 2447838 "ROMAN" 2447954 T ROMAN (NIL) -8 NIL NIL NIL) (-1064 2443118 2443732 2443992 "ROIRC" 2444677 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1063 2439354 2441634 2441664 "RNS" 2441968 T RNS (NIL) -9 NIL 2442242 NIL) (-1062 2437863 2438246 2438780 "RNS-" 2438855 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1061 2436866 2437228 2437430 "RNGBIND" 2437714 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1060 2436269 2436677 2436707 "RNG" 2436712 T RNG (NIL) -9 NIL 2436733 NIL) (-1059 2435668 2436056 2436099 "RMODULE" 2436104 NIL RMODULE (NIL T) -9 NIL 2436131 NIL) (-1058 2434504 2434598 2434934 "RMCAT2" 2435569 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1057 2431354 2433850 2434147 "RMATRIX" 2434266 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1056 2424181 2426441 2426556 "RMATCAT" 2429915 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2430897 NIL) (-1055 2423556 2423703 2424010 "RMATCAT-" 2424015 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1054 2422957 2423178 2423221 "RLINSET" 2423415 NIL RLINSET (NIL T) -9 NIL 2423506 NIL) (-1053 2422524 2422599 2422727 "RINTERP" 2422876 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1052 2421582 2422136 2422166 "RING" 2422222 T RING (NIL) -9 NIL 2422314 NIL) (-1051 2421374 2421418 2421515 "RING-" 2421520 NIL RING- (NIL T) -8 NIL NIL NIL) (-1050 2420215 2420452 2420710 "RIDIST" 2421138 T RIDIST (NIL) -7 NIL NIL NIL) (-1049 2411531 2419683 2419889 "RGCHAIN" 2420063 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1048 2410881 2411287 2411328 "RGBCSPC" 2411386 NIL RGBCSPC (NIL T) -9 NIL 2411438 NIL) (-1047 2410039 2410420 2410461 "RGBCMDL" 2410693 NIL RGBCMDL (NIL T) -9 NIL 2410807 NIL) (-1046 2409685 2409748 2409851 "RFFACTOR" 2409970 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1045 2409410 2409445 2409542 "RFFACT" 2409644 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1044 2407527 2407891 2408273 "RFDIST" 2409050 T RFDIST (NIL) -7 NIL NIL NIL) (-1043 2404521 2405135 2405805 "RF" 2406891 NIL RF (NIL T) -7 NIL NIL NIL) (-1042 2403974 2404066 2404229 "RETSOL" 2404423 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1041 2403610 2403690 2403733 "RETRACT" 2403866 NIL RETRACT (NIL T) -9 NIL 2403953 NIL) (-1040 2403459 2403484 2403571 "RETRACT-" 2403576 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1039 2403061 2403281 2403351 "RETAST" 2403411 T RETAST (NIL) -8 NIL NIL NIL) (-1038 2395801 2402714 2402841 "RESULT" 2402956 T RESULT (NIL) -8 NIL NIL NIL) (-1037 2394392 2395070 2395269 "RESRING" 2395704 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1036 2394028 2394077 2394175 "RESLATC" 2394329 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1035 2393733 2393768 2393875 "REPSQ" 2393987 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1034 2393430 2393465 2393576 "REPDB" 2393692 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1033 2387330 2388719 2389942 "REP2" 2392242 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1032 2383707 2384388 2385196 "REP1" 2386557 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1031 2381129 2381709 2382311 "REP" 2383127 T REP (NIL) -7 NIL NIL NIL) (-1030 2373852 2379270 2379726 "REGSET" 2380759 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1029 2372617 2373000 2373250 "REF" 2373637 NIL REF (NIL T) -8 NIL NIL NIL) (-1028 2371994 2372097 2372264 "REDORDER" 2372501 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1027 2367993 2371207 2371434 "RECLOS" 2371822 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1026 2367045 2367226 2367441 "REALSOLV" 2367800 T REALSOLV (NIL) -7 NIL NIL NIL) (-1025 2363528 2364330 2365214 "REAL0Q" 2366210 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1024 2359129 2360117 2361178 "REAL0" 2362509 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1023 2358975 2359016 2359046 "REAL" 2359051 T REAL (NIL) -9 NIL 2359086 NIL) (-1022 2358446 2358692 2358786 "RDUCEAST" 2358903 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1021 2357851 2357923 2358130 "RDIV" 2358368 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1020 2356919 2357093 2357306 "RDIST" 2357673 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1019 2355516 2355803 2356175 "RDETRS" 2356627 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1018 2353328 2353782 2354320 "RDETR" 2355058 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1017 2351953 2352231 2352628 "RDEEFS" 2353044 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1016 2350462 2350768 2351193 "RDEEF" 2351641 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1015 2344532 2347443 2347473 "RCFIELD" 2348768 T RCFIELD (NIL) -9 NIL 2349499 NIL) (-1014 2342596 2343100 2343796 "RCFIELD-" 2343871 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1013 2338865 2340697 2340740 "RCAGG" 2341824 NIL RCAGG (NIL T) -9 NIL 2342289 NIL) (-1012 2338493 2338587 2338750 "RCAGG-" 2338755 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1011 2337828 2337940 2338105 "RATRET" 2338377 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1010 2337381 2337448 2337569 "RATFACT" 2337756 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1009 2336689 2336809 2336961 "RANDSRC" 2337251 T RANDSRC (NIL) -7 NIL NIL NIL) (-1008 2336423 2336467 2336540 "RADUTIL" 2336638 T RADUTIL (NIL) -7 NIL NIL NIL) (-1007 2329560 2335256 2335566 "RADIX" 2336147 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1006 2321190 2329402 2329532 "RADFF" 2329537 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1005 2320837 2320912 2320942 "RADCAT" 2321102 T RADCAT (NIL) -9 NIL NIL NIL) (-1004 2320619 2320667 2320767 "RADCAT-" 2320772 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1003 2318719 2320391 2320482 "QUEUE" 2320563 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1002 2318350 2318393 2318524 "QUATCT2" 2318670 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1001 2311806 2315144 2315186 "QUATCAT" 2315977 NIL QUATCAT (NIL T) -9 NIL 2316743 NIL) (-1000 2307966 2308996 2310379 "QUATCAT-" 2310475 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-999 2304512 2307901 2307947 "QUAT" 2307952 NIL QUAT (NIL T) -8 NIL NIL NIL) (-998 2301985 2303596 2303637 "QUAGG" 2304012 NIL QUAGG (NIL T) -9 NIL 2304187 NIL) (-997 2301590 2301810 2301878 "QQUTAST" 2301937 T QQUTAST (NIL) -8 NIL NIL NIL) (-996 2300488 2300988 2301160 "QFORM" 2301462 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-995 2300126 2300169 2300296 "QFCAT2" 2300439 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-994 2291147 2296370 2296410 "QFCAT" 2297068 NIL QFCAT (NIL T) -9 NIL 2298069 NIL) (-993 2286755 2287944 2289523 "QFCAT-" 2289617 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-992 2286215 2286325 2286455 "QEQUAT" 2286645 T QEQUAT (NIL) -8 NIL NIL NIL) (-991 2279361 2280434 2281618 "QCMPACK" 2285148 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-990 2278606 2278780 2279012 "QALGSET2" 2279181 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-989 2276161 2276607 2277033 "QALGSET" 2278263 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-988 2274851 2275075 2275392 "PWFFINTB" 2275934 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-987 2273050 2273218 2273572 "PUSHVAR" 2274665 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-986 2268968 2270022 2270063 "PTRANFN" 2271947 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-985 2267370 2267661 2267983 "PTPACK" 2268679 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-984 2267002 2267059 2267168 "PTFUNC2" 2267307 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-983 2261479 2265874 2265915 "PTCAT" 2266211 NIL PTCAT (NIL T) -9 NIL 2266364 NIL) (-982 2261137 2261172 2261296 "PSQFR" 2261438 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-981 2259732 2260030 2260364 "PSEUDLIN" 2260835 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-980 2246495 2248866 2251190 "PSETPK" 2257492 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-979 2239513 2242253 2242349 "PSETCAT" 2245370 NIL PSETCAT (NIL T T T T) -9 NIL 2246184 NIL) (-978 2237349 2237983 2238804 "PSETCAT-" 2238809 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-977 2236698 2236863 2236891 "PSCURVE" 2237159 T PSCURVE (NIL) -9 NIL 2237326 NIL) (-976 2232696 2234212 2234277 "PSCAT" 2235121 NIL PSCAT (NIL T T T) -9 NIL 2235361 NIL) (-975 2231759 2231975 2232375 "PSCAT-" 2232380 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-974 2230464 2231124 2231329 "PRTITION" 2231574 T PRTITION (NIL) -8 NIL NIL NIL) (-973 2229939 2230185 2230277 "PRTDAST" 2230392 T PRTDAST (NIL) -8 NIL NIL NIL) (-972 2219029 2221243 2223431 "PRS" 2227801 NIL PRS (NIL T T) -7 NIL NIL NIL) (-971 2216840 2218379 2218419 "PRQAGG" 2218602 NIL PRQAGG (NIL T) -9 NIL 2218704 NIL) (-970 2216044 2216349 2216377 "PROPLOG" 2216624 T PROPLOG (NIL) -9 NIL 2216790 NIL) (-969 2214225 2214791 2215088 "PROPFRML" 2215780 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-968 2213694 2213801 2213929 "PROPERTY" 2214117 T PROPERTY (NIL) -8 NIL NIL NIL) (-967 2207752 2211860 2212680 "PRODUCT" 2212920 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-966 2207548 2207580 2207639 "PRINT" 2207713 T PRINT (NIL) -7 NIL NIL NIL) (-965 2206888 2207005 2207157 "PRIMES" 2207428 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-964 2204953 2205354 2205820 "PRIMELT" 2206467 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-963 2204682 2204731 2204759 "PRIMCAT" 2204883 T PRIMCAT (NIL) -9 NIL NIL NIL) (-962 2203689 2203867 2204095 "PRIMARR2" 2204500 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-961 2199804 2203627 2203672 "PRIMARR" 2203677 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-960 2199447 2199503 2199614 "PREASSOC" 2199742 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-959 2196732 2198905 2199139 "PR" 2199258 NIL PR (NIL T T) -8 NIL NIL NIL) (-958 2196207 2196340 2196368 "PPCURVE" 2196573 T PPCURVE (NIL) -9 NIL 2196709 NIL) (-957 2195802 2196002 2196085 "PORTNUM" 2196144 T PORTNUM (NIL) -8 NIL NIL NIL) (-956 2193161 2193560 2194152 "POLYROOT" 2195383 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-955 2192544 2192602 2192836 "POLYLIFT" 2193097 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-954 2188819 2189268 2189897 "POLYCATQ" 2192089 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-953 2175545 2180659 2180724 "POLYCAT" 2184238 NIL POLYCAT (NIL T T T) -9 NIL 2186116 NIL) (-952 2169051 2170894 2173259 "POLYCAT-" 2173264 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-951 2168638 2168706 2168826 "POLY2UP" 2168977 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-950 2168270 2168327 2168436 "POLY2" 2168575 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-949 2162483 2167874 2168034 "POLY" 2168143 NIL POLY (NIL T) -8 NIL NIL NIL) (-948 2161168 2161407 2161683 "POLUTIL" 2162257 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-947 2159523 2159800 2160131 "POLTOPOL" 2160890 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-946 2154988 2159459 2159505 "POINT" 2159510 NIL POINT (NIL T) -8 NIL NIL NIL) (-945 2153175 2153532 2153907 "PNTHEORY" 2154633 T PNTHEORY (NIL) -7 NIL NIL NIL) (-944 2151633 2151930 2152329 "PMTOOLS" 2152873 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-943 2151226 2151304 2151421 "PMSYM" 2151549 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-942 2150736 2150805 2150979 "PMQFCAT" 2151151 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-941 2150129 2150215 2150377 "PMPREDFS" 2150637 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-940 2149484 2149594 2149750 "PMPRED" 2150006 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-939 2148148 2148356 2148734 "PMPLCAT" 2149246 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-938 2147680 2147759 2147911 "PMLSAGG" 2148063 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-937 2147153 2147229 2147411 "PMKERNEL" 2147598 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-936 2146770 2146845 2146958 "PMINS" 2147072 NIL PMINS (NIL T) -7 NIL NIL NIL) (-935 2146212 2146281 2146490 "PMFS" 2146695 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-934 2145440 2145558 2145763 "PMDOWN" 2146089 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-933 2144713 2144823 2144986 "PMASSFS" 2145327 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-932 2143880 2144038 2144219 "PMASS" 2144552 T PMASS (NIL) -7 NIL NIL NIL) (-931 2143535 2143603 2143697 "PLOTTOOL" 2143806 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-930 2139339 2140383 2141304 "PLOT3D" 2142634 T PLOT3D (NIL) -8 NIL NIL NIL) (-929 2138251 2138428 2138663 "PLOT1" 2139143 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-928 2132858 2134062 2135210 "PLOT" 2137123 T PLOT (NIL) -8 NIL NIL NIL) (-927 2108247 2112924 2117775 "PLEQN" 2128124 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-926 2107940 2107987 2108090 "PINTERPA" 2108194 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-925 2107258 2107380 2107560 "PINTERP" 2107805 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-924 2105555 2106530 2106558 "PID" 2106740 T PID (NIL) -9 NIL 2106874 NIL) (-923 2105306 2105343 2105418 "PICOERCE" 2105512 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-922 2104527 2105075 2105162 "PI" 2105202 T PI (NIL) -8 NIL NIL 2105269) (-921 2103847 2103986 2104162 "PGROEB" 2104383 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-920 2099434 2100248 2101153 "PGE" 2102962 T PGE (NIL) -7 NIL NIL NIL) (-919 2097557 2097804 2098170 "PGCD" 2099151 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-918 2096895 2096998 2097159 "PFRPAC" 2097441 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-917 2093537 2095443 2095796 "PFR" 2096574 NIL PFR (NIL T) -8 NIL NIL NIL) (-916 2091926 2092170 2092495 "PFOTOOLS" 2093284 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-915 2090459 2090698 2091049 "PFOQ" 2091683 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-914 2088960 2089172 2089528 "PFO" 2090243 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-913 2086294 2087565 2087593 "PFECAT" 2088178 T PFECAT (NIL) -9 NIL 2088562 NIL) (-912 2085739 2085893 2086107 "PFECAT-" 2086112 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-911 2084342 2084594 2084895 "PFBRU" 2085488 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-910 2082208 2082560 2082992 "PFBR" 2083993 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-909 2078763 2082097 2082166 "PF" 2082171 NIL PF (NIL NIL) -8 NIL NIL NIL) (-908 2073997 2074970 2075840 "PERMGRP" 2077926 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-907 2072103 2073060 2073101 "PERMCAT" 2073547 NIL PERMCAT (NIL T) -9 NIL 2073852 NIL) (-906 2071756 2071797 2071921 "PERMAN" 2072056 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-905 2067638 2069132 2069808 "PERM" 2071113 NIL PERM (NIL T) -8 NIL NIL NIL) (-904 2065128 2067303 2067425 "PENDTREE" 2067549 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-903 2063152 2063920 2063961 "PDRING" 2064618 NIL PDRING (NIL T) -9 NIL 2064904 NIL) (-902 2062255 2062473 2062835 "PDRING-" 2062840 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-901 2059470 2060248 2060916 "PDEPROB" 2061607 T PDEPROB (NIL) -8 NIL NIL NIL) (-900 2057015 2057519 2058074 "PDEPACK" 2058935 T PDEPACK (NIL) -7 NIL NIL NIL) (-899 2055927 2056117 2056368 "PDECOMP" 2056814 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-898 2053506 2054349 2054377 "PDECAT" 2055164 T PDECAT (NIL) -9 NIL 2055877 NIL) (-897 2053257 2053290 2053380 "PCOMP" 2053467 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-896 2051435 2052058 2052355 "PBWLB" 2052986 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-895 2051067 2051124 2051233 "PATTERN2" 2051372 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-894 2048824 2049212 2049669 "PATTERN1" 2050656 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-893 2041299 2042897 2044235 "PATTERN" 2047507 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-892 2040863 2040930 2041062 "PATRES2" 2041226 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-891 2038231 2038812 2039293 "PATRES" 2040428 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-890 2036114 2036519 2036926 "PATMATCH" 2037898 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-889 2035624 2035833 2035874 "PATMAB" 2035981 NIL PATMAB (NIL T) -9 NIL 2036064 NIL) (-888 2034142 2034478 2034736 "PATLRES" 2035429 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-887 2033688 2033811 2033852 "PATAB" 2033857 NIL PATAB (NIL T) -9 NIL 2034029 NIL) (-886 2031169 2031701 2032274 "PARTPERM" 2033135 T PARTPERM (NIL) -7 NIL NIL NIL) (-885 2030790 2030853 2030955 "PARSURF" 2031100 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-884 2030422 2030479 2030588 "PARSU2" 2030727 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-883 2030186 2030226 2030293 "PARSER" 2030375 T PARSER (NIL) -7 NIL NIL NIL) (-882 2029807 2029870 2029972 "PARSCURV" 2030117 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-881 2029439 2029496 2029605 "PARSC2" 2029744 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-880 2029078 2029136 2029233 "PARPCURV" 2029375 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-879 2028710 2028767 2028876 "PARPC2" 2029015 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-878 2027771 2028083 2028265 "PARAMAST" 2028548 T PARAMAST (NIL) -8 NIL NIL NIL) (-877 2027291 2027377 2027496 "PAN2EXPR" 2027672 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-876 2026068 2026412 2026640 "PALETTE" 2027083 T PALETTE (NIL) -8 NIL NIL NIL) (-875 2024461 2025073 2025433 "PAIR" 2025754 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-874 2018352 2023720 2023914 "PADICRC" 2024316 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-873 2011602 2017698 2017882 "PADICRAT" 2018200 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-872 2008714 2010276 2010316 "PADICCT" 2010897 NIL PADICCT (NIL NIL) -9 NIL 2011179 NIL) (-871 2007031 2008651 2008696 "PADIC" 2008701 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-870 2005988 2006188 2006456 "PADEPAC" 2006818 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-869 2005200 2005333 2005539 "PADE" 2005850 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-868 2003587 2004408 2004688 "OWP" 2005004 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-867 2003080 2003293 2003390 "OVERSET" 2003510 T OVERSET (NIL) -8 NIL NIL NIL) (-866 2002126 2002685 2002857 "OVAR" 2002948 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-865 1990998 1993235 1995435 "OUTFORM" 1999946 T OUTFORM (NIL) -8 NIL NIL NIL) (-864 1990334 1990595 1990722 "OUTBFILE" 1990891 T OUTBFILE (NIL) -8 NIL NIL NIL) (-863 1989641 1989806 1989834 "OUTBCON" 1990152 T OUTBCON (NIL) -9 NIL 1990318 NIL) (-862 1989242 1989354 1989511 "OUTBCON-" 1989516 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-861 1988506 1988627 1988788 "OUT" 1989101 T OUT (NIL) -7 NIL NIL NIL) (-860 1987886 1988235 1988324 "OSI" 1988437 T OSI (NIL) -8 NIL NIL NIL) (-859 1987416 1987754 1987782 "OSGROUP" 1987787 T OSGROUP (NIL) -9 NIL 1987809 NIL) (-858 1986161 1986388 1986673 "ORTHPOL" 1987163 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-857 1983726 1985996 1986117 "OREUP" 1986122 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-856 1981143 1983417 1983544 "ORESUP" 1983668 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-855 1978671 1979171 1979732 "OREPCTO" 1980632 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-854 1972364 1974558 1974599 "OREPCAT" 1976947 NIL OREPCAT (NIL T) -9 NIL 1978051 NIL) (-853 1969532 1970307 1971358 "OREPCAT-" 1971363 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-852 1968683 1968981 1969009 "ORDSET" 1969318 T ORDSET (NIL) -9 NIL 1969482 NIL) (-851 1968114 1968262 1968486 "ORDSET-" 1968491 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-850 1966679 1967470 1967498 "ORDRING" 1967700 T ORDRING (NIL) -9 NIL 1967825 NIL) (-849 1966324 1966418 1966562 "ORDRING-" 1966567 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-848 1965704 1966167 1966195 "ORDMON" 1966200 T ORDMON (NIL) -9 NIL 1966221 NIL) (-847 1964866 1965013 1965208 "ORDFUNS" 1965553 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-846 1964204 1964623 1964651 "ORDFIN" 1964716 T ORDFIN (NIL) -9 NIL 1964790 NIL) (-845 1963470 1963597 1963783 "ORDCOMP2" 1964064 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-844 1960036 1962056 1962465 "ORDCOMP" 1963094 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-843 1956617 1957527 1958341 "OPTPROB" 1959242 T OPTPROB (NIL) -8 NIL NIL NIL) (-842 1953419 1954058 1954762 "OPTPACK" 1955933 T OPTPACK (NIL) -7 NIL NIL NIL) (-841 1951106 1951872 1951900 "OPTCAT" 1952719 T OPTCAT (NIL) -9 NIL 1953369 NIL) (-840 1950490 1950783 1950888 "OPSIG" 1951021 T OPSIG (NIL) -8 NIL NIL NIL) (-839 1950258 1950297 1950363 "OPQUERY" 1950444 T OPQUERY (NIL) -7 NIL NIL NIL) (-838 1949632 1949858 1949899 "OPERCAT" 1950111 NIL OPERCAT (NIL T) -9 NIL 1950208 NIL) (-837 1949387 1949443 1949560 "OPERCAT-" 1949565 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-836 1946520 1947698 1948202 "OP" 1948916 NIL OP (NIL T) -8 NIL NIL NIL) (-835 1945825 1945940 1946114 "ONECOMP2" 1946392 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-834 1942645 1944622 1944991 "ONECOMP" 1945489 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-833 1942064 1942170 1942300 "OMSERVER" 1942535 T OMSERVER (NIL) -7 NIL NIL NIL) (-832 1938926 1941504 1941544 "OMSAGG" 1941605 NIL OMSAGG (NIL T) -9 NIL 1941669 NIL) (-831 1937549 1937812 1938094 "OMPKG" 1938664 T OMPKG (NIL) -7 NIL NIL NIL) (-830 1936096 1937098 1937267 "OMLO" 1937430 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-829 1935056 1935203 1935423 "OMEXPR" 1935922 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-828 1934207 1934477 1934637 "OMERRK" 1934916 T OMERRK (NIL) -8 NIL NIL NIL) (-827 1933498 1933753 1933889 "OMERR" 1934091 T OMERR (NIL) -8 NIL NIL NIL) (-826 1932949 1933175 1933283 "OMENC" 1933410 T OMENC (NIL) -8 NIL NIL NIL) (-825 1926844 1928029 1929200 "OMDEV" 1931798 T OMDEV (NIL) -8 NIL NIL NIL) (-824 1925913 1926084 1926278 "OMCONN" 1926670 T OMCONN (NIL) -8 NIL NIL NIL) (-823 1925343 1925446 1925474 "OM" 1925773 T OM (NIL) -9 NIL NIL NIL) (-822 1923864 1924840 1924868 "OINTDOM" 1924873 T OINTDOM (NIL) -9 NIL 1924894 NIL) (-821 1921209 1922552 1922889 "OFMONOID" 1923559 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-820 1920620 1921146 1921191 "ODVAR" 1921196 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-819 1918045 1920365 1920520 "ODR" 1920525 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-818 1910667 1917821 1917947 "ODPOL" 1917952 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-817 1904496 1910539 1910644 "ODP" 1910649 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-816 1903262 1903477 1903752 "ODETOOLS" 1904270 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-815 1900229 1900887 1901603 "ODESYS" 1902595 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-814 1895111 1896019 1897044 "ODERTRIC" 1899304 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-813 1894537 1894619 1894813 "ODERED" 1895023 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-812 1891433 1891979 1892654 "ODERAT" 1893962 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-811 1888390 1888857 1889454 "ODEPRRIC" 1890962 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-810 1886333 1886929 1887415 "ODEPROB" 1887924 T ODEPROB (NIL) -8 NIL NIL NIL) (-809 1882853 1883338 1883985 "ODEPRIM" 1885812 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-808 1882102 1882204 1882464 "ODEPAL" 1882745 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-807 1878264 1879055 1879919 "ODEPACK" 1881258 T ODEPACK (NIL) -7 NIL NIL NIL) (-806 1877325 1877432 1877654 "ODEINT" 1878153 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-805 1871426 1872851 1874298 "ODEIFTBL" 1875898 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-804 1866838 1867620 1868568 "ODEEF" 1870589 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-803 1866187 1866276 1866499 "ODECONST" 1866743 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-802 1864312 1864973 1865001 "ODECAT" 1865606 T ODECAT (NIL) -9 NIL 1866137 NIL) (-801 1863950 1863993 1864120 "OCTCT2" 1864263 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-800 1860834 1863662 1863781 "OCT" 1863863 NIL OCT (NIL T) -8 NIL NIL NIL) (-799 1860186 1860654 1860682 "OCAMON" 1860687 T OCAMON (NIL) -9 NIL 1860708 NIL) (-798 1854842 1857270 1857310 "OC" 1858407 NIL OC (NIL T) -9 NIL 1859265 NIL) (-797 1852090 1852831 1853814 "OC-" 1853908 NIL OC- (NIL T T) -8 NIL NIL NIL) (-796 1851621 1851962 1851990 "OASGP" 1851995 T OASGP (NIL) -9 NIL 1852015 NIL) (-795 1850882 1851371 1851399 "OAMONS" 1851439 T OAMONS (NIL) -9 NIL 1851482 NIL) (-794 1850296 1850729 1850757 "OAMON" 1850762 T OAMON (NIL) -9 NIL 1850782 NIL) (-793 1849554 1850072 1850100 "OAGROUP" 1850105 T OAGROUP (NIL) -9 NIL 1850125 NIL) (-792 1849244 1849294 1849382 "NUMTUBE" 1849498 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-791 1842817 1844335 1845871 "NUMQUAD" 1847728 T NUMQUAD (NIL) -7 NIL NIL NIL) (-790 1838573 1839561 1840586 "NUMODE" 1841812 T NUMODE (NIL) -7 NIL NIL NIL) (-789 1835928 1836808 1836836 "NUMINT" 1837759 T NUMINT (NIL) -9 NIL 1838523 NIL) (-788 1834876 1835073 1835291 "NUMFMT" 1835730 T NUMFMT (NIL) -7 NIL NIL NIL) (-787 1821235 1824180 1826712 "NUMERIC" 1832383 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-786 1815632 1820684 1820779 "NTSCAT" 1820784 NIL NTSCAT (NIL T T T T) -9 NIL 1820823 NIL) (-785 1814826 1814991 1815184 "NTPOLFN" 1815471 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-784 1814458 1814515 1814624 "NSUP2" 1814763 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-783 1802580 1811283 1812095 "NSUP" 1813679 NIL NSUP (NIL T) -8 NIL NIL NIL) (-782 1792856 1802354 1802487 "NSMP" 1802492 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-781 1791288 1791589 1791946 "NREP" 1792544 NIL NREP (NIL T) -7 NIL NIL NIL) (-780 1789879 1790131 1790489 "NPCOEF" 1791031 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-779 1788945 1789060 1789276 "NORMRETR" 1789760 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-778 1786986 1787276 1787685 "NORMPK" 1788653 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-777 1786671 1786699 1786823 "NORMMA" 1786952 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-776 1786460 1786489 1786558 "NONE1" 1786635 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-775 1786260 1786417 1786446 "NONE" 1786451 T NONE (NIL) -8 NIL NIL NIL) (-774 1785757 1785819 1785998 "NODE1" 1786192 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-773 1784042 1784893 1785148 "NNI" 1785495 T NNI (NIL) -8 NIL NIL 1785730) (-772 1782462 1782775 1783139 "NLINSOL" 1783710 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-771 1778703 1779698 1780597 "NIPROB" 1781583 T NIPROB (NIL) -8 NIL NIL NIL) (-770 1777460 1777694 1777996 "NFINTBAS" 1778465 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-769 1776634 1777110 1777151 "NETCLT" 1777323 NIL NETCLT (NIL T) -9 NIL 1777405 NIL) (-768 1775342 1775573 1775854 "NCODIV" 1776402 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-767 1775104 1775141 1775216 "NCNTFRAC" 1775299 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-766 1773284 1773648 1774068 "NCEP" 1774729 NIL NCEP (NIL T) -7 NIL NIL NIL) (-765 1772142 1772908 1772936 "NASRING" 1773046 T NASRING (NIL) -9 NIL 1773126 NIL) (-764 1771937 1771981 1772075 "NASRING-" 1772080 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-763 1771044 1771569 1771597 "NARNG" 1771714 T NARNG (NIL) -9 NIL 1771805 NIL) (-762 1770736 1770803 1770937 "NARNG-" 1770942 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-761 1769615 1769822 1770057 "NAGSP" 1770521 T NAGSP (NIL) -7 NIL NIL NIL) (-760 1760887 1762571 1764244 "NAGS" 1767962 T NAGS (NIL) -7 NIL NIL NIL) (-759 1759435 1759743 1760074 "NAGF07" 1760576 T NAGF07 (NIL) -7 NIL NIL NIL) (-758 1753973 1755264 1756571 "NAGF04" 1758148 T NAGF04 (NIL) -7 NIL NIL NIL) (-757 1746941 1748555 1750188 "NAGF02" 1752360 T NAGF02 (NIL) -7 NIL NIL NIL) (-756 1742165 1743265 1744382 "NAGF01" 1745844 T NAGF01 (NIL) -7 NIL NIL NIL) (-755 1735793 1737359 1738944 "NAGE04" 1740600 T NAGE04 (NIL) -7 NIL NIL NIL) (-754 1726962 1729083 1731213 "NAGE02" 1733683 T NAGE02 (NIL) -7 NIL NIL NIL) (-753 1722915 1723862 1724826 "NAGE01" 1726018 T NAGE01 (NIL) -7 NIL NIL NIL) (-752 1720710 1721244 1721802 "NAGD03" 1722377 T NAGD03 (NIL) -7 NIL NIL NIL) (-751 1712460 1714388 1716342 "NAGD02" 1718776 T NAGD02 (NIL) -7 NIL NIL NIL) (-750 1706271 1707696 1709136 "NAGD01" 1711040 T NAGD01 (NIL) -7 NIL NIL NIL) (-749 1702480 1703302 1704139 "NAGC06" 1705454 T NAGC06 (NIL) -7 NIL NIL NIL) (-748 1700945 1701277 1701633 "NAGC05" 1702144 T NAGC05 (NIL) -7 NIL NIL NIL) (-747 1700321 1700440 1700584 "NAGC02" 1700821 T NAGC02 (NIL) -7 NIL NIL NIL) (-746 1699280 1699863 1699903 "NAALG" 1699982 NIL NAALG (NIL T) -9 NIL 1700043 NIL) (-745 1699115 1699144 1699234 "NAALG-" 1699239 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-744 1693065 1694173 1695360 "MULTSQFR" 1698011 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-743 1692384 1692459 1692643 "MULTFACT" 1692977 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-742 1685108 1689021 1689074 "MTSCAT" 1690144 NIL MTSCAT (NIL T T) -9 NIL 1690659 NIL) (-741 1684820 1684874 1684966 "MTHING" 1685048 NIL MTHING (NIL T) -7 NIL NIL NIL) (-740 1684612 1684645 1684705 "MSYSCMD" 1684780 T MSYSCMD (NIL) -7 NIL NIL NIL) (-739 1681681 1684173 1684214 "MSETAGG" 1684219 NIL MSETAGG (NIL T) -9 NIL 1684253 NIL) (-738 1677763 1680436 1680756 "MSET" 1681394 NIL MSET (NIL T) -8 NIL NIL NIL) (-737 1673606 1675142 1675887 "MRING" 1677063 NIL MRING (NIL T T) -8 NIL NIL NIL) (-736 1673172 1673239 1673370 "MRF2" 1673533 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-735 1672790 1672825 1672969 "MRATFAC" 1673131 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-734 1670402 1670697 1671128 "MPRFF" 1672495 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-733 1664725 1670256 1670353 "MPOLY" 1670358 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-732 1664215 1664250 1664458 "MPCPF" 1664684 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-731 1663729 1663772 1663956 "MPC3" 1664166 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-730 1662924 1663005 1663226 "MPC2" 1663644 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-729 1661225 1661562 1661952 "MONOTOOL" 1662584 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-728 1660450 1660767 1660795 "MONOID" 1661014 T MONOID (NIL) -9 NIL 1661161 NIL) (-727 1659996 1660115 1660296 "MONOID-" 1660301 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-726 1650480 1656422 1656481 "MONOGEN" 1657155 NIL MONOGEN (NIL T T) -9 NIL 1657611 NIL) (-725 1647719 1648447 1649440 "MONOGEN-" 1649559 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-724 1646552 1646998 1647026 "MONADWU" 1647418 T MONADWU (NIL) -9 NIL 1647656 NIL) (-723 1645924 1646083 1646331 "MONADWU-" 1646336 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-722 1645283 1645527 1645555 "MONAD" 1645762 T MONAD (NIL) -9 NIL 1645874 NIL) (-721 1644968 1645046 1645178 "MONAD-" 1645183 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-720 1643257 1643881 1644160 "MOEBIUS" 1644721 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-719 1642535 1642939 1642979 "MODULE" 1642984 NIL MODULE (NIL T) -9 NIL 1643023 NIL) (-718 1642103 1642199 1642389 "MODULE-" 1642394 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-717 1639827 1640511 1640838 "MODRING" 1641927 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-716 1636773 1637932 1638453 "MODOP" 1639356 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-715 1635361 1635840 1636117 "MODMONOM" 1636636 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-714 1625443 1633652 1634066 "MODMON" 1634998 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-713 1622625 1624311 1624587 "MODFIELD" 1625318 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-712 1621602 1621906 1622096 "MMLFORM" 1622455 T MMLFORM (NIL) -8 NIL NIL NIL) (-711 1621128 1621171 1621350 "MMAP" 1621553 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-710 1619207 1619974 1620015 "MLO" 1620438 NIL MLO (NIL T) -9 NIL 1620680 NIL) (-709 1616573 1617089 1617691 "MLIFT" 1618688 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-708 1615964 1616048 1616202 "MKUCFUNC" 1616484 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-707 1615563 1615633 1615756 "MKRECORD" 1615887 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-706 1614610 1614772 1615000 "MKFUNC" 1615374 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-705 1613998 1614102 1614258 "MKFLCFN" 1614493 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-704 1613275 1613377 1613562 "MKBCFUNC" 1613891 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-703 1609984 1612829 1612965 "MINT" 1613159 T MINT (NIL) -8 NIL NIL NIL) (-702 1608796 1609039 1609316 "MHROWRED" 1609739 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-701 1604185 1607331 1607736 "MFLOAT" 1608411 T MFLOAT (NIL) -8 NIL NIL NIL) (-700 1603542 1603618 1603789 "MFINFACT" 1604097 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-699 1599877 1600720 1601599 "MESH" 1602683 T MESH (NIL) -7 NIL NIL NIL) (-698 1598267 1598579 1598932 "MDDFACT" 1599564 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-697 1595062 1597426 1597467 "MDAGG" 1597722 NIL MDAGG (NIL T) -9 NIL 1597865 NIL) (-696 1584820 1594355 1594562 "MCMPLX" 1594875 T MCMPLX (NIL) -8 NIL NIL NIL) (-695 1583961 1584107 1584307 "MCDEN" 1584669 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-694 1581851 1582121 1582501 "MCALCFN" 1583691 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-693 1580776 1581016 1581249 "MAYBE" 1581657 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-692 1578388 1578911 1579473 "MATSTOR" 1580247 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-691 1574344 1577760 1578008 "MATRIX" 1578173 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-690 1570108 1570817 1571553 "MATLIN" 1573701 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-689 1568702 1568855 1569188 "MATCAT2" 1569943 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-688 1558802 1561991 1562068 "MATCAT" 1566951 NIL MATCAT (NIL T T T) -9 NIL 1568368 NIL) (-687 1555158 1556179 1557535 "MATCAT-" 1557540 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-686 1553270 1553594 1553978 "MAPPKG3" 1554833 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-685 1552251 1552424 1552646 "MAPPKG2" 1553094 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-684 1550750 1551034 1551361 "MAPPKG1" 1551957 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-683 1549829 1550156 1550333 "MAPPAST" 1550593 T MAPPAST (NIL) -8 NIL NIL NIL) (-682 1549440 1549498 1549621 "MAPHACK3" 1549765 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-681 1549032 1549093 1549207 "MAPHACK2" 1549372 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-680 1548469 1548573 1548715 "MAPHACK1" 1548923 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-679 1546548 1547169 1547473 "MAGMA" 1548197 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-678 1546027 1546272 1546363 "MACROAST" 1546477 T MACROAST (NIL) -8 NIL NIL NIL) (-677 1542445 1544266 1544727 "M3D" 1545599 NIL M3D (NIL T) -8 NIL NIL NIL) (-676 1536553 1540814 1540855 "LZSTAGG" 1541637 NIL LZSTAGG (NIL T) -9 NIL 1541932 NIL) (-675 1532510 1533684 1535141 "LZSTAGG-" 1535146 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-674 1529597 1530401 1530888 "LWORD" 1532055 NIL LWORD (NIL T) -8 NIL NIL NIL) (-673 1529173 1529401 1529476 "LSTAST" 1529542 T LSTAST (NIL) -8 NIL NIL NIL) (-672 1522370 1528944 1529078 "LSQM" 1529083 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-671 1521594 1521733 1521961 "LSPP" 1522225 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-670 1518436 1519093 1519806 "LSMP1" 1520913 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-669 1516271 1516565 1517014 "LSMP" 1518132 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-668 1510150 1515438 1515479 "LSAGG" 1515541 NIL LSAGG (NIL T) -9 NIL 1515619 NIL) (-667 1506845 1507769 1508982 "LSAGG-" 1508987 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-666 1504444 1505989 1506238 "LPOLY" 1506640 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-665 1504026 1504111 1504234 "LPEFRAC" 1504353 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-664 1503678 1503790 1503818 "LOGIC" 1503929 T LOGIC (NIL) -9 NIL 1504010 NIL) (-663 1503540 1503563 1503634 "LOGIC-" 1503639 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-662 1502733 1502873 1503066 "LODOOPS" 1503396 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-661 1501271 1501506 1501859 "LODOF" 1502480 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-660 1497503 1499920 1499961 "LODOCAT" 1500399 NIL LODOCAT (NIL T) -9 NIL 1500610 NIL) (-659 1497236 1497294 1497421 "LODOCAT-" 1497426 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-658 1494570 1497077 1497195 "LODO2" 1497200 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-657 1492019 1494507 1494552 "LODO1" 1494557 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-656 1489456 1491935 1492001 "LODO" 1492006 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-655 1488337 1488502 1488807 "LODEEF" 1489279 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-654 1486658 1487431 1487684 "LO" 1488169 NIL LO (NIL T T T) -8 NIL NIL NIL) (-653 1481897 1484788 1484829 "LNAGG" 1485776 NIL LNAGG (NIL T) -9 NIL 1486220 NIL) (-652 1481044 1481258 1481600 "LNAGG-" 1481605 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-651 1477180 1477969 1478608 "LMOPS" 1480459 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-650 1476583 1476971 1477012 "LMODULE" 1477017 NIL LMODULE (NIL T) -9 NIL 1477043 NIL) (-649 1473781 1476228 1476351 "LMDICT" 1476493 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-648 1473187 1473408 1473449 "LLINSET" 1473640 NIL LLINSET (NIL T) -9 NIL 1473731 NIL) (-647 1472886 1473095 1473155 "LITERAL" 1473160 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-646 1472411 1472485 1472624 "LIST3" 1472806 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-645 1470545 1470857 1471256 "LIST2MAP" 1472058 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-644 1469552 1469730 1469958 "LIST2" 1470363 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-643 1462717 1468486 1468790 "LIST" 1469281 NIL LIST (NIL T) -8 NIL NIL NIL) (-642 1462313 1462550 1462591 "LINSET" 1462596 NIL LINSET (NIL T) -9 NIL 1462630 NIL) (-641 1460974 1461644 1461685 "LINEXP" 1461940 NIL LINEXP (NIL T) -9 NIL 1462089 NIL) (-640 1459621 1459881 1460178 "LINDEP" 1460726 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-639 1456459 1457159 1457917 "LIMITRF" 1458895 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-638 1454785 1455074 1455476 "LIMITPS" 1456161 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-637 1453733 1454202 1454242 "LIECAT" 1454382 NIL LIECAT (NIL T) -9 NIL 1454533 NIL) (-636 1453574 1453601 1453689 "LIECAT-" 1453694 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-635 1448034 1453085 1453313 "LIE" 1453395 NIL LIE (NIL T T) -8 NIL NIL NIL) (-634 1440532 1447483 1447648 "LIB" 1447889 T LIB (NIL) -8 NIL NIL NIL) (-633 1436167 1437050 1437985 "LGROBP" 1439649 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-632 1435007 1435699 1435727 "LFCAT" 1435934 T LFCAT (NIL) -9 NIL 1436073 NIL) (-631 1433005 1433279 1433629 "LF" 1434728 NIL LF (NIL T T) -7 NIL NIL NIL) (-630 1429907 1430537 1431225 "LEXTRIPK" 1432369 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-629 1426651 1427477 1427980 "LEXP" 1429487 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-628 1426127 1426372 1426464 "LETAST" 1426579 T LETAST (NIL) -8 NIL NIL NIL) (-627 1424525 1424838 1425239 "LEADCDET" 1425809 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-626 1423715 1423789 1424018 "LAZM3PK" 1424446 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-625 1418646 1421792 1422330 "LAUPOL" 1423227 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-624 1418225 1418269 1418430 "LAPLACE" 1418596 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-623 1417219 1417803 1417844 "LALG" 1417906 NIL LALG (NIL T) -9 NIL 1417965 NIL) (-622 1416933 1416992 1417128 "LALG-" 1417133 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-621 1414872 1416034 1416285 "LA" 1416766 NIL LA (NIL T T T) -8 NIL NIL NIL) (-620 1414707 1414731 1414772 "KVTFROM" 1414834 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-619 1413630 1414074 1414259 "KTVLOGIC" 1414542 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-618 1413465 1413489 1413530 "KRCFROM" 1413592 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-617 1412369 1412556 1412855 "KOVACIC" 1413265 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-616 1412204 1412228 1412269 "KONVERT" 1412331 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-615 1412039 1412063 1412104 "KOERCE" 1412166 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-614 1411535 1411616 1411748 "KERNEL2" 1411953 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-613 1409365 1410128 1410505 "KERNEL" 1411191 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-612 1403135 1407904 1407958 "KDAGG" 1408335 NIL KDAGG (NIL T T) -9 NIL 1408541 NIL) (-611 1402664 1402788 1402993 "KDAGG-" 1402998 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-610 1395814 1402325 1402480 "KAFILE" 1402542 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-609 1390274 1395325 1395553 "JORDAN" 1395635 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-608 1389653 1389923 1390044 "JOINAST" 1390173 T JOINAST (NIL) -8 NIL NIL NIL) (-607 1389499 1389558 1389613 "JAVACODE" 1389618 T JAVACODE (NIL) -8 NIL NIL NIL) (-606 1385751 1387704 1387758 "IXAGG" 1388687 NIL IXAGG (NIL T T) -9 NIL 1389146 NIL) (-605 1384670 1384976 1385395 "IXAGG-" 1385400 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-604 1380200 1384592 1384651 "IVECTOR" 1384656 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-603 1378966 1379203 1379469 "ITUPLE" 1379967 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-602 1377468 1377645 1377940 "ITRIGMNP" 1378788 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-601 1376213 1376417 1376700 "ITFUN3" 1377244 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-600 1375845 1375902 1376011 "ITFUN2" 1376150 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-599 1373806 1374865 1375143 "ITAYLOR" 1375600 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-598 1362751 1367943 1369106 "ISUPS" 1372676 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-597 1361855 1361995 1362231 "ISUMP" 1362598 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-596 1357230 1361800 1361841 "ISTRING" 1361846 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-595 1356706 1356951 1357043 "ISAST" 1357158 T ISAST (NIL) -8 NIL NIL NIL) (-594 1355915 1355997 1356213 "IRURPK" 1356620 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-593 1354851 1355052 1355292 "IRSN" 1355695 T IRSN (NIL) -7 NIL NIL NIL) (-592 1352922 1353277 1353706 "IRRF2F" 1354489 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-591 1352669 1352707 1352783 "IRREDFFX" 1352878 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-590 1351284 1351543 1351842 "IROOT" 1352402 NIL IROOT (NIL T) -7 NIL NIL NIL) (-589 1351203 1351229 1351264 "IRFORM" 1351269 T IRFORM (NIL) -8 NIL NIL NIL) (-588 1350303 1350416 1350630 "IR2F" 1351086 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-587 1347916 1348411 1348977 "IR2" 1349781 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-586 1344520 1345600 1346292 "IR" 1347256 NIL IR (NIL T) -8 NIL NIL NIL) (-585 1344311 1344345 1344405 "IPRNTPK" 1344480 T IPRNTPK (NIL) -7 NIL NIL NIL) (-584 1340894 1344200 1344269 "IPF" 1344274 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-583 1339223 1340819 1340876 "IPADIC" 1340881 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-582 1338535 1338783 1338913 "IP4ADDR" 1339113 T IP4ADDR (NIL) -8 NIL NIL NIL) (-581 1338008 1338239 1338349 "IOMODE" 1338445 T IOMODE (NIL) -8 NIL NIL NIL) (-580 1337081 1337605 1337732 "IOBFILE" 1337901 T IOBFILE (NIL) -8 NIL NIL NIL) (-579 1336569 1336985 1337013 "IOBCON" 1337018 T IOBCON (NIL) -9 NIL 1337039 NIL) (-578 1336080 1336138 1336321 "INVLAPLA" 1336505 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-577 1325776 1328118 1330492 "INTTR" 1333756 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-576 1322111 1322853 1323718 "INTTOOLS" 1324961 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-575 1321697 1321788 1321905 "INTSLPE" 1322014 T INTSLPE (NIL) -7 NIL NIL NIL) (-574 1319650 1321620 1321679 "INTRVL" 1321684 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-573 1317252 1317764 1318339 "INTRF" 1319135 NIL INTRF (NIL T) -7 NIL NIL NIL) (-572 1316663 1316760 1316902 "INTRET" 1317150 NIL INTRET (NIL T) -7 NIL NIL NIL) (-571 1314660 1315049 1315519 "INTRAT" 1316271 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-570 1311923 1312506 1313125 "INTPM" 1314145 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-569 1308691 1309283 1310014 "INTPAF" 1311316 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-568 1303870 1304832 1305883 "INTPACK" 1307660 T INTPACK (NIL) -7 NIL NIL NIL) (-567 1303122 1303274 1303482 "INTHERTR" 1303712 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-566 1302561 1302641 1302829 "INTHERAL" 1303036 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-565 1300407 1300850 1301307 "INTHEORY" 1302124 T INTHEORY (NIL) -7 NIL NIL NIL) (-564 1291871 1293474 1295228 "INTG0" 1298777 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-563 1278144 1281509 1284894 "INTFTBL" 1288506 T INTFTBL (NIL) -8 NIL NIL NIL) (-562 1277393 1277531 1277704 "INTFACT" 1278003 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-561 1274826 1275270 1275825 "INTEF" 1276949 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-560 1273193 1273932 1273960 "INTDOM" 1274261 T INTDOM (NIL) -9 NIL 1274468 NIL) (-559 1272562 1272736 1272978 "INTDOM-" 1272983 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-558 1268950 1270878 1270932 "INTCAT" 1271731 NIL INTCAT (NIL T) -9 NIL 1272052 NIL) (-557 1268422 1268525 1268653 "INTBIT" 1268842 T INTBIT (NIL) -7 NIL NIL NIL) (-556 1267121 1267275 1267582 "INTALG" 1268267 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-555 1266604 1266694 1266851 "INTAF" 1267025 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-554 1259949 1266414 1266554 "INTABL" 1266559 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-553 1259290 1259756 1259821 "INT8" 1259855 T INT8 (NIL) -8 NIL NIL 1259900) (-552 1258630 1259096 1259161 "INT64" 1259195 T INT64 (NIL) -8 NIL NIL 1259240) (-551 1257970 1258436 1258501 "INT32" 1258535 T INT32 (NIL) -8 NIL NIL 1258580) (-550 1257310 1257776 1257841 "INT16" 1257875 T INT16 (NIL) -8 NIL NIL 1257920) (-549 1254260 1257107 1257216 "INT" 1257221 T INT (NIL) -8 NIL NIL NIL) (-548 1249172 1251883 1251911 "INS" 1252845 T INS (NIL) -9 NIL 1253510 NIL) (-547 1246412 1247183 1248157 "INS-" 1248230 NIL INS- (NIL T) -8 NIL NIL NIL) (-546 1245260 1245465 1245741 "INPSIGN" 1246187 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-545 1244378 1244495 1244692 "INPRODPF" 1245140 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-544 1243272 1243389 1243626 "INPRODFF" 1244258 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-543 1242272 1242424 1242684 "INNMFACT" 1243108 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-542 1241469 1241566 1241754 "INMODGCD" 1242171 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-541 1239977 1240222 1240546 "INFSP" 1241214 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-540 1239161 1239278 1239461 "INFPROD0" 1239857 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-539 1238771 1238831 1238929 "INFORM1" 1239096 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-538 1235626 1236836 1237351 "INFORM" 1238264 T INFORM (NIL) -8 NIL NIL NIL) (-537 1235149 1235238 1235352 "INFINITY" 1235532 T INFINITY (NIL) -7 NIL NIL NIL) (-536 1234325 1234869 1234970 "INETCLTS" 1235068 T INETCLTS (NIL) -8 NIL NIL NIL) (-535 1232941 1233191 1233512 "INEP" 1234073 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-534 1232190 1232838 1232903 "INDE" 1232908 NIL INDE (NIL T) -8 NIL NIL NIL) (-533 1231754 1231822 1231939 "INCRMAPS" 1232117 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-532 1230572 1231023 1231229 "INBFILE" 1231568 T INBFILE (NIL) -8 NIL NIL NIL) (-531 1225872 1226808 1227752 "INBFF" 1229660 NIL INBFF (NIL T) -7 NIL NIL NIL) (-530 1224780 1225049 1225077 "INBCON" 1225590 T INBCON (NIL) -9 NIL 1225856 NIL) (-529 1224032 1224255 1224531 "INBCON-" 1224536 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-528 1223511 1223756 1223847 "INAST" 1223961 T INAST (NIL) -8 NIL NIL NIL) (-527 1222938 1223190 1223296 "IMPTAST" 1223425 T IMPTAST (NIL) -8 NIL NIL NIL) (-526 1219383 1222782 1222886 "IMATRIX" 1222891 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-525 1218095 1218218 1218533 "IMATQF" 1219239 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-524 1216315 1216542 1216879 "IMATLIN" 1217851 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-523 1210895 1216239 1216297 "ILIST" 1216302 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-522 1208800 1210755 1210868 "IIARRAY2" 1210873 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-521 1204200 1208711 1208775 "IFF" 1208780 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-520 1203547 1203817 1203933 "IFAST" 1204104 T IFAST (NIL) -8 NIL NIL NIL) (-519 1198542 1202839 1203027 "IFARRAY" 1203404 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-518 1197722 1198446 1198519 "IFAMON" 1198524 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-517 1197306 1197371 1197425 "IEVALAB" 1197632 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-516 1196981 1197049 1197209 "IEVALAB-" 1197214 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-515 1196231 1196870 1196945 "IDPOAMS" 1196950 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-514 1195538 1196120 1196195 "IDPOAM" 1196200 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-513 1195169 1195452 1195515 "IDPO" 1195520 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-512 1194228 1194504 1194557 "IDPC" 1194970 NIL IDPC (NIL T T) -9 NIL 1195119 NIL) (-511 1193697 1194120 1194193 "IDPAM" 1194198 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-510 1193073 1193589 1193662 "IDPAG" 1193667 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-509 1192718 1192909 1192984 "IDENT" 1193018 T IDENT (NIL) -8 NIL NIL NIL) (-508 1188973 1189821 1190716 "IDECOMP" 1191875 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-507 1181811 1182896 1183943 "IDEAL" 1188009 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-506 1180975 1181087 1181286 "ICDEN" 1181695 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-505 1180046 1180455 1180602 "ICARD" 1180848 T ICARD (NIL) -8 NIL NIL NIL) (-504 1178106 1178419 1178824 "IBPTOOLS" 1179723 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-503 1173713 1177726 1177839 "IBITS" 1178025 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-502 1170436 1171012 1171707 "IBATOOL" 1173130 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-501 1168215 1168677 1169210 "IBACHIN" 1169971 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-500 1166044 1168061 1168164 "IARRAY2" 1168169 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-499 1162150 1165970 1166027 "IARRAY1" 1166032 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-498 1156268 1160562 1161043 "IAN" 1161689 T IAN (NIL) -8 NIL NIL NIL) (-497 1155779 1155836 1156009 "IALGFACT" 1156205 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-496 1155307 1155420 1155448 "HYPCAT" 1155655 T HYPCAT (NIL) -9 NIL NIL NIL) (-495 1154845 1154962 1155148 "HYPCAT-" 1155153 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-494 1154440 1154640 1154723 "HOSTNAME" 1154782 T HOSTNAME (NIL) -8 NIL NIL NIL) (-493 1154285 1154322 1154363 "HOMOTOP" 1154368 NIL HOMOTOP (NIL T) -9 NIL 1154401 NIL) (-492 1150917 1152295 1152336 "HOAGG" 1153317 NIL HOAGG (NIL T) -9 NIL 1153996 NIL) (-491 1149511 1149910 1150436 "HOAGG-" 1150441 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-490 1143536 1149106 1149255 "HEXADEC" 1149382 T HEXADEC (NIL) -8 NIL NIL NIL) (-489 1142284 1142506 1142769 "HEUGCD" 1143313 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-488 1141360 1142121 1142251 "HELLFDIV" 1142256 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-487 1139539 1141137 1141225 "HEAP" 1141304 NIL HEAP (NIL T) -8 NIL NIL NIL) (-486 1138802 1139091 1139225 "HEADAST" 1139425 T HEADAST (NIL) -8 NIL NIL NIL) (-485 1132675 1138717 1138779 "HDP" 1138784 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-484 1126694 1132310 1132462 "HDMP" 1132576 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-483 1126018 1126158 1126322 "HB" 1126550 T HB (NIL) -7 NIL NIL NIL) (-482 1119406 1125864 1125968 "HASHTBL" 1125973 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-481 1118882 1119127 1119219 "HASAST" 1119334 T HASAST (NIL) -8 NIL NIL NIL) (-480 1116664 1118504 1118686 "HACKPI" 1118720 T HACKPI (NIL) -8 NIL NIL NIL) (-479 1112359 1116517 1116630 "GTSET" 1116635 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-478 1105776 1112237 1112335 "GSTBL" 1112340 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-477 1098056 1104807 1105072 "GSERIES" 1105567 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-476 1097197 1097614 1097642 "GROUP" 1097845 T GROUP (NIL) -9 NIL 1097979 NIL) (-475 1096563 1096722 1096973 "GROUP-" 1096978 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-474 1094930 1095251 1095638 "GROEBSOL" 1096240 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-473 1093844 1094132 1094183 "GRMOD" 1094712 NIL GRMOD (NIL T T) -9 NIL 1094880 NIL) (-472 1093612 1093648 1093776 "GRMOD-" 1093781 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-471 1088902 1089966 1090966 "GRIMAGE" 1092632 T GRIMAGE (NIL) -8 NIL NIL NIL) (-470 1087368 1087629 1087953 "GRDEF" 1088598 T GRDEF (NIL) -7 NIL NIL NIL) (-469 1086812 1086928 1087069 "GRAY" 1087247 T GRAY (NIL) -7 NIL NIL NIL) (-468 1085999 1086405 1086456 "GRALG" 1086609 NIL GRALG (NIL T T) -9 NIL 1086702 NIL) (-467 1085660 1085733 1085896 "GRALG-" 1085901 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-466 1082437 1085245 1085423 "GPOLSET" 1085567 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-465 1081791 1081848 1082106 "GOSPER" 1082374 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-464 1077523 1078229 1078755 "GMODPOL" 1081490 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-463 1076528 1076712 1076950 "GHENSEL" 1077335 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-462 1070684 1071527 1072547 "GENUPS" 1075612 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-461 1070381 1070432 1070521 "GENUFACT" 1070627 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-460 1069793 1069870 1070035 "GENPGCD" 1070299 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-459 1069267 1069302 1069515 "GENMFACT" 1069752 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-458 1067833 1068090 1068397 "GENEEZ" 1069010 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-457 1062010 1067444 1067606 "GDMP" 1067756 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-456 1051374 1055781 1056887 "GCNAALG" 1060993 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-455 1049701 1050563 1050591 "GCDDOM" 1050846 T GCDDOM (NIL) -9 NIL 1051003 NIL) (-454 1049171 1049298 1049513 "GCDDOM-" 1049518 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-453 1037787 1040117 1042509 "GBINTERN" 1046862 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-452 1035624 1035916 1036337 "GBF" 1037462 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-451 1034405 1034570 1034837 "GBEUCLID" 1035440 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-450 1033077 1033262 1033566 "GB" 1034184 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1032426 1032551 1032700 "GAUSSFAC" 1032948 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-448 1030793 1031095 1031409 "GALUTIL" 1032145 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-447 1029101 1029375 1029699 "GALPOLYU" 1030520 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-446 1026466 1026756 1027163 "GALFACTU" 1028798 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-445 1018271 1019771 1021379 "GALFACT" 1024898 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-444 1015659 1016317 1016345 "FVFUN" 1017501 T FVFUN (NIL) -9 NIL 1018221 NIL) (-443 1014925 1015107 1015135 "FVC" 1015426 T FVC (NIL) -9 NIL 1015609 NIL) (-442 1014568 1014750 1014818 "FUNDESC" 1014877 T FUNDESC (NIL) -8 NIL NIL NIL) (-441 1014183 1014365 1014446 "FUNCTION" 1014520 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-440 1012974 1013484 1013687 "FTEM" 1014000 T FTEM (NIL) -8 NIL NIL NIL) (-439 1010730 1011305 1011768 "FT" 1012531 T FT (NIL) -8 NIL NIL NIL) (-438 1009021 1009310 1009707 "FSUPFACT" 1010421 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-437 1007418 1007707 1008039 "FST" 1008709 T FST (NIL) -8 NIL NIL NIL) (-436 1006617 1006723 1006911 "FSRED" 1007300 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-435 1005316 1005572 1005919 "FSPRMELT" 1006332 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-434 1002622 1003060 1003546 "FSPECF" 1004879 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-433 1002150 1002204 1002374 "FSINT" 1002563 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-432 1000442 1001143 1001446 "FSERIES" 1001929 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-431 999484 999600 999824 "FSCINT" 1000322 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-430 998526 998669 998896 "FSAGG2" 999337 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-429 994734 997470 997511 "FSAGG" 997881 NIL FSAGG (NIL T) -9 NIL 998140 NIL) (-428 992496 993097 993893 "FSAGG-" 993988 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-427 990178 990458 991005 "FS2UPS" 992214 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-426 989056 989227 989529 "FS2EXPXP" 990003 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-425 988690 988733 988862 "FS2" 989007 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-424 970357 978659 978700 "FS" 982584 NIL FS (NIL T) -9 NIL 984873 NIL) (-423 959081 962047 966077 "FS-" 966377 NIL FS- (NIL T T) -8 NIL NIL NIL) (-422 958507 958622 958774 "FRUTIL" 958961 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-421 953508 956150 956190 "FRNAALG" 957586 NIL FRNAALG (NIL T) -9 NIL 958193 NIL) (-420 949232 950291 951549 "FRNAALG-" 952299 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-419 948870 948913 949040 "FRNAAF2" 949183 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-418 947250 947724 948019 "FRMOD" 948682 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-417 946445 946532 946821 "FRIDEAL2" 947157 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-416 944196 944828 945145 "FRIDEAL" 946236 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-415 943336 943743 943784 "FRETRCT" 943789 NIL FRETRCT (NIL T) -9 NIL 943965 NIL) (-414 942469 942693 943037 "FRETRCT-" 943042 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-413 939557 940767 940826 "FRAMALG" 941708 NIL FRAMALG (NIL T T) -9 NIL 942000 NIL) (-412 937691 938146 938776 "FRAMALG-" 938999 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-411 937327 937384 937491 "FRAC2" 937628 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-410 931269 936802 937078 "FRAC" 937083 NIL FRAC (NIL T) -8 NIL NIL NIL) (-409 930905 930962 931069 "FR2" 931206 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-408 922433 926481 927812 "FR" 929606 NIL FR (NIL T) -8 NIL NIL NIL) (-407 916950 919839 919867 "FPS" 920986 T FPS (NIL) -9 NIL 921543 NIL) (-406 916399 916508 916672 "FPS-" 916818 NIL FPS- (NIL T) -8 NIL NIL NIL) (-405 913703 915370 915398 "FPC" 915623 T FPC (NIL) -9 NIL 915765 NIL) (-404 913496 913536 913633 "FPC-" 913638 NIL FPC- (NIL T) -8 NIL NIL NIL) (-403 912286 912984 913025 "FPATMAB" 913030 NIL FPATMAB (NIL T) -9 NIL 913182 NIL) (-402 909959 910462 910888 "FPARFRAC" 911923 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-401 905392 905890 906572 "FORTRAN" 909391 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-400 903068 903630 903658 "FORTFN" 904718 T FORTFN (NIL) -9 NIL 905342 NIL) (-399 902832 902882 902910 "FORTCAT" 902969 T FORTCAT (NIL) -9 NIL 903031 NIL) (-398 900548 901048 901587 "FORT" 902313 T FORT (NIL) -7 NIL NIL NIL) (-397 900336 900366 900435 "FORMULA1" 900512 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-396 898442 898952 899342 "FORMULA" 899966 T FORMULA (NIL) -8 NIL NIL NIL) (-395 897965 898017 898190 "FORDER" 898384 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-394 897061 897225 897418 "FOP" 897792 T FOP (NIL) -7 NIL NIL NIL) (-393 895642 896341 896515 "FNLA" 896943 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-392 894371 894786 894814 "FNCAT" 895274 T FNCAT (NIL) -9 NIL 895534 NIL) (-391 893910 894330 894358 "FNAME" 894363 T FNAME (NIL) -8 NIL NIL NIL) (-390 892473 893436 893464 "FMTC" 893469 T FMTC (NIL) -9 NIL 893505 NIL) (-389 891226 892409 892455 "FMONOID" 892460 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-388 888054 889222 889263 "FMONCAT" 890480 NIL FMONCAT (NIL T) -9 NIL 891085 NIL) (-387 885478 886124 886152 "FMFUN" 887296 T FMFUN (NIL) -9 NIL 888004 NIL) (-386 882557 883417 883471 "FMCAT" 884666 NIL FMCAT (NIL T T) -9 NIL 885161 NIL) (-385 881826 882007 882035 "FMC" 882325 T FMC (NIL) -9 NIL 882507 NIL) (-384 880692 881592 881692 "FM1" 881771 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-383 879884 880434 880583 "FM" 880588 NIL FM (NIL T T) -8 NIL NIL NIL) (-382 877658 878074 878568 "FLOATRP" 879435 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 875096 875596 876174 "FLOATCP" 877125 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-380 868674 872825 873446 "FLOAT" 874495 T FLOAT (NIL) -8 NIL NIL NIL) (-379 867414 868252 868293 "FLINEXP" 868298 NIL FLINEXP (NIL T) -9 NIL 868391 NIL) (-378 866568 866803 867131 "FLINEXP-" 867136 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 865644 865788 866012 "FLASORT" 866420 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 862760 863628 863680 "FLALG" 864907 NIL FLALG (NIL T T) -9 NIL 865374 NIL) (-375 861802 861945 862172 "FLAGG2" 862613 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-374 855538 859288 859329 "FLAGG" 860591 NIL FLAGG (NIL T) -9 NIL 861243 NIL) (-373 854264 854603 855093 "FLAGG-" 855098 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-372 851115 852123 852182 "FINRALG" 853310 NIL FINRALG (NIL T T) -9 NIL 853818 NIL) (-371 850275 850504 850843 "FINRALG-" 850848 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 849655 849894 849922 "FINITE" 850118 T FINITE (NIL) -9 NIL 850225 NIL) (-369 842012 844199 844239 "FINAALG" 847906 NIL FINAALG (NIL T) -9 NIL 849359 NIL) (-368 837344 838394 839538 "FINAALG-" 840917 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 836002 836340 836394 "FILECAT" 837078 NIL FILECAT (NIL T T) -9 NIL 837294 NIL) (-366 835370 835757 835860 "FILE" 835932 NIL FILE (NIL T) -8 NIL NIL NIL) (-365 833088 834614 834642 "FIELD" 834682 T FIELD (NIL) -9 NIL 834762 NIL) (-364 831708 832093 832604 "FIELD-" 832609 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 829558 830343 830690 "FGROUP" 831394 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 828648 828812 829032 "FGLMICPK" 829390 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 824482 828573 828630 "FFX" 828635 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 824083 824144 824279 "FFSLPE" 824415 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 823587 823623 823832 "FFPOLY2" 824041 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-358 819577 820359 821155 "FFPOLY" 822823 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-357 815423 819496 819559 "FFP" 819564 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 810551 814766 814956 "FFNBX" 815277 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-355 805481 809686 809944 "FFNBP" 810405 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-354 800116 804765 804976 "FFNB" 805314 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-353 798948 799146 799461 "FFINTBAS" 799913 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-352 795019 797237 797265 "FFIELDC" 797885 T FFIELDC (NIL) -9 NIL 798261 NIL) (-351 793681 794052 794549 "FFIELDC-" 794554 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-350 793250 793296 793420 "FFHOM" 793623 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-349 790945 791432 791949 "FFF" 792765 NIL FFF (NIL T) -7 NIL NIL NIL) (-348 786565 790687 790788 "FFCGX" 790888 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-347 782189 786297 786404 "FFCGP" 786508 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-346 777374 781916 782024 "FFCG" 782125 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-345 776785 776828 777063 "FFCAT2" 777325 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-344 758190 767262 767348 "FFCAT" 772513 NIL FFCAT (NIL T T T) -9 NIL 773964 NIL) (-343 753387 754435 755749 "FFCAT-" 756979 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 748787 753298 753362 "FF" 753367 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-341 738112 741759 742979 "FEXPR" 747639 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 737112 737547 737588 "FEVALAB" 737672 NIL FEVALAB (NIL T) -9 NIL 737933 NIL) (-339 736271 736481 736819 "FEVALAB-" 736824 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 733291 734032 734147 "FDIVCAT" 735715 NIL FDIVCAT (NIL T T T T) -9 NIL 736152 NIL) (-337 733053 733080 733250 "FDIVCAT-" 733255 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-336 732273 732360 732637 "FDIV2" 732960 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-335 730839 731656 731859 "FDIV" 732172 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-334 729813 730134 730336 "FCTRDATA" 730657 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 728499 728758 729047 "FCPAK1" 729544 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 727598 727999 728140 "FCOMP" 728390 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 711303 714748 718286 "FC" 724080 T FC (NIL) -8 NIL NIL NIL) (-330 703668 707694 707734 "FAXF" 709536 NIL FAXF (NIL T) -9 NIL 710228 NIL) (-329 700944 701602 702427 "FAXF-" 702892 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 695996 700320 700496 "FARRAY" 700801 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 690897 692957 693010 "FAMR" 694033 NIL FAMR (NIL T T) -9 NIL 694493 NIL) (-326 689787 690089 690524 "FAMR-" 690529 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 688956 689709 689762 "FAMONOID" 689767 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 686742 687452 687505 "FAMONC" 688446 NIL FAMONC (NIL T T) -9 NIL 688832 NIL) (-323 685406 686496 686633 "FAGROUP" 686638 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 683201 683520 683923 "FACUTIL" 685087 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 682300 682485 682707 "FACTFUNC" 683011 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 674724 681603 681802 "EXPUPXS" 682156 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 672207 672747 673333 "EXPRTUBE" 674158 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 668478 669070 669800 "EXPRODE" 671546 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 663032 663619 664425 "EXPR2UPS" 667776 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-316 662664 662721 662830 "EXPR2" 662969 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-315 648210 661313 661742 "EXPR" 662268 NIL EXPR (NIL T) -8 NIL NIL NIL) (-314 639626 647363 647653 "EXPEXPAN" 648047 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 639106 639350 639441 "EXITAST" 639555 T EXITAST (NIL) -8 NIL NIL NIL) (-312 638906 639063 639092 "EXIT" 639097 T EXIT (NIL) -8 NIL NIL NIL) (-311 638533 638595 638708 "EVALCYC" 638838 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 638074 638192 638233 "EVALAB" 638403 NIL EVALAB (NIL T) -9 NIL 638507 NIL) (-309 637555 637677 637898 "EVALAB-" 637903 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 634923 636225 636253 "EUCDOM" 636808 T EUCDOM (NIL) -9 NIL 637158 NIL) (-307 633328 633770 634360 "EUCDOM-" 634365 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 632960 633017 633126 "ESTOOLS2" 633265 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-305 632711 632753 632833 "ESTOOLS1" 632912 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-304 620249 623009 625759 "ESTOOLS" 629981 T ESTOOLS (NIL) -7 NIL NIL NIL) (-303 619994 620026 620108 "ESCONT1" 620211 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-302 616368 617129 617909 "ESCONT" 619234 T ESCONT (NIL) -7 NIL NIL NIL) (-301 616043 616093 616193 "ES2" 616312 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-300 615673 615731 615840 "ES1" 615979 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-299 609710 611318 611346 "ES" 614114 T ES (NIL) -9 NIL 615524 NIL) (-298 604657 605944 607761 "ES-" 607925 NIL ES- (NIL T) -8 NIL NIL NIL) (-297 603873 604002 604178 "ERROR" 604501 T ERROR (NIL) -7 NIL NIL NIL) (-296 597267 603732 603823 "EQTBL" 603828 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 596899 596956 597065 "EQ2" 597204 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-294 589402 592213 593662 "EQ" 595483 NIL -3959 (NIL T) -8 NIL NIL NIL) (-293 584692 585740 586833 "EP" 588341 NIL EP (NIL T) -7 NIL NIL NIL) (-292 583292 583583 583889 "ENV" 584406 T ENV (NIL) -8 NIL NIL NIL) (-291 582386 582940 582968 "ENTIRER" 582973 T ENTIRER (NIL) -9 NIL 583019 NIL) (-290 578909 580395 580765 "EMR" 582185 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 578053 578238 578292 "ELTAGG" 578672 NIL ELTAGG (NIL T T) -9 NIL 578883 NIL) (-288 577772 577834 577975 "ELTAGG-" 577980 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 577561 577590 577644 "ELTAB" 577728 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 576687 576833 577032 "ELFUTS" 577412 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 576429 576485 576513 "ELEMFUN" 576618 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 576299 576320 576388 "ELEMFUN-" 576393 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 571143 574399 574440 "ELAGG" 575380 NIL ELAGG (NIL T) -9 NIL 575843 NIL) (-282 569428 569862 570525 "ELAGG-" 570530 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 568089 568368 568662 "ELABEXPR" 569154 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 561080 562756 563583 "EFUPXS" 567365 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 554657 556331 557141 "EFULS" 560356 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 552142 552500 552972 "EFSTRUC" 554289 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 541933 543499 545047 "EF" 550657 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 541007 541418 541567 "EAB" 541804 T EAB (NIL) -8 NIL NIL NIL) (-275 540189 540966 540994 "E04UCFA" 540999 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 539371 540148 540176 "E04NAFA" 540181 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 538553 539330 539358 "E04MBFA" 539363 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 537735 538512 538540 "E04JAFA" 538545 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 536919 537694 537722 "E04GCFA" 537727 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 536103 536878 536906 "E04FDFA" 536911 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 535285 536062 536090 "E04DGFA" 536095 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 529458 530810 532174 "E04AGNT" 533941 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 528138 528644 528684 "DVARCAT" 529159 NIL DVARCAT (NIL T) -9 NIL 529358 NIL) (-266 527342 527554 527868 "DVARCAT-" 527873 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 520520 527141 527270 "DSMP" 527275 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 520185 520244 520342 "DROPT1" 520455 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-263 515300 516426 517563 "DROPT0" 519068 T DROPT0 (NIL) -7 NIL NIL NIL) (-262 510081 511245 512313 "DROPT" 514252 T DROPT (NIL) -8 NIL NIL NIL) (-261 508426 508751 509137 "DRAWPT" 509715 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 508059 508112 508230 "DRAWHACK" 508367 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-259 506790 507059 507350 "DRAWCX" 507788 T DRAWCX (NIL) -7 NIL NIL NIL) (-258 506305 506374 506525 "DRAWCURV" 506716 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-257 496773 498735 500850 "DRAWCFUN" 504210 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-256 491360 492283 493362 "DRAW" 495747 NIL DRAW (NIL T) -7 NIL NIL NIL) (-255 488126 490055 490096 "DQAGG" 490725 NIL DQAGG (NIL T) -9 NIL 490998 NIL) (-254 476286 482719 482802 "DPOLCAT" 484654 NIL DPOLCAT (NIL T T T T) -9 NIL 485199 NIL) (-253 471173 472505 474446 "DPOLCAT-" 474451 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 464302 471034 471132 "DPMO" 471137 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 457334 464082 464249 "DPMM" 464254 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 456812 457026 457124 "DOMTMPLT" 457256 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 456245 456614 456694 "DOMCTOR" 456752 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 455457 455725 455876 "DOMAIN" 456114 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 449476 455092 455244 "DMP" 455358 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 449076 449132 449276 "DLP" 449414 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 442900 448403 448593 "DLIST" 448918 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 439698 441753 441794 "DLAGG" 442344 NIL DLAGG (NIL T) -9 NIL 442574 NIL) (-243 438374 439038 439066 "DIVRING" 439158 T DIVRING (NIL) -9 NIL 439241 NIL) (-242 437611 437801 438101 "DIVRING-" 438106 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 435713 436070 436476 "DISPLAY" 437225 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 434561 434764 435029 "DIRPROD2" 435506 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-239 428456 434475 434538 "DIRPROD" 434543 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-238 417238 423237 423290 "DIRPCAT" 423700 NIL DIRPCAT (NIL NIL T) -9 NIL 424540 NIL) (-237 414564 415206 416087 "DIRPCAT-" 416424 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 413851 414011 414197 "DIOSP" 414398 T DIOSP (NIL) -7 NIL NIL NIL) (-235 410506 412763 412804 "DIOPS" 413238 NIL DIOPS (NIL T) -9 NIL 413467 NIL) (-234 410055 410169 410360 "DIOPS-" 410365 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 408878 409506 409534 "DIFRING" 409721 T DIFRING (NIL) -9 NIL 409831 NIL) (-232 408524 408601 408753 "DIFRING-" 408758 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 406260 407532 407573 "DIFEXT" 407936 NIL DIFEXT (NIL T) -9 NIL 408230 NIL) (-230 404545 404973 405639 "DIFEXT-" 405644 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 401820 404077 404118 "DIAGG" 404123 NIL DIAGG (NIL T) -9 NIL 404143 NIL) (-228 401204 401361 401613 "DIAGG-" 401618 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 396620 400163 400440 "DHMATRIX" 400973 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 392232 393141 394151 "DFSFUN" 395630 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 387315 391163 391475 "DFLOAT" 391940 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 385578 385859 386248 "DFINTTLS" 387023 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 382607 383599 383999 "DERHAM" 385244 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 380408 382382 382471 "DEQUEUE" 382551 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 379662 379795 379978 "DEGRED" 380270 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 376272 376972 377773 "DEFINTRF" 378935 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 373939 374380 374944 "DEFINTEF" 375819 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373289 373559 373674 "DEFAST" 373844 T DEFAST (NIL) -8 NIL NIL NIL) (-217 367314 372884 373033 "DECIMAL" 373160 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 364826 365284 365790 "DDFACT" 366858 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 364422 364465 364616 "DBLRESP" 364777 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362294 362655 363015 "DBASE" 364189 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 361536 361774 361920 "DATAARY" 362193 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 360642 361495 361523 "D03FAFA" 361528 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 359749 360601 360629 "D03EEFA" 360634 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 357699 358165 358654 "D03AGNT" 359280 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 356988 357658 357686 "D02EJFA" 357691 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356277 356947 356975 "D02CJFA" 356980 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 355566 356236 356264 "D02BHFA" 356269 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 354855 355525 355553 "D02BBFA" 355558 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348052 349641 351247 "D02AGNT" 353269 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 345820 346343 346889 "D01WGTS" 347526 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 344887 345779 345807 "D01TRNS" 345812 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 343955 344846 344874 "D01GBFA" 344879 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343023 343914 343942 "D01FCFA" 343947 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342091 342982 343010 "D01ASFA" 343015 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341159 342050 342078 "D01AQFA" 342083 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340227 341118 341146 "D01APFA" 341151 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339295 340186 340214 "D01ANFA" 340219 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 338363 339254 339282 "D01AMFA" 339287 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 337431 338322 338350 "D01ALFA" 338355 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 336499 337390 337418 "D01AKFA" 337423 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 335567 336458 336486 "D01AJFA" 336491 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 328862 330415 331976 "D01AGNT" 334026 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328199 328327 328479 "CYCLOTOM" 328730 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 324934 325647 326374 "CYCLES" 327492 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324246 324380 324551 "CVMP" 324795 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322087 322345 322714 "CTRIGMNP" 323974 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 321596 321818 321919 "CTORKIND" 322006 T CTORKIND (NIL) -8 NIL NIL NIL) (-186 320887 321203 321231 "CTORCAT" 321413 T CTORCAT (NIL) -9 NIL 321526 NIL) (-185 320485 320596 320755 "CTORCAT-" 320760 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-184 319947 320159 320267 "CTORCALL" 320409 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-183 319383 319741 319814 "CTOR" 319894 T CTOR (NIL) -8 NIL NIL NIL) (-182 318757 318856 319009 "CSTTOOLS" 319280 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 314556 315213 315971 "CRFP" 318069 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314031 314277 314369 "CRCEAST" 314484 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313078 313263 313491 "CRAPACK" 313835 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 312462 312563 312767 "CPMATCH" 312954 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312187 312215 312321 "CPIMA" 312428 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 308535 309207 309926 "COORDSYS" 311522 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307947 308068 308210 "CONTOUR" 308413 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 303840 305950 306442 "CONTFRAC" 307487 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 303720 303741 303769 "CONDUIT" 303806 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 302808 303362 303390 "COMRING" 303395 T COMRING (NIL) -9 NIL 303447 NIL) (-171 301862 302166 302350 "COMPPROP" 302644 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 301523 301558 301686 "COMPLPAT" 301821 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 301159 301216 301323 "COMPLEX2" 301460 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-168 291468 300968 301077 "COMPLEX" 301082 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-167 291186 291221 291319 "COMPFACT" 291427 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275275 285260 285300 "COMPCAT" 286304 NIL COMPCAT (NIL T) -9 NIL 287652 NIL) (-165 264808 267728 271348 "COMPCAT-" 271704 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 264537 264565 264668 "COMMUPC" 264774 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264331 264365 264424 "COMMONOP" 264498 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 263907 264135 264210 "COMMAAST" 264276 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 263463 263658 263745 "COMM" 263840 T COMM (NIL) -8 NIL NIL NIL) (-160 262712 262906 262934 "COMBOPC" 263272 T COMBOPC (NIL) -9 NIL 263447 NIL) (-159 261608 261818 262060 "COMBINAT" 262502 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258065 258639 259266 "COMBF" 261030 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 256823 257181 257416 "COLOR" 257850 T COLOR (NIL) -8 NIL NIL NIL) (-156 256299 256544 256636 "COLONAST" 256751 T COLONAST (NIL) -8 NIL NIL NIL) (-155 255939 255986 256111 "CMPLXRT" 256246 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 255387 255639 255738 "CLLCTAST" 255860 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 250886 251917 252997 "CLIP" 254327 T CLIP (NIL) -7 NIL NIL NIL) (-152 249232 249992 250231 "CLIF" 250713 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 245407 247378 247419 "CLAGG" 248348 NIL CLAGG (NIL T) -9 NIL 248884 NIL) (-150 243829 244286 244869 "CLAGG-" 244874 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 243373 243458 243598 "CINTSLPE" 243738 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 240874 241345 241893 "CHVAR" 242901 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240048 240602 240630 "CHARZ" 240635 T CHARZ (NIL) -9 NIL 240650 NIL) (-146 239802 239842 239920 "CHARPOL" 240002 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 238860 239447 239475 "CHARNZ" 239522 T CHARNZ (NIL) -9 NIL 239578 NIL) (-144 236766 237514 237867 "CHAR" 238527 T CHAR (NIL) -8 NIL NIL NIL) (-143 236492 236553 236581 "CFCAT" 236692 T CFCAT (NIL) -9 NIL NIL NIL) (-142 235737 235848 236030 "CDEN" 236376 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 231702 234890 235170 "CCLASS" 235477 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230953 231110 231287 "CATEGORY" 231545 T -10 (NIL) -8 NIL NIL NIL) (-139 230526 230872 230920 "CATCTOR" 230925 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229977 230229 230327 "CATAST" 230448 T CATAST (NIL) -8 NIL NIL NIL) (-137 229453 229698 229790 "CASEAST" 229905 T CASEAST (NIL) -8 NIL NIL NIL) (-136 228561 228709 228930 "CARTEN2" 229300 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 223570 224590 225343 "CARTEN" 227864 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-134 221886 222720 222977 "CARD" 223333 T CARD (NIL) -8 NIL NIL NIL) (-133 221462 221690 221765 "CAPSLAST" 221831 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220966 221174 221202 "CACHSET" 221334 T CACHSET (NIL) -9 NIL 221412 NIL) (-131 220436 220758 220786 "CABMON" 220836 T CABMON (NIL) -9 NIL 220892 NIL) (-130 219909 220140 220250 "BYTEORD" 220346 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 215259 219414 219586 "BYTEBUF" 219757 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 214241 214793 214935 "BYTE" 215098 T BYTE (NIL) -8 NIL NIL 215220) (-127 211752 213933 214040 "BTREE" 214167 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209203 211400 211522 "BTOURN" 211662 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206575 208673 208714 "BTCAT" 208782 NIL BTCAT (NIL T) -9 NIL 208859 NIL) (-124 206242 206322 206471 "BTCAT-" 206476 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201507 205385 205413 "BTAGG" 205635 T BTAGG (NIL) -9 NIL 205796 NIL) (-122 200997 201122 201328 "BTAGG-" 201333 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197994 200275 200490 "BSTREE" 200814 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197132 197258 197442 "BRILL" 197850 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193785 195858 195899 "BRAGG" 196548 NIL BRAGG (NIL T) -9 NIL 196806 NIL) (-118 192317 192722 193276 "BRAGG-" 193281 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185567 191663 191847 "BPADICRT" 192165 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183884 185504 185549 "BPADIC" 185554 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183582 183612 183726 "BOUNDZRO" 183848 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 181363 181767 182242 "BOP1" 183140 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 176591 177789 178701 "BOP" 180471 T BOP (NIL) -8 NIL NIL NIL) (-112 175416 176165 176314 "BOOLEAN" 176462 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174695 175099 175153 "BMODULE" 175158 NIL BMODULE (NIL T T) -9 NIL 175223 NIL) (-110 170496 174493 174566 "BITS" 174642 T BITS (NIL) -8 NIL NIL NIL) (-109 169917 170036 170176 "BINDING" 170376 T BINDING (NIL) -8 NIL NIL NIL) (-108 163945 169514 169662 "BINARY" 169789 T BINARY (NIL) -8 NIL NIL NIL) (-107 161725 163200 163241 "BGAGG" 163501 NIL BGAGG (NIL T) -9 NIL 163638 NIL) (-106 161556 161588 161679 "BGAGG-" 161684 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160627 160940 161145 "BFUNCT" 161371 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159311 159492 159780 "BEZOUT" 160451 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155782 158163 158493 "BBTREE" 159014 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155516 155569 155597 "BASTYPE" 155716 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155368 155397 155470 "BASTYPE-" 155475 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154802 154878 155030 "BALFACT" 155279 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153658 154217 154403 "AUTOMOR" 154647 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153384 153389 153415 "ATTREG" 153420 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151636 152081 152433 "ATTRBUT" 153050 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151244 151464 151530 "ATTRAST" 151588 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150780 150893 150919 "ATRIG" 151120 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150589 150630 150717 "ATRIG-" 150722 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150234 150420 150446 "ASTCAT" 150451 T ASTCAT (NIL) -9 NIL 150481 NIL) (-92 149961 150020 150139 "ASTCAT-" 150144 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148110 149737 149825 "ASTACK" 149904 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146615 146912 147277 "ASSOCEQ" 147792 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145669 146274 146398 "ASP9" 146522 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 144559 145274 145416 "ASP80" 145558 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 144322 144507 144546 "ASP8" 144551 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 143298 143999 144117 "ASP78" 144235 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 142289 142978 143095 "ASP77" 143212 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 141223 141927 142058 "ASP74" 142189 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 140145 140858 140990 "ASP73" 141122 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 139065 139780 139912 "ASP7" 140044 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 138191 138891 138991 "ASP6" 138996 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137158 137868 137986 "ASP55" 138104 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136129 136832 136951 "ASP50" 137070 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135239 135830 135940 "ASP49" 136050 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 134045 134778 134946 "ASP42" 135128 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 132843 133578 133748 "ASP41" 133932 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131953 132544 132654 "ASP4" 132764 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 130925 131630 131748 "ASP35" 131866 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130690 130873 130912 "ASP34" 130917 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130427 130494 130570 "ASP33" 130645 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129342 130062 130194 "ASP31" 130326 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129107 129290 129329 "ASP30" 129334 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128842 128911 128987 "ASP29" 129062 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128607 128790 128829 "ASP28" 128834 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128372 128555 128594 "ASP27" 128599 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127478 128070 128181 "ASP24" 128292 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126576 127280 127392 "ASP20" 127397 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125540 126250 126369 "ASP19" 126488 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 125277 125344 125420 "ASP12" 125495 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 124151 124876 125020 "ASP10" 125164 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 123261 123852 123962 "ASP1" 124072 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 121112 123105 123196 "ARRAY2" 123201 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 120144 120317 120538 "ARRAY12" 120935 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 115909 119792 119906 "ARRAY1" 120061 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 110221 112139 112214 "ARR2CAT" 114844 NIL ARR2CAT (NIL T T T) -9 NIL 115602 NIL) (-56 107655 108399 109353 "ARR2CAT-" 109358 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 106972 107282 107407 "ARITY" 107548 T ARITY (NIL) -8 NIL NIL NIL) (-54 105748 105900 106199 "APPRULE" 106808 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105399 105447 105566 "APPLYORE" 105694 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104677 104800 104957 "ANY1" 105273 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 104031 104270 104390 "ANY" 104575 T ANY (NIL) -8 NIL NIL NIL) (-50 101561 102468 102795 "ANTISYM" 103755 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101053 101268 101364 "ANON" 101483 T ANON (NIL) -8 NIL NIL NIL) (-48 95311 99592 100046 "AN" 100617 T AN (NIL) -8 NIL NIL NIL) (-47 91209 92597 92648 "AMR" 93396 NIL AMR (NIL T T) -9 NIL 93996 NIL) (-46 90321 90542 90905 "AMR-" 90910 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74766 90238 90299 "ALIST" 90304 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71601 74360 74529 "ALGSC" 74684 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68156 68711 69318 "ALGPKG" 71041 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67433 67534 67718 "ALGMFACT" 68042 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63468 64047 64641 "ALGMANIP" 67017 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54849 63094 63244 "ALGFF" 63401 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54045 54176 54355 "ALGFACT" 54707 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52986 53586 53624 "ALGEBRA" 53629 NIL ALGEBRA (NIL T) -9 NIL 53670 NIL) (-37 52704 52763 52895 "ALGEBRA-" 52900 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34803 50706 50758 "ALAGG" 50894 NIL ALAGG (NIL T T) -9 NIL 51055 NIL) (-35 34339 34452 34478 "AHYP" 34679 T AHYP (NIL) -9 NIL NIL NIL) (-34 33270 33518 33544 "AGG" 34043 T AGG (NIL) -9 NIL 34322 NIL) (-33 32704 32866 33080 "AGG-" 33085 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30510 30933 31338 "AF" 32346 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29990 30235 30325 "ADDAST" 30438 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29258 29517 29673 "ACPLOT" 29852 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18637 26385 26423 "ACFS" 27030 NIL ACFS (NIL T) -9 NIL 27269 NIL) (-28 16664 17154 17916 "ACFS-" 17921 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14711 14737 "ACF" 15616 T ACF (NIL) -9 NIL 16029 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index e5310c20..f85ec3b6 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,4726 +1,3804 @@ -(732154 . 3474699323) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-794)) - (-4 *3 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *5 (-559)) - (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1051)) (-4 *5 (-794)) - (-4 *3 - (-13 (-851) - (-10 -8 (-15 -1322 ((-1179) $)) - (-15 -2722 ((-3 $ "failed") (-1179)))))) - (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *6)) - (-4 *6 - (-13 (-851) - (-10 -8 (-15 -1322 ((-1179) $)) - (-15 -2722 ((-3 $ "failed") (-1179)))))) - (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) - (-4 *2 (-951 (-954 *4) *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) - (-5 *1 (-179 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 *8)) - (-5 *4 - (-645 - (-2 (|:| -4374 (-690 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-690 *7))))) - (-5 *5 (-772)) (-4 *8 (-1245 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-351)) - (-5 *2 - (-2 (|:| -4374 (-690 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-690 *7)))) - (-5 *1 (-501 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) - (-5 *2 (-112)) (-5 *1 (-1142 *5 *6))))) +(723977 . 3477417268) (((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) - (-4 *3 (-951 *7 *5 *6)) - (-5 *2 - (-2 (|:| -2618 (-772)) (|:| -1344 *3) (|:| |radicand| (-645 *3)))) - (-5 *1 (-955 *5 *6 *7 *3 *8)) (-5 *4 (-772)) - (-4 *8 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *3)) (-15 -4294 (*3 $)) (-15 -4306 (*3 $)))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1245 (-169 *3)))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-756))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-692 (-1137))) (-5 *1 (-1153))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-989 (-410 (-567)) (-865 *3) (-240 *4 (-772)) - (-247 *3 (-410 (-567))))) - (-14 *3 (-645 (-1179))) (-14 *4 (-772)) (-5 *1 (-988 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) - (-4 *3 (-1102))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) + (-5 *2 (-1269 (-410 (-549)))) (-5 *1 (-1297 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) + (-5 *2 (-1269 (-549))) (-5 *1 (-1297 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 *4)) (-4 *4 (-641 (-549))) (-5 *2 (-112)) + (-5 *1 (-1297 *4))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-616 *2) (-172))) (-5 *2 (-893 *4)) (-5 *1 (-170 *4 *5 *3)) + (-4 *4 (-1104)) (-4 *3 (-166 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-1092 (-844 (-380))))) + (-5 *2 (-643 (-1092 (-844 (-225))))) (-5 *1 (-304)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-396)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-413 *3 *4)) + (-4 *4 (-1245 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1270)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1270)) (-5 *1 (-256)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1270)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1271)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1271)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) + (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) + (-5 *2 (-1269 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-421 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-408 *1)) (-4 *1 (-424 *3)) (-4 *3 (-560)) (-4 *3 (-1104)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-466 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-538)))) + ((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-726 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 *3)) (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) + (-4 *5 (-616 (-1180))) (-4 *4 (-795)) (-4 *5 (-852)))) + ((*1 *1 *2) + (-3960 + (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) + (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) + (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) + (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852))))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) + (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1162)) + (-5 *1 (-1072 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) + (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1112 *4 *5 *6 *7)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1162)) + (-5 *1 (-1148 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1185)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-1199)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-865)) (-5 *3 (-549)) (-5 *1 (-1199)))) + ((*1 *2 *3) + (-12 (-5 *3 (-782 *4 (-866 *5))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-14 *5 (-643 (-1180))) (-5 *2 (-782 *4 (-866 *6))) (-5 *1 (-1296 *4 *5 *6)) + (-14 *6 (-643 (-1180))))) + ((*1 *2 *3) + (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-949 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) + (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) + ((*1 *2 *3) + (-12 (-5 *3 (-782 *4 (-866 *6))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-14 *6 (-643 (-1180))) (-5 *2 (-949 (-1027 (-410 *4)))) + (-5 *1 (-1296 *4 *5 *6)) (-14 *5 (-643 (-1180))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-1174 (-1027 (-410 *4)))) (-5 *1 (-1296 *4 *5 *6)) + (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1149 *4 (-534 (-866 *6)) (-866 *6) (-782 *4 (-866 *6)))) + (-4 *4 (-13 (-850) (-308) (-147) (-1023))) (-14 *6 (-643 (-1180))) + (-5 *2 (-643 (-782 *4 (-866 *6)))) (-5 *1 (-1296 *4 *5 *6)) + (-14 *5 (-643 (-1180)))))) +(((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548)))) + ((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) + (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-953 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-4 *7 (-953 *6 *4 *5)) + (-5 *2 (-408 (-1174 *7))) (-5 *1 (-744 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-455)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-408 *1)) (-4 *1 (-953 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-455)) (-5 *2 (-408 *3)) + (-5 *1 (-982 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-455)) (-4 *7 (-953 *6 *4 *5)) + (-5 *2 (-408 (-1174 (-410 *7)))) (-5 *1 (-1176 *4 *5 *6 *7)) + (-5 *3 (-1174 (-410 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-408 *1)) (-4 *1 (-1224)))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-1249 *4 *3)) + (-4 *3 (-13 (-1245 *4) (-560) (-10 -8 (-15 -3564 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-14 *5 (-643 (-1180))) + (-5 *2 (-643 (-1149 *4 (-534 (-866 *6)) (-866 *6) (-782 *4 (-866 *6))))) + (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) + (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1271)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) + (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) + (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) + (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-643 (-1180))) + (-5 *2 (-643 (-643 (-380)))) (-5 *1 (-1026)) (-5 *5 (-380)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-14 *5 (-643 (-1180))) (-5 *2 (-643 (-643 (-1027 (-410 *4))))) + (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) + (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1271)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1271)) (-5 *1 (-256)))) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) + (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-643 (-1027 (-410 *5))))) (-5 *1 (-1296 *5 *6 *7)) + (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-643 (-1027 (-410 *4))))) (-5 *1 (-1296 *4 *5 *6)) + (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1049 *4 *5)) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-14 *5 (-643 (-1180))) + (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) + (-5 *1 (-1296 *4 *5 *6)) (-14 *6 (-643 (-1180))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) + (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) + (-14 *7 (-643 (-1180))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1271)) (-5 *1 (-256)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-295 *7)) (-5 *4 (-1179)) (-5 *5 (-645 (-264))) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1040 (-567)))) - (-5 *2 (-1270)) (-5 *1 (-257 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1270)) - (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1270)) (-5 *1 (-260 *3)) - (-4 *3 (-13 (-615 (-539)) (-1102))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-879 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) - (-5 *1 (-260 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-879 *5)) (-5 *4 (-1094 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1270)) - (-5 *1 (-260 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) - (-5 *1 (-260 *6)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) + (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) + (-14 *7 (-643 (-1180))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) + (-5 *1 (-1296 *5 *6 *7)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))) + (-14 *7 (-643 (-1180))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) + (-5 *1 (-1296 *4 *5 *6)) (-5 *3 (-643 (-949 *4))) (-14 *5 (-643 (-1180))) + (-14 *6 (-643 (-1180)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *5 *6))) + (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) - (-5 *1 (-260 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1271)) - (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1102))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1271)) (-5 *1 (-260 *3)) - (-4 *3 (-13 (-615 (-539)) (-1102))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) - (-5 *1 (-260 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1271)) - (-5 *1 (-260 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1270)) (-5 *1 (-261)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1270)) - (-5 *1 (-261)))) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-850) (-308) (-147) (-1023))) (-5 *2 (-643 (-1049 *5 *6))) + (-5 *1 (-1296 *5 *6 *7)) (-14 *6 (-643 (-1180))) (-14 *7 (-643 (-1180))))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *2 (-1270)) (-5 *1 (-261)))) + (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-850) (-308) (-147) (-1023))) + (-5 *2 (-643 (-1049 *4 *5))) (-5 *1 (-1296 *4 *5 *6)) + (-14 *5 (-643 (-1180))) (-14 *6 (-643 (-1180)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1157 *4) (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1295 *4)) + (-4 *4 (-1219)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-645 (-264))) - (-5 *2 (-1270)) (-5 *1 (-261)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1271)) (-5 *1 (-261)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1271)) - (-5 *1 (-261))))) + (-12 (-5 *3 (-1 (-643 (-1157 *5)) (-643 (-1157 *5)))) (-5 *4 (-549)) + (-5 *2 (-643 (-1157 *5))) (-5 *1 (-1295 *5)) (-4 *5 (-1219))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-923)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) - (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1051)))) - ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) + (-12 (-5 *4 (-922)) (-4 *6 (-560)) (-5 *2 (-643 (-315 *6))) + (-5 *1 (-221 *5 *6)) (-5 *3 (-315 *6)) (-4 *5 (-1052)))) + ((*1 *2 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1204))) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) - (-5 *1 (-586 *4 *5)))) + (-12 (-5 *3 (-586 *5)) (-4 *5 (-13 (-29 *4) (-1205))) + (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-643 *5)) + (-5 *1 (-588 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-588 (-410 (-954 *4)))) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1151 *3)))) + (-12 (-5 *3 (-586 (-410 (-949 *4)))) + (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-643 (-315 *4))) + (-5 *1 (-592 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1098 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1152 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) - (-4 *2 (-1151 *4)))) + (-12 (-5 *3 (-643 *1)) (-4 *1 (-1098 *4 *2)) (-4 *4 (-850)) + (-4 *2 (-1152 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1284 (-1179) *3)) (-5 *1 (-1291 *3)) (-4 *3 (-1051)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1051))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) - (-4 *2 (-172))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| -2233 *4) (|:| -1895 (-567))))) - (-4 *4 (-1102)) (-5 *2 (-1 *4)) (-5 *1 (-1019 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-894 *3)) (|:| |den| (-894 *3)))) - (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1269 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) - (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-923)) (-4 *4 (-365)) (-5 *2 (-1269 *1)) - (-4 *1 (-330 *4)))) - ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *3)))) - ((*1 *2) - (-12 (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *1)) - (-4 *1 (-412 *3 *4)))) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205))))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) - (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) - (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) + (-12 (-5 *2 (-1285 (-1180) *3)) (-5 *1 (-1291 *3)) (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) - (-5 *2 (-1269 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) - (-4 *6 (-412 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-420 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1269 (-1269 *4))) (-5 *1 (-531 *4)) - (-4 *4 (-351))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) + (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-1294 *3 *4)) (-4 *3 (-852)) + (-4 *4 (-1052))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1285 (-1180) *3)) (-4 *3 (-1052)) (-5 *1 (-1291 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1285 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) + (-5 *1 (-1294 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-772)))) + (-12 (-5 *2 (-643 (-2 (|:| |k| (-1180)) (|:| |c| (-1291 *3))))) + (-5 *1 (-1291 *3)) (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) - (-5 *2 (-112)) (-5 *1 (-668 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-112)) - (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1102)) - (-5 *1 (-613 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1179))) - (-4 *4 (-455)) (-5 *1 (-632 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-755))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1204))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1102))))) + (-12 (-5 *2 (-643 (-2 (|:| |k| *3) (|:| |c| (-1294 *3 *4))))) + (-5 *1 (-1294 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-773)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-922)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205))) (-5 *1 (-227 *3)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1115)) (-4 *2 (-1219)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1115)) (-4 *2 (-1219)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-131)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-384 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-852)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1104)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *6 (-238 (-4389 *3) (-773))) + (-14 *7 + (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) + (-2 (|:| -2563 *5) (|:| -2564 *6)))) + (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-852)) + (-4 *2 (-953 *4 *6 (-866 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-538))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1060)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-4 *7 (-1104)) (-5 *2 (-1 *7 *5)) (-5 *1 (-686 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1052)) (-4 *2 (-374 *3)) + (-4 *4 (-374 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *2 (-374 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-722))) ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-560)) + (-5 *1 (-972 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1060)))) + ((*1 *1 *1 *1) (-4 *1 (-1115))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1126 *3 *4 *2 *5)) (-4 *4 (-1052)) (-4 *2 (-238 *3 *4)) + (-4 *5 (-238 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1126 *3 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-852)) (-5 *1 (-1129 *3 *4 *2)) + (-4 *2 (-953 *3 (-534 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-946 (-225))) (-5 *3 (-225)) (-5 *1 (-1216)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-728)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-549)) (-4 *1 (-1268 *3)) (-4 *3 (-1219)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) + (-14 *3 (-643 (-1180))))) + ((*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1104)))) + ((*1 *1 *1) + (-12 (-14 *2 (-643 (-1180))) (-4 *3 (-172)) (-4 *5 (-238 (-4389 *2) (-773))) + (-14 *6 + (-1 (-112) (-2 (|:| -2563 *4) (|:| -2564 *5)) + (-2 (|:| -2563 *4) (|:| -2564 *5)))) + (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-852)) + (-4 *7 (-953 *3 *5 (-866 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-852)))) + ((*1 *1 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-710 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1) + (-12 (-5 *1 (-737 *2 *3)) (-4 *3 (-852)) (-4 *2 (-1052)) (-4 *3 (-728)))) + ((*1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + ((*1 *1 *1) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-793)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-645 (-1179))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-643 (-1180))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) - (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) - (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) + (-14 *6 (-773)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) + (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) - (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-168 *5)) (-4 *5 (-172)) (-4 *6 (-172)) + (-5 *2 (-168 *6)) (-5 *1 (-169 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1051) (-851))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1179))))) + (-12 (-5 *2 (-1 (-315 *3) (-315 *3))) (-4 *3 (-13 (-1052) (-852))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-643 (-1180))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-5 *2 (-240 *5 *7)) - (-5 *1 (-239 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-239 *5 *6)) (-14 *5 (-773)) (-4 *6 (-1219)) + (-4 *7 (-1219)) (-5 *2 (-239 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-294 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-295 *3)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-294 *6)) (-5 *1 (-295 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-299)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1161)) (-5 *5 (-613 *6)) - (-4 *6 (-303)) (-4 *2 (-1219)) (-5 *1 (-298 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1162)) (-5 *5 (-613 *6)) (-4 *6 (-299)) + (-4 *2 (-1219)) (-5 *1 (-300 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303)) - (-4 *2 (-303)) (-5 *1 (-299 *5 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-299)) (-4 *2 (-299)) + (-5 *1 (-301 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1051)) - (-4 *6 (-1051)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-691 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-691 *6)) (-5 *1 (-306 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-315 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-5 *2 (-315 *6)) (-5 *1 (-316 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-335 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1245 *9)) (-4 *11 (-1245 (-410 *10))) - (-5 *2 (-338 *9 *10 *11 *12)) - (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) + (-5 *2 (-335 *9 *10 *11 *12)) (-5 *1 (-336 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1102)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1223)) (-4 *8 (-1223)) - (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *9 (-1245 *8)) - (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1245 (-410 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1224)) (-4 *8 (-1224)) (-4 *6 (-1245 *5)) + (-4 *7 (-1245 (-410 *6))) (-4 *9 (-1245 *8)) (-4 *2 (-344 *8 *9 *10)) + (-5 *1 (-345 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) + (-4 *10 (-1245 (-410 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *2 (-374 *6)) + (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-374 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-1102)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) + (-4 *4 (-1104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-560)) (-5 *1 (-408 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559)) - (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-408 *5)) (-4 *5 (-560)) (-4 *6 (-560)) + (-5 *2 (-408 *6)) (-5 *1 (-409 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-559)) - (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-560)) (-4 *6 (-560)) + (-5 *2 (-410 *6)) (-5 *1 (-411 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) - (-4 *6 (-994 *5)) (-4 *7 (-1245 *6)) - (-4 *8 (-13 (-412 *6 *7) (-1040 *6))) (-4 *9 (-308)) - (-4 *10 (-994 *9)) (-4 *11 (-1245 *10)) - (-5 *2 (-416 *9 *10 *11 *12)) - (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-412 *10 *11) (-1040 *10))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3)))) + (-4 *6 (-994 *5)) (-4 *7 (-1245 *6)) (-4 *8 (-13 (-413 *6 *7) (-1041 *6))) + (-4 *9 (-308)) (-4 *10 (-994 *9)) (-4 *11 (-1245 *10)) + (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-413 *10 *11) (-1041 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) - (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-421 *6)) + (-5 *1 (-419 *4 *5 *2 *6)) (-4 *4 (-421 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) - (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-424 *6)) + (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-424 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-429 *6)) + (-5 *1 (-430 *5 *4 *6 *2)) (-4 *4 (-429 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1219)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-851)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-852)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365)) - (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-586 *5)) (-4 *5 (-365)) (-4 *6 (-365)) + (-5 *2 (-586 *6)) (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3906 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-365)) (-4 *6 (-365)) - (-5 *2 (-2 (|:| -3906 *6) (|:| |coeff| *6))) - (-5 *1 (-587 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2318 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) + (-4 *6 (-365)) (-5 *2 (-2 (|:| -2318 *6) (|:| |coeff| *6))) + (-5 *1 (-587 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) + (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-365)) (-4 *6 (-365)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-587 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6)))) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-365)) (-4 *6 (-365)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-587 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-603 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-603 *6)) (-5 *1 (-600 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-602 *8)) - (-5 *1 (-600 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-603 *6)) (-5 *5 (-603 *7)) + (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-603 *8)) + (-5 *1 (-601 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1159 *6)) (-5 *5 (-602 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) - (-5 *1 (-600 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-603 *7)) + (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) + (-5 *1 (-601 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1159 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) - (-5 *1 (-600 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-603 *6)) (-5 *5 (-1157 *7)) + (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) + (-5 *1 (-601 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-643 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-643 *6)) (-5 *1 (-644 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-645 *8)) - (-5 *1 (-644 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-643 *6)) (-5 *5 (-643 *7)) + (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-643 *8)) + (-5 *1 (-646 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1051)) (-4 *8 (-1051)) - (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) - (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) - (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1051)) - (-4 *8 (-1051)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) - (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559)) - (-4 *6 (-1245 *5)) (-4 *2 (-1245 (-410 *8))) - (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1245 (-410 *6))) - (-4 *8 (-1245 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1051)) (-4 *9 (-1051)) - (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-951 *9 *7 *5)) - (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) - (-4 *4 (-951 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794)) - (-4 *9 (-1051)) (-4 *2 (-951 *9 *8 *6)) - (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794)) - (-4 *4 (-951 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1051)) - (-4 *6 (-1051)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) - (-5 *1 (-735 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-374 *5)) + (-4 *7 (-374 *5)) (-4 *2 (-688 *8 *9 *10)) + (-5 *1 (-689 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) + (-4 *9 (-374 *8)) (-4 *10 (-374 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1052)) + (-4 *8 (-1052)) (-4 *6 (-374 *5)) (-4 *7 (-374 *5)) (-4 *2 (-688 *8 *9 *10)) + (-5 *1 (-689 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) + (-4 *9 (-374 *8)) (-4 *10 (-374 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-560)) (-4 *7 (-560)) (-4 *6 (-1245 *5)) + (-4 *2 (-1245 (-410 *8))) (-5 *1 (-711 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1245 (-410 *6))) (-4 *8 (-1245 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1052)) (-4 *9 (-1052)) (-4 *5 (-852)) + (-4 *6 (-795)) (-4 *2 (-953 *9 *7 *5)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-795)) (-4 *4 (-953 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-852)) (-4 *6 (-852)) (-4 *7 (-795)) + (-4 *9 (-1052)) (-4 *2 (-953 *9 *8 *6)) (-5 *1 (-731 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-795)) (-4 *4 (-953 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-737 *5 *7)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-4 *7 (-728)) (-5 *2 (-737 *6 *7)) (-5 *1 (-736 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-736 *3 *4)) - (-4 *4 (-727)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-737 *3 *4)) (-4 *4 (-728)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1051)) - (-4 *6 (-1051)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-783 *6)) (-5 *1 (-784 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) + (-5 *1 (-801 *4 *5 *2 *6)) (-4 *4 (-798 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-5 *2 (-834 *6)) (-5 *1 (-835 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-833 *5 *6)))) + (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1104)) + (-4 *6 (-1104)) (-5 *1 (-835 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-5 *2 (-844 *6)) (-5 *1 (-845 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-5 *1 (-843 *5 *6)))) + (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1104)) + (-4 *6 (-1104)) (-5 *1 (-845 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-881 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-881 *6)) (-5 *1 (-880 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-891 *5 *7)) - (-5 *1 (-890 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-891 *5 *6)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-4 *7 (-1104)) (-5 *2 (-891 *5 *7)) (-5 *1 (-892 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-5 *2 (-893 *6)) (-5 *1 (-895 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1051)) - (-4 *6 (-1051)) (-5 *2 (-954 *6)) (-5 *1 (-948 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-949 *6)) (-5 *1 (-950 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851)) - (-4 *8 (-1051)) (-4 *6 (-794)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-852)) (-4 *8 (-1052)) + (-4 *6 (-795)) (-4 *2 - (-13 (-1102) - (-10 -8 (-15 -3045 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) - (-5 *1 (-953 *6 *7 *8 *5 *2)) (-4 *5 (-951 *8 *6 *7)))) + (-13 (-1104) + (-10 -8 (-15 -4271 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-773)))))) + (-5 *1 (-955 *6 *7 *8 *5 *2)) (-4 *5 (-953 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-960 *6)) (-5 *1 (-959 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-961 *6)) (-5 *1 (-962 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-945 *5)) (-4 *5 (-1051)) - (-4 *6 (-1051)) (-5 *2 (-945 *6)) (-5 *1 (-983 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-946 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-946 *6)) (-5 *1 (-984 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-954 *4))) (-4 *4 (-1051)) - (-4 *2 (-951 (-954 *4) *5 *6)) (-4 *5 (-794)) + (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1052)) (-4 *2 (-953 (-949 *4) *5 *6)) + (-4 *5 (-795)) (-4 *6 - (-13 (-851) - (-10 -8 (-15 -1322 ((-1179) $)) - (-15 -2722 ((-3 $ "failed") (-1179)))))) - (-5 *1 (-986 *4 *5 *6 *2)))) + (-13 (-852) + (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) + (-5 *1 (-987 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559)) - (-4 *2 (-994 *6)) (-5 *1 (-992 *5 *6 *4 *2)) (-4 *4 (-994 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-560)) (-4 *6 (-560)) (-4 *2 (-994 *6)) + (-5 *1 (-995 *5 *6 *4 *2)) (-4 *4 (-994 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-999 *6)) (-5 *1 (-1000 *4 *5 *2 *6)) (-4 *4 (-999 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-1001 *6)) + (-5 *1 (-1002 *4 *5 *2 *6)) (-4 *4 (-1001 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) - (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1055 *3 *4 *5 *6 *7)) - (-4 *5 (-1051)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1051)) (-4 *10 (-1051)) - (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *2 (-1055 *5 *6 *10 *11 *12)) - (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1052)) (-4 *10 (-1052)) (-14 *5 (-773)) + (-14 *6 (-773)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) + (-4 *2 (-1056 *5 *6 *10 *11 *12)) + (-5 *1 (-1058 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1056 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-1096 *6)) (-5 *1 (-1091 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-1092 *6)) (-5 *1 (-1093 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1096 *5)) (-4 *5 (-849)) - (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-645 *6)) - (-5 *1 (-1091 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-850)) (-4 *5 (-1219)) + (-4 *6 (-1219)) (-5 *2 (-643 *6)) (-5 *1 (-1093 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-1094 *6)) (-5 *1 (-1093 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-1095 *6)) (-5 *1 (-1096 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1097 *4 *2)) (-4 *4 (-849)) - (-4 *2 (-1151 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1098 *4 *2)) (-4 *4 (-850)) + (-4 *2 (-1152 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1159 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-1159 *6)) (-5 *1 (-1157 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-1157 *6)) (-5 *1 (-1159 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1159 *6)) (-5 *5 (-1159 *7)) - (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1159 *8)) - (-5 *1 (-1158 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1157 *6)) (-5 *5 (-1157 *7)) + (-4 *6 (-1219)) (-4 *7 (-1219)) (-4 *8 (-1219)) (-5 *2 (-1157 *8)) + (-5 *1 (-1160 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1051)) - (-4 *6 (-1051)) (-5 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1174 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) + (-5 *2 (-1174 *6)) (-5 *1 (-1175 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1195 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-1104)) + (-4 *4 (-1104)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1233 *5 *7 *9)) (-4 *5 (-1051)) - (-4 *6 (-1051)) (-14 *7 (-1179)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1233 *6 *8 *10)) (-5 *1 (-1228 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1179)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5 *7 *9)) (-4 *5 (-1052)) + (-4 *6 (-1052)) (-14 *7 (-1180)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1229 *6 *8 *10)) (-5 *1 (-1230 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1180)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-1236 *6)) (-5 *1 (-1235 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-1236 *6)) (-5 *1 (-1237 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-849)) - (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1159 *6)) - (-5 *1 (-1235 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1236 *5)) (-4 *5 (-850)) (-4 *5 (-1219)) + (-4 *6 (-1219)) (-5 *2 (-1157 *6)) (-5 *1 (-1237 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1242 *5 *6)) (-14 *5 (-1179)) - (-4 *6 (-1051)) (-4 *8 (-1051)) (-5 *2 (-1242 *7 *8)) - (-5 *1 (-1237 *5 *6 *7 *8)) (-14 *7 (-1179)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1238 *5 *6)) (-14 *5 (-1180)) + (-4 *6 (-1052)) (-4 *8 (-1052)) (-5 *2 (-1238 *7 *8)) + (-5 *1 (-1239 *5 *6 *7 *8)) (-14 *7 (-1180)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) - (-4 *2 (-1245 *6)) (-5 *1 (-1243 *5 *4 *6 *2)) (-4 *4 (-1245 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1245 *6)) + (-5 *1 (-1246 *5 *4 *6 *2)) (-4 *4 (-1245 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5 *7 *9)) (-4 *5 (-1051)) - (-4 *6 (-1051)) (-14 *7 (-1179)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1254 *6 *8 *10)) (-5 *1 (-1249 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1179)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1052)) + (-4 *6 (-1052)) (-14 *7 (-1180)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1251 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1180)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1051)) (-4 *6 (-1051)) - (-4 *2 (-1260 *6)) (-5 *1 (-1258 *5 *6 *4 *2)) (-4 *4 (-1260 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1052)) (-4 *6 (-1052)) (-4 *2 (-1262 *6)) + (-5 *1 (-1260 *5 *6 *4 *2)) (-4 *4 (-1262 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) - (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1268 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *6 (-1219)) + (-5 *2 (-1269 *6)) (-5 *1 (-1270 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1269 *5)) - (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) - (-5 *1 (-1268 *5 *6)))) + (-4 *5 (-1219)) (-4 *6 (-1219)) (-5 *2 (-1269 *6)) (-5 *1 (-1270 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1051)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) + (-4 *4 (-1052)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-1292 *3 *4)) - (-4 *4 (-847))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-979 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) - (-5 *2 (-645 (-225))) (-5 *1 (-306))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *3) - (-12 (-5 *3 (-295 (-954 (-567)))) - (-5 *2 - (-2 (|:| |varOrder| (-645 (-1179))) - (|:| |inhom| (-3 (-645 (-1269 (-772))) "failed")) - (|:| |hom| (-645 (-1269 (-772)))))) - (-5 *1 (-236))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1229 *3)) - (-5 *2 (-410 (-567)))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-954 (-567))))) - (-5 *2 - (-645 - (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) - (|:| |radvect| (-645 (-690 (-317 (-567)))))))) - (-5 *1 (-1033))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1067 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *2 (-1111 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-1293 *3 *4)) + (-4 *4 (-848))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-34)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-250)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-549)))) + ((*1 *2 *1) + (-12 (-5 *2 (-773)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848))))) (((*1 *2 *1) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) + (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-821 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-1293 *3 *2)) (-4 *3 (-1052))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-645 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-567))))) - (-5 *1 (-421 *3)) (-4 *3 (-559)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1245 *3)) - (-5 *2 (-645 (-1175 *3))) (-5 *1 (-501 *3 *5 *6)) - (-4 *6 (-1245 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1209 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) - (-5 *7 (-690 (-567))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-754))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) + (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-821 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-848)) (-5 *1 (-1293 *3 *2)) (-4 *3 (-1052))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1294 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-852)) + (-4 *2 (-172)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-821 *4)) (-4 *1 (-1289 *4 *2)) (-4 *4 (-852)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1052)) (-5 *1 (-1293 *2 *3)) (-4 *3 (-848))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) - (-4 *3 (-1245 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) - (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1175 *6)) (-1175 *6))) - (-4 *6 (-365)) - (-5 *2 - (-645 - (-2 (|:| |outval| *7) (|:| |outmult| (-567)) - (|:| |outvect| (-645 (-690 *7)))))) - (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) - (-4 *3 (-1102))))) + (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -3788 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *4)) (-5 *1 (-685 *4 *5)) + (-4 *4 (-1104)))) + ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) + ((*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1289 *3 *2)) (-4 *3 (-852)) (-4 *2 (-1052)))) + ((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-1293 *2 *3)) (-4 *3 (-848))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-753))))) -(((*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1102))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-131))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) + (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) - (-4 *3 (-1245 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1269 (-1269 (-567)))) (-5 *1 (-469))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1293 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-848))))) +(((*1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) + ((*1 *1 *1) (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-848))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-365)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-225)))) + ((*1 *1 *1 *1) + (-3960 (-12 (-5 *1 (-294 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) + ((*1 *1 *1 *1) (-4 *1 (-365))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-99 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) - (-4 *3 (-559)))) - ((*1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-4 *1 (-1204)))) -(((*1 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1269 - (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1629 (-567)) - (|:| -2413 (-567)) (|:| |spline| (-567)) (|:| -3560 (-567)) - (|:| |axesColor| (-875)) (|:| -3138 (-567)) - (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) - (-5 *1 (-1270))))) -(((*1 *2 *3) - (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1204))) - (-5 *1 (-586 *4 *2)) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-588 (-410 (-954 *4)))) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) - (-5 *1 (-591 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) - (-5 *1 (-1163 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) - (-14 *4 (-1179)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-171)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) - (-4 *2 (-1245 *3))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) - (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1260 *5)) (-4 *6 (-1245 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1204) (-961)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1051)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) + (-12 (-5 *2 (-1128 *3 (-613 *1))) (-4 *3 (-560)) (-4 *3 (-1104)) + (-4 *1 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-476))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-538))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-728) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-728) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-172)) (-4 *2 (-365)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-654 *2 *4 *3)) (-4 *2 (-719 *4)) + (-4 *3 (|SubsetCategory| (-728) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-172)) (-5 *1 (-654 *3 *4 *2)) (-4 *3 (-719 *4)) + (-4 *2 (|SubsetCategory| (-728) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *1)))) - (-4 *1 (-1073 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-559)) (-4 *8 (-951 *7 *5 *6)) - (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *9) (|:| |radicand| *9))) - (-5 *1 (-955 *5 *6 *7 *8 *9)) (-5 *4 (-772)) - (-4 *9 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *8)) (-15 -4294 (*8 $)) (-15 -4306 (*8 $)))))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) - ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) (-4 *1 (-870 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) - (-4 *4 (-851))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) - (-4 *3 (-1051))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1182)) (-5 *3 (-1179))))) -(((*1 *1 *1) (-4 *1 (-630))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004) (-1204)))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) - (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-1270)) - (-5 *1 (-1273)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) - (-5 *2 (-1270)) (-5 *1 (-1273))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1219)) - (-4 *5 (-1219)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) - (-4 *7 (-1219)) (-4 *5 (-1219)) (-5 *2 (-240 *6 *5)) - (-5 *1 (-239 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1219)) (-4 *5 (-1219)) - (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1102)) (-4 *5 (-1102)) - (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1219)) - (-4 *5 (-1219)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-960 *6)) (-4 *6 (-1219)) - (-4 *5 (-1219)) (-5 *2 (-960 *5)) (-5 *1 (-959 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1159 *6)) (-4 *6 (-1219)) - (-4 *3 (-1219)) (-5 *2 (-1159 *3)) (-5 *1 (-1157 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1269 *6)) (-4 *6 (-1219)) - (-4 *5 (-1219)) (-5 *2 (-1269 *5)) (-5 *1 (-1268 *6 *5))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) - (-4 *5 (-559)) (-5 *2 (-1269 *5)) (-5 *1 (-639 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 *5)) - (-1736 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1269 (-410 *5))) - (-5 *1 (-639 *5 *4))))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) - (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) - (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) - (-5 *4 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) - (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))) (-5 *4 (-410 (-567))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-410 (-567))) - (-5 *2 (-645 (-2 (|:| -4335 *5) (|:| -4347 *5)))) (-5 *1 (-1022 *3)) - (-4 *3 (-1245 (-567))) (-5 *4 (-2 (|:| -4335 *5) (|:| -4347 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) - (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) - (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567)))) - (-5 *4 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-410 (-567))) - (-5 *2 (-645 (-2 (|:| -4335 *4) (|:| -4347 *4)))) (-5 *1 (-1023 *3)) - (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-410 (-567))) - (-5 *2 (-645 (-2 (|:| -4335 *5) (|:| -4347 *5)))) (-5 *1 (-1023 *3)) - (-4 *3 (-1245 *5)) (-5 *4 (-2 (|:| -4335 *5) (|:| -4347 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) + (|partial| -12 (-5 *1 (-868 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1052)) + (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-773))) (-14 *5 (-773)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1056 *3 *4 *2 *5 *6)) (-4 *2 (-1052)) (-4 *5 (-238 *4 *2)) + (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1052)) (-4 *3 (-852)) (-4 *4 (-795)) + (-14 *6 (-643 *3)) (-5 *1 (-1282 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-953 *2 *4 *3)) (-14 *7 (-643 (-773))) (-14 *8 (-773)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1293 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1052)) (-4 *3 (-848))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) ((*1 *2 *1) - (-12 (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-4 *2 (-308)) - (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3))))) + (-12 (-5 *2 (-773)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *1) + (-12 (-5 *2 (-549)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) + (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-276)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *8)) (-5 *4 (-643 *6)) (-4 *6 (-852)) + (-4 *8 (-953 *7 *5 *6)) (-4 *5 (-795)) (-4 *7 (-1052)) (-5 *2 (-643 (-773))) + (-5 *1 (-322 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) ((*1 *2 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) - (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *3 (-560)) (-5 *2 (-549)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-643 (-773))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) + (-5 *2 (-773)))) ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) - (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-588 *3)) (-4 *3 (-365))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-567)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) - (-5 *1 (-452 *5 *6 *7 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1051) (-851))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1179)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) - (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -4178 *3)))) - (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) - (-4 *7 (-657 (-410 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *6 (-1245 *5)) - (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -4178 (-655 *6 (-410 *6)))))) - (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) - (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) - (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *1 (-976 *3 *2 *4)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *2 (-794)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) - (-5 *2 (-1269 *6)) (-5 *1 (-416 *3 *4 *5 *6)) - (-4 *6 (-13 (-412 *4 *5) (-1040 *4))))) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-773)))) ((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-4 *3 (-1102)) (-5 *2 (-1127 *3 (-613 *1))) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) + (-12 (-4 *1 (-1233 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1262 *3)) + (-5 *2 (-549)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-727) *3)))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1231 *3)) + (-5 *2 (-410 (-549))))) + ((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-727) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1128 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) - (-4 *4 (-1051)) (-4 *3 (-851)) (-5 *1 (-1128 *4 *3 *5)) - (-4 *5 (-951 *4 (-534 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1213 *4))) (-5 *3 (-1179)) (-5 *1 (-1213 *4)) - (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) - (-5 *1 (-698))))) -(((*1 *2 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-440)) (-5 *1 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) - (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) - (-4 *8 (-951 *3 *7 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-907 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) - (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1030 *4)) - (-4 *4 (-1051)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-907 (-567)))) (-5 *4 (-567)) - (-5 *2 (-645 (-690 *4))) (-5 *1 (-1030 *5)) (-4 *5 (-1051)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) - (-5 *1 (-1030 *4)) (-4 *4 (-1051))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1269 *5)) (-4 *5 (-308)) - (-4 *5 (-1051)) (-5 *2 (-690 *5)) (-5 *1 (-1031 *5))))) + (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-773))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-590 *4)) - (-4 *4 (-351))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) - (-5 *2 (-772)) (-5 *1 (-947 *5 *6)) (-4 *6 (-1245 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *3 (-645 (-264))) - (-5 *1 (-262)))) + (-12 (-5 *2 (-773)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-14 *6 (-1269 (-691 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))))) + ((*1 *1 *2) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1219)))) ((*1 *1 *2) - (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) - (-14 *5 (-645 (-1179))) (-4 *6 (-455)) (-5 *2 (-1269 *6)) - (-5 *1 (-632 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) - (-4 *5 (-794)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1219)))) + (-12 (-5 *2 (-341 (-3953 'X) (-3953) (-701))) (-5 *1 (-61 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) + (-12 (-5 *2 (-1269 (-341 (-3953 'JINT 'X 'ELAM) (-3953) (-701)))) + (-5 *1 (-62 *3)) (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) + (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 'XC) (-701)))) (-5 *1 (-64 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) + (-12 (-5 *2 (-341 (-3953) (-3953 'XC) (-701))) (-5 *1 (-66 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) + (-12 (-5 *2 (-1269 (-341 (-3953 'X) (-3953 '-4396) (-701)))) (-5 *1 (-71 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) + (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 'X) (-701)))) (-5 *1 (-74 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) + (-12 (-5 *2 (-341 (-3953) (-3953 'X) (-701))) (-5 *1 (-75 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-341 *3 *4 *5)) - (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) + (-12 (-5 *2 (-1269 (-341 (-3953 'X 'EPS) (-3953 '-4396) (-701)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1180)) (-14 *4 (-1180)) (-14 *5 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390)) - (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))))) + (-12 (-5 *2 (-1269 (-341 (-3953 'EPS) (-3953 'YA 'YB) (-701)))) + (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1180)) (-14 *4 (-1180)) (-14 *5 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))) + (-12 (-5 *2 (-341 (-3953) (-3953 'X) (-701))) (-5 *1 (-78 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) + (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 'XC) (-701)))) (-5 *1 (-79 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) + (-12 (-5 *2 (-1269 (-341 (-3953) (-3953 'X) (-701)))) (-5 *1 (-80 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) + (-12 (-5 *2 (-1269 (-341 (-3953 'X) (-3953 '-4396) (-701)))) (-5 *1 (-82 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) + (-12 (-5 *2 (-1269 (-341 (-3953 'X '-4396) (-3953) (-701)))) (-5 *1 (-83 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) + (-12 (-5 *2 (-691 (-341 (-3953 'X '-4396) (-3953) (-701)))) (-5 *1 (-84 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))) + (-12 (-5 *2 (-691 (-341 (-3953 'X) (-3953) (-701)))) (-5 *1 (-85 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) + (-12 (-5 *2 (-1269 (-341 (-3953 'X) (-3953) (-701)))) (-5 *1 (-86 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 (-410 (-954 (-567))))) (-4 *1 (-444)))) + (-12 (-5 *2 (-691 (-341 (-3953 'XL 'XR 'ELAM) (-3953) (-701)))) + (-5 *1 (-88 *3)) (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 (-410 (-954 (-381))))) (-4 *1 (-444)))) + (-12 (-5 *2 (-341 (-3953 'X) (-3953 '-4396) (-701))) (-5 *1 (-89 *3)) + (-14 *3 (-1180)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 (-954 (-567)))) (-4 *1 (-444)))) + (-12 (-5 *2 (-643 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) + (-14 *4 (-773)) (-4 *5 (-172)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 (-954 (-381)))) (-4 *1 (-444)))) + (-12 (-5 *2 (-643 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) + (-14 *4 (-773)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 (-317 (-567)))) (-4 *1 (-444)))) + (-12 (-5 *2 (-1145 *4 *5)) (-14 *4 (-773)) (-4 *5 (-172)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1269 (-317 (-381)))) (-4 *1 (-444)))) + (-12 (-5 *2 (-239 *4 *5)) (-14 *4 (-773)) (-4 *5 (-172)) + (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1269 (-691 *4))) (-4 *4 (-172)) + (-5 *2 (-1269 (-691 (-410 (-949 *4))))) (-5 *1 (-189 *4)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) - (-5 *2 (-1175 (-1175 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) - (-4 *3 (-1245 *6)) (-14 *7 (-923)))) + (-12 (-5 *3 (-1095 (-315 *4))) (-4 *4 (-13 (-852) (-560) (-616 (-380)))) + (-5 *2 (-1095 (-380))) (-5 *1 (-260 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-276)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1245 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) + (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) - (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *1 (-978 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1040 *2)) (-4 *2 (-1219)))) + (-12 (-5 *2 (-1250 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) + (-14 *5 (-1180)) (-14 *6 *4) + (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) + (-5 *1 (-314 *3 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-5 *2 (-315 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) + (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) + ((*1 *2 *3) + (-12 (-4 *4 (-352)) (-4 *2 (-330 *4)) (-5 *1 (-350 *3 *4 *2)) + (-4 *3 (-330 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-352)) (-4 *2 (-330 *4)) (-5 *1 (-350 *2 *4 *3)) + (-4 *3 (-330 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) + (-5 *2 (-1294 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) + (-5 *2 (-1285 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) ((*1 *1 *2) - (|partial| -2836 - (-12 (-5 *2 (-954 *3)) - (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) - (-1736 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851))) - (-12 (-5 *2 (-954 *3)) - (-12 (-1736 (-4 *3 (-548))) (-1736 (-4 *3 (-38 (-410 (-567))))) - (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851))) - (-12 (-5 *2 (-954 *3)) - (-12 (-1736 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) - (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) + (-4 *1 (-385)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-385)))) + ((*1 *1 *2) (-12 (-5 *2 (-691 (-701))) (-4 *1 (-385)))) ((*1 *1 *2) - (|partial| -2836 - (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) - (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) - (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) + (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-387)))) + ((*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-397 *3)) (-4 *3 (-1104)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) - (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1213 *6)) - (-5 *2 (-1 (-1159 *4) (-1159 *4))) (-5 *1 (-1277 *6)) - (-5 *5 (-1159 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) - (-14 *4 (-645 (-1179))))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) (-4 *1 (-285))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) + (-4 *1 (-400)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-400)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5)) - (-14 *5 (-923)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) - (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) - (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172))))) -(((*1 *2) - (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3140 *3) (|:| -2618 (-772)))) (-5 *1 (-589 *3)) - (-4 *3 (-548))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-308)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) - (-4 *1 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) - (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1260 *5)) - (-5 *1 (-1262 *5 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) - (-4 *1 (-1073 *4 *5 *6 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) - (-15 -4306 ((-1127 *3 (-613 $)) $)) - (-15 -2504 ($ (-1127 *3 (-613 $)))))))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1159 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-442)))) - ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-839)))) - ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-1117)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1184))) (-5 *3 (-1184)) (-5 *1 (-1120))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) - (-4 *2 (-1229 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1179))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-645 (-225))) (-5 *1 (-204))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-225)) - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-945 *4)))) - (|:| |xValues| (-1096 *4)) (|:| |yValues| (-1096 *4)))) - (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *2 (-820 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-847)) (-5 *1 (-1292 *3 *2)) (-4 *3 (-1051))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-824)) (-5 *1 (-823))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760))))) -(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-772)) - (-4 *5 (-13 (-455) (-1040 (-567)))) (-4 *5 (-559)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *5 (-613 $)) $)) - (-15 -4306 ((-1127 *5 (-613 $)) $)) - (-15 -2504 ($ (-1127 *5 (-613 $)))))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-567)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) -(((*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-132))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) - (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1269 *5))))) - (-5 *1 (-980 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1269 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 (-690 *4))) (-4 *4 (-172)) - (-5 *2 (-1269 (-690 (-954 *4)))) (-5 *1 (-189 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) - (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1051)) - (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-853 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) - (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-854 *5 *3)) - (-4 *3 (-853 *5))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1087))) (-5 *1 (-292))))) -(((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) - ((*1 *2 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) - (|:| |f4| (-645 *5)))) - (-5 *1 (-1190 *6)) (-5 *4 (-645 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1175 *7))) (-5 *3 (-1175 *7)) - (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-911)) (-4 *5 (-794)) - (-4 *6 (-851)) (-5 *1 (-908 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1175 *5))) (-5 *3 (-1175 *5)) - (-4 *5 (-1245 *4)) (-4 *4 (-911)) (-5 *1 (-909 *4 *5))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-5 *1 (-1159 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1051)) - (-5 *2 (-1269 (-1269 *5))) (-5 *1 (-1031 *5)) (-5 *4 (-1269 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1040 *4)) (-4 *3 (-308)) - (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *6 (-412 *4 *5)) - (-14 *7 (-1269 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-294 (-315 (-168 (-380))))) (-5 *1 (-401 *3 *4 *5 *6)) + (-14 *3 (-1180)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) + (-14 *5 (-643 (-1180))) (-14 *6 (-1184)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-994 *3)) - (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) - (-14 *3 (-645 (-1179))) (-4 *4 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1179))) - (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1051)) - (-4 *5 (-238 (-2498 *3) (-772))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) - (-14 *3 (-645 (-1179))) (-4 *4 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1209 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-107 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-772)) (-5 *3 (-945 *5)) (-4 *5 (-1051)) - (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1167 *4 *5)) - (-14 *4 (-923)) (-4 *5 (-1051)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) - (-5 *1 (-1167 *4 *5)) (-14 *4 (-923))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-772)) (-4 *3 (-1219)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1) (-5 *1 (-171))) - ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1102)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-392)))) - ((*1 *1) (-5 *1 (-397))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) - ((*1 *1) - (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) - (-4 *4 (-667 *3)))) - ((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) + (-12 (-5 *2 (-294 (-315 (-380)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) ((*1 *1 *2) - (-12 (-5 *1 (-1144 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1051)))) - ((*1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) - ((*1 *1 *1) (-5 *1 (-1179))) ((*1 *1) (-5 *1 (-1179))) - ((*1 *1) (-5 *1 (-1199)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258))))) -(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *1)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-12 (-5 *2 (-294 (-315 (-549)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-12 (-5 *2 (-315 (-168 (-380)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1051)) (-5 *1 (-690 *3)))) + (-12 (-5 *2 (-315 (-380))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) ((*1 *1 *2) - (-12 (-5 *2 (-645 *4)) (-4 *4 (-1051)) (-4 *1 (-1125 *3 *4 *5 *6)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) -(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) - ((*1 *1) (-5 *1 (-331)))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1029 *5 *6 *7 *3))) (-5 *1 (-1029 *5 *6 *7 *3)) - (-4 *3 (-1067 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-645 *6)) (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1148 *5 *6 *7 *3))) (-5 *1 (-1148 *5 *6 *7 *3)) - (-4 *3 (-1067 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| -2025 *3) (|:| -2265 *4)))) - (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *1 (-1195 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1195 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) - (-5 *1 (-306))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) - (-5 *1 (-597 *3)) (-4 *3 (-1051))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1004)) - (-4 *2 (-1051))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1212 *4 *5 *6 *7)) - (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) - (-5 *1 (-333))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) - (-5 *2 - (-2 (|:| -2618 (-772)) (|:| -1344 *5) (|:| |radicand| (-645 *5)))) - (-5 *1 (-321 *5)) (-5 *4 (-772)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-567))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1245 *5)) - (-5 *2 - (-645 - (-2 (|:| -4374 (-690 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-690 *6))))) - (-5 *1 (-501 *5 *6 *7)) - (-5 *3 - (-2 (|:| -4374 (-690 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-690 *6)))) - (-4 *7 (-1245 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-770)) + (-12 (-5 *2 (-315 (-549))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-315 (-696)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-315 (-701)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-315 (-703)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 (-696))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 (-701))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 (-703))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) + (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1180)) + (-14 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-14 *5 (-643 (-1180))) + (-14 *6 (-1184)))) + ((*1 *1 *2) + (-12 (-5 *2 (-410 (-949 (-410 *3)))) (-4 *3 (-560)) (-4 *3 (-1104)) + (-4 *1 (-424 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 (-410 *3))) (-4 *3 (-560)) (-4 *3 (-1104)) + (-4 *1 (-424 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-410 *3)) (-4 *3 (-560)) (-4 *3 (-1104)) (-4 *1 (-424 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1128 *3 (-613 *1))) (-4 *3 (-1052)) (-4 *3 (-1104)) + (-4 *1 (-424 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-852) (-21))) (-5 *1 (-432 *3 *4)) + (-4 *3 (-13 (-172) (-38 (-410 (-549))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-549))))) + (-4 *3 (-13 (-852) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-437)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-437)))) + ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-437)))) + ((*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-439)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) + (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-443)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 (-701))) (-4 *1 (-443)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1184)) (|:| -1778 (-643 (-331))))) + (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-4 *1 (-444)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1269 (-410 (-949 *3)))) (-4 *3 (-172)) + (-14 *6 (-1269 (-691 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-922)) + (-14 *5 (-643 (-1180))))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-471)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) + (-5 *1 (-477 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) + ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-505)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-527)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-608)))) + ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-609 *3 *2)) (-4 *2 (-746 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) + (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) + (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) + ((*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-746 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-679 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) + (-12 (-5 *2 (-961 (-961 (-961 *3)))) (-5 *1 (-677 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2) + (-12 (-5 *2 (-961 (-961 (-961 *3)))) (-4 *3 (-1104)) (-5 *1 (-677 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) + ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-683)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-374 *3)) + (-4 *2 (-374 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-696)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 (-703))) (-5 *1 (-696)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 (-701))) (-5 *1 (-696)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 (-549))) (-5 *1 (-696)))) + ((*1 *1 *2) (-12 (-5 *2 (-168 (-380))) (-5 *1 (-696)))) + ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-701)))) + ((*1 *2 *1) (-12 (-5 *2 (-380)) (-5 *1 (-701)))) + ((*1 *2 *3) (-12 (-5 *3 (-315 (-549))) (-5 *2 (-315 (-703))) (-5 *1 (-703)))) + ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 (-2 (|:| -4386 *3) (|:| -4370 *4)))) (-4 *3 (-1052)) + (-4 *4 (-728)) (-5 *1 (-737 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-765)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) - (-5 *1 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-770)) (-5 *4 (-1065)) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| |mdnia| + (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) + (-5 *1 (-771)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) - (-5 *1 (-568)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-788)) (-5 *3 (-1065)) - (-5 *4 - (-2 (|:| |fn| (-317 (-225))) - (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *1 (-771)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) - (|:| |extra| (-1037)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-788)) (-5 *3 (-1065)) - (-5 *4 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *1 (-771)))) + ((*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-776 *3)) (-4 *3 (-1219)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)) - (|:| |extra| (-1037)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-801)) (-5 *3 (-1065)) - (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-809)) + (-5 *1 (-810)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-828)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))))) - (-5 *1 (-806)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-809)) (-5 *4 (-1065)) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) + (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) + (|:| |ub| (-643 (-844 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) + (-5 *1 (-843)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) + (-5 *1 (-843)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))))) - (-5 *1 (-806)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-1065)) - (-5 *4 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) - (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-1065)) - (-5 *4 - (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)))))) + (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) + (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) + (|:| |ub| (-643 (-844 (-225)))))) + (-5 *1 (-843)))) + ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-860)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-949 (-48))) (-5 *2 (-315 (-549))) (-5 *1 (-877)))) ((*1 *2 *3) - (-12 (-5 *3 (-842)) - (-5 *2 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))))) - (-5 *1 (-841)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-842)) (-5 *4 (-1065)) + (-12 (-5 *3 (-410 (-949 (-48)))) (-5 *2 (-315 (-549))) (-5 *1 (-877)))) + ((*1 *1 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-821 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))))) - (-5 *1 (-841)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-897)) (-5 *3 (-1065)) - (-5 *4 - (-2 (|:| |pde| (-645 (-317 (-225)))) + (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| - (-645 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-772)) (|:| |boundaryType| (-567)) - (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) + (-643 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) + (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) + (|:| |dFinish| (-691 (-225)))))) + (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) - (-5 *2 (-2 (|:| -4201 (-381)) (|:| |explanations| (-1161)))))) + (-5 *1 (-901)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-905 *3))) (-4 *3 (-1104)) (-5 *1 (-908 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 (-408 *3))) (-4 *3 (-308)) (-5 *1 (-917 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308)))) + ((*1 *2 *3) + (-12 (-5 *3 (-480)) (-5 *2 (-315 *4)) (-5 *1 (-923 *4)) (-4 *4 (-560)))) + ((*1 *2 *3) (-12 (-5 *2 (-1275)) (-5 *1 (-1036 *3)) (-4 *3 (-1219)))) + ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1036 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *2 (-953 *3 *4 *5)) (-14 *6 (-643 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-560)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1052)) (-4 *4 (-852)) (-5 *1 (-1129 *3 *4 *2)) + (-4 *2 (-953 *3 (-534 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1052)) (-4 *2 (-852)) (-5 *1 (-1129 *3 *2 *4)) + (-4 *4 (-953 *3 (-534 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-865)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1147)))) + ((*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) + (-5 *1 (-1178 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1179)))) + ((*1 *2 *1) (-12 (-5 *2 (-1192 (-1180) (-439))) (-5 *1 (-1184)))) + ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1193 *3)) (-4 *3 (-1104)))) + ((*1 *2 *3) (-12 (-5 *2 (-1199)) (-5 *1 (-1200 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1052)) (-5 *1 (-1212 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1212 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1092 *3)) (-4 *3 (-1219)) (-5 *1 (-1236 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1052)) (-14 *4 (-1180)) (-14 *5 *3) + (-5 *1 (-1259 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1266 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1272)) (-5 *1 (-1271)))) + ((*1 *2 *1) (-12 (-5 *2 (-865)) (-5 *1 (-1272)))) + ((*1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1294 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) + (-4 *4 (-172)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) + (-4 *4 (-172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) + (-5 *1 (-1290 *3 *4))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1285 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) + (-5 *1 (-666 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-666 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) + (-4 *4 (-172))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1095 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172))))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 (-549))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) (-4 *1 (-285))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-666 *3 *4)) (-4 *3 (-852)) + (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-5 *1 (-629 *3 *4 *5)) + (-14 *5 (-922)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) + (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-719 (-410 (-549)))) + (-4 *3 (-852)) (-4 *4 (-172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) (-4 *1 (-285))) ((*1 *2 *3) - (-12 (-5 *3 (-900)) - (-5 *2 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))))) - (-5 *1 (-899)))) + (-12 (-5 *3 (-408 *4)) (-4 *4 (-560)) + (-5 *2 (-643 (-2 (|:| -4386 (-773)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *2 *1) + (-12 (-5 *2 (-666 *3 *4)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) + (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) + (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-1290 *3 *4)) (-4 *4 (-719 (-410 (-549)))) + (-4 *3 (-852)) (-4 *4 (-172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) + (-5 *2 (-2 (|:| |k| (-821 *3)) (|:| |c| *4)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1294 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-821 *3)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1294 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-821 *3)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1104)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-1065)) - (-5 *2 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))))) - (-5 *1 (-899))))) + (-12 (-5 *4 (-549)) (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-821 *4)) (-4 *4 (-852)) (-4 *1 (-1289 *4 *3)) (-4 *3 (-1052))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) - (-5 *2 (-645 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866))))) -(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-1062)) (-5 *2 (-567))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-892 *4 *3)) - (-4 *3 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-235 *3)) - (-4 *3 (-1102)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4422)) (-4 *1 (-235 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) - (-5 *1 (-738 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) - (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *3 (-560)) (-5 *2 (-112)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-852)) + (-4 *3 (-13 (-172) (-719 (-410 (-549))))) (-14 *4 (-922)))) + ((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-826))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) - (-5 *2 (-410 (-567))) (-5 *1 (-1022 *4)) (-4 *4 (-1245 (-567)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) - ((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) -(((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1245 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + (-12 (-5 *2 (-773)) (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1289 *2 *3)) (-4 *2 (-852)) (-4 *3 (-1052)) (-4 *3 (-172))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-773)) (-5 *2 (-643 (-1180))) (-5 *1 (-210)) (-5 *3 (-1180)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-315 (-225))) (-5 *4 (-773)) (-5 *2 (-643 (-1180))) + (-5 *1 (-268)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1245 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-852)) (-4 *4 (-172)) (-5 *2 (-643 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1102)) - (-5 *1 (-679 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) - (-5 *2 (-247 *4 *5)) (-5 *1 (-946 *4 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-923)) (-4 *5 (-308)) (-4 *3 (-1245 *5)) - (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) - (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3))))) -(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) - (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1102)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-388 *3))))) + (-12 (-5 *2 (-643 *3)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) + (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-821 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1289 *3 *4)) (-4 *3 (-852)) (-4 *4 (-1052)) (-5 *2 (-643 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1214 *4 *5 *3 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *3 (-852)) + (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1076)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) + (-12 (-4 *4 (-365)) (-5 *2 (-922)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) + ((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-834 (-922))) (-5 *1 (-329 *3 *4)) + (-4 *3 (-330 *4)))) + ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) + ((*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922)))))) +(((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) + ((*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-773))))) +(((*1 *2 *2) + (-12 (-4 *3 (-352)) (-4 *4 (-330 *3)) (-4 *5 (-1245 *4)) + (-5 *1 (-779 *3 *4 *5 *2 *6)) (-4 *2 (-1245 *5)) (-14 *6 (-922)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) - (-4 *7 (-1245 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-577 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3906 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) - (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) - (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) - (-14 *6 (-923))))) + (-12 (-5 *3 (-773)) (-4 *4 (-13 (-1052) (-719 (-410 (-549))))) (-4 *5 (-852)) + (-5 *1 (-1286 *4 *5 *2)) (-4 *2 (-1292 *5 *4))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1283 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) + (-4 *7 (-852)) (-5 *1 (-1283 *5 *6 *7 *8))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1283 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) + (-4 *7 (-852)) (-5 *1 (-1283 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-4 *4 (-455)) - (-5 *2 (-645 (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4))))) - (-5 *1 (-293 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-643 (-1283 *4 *5 *6 *7))) + (-5 *1 (-1283 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-643 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) + (-5 *2 (-643 (-1283 *6 *7 *8 *9))) (-5 *1 (-1283 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1175 *7))) - (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) + (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-868 *4 *5 *6 *7)) + (-4 *4 (-1052)) (-14 *5 (-643 (-1180))) (-14 *6 (-643 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) - (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-923)) (-5 *1 (-1034 *2)) - (-4 *2 (-13 (-1102) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1175 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) - (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-851))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-5 *2 (-1175 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-455)) - (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5))))) + (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) + (-14 *8 (-643 *5)) (-5 *2 (-1275)) (-5 *1 (-1282 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-953 *4 *6 *5)) (-14 *9 (-643 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1104) (-34))) (-5 *1 (-1143 *3 *2)) + (-4 *3 (-13 (-1104) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1281))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1280))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1280))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1201 *3)) (-4 *3 (-1051))))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3))))) -(((*1 *1 *1) (-4 *1 (-1146)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) - (-4 *7 (-794)) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) + (-4 *4 (-1245 *3)) (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) - (|:| |wcond| (-645 (-954 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *5)))))))))) - (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1179))) (-4 *8 (-951 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) - (-4 *7 (-794)) + (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) + (-5 *1 (-353 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-549)) (-4 *4 (-1245 *3)) (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) - (|:| |wcond| (-645 (-954 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *5)))))))))) - (-5 *1 (-926 *5 *6 *7 *8)))) + (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) + (-5 *1 (-770 *4 *5)) (-4 *5 (-413 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) + (-12 (-4 *4 (-352)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) - (|:| |wcond| (-645 (-954 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *4)))))))))) - (-5 *1 (-926 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *5 (-923)) (-4 *9 (-951 *6 *8 *7)) - (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1179)))) - (-4 *8 (-794)) + (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) + (-5 *1 (-988 *4 *3 *5 *6)) (-4 *6 (-726 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-352)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) - (|:| |wcond| (-645 (-954 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *6)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *6)))))))))) - (-5 *1 (-926 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1179))) (-5 *5 (-923)) - (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) + (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) + (-5 *1 (-1279 *4 *3 *5 *6)) (-4 *6 (-413 *3 *5))))) +(((*1 *2) + (-12 (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) + (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) + (-4 *4 (-1245 *3)) (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) - (|:| |wcond| (-645 (-954 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *6)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *6)))))))))) - (-5 *1 (-926 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-5 *4 (-923)) (-4 *8 (-951 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) - (-4 *7 (-794)) + (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) + (-5 *1 (-353 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1245 (-549))) (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) - (|:| |wcond| (-645 (-954 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *5)))))))))) - (-5 *1 (-926 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1161)) - (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) - (-5 *1 (-926 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1179))) (-5 *5 (-1161)) - (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) - (-5 *1 (-926 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-5 *4 (-1161)) (-4 *8 (-951 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) - (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-926 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-923)) - (-5 *6 (-1161)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) - (-4 *8 (-13 (-851) (-615 (-1179)))) (-4 *9 (-794)) (-5 *2 (-567)) - (-5 *1 (-926 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1179))) (-5 *5 (-923)) - (-5 *6 (-1161)) (-4 *10 (-951 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) - (-4 *8 (-13 (-851) (-615 (-1179)))) (-4 *9 (-794)) (-5 *2 (-567)) - (-5 *1 (-926 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *9)) (-5 *4 (-923)) (-5 *5 (-1161)) - (-4 *9 (-951 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-13 (-851) (-615 (-1179)))) (-4 *8 (-794)) (-5 *2 (-567)) - (-5 *1 (-926 *6 *7 *8 *9))))) -(((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3)) (-4 *3 (-1102)) - (-4 *3 (-1219))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1051)) (-4 *4 (-1245 *3)) (-5 *1 (-164 *3 *4 *2)) - (-4 *2 (-1245 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1095 *3)) (-5 *1 (-1059 *2 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1096 *3)) (-5 *1 (-1094 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1067 *3 *4 *5))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) - (-5 *1 (-691 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-331)))) - ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-331))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633))))) -(((*1 *1 *2) - (-12 + (-2 (|:| -2190 (-691 (-549))) (|:| |basisDen| (-549)) + (|:| |basisInv| (-691 (-549))))) + (-5 *1 (-770 *3 *4)) (-4 *4 (-413 (-549) *3)))) + ((*1 *2) + (-12 (-4 *3 (-352)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) (-5 *2 - (-645 - (-2 - (|:| -2025 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2265 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1159 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2031 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-562))))) + (-2 (|:| -2190 (-691 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-691 *4)))) + (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-726 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-352)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) + (-5 *2 + (-2 (|:| -2190 (-691 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-691 *4)))) + (-5 *1 (-1279 *3 *4 *5 *6)) (-4 *6 (-413 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-773)) (-4 *6 (-365)) (-5 *4 (-1212 *6)) + (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1278 *6)) (-5 *5 (-1157 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-5 *2 (-567)) - (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1245 *5)) - (-4 *6 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1245 *4)) - (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1102))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-59 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1175 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1219)) - (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *2 *7)) (-4 *6 (-1051)) - (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) + (-12 (-5 *3 (-1180)) (-4 *5 (-365)) (-5 *2 (-643 (-1212 *5))) + (-5 *1 (-1278 *5)) (-5 *4 (-1212 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))))) - (-5 *2 (-1037)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4201 (-381)) (|:| -1646 (-1161)) - (|:| |explanations| (-645 (-1161))) (|:| |extra| (-1037)))) - (-5 *2 (-1037)) (-5 *1 (-306))))) -(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-823))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-581)))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) - (-14 *4 *2)))) -(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381))) - ((*1 *1) (-5 *1 (-381)))) -(((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) - (-14 *4 (-1179)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))) + (-12 (-5 *3 (-1180)) (-5 *2 (-1 (-1174 (-949 *4)) (-949 *4))) + (-5 *1 (-1278 *4)) (-4 *4 (-365))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1180)) (-4 *5 (-365)) (-5 *2 (-1157 (-1157 (-949 *5)))) + (-5 *1 (-1278 *5)) (-5 *4 (-1157 (-949 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-960 (-1175 *4))) (-5 *1 (-359 *4)) - (-5 *3 (-1175 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) + (-12 (-5 *3 (-773)) (-5 *2 (-1 (-1157 (-949 *4)) (-1157 (-949 *4)))) + (-5 *1 (-1278 *4)) (-4 *4 (-365))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) + (-12 (-5 *3 (-773)) (-5 *2 (-1 (-1157 (-949 *4)) (-1157 (-949 *4)))) + (-5 *1 (-1278 *4)) (-4 *4 (-365))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1134 *4 *2)) - (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4422) (-6 -4423)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-851)) (-4 *3 (-1219)) (-5 *1 (-1134 *3 *2)) - (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4422) (-6 -4423))))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1212 *5 *6 *7 *3)) - (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-1269 *3)) - (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422))))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *4 (-1245 *3)) - (-5 *2 - (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-1245 *3)) - (-5 *2 - (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) - (-5 *2 - (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-987 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 *3)) - (-5 *2 - (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-1278 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5))))) -(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) - (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-615 (-894 (-567)))) - (-4 *5 (-888 (-567))) - (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) - (-4 *3 (-13 (-27) (-1204) (-433 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1179)) (-5 *4 (-844 *2)) (-4 *2 (-1141)) - (-4 *2 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-615 (-894 (-567)))) (-4 *5 (-888 (-567))) - (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) - (-5 *1 (-570 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) - (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-751))))) + (-12 (-14 *4 (-773)) (-4 *5 (-1219)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) + (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) + ((*1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-549)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) + (-5 *2 (-549)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-983 *3)) (-4 *3 (-1052)) (-5 *2 (-922)))) + ((*1 *2) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) +(((*1 *1) (-5 *1 (-1275)))) +(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-225)) (-5 *1 (-1274)))) + ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1274))))) +(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) + ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) +(((*1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274)))) + ((*1 *2 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1274))))) +(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) + ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) +(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) + ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) +(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) + ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) +(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) + ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) +(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273)))) + ((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1273))))) +(((*1 *1) (-5 *1 (-1273)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-643 (-262))) (-5 *1 (-1273)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-1162)) (-5 *1 (-1273)))) + ((*1 *1 *1) (-5 *1 (-1273)))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-1168 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1273)))) + ((*1 *2 *1) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1273))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-773)) (-5 *3 (-946 *4)) (-4 *1 (-1137 *4)) (-4 *4 (-1052)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-773)) (-5 *4 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1272)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1272)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1273)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-262))) (-5 *1 (-1273))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-773)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-773)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1273))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-1282 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1282 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-1269 *6)) (-5 *1 (-338 *3 *4 *5 *6)) - (-4 *6 (-344 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -3906 (-410 *6)) (|:| |coeff| (-410 *6)))) - (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-1096 (-844 (-225)))) (-5 *1 (-306))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *3 (-645 (-567))) - (-5 *1 (-885))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1037)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-645 (-1078 *4 *5 *2))) (-4 *4 (-1102)) - (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) - (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-645 (-1078 *5 *6 *2))) (-5 *4 (-923)) (-4 *5 (-1102)) - (-4 *6 (-13 (-1051) (-888 *5) (-615 (-894 *5)))) - (-4 *2 (-13 (-433 *6) (-888 *5) (-615 (-894 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *3 *1) (-12 (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -4181 (-772)) (|:| |period| (-772)))) - (-5 *1 (-1159 *4)) (-4 *4 (-1219)) (-5 *3 (-772))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1063 (-1026 *4) (-1175 (-1026 *4)))) (-5 *3 (-863)) - (-5 *1 (-1026 *4)) (-4 *4 (-13 (-849) (-365) (-1024)))))) -(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1189))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1051)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) - (-4 *1 (-853 *3))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1037)) (-5 *1 (-750)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-391)) (-5 *2 (-1037)) (-5 *1 (-750))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1274)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-851) - (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 (*2 $)) - (-15 -3841 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-397)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-397)))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-505)))) - ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1199)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1199))))) -(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1274)) - (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1182))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-971 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1179))) (-5 *4 (-1179)) - (-5 *1 (-1182)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1182)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-440)) (-5 *3 (-1179)) (-5 *1 (-1183)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1179))) (-5 *1 (-1183))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-559)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1184) (-772)))) (-5 *1 (-334))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1212 *5 *6 *7 *8)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1087))))) -(((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) - (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1175 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-772)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-772)) (-4 *5 (-172)))) - ((*1 *2 *2 *3) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567))))) - (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1179))) (-14 *5 (-772)) - (-5 *1 (-508 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-951 *3 *5 *4)) - (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1179)))) - (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-630))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004) (-1204)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847))))) -(((*1 *2 *3) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *3 (-643 (-262))) (-5 *1 (-263)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-549)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-1159 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1179))) - (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *4 (-645 (-1179))) - (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-971 *2 *3)) - (-4 *3 (-1245 *2))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) - (-4 *3 (-1102)))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *2 (-1275)) (-5 *1 (-1273)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) - (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) - (-5 *1 (-952 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) - (-15 -4306 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *5 (-1245 *4)) (-5 *2 (-645 (-654 (-410 *5)))) - (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1175 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-1269 *2)) (-4 *5 (-308)) - (-4 *6 (-994 *5)) (-4 *2 (-13 (-412 *6 *7) (-1040 *6))) - (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1245 *6))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-979 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1051)) - (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-853 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) - (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-854 *5 *3)) - (-4 *3 (-853 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *1) - (-12 (-4 *1 (-696 *3)) (-4 *3 (-1102)) - (-5 *2 (-645 (-2 (|:| -2265 *3) (|:| -3486 (-772)))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1293 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-820 *3)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1245 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1179))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 (-923))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) - (-14 *4 (-923)) (-14 *5 (-995 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) - (-4 *4 (-1245 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) - (-4 *4 (-1051)) (-4 *5 (-851)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) - (-4 *2 (-851)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) - (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *2 (-851)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *2 (-951 *4 (-534 *5) *5)) - (-5 *1 (-1128 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-851)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-954 *4)) (-5 *1 (-1213 *4)) - (-4 *4 (-1051))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) - (-5 *2 (-1037)) (-5 *1 (-755))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *1 *1 *1) (-4 *1 (-762)))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1245 *6)) - (-4 *6 (-13 (-365) (-147) (-1040 *4))) (-5 *4 (-567)) + (-12 (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -4178 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1017 *6 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-754))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1260 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) - (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1260 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1) (-4 *1 (-630))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004) (-1204)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-183 *3)) (-4 *3 (-185))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) - (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-786 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-753))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *1 *1) (-4 *1 (-173))) - ((*1 *1 *1) - (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4279 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-1273)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-1272)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1272)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1272)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-1273)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1273)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1273))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1273))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1272)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1273))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-946 (-225)))) (-5 *1 (-1272))))) +(((*1 *1) (-5 *1 (-1272)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-643 (-262))) (-5 *1 (-1272)))) + ((*1 *1 *1) (-5 *1 (-1272)))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-922)) (-5 *4 (-225)) (-5 *5 (-549)) (-5 *6 (-876)) + (-5 *2 (-1275)) (-5 *1 (-1272))))) (((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *4))))))) - (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) - (-4 *7 (-951 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-756))))) + (-1269 + (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) + (|:| |deltaY| (-225)) (|:| -4282 (-549)) (|:| -4280 (-549)) + (|:| |spline| (-549)) (|:| -4311 (-549)) (|:| |axesColor| (-876)) + (|:| -4283 (-549)) (|:| |unitsColor| (-876)) (|:| |showing| (-549))))) + (-5 *1 (-1272))))) +(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) + ((*1 *2 *1) (-12 (-5 *2 (-1269 (-3 (-471) "undefined"))) (-5 *1 (-1272))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-5 *2 (-471)) (-5 *1 (-1272))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-172)) (-4 *2 (-1245 *4)) (-5 *1 (-177 *4 *2 *3)) - (-4 *3 (-725 *4 *2)))) + (-12 (-5 *2 (-643 (-380))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-471)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-1272)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) + ((*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-380)) (-5 *2 (-1275)) (-5 *1 (-1272))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1272))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1275)) (-5 *1 (-1272))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-876)) (-5 *5 (-922)) + (-5 *6 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-1271)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-410 (-954 *5)))) (-5 *4 (-1179)) - (-5 *2 (-954 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-954 *4)))) (-5 *2 (-954 *4)) - (-5 *1 (-293 *4)) (-4 *4 (-455)))) - ((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) + (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-643 (-262))) + (-5 *2 (-1272)) (-5 *1 (-1271))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-876)) (-5 *5 (-922)) + (-5 *6 (-643 (-262))) (-5 *2 (-471)) (-5 *1 (-1271)))) ((*1 *2 *3) - (-12 (-5 *3 (-690 (-169 (-410 (-567))))) - (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) - (-4 *4 (-13 (-365) (-849))))) + (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-471)) (-5 *1 (-1271)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1179)) - (-5 *2 (-954 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) - (-4 *5 (-13 (-365) (-849))))) + (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-643 (-262))) (-5 *2 (-471)) + (-5 *1 (-1271))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) + (-5 *1 (-59 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1104)) (|has| *1 (-6 -4425)) + (-4 *1 (-151 *2)) (-4 *2 (-1219)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) + (-4 *2 (-1219)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) + (-4 *2 (-1219)))) ((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-954 (-410 (-567)))) - (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1179)) - (-5 *2 (-954 (-410 (-567)))) (-5 *1 (-780 *5)) - (-4 *5 (-13 (-365) (-849)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1102)) - (-4 *6 (-1219)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6)))) + (-12 (-4 *4 (-1052)) (-5 *2 (-2 (|:| -2182 (-1174 *4)) (|:| |deg| (-922)))) + (-5 *1 (-221 *4 *5)) (-5 *3 (-1174 *4)) (-4 *5 (-560)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-239 *5 *6)) (-14 *5 (-773)) + (-4 *6 (-1219)) (-4 *2 (-1219)) (-5 *1 (-240 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1245 *4)) + (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-315 *2)) (-4 *2 (-560)) (-4 *2 (-1104)))) + ((*1 *1 *1) + (-12 (-4 *1 (-338 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1245 *2)) + (-4 *4 (-1245 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1219)) (-4 *2 (-1219)) + (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-374 *5)) (-4 *6 (-374 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1104)) (-4 *2 (-1104)) + (-5 *1 (-430 *5 *4 *2 *6)) (-4 *4 (-429 *5)) (-4 *6 (-429 *2)))) + ((*1 *1 *1) (-5 *1 (-498))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-643 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) + (-5 *1 (-644 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1052)) (-4 *2 (-1052)) (-4 *6 (-374 *5)) + (-4 *7 (-374 *5)) (-4 *8 (-374 *2)) (-4 *9 (-374 *2)) + (-5 *1 (-689 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) + (-4 *10 (-688 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-714 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-365)) + (-4 *3 (-172)) (-4 *1 (-726 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-726 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-961 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) + (-5 *1 (-962 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *2 (-953 *3 *4 *5)) (-14 *6 (-643 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1052)) (-4 *2 (-1052)) (-14 *5 (-773)) + (-14 *6 (-773)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) + (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) + (-5 *1 (-1058 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1056 *5 *6 *7 *8 *9)) (-4 *12 (-1056 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1157 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) + (-5 *1 (-1159 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1214 *5 *6 *7 *2)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *2 (-1068 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) (-4 *2 (-1219)) + (-5 *1 (-1270 *5 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) + (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) - (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-239 *6 *7)) (-14 *6 (-773)) + (-4 *7 (-1219)) (-4 *5 (-1219)) (-5 *2 (-239 *6 *5)) + (-5 *1 (-240 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1102)) - (-4 *5 (-1219)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1102)) - (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) - (-4 *5 (-1102)) (-4 *6 (-1219)) (-5 *1 (-642 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1102)) (-4 *2 (-1219)) (-5 *1 (-642 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-772))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-757))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) - (-5 *2 (-1037)) (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1223)) - (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1219)) (-4 *5 (-1219)) (-4 *2 (-374 *5)) + (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-374 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-4 *2 (-429 *5)) + (-5 *1 (-430 *6 *4 *5 *2)) (-4 *4 (-429 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-643 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) + (-5 *2 (-643 *5)) (-5 *1 (-644 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-961 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) + (-5 *2 (-961 *5)) (-5 *1 (-962 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1157 *6)) (-4 *6 (-1219)) (-4 *3 (-1219)) + (-5 *2 (-1157 *3)) (-5 *1 (-1159 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1269 *6)) (-4 *6 (-1219)) (-4 *5 (-1219)) + (-5 *2 (-1269 *5)) (-5 *1 (-1270 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1269 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-214 *2)) + (-4 *2 + (-13 (-852) + (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) + (-15 -2143 ((-1275) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-131)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-538))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-25))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-773)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-1268 *3)) (-4 *3 (-23)) (-4 *3 (-1219))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-214 *2)) + (-4 *2 + (-13 (-852) + (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) + (-15 -2143 ((-1275) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)))) + ((*1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) + ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-225)) (-5 *1 (-1216)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1052))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1051)) - (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-853 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1051)) - (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-854 *5 *3)) - (-4 *3 (-853 *5))))) -(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1219)) (-4 *3 (-1052)) (-5 *2 (-691 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-983 *2)) (-4 *2 (-1052)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1052))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) + ((*1 *1 *1) (-4 *1 (-548))) + ((*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-821 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1217 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1005)) (-4 *2 (-1052))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 *4)) (-5 *1 (-1143 *3 *4)) - (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051))))) -(((*1 *2) - (-12 (-5 *2 (-1269 (-1103 *3 *4))) (-5 *1 (-1103 *3 *4)) - (-14 *3 (-923)) (-14 *4 (-923))))) -(((*1 *1 *1) (-4 *1 (-870 *2)))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4347 *6) (|:| |sol?| (-112))) (-567) - *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) - (-2 (|:| -3906 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 (-410 (-567)))) (-5 *1 (-944)) (-5 *3 (-567))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-923)) (-5 *1 (-1032 *2)) - (-4 *2 (-13 (-1102) (-10 -8 (-15 -3045 ($ $ $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1175 (-1175 *5)))) - (-5 *1 (-1217 *5)) (-5 *3 (-1175 (-1175 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-301)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1161)) (-5 *1 (-306))))) -(((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) - ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) + (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1219)) (-4 *2 (-1005)) (-4 *2 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-866 *3)) (-14 *3 (-643 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-992)))) ((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567)))) - ((*1 *1 *1) (-4 *1 (-1062)))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-757))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) - (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) + (-12 (-4 *4 (-1219)) (-5 *2 (-1180)) (-5 *1 (-1061 *3 *4)) + (-4 *3 (-1097 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1095 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-1180)))) + ((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1266 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1204) (-1004)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) - (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) - (-5 *1 (-698)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-225))) - (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-698)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1 (-945 (-225)) (-225) (-225))) - (-5 *4 (-1096 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698))))) -(((*1 *2 *1) - (-12 (-5 *2 (-692 (-968 *3))) (-5 *1 (-968 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) + (-12 (-5 *3 (-410 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-560)) (-4 *4 (-1052)) + (-4 *2 (-1262 *4)) (-5 *1 (-1264 *4 *5 *6 *2)) (-4 *6 (-660 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *5 (-1245 *4)) (-5 *2 (-1 *6 (-643 *6))) + (-5 *1 (-1264 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-1262 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1051))))) + (-12 (-5 *4 (-773)) (-4 *5 (-1052)) (-4 *2 (-1245 *5)) + (-5 *1 (-1264 *5 *2 *6 *3)) (-4 *6 (-660 *2)) (-4 *3 (-1262 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *3 (-1245 *4)) (-4 *2 (-1262 *4)) + (-5 *1 (-1264 *4 *3 *5 *2)) (-4 *5 (-660 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-923)) (-5 *2 (-1175 *3)) (-5 *1 (-1193 *3)) - (-4 *3 (-365))))) -(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) - (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1179))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) - (-14 *4 (-645 (-1179))) (-5 *1 (-629 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-233)) (-4 *3 (-1051)) (-4 *4 (-851)) (-4 *5 (-267 *4)) - (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1051)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) - (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *1)))) - (-4 *1 (-1073 *4 *5 *6 *3))))) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 (-1 *6 (-643 *6)))) + (-4 *5 (-38 (-410 (-549)))) (-4 *6 (-1262 *5)) (-5 *2 (-643 *6)) + (-5 *1 (-1263 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1260 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) - (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1260 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1153))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1236 (-567)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331))))) -(((*1 *2 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711))))) + (-12 (-5 *3 (-1 *2 (-643 *2))) (-5 *4 (-643 *5)) (-4 *5 (-38 (-410 (-549)))) + (-4 *2 (-1262 *5)) (-5 *1 (-1263 *5 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1263 *4 *2)) + (-4 *4 (-38 (-410 (-549))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1263 *4 *2)) + (-4 *4 (-38 (-410 (-549))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1263 *3 *2)) (-4 *2 (-1262 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1182)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1274)) - (-5 *1 (-1182)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1274)) - (-5 *1 (-1182))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-645 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-794)) (-4 *3 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) - (-5 *1 (-452 *4 *5 *6 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140))))) + (-12 (-5 *3 (-1 *5 (-643 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) + (-5 *2 (-1 (-1157 *4) (-643 (-1157 *4)))) (-5 *1 (-1263 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) - (-5 *2 (-645 (-2 (|:| -4057 *1) (|:| -1692 (-645 *7))))) - (-5 *3 (-645 *7)) (-4 *1 (-1212 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1067 *6 *7 *8)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1074 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -3526 *9)))) - (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) - (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) - (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -3526 *9)))) - (-5 *1 (-1074 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) - (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) - (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)) - (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1051))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1037)) (-5 *1 (-754))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) + (-5 *2 (-1 (-1157 *4) (-1157 *4) (-1157 *4))) (-5 *1 (-1263 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-4 *5 (-1245 *4)) - (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -4178 *5)))) - (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) - (-4 *6 (-657 (-410 *5)))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-690 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-5 *1 (-440))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-954 (-567))) (-5 *3 (-1179)) - (-5 *4 (-1096 (-410 (-567)))) (-5 *1 (-30))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-144)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 *4)))) - (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) - (-4 *3 (-1219))))) -(((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1179)) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-4 *4 (-13 (-29 *6) (-1204) (-961))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -4374 (-645 *4)))) - (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-38 (-410 (-549)))) + (-5 *2 (-1 (-1157 *4) (-1157 *4))) (-5 *1 (-1263 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1159 (-954 *4)) (-1159 (-954 *4)))) - (-5 *1 (-1277 *4)) (-4 *4 (-365))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-1197))))) -(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1219)) - (-4 *3 (-1102)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) - (-5 *2 (-567)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1219)) - (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-532)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567)) (-5 *3 (-141)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-567))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) - (-5 *1 (-1007))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (-844 *3) - (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) - (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) - "failed")) - (-5 *1 (-637 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1161)) - (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-844 (-954 *5)))) (-4 *5 (-455)) - (-5 *2 - (-3 (-844 (-410 (-954 *5))) - (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-954 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-844 (-410 (-954 *5))) "failed"))) - "failed")) - (-5 *1 (-638 *5)) (-5 *3 (-410 (-954 *5))))) + (-12 (-5 *4 (-410 (-549))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) - (-4 *5 (-455)) - (-5 *2 - (-3 (-844 *3) - (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) - (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) - "failed")) - (-5 *1 (-638 *5)))) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-295 (-410 (-954 *6)))) (-5 *5 (-1161)) - (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) - (-5 *1 (-638 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-370))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-410 (-549))) + (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-294 *6)) + (-4 *6 (-13 (-27) (-1205) (-424 *5))) + (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-549))) + (-4 *7 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-549))) + (-4 *3 (-13 (-27) (-1205) (-424 *7))) + (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-410 (-549)))) (-5 *4 (-294 *8)) + (-5 *5 (-1236 (-410 (-549)))) (-5 *6 (-410 (-549))) + (-4 *8 (-13 (-27) (-1205) (-424 *7))) + (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-410 (-549)))) + (-5 *7 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *8))) + (-4 *8 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *8 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-1051)) (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) - (-4 *5 (-13 (-433 *4) (-1004) (-1204))) - (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1204)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1179)) (-5 *1 (-539))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1102)) (-4 *2 (-902 *4)) (-5 *1 (-693 *4 *2 *5 *3)) - (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4422))))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) + (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1052)) + (-5 *1 (-598 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-599 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-4 *3 (-1052)) + (-4 *1 (-1231 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-773)) (-5 *3 (-1157 (-2 (|:| |k| (-410 (-549))) (|:| |c| *4)))) + (-4 *4 (-1052)) (-4 *1 (-1252 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-4 *1 (-1262 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1157 (-2 (|:| |k| (-773)) (|:| |c| *3)))) (-4 *3 (-1052)) + (-4 *1 (-1262 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) - (-5 *2 (-2 (|:| -1344 (-567)) (|:| |var| (-613 *1)))) - (-4 *1 (-433 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1293 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-820 *3)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1179)) - (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *1 (-1182))))) -(((*1 *1 *1) (-5 *1 (-1065)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-667 *5)) (-5 *1 (-887 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (|has| *1 (-6 -4413)) (-4 *1 (-407)) - (-5 *2 (-923))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) - (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -3582 *6))) - (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-923)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1175 *1)) - (-4 *1 (-330 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1175 *3)))) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-643 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) - (-4 *2 (-1245 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-1175 *4)) - (-5 *1 (-531 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1175 (-1175 *4)))) - (-5 *1 (-1217 *4)) (-5 *3 (-1175 (-1175 *4)))))) -(((*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365))))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) - (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-923)))) - ((*1 *2 *3) - (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) - (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) - (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-923))))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) - (-4 *4 (-1245 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) - (-4 *3 (-851)))) + (-12 (-5 *2 (-643 *3)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728)))) + ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-643 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1052)) (-5 *2 (-1157 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-549))) (-4 *3 (-1052)) (-5 *1 (-598 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1231 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-549))) (-4 *1 (-1262 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)) + (-5 *2 (-949 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1051)) (-4 *3 (-851)) - (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) - (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) - (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) - (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) - (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) - (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) - (-5 *1 (-914 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) - (-4 *7 (-1245 *6)) (-4 *4 (-1245 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) - (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) - (-5 *1 (-1020 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1051)) (-4 *3 (-559)) - (-5 *2 (-772)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1204))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390))))) + (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *5)) (-4 *4 (-1052)) (-4 *5 (-852)) + (-5 *2 (-949 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-773)) (-4 *1 (-1262 *4)) (-4 *4 (-1052)) (-5 *2 (-949 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-4 *1 (-1262 *4)) (-4 *4 (-1052)) (-5 *2 (-949 *4))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-804))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) - (-5 *1 (-1131 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) - (-5 *1 (-1131 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1051)) - (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-923)) (-4 *5 (-1051)) - (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))) - (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-645 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) + (-12 (-5 *3 (-410 (-549))) (-4 *4 (-1041 (-549))) (-4 *4 (-560)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-134))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-549)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-410 (-549))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1262 *4)) + (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1233 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-410 (-549))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1231 *4)) + (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1254 *4 *5)) (-4 *6 (-986 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-285))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-363 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *1) (-5 *1 (-380))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-388 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-4 *3 (-1115)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-549)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1269 *4)) (-5 *3 (-549)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-538)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-538)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *4 (-1104)) (-5 *1 (-684 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-4 *3 (-365)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-691 *4)) (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-692 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-549)) (-4 *3 (-1052)) (-5 *1 (-716 *3 *4)) (-4 *4 (-650 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-716 *4 *5)) + (-4 *5 (-650 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-773)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-836 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-549)) (-5 *1 (-836 *4)) (-4 *4 (-1052)))) + ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-410 (-549))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-922)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-549)) (-4 *1 (-1126 *3 *4 *5 *6)) (-4 *4 (-1052)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-756))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1037)) - (-5 *1 (-750))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) - (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *1 *1) (-5 *1 (-1065)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *1) (-4 *1 (-351))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) + (-12 (-5 *4 (-1095 (-844 *3))) (-4 *3 (-13 (-1205) (-963) (-29 *5))) + (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1175 *5))) - (|:| |prim| (-1175 *5)))) - (-5 *1 (-435 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-559) (-147))) + (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) + (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) + (-5 *1 (-219 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1095 (-844 *3))) (-5 *5 (-1162)) + (-4 *3 (-13 (-1205) (-963) (-29 *6))) + (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1175 *3)) - (|:| |pol2| (-1175 *3)) (|:| |prim| (-1175 *3)))) - (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-954 *5)) (-5 *4 (-1179)) (-4 *5 (-13 (-365) (-147))) + (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| #1#) + (|:| |pole| #2#))) + (-5 *1 (-219 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1095 (-844 (-315 *5)))) + (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 - (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) - (|:| |prim| (-1175 *5)))) - (-5 *1 (-962 *5)))) + (-3 (|:| |f1| (-844 (-315 *5))) (|:| |f2| (-643 (-844 (-315 *5)))) + (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) + (-5 *1 (-220 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-410 (-949 *6))) (-5 *4 (-1095 (-844 (-315 *6)))) + (-5 *5 (-1162)) (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *2 + (-3 (|:| |f1| (-844 (-315 *6))) (|:| |f2| (-643 (-844 (-315 *6)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-220 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) - (-4 *5 (-13 (-365) (-147))) + (-12 (-5 *4 (-1095 (-844 (-410 (-949 *5))))) (-5 *3 (-410 (-949 *5))) + (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 - (-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 *5))) - (|:| |prim| (-1175 *5)))) - (-5 *1 (-962 *5)))) + (-3 (|:| |f1| (-844 (-315 *5))) (|:| |f2| (-643 (-844 (-315 *5)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-220 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-5 *5 (-1179)) - (-4 *6 (-13 (-365) (-147))) + (-12 (-5 *4 (-1095 (-844 (-410 (-949 *6))))) (-5 *5 (-1162)) + (-5 *3 (-410 (-949 *6))) + (-4 *6 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) (-5 *2 - (-2 (|:| -1344 (-645 (-567))) (|:| |poly| (-645 (-1175 *6))) - (|:| |prim| (-1175 *6)))) - (-5 *1 (-962 *6))))) -(((*1 *2 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))) -(((*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1219)) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) - ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1161)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-509)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-594)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-481)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1169)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-627)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1098)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1092)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1075)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-972)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1038)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-312)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-672)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1153)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-528)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1280)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1068)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-520)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-682)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1117)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-607)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-1279)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-677)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-218)))) - ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-527)))) - ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1184))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1141)))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) - (-4 *1 (-1073 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) -(((*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-645 (-954 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-645 (-954 *4))) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) - (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-954 *3))))) - ((*1 *2) - (-12 (-5 *2 (-645 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-954 *4))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) - (-14 *5 (-923)) (-14 *6 (-645 (-1179))) (-14 *7 (-1269 (-690 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) - (-4 *4 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 *4)))) - (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))) -(((*1 *1 *1) - (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *1)))) - (-4 *1 (-1073 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1223))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-1248 *3 *2)) - (-4 *2 (-13 (-1245 *3) (-559) (-10 -8 (-15 -1870 ($ $ $)))))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) - (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-951 *4 *5 *6)))) + (-3 (|:| |f1| (-844 (-315 *6))) (|:| |f2| (-643 (-844 (-315 *6)))) + (|:| |fail| #3#) (|:| |pole| #4#))) + (-5 *1 (-220 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-3 *3 (-643 *3))) (-5 *1 (-433 *5 *3)) + (-4 *3 (-13 (-1205) (-963) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-433 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) - (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) - (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))) - ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-1102)) (-5 *2 (-112)) - (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) - (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) - (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1204)))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1146)))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1002 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-455)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *5 (-911)) (-5 *1 (-460 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-911))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1102)) - (-5 *1 (-576 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1260 *4)) - (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1159 *4) (-1159 *4))) - (-5 *1 (-1262 *4 *5))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-793)) (-4 *3 (-172))))) -(((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) - (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) - (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1159 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1051)) - (-5 *1 (-1163 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *1 *1) (-4 *1 (-1146)))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-548))) - ((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-365) (-147))) - (-5 *2 (-645 (-2 (|:| -2618 (-772)) (|:| -3118 *4) (|:| |num| *4)))) - (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1219))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1245 (-410 (-567)))) (-5 *1 (-915 *3 *2)) - (-4 *2 (-1245 (-410 *3)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-851) - (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 (*2 $)) - (-15 -3841 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1274)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-851) - (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 (*2 $)) - (-15 -3841 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-505))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -3987 (-772)))) - (-5 *1 (-783 *3)) (-4 *3 (-1051)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3987 (-772)))) - (-4 *1 (-1067 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) + (-5 *6 (-1066)) (-5 *2 (-1038)) (-5 *1 (-568)))) + ((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1038)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) + (-5 *2 (-1038)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *5 (-380)) + (-5 *2 (-1038)) (-5 *1 (-568)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *5))))) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-1092 (-844 (-380)))) (-5 *2 (-1038)) + (-5 *1 (-568)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) + (-5 *2 (-1038)) (-5 *1 (-568)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-5 *5 (-772)) - (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) - (-4 *6 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *5 *6)))) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) + (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) + (-5 *5 (-380)) (-5 *2 (-1038)) (-5 *1 (-568)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-1092 (-844 (-380))))) + (-5 *5 (-380)) (-5 *6 (-1066)) (-5 *2 (-1038)) (-5 *1 (-568)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *6 *3)))) + (|partial| -12 (-5 *3 (-315 (-380))) (-5 *4 (-1095 (-844 (-380)))) + (-5 *5 (-1162)) (-5 *2 (-1038)) (-5 *1 (-568)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-772))) - (-4 *7 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-772))) - (-4 *3 (-13 (-27) (-1204) (-433 *7))) - (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *7 *3)))) + (|partial| -12 (-5 *3 (-315 (-380))) (-5 *4 (-1095 (-844 (-380)))) + (-5 *5 (-1180)) (-5 *2 (-1038)) (-5 *1 (-568)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) + (-5 *2 (-586 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-147)) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-3 (-315 *5) (-643 (-315 *5)))) (-5 *1 (-592 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-742 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-852)) + (-4 *3 (-38 (-410 (-549)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1180)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-410 (-549)))) + (-4 *3 (-1052)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-4 *2 (-852)) + (-5 *1 (-1129 *3 *2 *4)) (-4 *4 (-953 *3 (-534 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) + (-5 *1 (-1164 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1177 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1180)) (-5 *1 (-1212 *3)) (-4 *3 (-38 (-410 (-549)))) + (-4 *3 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3960 + (-12 (-5 *2 (-1180)) (-4 *1 (-1231 *3)) (-4 *3 (-1052)) + (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) + (-4 *3 (-38 (-410 (-549)))))) + (-12 (-5 *2 (-1180)) (-4 *1 (-1231 *3)) (-4 *3 (-1052)) + (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) + (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1231 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1250 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3960 + (-12 (-5 *2 (-1180)) (-4 *1 (-1252 *3)) (-4 *3 (-1052)) + (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) + (-4 *3 (-38 (-410 (-549)))))) + (-12 (-5 *2 (-1180)) (-4 *1 (-1252 *3)) (-4 *3 (-1052)) + (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) + (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-3960 + (-12 (-5 *2 (-1180)) (-4 *1 (-1262 *3)) (-4 *3 (-1052)) + (-12 (-4 *3 (-29 (-549))) (-4 *3 (-963)) (-4 *3 (-1205)) + (-4 *3 (-38 (-410 (-549)))))) + (-12 (-5 *2 (-1180)) (-4 *1 (-1262 *3)) (-4 *3 (-1052)) + (-12 (|has| *3 (-15 -3485 ((-643 *2) *3))) + (|has| *3 (-15 -4244 (*3 *3 *2))) (-4 *3 (-38 (-410 (-549)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1052)) (-4 *2 (-38 (-410 (-549))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1178 *4 *5 *6)) + (-4 *4 (-1052)) (-14 *5 (-1180)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1259 *4 *5 *6)) + (-4 *4 (-1052)) (-14 *5 (-1180)) (-14 *6 *4)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *1 (-231 *4)) (-4 *4 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-773)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-267 *3)) (-4 *3 (-852)))) + ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-852)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) + (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) + (-4 *4 (-1245 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-477 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-365)) (-4 *2 (-903 *3)) (-5 *1 (-586 *2)) (-5 *3 (-1180)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-586 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 (-773))) (-4 *1 (-903 *4)) + (-4 *4 (-1104)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-903 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-903 *3)) (-4 *3 (-1104)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1171 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1177 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1178 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1229 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1250 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1266 *4)) (-14 *4 (-1180)) (-5 *1 (-1259 *3 *4 *5)) + (-4 *3 (-1052)) (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) + (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1259 *2 *3 *4)) (-4 *2 (-1052)) (-14 *3 (-1180)) (-14 *4 *2)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) + (-14 *5 *3)))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-1052)) (-5 *1 (-1164 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-549)) (-5 *1 (-1259 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-1180)) + (-14 *5 *3)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-304)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-1038))) (-5 *2 (-1038)) (-5 *1 (-304)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-653 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *1) (-5 *1 (-1066))) + ((*1 *2 *3) + (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1158 *4)) + (-4 *4 (-1219)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) + (-12 (-4 *1 (-606 *3 *2)) (-4 *3 (-1104)) (-4 *3 (-852)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) + ((*1 *2 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) + ((*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-674 *3)) (-5 *1 (-896 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) + (-4 *5 (-374 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-374 *2)) + (-4 *5 (-374 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-643 (-549))) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) + (-14 *4 (-549)) (-14 *5 (-773)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-773)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-773)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-773)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-549)) (-4 *2 (-172)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-773)))) ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1260 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-4 *7 (-951 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) - (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) - ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) - ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1 (-1175 (-954 *4)) (-954 *4))) - (-5 *1 (-1277 *4)) (-4 *4 (-365))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1221)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1274)) (-5 *1 (-1221))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) - (-4 *2 (-13 (-851) (-21)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3))))) + (-12 (-4 *2 (-172)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-549)) (-14 *4 (-773)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-245 (-1162))) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-852) + (-10 -8 (-15 -4231 ((-1162) $ *3)) (-15 -4049 ((-1275) $)) + (-15 -2143 ((-1275) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-992)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-852) + (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 ((-1275) $)) + (-15 -2143 ((-1275) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-773)) (-5 *1 (-245 *4)) (-4 *4 (-852)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-852)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-852)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1185)) (-5 *1 (-250)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1245 *3)) + (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 *1)) (-4 *1 (-299)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1224)) (-4 *3 (-1245 *2)) + (-4 *4 (-1245 (-410 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-421 *2)) (-4 *2 (-172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1162)) (-5 *1 (-505)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-51)) (-5 *1 (-634)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-773)) (-5 *1 (-677 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-643 (-549))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-643 (-893 *4))) (-5 *1 (-893 *4)) + (-4 *4 (-1104)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1104)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-5 *2 (-905 *4)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-239 *4 *2)) (-14 *4 (-922)) (-4 *2 (-365)) + (-5 *1 (-996 *4 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *2 (-1052)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) + (-4 *7 (-238 *4 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-922)) (-4 *4 (-1104)) + (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-922)) (-4 *4 (-1104)) + (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1080 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-549))) (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) + (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-549)) (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) + (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) + ((*1 *1 *1 *1) (-4 *1 (-1147))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-410 *1)) (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1214 *2 *3 *4 *5)) (-4 *2 (-560)) (-4 *3 (-795)) + (-4 *4 (-852)) (-4 *5 (-1068 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1099)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) + ((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *2 (-1219)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1219)))) + ((*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1258 *3)) (-4 *3 (-1219)) (-5 *2 (-773))))) +(((*1 *1 *1) (-12 (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) - (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) + (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) + (-4 *5 (-374 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4423)) (-4 *1 (-119 *3)) + (-12 (-5 *2 "right") (|has| *1 (-6 -4426)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4423)) (-4 *1 (-119 *3)) - (-4 *3 (-1219)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4426)) (-4 *1 (-119 *3)) (-4 *3 (-1219)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) + (-12 (|has| *1 (-6 -4426)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1179)) (-5 *1 (-633)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1180)) (-5 *1 (-634)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1236 (-567))) (|has| *1 (-6 -4423)) (-4 *1 (-652 *2)) + (-12 (-5 *3 (-1236 (-549))) (|has| *1 (-6 -4426)) (-4 *1 (-653 *2)) (-4 *2 (-1219)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-12 (-5 *2 (-643 (-549))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4423)) (-4 *1 (-1012 *2)) + (-12 (-5 *3 "value") (|has| *1 (-6 -4426)) (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) + (-12 (-5 *3 "last") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *3)) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *3)) (-4 *3 (-1219)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) + (-12 (-5 *3 "first") (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) - ((*1 *1 *1) (|partial| -4 *1 (-723)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-509)) (-5 *3 (-645 (-877))) (-5 *1 (-486))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) - (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) - (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *9)) (-4 *9 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) - (-4 *8 (-1051)) (-4 *2 (-951 *9 *7 *5)) - (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) - (-4 *4 (-951 *8 *6 *5))))) -(((*1 *1) (-5 *1 (-1270)))) -(((*1 *2 *2) - (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) - (-5 *2 (-690 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1157 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1258 *2)) (-4 *2 (-1219))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) - (-5 *5 (-112)) (-5 *2 (-1271)) (-5 *1 (-258))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) + (-12 (-5 *2 (-549)) (|has| *1 (-6 -4426)) (-4 *1 (-1258 *3)) + (-4 *3 (-1219))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) - (-4 *3 (-559)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) + (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) + (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) - (-4 *3 (-1102)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) - (-4 *3 (-1102)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) - (-4 *3 (-1040 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-756))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-752))))) + (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) + (-5 *2 (-844 *4)) (-5 *1 (-1256 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1205) (-424 *3))) (-14 *5 (-1180)) (-14 *6 *4)))) (((*1 *2 *1) - (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) + (|partial| -12 (-4 *3 (-13 (-1041 (-549)) (-641 (-549)) (-455))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1250 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) + (|:| |%expTerms| (-643 (-2 (|:| |k| (-410 (-549))) (|:| |c| *4)))))) + (|:| |%type| (-1162)))) + (-5 *1 (-1256 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1205) (-424 *3))) + (-14 *5 (-1180)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) - (-14 *4 (-772)) (-4 *5 (-172))))) -(((*1 *2) - (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *2) (-12 (-5 *2 (-1149 (-1161))) (-5 *1 (-394))))) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-410 (-549))) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-410 (-549))) + (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-410 (-549)))) (-5 *4 (-294 *8)) + (-5 *5 (-1236 (-410 (-549)))) (-5 *6 (-410 (-549))) + (-4 *8 (-13 (-27) (-1205) (-424 *7))) + (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-410 (-549)))) + (-5 *7 (-410 (-549))) (-4 *3 (-13 (-27) (-1205) (-424 *8))) + (-4 *8 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-410 (-549))) (-4 *4 (-1052)) (-4 *1 (-1254 *4 *3)) + (-4 *3 (-1231 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-567)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) - (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) - (-5 *1 (-749))))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1231 *3)) + (-5 *2 (-410 (-549)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3))))) -(((*1 *1) (-5 *1 (-1065)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1260 *4)) - (-4 *4 (-38 (-410 (-567)))) - (-5 *2 (-1 (-1159 *4) (-645 (-1159 *4)))) (-5 *1 (-1262 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-916 *2)))) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-549)) (-4 *5 (-13 (-455) (-1041 *4) (-641 *4))) (-5 *2 (-51)) + (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *5)))) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-421 (-954 *6))) (-5 *5 (-1179)) (-5 *3 (-954 *6)) - (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-917 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) - (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) - (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929)))) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-455) (-1041 *5) (-641 *5))) (-5 *5 (-549)) (-5 *2 (-51)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-549))) + (-4 *7 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-549))) + (-4 *3 (-13 (-27) (-1205) (-424 *7))) + (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-375 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1051)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-1030 *3)))) + (-12 (-5 *2 (-549)) (-4 *4 (-1052)) (-4 *1 (-1233 *4 *3)) + (-4 *3 (-1262 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1231 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-922)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-1252 *3)) (-4 *3 (-1052))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-549)))) + (-4 *4 (-13 (-1245 *3) (-560) (-10 -8 (-15 -3564 ($ $ $))))) (-4 *3 (-560)) + (-5 *1 (-1249 *3 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-953 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-455)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *1)))) + (-4 *1 (-1074 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1224))) ((*1 *2 *2) - (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1051)) (-5 *1 (-1030 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-131)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-363 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-650 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-4 *3 (-560)) (-5 *1 (-1249 *3 *2)) + (-4 *2 (-13 (-1245 *3) (-560) (-10 -8 (-15 -3564 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) - (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 *4)))))) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)) + (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| -1344 *3) (|:| -3245 *4)))) - (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-727)))) + (-12 (-5 *2 (-643 (-2 (|:| -4386 *3) (|:| -4370 *4)))) (-5 *1 (-737 *3 *4)) + (-4 *3 (-1052)) (-4 *4 (-728)))) ((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) - (-5 *2 (-1159 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) - (-5 *2 (-645 (-1179))) (-5 *1 (-268)))) + (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) + (-5 *2 (-1157 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-241)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-643 (-1162))) (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *1 (-241)))) + ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) + ((*1 *2 *1) (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) + (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-773)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) + (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-852)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-922)))) ((*1 *2 *3) - (-12 (-5 *3 (-1175 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-645 *5)) - (-5 *1 (-322 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-390)))) - ((*1 *2 *1) - (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-645 (-1179))))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + (-12 (-5 *3 (-335 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) + (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) + (-5 *2 (-773)) (-5 *1 (-395 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-922))))) + ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) ((*1 *2 *1) - (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-645 *5)))) + (-12 (-4 *3 (-560)) (-5 *2 (-549)) (-5 *1 (-625 *3 *4)) (-4 *4 (-1245 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-742 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-852)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-742 *4 *3)) (-4 *4 (-1052)) (-4 *3 (-852)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) - (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *5)) - (-5 *1 (-952 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) - (-4 *5 (-851)) (-5 *2 (-645 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *5)))) + (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) + (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) + (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-773)) + (-5 *1 (-914 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1179))) - (-5 *1 (-1045 *4))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-863))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1102))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-973))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-567)) (-4 *4 (-351)) - (-5 *1 (-531 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1175 (-410 (-1175 *2)))) (-5 *4 (-613 *2)) - (-4 *2 (-13 (-433 *5) (-27) (-1204))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1102)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175 *1)) (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *3 (-851)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1175 *4)) (-4 *4 (-1051)) (-4 *1 (-951 *4 *5 *3)) - (-4 *5 (-794)) (-4 *3 (-851)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-1175 *2))) (-4 *5 (-794)) (-4 *4 (-851)) - (-4 *6 (-1051)) - (-4 *2 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))) - (-5 *1 (-952 *5 *4 *6 *7 *2)) (-4 *7 (-951 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-1175 (-410 (-954 *5))))) (-5 *4 (-1179)) - (-5 *2 (-410 (-954 *5))) (-5 *1 (-1045 *5)) (-4 *5 (-559))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1112))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1175 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1204))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) - (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1175 *3))) - (-4 *3 (-13 (-433 *6) (-27) (-1204))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) - (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))) -(((*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-945 (-225)) (-225) (-225))) - (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256))))) -(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) + (|partial| -12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) + (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) + (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-773)) (-5 *1 (-915 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-335 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) + (-4 *7 (-1245 *6)) (-4 *4 (-1245 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) + (-4 *9 (-13 (-370) (-365))) (-5 *2 (-773)) (-5 *1 (-1021 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-4 *3 (-560)) (-5 *2 (-773)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) + ((*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794))))) +(((*1 *1 *1) (-4 *1 (-1063))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-410 (-549))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-549)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-410 (-549))) (-5 *1 (-873 *4)) (-14 *4 *3) (-5 *3 (-549)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-410 (-549))) (-5 *1 (-874 *4 *5)) (-5 *3 (-549)) + (-4 *5 (-872 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1015)) (-5 *2 (-410 (-549))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1071 *2 *3)) (-4 *2 (-13 (-850) (-365))) (-4 *3 (-1245 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1248 *2 *3)) (-4 *3 (-794)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -4378 (*2 (-1180)))) (-4 *2 (-1052))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-742 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-852)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-983 *3)) (-4 *3 (-1052)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) + (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *2 (-1068 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-410 *5)) (-4 *4 (-1224)) (-4 *5 (-1245 *4)) + (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1245 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + (-12 (-5 *3 (-1182 (-410 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-190)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-691 (-315 (-225)))) (-5 *3 (-643 (-1180))) + (-5 *4 (-1269 (-315 (-225)))) (-5 *1 (-205)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-294 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1104)) + (-4 *3 (-1219)) (-5 *1 (-294 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) - (-4 *3 (-649 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) - (-4 *3 (-649 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051)))) - ((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *5 (-1245 *4)) (-5 *2 (-1175 (-410 *5))) (-5 *1 (-616 *4 *5)) - (-5 *3 (-410 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-147) (-27) (-1040 (-567)) (-1040 (-410 (-567))))) - (-5 *2 (-1175 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-645 (-923))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-923)) - (-4 *2 (-365)) (-14 *5 (-995 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851)) - (-4 *6 (-238 (-2498 *4) (-772))) - (-14 *7 - (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *6)) - (-2 (|:| -2188 *5) (|:| -2618 *6)))) - (-14 *4 (-645 (-1179))) (-4 *2 (-172)) - (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-951 *2 *6 (-865 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) - (-4 *4 (-1245 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1051)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-727)))) + (-12 (-4 *2 (-310 *2)) (-4 *2 (-1104)) (-4 *2 (-1219)) (-5 *1 (-294 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-299)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) - (-4 *4 (-1051)) (-4 *5 (-851)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-643 *1))) (-4 *1 (-299)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1051)) - (-4 *2 (-851)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1051)))) + (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-299)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-951 *4 *5 *6)) - (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *6 (-851)))) + (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 (-1 *1 *1))) (-4 *1 (-299)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1 *1 *1)) (-4 *1 (-299)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-951 *4 *5 *2)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *2 (-851)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-1 *1 (-643 *1))) (-4 *1 (-299)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-975 *4 *5 *6)) - (-4 *4 (-1051)) (-4 *5 (-793)) (-4 *6 (-851)))) + (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-299)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-975 *4 *3 *2)) (-4 *4 (-1051)) (-4 *3 (-793)) - (-4 *2 (-851))))) -(((*1 *2 *1) (-12 (-5 *2 (-960 (-772))) (-5 *1 (-334))))) -(((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1245 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-567))))) + (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-1 *1 *1))) (-4 *1 (-299)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-294 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1104)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1104)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-567))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) - (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-567))))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) - (-4 *3 (-1245 (-410 (-567)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1242 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1179)) - (-4 *5 (-365)) (-5 *1 (-925 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1175 *5)) - (-5 *1 (-925 *4 *5)) (-14 *4 (-1179)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) - (-5 *2 (-410 (-954 *6))) (-5 *1 (-1052 *5 *6)) (-14 *5 (-1179))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) - ((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172)))) - ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-5 *1 (-550))) - ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552))) - ((*1 *1) (-4 *1 (-727))) ((*1 *1) (-5 *1 (-1179))) - ((*1 *1) (-12 (-5 *1 (-1185 *2)) (-14 *2 (-923)))) - ((*1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923)))) - ((*1 *1) (-5 *1 (-1224))) ((*1 *1) (-5 *1 (-1225))) - ((*1 *1) (-5 *1 (-1226))) ((*1 *1) (-5 *1 (-1227)))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1272))))) -(((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-682)))) - ((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-972)))) - ((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-1075)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1120))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-851)) - (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-748))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) - (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1104 (-1104 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-760))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-645 (-1179))) - (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1025)) (-5 *5 (-381)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) - (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) + (-12 (-5 *3 (-1 *2 (-549))) (-5 *4 (-1182 (-410 (-549)))) (-5 *1 (-311 *2)) + (-4 *2 (-38 (-410 (-549)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-852)) + (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-852)) (-4 *3 (-172)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *4 (-1 *1 *1)) (-4 *1 (-424 *5)) + (-4 *5 (-1104)) (-4 *5 (-1052)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *4 (-1 *1 (-643 *1))) + (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-773))) + (-5 *4 (-643 (-1 *1 (-643 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-1104)) + (-4 *5 (-1052)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-643 (-773))) (-5 *4 (-643 (-1 *1 *1))) + (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-1052)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-643 (-113))) (-5 *3 (-643 *1)) (-5 *4 (-1180)) + (-4 *1 (-424 *5)) (-4 *5 (-1104)) (-4 *5 (-616 (-538))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1180)) (-4 *1 (-424 *4)) (-4 *4 (-1104)) + (-4 *4 (-616 (-538))))) + ((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-616 (-538))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-1180))) (-4 *1 (-424 *3)) (-4 *3 (-1104)) + (-4 *3 (-616 (-538))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)) + (-4 *3 (-616 (-538))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1219)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1104)) + (-4 *5 (-1219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-720 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1104)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-410 (-949 *4))) (-5 *3 (-1180)) (-4 *4 (-560)) + (-5 *1 (-1043 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-643 (-1180))) (-5 *4 (-643 (-410 (-949 *5)))) + (-5 *2 (-410 (-949 *5))) (-4 *5 (-560)) (-5 *1 (-1043 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-294 (-410 (-949 *4)))) (-5 *2 (-410 (-949 *4))) (-4 *4 (-560)) + (-5 *1 (-1043 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-643 (-294 (-410 (-949 *4))))) (-5 *2 (-410 (-949 *4))) + (-4 *4 (-560)) (-5 *1 (-1043 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1157 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-4 *1 (-1245 *4)) (-4 *4 (-1052)) (-5 *2 (-1269 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1052)) (-5 *2 (-1174 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-1052)) (-4 *1 (-1245 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) + (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-953 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1052)) (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) + (-4 *1 (-1245 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-4 *4 (-1052)) + (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1245 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1245 *3)) (-4 *3 (-1052))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052))))) +(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-954 *4))) - (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) - (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179)))))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1245 *2)) + (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-1245 *2)) (-4 *2 (-172)) (-5 *1 (-412 *3 *2 *4)) + (-4 *3 (-413 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-413 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *3 (-1245 *2)) (-5 *2 (-549)) (-5 *1 (-770 *3 *4)) + (-4 *4 (-413 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) + (-4 *3 (-172)))) + ((*1 *2 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-172))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) + (-4 *3 (-172)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-172))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1052)) + (-4 *3 (-560)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1052)) (-4 *2 (-560))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -4386 *4) (|:| -2152 *3) (|:| -3303 *3))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-1068 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-560)) (-4 *3 (-1052)) + (-5 *2 (-2 (|:| -4386 *3) (|:| -2152 *1) (|:| -3303 *1))) + (-4 *1 (-1245 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) - (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1179)) - (-4 *4 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -1444 (-645 (-2 (|:| |irr| *10) (|:| -3451 (-567))))))) - (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) - (-4 *10 (-951 *3 *9 *8)) (-4 *9 (-794)) - (-5 *2 - (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) - (|:| |corrfact| (-645 (-1175 *3))))) - (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1175 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) + (-12 (-4 *4 (-365)) (-4 *4 (-560)) (-4 *5 (-1245 *4)) + (-5 *2 (-2 (|:| -1939 (-625 *4 *5)) (|:| -1938 (-410 *5)))) + (-5 *1 (-625 *4 *5)) (-5 *3 (-410 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-359 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-531 *4))))) + (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) + (-4 *4 (-1052)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-455)) (-4 *3 (-1052)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1245 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-1243 *4 *2)) + (-4 *2 (-1245 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1245 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-1243 *3 *2)) (-4 *2 (-1245 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) + (-5 *1 (-1242 *4 *3)) (-4 *3 (-1245 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) - (-14 *4 (-923))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) + (-12 (-4 *4 (-13 (-560) (-147))) (-5 *2 (-643 *3)) (-5 *1 (-1241 *4 *3)) + (-4 *3 (-1245 *4))))) (((*1 *2 *3) - (-12 (-4 *3 (-1245 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-987 *4 *2 *3 *5)) - (-4 *4 (-351)) (-4 *5 (-725 *2 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *1 (-351)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 *4)))) - (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) - (-4 *7 (-1102)) (-5 *2 (-645 *1)) (-4 *1 (-1105 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) - (-5 *2 (-416 *4 (-410 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 *6)) (-4 *6 (-13 (-412 *4 *5) (-1040 *4))) - (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) - (-5 *1 (-416 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) - (-4 *2 (-13 (-851) (-21)))))) -(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) + (|partial| -12 (-4 *4 (-13 (-560) (-147))) + (-5 *2 (-2 (|:| -3542 *3) (|:| -3541 *3))) (-5 *1 (-1241 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1241 *3 *2)) + (-4 *2 (-1245 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-773)) (-4 *4 (-13 (-560) (-147))) + (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-773)) (-4 *4 (-13 (-560) (-147))) + (-5 *1 (-1241 *4 *2)) (-4 *2 (-1245 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1161)) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) - (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1204) (-29 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-494))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-1100 *3)))) - ((*1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2) - (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-822))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-787))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-448 *3)) (-4 *3 (-1051))))) -(((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) - (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) - (-4 *3 (-1245 *6)) (-4 *7 (-951 *6 *4 *5))))) + (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) + (-4 *3 (-374 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) + (-4 *6 (-374 *4)) (-4 *3 (-374 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-691 *5)) (-4 *5 (-994 *4)) (-4 *4 (-560)) + (-5 *2 (-2 (|:| |num| (-691 *4)) (|:| |den| *4))) (-5 *1 (-695 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) + (-5 *2 (-2 (|:| -3687 *7) (|:| |rh| (-643 (-410 *6))))) + (-5 *1 (-809 *5 *6 *7 *3)) (-5 *4 (-643 (-410 *6))) (-4 *7 (-660 *6)) + (-4 *3 (-660 (-410 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1240 *4 *5 *3)) + (-4 *3 (-1245 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2) (-12 (-5 *1 (-903 *2)) (-4 *2 (-1102))))) -(((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-682)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1120))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1183))))) -(((*1 *2 *3) - (-12 (-4 *4 (-851)) (-5 *2 (-1191 (-645 *4))) (-5 *1 (-1190 *4)) - (-5 *3 (-645 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-772))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1219)) (-4 *1 (-238 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) -(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) - (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) - (-4 *2 (-688 *3 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) - (-4 *4 (-13 (-365) (-849)))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1014))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-923))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + (-12 (-4 *3 (-560)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) + (-4 *2 (-374 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1161)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *4 (-1067 *6 *7 *8)) (-5 *2 (-1274)) - (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1073 *6 *7 *8 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-328 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-519 *3 *4)) - (-14 *4 (-567))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1102)) (-5 *2 (-112)) (-5 *1 (-887 *3 *4 *5)) - (-4 *3 (-1102)) (-4 *5 (-667 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-960 (-1122))) - (-5 *1 (-348 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + (-12 (-4 *4 (-560)) (-4 *5 (-994 *4)) (-4 *2 (-374 *4)) + (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-374 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-317 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) + (-12 (-5 *3 (-691 *5)) (-4 *5 (-994 *4)) (-4 *4 (-560)) (-5 *2 (-691 *4)) + (-5 *1 (-695 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3)))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) - (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1051)) (-4 *1 (-1245 *3))))) -(((*1 *2) - (-12 - (-5 *2 - (-1269 (-645 (-2 (|:| -2233 (-912 *3)) (|:| -2188 (-1122)))))) - (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) (-14 *4 (-923)))) - ((*1 *2) - (-12 (-5 *2 (-1269 (-645 (-2 (|:| -2233 *3) (|:| -2188 (-1122)))))) - (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1175 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1269 (-645 (-2 (|:| -2233 *3) (|:| -2188 (-1122)))))) - (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-923))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) - (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1153))))) + (-12 (-4 *3 (-560)) (-4 *4 (-994 *3)) (-5 *1 (-1240 *3 *4 *2)) + (-4 *2 (-1245 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1102)) (-4 *6 (-1102)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1102))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-772)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) - ((*1 *1 *1) (-4 *1 (-1004))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1014)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1014)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-923)))) - ((*1 *1 *1) (-4 *1 (-1014)))) + (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-374 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-506 *2 *4 *5 *3)) + (-4 *5 (-374 *2)) (-4 *3 (-374 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-691 *4)) (-4 *4 (-994 *2)) (-4 *2 (-560)) + (-5 *1 (-695 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-994 *2)) (-4 *2 (-560)) (-5 *1 (-1240 *2 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-783 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-560)) (-4 *3 (-1052)) + (-4 *2 (-794)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1174 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-974)) (-4 *2 (-131)) (-5 *1 (-1182 *3)) (-4 *3 (-560)) + (-4 *3 (-1052)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-773)) (-5 *1 (-1238 *4 *3)) (-14 *4 (-1180)) (-4 *3 (-1052))))) +(((*1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *2 (-1097 *3)) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-1219)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1219))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1094 (-844 *3))) (-4 *3 (-13 (-1204) (-961) (-29 *5))) - (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1094 (-844 *3))) (-5 *5 (-1161)) - (-4 *3 (-13 (-1204) (-961) (-29 *6))) - (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1094 (-844 (-317 *5)))) - (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1094 (-844 (-317 *6)))) - (-5 *5 (-1161)) - (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-12 (-5 *4 (-112)) (-5 *2 - (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) + (-2 (|:| |contp| (-549)) + (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) + (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1094 (-844 (-410 (-954 *5))))) (-5 *3 (-410 (-954 *5))) - (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1094 (-844 (-410 (-954 *6))))) (-5 *5 (-1161)) - (-5 *3 (-410 (-954 *6))) - (-4 *6 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) + (-12 (-5 *4 (-112)) (-5 *2 - (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) - (-4 *3 (-13 (-1204) (-961) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) - (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))) - ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1037)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) - (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) - (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) + (-2 (|:| |contp| (-549)) + (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) + (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1245 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1096 (-844 (-381)))) - (-5 *2 (-1037)) (-5 *1 (-568)))) + (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) - (-5 *2 (-1037)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) - (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) - (-5 *5 (-381)) (-5 *2 (-1037)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1096 (-844 (-381))))) - (-5 *5 (-381)) (-5 *6 (-1065)) (-5 *2 (-1037)) (-5 *1 (-568)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) - (-5 *5 (-1161)) (-5 *2 (-1037)) (-5 *1 (-568)))) + (-12 (-5 *4 (-643 (-773))) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) - (-5 *5 (-1179)) (-5 *2 (-1037)) (-5 *1 (-568)))) + (-12 (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) - (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-147)) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)) - (-4 *3 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1179)) (-5 *1 (-954 *3)) (-4 *3 (-38 (-410 (-567)))) - (-4 *3 (-1051)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-4 *2 (-851)) - (-5 *1 (-1128 *3 *2 *4)) (-4 *4 (-951 *3 (-534 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) - (-5 *1 (-1163 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1176 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *1 (-1213 *3)) (-4 *3 (-38 (-410 (-567)))) - (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-2836 - (-12 (-5 *2 (-1179)) (-4 *1 (-1229 *3)) (-4 *3 (-1051)) - (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) - (-4 *3 (-38 (-410 (-567)))))) - (-12 (-5 *2 (-1179)) (-4 *1 (-1229 *3)) (-4 *3 (-1051)) - (-12 (|has| *3 (-15 -3783 ((-645 *2) *3))) - (|has| *3 (-15 -3670 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1229 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-2836 - (-12 (-5 *2 (-1179)) (-4 *1 (-1250 *3)) (-4 *3 (-1051)) - (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) - (-4 *3 (-38 (-410 (-567)))))) - (-12 (-5 *2 (-1179)) (-4 *1 (-1250 *3)) (-4 *3 (-1051)) - (-12 (|has| *3 (-15 -3783 ((-645 *2) *3))) - (|has| *3 (-15 -3670 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1254 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2836 - (-12 (-5 *2 (-1179)) (-4 *1 (-1260 *3)) (-4 *3 (-1051)) - (-12 (-4 *3 (-29 (-567))) (-4 *3 (-961)) (-4 *3 (-1204)) - (-4 *3 (-38 (-410 (-567)))))) - (-12 (-5 *2 (-1179)) (-4 *1 (-1260 *3)) (-4 *3 (-1051)) - (-12 (|has| *3 (-15 -3783 ((-645 *2) *3))) - (|has| *3 (-15 -3670 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-822))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) - (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1245 (-169 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2254 *4))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1204))) - (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1004) (-1204)))))) + (-12 (-5 *2 (-408 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1245 (-410 (-549)))))) + ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) + (-12 (-5 *4 (-643 (-48))) (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) - (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-951 (-48) *6 *5)))) + (-12 (-5 *4 (-643 (-48))) (-4 *5 (-852)) (-4 *6 (-795)) (-5 *2 (-408 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-953 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) - (-4 *7 (-951 (-48) *6 *5)) (-5 *2 (-421 (-1175 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1175 *7)))) + (-12 (-5 *4 (-643 (-48))) (-4 *5 (-852)) (-4 *6 (-795)) + (-4 *7 (-953 (-48) *6 *5)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1174 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3)) - (-4 *3 (-1245 (-169 *4))))) + (-12 (-4 *4 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-167 *4 *3)) + (-4 *3 (-1245 (-168 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) + (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) + (-4 *3 (-1245 (-168 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) + (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) + (-4 *3 (-1245 (-168 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) + (-12 (-4 *4 (-352)) (-5 *2 (-408 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) + ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-567))))) + (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-567))))) + (-12 (-5 *4 (-643 (-773))) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) - (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) + (-12 (-5 *4 (-643 (-773))) (-5 *5 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) - (-4 *3 (-1245 (-567))))) + (-12 (-5 *4 (-773)) (-5 *2 (-408 *3)) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549))))) ((*1 *2 *3) - (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449)) - (-5 *3 (-169 (-567))))) + (-12 (-5 *2 (-408 (-168 (-549)))) (-5 *1 (-449)) (-5 *3 (-168 (-549))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-851) - (-10 -8 (-15 -1322 ((-1179) $)) - (-15 -2722 ((-3 $ "failed") (-1179)))))) - (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3)) - (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559)) - (-4 *3 (-951 *7 *5 *4)))) + (-13 (-852) + (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) + (-4 *5 (-795)) (-4 *7 (-560)) (-5 *2 (-408 *3)) + (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-560)) (-4 *3 (-953 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1175 *4))) (-5 *1 (-461 *4)) - (-5 *3 (-1175 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-408 (-1174 *4))) (-5 *1 (-461 *4)) + (-5 *3 (-1174 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3)) + (-12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) + (-4 *7 (-13 (-365) (-147) (-726 *5 *6))) (-5 *2 (-408 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1245 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-421 (-1175 *7)) (-1175 *7))) - (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) - (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3)) - (-4 *3 (-951 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-421 (-1175 *7)) (-1175 *7))) - (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) - (-4 *8 (-951 *7 *6 *5)) (-5 *2 (-421 (-1175 *8))) - (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1175 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *6 (-1245 *5)) (-5 *2 (-645 (-654 (-410 *6)))) - (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6))))) + (-12 (-5 *4 (-1 (-408 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) + (-4 *5 (-852)) (-4 *6 (-795)) (-5 *2 (-408 *3)) (-5 *1 (-543 *5 *6 *7 *3)) + (-4 *3 (-953 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-408 (-1174 *7)) (-1174 *7))) (-4 *7 (-13 (-308) (-147))) + (-4 *5 (-852)) (-4 *6 (-795)) (-4 *8 (-953 *7 *6 *5)) + (-5 *2 (-408 (-1174 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1174 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-643 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *6 (-1245 *5)) (-5 *2 (-643 (-657 (-410 *6)))) (-5 *1 (-661 *5 *6)) + (-5 *3 (-657 (-410 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *5 (-1245 *4)) (-5 *2 (-645 (-654 (-410 *5)))) - (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) + (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *5 (-1245 *4)) (-5 *2 (-643 (-657 (-410 *5)))) (-5 *1 (-661 *4 *5)) + (-5 *3 (-657 (-410 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4))) - (-5 *1 (-673 *4)))) + (-12 (-5 *3 (-821 *4)) (-4 *4 (-852)) (-5 *2 (-643 (-674 *4))) + (-5 *1 (-674 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3)) - (-4 *3 (-1245 *4)))) + (-12 (-5 *4 (-549)) (-5 *2 (-643 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1245 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3)) - (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) + (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-352)) (-5 *2 (-408 *3)) + (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) - (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1175 *7))) - (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) + (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-352)) (-4 *7 (-953 *6 *5 *4)) + (-5 *2 (-408 (-1174 *7))) (-5 *1 (-700 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-794)) + (-12 (-4 *4 (-795)) (-4 *5 - (-13 (-851) - (-10 -8 (-15 -1322 ((-1179) $)) - (-15 -2722 ((-3 $ "failed") (-1179)))))) - (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3)) - (-4 *3 (-951 (-954 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-794)) - (-4 *5 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *6 (-559)) - (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3)) - (-4 *3 (-951 (-410 (-954 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147))) - (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3)) - (-4 *3 (-951 (-410 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) - (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-951 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) - (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-421 (-1175 *7))) - (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1009 *3)) - (-4 *3 (-1245 (-410 (-567)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1043 *3)) - (-4 *3 (-1245 (-410 (-954 (-567))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1245 (-410 (-567)))) - (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4))) - (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1245 *5)))) + (-13 (-852) + (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ "failed") (-1180)))))) + (-4 *6 (-308)) (-5 *2 (-408 *3)) (-5 *1 (-732 *4 *5 *6 *3)) + (-4 *3 (-953 (-949 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) + (-4 *6 (-560)) (-5 *2 (-408 *3)) (-5 *1 (-734 *4 *5 *6 *3)) + (-4 *3 (-953 (-410 (-949 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-13 (-308) (-147))) + (-5 *2 (-408 *3)) (-5 *1 (-735 *4 *5 *6 *3)) + (-4 *3 (-953 (-410 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-13 (-308) (-147))) + (-5 *2 (-408 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-953 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-852)) (-4 *5 (-795)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-953 *6 *5 *4)) (-5 *2 (-408 (-1174 *7))) (-5 *1 (-743 *4 *5 *6 *7)) + (-5 *3 (-1174 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-408 *3)) (-5 *1 (-1010 *3)) (-4 *3 (-1245 (-410 (-549)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-408 *3)) (-5 *1 (-1045 *3)) + (-4 *3 (-1245 (-410 (-949 (-549))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1245 (-410 (-549)))) + (-4 *5 (-13 (-365) (-147) (-726 (-410 (-549)) *4))) (-5 *2 (-408 *3)) + (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1245 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1245 (-410 (-949 (-549))))) + (-4 *5 (-13 (-365) (-147) (-726 (-410 (-949 (-549))) *4))) (-5 *2 (-408 *3)) + (-5 *1 (-1084 *4 *5 *3)) (-4 *3 (-1245 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-455)) (-4 *7 (-953 *6 *4 *5)) + (-5 *2 (-408 (-1174 (-410 *7)))) (-5 *1 (-1176 *4 *5 *6 *7)) + (-5 *3 (-1174 (-410 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-408 *1)) (-4 *1 (-1224)))) + ((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-1235 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-549)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-873 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-873 *2)) (-14 *2 (-549)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-549)) (-14 *3 *2) (-5 *1 (-874 *3 *4)) (-4 *4 (-872 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-549)) (-5 *1 (-874 *2 *3)) (-4 *3 (-872 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-549)) (-4 *1 (-1233 *3 *4)) (-4 *3 (-1052)) + (-4 *4 (-1262 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1233 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-1262 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-51)) (-5 *1 (-317 *4 *5)) (-4 *5 (-13 (-27) (-1205) (-424 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-1245 (-410 (-954 (-567))))) - (-4 *5 (-13 (-365) (-147) (-725 (-410 (-954 (-567))) *4))) - (-5 *2 (-421 *3)) (-5 *1 (-1083 *4 *5 *3)) (-4 *3 (-1245 *5)))) + (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-773)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-51)) (-5 *1 (-317 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-773)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-549))) (-5 *4 (-294 *6)) + (-4 *6 (-13 (-27) (-1205) (-424 *5))) + (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-549))) (-5 *4 (-294 *7)) (-5 *5 (-1236 (-773))) + (-4 *7 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1180)) (-5 *5 (-294 *3)) (-5 *6 (-1236 (-773))) + (-4 *3 (-13 (-27) (-1205) (-424 *7))) + (-4 *7 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-51)) + (-5 *1 (-462 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1233 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1262 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-1231 *4)) (-4 *4 (-1052)) (-4 *4 (-560)) + (-5 *2 (-410 (-949 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-1231 *4)) (-4 *4 (-1052)) (-4 *4 (-560)) + (-5 *2 (-410 (-949 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-128))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) + ((*1 *1 *1 *1) (-5 *1 (-1225))) ((*1 *1 *1 *1) (-5 *1 (-1226))) + ((*1 *1 *1 *1) (-5 *1 (-1227))) ((*1 *1 *1 *1) (-5 *1 (-1228)))) +(((*1 *1 *1 *1) (-5 *1 (-128))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) + ((*1 *1 *1 *1) (-5 *1 (-1225))) ((*1 *1 *1 *1) (-5 *1 (-1226))) + ((*1 *1 *1 *1) (-5 *1 (-1227))) ((*1 *1 *1 *1) (-5 *1 (-1228)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128))) + ((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) + ((*1 *1) (-5 *1 (-550))) ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552))) + ((*1 *1) (-5 *1 (-553))) ((*1 *1) (-4 *1 (-728))) ((*1 *1) (-5 *1 (-1180))) + ((*1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-922)))) + ((*1 *1) (-12 (-5 *1 (-1187 *2)) (-14 *2 (-922)))) ((*1 *1) (-5 *1 (-1225))) + ((*1 *1) (-5 *1 (-1226))) ((*1 *1) (-5 *1 (-1227))) ((*1 *1) (-5 *1 (-1228)))) +(((*1 *2 *3) (-12 (-5 *3 (-168 (-549))) (-5 *2 (-112)) (-5 *1 (-449)))) ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) - (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 (-410 *7)))) - (-5 *1 (-1174 *4 *5 *6 *7)) (-5 *3 (-1175 (-410 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1223)))) + (-12 + (-5 *3 + (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) + (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) + (-5 *1 (-508 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-965 *3)) (-4 *3 (-548)))) + ((*1 *2 *1) (-12 (-4 *1 (-1224)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1222))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3648 (-643 (-1180))) (|:| -3649 (-643 (-1180))))) + (-5 *1 (-1222))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1222)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1222))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-852)) (-4 *3 (-1104))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1221 *2)) + (-4 *2 (-1104)))) ((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) - (-5 *2 (-1037)) (-5 *1 (-749))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1223)) (-4 *5 (-1245 *3)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-852)) (-5 *1 (-1221 *2))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-1104)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1104)) (-5 *2 (-112)) + (-5 *1 (-1221 *3))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1175 (-954 *4))) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) - (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) - (-5 *2 (-1175 (-954 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1051)) - (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1245 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) - (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1051)) - (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-5 *2 (-2 (|:| -3649 (-643 *3)) (|:| -3648 (-643 *3)))) + (-5 *1 (-1221 *3)) (-4 *3 (-1104))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-5 *2 (-1275)) (-5 *1 (-1221 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-5 *2 (-1275)) (-5 *1 (-1221 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-549)) (-4 *5 (-352)) (-5 *2 (-408 (-1174 (-1174 *5)))) + (-5 *1 (-1218 *5)) (-5 *3 (-1174 (-1174 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-352)) (-5 *2 (-408 (-1174 (-1174 *4)))) (-5 *1 (-1218 *4)) + (-5 *3 (-1174 (-1174 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-352)) (-5 *2 (-408 (-1174 (-1174 *4)))) (-5 *1 (-1218 *4)) + (-5 *3 (-1174 (-1174 *4)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *3)) + (-4 *3 (-1219)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1214 *4 *5 *3 *2)) (-4 *4 (-560)) (-4 *5 (-795)) + (-4 *3 (-852)) (-4 *2 (-1068 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-1217 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-643 (-643 (-225)))) (-5 *4 (-225)) (-5 *2 (-643 (-946 *4))) + (-5 *1 (-1216)) (-5 *3 (-946 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-643 (-643 (-225)))) (-5 *1 (-1216))))) +(((*1 *1 *2) + (-12 (-5 *2 (-922)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1052)) (-4 *4 (-1219)))) + ((*1 *1 *2) + (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *5 (-238 (-4389 *3) (-773))) + (-14 *6 + (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *5)) + (-2 (|:| -2563 *2) (|:| -2564 *5)))) + (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-852)) + (-4 *7 (-953 *4 *5 (-866 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-946 (-225))) (-5 *4 (-876)) (-5 *2 (-1275)) (-5 *1 (-471)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1052)) (-4 *1 (-983 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-946 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-946 *3)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-946 (-225))) (-5 *1 (-1216)) (-5 *3 (-225))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-225)) (-5 *5 (-549)) (-5 *2 (-1215 *3)) (-5 *1 (-792 *3)) + (-4 *3 (-977)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *4 (-112)) (-5 *1 (-1215 *2)) + (-4 *2 (-977))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1215 *3)) (-4 *3 (-977))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1102)) (-5 *2 (-645 *1)) - (-4 *1 (-433 *3)))) + (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-1215 *3)) (-4 *3 (-977))))) +(((*1 *2 *1) (-12 (-5 *1 (-1215 *2)) (-4 *2 (-977))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) (-4 *8 (-852)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3748 (-643 *9)))) (-5 *3 (-643 *9)) + (-4 *1 (-1214 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1068 *5 *6 *7)) + (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3748 (-643 *8)))) (-5 *3 (-643 *8)) + (-4 *1 (-1214 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) + (-5 *2 (-2 (|:| -4293 (-643 *6)) (|:| -1870 (-643 *6))))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) - (-4 *3 (-1102)))) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1214 *5 *6 *7 *3)) (-4 *5 (-560)) + (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-645 *1)) (-4 *1 (-951 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) - (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-645 *3)) - (-5 *1 (-952 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) - (-15 -4306 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1245 *5)) - (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) - (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) - (-5 *1 (-913 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) - (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) - (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-914 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1870 (-783 *3)) (|:| |coef1| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *1)) (-4 *1 (-1068 *4 *5 *6)) (-4 *4 (-1052)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1))) - (-4 *1 (-1067 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) - (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175 *7)) (-4 *7 (-951 *6 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1051)) (-5 *2 (-1175 *6)) - (-5 *1 (-322 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1012 *2)) (-4 *2 (-1219))))) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1214 *4 *5 *6 *3)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-643 *7))) (-4 *1 (-1214 *4 *5 *6 *7)) + (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-643 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) + (-4 *1 (-1214 *5 *6 *7 *8)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *8 (-1068 *5 *6 *7))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *2 (-1068 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *2 (-1068 *3 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *2 (-1068 *3 *4 *5))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *2 (-1068 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1102)) - (-5 *1 (-103 *2)))) + (-12 (-4 *1 (-1214 *2 *3 *4 *5)) (-4 *2 (-560)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *5 (-1068 *2 *3 *4))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *2 (-1068 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 *10)) + (-5 *1 (-626 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1074 *5 *6 *7 *8)) + (-4 *10 (-1112 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-630 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-643 (-1180))) + (-5 *2 (-643 (-1149 *5 (-534 (-866 *6)) (-866 *6) (-782 *5 (-866 *6))))) + (-5 *1 (-630 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) + (-5 *1 (-1030 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) + (-5 *1 (-1030 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-1049 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 *1)) + (-4 *1 (-1074 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) + (-5 *1 (-1149 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) + (-5 *1 (-1149 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1214 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-643 (-2 (|:| -4293 *1) (|:| -1870 (-643 *7))))) (-5 *3 (-643 *7)) + (-4 *1 (-1214 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1214 *3 *4 *5 *2)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-4 *2 (-1068 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1214 *3 *4 *5 *6)) (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-773))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1052)) (-5 *1 (-50 *2 *3)) (-14 *3 (-643 (-1180))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-643 (-922))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) + (-14 *4 (-922)) (-14 *5 (-996 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-315 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-131)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-549)) (-4 *2 (-560)) (-5 *1 (-625 *2 *4)) (-4 *4 (-1245 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-710 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1052)) (-5 *1 (-737 *2 *3)) (-4 *3 (-728)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (-5 *1 (-103 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-306)))) + (-12 (-5 *2 (-643 *5)) (-5 *3 (-643 (-773))) (-4 *1 (-742 *4 *5)) + (-4 *4 (-1052)) (-4 *5 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-852)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 (-773))) (-4 *1 (-953 *4 *5 *6)) + (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-773)) (-4 *1 (-953 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-795)) + (-4 *2 (-852)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-4 *2 (-953 *4 (-534 *5) *5)) (-5 *1 (-1129 *4 *5 *2)) + (-4 *4 (-1052)) (-4 *5 (-852)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-5 *2 (-949 *4)) (-5 *1 (-1212 *4)) (-4 *4 (-1052))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1129 *4 *3 *5))) (-4 *4 (-38 (-410 (-549)))) + (-4 *4 (-1052)) (-4 *3 (-852)) (-5 *1 (-1129 *4 *3 *5)) + (-4 *5 (-953 *4 (-534 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1212 *4))) (-5 *3 (-1180)) (-5 *1 (-1212 *4)) + (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052))))) +(((*1 *2 *2) + (-12 (-4 *3 (-616 (-893 *3))) (-4 *3 (-889 *3)) (-4 *3 (-455)) + (-5 *1 (-1211 *3 *2)) (-4 *2 (-616 (-893 *3))) (-4 *2 (-889 *3)) + (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-852)) + (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-953 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-315 (-549))) (-5 *1 (-1122)))) + ((*1 *2 *2) + (-12 (-4 *3 (-455)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-424 *3) (-1205)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-560)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-1210 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-560)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-1210 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-168 (-315 *4))) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1037))) (-5 *2 (-1037)) (-5 *1 (-306)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) (-5 *1 (-1065))) + (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-168 *3)) + (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) + (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) ((*1 *2 *3) - (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1156 *4)) - (-4 *4 (-1219)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) - (-5 *2 (-1037)) (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1040 *4)) (-4 *3 (-559))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-911)) (-4 *6 (-794)) - (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-421 (-1175 *8))) - (-5 *1 (-908 *5 *6 *7 *8)) (-5 *4 (-1175 *8)))) + (-12 (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-112)) + (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) - (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1214 *3)) - (-5 *1 (-791 *3)) (-4 *3 (-976)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-112)) - (-5 *1 (-1214 *2)) (-4 *2 (-976))))) + (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-315 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-315 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 (-168 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *4 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 (-168 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-1209 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 (-168 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *1 (-188 *4 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 (-168 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1209 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-1209 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *1 *1) (-4 *1 (-1208)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *1 *1) (-4 *1 (-1208)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *1 *1) (-4 *1 (-1208)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *1 *1) (-4 *1 (-1208)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *1 *1) (-4 *1 (-1208)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3)))) + ((*1 *1 *1) (-4 *1 (-1208)))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2) (-12 (-5 *1 (-1206 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-1206 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-643 (-1206 *2))) (-5 *1 (-1206 *2)) (-4 *2 (-1104))))) +(((*1 *1 *1) (-12 (-5 *1 (-1206 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-1206 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-1206 *3))) (-5 *1 (-1206 *3)) (-4 *3 (-1104))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560)))) + ((*1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-4 *1 (-1205)))) +(((*1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-1203))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1162)) (-5 *2 (-549)) (-5 *1 (-1202 *4)) (-4 *4 (-1052))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1202 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-549)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) + (-5 *2 (-549)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-560) (-1041 *2) (-641 *2) (-455))) + (-5 *2 (-549)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-844 *3)) + (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) + (-5 *1 (-1120 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-1162)) + (-4 *6 (-13 (-560) (-1041 *2) (-641 *2) (-455))) (-5 *2 (-549)) + (-5 *1 (-1120 *6 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-455)) (-5 *2 (-549)) + (-5 *1 (-1121 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-844 (-410 (-949 *6)))) + (-5 *3 (-410 (-949 *6))) (-4 *6 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-410 (-949 *6))) (-5 *4 (-1180)) (-5 *5 (-1162)) + (-4 *6 (-455)) (-5 *2 (-549)) (-5 *1 (-1121 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-549)) (-5 *1 (-1202 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1201)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1201))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1162)) (-5 *1 (-1201))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-366 *2)) (-4 *2 (-1104)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1162)) (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-865) (-865))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-865) (-643 (-865)))) (-5 *1 (-113)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-865) (-643 (-865)))) (-5 *1 (-113)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1275)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-852) + (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) + (-15 -2143 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-396)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-505)))) + ((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-712)))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1199)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1199))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-773)) (-4 *3 (-1219)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)))) + ((*1 *1) (-5 *1 (-171))) + ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1104)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-392)))) + ((*1 *1) (-5 *1 (-396))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) + ((*1 *1) + (-12 (-4 *3 (-1104)) (-5 *1 (-888 *2 *3 *4)) (-4 *2 (-1104)) + (-4 *4 (-668 *3)))) + ((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) + ((*1 *1 *2) (-12 (-5 *1 (-1145 *3 *2)) (-14 *3 (-773)) (-4 *2 (-1052)))) + ((*1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052)))) + ((*1 *1 *1) (-5 *1 (-1180))) ((*1 *1) (-5 *1 (-1180))) + ((*1 *1) (-5 *1 (-1199)))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1199))))) +(((*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1198))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-1198))))) (((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-852)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-852)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-283 *2)) (-4 *2 (-1219)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2025 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| -4292 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -2265 + (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -4733,10062 +3811,7978 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1159 (-225))) + (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2031 + (|:| -1607 (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") + (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-562)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1102)))) + (-5 *1 (-563)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-773)) (-4 *1 (-697 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2025 + (|:| -4292 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -2265 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))))) - (-5 *1 (-804)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1274)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *2 *1) - (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) - (-4 *3 (-1245 *4)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) - (-4 *4 (-559)) (-5 *2 (-410 (-1175 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1204))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-1175 (-410 (-1175 *3)))) (-5 *1 (-563 *6 *3 *7)) - (-5 *5 (-1175 *3)) (-4 *7 (-1102)))) + (|:| -2254 + (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) + (|:| |expense| (-380)) (|:| |accuracy| (-380)) + (|:| |intermediateResults| (-380)))))) + (-5 *1 (-805)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1265 *5)) (-14 *5 (-1179)) (-4 *6 (-1051)) - (-5 *2 (-1242 *5 (-954 *6))) (-5 *1 (-949 *5 *6)) (-5 *3 (-954 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-1175 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1175 *1)) - (-4 *1 (-951 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1051)) - (-4 *7 (-951 *6 *5 *4)) (-5 *2 (-410 (-1175 *3))) - (-5 *1 (-952 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1175 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $))))) - (-4 *7 (-951 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) - (-4 *6 (-1051)) (-5 *1 (-952 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-4 *5 (-559)) - (-5 *2 (-410 (-1175 (-410 (-954 *5))))) (-5 *1 (-1045 *5)) - (-5 *3 (-410 (-954 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-645 (-1175 *11))) (-5 *3 (-1175 *11)) - (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) - (-5 *7 (-1269 (-645 (-1175 *8)))) (-4 *10 (-851)) - (-4 *8 (-308)) (-4 *11 (-951 *8 *9 *10)) (-4 *9 (-794)) - (-5 *1 (-708 *9 *10 *8 *11))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1179))) (-4 *6 (-455)) - (-5 *2 - (-2 (|:| |dpolys| (-645 (-247 *5 *6))) - (|:| |coords| (-645 (-567))))) - (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1189))))) + (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-539)) (-5 *1 (-538 *4)) - (-4 *4 (-1219))))) + (|partial| -12 (-4 *2 (-1104)) (-5 *1 (-1197 *3 *2)) (-4 *3 (-1104))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(((*1 *2) + (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(((*1 *2) + (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1204) (-1004)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1205 *3)) (-4 *3 (-1102))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) - (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) - (|:| |args| (-645 (-863))))) - (-5 *1 (-1179))))) -(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1161)) (-5 *1 (-787))))) -(((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1197 *4 *5)) (-4 *4 (-1104)) + (-4 *5 (-1104))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1197 *4 *5)) (-4 *4 (-1104)) + (-4 *5 (-1104))))) (((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268))))) + (-12 (-5 *2 (-1275)) (-5 *1 (-1197 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 (-2 (|:| -4292 *3) (|:| -2254 *4)))) (-4 *3 (-1104)) + (-4 *4 (-1104)) (-4 *1 (-1196 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-1194 *2)) (-4 *2 (-365))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1159 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407)))) - ((*1 *2 *1) - (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) - ((*1 *2 *1) - (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) - (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1037)) (-5 *1 (-753))))) + (-12 (-5 *4 (-922)) (-5 *2 (-1174 *3)) (-5 *1 (-1194 *3)) (-4 *3 (-365))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-1194 *2)) (-4 *2 (-365))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1051)))) - ((*1 *2 *1) - (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) - (-4 *4 (-1245 *3)))) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-643 (-643 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-727)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -3526 *7)))) - (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-990 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -3526 *7)))) - (-4 *6 (-1067 *3 *4 *5)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1109 *3 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-643 (-643 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-643 *3))) (-5 *1 (-1193 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-1193 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1051)) - (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) - ((*1 *1 *1) (-4 *1 (-548))) - ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1216 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1004)) - (-4 *2 (-1051))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) - (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) - (-5 *1 (-789)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) - (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) - (-5 *1 (-789))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1037)) - (-5 *1 (-747))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1161)) (-5 *1 (-306))))) + (-12 (-4 *4 (-852)) + (-5 *2 + (-2 (|:| |f1| (-643 *4)) (|:| |f2| (-643 (-643 (-643 *4)))) + (|:| |f3| (-643 (-643 *4))) (|:| |f4| (-643 (-643 (-643 *4)))))) + (-5 *1 (-1191 *4)) (-5 *3 (-643 (-643 (-643 *4))))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-852)) (-5 *3 (-643 *6)) (-5 *5 (-643 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-643 *5)) (|:| |f3| *5) (|:| |f4| (-643 *5)))) + (-5 *1 (-1191 *6)) (-5 *4 (-643 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-433 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-55)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4)) - (-4 *4 (-433 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-114)) (-5 *1 (-163)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4)) - (-4 *4 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) - ((*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-1102)) (-5 *1 (-432 *3 *4)) - (-4 *3 (-433 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4)) - (-4 *4 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) + (|partial| -12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) + (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) + (-4 *8 (-374 *7)) (-4 *9 (-374 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)) (-4 *2 (-365)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4)) - (-4 *4 (-13 (-433 *3) (-1004) (-1204))))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) - (-5 *2 (-2 (|:| -4057 (-645 *6)) (|:| -1692 (-645 *6))))))) + (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-691 *2)) (-4 *2 (-365)) (-4 *2 (-1052)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1126 *2 *3 *4 *5)) (-4 *3 (-1052)) + (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) + ((*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-1191 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-5 *2 (-410 (-954 *4))) (-5 *1 (-926 *4 *5 *6 *3)) - (-4 *3 (-951 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *7)) (-4 *7 (-951 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-5 *2 (-690 (-410 (-954 *4)))) - (-5 *1 (-926 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-5 *2 (-645 (-410 (-954 *4)))) - (-5 *1 (-926 *4 *5 *6 *7))))) + (-12 (-4 *4 (-852)) (-5 *2 (-643 (-643 *4))) (-5 *1 (-1191 *4)) + (-5 *3 (-643 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-852)) (-5 *1 (-1191 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-852)) (-5 *2 (-1193 (-643 *4))) (-5 *1 (-1191 *4)) + (-5 *3 (-643 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-852)) (-5 *2 (-643 (-643 (-643 *4)))) (-5 *1 (-1191 *4)) + (-5 *3 (-643 (-643 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1193 (-643 *4))) (-4 *4 (-852)) (-5 *2 (-643 (-643 *4))) + (-5 *1 (-1191 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-643 (-643 *4)))) (-5 *2 (-643 (-643 *4))) + (-5 *1 (-1191 *4)) (-4 *4 (-852))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-643 (-643 (-643 *4)))) (-5 *2 (-643 (-643 *4))) (-4 *4 (-852)) + (-5 *1 (-1191 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423))))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-410 (-954 *6)) (-1168 (-1179) (-954 *6)))) - (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *6))))) - (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-954 *6)))))) + (-12 (-5 *2 (-643 (-643 (-643 *4)))) (-5 *3 (-643 *4)) (-4 *4 (-852)) + (-5 *1 (-1191 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-643 (-643 (-643 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-643 *5)) (-4 *5 (-852)) (-5 *1 (-1191 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-852)) (-5 *4 (-643 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-643 *4)))) + (-5 *1 (-1191 *6)) (-5 *5 (-643 *4))))) +(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190))))) +(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190))))) +(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1190))))) +(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-1190))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-1190))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) + (-5 *2 (-643 (-643 (-949 *5)))) (-5 *1 (-1189 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-410 (-949 (-549))))) + (-5 *2 (-643 (-643 (-294 (-949 *4))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-850) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-294 (-410 (-949 (-549)))))) + (-5 *2 (-643 (-643 (-294 (-949 *4))))) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-850) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-949 (-549)))) (-5 *2 (-643 (-294 (-949 *4)))) + (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-410 (-949 (-549))))) (-5 *2 (-643 (-294 (-949 *4)))) + (-5 *1 (-382 *4)) (-4 *4 (-13 (-850) (-365))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1180)) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-4 *4 (-13 (-29 *6) (-1205) (-963))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2190 (-643 *4)))) + (-5 *1 (-655 *6 *4 *3)) (-4 *3 (-660 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 *2)) + (-4 *2 (-13 (-29 *6) (-1205) (-963))) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *1 (-655 *6 *2 *3)) (-4 *3 (-660 *2)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) + (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) + (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-410 (-954 *5)) (-1168 (-1179) (-954 *5)))) - (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) - (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) - (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5))))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567))))) - (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-954 *9)))) - (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) - (-4 *9 (-13 (-308) (-147))) (-4 *12 (-951 *9 *11 *10)) - (-4 *10 (-13 (-851) (-615 (-1179)))) (-4 *11 (-794)) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) + (-4 *7 (-13 (-374 *5) (-10 -7 (-6 -4426)))) + (-5 *2 (-643 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2190 (-643 *7))))) + (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-643 *7)) (-4 *3 (-688 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-691 *5)) (-4 *5 (-365)) (-5 *2 - (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) - (|:| |wcond| (-645 (-954 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *9)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *9))))))))) - (-5 *1 (-926 *9 *10 *11 *12))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-4 *8 (-951 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) - (-4 *7 (-794)) + (-2 (|:| |particular| (-3 (-1269 *5) #2="failed")) + (|:| -2190 (-643 (-1269 *5))))) + (-5 *1 (-670 *5)) (-5 *4 (-1269 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-643 *5))) (-4 *5 (-365)) (-5 *2 - (-645 - (-2 (|:| -1471 (-772)) - (|:| |eqns| - (-645 - (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567)))))) - (|:| |fgb| (-645 *8))))) - (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-772))))) -(((*1 *2 *3) - (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-851)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1204))) - (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-586 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-588 (-410 (-954 *3)))) - (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *1 (-591 *3)))) + (-2 (|:| |particular| (-3 (-1269 *5) #2#)) (|:| -2190 (-643 (-1269 *5))))) + (-5 *1 (-670 *5)) (-5 *4 (-1269 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -1374 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) - (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) - (-5 *3 (-645 (-690 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1269 (-1269 *5))) (-4 *5 (-365)) (-4 *5 (-1051)) - (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) - (-5 *3 (-645 (-690 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1146)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1146))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-954 *8)))) - (-5 *5 (-772)) (-5 *6 (-1161)) (-4 *8 (-13 (-308) (-147))) - (-4 *11 (-951 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1179)))) - (-4 *10 (-794)) + (-12 (-5 *3 (-691 *5)) (-4 *5 (-365)) (-5 *2 - (-2 - (|:| |rgl| - (-645 - (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) - (|:| |wcond| (-645 (-954 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *8)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *8)))))))))) - (|:| |rgsz| (-567)))) - (-5 *1 (-926 *8 *9 *10 *11)) (-5 *7 (-567))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-4 *3 (-13 (-27) (-1204) (-433 *6) (-10 -8 (-15 -2504 ($ *7))))) - (-4 *7 (-849)) - (-4 *8 - (-13 (-1247 *3 *7) (-365) (-1204) - (-10 -8 (-15 -3592 ($ $)) (-15 -3670 ($ $))))) + (-643 + (-2 (|:| |particular| (-3 (-1269 *5) #2#)) + (|:| -2190 (-643 (-1269 *5)))))) + (-5 *1 (-670 *5)) (-5 *4 (-643 (-1269 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-643 *5))) (-4 *5 (-365)) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) - (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1161)) (-4 *9 (-985 *8)) - (-14 *10 (-1179))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) - (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1153))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) - (-4 *4 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851)))) - ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) - (-4 *4 (-1245 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) - (-4 *3 (-1245 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) + (-643 + (-2 (|:| |particular| (-3 (-1269 *5) #2#)) + (|:| -2190 (-643 (-1269 *5)))))) + (-5 *1 (-670 *5)) (-5 *4 (-643 (-1269 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) + (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-772 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-560)) + (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-772 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1180)) + (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *1 (-774 *5 *2)) (-4 *2 (-13 (-29 *5) (-1205) (-963))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-691 *7)) (-5 *5 (-1180)) + (-4 *7 (-13 (-29 *6) (-1205) (-963))) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) + (-5 *1 (-804 *6 *7)) (-5 *4 (-1269 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-691 *6)) (-5 *4 (-1180)) + (-4 *6 (-13 (-29 *5) (-1205) (-963))) + (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-643 (-1269 *6))) (-5 *1 (-804 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-643 (-294 *7))) (-5 *4 (-643 (-113))) (-5 *5 (-1180)) + (-4 *7 (-13 (-29 *6) (-1205) (-963))) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) + (-5 *1 (-804 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-643 *7)) (-5 *4 (-643 (-113))) (-5 *5 (-1180)) + (-4 *7 (-13 (-29 *6) (-1205) (-963))) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-2 (|:| |particular| (-1269 *7)) (|:| -2190 (-643 (-1269 *7))))) + (-5 *1 (-804 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-113)) (-5 *5 (-1180)) + (-4 *7 (-13 (-29 *6) (-1205) (-963))) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2190 (-643 *7))) *7 #3="failed")) + (-5 *1 (-804 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-113)) (-5 *5 (-1180)) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2190 (-643 *3))) *3 #3#)) + (-5 *1 (-804 *6 *3)) (-4 *3 (-13 (-29 *6) (-1205) (-963))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-113)) (-5 *5 (-643 *2)) + (-4 *2 (-13 (-29 *6) (-1205) (-963))) (-5 *1 (-804 *6 *2)) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-294 *2)) (-5 *5 (-643 *2)) + (-4 *2 (-13 (-29 *6) (-1205) (-963))) + (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *1 (-804 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-810)) (-5 *2 (-1038)) (-5 *1 (-807)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-810)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-807)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) + (-5 *2 (-1038)) (-5 *1 (-807)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) + (-5 *2 (-1038)) (-5 *1 (-807)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) + (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1269 (-315 (-380)))) (-5 *4 (-380)) (-5 *5 (-643 *4)) + (-5 *2 (-1038)) (-5 *1 (-807)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) + (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1269 (-315 *4))) (-5 *5 (-643 (-380))) (-5 *6 (-315 (-380))) + (-5 *4 (-380)) (-5 *2 (-1038)) (-5 *1 (-807)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2190 (-643 *6))) "failed") *7 *6)) + (-4 *6 (-365)) (-4 *7 (-660 *6)) + (-5 *2 (-2 (|:| |particular| (-1269 *6)) (|:| -2190 (-691 *6)))) + (-5 *1 (-815 *6 *7)) (-5 *3 (-691 *6)) (-5 *4 (-1269 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-1038)) (-5 *1 (-900)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-901)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-900)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-773)) (-5 *6 (-643 (-643 (-315 *3)))) (-5 *7 (-1162)) + (-5 *8 (-225)) (-5 *5 (-643 (-315 (-380)))) (-5 *3 (-380)) (-5 *2 (-1038)) + (-5 *1 (-900)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-773)) (-5 *6 (-643 (-643 (-315 *3)))) (-5 *7 (-1162)) + (-5 *5 (-643 (-315 (-380)))) (-5 *3 (-380)) (-5 *2 (-1038)) (-5 *1 (-900)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *2 (-643 (-380))) (-5 *1 (-1026)) + (-5 *4 (-380)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-949 (-549))) (-5 *2 (-643 (-380))) (-5 *1 (-1026)) + (-5 *4 (-380)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-315 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1134 *4)) + (-5 *3 (-294 (-315 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1134 *5)) + (-5 *3 (-294 (-315 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-315 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-1180))) + (-4 *5 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-643 (-643 (-294 (-315 *5))))) (-5 *1 (-1134 *5)) + (-5 *3 (-643 (-294 (-315 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) + (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-1189 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-1180))) (-4 *5 (-560)) + (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-1189 *5)) + (-5 *3 (-643 (-294 (-410 (-949 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-410 (-949 *4)))) (-4 *4 (-560)) + (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-1189 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) + (-5 *1 (-1189 *4)) (-5 *3 (-643 (-294 (-410 (-949 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *5))))) + (-5 *1 (-1189 *5)) (-5 *3 (-410 (-949 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *5))))) + (-5 *1 (-1189 *5)) (-5 *3 (-294 (-410 (-949 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *4))))) (-5 *1 (-1189 *4)) + (-5 *3 (-410 (-949 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-643 (-294 (-410 (-949 *4))))) (-5 *1 (-1189 *4)) + (-5 *3 (-294 (-410 (-949 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865))))) + ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-878)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-878)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-549)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1162)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-509)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-595)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-481)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1170)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-628)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1099)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1094)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1076)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-973)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1039)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-313)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-673)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-528)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1281)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1069)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-520)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-683)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1119)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-608)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-1280)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-678)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140)) (-5 *2 (-527)))) + ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-1185))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1185)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-1185))) (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-549) (-225) (-509) (-1162) (-1185))) (-5 *1 (-1185))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-643 (-281))) (-5 *1 (-281)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3258)) (-5 *2 (-112)) (-5 *1 (-619)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2389)) (-5 *2 (-112)) (-5 *1 (-619)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3257)) (-5 *2 (-112)) (-5 *1 (-619)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-365)) (-4 *2 (-902 *3)) (-5 *1 (-588 *2)) - (-5 *3 (-1179)))) + (-12 (-5 *3 (|[\|\|]| -2516)) (-5 *2 (-112)) (-5 *1 (-693 *4)) + (-4 *4 (-615 (-865))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) - (-4 *4 (-1102)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1176 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1254 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-5 *1 (-700)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-365)) (-5 *1 (-980 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1269 *4)) - (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4))))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-615 (-865))) (-5 *2 (-112)) + (-5 *1 (-693 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)) (-5 *1 (-878)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-878)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-595))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-628))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1076))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-973))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1039))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-313))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-673))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1155))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1281))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1119))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-1280))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-678))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1140)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1162))) (-5 *2 (-112)) (-5 *1 (-1185)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1185)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1185)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-549))) (-5 *2 (-112)) (-5 *1 (-1185))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292))) ((*1 *1) (-5 *1 (-865))) + ((*1 *1) + (-12 (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1088))) + ((*1 *1) + (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34))))) + ((*1 *1) (-5 *1 (-1183))) ((*1 *1) (-5 *1 (-1184)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-439)) (-5 *3 (-643 (-1180))) (-5 *4 (-1180)) (-5 *1 (-1183)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1183)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1180)) (-5 *1 (-1184)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-643 (-1180))) (-5 *1 (-1184))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-439)) (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1184))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-437)) + (-5 *2 + (-643 + (-3 (|:| -3973 (-1180)) + (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549))))))))) + (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1184))))) (((*1 *2 *1) - (-12 (-5 *2 (-1269 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2304 *4))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))) + (-12 + (-5 *2 + (-643 + (-643 + (-3 (|:| -3973 (-1180)) + (|:| -3645 (-643 (-3 (|:| S (-1180)) (|:| P (-949 (-549)))))))))) + (-5 *1 (-1184))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1184))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-1184))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1269 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) - (-5 *1 (-629 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1028 (-844 (-567)))) - (-5 *3 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1051)) - (-5 *1 (-597 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-580)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580))))) + (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 (-439))))) + (-5 *1 (-1184))))) +(((*1 *1) (-5 *1 (-1183)))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) + ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1183))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1183))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1275)) (-5 *1 (-1183)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183))))) (((*1 *2 *3) - (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) + (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) (-5 *2 (-1275)) + (-5 *1 (-1183)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-923)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) - (-4 *3 (-615 (-381))))) - ((*1 *2 *3) - (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381))) - (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + (-12 (-5 *3 (-1180)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) + (-5 *2 (-1275)) (-5 *1 (-1183)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1180)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) + (-5 *2 (-1275)) (-5 *1 (-1183))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1183)))) + ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-1183))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1180)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 "void"))) + (-5 *1 (-1183))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1183)) (-5 *3 (-1180))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1180)) (-5 *2 (-1184)) (-5 *1 (-1183))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-1052)) (-5 *2 (-1269 *4)) + (-5 *1 (-1181 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-169 *5)) (-5 *4 (-923)) (-4 *5 (-172)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-954 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) - (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + (-12 (-5 *4 (-922)) (-5 *2 (-1269 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1052))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1180))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1104)))) + ((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-441 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) + ((*1 *2 *1) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-867)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-968)))) + ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1079 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1119)))) ((*1 *1 *1) (-5 *1 (-1180)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) + (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) + (|:| |args| (-643 (-865))))) + (-5 *1 (-1180))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2984 (-643 (-865))) (|:| -2805 (-643 (-865))) + (|:| |presup| (-643 (-865))) (|:| -2982 (-643 (-865))) + (|:| |args| (-643 (-865))))) + (-5 *1 (-1180)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-643 (-865)))) (-5 *1 (-1180))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-1180))))) +(((*1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *1) + (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104)))) + ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1161)))) + ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-1180))))) +(((*1 *1 *2) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-1180))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) + (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) + (-5 *1 (-1179))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) + (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) + (-5 *1 (-1179))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) + (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) + (-5 *1 (-1179))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) + (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) + (-5 *1 (-1179))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) + (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) + (-5 *1 (-1179))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) + (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) + (-5 *1 (-1179))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) + (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) + (-5 *1 (-1179))))) +(((*1 *1 *1) (-5 *1 (-1179))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-315 (-549))) (|:| -3496 (-315 (-380))) + (|:| CF (-315 (-168 (-380)))) (|:| |switch| (-1179)))) + (-5 *1 (-1179))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-865) (-865) (-865))) (-5 *4 (-549)) (-5 *2 (-865)) + (-5 *1 (-651 *5 *6 *7)) (-4 *5 (-1104)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-865)) (-5 *1 (-856 *3 *4 *5)) (-4 *3 (-1052)) (-14 *4 (-99 *3)) + (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-865)))) + ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-865)))) + ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-865)) (-5 *1 (-1174 *3)) (-4 *3 (-1052))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1092 *3)) (-4 *3 (-953 *7 *6 *4)) (-4 *6 (-795)) (-4 *4 (-852)) + (-4 *7 (-560)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) + (-5 *1 (-597 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-560)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-549)))) (-5 *1 (-597 *5 *4 *6 *3)) + (-4 *3 (-953 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-1172 *4 *2)) (-4 *2 (-13 (-424 *4) (-160) (-27) (-1205))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1095 *2)) (-4 *2 (-13 (-424 *4) (-160) (-27) (-1205))) + (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-1172 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-954 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-172)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 (-381))) - (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)))) + (-5 *2 (-410 (-949 *5))) (-5 *1 (-1173 *5)) (-5 *3 (-949 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) - (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)))) + (-5 *2 (-3 (-410 (-949 *5)) (-315 *5))) (-5 *1 (-1173 *5)) + (-5 *3 (-410 (-949 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410 (-954 (-169 *4)))) (-4 *4 (-559)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + (-12 (-5 *4 (-1095 (-949 *5))) (-5 *3 (-949 *5)) + (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 *3)) (-5 *1 (-1173 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 (-169 *5)))) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) + (-12 (-5 *4 (-1095 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) + (-4 *5 (-13 (-560) (-1041 (-549)))) (-5 *2 (-3 *3 (-315 *5))) + (-5 *1 (-1173 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-894 *4 *5)) (-4 *5 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1170))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-151 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 (-2 (|:| -2564 (-773)) (|:| -4204 *4) (|:| |num| *4)))) + (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1="void"))) + (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-112)) (-5 *1 (-439)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 #1#))) (-5 *3 (-643 (-1180))) + (-5 *4 (-112)) (-5 *1 (-439)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-603 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-5 *1 (-666 *3 *4)) (-4 *4 (-172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 (-643 (-643 *3)))) (-4 *3 (-1104)) (-5 *1 (-677 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-715 *2 *3 *4)) (-4 *2 (-852)) (-4 *3 (-1104)) + (-14 *4 + (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *3)) + (-2 (|:| -2563 *2) (|:| -2564 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-840)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 *4)))) (-4 *4 (-1104)) + (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) - (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) + (-12 (-5 *4 (-643 *5)) (-4 *5 (-13 (-1104) (-34))) + (-5 *2 (-643 (-1143 *3 *5))) (-5 *1 (-1143 *3 *5)) + (-4 *3 (-13 (-1104) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) - (-5 *1 (-786 *5))))) + (-12 (-5 *3 (-643 (-2 (|:| |val| *4) (|:| -1708 *5)))) + (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) + (-5 *2 (-643 (-1143 *4 *5))) (-5 *1 (-1143 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1708 *4))) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1143 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-643 *3)) (-4 *3 (-13 (-1104) (-34))) (-5 *1 (-1144 *2 *3)) + (-4 *2 (-13 (-1104) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-643 (-1143 *2 *3))) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34))) (-5 *1 (-1144 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-643 (-1144 *2 *3))) (-5 *1 (-1144 *2 *3)) + (-4 *2 (-13 (-1104) (-34))) (-4 *3 (-13 (-1104) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1169 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-595)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-628)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1104)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) + (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-1169 *2 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-595)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-628)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1104)) (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) + (-5 *1 (-1078 *3 *4 *2)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-1169 *3 *2)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1190 *3))))) + (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-643 *1)) (-4 *1 (-1013 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) + (-4 *4 (-1052))))) (((*1 *2 *1) - (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-370)) - (-4 *3 (-1102))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-4 *3 (-13 (-27) (-1204) (-433 *6) (-10 -8 (-15 -2504 ($ *7))))) - (-4 *7 (-849)) - (-4 *8 - (-13 (-1247 *3 *7) (-365) (-1204) - (-10 -8 (-15 -3592 ($ $)) (-15 -3670 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) - (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1161)) (-4 *9 (-985 *8)) - (-14 *10 (-1179))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) - (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-1168 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) - (-5 *1 (-1131 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147))) - (-5 *2 (-1168 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) - (-5 *1 (-1131 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923))))) + (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) +(((*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 (-1168 *3 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) + (-4 *4 (-1052)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *2 (-773)) (-5 *1 (-1168 *4 *5)) + (-14 *4 (-922)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-773))) (-5 *3 (-773)) (-5 *1 (-1168 *4 *5)) + (-14 *4 (-922)) (-4 *5 (-1052)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-773))) (-5 *3 (-946 *5)) (-4 *5 (-1052)) + (-5 *1 (-1168 *4 *5)) (-14 *4 (-922))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-946 *4)) (-4 *4 (-1052)) (-5 *1 (-1168 *3 *4)) + (-14 *3 (-922))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-946 *5)) (-5 *3 (-773)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) + (-14 *4 (-922))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-773)) (-5 *3 (-946 *5)) (-4 *5 (-1052)) (-5 *1 (-1168 *4 *5)) + (-14 *4 (-922)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-773))) (-5 *3 (-773)) (-5 *1 (-1168 *4 *5)) + (-14 *4 (-922)) (-4 *5 (-1052)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-773))) (-5 *3 (-946 *5)) (-4 *5 (-1052)) + (-5 *1 (-1168 *4 *5)) (-14 *4 (-922))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-773))) (-5 *3 (-112)) (-5 *1 (-1168 *4 *5)) + (-14 *4 (-922)) (-4 *5 (-1052))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-773))) (-5 *3 (-171)) (-5 *1 (-1168 *4 *5)) + (-14 *4 (-922)) (-4 *5 (-1052))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-773))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) + (-4 *4 (-1052))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-171)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) - (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-951 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-645 (-2 (|:| -3661 (-1175 *9)) (|:| -2618 (-567))))))) - (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1175 *9))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) + (-12 (-5 *2 (-946 *4)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) + (-4 *4 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-313)))) + ((*1 *2 *1) + (-12 (-5 *2 (-773)) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1052))))) +(((*1 *1 *1) (-12 (-5 *1 (-1168 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-946 *4))) (-5 *1 (-1168 *3 *4)) (-14 *3 (-922)) + (-4 *4 (-1052))))) +(((*1 *1 *1) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *2 (-455)))) + ((*1 *1 *1) + (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1224)) (-4 *3 (-1245 *2)) + (-4 *4 (-1245 (-410 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-455)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) + (-4 *3 (-455)))) + ((*1 *1 *1) + (-12 (-4 *1 (-953 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-455)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-509)) (-4 *4 (-1102)) (-5 *1 (-931 *4 *2)) - (-4 *2 (-433 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) - (-5 *1 (-932))))) -(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) - ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1102)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-684 *4 *5)) (-4 *4 (-1102)))) + (-12 (-4 *3 (-308)) (-4 *3 (-560)) (-5 *1 (-1167 *3 *2)) (-4 *2 (-1245 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-961 *3)) (-5 *1 (-1167 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1051)) (-5 *1 (-1292 *2 *3)) (-4 *3 (-847))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-1175 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1204))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1175 *3))) - (-4 *3 (-13 (-433 *6) (-27) (-1204))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1102))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-615 (-894 *3))) (-4 *3 (-888 *3)) (-4 *3 (-455)) - (-5 *1 (-1210 *3 *2)) (-4 *2 (-615 (-894 *3))) (-4 *2 (-888 *3)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-956))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *5)) (-4 *5 (-1245 *3)) (-4 *3 (-308)) - (-5 *2 (-112)) (-5 *1 (-458 *3 *5))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-313)) (-5 *1 (-297)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-297)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1161))) (-5 *3 (-1161)) (-5 *2 (-313)) - (-5 *1 (-297))))) -(((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-5 *1 (-1236 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-192)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1051)) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1245 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-433 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-748))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) - (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) - (-5 *1 (-789))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) (-4 *1 (-496))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 (-954 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) - (-14 *4 (-645 (-1179))))) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) ((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-453 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-453 *4 *5 *6 *7)))) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) (-4 *1 (-496))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) (-4 *1 (-496))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) ((*1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *1 *1) (-4 *1 (-496))) ((*1 *2 *2) - (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) - (-14 *4 (-645 (-1179))) (-5 *1 (-629 *3 *4))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-1040 (-410 *2)))) (-5 *2 (-567)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1175 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) - (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *1 *1) (-4 *1 (-496))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *1 *1) (-4 *1 (-496))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *1 *1 *1) (-5 *1 (-380))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1262 *3)) (-5 *1 (-279 *3 *4 *2)) + (-4 *2 (-1233 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *4 (-1231 *3)) + (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1254 *3 *4)) (-4 *5 (-986 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1165 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-38 (-410 (-549)))) (-5 *1 (-1166 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *2 (-645 *3)) (-5 *1 (-979 *4 *5 *6 *3)) - (-4 *3 (-1067 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1051)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) - (-4 *1 (-853 *3))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) + (-12 (-4 *4 (-38 (-410 (-549)))) + (-5 *2 (-2 (|:| -3913 (-1157 *4)) (|:| -3914 (-1157 *4)))) + (-5 *1 (-1165 *4)) (-5 *3 (-1157 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-410 (-549)))) + (-5 *2 (-2 (|:| -4070 (-1157 *4)) (|:| -4066 (-1157 *4)))) + (-5 *1 (-1165 *4)) (-5 *3 (-1157 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-645 *7) *7 (-1175 *7))) (-5 *5 (-1 (-421 *7) *7)) - (-4 *7 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -4178 *3)))) - (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) - (-4 *8 (-657 (-410 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-5 *2 - (-645 (-2 (|:| |frac| (-410 *6)) (|:| -4178 (-655 *6 (-410 *6)))))) - (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) - (-15 -4306 ((-1127 *3 (-613 $)) $)) - (-15 -2504 ($ (-1127 *3 (-613 $)))))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1144 *3 *4)) (-14 *3 (-923)) (-4 *4 (-365)) - (-5 *1 (-995 *3 *4))))) + (-12 (-5 *3 (-1 *4 (-549))) (-5 *5 (-1 (-1157 *4))) (-4 *4 (-365)) + (-4 *4 (-1052)) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-690 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1227))) (-5 *3 (-1227))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1051)) (-5 *1 (-715 *2 *4)) - (-4 *4 (-649 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1051))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1175 *3)) - (-4 *3 (-13 (-433 *7) (-27) (-1204))) - (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) - (-5 *6 (-410 (-1175 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1204))) - (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1102))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1219)) - (-4 *5 (-375 *4)) (-4 *3 (-375 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1175 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-5 *1 (-1149 *3))))) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-365)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1157 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1052)) + (-5 *3 (-410 (-549))) (-5 *1 (-1164 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)) + (-4 *4 (-38 (-410 (-549)))) (-4 *4 (-1052))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1157 *3))) (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) + (-4 *3 (-38 (-410 (-549)))) (-4 *3 (-1052))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157 (-1157 *4))) (-5 *2 (-1157 *4)) (-5 *1 (-1164 *4)) + (-4 *4 (-1052))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-897 *2 *3)) (-4 *2 (-1245 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1157 *4)) (-5 *3 (-1 *4 (-549))) (-4 *4 (-1052)) + (-5 *1 (-1164 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))) - (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-278 *4 *2))))) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *1 (-806 *4 *2)) (-4 *2 (-13 (-29 *4) (-1205) (-963))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *3) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-1164 *3)) (-4 *3 (-1052))))) (((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) - (-5 *2 (-954 *5)) (-5 *1 (-946 *4 *5))))) + (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1164 *4)) (-4 *4 (-1052)) + (-5 *3 (-549))))) (((*1 *2 *3) - (-12 (-5 *3 (-954 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) -(((*1 *1 *1) (-4 *1 (-1062)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) - (-4 *2 (-688 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1087))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-954 (-567)))) (-5 *1 (-440)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-690 (-225))) (-5 *2 (-1106)) - (-5 *1 (-760)))) + (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1164 *4)) (-4 *4 (-1052)) + (-5 *3 (-549))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-922)) (-4 *3 (-365)) + (-14 *4 (-996 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) + ((*1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) + ((*1 *1 *1) (|partial| -4 *1 (-724))) ((*1 *1 *1) (|partial| -4 *1 (-728))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-690 (-567))) (-5 *2 (-1106)) - (-5 *1 (-760))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-433 *4) (-1004))) (-4 *4 (-559)) - (-5 *1 (-277 *4 *2))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) - (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) - (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1040 (-567)))) - (-5 *2 (-2 (|:| -3905 (-772)) (|:| -2894 *8))) - (-5 *1 (-913 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) - (-4 *4 (-1245 (-410 (-567)))) (-4 *5 (-1245 (-410 *4))) - (-4 *6 (-344 (-410 (-567)) *4 *5)) - (-5 *2 (-2 (|:| -3905 (-772)) (|:| -2894 *6))) - (-5 *1 (-914 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1014)) (-5 *2 (-863))))) -(((*1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1202))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-778 *5 *6 *7 *3 *4)) + (-4 *4 (-1074 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-13 (-850) (-365))) + (-4 *2 (-1245 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) - (-14 *4 (-772)) (-4 *5 (-172))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1179))) (-4 *4 (-455)) - (-5 *1 (-920 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-677)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1021)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1068)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1098))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) - (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1037)) - (-5 *1 (-755))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1179)) (-5 *5 (-1096 (-225))) (-5 *2 (-929)) - (-5 *1 (-927 *3)) (-4 *3 (-615 (-539))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-5 *2 (-929)) (-5 *1 (-927 *3)) - (-4 *3 (-615 (-539))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-929)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) (-5 *3 (-567))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1245 (-410 *2))) - (-4 *2 (-1245 *5)) (-5 *1 (-215 *5 *2 *6 *3)) - (-4 *3 (-344 *5 *2 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 (-945 *4))) (-4 *1 (-1136 *4)) (-4 *4 (-1051)) - (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1245 *5)) - (-5 *1 (-728 *5 *2)) (-4 *5 (-365))))) -(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))) -(((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-979 *3 *4 *5 *6)))) + (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)) + (-4 *2 (-560)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-560))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)) (-4 *2 (-560)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-773))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-560)))) + ((*1 *1 *1 *1) (-5 *1 (-865))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) - (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-979 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) + (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-560)) + (-5 *1 (-972 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1056 *3 *4 *2 *5 *6)) (-4 *2 (-1052)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-560)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1157 *3)) (-4 *3 (-1052)) (-5 *1 (-1164 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-1104)) (-4 *4 (-1219)) (-5 *2 (-112)) + (-5 *1 (-1157 *4))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) - (-4 *3 (-1102)) (-5 *2 (-772)))) + (-12 + (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2995 (-773)) (|:| |period| (-773)))) + (-5 *1 (-1157 *4)) (-4 *4 (-1219)) (-5 *3 (-773))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1157 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1219))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1157 *2)) (-4 *2 (-1219))))) +(((*1 *1) (-5 *1 (-581))) + ((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-861)))) + ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-861)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1162)) (-5 *4 (-865)) (-5 *2 (-1275)) (-5 *1 (-861)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) - (-4 *4 (-1219)) (-5 *2 (-772))))) + (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1157 *4)) (-4 *4 (-1104)) + (-4 *4 (-1219))))) (((*1 *2 *1) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) - (-5 *2 (-1175 *3))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-5 *1 (-1241 *4 *2)) - (-4 *2 (-1245 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1142 *3 *2)) (-4 *3 (-13 (-1102) (-34))) - (-4 *2 (-13 (-1102) (-34)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-851)) + (-12 (-5 *2 (-865)) (-5 *1 (-1157 *3)) (-4 *3 (-1104)) (-4 *3 (-1219))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3)) (-4 *3 (-1104)) (-4 *3 (-1219))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-773)) (-5 *2 (-1269 (-643 (-549)))) (-5 *1 (-483)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-603 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1157 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-549)) (-4 *4 (-13 (-560) (-147))) (-5 *1 (-540 *4 *2)) + (-4 *2 (-1262 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-549)) (-4 *4 (-13 (-365) (-370) (-616 *3))) (-4 *5 (-1245 *4)) + (-4 *6 (-726 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1262 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-549)) (-4 *4 (-13 (-365) (-370) (-616 *3))) + (-5 *1 (-545 *4 *2)) (-4 *2 (-1262 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1157 *4)) (-5 *3 (-549)) (-4 *4 (-13 (-560) (-147))) + (-5 *1 (-1156 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) + (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) + (-4 *2 (-1262 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) + (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) + (-4 *2 (-1262 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-560) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-4 *4 (-1245 *3)) + (-4 *5 (-726 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1262 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-370) (-616 (-549)))) (-5 *1 (-545 *3 *2)) + (-4 *2 (-1262 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1157 *3)) (-4 *3 (-13 (-560) (-147))) (-5 *1 (-1156 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) + ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1155))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1155))))) +(((*1 *2 *1) (-12 (-5 *2 (-693 (-1138))) (-5 *1 (-1155))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1155))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)))) + ((*1 *1) (-4 *1 (-1154)))) +(((*1 *1 *1) (|partial| -4 *1 (-1154)))) +(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-1150 *3))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-643 (-1030 *5 *6 *7 *3))) (-5 *1 (-1030 *5 *6 *7 *3)) + (-4 *3 (-1068 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-643 *6)) (-4 *1 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *2 (-1068 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-643 (-1149 *5 *6 *7 *3))) (-5 *1 (-1149 *5 *6 *7 *3)) + (-4 *3 (-1068 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1030 *5 *6 *7 *8))) + (-5 *1 (-1030 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-112)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-643 (-1149 *5 *6 *7 *8))) + (-5 *1 (-1149 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *8 (-1068 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-643 *8)) (|:| |towers| (-643 (-1030 *5 *6 *7 *8))))) + (-5 *1 (-1030 *5 *6 *7 *8)) (-5 *3 (-643 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *8 (-1068 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-643 *8)) (|:| |towers| (-643 (-1149 *5 *6 *7 *8))))) + (-5 *1 (-1149 *5 *6 *7 *8)) (-5 *3 (-643 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *4 (-773)) + (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-1275)) + (-5 *1 (-1072 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *4 (-773)) + (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-1275)) + (-5 *1 (-1148 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-643 *11)) + (|:| |todo| (-643 (-2 (|:| |val| *3) (|:| -1708 *11)))))) + (-5 *6 (-773)) (-5 *2 (-643 (-2 (|:| |val| (-643 *10)) (|:| -1708 *11)))) + (-5 *3 (-643 *10)) (-5 *4 (-643 *11)) (-4 *10 (-1068 *7 *8 *9)) + (-4 *11 (-1074 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) + (-5 *1 (-1072 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-643 *11)) + (|:| |todo| (-643 (-2 (|:| |val| *3) (|:| -1708 *11)))))) + (-5 *6 (-773)) (-5 *2 (-643 (-2 (|:| |val| (-643 *10)) (|:| -1708 *11)))) + (-5 *3 (-643 *10)) (-5 *4 (-643 *11)) (-4 *10 (-1068 *7 *8 *9)) + (-4 *11 (-1112 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-795)) (-4 *9 (-852)) + (-5 *1 (-1148 *7 *8 *9 *10 *11))))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 - (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4)))) - (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4)))))) - (-5 *1 (-1190 *4)) (-5 *3 (-645 (-645 (-645 *4))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1271)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1135 (-225))) (-5 *3 (-1161)) (-5 *1 (-1271)))) - ((*1 *1 *1) (-5 *1 (-1271)))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711))))) -(((*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-4 *1 (-840)) - (-5 *3 - (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (-5 *2 (-1037)))) + (-2 (|:| -2487 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3493 (-410 *6)) (|:| |special| (-410 *6)))) + (-5 *1 (-729 *5 *6)) (-5 *3 (-410 *6)))) ((*1 *2 *3) - (-12 (-4 *1 (-840)) - (-5 *3 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) - (-5 *2 (-1037))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1269 *4))) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) - (-5 *2 (-645 (-1269 *3)))))) + (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-899 *3 *4)) + (-4 *3 (-1245 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-773)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -3542 *3) (|:| -3541 *3))) (-5 *1 (-899 *3 *5)) + (-4 *3 (-1245 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) + (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) + (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) + (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1148 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-643 *9)) (-5 *3 (-643 *8)) (-5 *4 (-112)) + (-4 *8 (-1068 *5 *6 *7)) (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-5 *1 (-1148 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-773)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-795)) + (-4 *9 (-852)) (-4 *3 (-1068 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1072 *7 *8 *9 *3 *4)) (-4 *4 (-1074 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *3 (-1068 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-773)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-795)) + (-4 *9 (-852)) (-4 *3 (-1068 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1148 *7 *8 *9 *3 *4)) (-4 *4 (-1112 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *3 (-1068 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1148 *6 *7 *8 *3 *4)) (-4 *4 (-1112 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *3 (-1068 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-773)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *3 (-1068 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1148 *6 *7 *8 *3 *4)) (-4 *4 (-1112 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *3 (-1068 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-643 *4)) + (|:| |todo| (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))))) + (-5 *1 (-1148 *5 *6 *7 *3 *4)) (-4 *4 (-1112 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) - (-4 *3 (-1245 (-169 (-567)))) (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) + (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-773)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-1102)) - (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4))))))) -(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-945 *5)) (-4 *5 (-1051)) (-5 *2 (-772)) - (-5 *1 (-1167 *4 *5)) (-14 *4 (-923)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1167 *4 *5)) - (-14 *4 (-923)) (-4 *5 (-1051)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-945 *5)) (-4 *5 (-1051)) - (-5 *1 (-1167 *4 *5)) (-14 *4 (-923))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1040 (-48))) - (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) - (-5 *2 (-421 (-1175 (-48)))) (-5 *1 (-438 *4 *5 *3)) - (-4 *3 (-1245 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) - ((*1 *1 *1) (-4 *1 (-1062)))) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) + (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-773)) (-5 *1 (-1148 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) + (-4 *9 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-773)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *9)) (-4 *8 (-1068 *5 *6 *7)) + (-4 *9 (-1112 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-773)) (-5 *1 (-1148 *5 *6 *7 *8 *9))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1147)))) +(((*1 *1 *1) (-4 *1 (-1147)))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1147)))) +(((*1 *1 *1) (-4 *1 (-1147)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-112))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-549)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *6)) (-4 *5 (-1104)) (-4 *6 (-1219)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-645 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-4 *5 (-1104)) (-4 *2 (-1219)) + (-5 *1 (-645 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 *5)) (-4 *6 (-1104)) (-4 *5 (-1219)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-645 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-4 *5 (-1104)) (-4 *2 (-1219)) + (-5 *1 (-645 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-643 *5)) (-5 *4 (-643 *6)) (-4 *5 (-1104)) + (-4 *6 (-1219)) (-5 *1 (-645 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-643 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1104)) + (-4 *2 (-1219)) (-5 *1 (-645 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-144)) (-5 *2 (-773))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1147)) (-5 *3 (-144)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1147)) (-5 *2 (-1236 (-549)))))) +(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-773)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-549)) (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-549)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-374 *4)) (-4 *4 (-1219)) + (-5 *2 (-549)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-532)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-549)) (-5 *3 (-141)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-852)))) + ((*1 *2 *2) + (-12 (-5 *2 (-586 *4)) (-4 *4 (-13 (-29 *3) (-1205))) + (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-588 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-586 (-410 (-949 *3)))) + (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-592 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -3493 *3) (|:| |special| *3))) (-5 *1 (-729 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) + (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) + (-5 *3 (-643 (-691 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1269 (-1269 *5))) (-4 *5 (-365)) (-4 *5 (-1052)) + (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) + (-5 *3 (-643 (-691 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-643 *1)) (-4 *1 (-1147)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-643 *1)) (-4 *1 (-1147))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1147)) (-5 *2 (-144))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) + (-4 *5 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172)))) + ((*1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1052)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-374 *3)) + (-4 *4 (-374 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1145 *2 *3)) (-14 *2 (-773)) (-4 *3 (-1052))))) +(((*1 *1 *2) + (-12 (-5 *2 (-691 *4)) (-4 *4 (-1052)) (-5 *1 (-1145 *3 *4)) + (-14 *3 (-773))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) - (-4 *2 (-1102))))) + (|partial| -12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) + (-12 (-5 *1 (-1144 *2 *3)) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34)))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) + (-12 (-5 *2 (-643 *4)) (-5 *1 (-1144 *3 *4)) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) (-5 *1 (-1144 *3 *4)) + (-4 *3 (-13 (-1104) (-34))) (-4 *4 (-13 (-1104) (-34)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1143 *4 *5)) (-4 *4 (-13 (-1104) (-34))) + (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-112)) (-5 *1 (-1144 *4 *5))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1143 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1104) (-34))) (-4 *6 (-13 (-1104) (-34))) (-5 *2 (-112)) + (-5 *1 (-1144 *5 *6))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) + (-4 *2 (-1104)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-151 *3)) + (-4 *3 (-1219)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-676 *3)) (-4 *3 (-1219)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1104)) + (-5 *1 (-738 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-738 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-235 *3)) + (-4 *3 (-1104)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-235 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-549)) (-4 *4 (-1104)) + (-5 *1 (-738 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-738 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-1143 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1104) (-34))) (-4 *5 (-13 (-1104) (-34))) + (-5 *1 (-1144 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-643 (-1143 *3 *4))) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34))) (-5 *1 (-1144 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) - (-5 *2 (-645 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1102)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1102))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) - (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) + (-12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-112)) + (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-968)))) + ((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-992)))) + ((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1104) (-34))) (-5 *1 (-1143 *2 *3)) + (-4 *3 (-13 (-1104) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) - (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) + (|partial| -12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-112)) + (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) - (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1245 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34)))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) + ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-548))) + ((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1143 *3 *2)) (-4 *3 (-13 (-1104) (-34))) + (-4 *2 (-13 (-1104) (-34)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1104) (-34))) + (-4 *4 (-13 (-1104) (-34)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1104) (-34))) + (-4 *3 (-13 (-1104) (-34)))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1104) (-34))) (-4 *6 (-13 (-1104) (-34))) (-5 *2 (-112)) + (-5 *1 (-1143 *5 *6))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1104) (-34))) (-5 *2 (-112)) + (-5 *1 (-1143 *4 *5)) (-4 *4 (-13 (-1104) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) +(((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1142)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1142)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1142)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1142)))) +(((*1 *1 *1) (-5 *1 (-225))) ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1142))) ((*1 *1 *1 *1) (-4 *1 (-1142)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-773)) (-5 *1 (-226)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-168 (-225))) (-5 *3 (-773)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1142)))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1142)))) +(((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044)))) + ((*1 *1 *1 *1) (-4 *1 (-1142)))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) + ((*1 *1 *1) (-4 *1 (-850))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)) (-4 *2 (-1063)))) + ((*1 *1 *1) (-4 *1 (-1063))) ((*1 *1 *1) (-4 *1 (-1142)))) +(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141))))) +(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-63 *3)) (-14 *3 (-1180)))) + ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-69 *3)) (-14 *3 (-1180)))) + ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-72 *3)) (-14 *3 (-1180)))) + ((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1275)) (-5 *1 (-398)))) + ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-1275)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1162)) (-5 *4 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) + ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-1141)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-865))) (-5 *2 (-1275)) (-5 *1 (-1141))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-643 (-1185))) (-5 *1 (-1139))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168 3 *3)) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + ((*1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052))))) +(((*1 *2) + (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) + (-5 *2 (-773)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-773))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-773))))) +(((*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-643 *1)) (-4 *1 (-1137 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1052)) (-5 *2 (-643 *1)) (-4 *1 (-1137 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-643 (-946 *4))) (-4 *1 (-1137 *4)) (-4 *4 (-1052)) + (-5 *2 (-773))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-946 *3))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-643 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-946 *3))) (-4 *1 (-1137 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-946 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-643 (-643 (-946 *4)))) (-5 *3 (-112)) (-4 *4 (-1052)) + (-4 *1 (-1137 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 (-643 (-946 *3)))) (-4 *3 (-1052)) (-4 *1 (-1137 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-643 (-643 (-643 *4)))) (-5 *3 (-112)) (-4 *1 (-1137 *4)) + (-4 *4 (-1052)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-643 (-643 (-946 *4)))) (-5 *3 (-112)) (-4 *1 (-1137 *4)) + (-4 *4 (-1052)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-643 (-643 (-643 *5)))) (-5 *3 (-643 (-171))) (-5 *4 (-171)) + (-4 *1 (-1137 *5)) (-4 *5 (-1052)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-643 (-643 (-946 *5)))) (-5 *3 (-643 (-171))) (-5 *4 (-171)) + (-4 *1 (-1137 *5)) (-4 *5 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-946 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-851)) - (-4 *5 (-794)) (-4 *2 (-267 *4))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1102))))) + (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-643 (-773)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1254 *4 *5 *6)) - (|:| |%expon| (-320 *4 *5 *6)) - (|:| |%expTerms| - (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) - (|:| |%type| (-1161)))) - (-5 *1 (-1255 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) - (-14 *5 (-1179)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) - ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-613 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) - (-4 *2 (-13 (-433 *5) (-27) (-1204))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1102))))) + (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) + (-5 *2 (-643 (-643 (-643 (-946 *3)))))))) (((*1 *2 *1) - (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) -(((*1 *2) - (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1245 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) - (-4 *4 (-1219)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-947 *4 *3)) - (-4 *3 (-1245 *4))))) + (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-643 (-171))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 (-643 (-171)))))) (((*1 *2 *1) - (-12 + (-12 (-4 *1 (-1137 *3)) (-4 *3 (-1052)) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-331))))) -(((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1212 *2 *3 *4 *5)) (-4 *2 (-559)) - (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1179))))) - (-5 *6 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1106)) - (-5 *1 (-400)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1179))))) - (-5 *6 (-645 (-1179))) (-5 *3 (-1179)) (-5 *2 (-1106)) - (-5 *1 (-400)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-645 (-1179))) (-5 *5 (-1182)) (-5 *3 (-1179)) - (-5 *2 (-1106)) (-5 *1 (-400))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-756))))) + (-2 (|:| -4282 (-773)) (|:| |curves| (-773)) (|:| |polygons| (-773)) + (|:| |constructs| (-773))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-643 (-2 (|:| -4164 (-1174 *6)) (|:| -2564 (-549))))) + (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) + (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1137 *2)) (-4 *2 (-1052))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-772)) (-4 *4 (-351)) - (-5 *1 (-531 *4))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1135 *4 *2)) + (-4 *2 (-13 (-606 (-549) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-852)) (-4 *3 (-1219)) (-5 *1 (-1135 *3 *2)) + (-4 *2 (-13 (-606 (-549) *3) (-10 -7 (-6 -4425) (-6 -4426))))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1135 *4 *2)) + (-4 *2 (-13 (-606 (-549) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-852)) (-4 *3 (-1219)) (-5 *1 (-1135 *3 *2)) + (-4 *2 (-13 (-606 (-549) *3) (-10 -7 (-6 -4425) (-6 -4426))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 *4)) (-4 *4 (-1052)) (-4 *2 (-1245 *4)) + (-5 *1 (-447 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-410 (-1174 (-315 *5)))) (-5 *3 (-1269 (-315 *5))) + (-5 *4 (-549)) (-4 *5 (-560)) (-5 *1 (-1133 *5))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-410 (-1174 (-315 *3)))) (-4 *3 (-560)) (-5 *1 (-1133 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-567)) - (|:| -1444 (-645 (-2 (|:| |irr| *3) (|:| -3451 (-567))))))) - (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) + (-12 (-5 *3 (-294 (-410 (-949 *5)))) (-5 *4 (-1180)) + (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-1169 (-643 (-315 *5)) (-643 (-294 (-315 *5))))) + (-5 *1 (-1132 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-567)) - (|:| -1444 (-645 (-2 (|:| |irr| *3) (|:| -3451 (-567))))))) - (-5 *1 (-1234 *3)) (-4 *3 (-1245 (-567)))))) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-1169 (-643 (-315 *5)) (-643 (-294 (-315 *5))))) + (-5 *1 (-1132 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) - (-5 *1 (-333))))) -(((*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) - ((*1 *1 *1) (-5 *1 (-1122)))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-756))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-758))))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2 *1) - (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) (-4 *3 (-851)) - (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) - ((*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1219)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219))))) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-643 (-315 *5))) (-5 *1 (-1132 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-315 *5)))) + (-5 *1 (-1132 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1223)) - (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) - (-4 *1 (-369 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) - (-4 *1 (-372 *4 *5)) (-4 *5 (-1245 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) - (-4 *4 (-1245 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-52))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) - ((*1 *1 *1 *1) (-5 *1 (-1122)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4422)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1102)) - (-4 *3 (-1219)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *2 (-351)) (-4 *2 (-1051)) (-5 *1 (-713 *2 *3)) - (-4 *3 (-1245 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) - (-14 *4 (-772)) (-4 *5 (-172))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-960 *3)) (-5 *1 (-1166 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *1 *1) (-5 *1 (-863)))) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-643 (-294 (-315 *5)))) (-5 *1 (-1132 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1132 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-410 (-949 *5)))) (-5 *4 (-1180)) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-294 (-315 *5)))) + (-5 *1 (-1132 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-294 (-410 (-949 *4)))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-643 (-294 (-315 *4)))) (-5 *1 (-1132 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-410 (-949 *5)))) (-5 *4 (-643 (-1180))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) + (-5 *1 (-1132 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-410 (-949 *4)))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-643 (-643 (-294 (-315 *4))))) (-5 *1 (-1132 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-294 (-410 (-949 *5))))) (-5 *4 (-643 (-1180))) + (-4 *5 (-13 (-308) (-147))) (-5 *2 (-643 (-643 (-294 (-315 *5))))) + (-5 *1 (-1132 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-294 (-410 (-949 *4))))) (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-643 (-643 (-294 (-315 *4))))) (-5 *1 (-1132 *4))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1245 *4)) - (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *4)) (-5 *1 (-1131 *3 *4)) (-4 *3 (-1245 *4)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1102)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1102)) (-5 *2 (-112)) - (-5 *1 (-1220 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) - ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1182))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) - ((*1 *1 *1 *1) (-5 *1 (-1122)))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) - (-14 *4 *2)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549)))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *1 *1) (-4 *1 (-1062))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))) -(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) + (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 (-643 *3)) (-5 *1 (-1131 *4 *3)) (-4 *4 (-1245 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *2 + (-2 (|:| |solns| (-643 *5)) + (|:| |maps| (-643 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1131 *3 *5)) (-4 *3 (-1245 *5))))) +(((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-374 *4) (-10 -7 (-6 -4426)))) + (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426)))) (-5 *1 (-669 *4 *5 *2 *3)) + (-4 *3 (-688 *4 *5 *2)))) + ((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1269 *4)) (-5 *3 (-691 *4)) (-4 *4 (-365)) + (-5 *1 (-670 *4)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-643 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) + (-5 *1 (-816 *2 *3)) (-4 *3 (-660 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-549))))))) + (-5 *1 (-1131 *3 *2)) (-4 *3 (-1245 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-1157 *7))) (-4 *6 (-852)) + (-4 *7 (-953 *5 (-534 *6) *6)) (-4 *5 (-1052)) (-5 *2 (-1 (-1157 *7) *7)) + (-5 *1 (-1129 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-4 *6 (-374 *5)) (-4 *4 (-374 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) + (-5 *1 (-1127 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-308)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1127 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) + (-12 (-4 *3 (-308)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-1127 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4424 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) - (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) - (-4 *4 (-688 *2 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-567)) (-5 *5 (-1161)) (-5 *6 (-690 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-772)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-131)) - (-5 *2 (-772)))) - ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) - ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) (-5 *2 (-772)))) - ((*1 *2) - (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) - (-4 *3 (-428 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-772)) - (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) - (-4 *3 (-1245 *2))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-308)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1127 *4 *5 *6 *3)) + (-4 *3 (-688 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549)))) + ((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-1127 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-773)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1052)) (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-690 *4)) (-4 *4 (-1051)) (-5 *1 (-1144 *3 *4)) - (-14 *3 (-772))))) -(((*1 *2 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) - (-5 *1 (-176 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-752))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-772)) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) + (-12 (-5 *2 (-643 *1)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1267 *3)) (-4 *3 (-23)) (-4 *3 (-1219))))) -(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-973))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) - (-5 *1 (-1163 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) - (-14 *4 (-1179)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-210))))) -(((*1 *2 *3) - (-12 (-4 *1 (-922)) (-5 *2 (-2 (|:| -1344 (-645 *1)) (|:| -2335 *1))) - (-5 *3 (-645 *1))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1212 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-1245 (-410 *3))) (-5 *2 (-923)) - (-5 *1 (-915 *4 *5)) (-4 *5 (-1245 (-410 *4)))))) -(((*1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-830))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4424 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) - (-4 *2 (-1051)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) - (-4 *4 (-688 *2 *5 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1051)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1051)) - (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1225)))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1161)) (-5 *1 (-991)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-4 *4 (-1219)) (-5 *1 (-1059 *3 *4)) - (-4 *3 (-1095 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1096 *4)) (-4 *4 (-1219)) - (-5 *1 (-1094 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) - ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) - (-14 *4 (-645 (-1179))))) - ((*1 *2 *1) - (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) - (-14 *4 (-645 (-1179))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) - (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1175 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) - (-4 *8 (-951 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1051)) - (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) - (-4 *4 (-1245 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) - (-4 *3 (-851)) (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-975 *3 *2 *4)) (-4 *3 (-1051)) (-4 *4 (-851)) - (-4 *2 (-793)))) + (-12 (-5 *2 (-643 *3)) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1052)) (-5 *1 (-691 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 *4)) (-4 *4 (-1052)) (-4 *1 (-1126 *3 *4 *5 *6)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1126 *3 *4 *2 *5)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) + ((*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1269 *4)) (-5 *3 (-922)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-772)))) + (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) + (-4 *2 (-1052))))) +(((*1 *2 *3) + (-12 (-5 *3 (-691 *2)) (-4 *4 (-1245 *2)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) + (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-413 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1231 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1260 *3)) - (-5 *2 (-567)))) + (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) + (-4 *2 (-1052))))) +(((*1 *2 *3) + (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-365)) + (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1229 *3)) - (-5 *2 (-410 (-567))))) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) + (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1052)))) + ((*1 *2 *3) + (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-172)) + (-5 *1 (-690 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923))))) + (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) + (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1052))))) +(((*1 *2 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-374 *2)) (-4 *4 (-374 *2)) + (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1052)))) + ((*1 *2 *3) + (-12 (-4 *4 (-374 *2)) (-4 *5 (-374 *2)) (-4 *2 (-172)) + (-5 *1 (-690 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *2 (-772))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) - (-247 *3 (-410 (-567))))) - (-14 *3 (-645 (-1179))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1179)) (-5 *6 (-112)) - (-4 *7 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-4 *3 (-13 (-1204) (-961) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-690 (-410 (-954 (-567))))) - (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033)) - (-5 *3 (-317 (-567)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1146)))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-471)) (-5 *4 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270))))) + (-12 (-4 *1 (-1126 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) + (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1052))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1124 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1) (-12 (-4 *1 (-1124 *3)) (-4 *3 (-1219)) (-5 *2 (-773))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1) (-5 *1 (-1123)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1123)))) +(((*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) + ((*1 *1 *1) (-5 *1 (-1123)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) + ((*1 *1 *1 *1) (-5 *1 (-1123)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-549)))) + ((*1 *1 *1 *1) (-5 *1 (-1123)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-442)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-840)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1185))) (-5 *3 (-1185)) (-5 *1 (-1118)))) + ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-683)))) + ((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-973)))) + ((*1 *2 *1) (-12 (-5 *2 (-1220)) (-5 *1 (-1076)))) + ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1118))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-683)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-1118))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-455)) (-4 *4 (-822)) (-14 *5 (-1180)) + (-5 *2 (-549)) (-5 *1 (-1117 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-455)) (-4 *4 (-822)) (-14 *5 (-1180)) + (-5 *2 (-549)) (-5 *1 (-1117 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1269 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-911)) - (-5 *2 (-1269 *1))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) - (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) - (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-308))))) -(((*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863))))) -(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-923)) (-5 *2 (-381)) (-5 *1 (-786 *3)) - (-4 *3 (-615 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) - (-5 *2 (-381)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) - (-5 *2 (-381)) (-5 *1 (-786 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) + (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) + (-5 *1 (-1117 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-549)) + (-5 *1 (-1117 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 *4)) + (-5 *1 (-1117 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 (-1238 *5 *4))) + (-5 *1 (-1117 *4 *5)) (-5 *3 (-1238 *5 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-822)) (-14 *5 (-1180)) (-5 *2 (-643 (-1238 *5 *4))) + (-5 *1 (-1117 *4 *5)) (-5 *3 (-1238 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1113)) (-5 *3 (-549))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1113))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1269 (-549))) (-5 *3 (-549)) (-5 *1 (-1113)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1269 (-549))) (-5 *3 (-643 (-549))) (-5 *4 (-549)) + (-5 *1 (-1113))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *3 (-112)) (-5 *1 (-1113))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-691 (-549))) (-5 *3 (-643 (-549))) (-5 *1 (-1113))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1113))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-549))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-1113))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-643 (-549))) (-5 *3 (-691 (-549))) (-5 *1 (-1113))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1113))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) + (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) (-4 *5 (-851)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) + (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1175 *2)) (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) - (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) - (-4 *4 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) - (-4 *6 (-559))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) - ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) - (-5 *2 (-645 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-749))))) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) + (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) + (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 *4)) (-5 *1 (-1111 *5 *6 *7 *3 *4)) + (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) + (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-1111 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *5 (-112)) + (-4 *8 (-1068 *6 *7 *4)) (-4 *9 (-1074 *6 *7 *4 *8)) (-4 *6 (-455)) + (-4 *7 (-795)) (-4 *4 (-852)) + (-5 *2 (-643 (-2 (|:| |val| *8) (|:| -1708 *9)))) + (-5 *1 (-1111 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))) + (-5 *1 (-1111 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) + (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *2 (-1275)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *2 (-1275)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) - (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) - (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1245 (-567))) (-5 *1 (-489 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1231 *3 *2)) (-4 *3 (-1051)) - (-4 *2 (-1260 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) - (-5 *1 (-1239 *4 *2)) (-4 *2 (-1245 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3906 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) + (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *2 (-1275)) (-5 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *2 (-1275)) (-5 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1075 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1111 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *9 (-1068 *6 *7 *8)) + (-5 *2 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *4) (|:| |ineq| (-643 *9)))) + (-5 *1 (-991 *6 *7 *8 *9 *4)) (-5 *3 (-643 *9)) + (-4 *4 (-1074 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *9 (-1068 *6 *7 *8)) + (-5 *2 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *4) (|:| |ineq| (-643 *9)))) + (-5 *1 (-1110 *6 *7 *8 *9 *4)) (-5 *3 (-643 *9)) + (-4 *4 (-1074 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-643 *10)) (-5 *5 (-112)) (-4 *10 (-1074 *6 *7 *8 *9)) + (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) (-5 *2 - (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) - (-2 (|:| -3906 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) - (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3262 (-645 *9)))) - (-5 *3 (-645 *9)) (-4 *1 (-1212 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3262 (-645 *8)))) - (-5 *3 (-645 *8)) (-4 *1 (-1212 *5 *6 *7 *8))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) - (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102))))) + (-643 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *10) (|:| |ineq| (-643 *9))))) + (-5 *1 (-991 *6 *7 *8 *9 *10)) (-5 *3 (-643 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-643 *10)) (-5 *5 (-112)) (-4 *10 (-1074 *6 *7 *8 *9)) + (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-1068 *6 *7 *8)) + (-5 *2 + (-643 (-2 (|:| -3687 (-643 *9)) (|:| -1708 *10) (|:| |ineq| (-643 *9))))) + (-5 *1 (-1110 *6 *7 *8 *9 *10)) (-5 *3 (-643 *9))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-951 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-954 *6)) (-5 *4 (-1179)) - (-5 *5 (-844 *7)) - (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-4 *7 (-13 (-1204) (-29 *6))) (-5 *1 (-224 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1175 *6)) (-5 *4 (-844 *6)) - (-4 *6 (-13 (-1204) (-29 *5))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-224 *5 *6))))) + (-12 (-5 *2 (-643 (-2 (|:| |val| (-643 *6)) (|:| -1708 *7)))) + (-4 *6 (-1068 *3 *4 *5)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-991 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-643 (-2 (|:| |val| (-643 *6)) (|:| -1708 *7)))) + (-4 *6 (-1068 *3 *4 *5)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-1110 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) + (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-643 *7)) (|:| -1708 *8))) + (-4 *7 (-1068 *4 *5 *6)) (-4 *8 (-1074 *4 *5 *6 *7)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) + (-5 *1 (-1110 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *1 (-991 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *1 (-1110 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 *3)) (-4 *3 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-991 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 *3)) (-4 *3 (-1074 *5 *6 *7 *8)) (-4 *5 (-455)) + (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1110 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) + (-4 *3 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) + (-4 *3 (-1074 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1179)))) - (-4 *5 (-794)) (-5 *1 (-926 *3 *4 *5 *2)) (-4 *2 (-951 *3 *5 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-755))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-979 *5 *6 *7 *8))))) + (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *1 (-991 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-643 *7)) (-4 *7 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *1 (-1110 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-991 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1110 *4 *5 *6 *7 *3)) (-4 *3 (-1074 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *2 (-1275)) (-5 *1 (-991 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *2 (-1275)) (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1074 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-991 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1162)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) (-5 *2 (-1275)) (-5 *1 (-1110 *4 *5 *6 *7 *8)) + (-4 *8 (-1074 *4 *5 *6 *7))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *2 (-1102)) (-4 *3 (-1102)) - (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102))))) + (-12 (-5 *2 (-1180)) (-5 *3 (-437)) (-4 *5 (-1104)) (-5 *1 (-1109 *5 *4)) + (-4 *4 (-424 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1077)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-1205 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1102))))) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-945 *4))) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *1 *1) (-5 *1 (-1065)))) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *1) - (-12 (-4 *1 (-1105 *2 *3 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102)))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1160)))) - ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1179))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2304 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1870 *3))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) - (-5 *1 (-749))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 - (-2 (|:| |solns| (-645 *5)) - (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1130 *3 *5)) (-4 *3 (-1245 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1179))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-971 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) - (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *5 (-370)) - (-5 *2 (-772))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-1067 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) - (-5 *1 (-402 *3 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *1) (-4 *1 (-476))) - ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-885)))) - ((*1 *1 *1) (-5 *1 (-973))) - ((*1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) - (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) - (|:| |vals| (-645 *3)))) - (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-923)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-365)) (-14 *5 (-995 *3 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1102))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) - (-5 *2 (-863)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6)))) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1041 (-549))))) ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) - (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-528))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863))))) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5))))) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-2 (|:| -4292 (-1180)) (|:| -2254 *4)))) + (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1191 *3)) (-4 *3 (-1102))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331))))) -(((*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1193 *2)) (-4 *2 (-365))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112))))) + (-12 (-4 *3 (-1104)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-4 *7 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-1107 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *4)) (-5 *1 (-887 *3 *4 *5)) - (-4 *3 (-1102)) (-4 *5 (-667 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042)))) - ((*1 *1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1270)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1271)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1271))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-1051)) - (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-1245 *4))))) + (-12 (-4 *1 (-1107 *3 *2 *4 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104))))) +(((*1 *2 *3) (-12 (-5 *2 (-549)) (-5 *1 (-572 *3)) (-4 *3 (-1041 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1107 *3 *4 *2 *5 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-922)) (-4 *1 (-407)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-4 *1 (-407)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1107 *3 *4 *5 *2 *6)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) - (-5 *2 (-645 (-645 (-945 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) (-4 *4 (-1051)) - (-4 *1 (-1136 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 (-945 *3)))) (-4 *3 (-1051)) - (-4 *1 (-1136 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) - (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-645 (-645 (-945 *4)))) (-5 *3 (-112)) - (-4 *1 (-1136 *4)) (-4 *4 (-1051)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) - (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-645 (-945 *5)))) (-5 *3 (-645 (-171))) - (-5 *4 (-171)) (-4 *1 (-1136 *5)) (-4 *5 (-1051))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) (-5 *3 (-225)) - (-5 *2 (-1037)) (-5 *1 (-749))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-559)) - (-5 *2 (-2 (|:| -2434 (-690 *5)) (|:| |vec| (-1269 (-645 (-923)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-439))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1204) (-1004)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-645 (-1179))) (-5 *2 (-1179)) (-5 *1 (-331))))) + (-12 (-4 *1 (-1107 *3 *4 *5 *6 *2)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-1104))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-4 *2 (-1102)) (-5 *1 (-681 *5 *6 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1161)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-264)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-169 (-317 *4))) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-169 *3)) (-5 *1 (-1208 *4 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-400))))) -(((*1 *1) (-5 *1 (-292)))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-748))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1142 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1102) (-34))) (-4 *6 (-13 (-1102) (-34))) - (-5 *2 (-112)) (-5 *1 (-1143 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-830))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-410 (-567)))) - (-5 *2 - (-645 - (-2 (|:| |outval| *4) (|:| |outmult| (-567)) - (|:| |outvect| (-645 (-690 *4)))))) - (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) - (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-979 *5 *6 *7 *8))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) - (-4 *3 (-559))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-112)) (-5 *1 (-830))))) -(((*1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1219))))) + (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *2 (-1104)) (-4 *3 (-1104)) + (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1107 *2 *3 *4 *5 *6)) (-4 *2 (-1104)) (-4 *3 (-1104)) + (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1105 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1105 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-673)))) + ((*1 *2 *1) + (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) + (-14 *4 (-922))))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 (-922))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) + (-14 *4 (-922))))) (((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-772))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1270))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)))) + (-12 (-5 *2 (-1269 (-1105 *3 *4))) (-5 *1 (-1105 *3 *4)) (-14 *3 (-922)) + (-14 *4 (-922))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) + (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-908 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1073 *4 *5 *6 *7)))) + (-12 (-5 *3 (-922)) (-5 *2 (-112)) (-5 *1 (-1105 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-773)) (-5 *1 (-1105 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1123))))) +(((*1 *2 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-1162))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-1102 *3)))) + ((*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-1102 *3)))) + ((*1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) + (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) + (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) - (-4 *1 (-1073 *4 *5 *6 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1204) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) (-4 *5 (-147)) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) - (-5 *1 (-591 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-1269 (-317 (-381)))) - (-5 *1 (-306))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) - (-4 *4 (-851)) (-5 *1 (-1190 *4))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) - (-5 *2 (-1037)) (-5 *1 (-746))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1204) (-961) (-29 *4)))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1183))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -1425 (-645 (-1179))) (|:| -1448 (-645 (-1179))))) - (-5 *1 (-1221))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1102))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) - (-4 *3 (-1051)))) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-643 (-613 *4))) (-4 *4 (-424 *3)) (-4 *3 (-1104)) + (-5 *1 (-576 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-678)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1022)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1069)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1099))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1097 *3)) (-4 *3 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1219)) (-5 *2 (-549))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1162)) (-5 *1 (-992)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1286 *4 *3)) - (-4 *3 (-1051))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1040 (-567))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976))))) -(((*1 *2 *3) - (-12 (-5 *3 (-929)) - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) - (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) - (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) - (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) - (-5 *1 (-153))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1161) (-775))) (-5 *1 (-114))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-945 (-225)) (-945 (-225)))) (-5 *1 (-264)))) + (-12 (-5 *2 (-1180)) (-4 *4 (-1219)) (-5 *1 (-1061 *3 *4)) + (-4 *3 (-1097 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1180)) (-5 *3 (-1092 *4)) (-4 *4 (-1219)) (-5 *1 (-1095 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1094))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *1 (-262)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) - (-5 *2 (-690 *4)))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-691 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1269 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-1269 *4)))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1269 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) + (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-413 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) + (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) - (-5 *2 (-1269 *5)) (-5 *1 (-1088 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1179)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1344 *3) (|:| |gap| (-772)) (|:| -3693 (-783 *3)) - (|:| -2642 (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-1051)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) - (-5 *2 - (-2 (|:| -1344 *1) (|:| |gap| (-772)) (|:| -3693 *1) - (|:| -2642 *1))) - (-4 *1 (-1067 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 - (-2 (|:| -1344 *1) (|:| |gap| (-772)) (|:| -3693 *1) - (|:| -2642 *1))) - (-4 *1 (-1067 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-979 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *3 (-1051)) - (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-853 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1051)) - (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-854 *5 *3)) - (-4 *3 (-853 *5))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) - (-5 *1 (-1239 *4 *2)) (-4 *2 (-1245 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-979 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-421 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-691 *5))) (-5 *3 (-691 *5)) (-4 *5 (-365)) + (-5 *2 (-1269 *5)) (-5 *1 (-1089 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-375 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) - (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *4)) (-4 *4 (-994 *2)) (-4 *2 (-559)) - (-5 *1 (-694 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-994 *2)) (-4 *2 (-559)) (-5 *1 (-1238 *2 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *3 (-954 (-567))) - (-5 *1 (-331)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1094 (-954 (-567)))) (-5 *1 (-331))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-945 *4)) (-4 *4 (-1051)) (-5 *1 (-1167 *3 *4)) - (-14 *3 (-923))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) - (-4 *8 (-851)) (-5 *1 (-979 *6 *7 *8 *9))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-52))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-923)) (-5 *1 (-445 *2)) - (-4 *2 (-1245 (-567))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-923)) (-5 *4 (-772)) (-5 *1 (-445 *2)) - (-4 *2 (-1245 (-567))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) - (-4 *2 (-1245 (-567))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) - (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-923)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) - (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-567))))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-1269 (-691 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-420 *3 *4)) + (-4 *3 (-421 *4)))) + ((*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-1269 (-691 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-1180))) (-4 *5 (-365)) + (-5 *2 (-1269 (-691 (-410 (-949 *5))))) (-5 *1 (-1089 *5)) + (-5 *4 (-691 (-410 (-949 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-1180))) (-4 *5 (-365)) (-5 *2 (-1269 (-691 (-949 *5)))) + (-5 *1 (-1089 *5)) (-5 *4 (-691 (-949 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-691 *4))) (-4 *4 (-365)) (-5 *2 (-1269 (-691 *4))) + (-5 *1 (-1089 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-175))) (-5 *1 (-1088))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-109))) (-5 *1 (-175)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-109))) (-5 *1 (-1088))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1088))))) +(((*1 *1) (-5 *1 (-1088)))) +(((*1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1087 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-549) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1087 *2))))) +(((*1 *2) (-12 (-5 *2 (-643 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-132))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-1087 *3)) (-4 *3 (-132))))) +(((*1 *1) (-5 *1 (-1085)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-643 *3)) (-5 *1 (-594 *5 *6 *7 *8 *3)) + (-4 *3 (-1112 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-421 *2)) (-4 *2 (-1245 *5)) - (-5 *1 (-447 *5 *2)) (-4 *5 (-1051))))) -(((*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) - ((*1 *2 *1) - (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-793)) - (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) + (-5 *1 (-1081 *5 *6)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180))))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) - (-15 -4306 ((-1127 *3 (-613 $)) $)) - (-15 -2504 ($ (-1127 *3 (-613 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) - (-15 -4306 ((-1127 *3 (-613 $)) $)) - (-15 -2504 ($ (-1127 *3 (-613 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *4 (-613 $)) $)) - (-15 -4306 ((-1127 *4 (-613 $)) $)) - (-15 -2504 ($ (-1127 *4 (-613 $))))))) - (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) + (-12 (-4 *4 (-13 (-308) (-147))) + (-5 *2 (-643 (-2 (|:| -1915 (-1174 *4)) (|:| -3644 (-643 (-949 *4)))))) + (-5 *1 (-1081 *4 *5)) (-5 *3 (-643 (-949 *4))) (-14 *5 (-643 (-1180))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-643 (-2 (|:| -1915 (-1174 *5)) (|:| -3644 (-643 (-949 *5)))))) + (-5 *1 (-1081 *5 *6)) (-5 *3 (-643 (-949 *5))) (-14 *6 (-643 (-1180)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 (-1078 *3 *4 *5))) (-4 *3 (-1104)) + (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) + (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3)))) + (-5 *1 (-1080 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) + (-5 *2 (-643 (-1078 *3 *4 *5))) (-5 *1 (-1080 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3))))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-1104)) + (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) + (-5 *1 (-1078 *3 *4 *2)) + (-4 *2 (-13 (-424 *4) (-889 *3) (-616 (-893 *3))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-893 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1104)) (-4 *5 (-1219)) + (-5 *1 (-894 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-613 *2))) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *4 (-613 $)) $)) - (-15 -4306 ((-1127 *4 (-613 $)) $)) - (-15 -2504 ($ (-1127 *4 (-613 $))))))) - (-4 *4 (-559)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1179))) - (-4 *5 (-455)) - (-5 *2 - (-2 (|:| |gblist| (-645 (-247 *4 *5))) - (|:| |gvlist| (-645 (-567))))) - (-5 *1 (-632 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1179))) - (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1051))))) -(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) + (-12 (-5 *2 (-893 *4)) (-5 *3 (-643 (-1 (-112) *5))) (-4 *4 (-1104)) + (-4 *5 (-1219)) (-5 *1 (-894 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-893 *5)) (-5 *3 (-643 (-1180))) (-5 *4 (-1 (-112) (-643 *6))) + (-4 *5 (-1104)) (-4 *6 (-1219)) (-5 *1 (-894 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) - (-5 *2 (-1037)) (-5 *1 (-841))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1051)) - (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1282 *4 *5 *6 *7))) - (-5 *1 (-1282 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1180)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1219)) + (-5 *2 (-315 (-549))) (-5 *1 (-940 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-643 (-1 (-112) *5))) (-4 *5 (-1219)) + (-5 *2 (-315 (-549))) (-5 *1 (-940 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1219)) (-4 *4 (-1104)) + (-5 *1 (-941 *4 *2 *5)) (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-643 (-1 (-112) *5))) (-4 *5 (-1219)) (-4 *4 (-1104)) + (-5 *1 (-941 *4 *2 *5)) (-4 *2 (-424 *4)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-1 (-112) (-643 *6))) + (-4 *6 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))) (-4 *4 (-1104)) + (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-1078 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 *2))) + (-5 *2 (-893 *3)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-889 *3) (-616 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1104)) (-4 *4 (-13 (-1052) (-889 *3) (-616 (-893 *3)))) + (-5 *2 (-643 (-1180))) (-5 *1 (-1078 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-889 *3) (-616 (-893 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-313)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-973)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-997)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1039)))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1076))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 *4)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) + (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) + (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *3 (-1068 *6 *7 *8)) (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-1075 *6 *7 *8 *3 *4)) (-4 *4 (-1074 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1067 *6 *7 *8)) (-4 *6 (-559)) - (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1282 *6 *7 *8 *9))) - (-5 *1 (-1282 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| -1344 *4) (|:| -3693 *3) (|:| -2642 *3))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-1067 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1051)) - (-5 *2 (-2 (|:| -1344 *3) (|:| -3693 *1) (|:| -2642 *1))) - (-4 *1 (-1245 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) - (-4 *5 (-851)) (-5 *2 (-954 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1051)) - (-4 *5 (-851)) (-5 *2 (-954 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-1260 *4)) (-4 *4 (-1051)) - (-5 *2 (-954 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-1260 *4)) (-4 *4 (-1051)) - (-5 *2 (-954 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) - (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1161)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-169 (-410 (-567))))) - (-5 *2 - (-645 - (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) - (|:| |outvect| (-645 (-690 (-169 *4))))))) - (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) - (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) - (-4 *2 (-688 *3 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) - (-5 *2 - (-2 (|:| |zeros| (-1159 (-225))) (|:| |ones| (-1159 (-225))) - (|:| |singularities| (-1159 (-225))))) - (-5 *1 (-105))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1179)) (-4 *5 (-433 *4)) - (-4 *4 (-1102)) (-5 *1 (-576 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3906 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1245 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-971 *2 *4)) - (-4 *4 (-1245 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-645 - (-2 (|:| -1471 (-772)) - (|:| |eqns| - (-645 - (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567)))))) - (|:| |fgb| (-645 *7))))) - (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-772)) - (-5 *1 (-926 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) - (-5 *1 (-757))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) - (-4 *2 (-657 *4))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-559) (-147))) - (-5 *2 (-2 (|:| -4335 *3) (|:| -4347 *3))) (-5 *1 (-1239 *4 *3)) - (-4 *3 (-1245 *4))))) + (-12 (-5 *3 (-643 (-2 (|:| |val| (-643 *8)) (|:| -1708 *9)))) (-5 *5 (-112)) + (-4 *8 (-1068 *6 *7 *4)) (-4 *9 (-1074 *6 *7 *4 *8)) (-4 *6 (-455)) + (-4 *7 (-795)) (-4 *4 (-852)) + (-5 *2 (-643 (-2 (|:| |val| *8) (|:| -1708 *9)))) + (-5 *1 (-1075 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| (-643 *3)) (|:| -1708 *4)))) + (-5 *1 (-1075 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-567)))) + (-12 (-4 *1 (-1074 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-3 (-112) (-643 *1))) (-4 *1 (-1074 *4 *5 *6 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *1)))) + (-4 *1 (-1074 *4 *5 *6 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-3 *3 (-643 *1))) (-4 *1 (-1074 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-560)) (-4 *2 (-1052)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *1)))) + (-4 *1 (-1074 *4 *5 *6 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-643 *1)) (-5 *3 (-643 *7)) (-4 *1 (-1074 *4 *5 *6 *7)) + (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-1068 *4 *5 *6)) + (-5 *2 (-643 *1)) (-4 *1 (-1074 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *2 (-1274)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6))))) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-648 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1054 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) + (-5 *2 (-112))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1179)) - (|:| |arrayIndex| (-645 (-954 (-567)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1179)) (|:| |rand| (-863)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1178)) (|:| |thenClause| (-331)) - (|:| |elseClause| (-331)))) - (|:| |returnBranch| - (-2 (|:| -2319 (-112)) - (|:| -2233 - (-2 (|:| |ints2Floats?| (-112)) (|:| -2682 (-863)))))) - (|:| |blockBranch| (-645 (-331))) - (|:| |commentBranch| (-645 (-1161))) (|:| |callBranch| (-1161)) - (|:| |forBranch| - (-2 (|:| -2031 (-1094 (-954 (-567)))) - (|:| |span| (-954 (-567))) (|:| -3501 (-331)))) - (|:| |labelBranch| (-1122)) - (|:| |loopBranch| (-2 (|:| |switch| (-1178)) (|:| -3501 (-331)))) - (|:| |commonBranch| - (-2 (|:| -1646 (-1179)) (|:| |contents| (-645 (-1179))))) - (|:| |printBranch| (-645 (-863))))) - (-5 *1 (-331))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-1027 *3 *2)) (-4 *2 (-657 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -4178 *3) (|:| -3788 (-645 *5)))) - (-5 *1 (-1027 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *1) (-5 *1 (-1182)))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-676 *2)) (-4 *2 (-1051)) (-4 *2 (-1102))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1051)) (-5 *1 (-597 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1229 *3)) (-4 *3 (-1051)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1260 *3)) (-4 *3 (-1051))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-1179)) (-4 *6 (-433 *5)) - (-4 *5 (-1102)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -3661 *3) (|:| -3380 *4)))) - (-5 *1 (-697 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1272))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-748))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -4059 *4))) (-5 *1 (-971 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *4 (-645 (-1179))) - (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-4 *6 (-902 *5)) (-5 *2 (-690 *6)) - (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422))))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-567)) (|has| *1 (-6 -4423)) (-4 *1 (-375 *3)) - (-4 *3 (-1219))))) + (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1071 *4 *3)) (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) + (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *2 (-172)) (-4 *2 (-1051)) (-5 *1 (-715 *2 *3)) - (-4 *3 (-649 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1051))))) + (-12 (-4 *3 (-1041 (-549))) (-4 *3 (-560)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1174 *4)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1052)) (-4 *1 (-299)))) + ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) + ((*1 *2) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-13 (-850) (-365))) (-4 *2 (-1245 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-949 (-549))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) + ((*1 *2 *3) + (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) + ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1015)) (-5 *2 (-643 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1174 (-549))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 (-410 (-549)))) (-5 *2 (-643 *1)) (-4 *1 (-1015)))) + ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-1015)) (-5 *2 (-643 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-850) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-643 *1)) + (-4 *1 (-1071 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1180)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-29 *3)) (-4 *3 (-560)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-560)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *2)) (-5 *4 (-1180)) (-4 *2 (-424 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-560)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-922)) (-4 *1 (-1015)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1174 *1)) (-5 *3 (-922)) (-5 *4 (-865)) + (-4 *1 (-1015)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-922)) (-4 *4 (-13 (-850) (-365))) + (-4 *1 (-1071 *4 *2)) (-4 *2 (-1245 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1027 *3)) + (-4 *3 (-13 (-850) (-365) (-1023))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1071 *2 *3)) (-4 *2 (-13 (-850) (-365))) (-4 *3 (-1245 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1138))) (-5 *1 (-1069))))) (((*1 *2 *1) - (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) - (-4 *3 (-1102))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1274))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 (-410 (-954 *6)))) - (-5 *3 (-410 (-954 *6))) - (-4 *6 (-13 (-559) (-1040 (-567)) (-147))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *6))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-772)) - (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) - (-5 *1 (-246 *3))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) - (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) - (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) - (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) - (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) - (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) - (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) - (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) - (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) - (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) - (-5 *1 (-318 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) + (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) + (-4 *5 (-1068 *3 *4 *2)) (-4 *2 (-852)))) ((*1 *2 *1) - (-12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-772))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) - (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -2742 *3)))) - (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) - (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204)))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) - (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1073 *5 *6 *7 *8)) - (-4 *10 (-1111 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) - (-5 *1 (-629 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1179))) - (-5 *2 - (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) - (-5 *1 (-629 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1179))) (-5 *2 (-645 (-1048 *5 *6))) - (-5 *1 (-1048 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1073 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1212 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) + ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-678)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1179)) - (-4 *4 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-578 *4 *2)) - (-4 *2 (-13 (-1204) (-961) (-1141) (-29 *4)))))) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-672)))) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) + (-4 *1 (-1068 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) + ((*1 *2 *1) (-12 (-4 *2 (-1052)) (-5 *1 (-50 *2 *3)) (-14 *3 (-643 (-1180))))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1103 *3 *4)) (-14 *3 (-923)) - (-14 *4 (-923))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-4 *7 (-1245 (-410 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -1729 *3))) - (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |answer| (-410 *6)) (|:| -1729 (-410 *6)) - (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) - (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) - (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) - (-5 *1 (-789))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) ((*1 *1) (-4 *1 (-548))) - ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-700)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-690 (-1175 *8))) (-4 *5 (-1051)) (-4 *8 (-1051)) - (-4 *6 (-1245 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) - (-4 *7 (-1245 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-875)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270))))) -(((*1 *2 *3) - (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (-5 *1 (-268))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-567)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-567)) (-5 *1 (-241))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) + (-12 (-5 *2 (-315 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1052)))) ((*1 *2 *1) - (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-923)) (-4 *4 (-351)) - (-5 *1 (-531 *4)))) + (-12 (-14 *3 (-643 (-1180))) (-4 *5 (-238 (-4389 *3) (-773))) + (-14 *6 + (-1 (-112) (-2 (|:| -2563 *4) (|:| -2564 *5)) + (-2 (|:| -2563 *4) (|:| -2564 *5)))) + (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-852)) + (-4 *7 (-953 *2 *5 (-866 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-852)) (-4 *2 (-1104)))) + ((*1 *2 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-710 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1052)) (-5 *1 (-737 *2 *3)) (-4 *3 (-852)) (-4 *3 (-728)))) + ((*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *3 (-794)) (-4 *4 (-852)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1245 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1051))))) -(((*1 *1) (-5 *1 (-292)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1181 (-410 (-567)))) (-5 *2 (-410 (-567))) - (-5 *1 (-190))))) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) - (-5 *2 - (-2 (|:| -1629 (-772)) (|:| |curves| (-772)) - (|:| |polygons| (-772)) (|:| |constructs| (-772))))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) - (-5 *4 (-645 (-923))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) - (-5 *4 (-645 (-923))) (-5 *1 (-471)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) - ((*1 *1 *1) (-5 *1 (-471)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) - (-4 *3 (-13 (-365) (-147) (-1040 (-567)))) (-5 *1 (-571 *3 *4))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1102) (-34))) - (-5 *2 (-112)) (-5 *1 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-112)) (-5 *1 (-301))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-979 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) (((*1 *2 *1) - (-12 (-4 *2 (-1102)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3) - (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-973)) - (-5 *3 (-645 (-567)))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) - (-5 *2 (-1037)) (-5 *1 (-755))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-241)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-645 (-1161))) (-5 *3 (-567)) (-5 *4 (-1161)) - (-5 *1 (-241)))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) - (-5 *1 (-990 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) - (-5 *1 (-1109 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-748))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270))))) -(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) - ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) + (-4 *1 (-1068 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-1028 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1051))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1096 *3)) (-4 *3 (-951 *7 *6 *4)) (-4 *6 (-794)) - (-4 *4 (-851)) (-4 *7 (-559)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) - (-5 *1 (-596 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) - (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1171 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1204))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1204))) - (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1171 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)))) - (-5 *2 (-410 (-954 *5))) (-5 *1 (-1172 *5)) (-5 *3 (-954 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)))) - (-5 *2 (-3 (-410 (-954 *5)) (-317 *5))) (-5 *1 (-1172 *5)) - (-5 *3 (-410 (-954 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1094 (-954 *5))) (-5 *3 (-954 *5)) - (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 *3)) - (-5 *1 (-1172 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1094 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) - (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-3 *3 (-317 *5))) - (-5 *1 (-1172 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) - (-5 *1 (-749))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) - (-4 *3 (-1102))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1204) (-29 *6))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-224 *6 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1161)) (-5 *2 (-775)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-967))))) -(((*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051)))) - ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -1374 (-421 *3)) (|:| |special| (-421 *3)))) - (-5 *1 (-728 *5 *3))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *1 *1) (|partial| -4 *1 (-1154)))) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) + (-4 *1 (-1068 *3 *4 *5))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1068 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) + (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -3303 *1))) + (-4 *1 (-1068 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -3303 *1))) + (-4 *1 (-1068 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) - (-4 *2 (-1102)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-1102)) (-5 *1 (-650 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| -3118 *5) (|:| -3382 *5)))) - (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) - (-4 *6 (-657 (-410 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-4 *4 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -3118 *4) (|:| -3382 *4)))) - (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) - (-4 *6 (-657 (-410 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-4 *5 (-1245 *4)) (-5 *2 (-645 (-2 (|:| -3118 *5) (|:| -3382 *5)))) - (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) - (-4 *3 (-657 (-410 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-4 *4 (-1245 *5)) (-5 *2 (-645 (-2 (|:| -3118 *4) (|:| -3382 *4)))) - (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) - (-4 *3 (-657 (-410 *4)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-567)))) - (-4 *4 (-13 (-1245 *3) (-559) (-10 -8 (-15 -1870 ($ $ $))))) - (-4 *3 (-559)) (-5 *1 (-1248 *3 *4))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1163 *4)) (-4 *4 (-1051)) - (-5 *3 (-567))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1219)) (-5 *2 (-1274))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (-12 (-5 *2 (-954 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-410 (-954 (-381)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-381))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-954 (-567))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-410 (-954 (-567)))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) - (-4 *5 (-1040 (-567))) (-14 *3 (-645 (-1179))) - (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1179)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) - (-14 *4 (-645 *2)) (-4 *5 (-390)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) - (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-567))))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-954 (-381))))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-567)))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-954 (-381)))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-567)))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-410 (-954 (-381)))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-954 (-567))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-954 (-381))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 (-567))))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-954 (-381))))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-954 (-567)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-954 (-381)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-317 (-567)))) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-317 (-381)))) (-4 *1 (-444)))) + (-2 (|:| -4386 *3) (|:| |gap| (-773)) (|:| -2152 (-783 *3)) + (|:| -3303 (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) + (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -2152 *1) (|:| -3303 *1))) + (-4 *1 (-1068 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-2 (|:| -4386 *1) (|:| |gap| (-773)) (|:| -2152 *1) (|:| -3303 *1))) + (-4 *1 (-1068 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -3904 (-773)))) + (-5 *1 (-783 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3904 (-773)))) + (-4 *1 (-1068 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-949 (-380))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) + (-4 *5 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-410 (-949 (-380)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) + (-4 *5 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-315 (-380))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) + (-4 *5 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-949 (-549))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) + (-4 *5 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-410 (-949 (-549)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) + (-4 *5 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-315 (-549))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) + (-4 *5 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 *2)) + (-14 *4 (-643 *2)) (-4 *5 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-315 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) + (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-691 (-410 (-949 (-549))))) (-4 *1 (-387)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-691 (-410 (-949 (-380))))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-949 (-549)))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-949 (-380)))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-315 (-549)))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-691 (-315 (-380)))) (-4 *1 (-387)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-549)))) (-4 *1 (-400)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-949 (-380)))) (-4 *1 (-400)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-549))) (-4 *1 (-400)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-380))) (-4 *1 (-400)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-549))) (-4 *1 (-400)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-315 (-380))) (-4 *1 (-400)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1269 (-410 (-949 (-549))))) (-4 *1 (-444)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1269 (-410 (-949 (-380))))) (-4 *1 (-444)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-949 (-549)))) (-4 *1 (-444)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-949 (-380)))) (-4 *1 (-444)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-315 (-549)))) (-4 *1 (-444)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1269 (-315 (-380)))) (-4 *1 (-444)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-352)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) + (-5 *2 (-1174 (-1174 *4))) (-5 *1 (-779 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) + (-14 *7 (-922)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *1 (-979 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1041 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) + (|partial| -3960 + (-12 (-5 *2 (-949 *3)) + (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-3746 (-4 *3 (-38 (-549)))) + (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) + (-12 (-5 *2 (-949 *3)) + (-12 (-3746 (-4 *3 (-548))) (-3746 (-4 *3 (-38 (-410 (-549))))) + (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) + (-12 (-5 *2 (-949 *3)) + (-12 (-3746 (-4 *3 (-994 (-549)))) (-4 *3 (-38 (-410 (-549)))) + (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))))) + ((*1 *1 *2) + (|partial| -3960 + (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) + (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) + (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) + (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) + (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-410 (-949 (-380)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1041 (-380))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) + (-4 *5 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 (-380))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-380))) + (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) + (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-410 (-949 (-549)))) (-5 *1 (-341 *3 *4 *5)) + (-4 *5 (-1041 (-549))) (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) + (-4 *5 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 (-549))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1041 (-549))) + (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1180)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 *2)) + (-14 *4 (-643 *2)) (-4 *5 (-390)))) + ((*1 *1 *2) + (-12 (-5 *2 (-315 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) + (-14 *3 (-643 (-1180))) (-14 *4 (-643 (-1180))))) + ((*1 *1 *2) (-12 (-5 *2 (-691 (-410 (-949 (-549))))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-691 (-410 (-949 (-380))))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-691 (-949 (-549)))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-691 (-949 (-380)))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-691 (-315 (-549)))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-691 (-315 (-380)))) (-4 *1 (-387)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-549)))) (-4 *1 (-400)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 (-949 (-380)))) (-4 *1 (-400)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 (-549))) (-4 *1 (-400)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 (-380))) (-4 *1 (-400)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-4 *1 (-400)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-4 *1 (-400)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 (-549))))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 (-410 (-949 (-380))))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 (-949 (-549)))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 (-949 (-380)))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 (-315 (-549)))) (-4 *1 (-444)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 (-315 (-380)))) (-4 *1 (-444)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| - (-2 (|:| |fn| (-317 (-225))) - (|:| -2031 (-645 (-1096 (-844 (-225))))) + (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-770)))) + (-5 *1 (-771)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-809)))) + (-5 *1 (-810)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) - (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) + (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) + (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) + (|:| |ub| (-643 (-844 (-225)))))) (|:| |lsa| - (-2 (|:| |lfn| (-645 (-317 (-225)))) - (|:| -2221 (-645 (-225))))))) - (-5 *1 (-842)))) + (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) + (-5 *1 (-843)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-645 (-317 (-225)))) + (-2 (|:| |pde| (-643 (-315 (-225)))) (|:| |constraints| - (-645 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-772)) (|:| |boundaryType| (-567)) - (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) + (-643 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) + (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) + (|:| |dFinish| (-691 (-225)))))) + (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) (|:| |tol| (-225)))) - (-5 *1 (-900)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-978 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (-2836 - (-12 (-5 *2 (-954 *3)) - (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) - (-1736 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851))) - (-12 (-5 *2 (-954 *3)) - (-12 (-1736 (-4 *3 (-548))) (-1736 (-4 *3 (-38 (-410 (-567))))) - (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851))) - (-12 (-5 *2 (-954 *3)) - (-12 (-1736 (-4 *3 (-994 (-567)))) (-4 *3 (-38 (-410 (-567)))) - (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) (-4 *4 (-794)) - (-4 *5 (-851))))) - ((*1 *1 *2) - (-2836 - (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) - (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) - (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) - ((*1 *1 *2) - (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851))))) -(((*1 *2) - (-12 (-4 *1 (-351)) - (-5 *2 (-645 (-2 (|:| -3661 (-567)) (|:| -2618 (-567)))))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-567)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-872 *4)) (-14 *4 *3) - (-5 *3 (-567)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5)) - (-5 *3 (-567)) (-4 *5 (-870 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-410 (-567))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) - (-4 *3 (-1245 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2504 (*2 (-1179)))) - (-4 *2 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1051)) - (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1269 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) - (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1245 *5)) - (-5 *2 (-690 *5))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-645 *3)) - (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1111 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 - (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) - (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) - (-14 *6 (-645 (-1179))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) - (-5 *2 - (-645 (-2 (|:| -2380 (-1175 *4)) (|:| -3237 (-645 (-954 *4)))))) - (-5 *1 (-1080 *4 *5)) (-5 *3 (-645 (-954 *4))) - (-14 *5 (-645 (-1179))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) - (-5 *2 - (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) - (-5 *1 (-1080 *5 *6)) (-5 *3 (-645 (-954 *5))) - (-14 *6 (-645 (-1179)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1179)) - (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) - (-5 *2 - (-2 (|:| -3906 (-410 (-954 *5))) (|:| |coeff| (-410 (-954 *5))))) - (-5 *1 (-573 *5)) (-5 *3 (-410 (-954 *5)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) -(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-923)) - (-5 *2 - (-3 (-1175 *4) - (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122))))))) - (-5 *1 (-348 *4)) (-4 *4 (-351))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-645 *4)) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-186)))) + (-5 *1 (-901)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *1 (-979 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1219)))) + ((*1 *1 *2) + (-3960 + (-12 (-5 *2 (-949 *3)) + (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-3746 (-4 *3 (-38 (-549)))) + (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) + (-12 (-5 *2 (-949 *3)) + (-12 (-3746 (-4 *3 (-548))) (-3746 (-4 *3 (-38 (-410 (-549))))) + (-4 *3 (-38 (-549))) (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))) + (-12 (-5 *2 (-949 *3)) + (-12 (-3746 (-4 *3 (-994 (-549)))) (-4 *3 (-38 (-410 (-549)))) + (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *1 (-1068 *3 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852))))) + ((*1 *1 *2) + (-3960 + (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) + (-12 (-3746 (-4 *3 (-38 (-410 (-549))))) (-4 *3 (-38 (-549))) + (-4 *5 (-616 (-1180)))) + (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852))) + (-12 (-5 *2 (-949 (-549))) (-4 *1 (-1068 *3 *4 *5)) + (-12 (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180)))) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852))))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 (-410 (-549)))) (-4 *1 (-1068 *3 *4 *5)) + (-4 *3 (-38 (-410 (-549)))) (-4 *5 (-616 (-1180))) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852))))) (((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-879 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-881 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-884 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) - ((*1 *1 *1 *1) (-4 *1 (-548))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) -(((*1 *2 *3) - (-12 (-4 *1 (-801)) - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-1037))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303))))) -(((*1 *1) (-5 *1 (-581)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) - (-4 *3 (-1102))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-1067 *3 *4 *2)) (-4 *2 (-851)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) - (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1260 *5)) (-4 *6 (-1245 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1261 *5 *6 *7)) (-4 *5 (-365)) - (-14 *6 (-1179)) (-14 *7 *5) (-5 *2 (-410 (-1242 *6 *5))) - (-5 *1 (-869 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1261 *5 *6 *7)) (-4 *5 (-365)) - (-14 *6 (-1179)) (-14 *7 *5) (-5 *2 (-410 (-1242 *6 *5))) - (-5 *1 (-869 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) - (-4 *2 (-365)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225)))) - ((*1 *1 *1 *1) - (-2836 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) - ((*1 *1 *1 *1) (-4 *1 (-365))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1102)) - (-4 *1 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-476))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-539))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-727) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-727) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)) (-4 *2 (-365)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-663 *2 *4 *3)) (-4 *2 (-718 *4)) - (-4 *3 (|SubsetCategory| (-727) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)) - (-4 *2 (|SubsetCategory| (-727) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365)) - (-4 *2 (-1051)) (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-772))) - (-14 *5 (-772)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)))) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-365)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1051)) (-4 *3 (-851)) - (-4 *4 (-794)) (-14 *6 (-645 *3)) - (-5 *1 (-1281 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-951 *2 *4 *3)) - (-14 *7 (-645 (-772))) (-14 *8 (-772)))) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1051)) - (-4 *3 (-847))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1245 *4))))) -(((*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))) - (-5 *2 (-1037)) (-5 *1 (-306))))) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1026 *3)) - (-4 *3 (-13 (-849) (-365) (-1024))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) - (-4 *3 (-1245 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1070 *2 *3)) (-4 *2 (-13 (-849) (-365))) - (-4 *3 (-1245 *2))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *2 (-1067 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) - (-4 *3 (-1073 *4 *5 *6 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1245 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1179))) (-5 *1 (-210)) - (-5 *3 (-1179)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1179))) - (-5 *1 (-268)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *2 (-645 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *2 (-645 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-214 *2)) - (-4 *2 - (-13 (-851) - (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) - (-15 -3841 ((-1274) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-21))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1161)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) + (-12 (-5 *2 - (-645 - (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) - (|:| |wcond| (-645 (-954 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *4)))))))))) - (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) - (-5 *1 (-1190 *6)) (-5 *5 (-645 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1102)))) - ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1102))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1219)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) - (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) - (-4 *8 (-1245 (-410 *7))) (-5 *2 (-588 *3)) - (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-214 *2)) - (-4 *2 - (-13 (-851) - (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) - (-15 -3841 ((-1274) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) - (-4 *2 (-1245 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-539))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-25))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1161) (-1184))) - (-5 *1 (-1184))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) - (-5 *2 (-645 (-645 (-645 (-772)))))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) + (-2 (|:| -3564 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-2 (|:| -3564 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1068 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef1| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-2 (|:| -3564 *1) (|:| |coef1| *1))) (-4 *1 (-1068 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3564 (-783 *3)) (|:| |coef2| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-2 (|:| -3564 *1) (|:| |coef2| *1))) (-4 *1 (-1068 *3 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-560)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-643 *1)) (-4 *1 (-1068 *3 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) + (-4 *5 (-852)) (-4 *3 (-560))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-1068 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) + (-4 *5 (-852)) (-4 *3 (-560))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-560))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-455)))) + ((*1 *1 *1 *1) (-4 *1 (-455))) + ((*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-549))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049)) - (-5 *3 (-567))))) -(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-410 (-567))) - (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) - (-4 *5 (-13 (-559) (-1040 (-567)))) (-5 *2 (-1175 (-410 (-567)))) - (-5 *1 (-436 *5 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) - (-5 *2 - (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) - (|:| |genIdeal| (-507 *4 *5 *6 *7)))) - (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1159 *3))) (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) - (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1051))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-365)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-453 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) - (-5 *2 - (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6)))) - (-5 *1 (-980 *6)) (-5 *3 (-690 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1870 *3))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) - (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) - (-4 *3 (-1245 (-410 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-1214 *2)) (-4 *2 (-976))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)) (-4 *2 (-365)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) - (-4 *2 (-657 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *1) (-4 *1 (-969)))) -(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-359 *3)) (-4 *3 (-351))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-788)) (-5 *2 (-1037)) - (-5 *3 - (-2 (|:| |fn| (-317 (-225))) - (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-788)) (-5 *2 (-1037)) - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1051))))) -(((*1 *1) (-5 *1 (-562)))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-772)) (-4 *5 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172)))) - ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) - (-4 *4 (-375 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1144 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1051))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) - (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *2 *3) - (-12 (-5 *2 (-421 (-1175 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2304 *4))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4423)) (-4 *4 (-365)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4423)) (-4 *4 (-559)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-4 *7 (-994 *4)) (-4 *8 (-375 *7)) - (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) - (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) - (-4 *10 (-688 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) + (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *2)) + (-4 *2 (-953 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) - (-5 *2 (-645 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-582))))) -(((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-867 *4 *5 *6 *7)) - (-4 *4 (-1051)) (-14 *5 (-645 (-1179))) (-14 *6 (-645 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-1051)) (-4 *5 (-851)) (-4 *6 (-794)) - (-14 *8 (-645 *5)) (-5 *2 (-1274)) - (-5 *1 (-1281 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-951 *4 *6 *5)) - (-14 *9 (-645 *3)) (-14 *10 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1179)) - (-4 *2 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-278 *5 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-1240 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *6 *4 *5)) (-5 *1 (-919 *4 *5 *6 *2)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) - ((*1 *1 *1) (-4 *1 (-303))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1008))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1262 *3 *2)) - (-4 *2 (-1260 *3))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1161)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) - (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1179))) (-4 *5 (-1051)) - (-5 *2 (-484 *4 *5)) (-5 *1 (-946 *4 *5))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) - (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-375 *5)))) + (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) - (-5 *1 (-694 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-4 *6 (-1245 *5)) - (-5 *2 (-2 (|:| -4178 *7) (|:| |rh| (-645 (-410 *6))))) - (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) - (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1238 *4 *5 *3)) - (-4 *3 (-1245 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1102)) - (-5 *1 (-679 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1102)) (-5 *1 (-683 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-5 *2 (-1274)) (-5 *1 (-1182)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) - (-5 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *2 (-1274)) - (-5 *1 (-1182)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1179)) - (-5 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) (-5 *2 (-1274)) - (-5 *1 (-1182))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) - (-5 *2 - (-3 (|:| |overq| (-1175 (-410 (-567)))) - (|:| |overan| (-1175 (-48))) (|:| -2595 (-112)))) - (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129))))) -(((*1 *2) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-105))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) - (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1037)) (-5 *1 (-757))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) + (-12 (-5 *3 (-643 (-1174 *7))) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) + (-5 *2 (-1174 *7)) (-5 *1 (-919 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-922))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-455)) (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-455))))) (((*1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1065))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292))) - ((*1 *1) (-5 *1 (-863))) - ((*1 *1) - (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) - (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1087))) - ((*1 *1) - (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34))))) - ((*1 *1) (-5 *1 (-1182))) ((*1 *1) (-5 *1 (-1183)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-793))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-559)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-455))))) (((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1028 *3)) (-4 *3 (-1219))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-748))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-954 (-567))))) - (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-752))))) -(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-559)))) - ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))) -(((*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-951 *5 *7 *6)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1179)))) - (-4 *7 (-794)) - (-5 *2 - (-645 - (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567)))))) - (-5 *1 (-926 *5 *6 *7 *8))))) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-455))))) (((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) - (-4 *3 (-166 *6)) (-4 (-954 *6) (-888 *5)) - (-4 *6 (-13 (-888 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-894 *4)) (-4 *1 (-888 *4)) - (-4 *4 (-1102)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) - (-4 *6 (-13 (-1102) (-1040 *3))) (-4 *3 (-888 *5)) - (-5 *1 (-933 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) - (-4 *3 (-13 (-433 *6) (-615 *4) (-888 *5) (-1040 (-613 $)))) - (-5 *4 (-894 *5)) (-4 *6 (-13 (-559) (-888 *5))) - (-5 *1 (-934 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 (-567) *3)) (-5 *4 (-894 (-567))) (-4 *3 (-548)) - (-5 *1 (-935 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1102)) - (-4 *6 (-13 (-1102) (-1040 (-613 $)) (-615 *4) (-888 *5))) - (-5 *4 (-894 *5)) (-5 *1 (-936 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-887 *5 *6 *3)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) - (-4 *6 (-888 *5)) (-4 *3 (-667 *6)) (-5 *1 (-937 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-894 *6) (-891 *6 *3))) - (-4 *8 (-851)) (-5 *2 (-891 *6 *3)) (-5 *4 (-894 *6)) - (-4 *6 (-1102)) (-4 *3 (-13 (-951 *9 *7 *8) (-615 *4))) - (-4 *7 (-794)) (-4 *9 (-13 (-1051) (-888 *6))) - (-5 *1 (-938 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) - (-4 *3 (-13 (-951 *8 *6 *7) (-615 *4))) (-5 *4 (-894 *5)) - (-4 *7 (-888 *5)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *8 (-13 (-1051) (-888 *5))) (-5 *1 (-938 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1102)) (-4 *3 (-994 *6)) - (-4 *6 (-13 (-559) (-888 *5) (-615 *4))) (-5 *4 (-894 *5)) - (-5 *1 (-941 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 (-1179))) (-5 *3 (-1179)) (-5 *4 (-894 *5)) - (-4 *5 (-1102)) (-5 *1 (-942 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-645 (-894 *7))) (-5 *5 (-1 *9 (-645 *9))) - (-5 *6 (-1 (-891 *7 *9) *9 (-894 *7) (-891 *7 *9))) (-4 *7 (-1102)) - (-4 *9 (-13 (-1051) (-615 (-894 *7)) (-1040 *8))) - (-5 *2 (-891 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1051)) - (-5 *1 (-943 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1004) (-1204))) - (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1004) (-1204))) - (-5 *1 (-601 *4 *5 *2))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-539))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) - (-5 *2 (-645 (-2 (|:| -1444 (-645 *3)) (|:| -3554 *5)))) - (-5 *1 (-181 *5 *3)) (-4 *3 (-1245 (-169 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-365) (-849))) - (-5 *2 (-645 (-2 (|:| -1444 (-645 *3)) (|:| -3554 *4)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1063 *4 *3)) - (-4 *3 (-1245 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-923)) (-4 *5 (-851)) - (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-421 *4)) (-4 *4 (-559))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-112)) - (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1179))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) - (-14 *5 (-645 (-1179))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567))))) - (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-548)))) - ((*1 *2 *1) (-12 (-4 *1 (-1223)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1196 *4 *5)) - (-4 *4 (-1102)) (-4 *5 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-863)))) - ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-964))))) -(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) - (-4 *8 (-951 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) - (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-112)) - (-5 *1 (-926 *5 *6 *7 *8))))) -(((*1 *2) - (-12 (-4 *3 (-1051)) (-5 *2 (-960 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1245 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) - (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1071 *7 *8 *9 *3 *4)) (-4 *4 (-1073 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1067 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) - (-4 *9 (-851)) (-4 *3 (-1067 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1147 *7 *8 *9 *3 *4)) (-4 *4 (-1111 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1067 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-923)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-923)) (-5 *1 (-157)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204))) - (-5 *1 (-227 *3)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-1114)) (-4 *2 (-1219)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-131)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-851)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) - (-4 *6 (-238 (-2498 *3) (-772))) - (-14 *7 - (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *6)) - (-2 (|:| -2188 *5) (|:| -2618 *6)))) - (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851)) - (-4 *2 (-951 *4 *6 (-865 *3))))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) - (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-539))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-685 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1051)) (-4 *2 (-375 *3)) - (-4 *4 (-375 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *2 (-375 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-721))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-559)) - (-5 *1 (-971 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060)))) - ((*1 *1 *1 *1) (-4 *1 (-1114))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *2 (-238 *3 *4)) - (-4 *5 (-238 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) - (-4 *2 (-951 *3 (-534 *4) *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-945 (-225))) (-5 *3 (-225)) (-5 *1 (-1215)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-727)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-4 *1 (-1267 *3)) (-4 *3 (-1219)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) - (|:| |polypart| *6))) - (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-982 *2)) (-4 *2 (-1051)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-842)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-841)))) - ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1037)) (-5 *1 (-841)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) - (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1037)) - (-5 *1 (-841)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) - (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1037)) (-5 *1 (-841)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1037)) - (-5 *1 (-841)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) - (-5 *2 (-1037)) (-5 *1 (-841))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-645 - (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) - (|:| |wcond| (-645 (-954 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1269 (-410 (-954 *5)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *5)))))))))) - (-5 *4 (-1161)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-951 *5 *7 *6)) - (-4 *6 (-13 (-851) (-615 (-1179)))) (-4 *7 (-794)) (-5 *2 (-567)) - (-5 *1 (-926 *5 *6 *7 *8))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1102)) - (-4 *2 (-1219))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1102)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1204)))) - ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-455))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1068 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *2 (-455))))) +(((*1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1) (-5 *1 (-1066)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-380)) (-5 *1 (-1066))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-380)) (-5 *1 (-1066))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-380)) (-5 *1 (-1066))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-1066)) (-5 *3 (-1162))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1066))))) +(((*1 *1) (-5 *1 (-1066)))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-1066))))) +(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1065)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1065))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) ((*1 *2 *1) - (-12 (-5 *2 (-1104 *3)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) - (-4 *6 (-1245 *5)) (-5 *2 (-1175 (-1175 *7))) - (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1245 *6))))) + (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1) (-12 (-5 *1 (-674 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) (-12 (-5 *1 (-679 *2)) (-4 *2 (-852)))) + ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) (((*1 *2) - (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-773)) (-5 *1 (-237 *3 *4 *5)) + (-4 *3 (-238 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)) (-5 *2 (-773)))) ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1242 *5 *4)) (-5 *1 (-1177 *4 *5 *6)) - (-4 *4 (-1051)) (-14 *5 (-1179)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1242 *5 *4)) (-5 *1 (-1261 *4 *5 *6)) - (-4 *4 (-1051)) (-14 *5 (-1179)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1159 (-567))) (-5 *1 (-1163 *4)) (-4 *4 (-1051)) - (-5 *3 (-567))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) - (-5 *2 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) - (-5 *1 (-348 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) - (-4 *1 (-1073 *4 *5 *6 *3))))) + (-12 (-4 *4 (-365)) (-5 *2 (-773)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) + ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1104)) (-5 *2 (-773)))) + ((*1 *2) + (-12 (-4 *4 (-1104)) (-5 *2 (-773)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-773)) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) + (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-773)) (-5 *1 (-725 *3 *4 *5)) + (-4 *3 (-726 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-408 *4) *4)) (-4 *4 (-560)) (-5 *2 (-408 *4)) + (-5 *1 (-422 *4)))) + ((*1 *1 *1) (-5 *1 (-928))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *1 *1) (-5 *1 (-930))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) + (-5 *4 (-410 (-549))) (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) + (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) + (-5 *4 (-410 (-549))) (-5 *1 (-1025 *3)) (-4 *3 (-1245 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) + (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-850) (-365))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-1245 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) - (-5 *2 (-112))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-192))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-410 *5)) (-4 *4 (-1223)) (-4 *5 (-1245 *4)) - (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1245 *3)))) + (-12 (-4 *4 (-13 (-850) (-365))) (-5 *2 (-112)) (-5 *1 (-1064 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-613 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-643 (-613 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1174 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 (-410 (-567)))) (-5 *2 (-410 (-567))) - (-5 *1 (-190)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1179))) - (-5 *4 (-1269 (-317 (-225)))) (-5 *1 (-205)))) + (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1245 (-168 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1102)) - (-4 *3 (-1219)) (-5 *1 (-295 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-310 *2)) (-4 *2 (-1102)) (-4 *2 (-1219)) - (-5 *1 (-295 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 (-645 *1)))) - (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-1 *1 (-645 *1)))) - (-4 *1 (-303)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1102)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1102)))) + (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) + ((*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) + (-4 *3 (-308)) (-4 *5 (-13 (-413 *2 *4) (-1041 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-418 *3 *2 *4 *5 *6)) + (-4 *3 (-308)) (-4 *5 (-413 *2 *4)) (-14 *6 (-1269 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1181 (-410 (-567)))) - (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5)) - (-4 *4 (-851)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) - (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-1051)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-772))) - (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) - (-4 *5 (-1051)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-645 (-772))) - (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1102)) - (-4 *5 (-1051)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1179)) - (-4 *1 (-433 *5)) (-4 *5 (-1102)) (-4 *5 (-615 (-539))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1179)) (-4 *1 (-433 *4)) (-4 *4 (-1102)) - (-4 *4 (-615 (-539))))) - ((*1 *1 *1) - (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-615 (-539))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-1179))) (-4 *1 (-433 *3)) (-4 *3 (-1102)) - (-4 *3 (-615 (-539))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) - (-4 *3 (-615 (-539))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5)) - (-4 *4 (-1102)) (-4 *5 (-1219)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1179)) (-4 *4 (-559)) - (-5 *1 (-1045 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-645 (-1179))) (-5 *4 (-645 (-410 (-954 *5)))) - (-5 *2 (-410 (-954 *5))) (-4 *5 (-559)) (-5 *1 (-1045 *5)))) + (-12 (-5 *4 (-922)) (-4 *5 (-1052)) + (-4 *2 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))) + (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-613 (-498)))) (-5 *1 (-498)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-5 *2 (-410 (-954 *4))) - (-4 *4 (-559)) (-5 *1 (-1045 *4)))) + (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-643 (-613 (-498)))) (-5 *1 (-498)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) (-5 *2 (-410 (-954 *4))) - (-4 *4 (-559)) (-5 *1 (-1045 *4)))) + (-12 (-5 *2 (-1174 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1159 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-381)) (-5 *1 (-1065))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) - (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582))))) + (-12 (-5 *2 (-1269 *4)) (-5 *3 (-922)) (-4 *4 (-352)) (-5 *1 (-531 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-726 *4 *2)) (-4 *2 (-1245 *4)) + (-5 *1 (-777 *4 *2 *5 *3)) (-4 *3 (-1245 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172)))) + ((*1 *1 *1) (-4 *1 (-1063)))) +(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-548)))) + ((*1 *1 *1) (-4 *1 (-1063)))) +(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-548)))) + ((*1 *1 *1) (-4 *1 (-1063)))) +(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-4 *1 (-1063)) (-5 *2 (-549))))) +(((*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-490)))) + ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560)) (-4 *2 (-308)))) + ((*1 *2 *1) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549)))) + ((*1 *1 *1) (-4 *1 (-1063)))) +(((*1 *1 *1) (-4 *1 (-1063)))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-141))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-738 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102)))) - ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1102))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1219)) - (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *6 *7 *2)) (-4 *6 (-1051)) - (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) - (-5 *1 (-1112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) - (-5 *1 (-176 *3))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-922))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *7 (-1245 *5)) (-4 *4 (-725 *5 *7)) - (-5 *2 (-2 (|:| -2434 (-690 *6)) (|:| |vec| (-1269 *5)))) - (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4))))) + (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-773)) (-5 *1 (-237 *3 *4 *5)) + (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1104)) (-5 *2 (-773)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) + ((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-547 *3)) (-4 *3 (-548)))) + ((*1 *2) (-12 (-4 *1 (-765)) (-5 *2 (-773)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4)))) + ((*1 *2) + (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-773)) (-5 *1 (-1000 *3 *4)) (-4 *3 (-1001 *4)))) + ((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1014 *3)) (-4 *3 (-1015)))) + ((*1 *2) (-12 (-4 *1 (-1052)) (-5 *2 (-773)))) + ((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1062 *3)) (-4 *3 (-1063))))) +(((*1 *1 *2) + (-12 (-5 *2 (-691 *5)) (-4 *5 (-1052)) (-5 *1 (-1057 *3 *4 *5)) + (-14 *3 (-773)) (-14 *4 (-773))))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1052)) (-4 *1 (-688 *3 *4 *5)) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-865)))) (-5 *1 (-865)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1145 *3 *4)) (-5 *1 (-996 *3 *4)) (-14 *3 (-922)) + (-4 *4 (-365)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 (-643 *5))) (-4 *5 (-1052)) (-4 *1 (-1056 *3 *4 *5 *6 *7)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-1179)) (-5 *1 (-539)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1179)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-645 (-1179))) (-5 *2 (-1179)) (-5 *1 (-705 *3)) - (-4 *3 (-615 (-539)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 (-1269 (-567)))) (-5 *3 (-923)) (-5 *1 (-469))))) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) - (-4 *3 (-13 (-1204) (-29 *5)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1102)) (-5 *2 (-772)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) - (-4 *4 (-1102)) (-14 *5 *2)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-112)) (-5 *1 (-830))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-1269 *6)) (-5 *1 (-338 *3 *4 *5 *6)) - (-4 *6 (-344 *3 *4 *5))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567))))) - (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) - (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1040 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) - (-4 *3 (-13 (-433 *4) (-1004)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1161)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1161)) (-5 *1 (-97))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) - (-5 *2 (-1037)) (-5 *1 (-757))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-967))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1161) (-775))) (-5 *1 (-114))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1179)) (-4 *4 (-1051)) (-4 *4 (-1102)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2618 (-567)))) - (-4 *1 (-433 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1051)) (-4 *4 (-1102)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2618 (-567)))) - (-4 *1 (-433 *4)))) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1114)) (-4 *3 (-1102)) - (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2618 (-567)))) - (-4 *1 (-433 *3)))) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -2618 (-772)))) - (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-549)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-951 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -2618 (-772)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) - (-4 *7 (-951 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -2618 (-567)))) - (-5 *1 (-952 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) - (-15 -4306 (*7 $)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) - ((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) - ((*1 *2 *2) (-12 (-5 *2 (-923)) (|has| *1 (-6 -4413)) (-4 *1 (-407)))) - ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-923)))) - ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1159 (-567)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) - (-5 *1 (-333))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-4 *3 (-1245 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) - (-4 *5 (-657 (-410 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-410 *5)) - (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-1245 *4)) - (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *8 (-1067 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-645 *8)) - (|:| |towers| (-645 (-1029 *5 *6 *7 *8))))) - (-5 *1 (-1029 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *8 (-1067 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-645 *8)) - (|:| |towers| (-645 (-1148 *5 *6 *7 *8))))) - (-5 *1 (-1148 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) - (-4 *3 (-13 (-1204) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-4 *5 (-13 (-559) (-1040 (-567)) (-147))) - (-5 *2 (-588 (-410 (-954 *5)))) (-5 *1 (-573 *5)) - (-5 *3 (-410 (-954 *5)))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1051)) (-4 *3 (-365)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) - (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-762)))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-1175 *4)) - (-4 *4 (-13 (-433 *7) (-27) (-1204))) - (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) - (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1175 *4))) - (-4 *4 (-13 (-433 *7) (-27) (-1204))) - (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) - (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1106))) (-5 *1 (-292))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) - (-4 *2 (-172))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) - (-4 *4 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) - (-4 *4 (-1245 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) - (-4 *3 (-1245 *2)))) - ((*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1051)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-902 *4)) - (-4 *4 (-1102)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-902 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *1 (-902 *3)) (-4 *3 (-1102)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1102))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-645 *1)) (-4 *1 (-1067 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-4 *5 (-365)) (-5 *2 (-1159 (-1159 (-954 *5)))) - (-5 *1 (-1277 *5)) (-5 *4 (-1159 (-954 *5)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-52)) (-5 *1 (-894 *4)) - (-4 *4 (-1102))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-308)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-91 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) - (-5 *1 (-1178))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1051)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) - (-4 *3 (-1245 *4)))) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-549))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-549)))) ((*1 *2 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) -(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711))))) -(((*1 *2 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051)))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-549))))) (((*1 *2 *1) - (-12 (-5 *2 (-945 *4)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-945 (-225)))) (-5 *1 (-1270))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1122)) (-4 *4 (-351)) - (-5 *1 (-531 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1167 *4 *5)) - (-14 *4 (-923)) (-4 *5 (-1051))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-549)))) ((*1 *2 *1) - (-12 (-5 *2 (-1269 (-3 (-471) "undefined"))) (-5 *1 (-1270))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) - (-5 *1 (-1178))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1029 *5 *6 *7 *8))) (-5 *1 (-1029 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-645 (-1148 *5 *6 *7 *8))) (-5 *1 (-1148 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-973)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *1 *2) - (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) - (-4 *4 (-172))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1205 *3)) (-4 *3 (-1102))))) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-549))))) (((*1 *2 *1) - (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) - (-4 *3 (-1102))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-560 *6 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1274)) (-5 *1 (-864))))) -(((*1 *1 *1) (-5 *1 (-1178))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) - (-5 *1 (-1178))))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-433 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1094 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-794)) (-4 *2 (-951 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) - (-4 *4 (-455)) (-4 *6 (-851))))) -(((*1 *2) - (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1161)) (-5 *2 (-645 (-1184))) (-5 *1 (-882))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-928))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1175 (-1175 *4)))) - (-5 *1 (-1217 *4)) (-5 *3 (-1175 (-1175 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) - (-4 *6 (-1245 *5)) (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-571 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) - (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1260 *5)) (-5 *2 (-645 *6)) - (-5 *1 (-1262 *5 *6))))) -(((*1 *1) (-5 *1 (-1087)))) -(((*1 *2) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-645 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-794)) (-4 *6 (-951 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) - (-5 *1 (-452 *4 *3 *5 *6))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) - (-4 *4 (-794)) (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1121)))) - ((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) - (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) - (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) - (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) - (-5 *2 (-1269 (-410 (-567)))) (-5 *1 (-1296 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1102) (-1040 *5))) - (-4 *5 (-888 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-933 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-549)))) ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) - (-14 *4 (-567))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) - (-4 *4 (-13 (-1102) (-34)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-567)) (-14 *4 (-772))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) - (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *5)) - (-4 *5 (-1245 (-410 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274)) - (-5 *1 (-452 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) - (-5 *2 (-690 *6)) (-5 *1 (-1031 *6)) (-4 *6 (-365)) (-4 *6 (-1051)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1031 *4)) - (-4 *4 (-365)) (-4 *4 (-1051)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) - (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-1051))))) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-549))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-773)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-773))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-773)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-5 *2 (-773))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-374 *2)) + (-4 *5 (-374 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-773)) (-4 *2 (-1104)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1219)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) + (-4 *7 (-238 *4 *2)) (-4 *2 (-1052))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) - (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + (-12 (-5 *3 (-549)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) + (-4 *2 (-374 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) - (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-951 *6 *5 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1218))) (-5 *3 (-1218)) (-5 *1 (-682))))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-532)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532))))) + (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *6 *2 *7)) (-4 *6 (-1052)) + (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552))))) -(((*1 *2 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-410 *6)) (-4 *5 (-1223)) (-4 *6 (-1245 *5)) - (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *3) (|:| |radicand| *6))) - (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1245 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-112))))) + (-12 (-5 *3 (-549)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) + (-4 *2 (-374 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-1056 *4 *5 *6 *7 *2)) (-4 *6 (-1052)) + (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-1040 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-433 *3)))) + (-12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-4 *7 (-994 *4)) + (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)) (-4 *2 (-308)))) + ((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1056 *2 *3 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-238 *3 *4)) + (-4 *6 (-238 *2 *4)) (-4 *4 (-308))))) +(((*1 *2 *1) + (-12 (-5 *2 (-773)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) (-14 *4 *2) + (-4 *5 (-172)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1175 *4)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1051)) (-4 *1 (-303)))) - ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1175 *3)))) - ((*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) + (-12 (-4 *4 (-172)) (-5 *2 (-922)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-922)))) + ((*1 *2) + (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-922)))) + ((*1 *2 *3) + (-12 (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) + (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) + (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-773)) + (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-773)) + (-5 *1 (-670 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) - (-4 *2 (-1245 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-421 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-1051)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6))))) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-773)))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-5 *2 (-773)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-773))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1049))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) - (-4 *3 (-1245 *4)) (-5 *2 (-567)))) + (-12 (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) (-5 *2 (-773)) + (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-773)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-559) (-1040 *2) (-640 *2) (-455))) - (-5 *2 (-567)) (-5 *1 (-1118 *4 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-844 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) - (-5 *1 (-1118 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-1161)) - (-4 *6 (-13 (-559) (-1040 *2) (-640 *2) (-455))) (-5 *2 (-567)) - (-5 *1 (-1118 *6 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))))) + (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-5 *2 (-773)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-773))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4426)) (-4 *4 (-365)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-5 *2 (-643 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-455)) (-5 *2 (-567)) - (-5 *1 (-1119 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-844 (-410 (-954 *6)))) - (-5 *3 (-410 (-954 *6))) (-4 *6 (-455)) (-5 *2 (-567)) - (-5 *1 (-1119 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-410 (-954 *6))) (-5 *4 (-1179)) - (-5 *5 (-1161)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1119 *6)))) + (-12 (|has| *9 (-6 -4426)) (-4 *4 (-560)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-4 *7 (-994 *4)) (-4 *8 (-374 *7)) (-4 *9 (-374 *7)) (-5 *2 (-643 *6)) + (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) + (-4 *10 (-688 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-4 *3 (-560)) (-5 *2 (-643 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1201 *3)) (-4 *3 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1179)) (-4 *1 (-27)) - (-5 *2 (-645 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *2 (-645 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1179))) - (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-1159 (-225))) (-5 *1 (-301))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) + (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-5 *2 (-643 *6)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1056 *3 *4 *5 *6 *7)) (-4 *5 (-1052)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5)) (-4 *5 (-560)) (-5 *2 (-643 *7))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-538))) ((*1 *1) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1060)))) + ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) + ((*1 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-1060))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1238 *4 *5)) (-5 *3 (-643 *5)) (-14 *4 (-1180)) (-4 *5 (-365)) + (-5 *1 (-925 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1219)) (-5 *2 (-772))))) + (-12 (-5 *3 (-643 *5)) (-4 *5 (-365)) (-5 *2 (-1174 *5)) (-5 *1 (-925 *4 *5)) + (-14 *4 (-1180)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-643 *6)) (-5 *4 (-773)) (-4 *6 (-365)) (-5 *2 (-410 (-949 *6))) + (-5 *1 (-1053 *5 *6)) (-14 *5 (-1180))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1050))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) - (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) - (-4 *2 (-1245 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1179)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-375 *2)) (-4 *2 (-1219)) - (-4 *2 (-851)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4423)) - (-4 *1 (-375 *3)) (-4 *3 (-1219))))) -(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-157))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-1095 *3)) (-4 *3 (-1219))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1102))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) - (-4 *7 (-851)) (-4 *8 (-1051)) (-4 *9 (-951 *8 *6 *7)) - (-4 *6 (-794)) (-5 *2 (-1175 *8)) (-5 *1 (-322 *6 *7 *8 *9))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-954 *4)) (-4 *4 (-1051)) (-4 *4 (-615 *2)) - (-5 *2 (-381)) (-5 *1 (-786 *4)))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) + ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-549))) (-5 *1 (-1050)) + (-5 *3 (-549))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1100 *4)) (-4 *4 (-1104)) (-5 *2 (-1 *4)) (-5 *1 (-1020 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380)))) + ((*1 *2 *3) (-12 (-5 *3 (-1092 (-549))) (-5 *2 (-1 (-549))) (-5 *1 (-1050))))) +(((*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-157))) ((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-408 (-949 *4)))) + (-5 *1 (-1046 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1 (-380))) (-5 *1 (-1044))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1180)) (-14 *5 *3) + (-5 *1 (-320 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-380))) (-5 *1 (-1044)) (-5 *3 (-380))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-380)) (-5 *1 (-1044))))) +(((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044))))) +(((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044))))) +(((*1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-1044))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1174 (-410 (-1174 *2)))) (-5 *4 (-613 *2)) + (-4 *2 (-13 (-424 *5) (-27) (-1205))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *1 (-564 *5 *2 *6)) (-4 *6 (-1104)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1174 *1)) (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) + (-4 *5 (-795)) (-4 *3 (-852)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1174 *4)) (-4 *4 (-1052)) (-4 *1 (-953 *4 *5 *3)) + (-4 *5 (-795)) (-4 *3 (-852)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-954 *5)) (-5 *4 (-923)) (-4 *5 (-1051)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) - (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) + (-12 (-5 *3 (-410 (-1174 *2))) (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) + (-4 *2 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) + (-5 *1 (-954 *5 *4 *6 *7 *2)) (-4 *7 (-953 *6 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) - (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) + (-12 (-5 *3 (-410 (-1174 (-410 (-949 *5))))) (-5 *4 (-1180)) + (-5 *2 (-410 (-949 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-560))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-613 *1)) (-4 *1 (-424 *4)) (-4 *4 (-1104)) (-4 *4 (-560)) + (-5 *2 (-410 (-1174 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1205))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 (-1174 (-410 (-1174 *3)))) (-5 *1 (-564 *6 *3 *7)) (-5 *5 (-1174 *3)) + (-4 *7 (-1104)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-923)) (-4 *5 (-559)) - (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) - (-5 *1 (-786 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-14 *5 (-645 (-1179))) (-5 *2 (-645 (-645 (-1026 (-410 *4))))) - (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-645 (-1026 (-410 *5))))) (-5 *1 (-1295 *5 *6 *7)) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-954 *4))) - (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-645 (-1026 (-410 *4))))) (-5 *1 (-1295 *4 *5 *6)) - (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-14 *5 (-645 (-1179))) - (-5 *2 - (-645 (-2 (|:| -2380 (-1175 *4)) (|:| -3237 (-645 (-954 *4)))))) - (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 - (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) - (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 - (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) - (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) + (-12 (-5 *4 (-1266 *5)) (-14 *5 (-1180)) (-4 *6 (-1052)) + (-5 *2 (-1238 *5 (-949 *6))) (-5 *1 (-951 *5 *6)) (-5 *3 (-949 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-1174 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-5 *2 (-1174 *1)) + (-4 *1 (-953 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 - (-645 (-2 (|:| -2380 (-1175 *5)) (|:| -3237 (-645 (-954 *5)))))) - (-5 *1 (-1295 *5 *6 *7)) (-5 *3 (-645 (-954 *5))) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 - (-645 (-2 (|:| -2380 (-1175 *4)) (|:| -3237 (-645 (-954 *4)))))) - (-5 *1 (-1295 *4 *5 *6)) (-5 *3 (-645 (-954 *4))) - (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179)))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-965 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) - (-4 *3 (-1051)) (-4 *2 (-793)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1175 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-973)) (-4 *2 (-131)) (-5 *1 (-1181 *3)) (-4 *3 (-559)) - (-4 *3 (-1051)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1242 *4 *3)) (-14 *4 (-1179)) - (-4 *3 (-1051))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 (-317 (-225)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) - (-5 *1 (-205))))) -(((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1271)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *3 (-902 *6)) - (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) - (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4422))))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102))))) -(((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) - (-5 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) - (-5 *1 (-1110 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-559)) (-4 *2 (-951 *3 *5 *4)) - (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-954 *6))) (-4 *5 (-794)) - (-4 *4 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)))))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) - (-14 *5 (-645 (-1179))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) - (-4 *6 (-455)))) + (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *5 *4)) + (-5 *2 (-410 (-1174 *3))) (-5 *1 (-954 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1174 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) + (-4 *7 (-953 *6 *5 *4)) (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-1052)) + (-5 *1 (-954 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) - (-14 *5 (-645 (-1179))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) - (-4 *6 (-455))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1179)) (-5 *6 (-645 (-613 *3))) - (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *7))) - (-4 *7 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) - (-5 *1 (-560 *7 *3))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1175 *9))) - (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) - (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-951 *9 *10 *11)) - (-4 *10 (-794)) (-5 *2 (-645 (-1175 *12))) - (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1175 *12))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) - (-5 *1 (-1178))))) + (-12 (-5 *4 (-1180)) (-4 *5 (-560)) (-5 *2 (-410 (-1174 (-410 (-949 *5))))) + (-5 *1 (-1043 *5)) (-5 *3 (-410 (-949 *5)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) + (|partial| -12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) + (-4 *2 (-852)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-795)) (-4 *5 (-1052)) (-4 *6 (-953 *5 *4 *2)) + (-4 *2 (-852)) (-5 *1 (-954 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *6)) (-15 -3399 (*6 $)) (-15 -3398 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-1180)) + (-5 *1 (-1043 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2 *3) (-12 (-5 *3 (-973)) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1137))) (-5 *1 (-1068))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) (-4 *1 (-285))) + (-12 (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) + (-5 *2 (-643 (-1180))) (-5 *1 (-268)))) ((*1 *2 *3) - (-12 (-5 *3 (-421 *4)) (-4 *4 (-559)) - (-5 *2 (-645 (-2 (|:| -1344 (-772)) (|:| |logand| *4)))) - (-5 *1 (-321 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) + (-12 (-5 *3 (-1174 *7)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1052)) (-5 *2 (-643 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) - (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) - (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-308)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) - (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-450 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-1161)) (-4 *7 (-951 *4 *5 *6)) - (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-450 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-235 *3)))) - ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-1102)) (-4 *7 (-902 *6)) - (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) - (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4422))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) - (-4 *2 - (-13 (-405) - (-10 -7 (-15 -2504 (*2 *4)) (-15 -2667 ((-923) *2)) - (-15 -4374 ((-1269 *2) (-923))) (-15 -1620 (*2 *2))))) - (-5 *1 (-358 *2 *4))))) -(((*1 *1) - (-12 (-4 *1 (-407)) (-1736 (|has| *1 (-6 -4413))) - (-1736 (|has| *1 (-6 -4405))))) - ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))) - ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851)))) - ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851)))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) - (-5 *1 (-1178))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1175 *3) (-1175 *3))) - (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) - (-5 *1 (-554 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264))))) -(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-991)))) + (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-390)))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-5 *2 (-643 (-1180))))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-4 *4 (-1219)) (-5 *2 (-1179)) (-5 *1 (-1059 *3 *4)) - (-4 *3 (-1095 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1094 *3)) (-4 *3 (-1219)))) + (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-643 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) (-4 *7 (-953 *6 *4 *5)) + (-5 *2 (-643 *5)) (-5 *1 (-954 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) - (-5 *2 (-1179)))) - ((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1265 *3)) (-14 *3 *2)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-567))))) -(((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-5 *2 (-112))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-331))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1004) (-1204))) - (-5 *1 (-601 *4 *2 *3)) - (-4 *3 (-13 (-433 (-169 *4)) (-1004) (-1204)))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) - (-5 *1 (-1178))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1175 *3)))) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *5 (-852)) + (-5 *2 (-643 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) - (-5 *2 (-1175 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-222 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-255 *3)))) - ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) - (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-690 *4)) - (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) - (-5 *2 (-690 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-926 *4 *5 *6 *7)))) + (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-112)) - (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) - (-5 *1 (-1178))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-753))))) + (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-5 *2 (-643 (-1180))) + (-5 *1 (-1043 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) - (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1040 (-567)))) - (-4 *8 (-1245 (-410 *7))) (-5 *2 (-588 *3)) - (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *2 (-421 (-1175 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1175 *1)) - (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))) - ((*1 *2 *3) - (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) - (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1179))) (-5 *1 (-632 *5 *6))))) + (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) + (-4 *6 (-13 (-560) (-1041 *5))) (-4 *5 (-560)) + (-5 *2 (-643 (-643 (-294 (-410 (-949 *6)))))) (-5 *1 (-1042 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1038))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1038))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) - (-4 *8 (-951 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1269 (-410 *8)) "failed")) - (|:| -4374 (-645 (-1269 (-410 *8)))))) - (-5 *1 (-670 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-112)))) + (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1205))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 (-1174 (-410 (-1174 *6)))) (-5 *1 (-564 *5 *6 *7)) (-5 *3 (-1174 *6)) + (-4 *7 (-1104)))) + ((*1 *2 *1) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1052)))) + ((*1 *2 *1) (-12 (-4 *1 (-726 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1174 *11)) (-5 *6 (-643 *10)) (-5 *7 (-643 (-773))) + (-5 *8 (-643 *11)) (-4 *10 (-852)) (-4 *11 (-308)) (-4 *9 (-795)) + (-4 *5 (-953 *11 *9 *10)) (-5 *2 (-643 (-1174 *5))) + (-5 *1 (-744 *9 *10 *11 *5)) (-5 *3 (-1174 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-5 *2 (-1161))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) - (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1192 (-923) (-772)))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *3)) (-5 *1 (-1130 *4 *3)) (-4 *4 (-1245 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-585))))) + (-12 (-4 *2 (-953 *3 *4 *5)) (-5 *1 (-1037 *3 *4 *5 *2 *6)) (-4 *3 (-365)) + (-4 *4 (-795)) (-4 *5 (-852)) (-14 *6 (-643 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-922)) (-5 *1 (-1035 *2)) + (-4 *2 (-13 (-1104) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-922)) (-5 *1 (-1034 *2)) + (-4 *2 (-13 (-1104) (-10 -8 (-15 -4271 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *1)) (-5 *4 (-1269 *1)) (-4 *1 (-640 *5)) - (-4 *5 (-1051)) - (-5 *2 (-2 (|:| -2434 (-690 *5)) (|:| |vec| (-1269 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1051)) - (-5 *2 (-690 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) - (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) - (-4 *3 (-344 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) + (-12 (-5 *3 (-643 (-1269 *5))) (-5 *4 (-549)) (-5 *2 (-1269 *5)) + (-5 *1 (-1033 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-549)) (-4 *6 (-365)) (-4 *6 (-370)) + (-4 *6 (-1052)) (-5 *2 (-643 (-643 (-691 *6)))) (-5 *1 (-1033 *6)) + (-5 *3 (-643 (-691 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) + (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1052)) + (-5 *2 (-643 (-643 (-691 *4)))) (-5 *1 (-1033 *4)) + (-5 *3 (-643 (-691 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-410 (-567))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) + (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)) + (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) + (-5 *3 (-643 (-691 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) - (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) - (-4 *6 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-567))) - (-4 *7 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-567))) - (-4 *3 (-13 (-27) (-1204) (-433 *7))) - (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) - (-5 *5 (-1236 (-410 (-567)))) (-5 *6 (-410 (-567))) - (-4 *8 (-13 (-27) (-1204) (-433 *7))) - (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-410 (-567)))) - (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *8))) - (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) - (-4 *3 (-1051)) (-5 *1 (-597 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-598 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *3)))) - (-4 *3 (-1051)) (-4 *1 (-1229 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-772)) - (-5 *3 (-1159 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) - (-4 *4 (-1051)) (-4 *1 (-1250 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-4 *1 (-1260 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1159 (-2 (|:| |k| (-772)) (|:| |c| *3)))) - (-4 *3 (-1051)) (-4 *1 (-1260 *3))))) + (-12 (-5 *4 (-922)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1052)) + (-5 *2 (-643 (-643 (-691 *5)))) (-5 *1 (-1033 *5)) + (-5 *3 (-643 (-691 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1220 *2)) - (-4 *2 (-1102)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-1102)) (-4 *2 (-851)) - (-5 *1 (-1220 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1053 *3)) (-4 *3 (-1060)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) - (-4 *3 (-1245 *4)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) - (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *2)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-645 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567)))))) - (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1022 *4)) - (-4 *4 (-1245 (-567)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-410 (-954 (-567))))) (-5 *4 (-645 (-1179))) - (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) - (-4 *5 (-13 (-849) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-849) (-365)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1037)) (-5 *1 (-754))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1008))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) - ((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) - (-5 *1 (-1190 *4)) (-4 *4 (-851))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-559)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -4374 (-645 *1)))) - (-4 *1 (-369 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-456 *3 *4 *5 *6)) - (|:| -4374 (-645 (-456 *3 *4 *5 *6))))) - (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1102)) (-5 *1 (-966 *3 *2)) (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-923)))) + (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-549)) (-4 *5 (-365)) (-4 *5 (-1052)) + (-5 *2 (-112)) (-5 *1 (-1033 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-923)) - (-5 *1 (-531 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1274)) - (-5 *1 (-1220 *4)))) + (-12 (-5 *3 (-643 (-691 *4))) (-4 *4 (-365)) (-4 *4 (-1052)) (-5 *2 (-112)) + (-5 *1 (-1033 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-643 (-691 *6))) (-5 *4 (-112)) (-5 *5 (-549)) (-5 *2 (-691 *6)) + (-5 *1 (-1033 *6)) (-4 *6 (-365)) (-4 *6 (-1052)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-5 *2 (-1274)) - (-5 *1 (-1220 *4))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1179)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-645 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3906 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1204) (-27) (-433 *8))) - (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -4347 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1015 *8 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-969)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) - (-5 *1 (-807 *5 *6 *7 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) + (-12 (-5 *3 (-643 (-691 *4))) (-5 *2 (-691 *4)) (-5 *1 (-1033 *4)) + (-4 *4 (-365)) (-4 *4 (-1052)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-549)) (-5 *2 (-691 *5)) + (-5 *1 (-1033 *5)) (-4 *5 (-365)) (-4 *5 (-1052))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) - (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *5)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *2 (-1274)) - (-5 *1 (-471)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1051)) (-4 *1 (-982 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-945 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-945 *3)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215)) (-5 *3 (-225))))) + (-12 (-5 *3 (-643 (-691 *5))) (-5 *4 (-1269 *5)) (-4 *5 (-308)) + (-4 *5 (-1052)) (-5 *2 (-691 *5)) (-5 *1 (-1033 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-539))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-1051)) - (-5 *1 (-1163 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-567)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1051)) - (-14 *4 (-1179)) (-14 *5 *3)))) + (-12 (-5 *3 (-643 (-691 *5))) (-4 *5 (-308)) (-4 *5 (-1052)) + (-5 *2 (-1269 (-1269 *5))) (-5 *1 (-1033 *5)) (-5 *4 (-1269 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-643 (-691 *4))) (-5 *2 (-691 *4)) (-4 *4 (-1052)) + (-5 *1 (-1033 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1126 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))) + (-12 (-5 *3 (-1269 (-1269 *4))) (-4 *4 (-1052)) (-5 *2 (-691 *4)) + (-5 *1 (-1033 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-241))))) -(((*1 *1) (-5 *1 (-509)))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) - (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) - (-5 *2 (-1037)) (-5 *1 (-755))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1037)) (-5 *3 (-1179)) (-5 *1 (-268))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-365)) (-4 *3 (-1051)) - (-5 *1 (-1163 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051))))) -(((*1 *2 *1) - (-12 (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-978 *4 *5 *6 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) - (-5 *1 (-907 *3)) (-4 *3 (-1102))))) + (-12 (-5 *3 (-905 (-549))) (-5 *4 (-549)) (-5 *2 (-691 *4)) + (-5 *1 (-1032 *5)) (-4 *5 (-1052)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-549))) (-5 *2 (-691 (-549))) (-5 *1 (-1032 *4)) + (-4 *4 (-1052)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-905 (-549)))) (-5 *4 (-549)) (-5 *2 (-643 (-691 *4))) + (-5 *1 (-1032 *5)) (-4 *5 (-1052)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-643 (-549)))) (-5 *2 (-643 (-691 (-549)))) + (-5 *1 (-1032 *4)) (-4 *4 (-1052))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-643 (-691 *3))) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-1032 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-643 (-691 *3))) (-4 *3 (-1052)) (-5 *1 (-1032 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-691 *4)) (-5 *3 (-922)) (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-643 (-691 *4))) (-5 *3 (-922)) (-4 *4 (-1052)) + (-5 *1 (-1032 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1269 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) - (-5 *2 (-1269 *4)) (-5 *1 (-639 *4 *5))))) + (-12 (-5 *3 (-773)) (-5 *2 (-691 (-949 *4))) (-5 *1 (-1032 *4)) + (-4 *4 (-1052))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-691 *4)) (-5 *3 (-922)) (|has| *4 (-6 (-4427 "*"))) + (-4 *4 (-1052)) (-5 *1 (-1032 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-643 (-691 *4))) (-5 *3 (-922)) (|has| *4 (-6 (-4427 "*"))) + (-4 *4 (-1052)) (-5 *1 (-1032 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567))))) - (-14 *4 (-645 (-1179))) (-14 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-508 *4 *5))))) + (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-691 (-315 (-549))))) + (-5 *1 (-1031))))) +(((*1 *2 *2) (-12 (-5 *2 (-643 (-691 (-315 (-549))))) (-5 *1 (-1031))))) +(((*1 *2 *2) (-12 (-5 *2 (-691 (-315 (-549)))) (-5 *1 (-1031))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-691 (-410 (-949 (-549))))) + (-5 *2 (-691 (-315 (-549)))) (-5 *1 (-1031))))) +(((*1 *2 *3) + (-12 (-5 *3 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-315 (-549)))) + (-5 *1 (-1031))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-691 (-410 (-949 (-549))))) (-5 *2 (-643 (-691 (-315 (-549))))) + (-5 *1 (-1031)) (-5 *3 (-315 (-549)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-691 (-410 (-949 (-549))))) + (-5 *2 + (-643 + (-2 (|:| |radval| (-315 (-549))) (|:| |radmult| (-549)) + (|:| |radvect| (-643 (-691 (-315 (-549)))))))) + (-5 *1 (-1031))))) +(((*1 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1029 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) + ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1029 *3)) (-4 *3 (-1219))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1028 *3 *2)) (-4 *2 (-660 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -3687 *3) (|:| -2902 (-643 *5)))) + (-5 *1 (-1028 *5 *3)) (-5 *4 (-643 *5)) (-4 *3 (-660 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1179))) (-5 *1 (-826))))) + (-12 (-5 *2 (-1064 (-1027 *4) (-1174 (-1027 *4)))) (-5 *3 (-865)) + (-5 *1 (-1027 *4)) (-4 *4 (-13 (-850) (-365) (-1023)))))) (((*1 *2 *1) - (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) - (-14 *6 - (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *2)) - (-2 (|:| -2188 *5) (|:| -2618 *2)))) - (-4 *2 (-238 (-2498 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-851)) (-4 *7 (-951 *4 *2 (-865 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *2 (-112)) - (-5 *1 (-264))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1175 (-954 *6))) (-4 *6 (-559)) - (-4 *2 (-951 (-410 (-954 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) - (-4 *5 (-794)) - (-4 *4 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $)))))))) + (|partial| -12 (-5 *2 (-1064 (-1027 *3) (-1174 (-1027 *3)))) + (-5 *1 (-1027 *3)) (-4 *3 (-13 (-850) (-365) (-1023)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1204) (-1004)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-95))) + (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) + (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) + (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) + (-5 *4 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) + (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) (-5 *4 (-410 (-549))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *5) (|:| -3541 *5)))) + (-5 *1 (-1024 *3)) (-4 *3 (-1245 (-549))) + (-5 *4 (-2 (|:| -3542 *5) (|:| -3541 *5))))) + ((*1 *2 *3) + (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) + (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) + (-5 *1 (-1025 *3)) (-4 *3 (-1245 (-410 (-549)))) + (-5 *4 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *4) (|:| -3541 *4)))) + (-5 *1 (-1025 *3)) (-4 *3 (-1245 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-410 (-549))) (-5 *2 (-643 (-2 (|:| -3542 *5) (|:| -3541 *5)))) + (-5 *1 (-1025 *3)) (-4 *3 (-1245 *5)) + (-5 *4 (-2 (|:| -3542 *5) (|:| -3541 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) + (-5 *2 (-643 (-410 (-549)))) (-5 *1 (-1024 *4)) (-4 *4 (-1245 (-549)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549))))) + (-5 *2 (-410 (-549))) (-5 *1 (-1024 *4)) (-4 *4 (-1245 (-549)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-32 *3 *4)) (-4 *4 (-424 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-55)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-773)) (-5 *1 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-113)))) ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) + (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-158 *3 *4)) (-4 *4 (-424 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-113)) (-5 *1 (-163)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) + (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-277 *3 *4)) + (-4 *4 (-13 (-424 *3) (-1005))))) + ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-298 *3)) (-4 *3 (-299)))) + ((*1 *2 *2) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) + (-12 (-5 *2 (-113)) (-4 *4 (-1104)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) + (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-434 *3 *4)) (-4 *4 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-567)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567))))) + (-12 (-5 *2 (-113)) (-4 *3 (-560)) (-5 *1 (-631 *3 *4)) + (-4 *4 (-13 (-424 *3) (-1005) (-1205))))) + ((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-1022))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1269 *6)) (-5 *4 (-1269 (-549))) (-5 *5 (-549)) (-4 *6 (-1104)) + (-5 *2 (-1 *6)) (-5 *1 (-1020 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1161)) (-5 *2 (-567)) (-5 *1 (-1201 *4)) - (-4 *4 (-1051))))) + (-12 (-5 *3 (-643 (-2 (|:| -3826 *4) (|:| -1623 (-549))))) (-4 *4 (-1104)) + (-5 *2 (-1 *4)) (-5 *1 (-1020 *4))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) + (-5 *2 (-643 (-410 *5))) (-5 *1 (-1019 *4 *5)) (-5 *3 (-410 *5))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) + (|:| |c2| (-410 *6)) (|:| -3497 *6))) + (-5 *1 (-1019 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1245 *6)) + (-4 *6 (-13 (-365) (-147) (-1041 *4))) (-5 *4 (-549)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3687 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1018 *6 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) + (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1018 *4 *5)) (-5 *3 (-410 *5))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -3497 *6))) + (-5 *1 (-1018 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1180)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-643 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1205) (-27) (-424 *8))) + (-4 *8 (-13 (-455) (-147) (-1041 *3) (-641 *3))) (-5 *3 (-549)) + (-5 *2 (-643 *4)) (-5 *1 (-1017 *8 *4))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1180)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-643 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1205) (-27) (-424 *8))) + (-4 *8 (-13 (-455) (-147) (-1041 *3) (-641 *3))) (-5 *3 (-549)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3541 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1016 *8 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549)))) + ((*1 *1 *1) (-4 *1 (-1005))) ((*1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-1015)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-4 *1 (-1015)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-922)))) + ((*1 *1 *1) (-4 *1 (-1015)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1015)) (-5 *2 (-865))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1015))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1174 *1)) (-4 *1 (-1015))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-865))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-865))))) +(((*1 *2 *1) (-12 (-4 *3 (-1219)) (-5 *2 (-643 *1)) (-4 *1 (-1013 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-643 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-5 *2 (-549))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-643 *1)) (|has| *1 (-6 -4426)) (-4 *1 (-1013 *3)) + (-4 *3 (-1219))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1013 *2)) (-4 *2 (-1219))))) (((*1 *2 *1) - (-12 (-4 *3 (-1219)) (-5 *2 (-645 *1)) (-4 *1 (-1012 *3)))) + (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-549))))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) - (-14 *3 (-923)) (-4 *4 (-1051))))) -(((*1 *2 *1) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-923)) (-4 *1 (-407)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407)))) + (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-408 *3)) (-4 *3 (-548)) + (-4 *3 (-560)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-549))))) ((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *2 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1175 (-954 *4))) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) - (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) - (-5 *2 (-1175 (-954 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1175 (-410 (-954 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1269 (-700))) (-5 *1 (-306))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1037)) - (-5 *1 (-749))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1179))) - (-4 *2 (-13 (-433 (-169 *5)) (-1004) (-1204))) (-4 *5 (-559)) - (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1004) (-1204)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) + (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-549))))) ((*1 *2 *1) - (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *2 (-112)))) + (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-834 *3)) (-4 *3 (-548)) + (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-847))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-55))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1254 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) - (-14 *4 (-1179)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) + (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-844 *3)) (-4 *3 (-548)) + (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-4 *2 (-1102)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) - (-14 *4 - (-1 (-112) (-2 (|:| -2188 *3) (|:| -2618 *2)) - (-2 (|:| -2188 *3) (|:| -2618 *2))))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1219)) - (-4 *2 (-1219)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1102)) (|has| *1 (-6 -4422)) - (-4 *1 (-151 *2)) (-4 *2 (-1219)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) - (-4 *2 (-1219)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) - (-4 *2 (-1219)))) + (|partial| -12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) + (-5 *2 (-410 (-549))))) ((*1 *2 *3) - (-12 (-4 *4 (-1051)) - (-5 *2 (-2 (|:| -1916 (-1175 *4)) (|:| |deg| (-923)))) - (-5 *1 (-221 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-559)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) - (-4 *6 (-1219)) (-4 *2 (-1219)) (-5 *1 (-239 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1245 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1102)))) - ((*1 *1 *1) - (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1245 *2)) - (-4 *4 (-1245 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1219)) (-4 *2 (-1219)) - (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1102)) (-4 *2 (-1102)) - (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2)))) - ((*1 *1 *1) (-5 *1 (-498))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1219)) - (-4 *2 (-1219)) (-5 *1 (-643 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1051)) (-4 *2 (-1051)) - (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) - (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1051)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-365)) - (-4 *3 (-172)) (-4 *1 (-725 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-960 *5)) (-4 *5 (-1219)) - (-4 *2 (-1219)) (-5 *1 (-959 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) - (-14 *6 (-645 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1051)) (-4 *2 (-1051)) - (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) - (-5 *1 (-1057 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1055 *5 *6 *7 *8 *9)) (-4 *12 (-1055 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1159 *5)) (-4 *5 (-1219)) - (-4 *2 (-1219)) (-5 *1 (-1157 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1212 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *2 (-1067 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1269 *5)) (-4 *5 (-1219)) - (-4 *2 (-1219)) (-5 *1 (-1268 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) + (|partial| -12 (-5 *2 (-410 (-549))) (-5 *1 (-1011 *3)) (-4 *3 (-1041 *2))))) (((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-1102)) (-5 *2 (-645 *1)) - (-4 *1 (-384 *3 *4)))) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-727)))) + (-12 (-5 *2 (-112)) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560)))) + ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-951 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381)))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-645 - (-645 - (-3 (|:| -1646 (-1179)) - (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567)))))))))) - (-5 *1 (-1183))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1065)) (-5 *3 (-1161))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1141)))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *1 *1 *1) (-5 *1 (-381))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-645 *11)) - (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -3526 *11)))))) - (-5 *6 (-772)) - (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -3526 *11)))) - (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) - (-4 *11 (-1073 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) - (-4 *9 (-851)) (-5 *1 (-1071 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-645 *11)) - (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -3526 *11)))))) - (-5 *6 (-772)) - (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -3526 *11)))) - (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1067 *7 *8 *9)) - (-4 *11 (-1111 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) - (-4 *9 (-851)) (-5 *1 (-1147 *7 *8 *9 *10 *11))))) + (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1011 *3)) (-4 *3 (-1041 (-410 (-549))))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1161)) (|:| -1646 (-1161)))) - (-5 *1 (-823))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1204))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-1175 (-410 (-1175 *6)))) (-5 *1 (-563 *5 *6 *7)) - (-5 *3 (-1175 *6)) (-4 *7 (-1102)))) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) ((*1 *2 *1) - (-12 (-4 *2 (-1245 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1051)))) + (-12 (-5 *2 (-410 (-549))) (-5 *1 (-408 *3)) (-4 *3 (-548)) (-4 *3 (-560)))) + ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-549))))) ((*1 *2 *1) - (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1175 *11)) (-5 *6 (-645 *10)) - (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) - (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-951 *11 *9 *10)) - (-5 *2 (-645 (-1175 *5))) (-5 *1 (-743 *9 *10 *11 *5)) - (-5 *3 (-1175 *5)))) + (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) ((*1 *2 *1) - (-12 (-4 *2 (-951 *3 *4 *5)) (-5 *1 (-1036 *3 *4 *5 *2 *6)) - (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) + (-12 (-5 *2 (-410 (-549))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) + ((*1 *2 *1) + (-12 (-5 *2 (-410 (-549))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1104)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1001 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-549))))) + ((*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-1011 *3)) (-4 *3 (-1041 *2))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009))))) +(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-1009))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009)))) + ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-1009))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -3526 *9)))) - (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1274)) - (-5 *1 (-1071 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -3526 *9)))) - (-5 *4 (-772)) (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) - (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1274)) - (-5 *1 (-1147 *5 *6 *7 *8 *9))))) -(((*1 *1) (-5 *1 (-1274)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) + (-12 (-5 *3 (-410 (-549))) (-5 *4 (-549)) (-5 *2 (-51)) (-5 *1 (-1008))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-1007 *3)) (-14 *3 (-549))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) - (-4 *4 (-351)) (-5 *2 (-1274)) (-5 *1 (-531 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264))))) -(((*1 *1) - (-12 (-4 *3 (-1102)) (-5 *1 (-887 *2 *3 *4)) (-4 *2 (-1102)) - (-4 *4 (-667 *3)))) - ((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268))))) -(((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) - (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + (-12 (-5 *3 (-408 *5)) (-4 *5 (-560)) + (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *5) (|:| |radicand| (-643 *5)))) + (-5 *1 (-321 *5)) (-5 *4 (-773)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1005)) (-5 *2 (-549))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-1003 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *1) (-4 *1 (-476))) + ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-886)))) + ((*1 *1 *1) (-5 *1 (-974))) + ((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-172))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-1219))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1145 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)) + (-5 *1 (-996 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) - (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) - ((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) - (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) + (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1096 (-844 (-381)))) (-5 *2 (-1096 (-844 (-225)))) - (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2) - (-12 (-14 *4 (-772)) (-4 *5 (-1219)) (-5 *2 (-134)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) + (-12 (-4 *3 (-1052)) (-4 *3 (-1104)) (-5 *2 (-1128 *3 (-613 *1))) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) ((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) - (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-951 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-982 *3)) (-4 *3 (-1051)) (-5 *2 (-923)))) - ((*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-365)) (-5 *2 (-134))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2 *1) - (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1204))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1070 *4 *3)) (-4 *4 (-13 (-849) (-365))) - (-4 *3 (-1245 *4)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-455)) (-4 *4 (-1102)) - (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-772)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-313)) (-5 *1 (-830))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) - (-14 *3 (-645 (-1179)))))) + (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-728) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-719 *3)) (-5 *1 (-654 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-728) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560))))) +(((*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) (-4 *2 (-308)) + (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-413 *3 *4) (-1041 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-560)) (-4 *3 (-1104)) (-5 *2 (-1128 *3 (-613 *1))) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1128 (-549) (-613 (-498)))) (-5 *1 (-498)))) + ((*1 *2 *1) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-728) *4)) + (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-728) *4)) + (-5 *1 (-654 *3 *4 *2)) (-4 *3 (-719 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560))))) +(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-1052)))) + ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560))))) +(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104)) (-4 *2 (-560)))) + ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-560))))) (((*1 *2 *3) - (-12 (-5 *2 (-421 (-1175 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1175 *1)) - (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1102)))) + (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352)))) + ((*1 *1) (-4 *1 (-370))) ((*1 *2 *3) - (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) - (-5 *2 (-1037)) (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 (-410 (-954 (-567))))) (-5 *2 (-645 (-317 (-567)))) - (-5 *1 (-1033))))) + (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) + ((*1 *1 *1) (-4 *1 (-548))) ((*1 *1) (-4 *1 (-548))) + ((*1 *1 *1) (-5 *1 (-773))) + ((*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-549)) (-5 *2 (-905 *4)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) + ((*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-560))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *1 *1) (-4 *1 (-1207)))) + (-12 + (-5 *2 + (-989 (-410 (-549)) (-866 *3) (-239 *4 (-773)) (-247 *3 (-410 (-549))))) + (-14 *3 (-643 (-1180))) (-14 *4 (-773)) (-5 *1 (-990 *3 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-643 *3)) (-4 *3 (-953 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-852)) + (-4 *6 (-795)) (-5 *1 (-989 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-852)) + (-4 *5 (-795)) (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1067 *3 *4 *5))))) + (-12 (-4 *3 (-455)) (-4 *4 (-852)) (-4 *5 (-795)) (-5 *2 (-643 *6)) + (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-953 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1219)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1245 *4)) - (-5 *1 (-924 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) - (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1181 (-410 (-567)))) - (-5 *1 (-190))))) -(((*1 *1) (-5 *1 (-1065)))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) - (-4 *6 (-559)) (-4 *7 (-951 *6 *5 *3)) - (-5 *1 (-465 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1040 (-410 (-567))) (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) - (-15 -4306 (*7 $)))))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-157)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1161)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) - (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-758))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *1 *1) (-4 *1 (-1207)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3)) (-4 *3 (-976))))) + (-12 (-4 *2 (-953 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) (-4 *3 (-455)) + (-4 *4 (-852)) (-4 *5 (-795))))) +(((*1 *1 *1) + (-12 (-4 *2 (-455)) (-4 *3 (-852)) (-4 *4 (-795)) (-5 *1 (-989 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1102)) (-5 *2 (-613 *5)) - (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4))))) + (-12 (-4 *3 (-1245 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-988 *4 *2 *3 *5)) + (-4 *4 (-352)) (-4 *5 (-726 *2 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) + (-4 *5 (-560)) (-5 *1 (-734 *4 *3 *5 *2)) + (-4 *2 (-953 (-410 (-949 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *5 (-795)) + (-4 *3 + (-13 (-852) + (-10 -8 (-15 -4402 ((-1180) $)) + (-15 -4263 ((-3 $ #1="failed") (-1180)))))) + (-5 *1 (-987 *4 *5 *3 *2)) (-4 *2 (-953 (-949 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-643 *6)) + (-4 *6 + (-13 (-852) + (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) + (-4 *4 (-1052)) (-4 *5 (-795)) (-5 *1 (-987 *4 *5 *6 *2)) + (-4 *2 (-953 (-949 *4) *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-795)) (-4 *3 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) + (-4 *5 (-560)) (-5 *1 (-734 *4 *3 *5 *2)) + (-4 *2 (-953 (-410 (-949 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *5 (-795)) + (-4 *3 + (-13 (-852) + (-10 -8 (-15 -4402 ((-1180) $)) + (-15 -4263 ((-3 $ #1="failed") (-1180)))))) + (-5 *1 (-987 *4 *5 *3 *2)) (-4 *2 (-953 (-949 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-643 *6)) + (-4 *6 + (-13 (-852) + (-10 -8 (-15 -4402 ((-1180) $)) (-15 -4263 ((-3 $ #1#) (-1180)))))) + (-4 *4 (-1052)) (-4 *5 (-795)) (-5 *1 (-987 *4 *5 *6 *2)) + (-4 *2 (-953 (-949 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-773)) (-4 *1 (-986 *2)) (-4 *2 (-1205))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-157)))) + ((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3) (-12 (-5 *3 (-946 *2)) (-5 *1 (-985 *2)) (-4 *2 (-1052))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) - (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-295 (-410 (-954 (-169 (-567))))))) - (-5 *2 (-645 (-645 (-295 (-954 (-169 *4)))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 (-169 (-567))))) - (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-410 (-954 (-169 (-567)))))) - (-5 *2 (-645 (-295 (-954 (-169 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-365) (-849)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-144)))) - ((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772)))) - ((*1 *1 *1) (-4 *1 (-405)))) -(((*1 *2 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)) - (-4 *3 (-559)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-559))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) + (-12 (-4 *5 (-365)) + (-5 *2 (-643 (-2 (|:| C (-691 *5)) (|:| |g| (-1269 *5))))) (-5 *1 (-981 *5)) + (-5 *3 (-691 *5)) (-5 *4 (-1269 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-922)) (-5 *1 (-701)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-691 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) + (-5 *1 (-981 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) + (-5 *2 (-2 (|:| R (-691 *6)) (|:| A (-691 *6)) (|:| |Ainv| (-691 *6)))) + (-5 *1 (-981 *6)) (-5 *3 (-691 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) + (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *1 *1) (-4 *1 (-1207)))) -(((*1 *1) (-5 *1 (-824)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851))))) -(((*1 *1 *1 *1) (-4 *1 (-662)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1159 (-2 (|:| |k| (-567)) (|:| |c| *6)))) - (-5 *4 (-1028 (-844 (-567)))) (-5 *5 (-1179)) (-5 *7 (-410 (-567))) - (-4 *6 (-1051)) (-5 *2 (-863)) (-5 *1 (-597 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-439))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) - (-5 *1 (-422 *4)))) - ((*1 *1 *1) (-5 *1 (-928))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) - ((*1 *1 *1) (-5 *1 (-929))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) - (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) - (-5 *1 (-1022 *3)) (-4 *3 (-1245 (-567))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) - (-5 *4 (-410 (-567))) (-5 *1 (-1023 *3)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4335 (-410 (-567))) (|:| -4347 (-410 (-567))))) - (-5 *1 (-1023 *3)) (-4 *3 (-1245 (-410 (-567)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) - (-4 *3 (-1245 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-109))))) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) + (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) + (-4 *3 (-560)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-5 *1 (-898 *2 *3)) - (-4 *2 (-1245 *3))))) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *1 *1) (-4 *1 (-1207)))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) -(((*1 *1) (-5 *1 (-804)))) -(((*1 *1 *1 *1) (-4 *1 (-662)))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1051))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-539))) (-5 *1 (-539))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-560)) + (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-643 *7)) (-5 *3 (-112)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-455)) + (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-690 (-954 *4))) (-5 *1 (-1030 *4)) - (-4 *4 (-1051))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-794)) (-4 *7 (-951 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) - (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7))))) + (-12 (-4 *4 (-455)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) + (-5 *2 (-643 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-643 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *1 (-980 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-643 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1068 *6 *7 *8)) (-4 *6 (-560)) (-4 *7 (-795)) + (-4 *8 (-852)) (-5 *1 (-980 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *1 *1) (-4 *1 (-1207)))) -(((*1 *2 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2304 *4))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-923)) (-4 *5 (-559)) (-5 *2 (-690 *5)) - (-5 *1 (-958 *5 *3)) (-4 *3 (-657 *5))))) -(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-437)) - (-5 *2 - (-645 - (-3 (|:| -1646 (-1179)) - (|:| -4102 (-645 (-3 (|:| S (-1179)) (|:| P (-954 (-567))))))))) - (-5 *1 (-1183))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-645 *3)) (-5 *1 (-963 *3)) (-4 *3 (-548))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1086 *3)) (-4 *3 (-132))))) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1245 *4))))) + (|partial| -12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -3748 (-643 *7)))) + (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *1 *1) (-4 *1 (-1207)))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *1) (-5 *1 (-1271)))) -(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219))))) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *2))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-643 *7)) (-5 *3 (-112)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *1 (-897)) - (-5 *3 - (-2 (|:| |pde| (-645 (-317 (-225)))) - (|:| |constraints| - (-645 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-772)) (|:| |boundaryType| (-567)) - (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) - (|:| |tol| (-225)))) - (-5 *2 (-1037))))) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) + (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) + (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) + (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) + ((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) + (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) + (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) + (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-1068 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-643 *7)) (|:| |badPols| (-643 *7)))) + (-5 *1 (-980 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-1 (-112) *8))) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) + (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) + (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-1 (-112) *8))) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) + (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) + (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1068 *5 *6 *7)) (-4 *5 (-560)) + (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *2 (-2 (|:| |goodPols| (-643 *8)) (|:| |badPols| (-643 *8)))) + (-5 *1 (-980 *5 *6 *7 *8)) (-5 *4 (-643 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-643 *8))) (-5 *3 (-643 *8)) (-4 *8 (-1068 *5 *6 *7)) + (-4 *5 (-560)) (-4 *6 (-795)) (-4 *7 (-852)) (-5 *2 (-112)) + (-5 *1 (-980 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-112)) (-5 *1 (-980 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) + (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-643 *3)) (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *1 (-980 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-643 *7) (-643 *7))) (-5 *2 (-643 *7)) + (-4 *7 (-1068 *4 *5 *6)) (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) + (-5 *1 (-980 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-643 *3)) + (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-1068 *4 *5 *6))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1219)) (-4 *1 (-151 *3)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-645 (-2 (|:| -2618 (-772)) (|:| -3118 *4) (|:| |num| *4)))) - (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-5 *3 (-645 (-954 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-5 *3 (-645 (-1179))) (-5 *4 (-112)) (-5 *1 (-440)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1159 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) - (-4 *4 (-172)))) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-980 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-643 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-979 *4 *5 *3 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) + (-4 *6 (-1068 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) + (-4 *5 (-1068 *3 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) + (-4 *5 (-1068 *3 *4 *2))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-979 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) + (-4 *5 (-1068 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) - (-4 *4 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) - (-4 *4 (-172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1102)) - (-5 *1 (-676 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1102)) - (-14 *4 - (-1 (-112) (-2 (|:| -2188 *2) (|:| -2618 *3)) - (-2 (|:| -2188 *2) (|:| -2618 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-839)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-374 *3)) (-4 *3 (-1219)))) + ((*1 *2 *2) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) (-4 *6 (-1068 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3534 *1) (|:| |upper| *1))) + (-4 *1 (-979 *4 *5 *3 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-979 *4 *5 *6 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-979 *4 *5 *6 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *3 (-1068 *4 *5 *6)) (-4 *4 (-560)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-643 *6)) (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-643 *6)) (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560))))) +(((*1 *2 *1) + (-12 (-4 *1 (-979 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1068 *3 *4 *5)) (-4 *3 (-560)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-643 (-643 (-946 (-225))))))) + ((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-643 (-643 (-946 (-225)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-1092 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225)))))) +(((*1 *2 *1) (-12 (-4 *1 (-958)) (-5 *2 (-1092 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225)))))) +(((*1 *2 *1) (-12 (-4 *1 (-977)) (-5 *2 (-1092 (-225)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) + ((*1 *2 *1) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-1104)))) + ((*1 *2 *1) + (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *6 (-238 (-4389 *3) (-773))) + (-14 *7 + (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) + (-2 (|:| -2563 *5) (|:| -2564 *6)))) + (-5 *2 (-715 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-852)) + (-4 *8 (-953 *4 *6 (-866 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-728)) (-4 *2 (-852)) (-5 *1 (-737 *3 *2)) (-4 *3 (-1052)))) + ((*1 *1 *1) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *4 (-852))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 *4)))) - (-4 *4 (-1102)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1102)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1102) (-34))) - (-5 *2 (-645 (-1142 *3 *5))) (-5 *1 (-1142 *3 *5)) - (-4 *3 (-13 (-1102) (-34))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -3526 *5)))) - (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) - (-5 *2 (-645 (-1142 *4 *5))) (-5 *1 (-1142 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3526 *4))) - (-4 *3 (-13 (-1102) (-34))) (-4 *4 (-13 (-1102) (-34))) - (-5 *1 (-1142 *3 *4)))) + (-12 (-5 *3 (-643 (-922))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) + (-4 *2 (-365)) (-14 *5 (-996 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1102) (-34))) - (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1142 *2 *3))) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34))) (-5 *1 (-1143 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1143 *2 *3))) (-5 *1 (-1143 *2 *3)) - (-4 *2 (-13 (-1102) (-34))) (-4 *3 (-13 (-1102) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) - (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4)))) + (-12 (-5 *3 (-715 *5 *6 *7)) (-4 *5 (-852)) (-4 *6 (-238 (-4389 *4) (-773))) + (-14 *7 + (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *6)) + (-2 (|:| -2563 *5) (|:| -2564 *6)))) + (-14 *4 (-643 (-1180))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-953 *2 *6 (-866 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-852)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1168 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1161)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) - (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-758))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *4 (-1179)) - (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301))))) -(((*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033))))) + (-12 (-5 *3 (-549)) (-4 *2 (-560)) (-5 *1 (-625 *2 *4)) (-4 *4 (-1245 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-710 *2)) (-4 *2 (-1052)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-737 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-728)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 *5)) (-5 *3 (-643 (-773))) (-4 *1 (-742 *4 *5)) + (-4 *4 (-1052)) (-4 *5 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-773)) (-4 *1 (-742 *4 *2)) (-4 *4 (-1052)) (-4 *2 (-852)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 (-773))) (-4 *1 (-953 *4 *5 *6)) + (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *6 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-773)) (-4 *1 (-953 *4 *5 *2)) (-4 *4 (-1052)) (-4 *5 (-795)) + (-4 *2 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 *6)) (-5 *3 (-643 *5)) (-4 *1 (-976 *4 *5 *6)) + (-4 *4 (-1052)) (-4 *5 (-794)) (-4 *6 (-852)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-976 *4 *3 *2)) (-4 *4 (-1052)) (-4 *3 (-794)) (-4 *2 (-852))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-794)) (-4 *5 (-852)) + (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) + ((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549)))) + ((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1) (-4 *1 (-872 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-976 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-794)) (-4 *4 (-852))))) +(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-974))))) +(((*1 *2 *3) + (-12 (-5 *2 (-643 (-643 (-549)))) (-5 *1 (-974)) (-5 *3 (-643 (-549)))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-974))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) - (-5 *3 (-645 (-567)))))) -(((*1 *1 *1) (-4 *1 (-630))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004) (-1204)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-954 (-567))))) - (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-849) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-295 (-410 (-954 (-567)))))) - (-5 *2 (-645 (-645 (-295 (-954 *4))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-849) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 (-567)))) (-5 *2 (-645 (-295 (-954 *4)))) - (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-410 (-954 (-567))))) - (-5 *2 (-645 (-295 (-954 *4)))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-849) (-365))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1179)) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-4 *4 (-13 (-29 *6) (-1204) (-961))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -4374 (-645 *4)))) - (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1179)) (-5 *5 (-645 *2)) - (-4 *2 (-13 (-29 *6) (-1204) (-961))) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1269 *5) "failed")) - (|:| -4374 (-645 (-1269 *5))))) - (-5 *1 (-668 *5)) (-5 *4 (-1269 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1269 *5) "failed")) - (|:| -4374 (-645 (-1269 *5))))) - (-5 *1 (-668 *5)) (-5 *4 (-1269 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) - (-5 *2 - (-645 - (-2 (|:| |particular| (-3 (-1269 *5) "failed")) - (|:| -4374 (-645 (-1269 *5)))))) - (-5 *1 (-668 *5)) (-5 *4 (-645 (-1269 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) - (-5 *2 - (-645 - (-2 (|:| |particular| (-3 (-1269 *5) "failed")) - (|:| -4374 (-645 (-1269 *5)))))) - (-5 *1 (-668 *5)) (-5 *4 (-645 (-1269 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4188 *4))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4188 *4))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-560)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-773)) (-4 *3 (-560)) (-5 *1 (-972 *3 *2)) (-4 *2 (-1245 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-773)) (-4 *2 (-560)) (-5 *1 (-972 *2 *4)) (-4 *4 (-1245 *2))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-308)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1104)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-388 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2152 (-773)) (|:| -3303 (-773)))) (-5 *1 (-773)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *4 (-560)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3279 *4))) (-5 *1 (-972 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *4 (-560)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3279 *4))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-560)) (-4 *2 (-455)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1245 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-643 (-773))) (-5 *1 (-972 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-972 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4189 *4))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4189 *4))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3564 *3))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3564 *3))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3564 *3))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-773)) (-4 *5 (-560)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) + (-4 *3 (-1245 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-773)) (-4 *5 (-560)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-773)) (-4 *4 (-560)) (-5 *1 (-972 *4 *2)) (-4 *2 (-1245 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-773)) (-4 *5 (-560)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-972 *5 *3)) + (-4 *3 (-1245 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-773)) (-4 *5 (-560)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-972 *5 *3)) (-4 *3 (-1245 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-773)) (-4 *4 (-560)) (-5 *1 (-972 *4 *2)) (-4 *2 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4188 *4))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4188 *4))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-560)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4188 *4))) + (-5 *1 (-972 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *1) + (-12 (-4 *1 (-407)) (-3746 (|has| *1 (-6 -4416))) + (-3746 (|has| *1 (-6 -4408))))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-852)))) + ((*1 *1) (-4 *1 (-846))) ((*1 *1 *1 *1) (-4 *1 (-852))) + ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-852))))) +(((*1 *1) (-4 *1 (-970)))) +(((*1 *1) (-4 *1 (-970)))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *1) (-4 *1 (-970)))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *1) (-4 *1 (-970)))) +(((*1 *1 *1 *1) (-4 *1 (-970)))) +(((*1 *1 *1 *1) (-4 *1 (-970)))) +(((*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-969 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-693 (-969 *3))) (-5 *1 (-969 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) + (-4 *3 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) + (-4 *3 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) + (-4 *3 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-693 (-875 (-969 *3) (-969 *3)))) (-5 *1 (-969 *3)) + (-4 *3 (-1104))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-969 *2)) (-4 *2 (-1104))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-969 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-775))) (-5 *1 (-113)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1162)) (-5 *2 (-775)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-968))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-967 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-967 *2 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-4 *2 (-1104)) (-5 *1 (-967 *3 *2)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-865)))) + ((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1275)) (-5 *1 (-966))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-643 *3)) (-5 *1 (-965 *3)) (-4 *3 (-548))))) +(((*1 *2 *2) (-12 (-5 *1 (-965 *2)) (-4 *2 (-548))))) +(((*1 *2 *2) (-12 (-5 *1 (-965 *2)) (-4 *2 (-548))))) +(((*1 *1) (-4 *1 (-352))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-560) (-147))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-643 (-1174 *5))) + (|:| |prim| (-1174 *5)))) + (-5 *1 (-435 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-560) (-147))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) - (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) - (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4423)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1174 *3)) (|:| |pol2| (-1174 *3)) + (|:| |prim| (-1174 *3)))) + (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-949 *5)) (-5 *4 (-1180)) (-4 *5 (-13 (-365) (-147))) (-5 *2 - (-645 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4374 (-645 *7))))) - (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) - (-4 *3 (-688 *5 *6 *7)))) + (-2 (|:| |coef1| (-549)) (|:| |coef2| (-549)) (|:| |prim| (-1174 *5)))) + (-5 *1 (-964 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1204) (-961))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1179)) - (-4 *7 (-13 (-29 *6) (-1204) (-961))) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1269 *7)) (|:| -4374 (-645 (-1269 *7))))) - (-5 *1 (-803 *6 *7)) (-5 *4 (-1269 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1179)) - (-4 *6 (-13 (-29 *5) (-1204) (-961))) - (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-1269 *6))) (-5 *1 (-803 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) - (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1269 *7)) (|:| -4374 (-645 (-1269 *7))))) - (-5 *1 (-803 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) - (-5 *5 (-1179)) (-4 *7 (-13 (-29 *6) (-1204) (-961))) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1269 *7)) (|:| -4374 (-645 (-1269 *7))))) - (-5 *1 (-803 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1179)) - (-4 *7 (-13 (-29 *6) (-1204) (-961))) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) + (-4 *5 (-13 (-365) (-147))) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -4374 (-645 *7))) *7 "failed")) - (-5 *1 (-803 *6 *7)))) + (-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 *5))) + (|:| |prim| (-1174 *5)))) + (-5 *1 (-964 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1179)) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) + (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-5 *5 (-1180)) + (-4 *6 (-13 (-365) (-147))) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -4374 (-645 *3))) *3 "failed")) - (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1204) (-961))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) - (-4 *2 (-13 (-29 *6) (-1204) (-961))) (-5 *1 (-803 *6 *2)) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) - (-4 *2 (-13 (-29 *6) (-1204) (-961))) - (-4 *6 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-803 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1037)) (-5 *1 (-806)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-809)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) - (-5 *2 (-1037)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) - (-5 *2 (-1037)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) - (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1269 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) - (-5 *2 (-1037)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) - (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1269 (-317 *4))) (-5 *5 (-645 (-381))) - (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1037)) (-5 *1 (-806)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -4374 (-645 *6))) "failed") - *7 *6)) - (-4 *6 (-365)) (-4 *7 (-657 *6)) - (-5 *2 (-2 (|:| |particular| (-1269 *6)) (|:| -4374 (-690 *6)))) - (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1269 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1037)) (-5 *1 (-899)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-900)) (-5 *4 (-1065)) (-5 *2 (-1037)) (-5 *1 (-899)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1161)) - (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) - (-5 *2 (-1037)) (-5 *1 (-899)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1161)) - (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1037)) - (-5 *1 (-899)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 (-381))) - (-5 *1 (-1025)) (-5 *4 (-381)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1025)) - (-5 *4 (-381)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *2 (-645 *4)) (-5 *1 (-1130 *3 *4)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) - (-5 *3 (-317 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1133 *4)) - (-5 *3 (-295 (-317 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) - (-5 *3 (-295 (-317 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1133 *5)) - (-5 *3 (-317 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1179))) - (-4 *5 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1133 *5)) - (-5 *3 (-645 (-295 (-317 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) - (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) - (-5 *1 (-1188 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-1179))) (-4 *5 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-1188 *5)) - (-5 *3 (-645 (-295 (-410 (-954 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-1188 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) - (-5 *1 (-1188 *4)) (-5 *3 (-645 (-295 (-410 (-954 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-4 *5 (-559)) - (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1188 *5)) - (-5 *3 (-410 (-954 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-4 *5 (-559)) - (-5 *2 (-645 (-295 (-410 (-954 *5))))) (-5 *1 (-1188 *5)) - (-5 *3 (-295 (-410 (-954 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) - (-5 *1 (-1188 *4)) (-5 *3 (-410 (-954 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-954 *4))))) - (-5 *1 (-1188 *4)) (-5 *3 (-295 (-410 (-954 *4))))))) -(((*1 *1 *1) (-4 *1 (-662)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| -1344 (-410 *5)) (|:| |poly| *3))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1269 *6)) (-5 *4 (-1269 (-567))) (-5 *5 (-567)) - (-4 *6 (-1102)) (-5 *2 (-1 *6)) (-5 *1 (-1019 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-14 *6 (-1269 (-690 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))))) - ((*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516 'JINT 'X 'ELAM) (-2516) (-700)))) - (-5 *1 (-61 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516) (-2516 'XC) (-700)))) - (-5 *1 (-63 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-341 (-2516 'X) (-2516) (-700))) (-5 *1 (-64 *3)) - (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-341 (-2516) (-2516 'XC) (-700))) (-5 *1 (-66 *3)) - (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516 'X) (-2516 '-1535) (-700)))) - (-5 *1 (-71 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516) (-2516 'X) (-700)))) - (-5 *1 (-74 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516 'X 'EPS) (-2516 '-1535) (-700)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1179)) (-14 *4 (-1179)) - (-14 *5 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516 'EPS) (-2516 'YA 'YB) (-700)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1179)) (-14 *4 (-1179)) - (-14 *5 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-341 (-2516) (-2516 'X) (-700))) (-5 *1 (-77 *3)) - (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-341 (-2516) (-2516 'X) (-700))) (-5 *1 (-78 *3)) - (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516) (-2516 'XC) (-700)))) - (-5 *1 (-79 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516) (-2516 'X) (-700)))) - (-5 *1 (-80 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516 'X '-1535) (-2516) (-700)))) - (-5 *1 (-82 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-690 (-341 (-2516 'X '-1535) (-2516) (-700)))) - (-5 *1 (-83 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-690 (-341 (-2516 'X) (-2516) (-700)))) (-5 *1 (-84 *3)) - (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516 'X) (-2516) (-700)))) - (-5 *1 (-85 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-341 (-2516 'X) (-2516 '-1535) (-700)))) - (-5 *1 (-86 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-690 (-341 (-2516 'XL 'XR 'ELAM) (-2516) (-700)))) - (-5 *1 (-87 *3)) (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-341 (-2516 'X) (-2516 '-1535) (-700))) (-5 *1 (-89 *3)) - (-14 *3 (-1179)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-567)) (-14 *4 (-772)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1144 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) - (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) - ((*1 *1 *2) - (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) - (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1269 (-690 *4))) (-4 *4 (-172)) - (-5 *2 (-1269 (-690 (-410 (-954 *4))))) (-5 *1 (-189 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1094 (-317 *4))) - (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1094 (-381))) - (-5 *1 (-259 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1245 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1254 *4 *5 *6)) (-4 *4 (-13 (-27) (-1204) (-433 *3))) - (-14 *5 (-1179)) (-14 *6 *4) - (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) - (-5 *1 (-314 *3 *4 *5 *6)))) + (-2 (|:| -4386 (-643 (-549))) (|:| |poly| (-643 (-1174 *6))) + (|:| |prim| (-1174 *6)))) + (-5 *1 (-964 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1180)) (-5 *1 (-586 *2)) (-4 *2 (-1041 *3)) (-4 *2 (-365)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-365)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-631 *4 *2)) + (-4 *2 (-13 (-424 *4) (-1005) (-1205))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1095 *2)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))) + (-4 *4 (-560)) (-5 *1 (-631 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-963)) (-5 *2 (-1180)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-963))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-922)) (-4 *5 (-560)) (-5 *2 (-691 *5)) + (-5 *1 (-960 *5 *3)) (-4 *3 (-660 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-957))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) (-4 *3 (-953 *7 *5 *6)) + (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| (-643 *3)))) + (-5 *1 (-956 *5 *6 *7 *3 *8)) (-5 *4 (-773)) + (-4 *8 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *3)) (-15 -3399 (*3 $)) (-15 -3398 (*3 $)))))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) + (-4 *8 (-953 *7 *5 *6)) + (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| *3))) + (-5 *1 (-956 *5 *6 *7 *8 *3)) (-5 *4 (-773)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-549))) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-560)) + (-4 *8 (-953 *7 *5 *6)) + (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *9) (|:| |radicand| *9))) + (-5 *1 (-956 *5 *6 *7 *8 *9)) (-5 *4 (-773)) + (-4 *9 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $)))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-795)) (-4 *6 (-852)) (-4 *3 (-560)) (-4 *7 (-953 *3 *5 *6)) + (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *8) (|:| |radicand| *8))) + (-5 *1 (-956 *5 *6 *3 *7 *8)) (-5 *4 (-773)) + (-4 *8 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1052)) (-4 *3 (-1104)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2564 (-549)))) (-4 *1 (-424 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) - (-14 *3 (-645 (-1179))) (-14 *4 (-645 (-1179))) (-4 *5 (-390)))) - ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) - (-4 *3 (-330 *4)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -2564 (-893 *3)))) + (-5 *1 (-893 *3)) (-4 *3 (-1104)))) ((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) - (-4 *3 (-330 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *2 (-1293 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *2 (-1284 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) - (-4 *1 (-385)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385)))) - ((*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) - (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386)))) - ((*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) - (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) - (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) - (-14 *3 (-1179)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1179)) - (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2603 "void"))) - (-14 *5 (-645 (-1179))) (-14 *6 (-1183)))) - ((*1 *1 *2) - (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21))) - (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567))))) - (-4 *3 (-13 (-851) (-21))))) - ((*1 *1 *2) - (-12 (-5 *2 (-410 (-954 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1102)) - (-4 *1 (-433 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-954 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1102)) - (-4 *1 (-433 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1102)) - (-4 *1 (-433 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1127 *3 (-613 *1))) (-4 *3 (-1051)) (-4 *3 (-1102)) - (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-437)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-437)))) - ((*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) - (-4 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 (-700))) (-4 *1 (-443)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1183)) (|:| -3179 (-645 (-331))))) - (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-410 (-954 *3)))) (-4 *3 (-172)) - (-14 *6 (-1269 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-14 *4 (-923)) (-14 *5 (-645 (-1179))))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1254 *3 *4 *5)) (-4 *3 (-1051)) (-14 *4 (-1179)) - (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-477 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1127 (-567) (-613 (-498)))) (-5 *1 (-498)))) - ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-505)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-527)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-607)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1051)))) + (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) + (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2564 (-549)))) + (-5 *1 (-954 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1180)) (-4 *4 (-1052)) (-4 *4 (-1104)) + (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1052)) (-4 *4 (-1104)) + (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1289 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) + (|partial| -12 (-4 *3 (-1115)) (-4 *3 (-1104)) + (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -2564 (-549)))) (-4 *1 (-424 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -2564 (-773)))) + (-5 *1 (-893 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-5 *1 (-676 *3)) - (-4 *3 (-1102)))) - ((*1 *1 *2) - (-12 (-5 *2 (-960 (-960 (-960 *3)))) (-4 *3 (-1102)) - (-5 *1 (-676 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-682)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) - (-4 *2 (-375 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-700))) (-5 *1 (-695)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-567))) (-5 *1 (-695)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) - ((*1 *1 *2) (-12 (-5 *2 (-702)) (-5 *1 (-700)))) - ((*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700)))) + (|partial| -12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-773)))))) ((*1 *2 *3) - (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702)))) - ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1161)) (-5 *1 (-711)))) + (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) + (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2564 (-549)))) + (-5 *1 (-954 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1115)) (-4 *3 (-1104)) (-5 *2 (-643 *1)) + (-4 *1 (-424 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| -1344 *3) (|:| -3245 *4)))) - (-4 *3 (-1051)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| |mdnia| - (-2 (|:| |fn| (-317 (-225))) - (|:| -2031 (-645 (-1096 (-844 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-770)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-317 (-225))) - (|:| -2031 (-645 (-1096 (-844 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *1 (-770)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *1 (-770)))) - ((*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-809)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-825)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) - (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-645 (-317 (-225)))) - (|:| -2221 (-645 (-225))))))) - (-5 *1 (-842)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) - (-5 *1 (-842)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (-5 *1 (-842)))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) - ((*1 *2 *3) - (-12 (-5 *3 (-954 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410 (-954 (-48)))) (-5 *2 (-317 (-567))) - (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-895 *3)) (-4 *3 (-851)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |pde| (-645 (-317 (-225)))) - (|:| |constraints| - (-645 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-772)) (|:| |boundaryType| (-567)) - (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) - (|:| |tol| (-225)))) - (-5 *1 (-900)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-907 *3))) (-4 *3 (-1102)) (-5 *1 (-906 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-916 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308)))) - ((*1 *2 *3) - (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-921 *4)) - (-4 *4 (-559)))) - ((*1 *2 *3) (-12 (-5 *2 (-1274)) (-5 *1 (-1035 *3)) (-4 *3 (-1219)))) - ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1035 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-1036 *3 *4 *5 *2 *6)) (-4 *2 (-951 *3 *4 *5)) - (-14 *6 (-645 *2)))) + (|partial| -12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-1045 *3)) (-4 *3 (-559)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1051)) (-4 *4 (-851)) (-5 *1 (-1128 *3 *4 *2)) - (-4 *2 (-951 *3 (-534 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1051)) (-4 *2 (-851)) (-5 *1 (-1128 *3 *2 *4)) - (-4 *4 (-951 *3 (-534 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1146)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1170 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1177 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1242 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1179)) - (-14 *5 *3) (-5 *1 (-1177 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1192 (-1179) (-440))) (-5 *1 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1191 *3)) (-4 *3 (-1102)))) - ((*1 *2 *3) (-12 (-5 *2 (-1199)) (-5 *1 (-1198 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-5 *1 (-1213 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1213 *3)) (-4 *3 (-1051)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1233 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1096 *3)) (-4 *3 (-1219)) (-5 *1 (-1236 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1265 *4)) (-14 *4 (-1179)) (-5 *1 (-1261 *3 *4 *5)) - (-4 *3 (-1051)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1242 *4 *3)) (-4 *3 (-1051)) (-14 *4 (-1179)) - (-14 *5 *3) (-5 *1 (-1261 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1265 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1270)))) - ((*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1270)) (-5 *1 (-1273)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1293 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1284 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *1 (-1289 *3 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1179)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-645 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3906 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1204) (-27) (-433 *8))) - (-4 *8 (-13 (-455) (-147) (-1040 *3) (-640 *3))) (-5 *3 (-567)) - (-5 *2 (-645 *4)) (-5 *1 (-1016 *8 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4422)) (-4 *1 (-34)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-567)))) - ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-847))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) - (-5 *2 (-1037)) (-5 *1 (-747))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-951 *4 *6 *5)) (-4 *4 (-455)) - (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-989 *4 *5 *6 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1086 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 (-1242 *5 *4))) - (-5 *1 (-1116 *4 *5)) (-5 *3 (-1242 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *2 (-1274)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1245 (-410 *5))) (-14 *7 *6)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) - (-14 *4 *2)))) -(((*1 *1 *1) (-5 *1 (-1065)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) - (-4 *2 (-1260 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1245 *3)) - (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1260 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) - (-4 *2 (-1260 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-13 (-559) (-147))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 (-1179))) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) - (-14 *6 (-645 (-1179))) (-14 *7 (-1269 (-690 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) - (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-923)) - (-14 *6 (-645 *2)) (-14 *7 (-1269 (-690 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) - (-14 *6 (-1269 (-690 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 (-1179))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-923)) (-14 *5 (-645 (-1179))) - (-14 *6 (-1269 (-690 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1179)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-923)) (-14 *5 (-645 *2)) (-14 *6 (-1269 (-690 *3))))) - ((*1 *1) - (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-923)) - (-14 *4 (-645 (-1179))) (-14 *5 (-1269 (-690 *2)))))) + (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) + (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *3)) (-5 *1 (-954 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1104)) (-5 *2 (-643 *1)) + (-4 *1 (-424 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) - (-4 *3 (-559)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) + (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) + (|partial| -12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-643 *1)) (-4 *1 (-953 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1052)) + (-4 *7 (-953 *6 *4 *5)) (-5 *2 (-643 *3)) (-5 *1 (-954 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-643 *1)) (-4 *1 (-386 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) - (-4 *3 (-1102)))) + (-12 (-5 *2 (-643 (-737 *3 *4))) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) + (-4 *4 (-728)))) ((*1 *2 *1) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) - (-4 *3 (-1102)))) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) + (-4 *1 (-953 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1052)) (-4 *2 (-794)))) + ((*1 *2 *1) (-12 (-4 *1 (-710 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-854 *3)) (-4 *3 (-1052)) (-5 *2 (-773)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-643 (-773))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-953 *4 *5 *3)) (-4 *4 (-1052)) (-4 *5 (-795)) (-4 *3 (-852)) + (-5 *2 (-773))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *6)) (-4 *1 (-953 *4 *5 *6)) (-4 *4 (-1052)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-773)))) ((*1 *2 *1) - (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) - (-5 *2 (-410 (-567))))) + (-12 (-4 *1 (-953 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-773))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *1)) + (-4 *1 (-953 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)) (-4 *2 (-455)))) ((*1 *2 *3) - (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1010 *3)) (-4 *3 (-1040 *2))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1159 (-954 *4)) (-1159 (-954 *4)))) - (-5 *1 (-1277 *4)) (-4 *4 (-365))))) -(((*1 *2 *3) - (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-484 *4 *5)) - (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1179)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *1 *1) (-4 *1 (-630))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004) (-1204)))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) - (-4 *2 (-559)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-559))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) - (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-772))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-559)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-559)) - (-5 *1 (-971 *3 *4)))) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-1245 (-549))) (-5 *2 (-643 (-549))) + (-5 *1 (-489 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-455)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1055 *3 *4 *2 *5 *6)) (-4 *2 (-1051)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1142 *4 *5)) (-4 *4 (-13 (-1102) (-34))) - (-4 *5 (-13 (-1102) (-34))) (-5 *2 (-112)) (-5 *1 (-1143 *4 *5))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) + (-12 (-4 *1 (-953 *3 *4 *2)) (-4 *3 (-1052)) (-4 *4 (-795)) (-4 *2 (-852)) + (-4 *3 (-455))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-954 (-567))) (-5 *2 (-331)) - (-5 *1 (-333)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-1094 (-954 (-567)))) (-5 *2 (-331)) - (-5 *1 (-333)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1051)) - (-4 *3 (-1102))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1037)) (-5 *1 (-753))))) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-549)) (-4 *5 (-850)) (-4 *5 (-365)) + (-5 *2 (-773)) (-5 *1 (-948 *5 *6)) (-4 *6 (-1245 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1051)) - (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1161)) - (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1245 *4)) - (-5 *2 (-1269 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) - (-14 *4 (-772)) (-4 *5 (-172))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -3774 (-645 (-863))) (|:| -1992 (-645 (-863))) - (|:| |presup| (-645 (-863))) (|:| -3928 (-645 (-863))) - (|:| |args| (-645 (-863))))) - (-5 *1 (-1179)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1179))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3)))) - (-5 *1 (-820 *3)) (-4 *3 (-851)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *1 *1) (-5 *1 (-1065)))) -(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-850)) (-4 *4 (-365)) (-5 *2 (-773)) + (-5 *1 (-948 *4 *5)) (-4 *5 (-1245 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) - (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-527))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) + (-12 (-4 *2 (-365)) (-4 *2 (-850)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1245 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-306))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1037)) (-5 *1 (-749))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1184)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1184))) (-5 *1 (-1184))))) + (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-948 *4 *3)) + (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-643 *3)) (-5 *1 (-948 *4 *3)) + (-4 *3 (-1245 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1102)) (-4 *6 (-1102)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1102))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-52)) (-5 *1 (-830))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) - (-5 *2 (-112)) (-5 *1 (-989 *3 *4 *5 *6)) - (-4 *6 (-951 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) - (-4 *4 (-13 (-1102) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037))))) -(((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219))))) + (-12 (-5 *3 (-949 *5)) (-4 *5 (-1052)) (-5 *2 (-247 *4 *5)) + (-5 *1 (-947 *4 *5)) (-14 *4 (-643 (-1180)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) + (-5 *2 (-949 *5)) (-5 *1 (-947 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) + (-5 *2 (-949 *5)) (-5 *1 (-947 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-949 *5)) (-4 *5 (-1052)) (-5 *2 (-484 *4 *5)) + (-5 *1 (-947 *4 *5)) (-14 *4 (-643 (-1180)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) + (-5 *2 (-247 *4 *5)) (-5 *1 (-947 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-1052)) + (-5 *2 (-484 *4 *5)) (-5 *1 (-947 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) + ((*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *3 (-1174 (-549))) (-5 *2 (-549)) (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565)))) + ((*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-191)) (-5 *3 (-549)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *1 (-945)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-565)) (-5 *3 (-549)))) + ((*1 *2 *3) (-12 (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-945)) (-5 *3 (-549))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-893 *6))) + (-5 *5 (-1 (-891 *6 *8) *8 (-893 *6) (-891 *6 *8))) (-4 *6 (-1104)) + (-4 *8 (-13 (-1052) (-616 (-893 *6)) (-1041 *7))) (-5 *2 (-891 *6 *8)) + (-4 *7 (-1052)) (-5 *1 (-944 *6 *7 *8))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *3 (-166 *6)) + (-4 (-949 *6) (-889 *5)) (-4 *6 (-13 (-889 *5) (-172))) + (-5 *1 (-178 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-891 *4 *1)) (-5 *3 (-893 *4)) (-4 *1 (-889 *4)) + (-4 *4 (-1104)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) + (-4 *6 (-13 (-1104) (-1041 *3))) (-4 *3 (-889 *5)) (-5 *1 (-934 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) + (-4 *3 (-13 (-424 *6) (-616 *4) (-889 *5) (-1041 (-613 $)))) + (-5 *4 (-893 *5)) (-4 *6 (-13 (-560) (-889 *5))) (-5 *1 (-935 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 (-549) *3)) (-5 *4 (-893 (-549))) (-4 *3 (-548)) + (-5 *1 (-936 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1104)) + (-4 *6 (-13 (-1104) (-1041 (-613 $)) (-616 *4) (-889 *5))) (-5 *4 (-893 *5)) + (-5 *1 (-937 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-888 *5 *6 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) + (-4 *6 (-889 *5)) (-4 *3 (-668 *6)) (-5 *1 (-938 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-891 *6 *3) *8 (-893 *6) (-891 *6 *3))) (-4 *8 (-852)) + (-5 *2 (-891 *6 *3)) (-5 *4 (-893 *6)) (-4 *6 (-1104)) + (-4 *3 (-13 (-953 *9 *7 *8) (-616 *4))) (-4 *7 (-795)) + (-4 *9 (-13 (-1052) (-889 *6))) (-5 *1 (-939 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) + (-4 *3 (-13 (-953 *8 *6 *7) (-616 *4))) (-5 *4 (-893 *5)) (-4 *7 (-889 *5)) + (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-13 (-1052) (-889 *5))) + (-5 *1 (-939 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 *3)) (-4 *5 (-1104)) (-4 *3 (-994 *6)) + (-4 *6 (-13 (-560) (-889 *5) (-616 *4))) (-5 *4 (-893 *5)) + (-5 *1 (-942 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-891 *5 (-1180))) (-5 *3 (-1180)) (-5 *4 (-893 *5)) + (-4 *5 (-1104)) (-5 *1 (-943 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-643 (-893 *7))) (-5 *5 (-1 *9 (-643 *9))) + (-5 *6 (-1 (-891 *7 *9) *9 (-893 *7) (-891 *7 *9))) (-4 *7 (-1104)) + (-4 *9 (-13 (-1052) (-616 (-893 *7)) (-1041 *8))) (-5 *2 (-891 *7 *9)) + (-5 *3 (-643 *9)) (-4 *8 (-1052)) (-5 *1 (-944 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1104) (-1041 *5))) + (-4 *5 (-889 *4)) (-4 *4 (-1104)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-934 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) + ((*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) + ((*1 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-933 *3 *2)) (-4 *2 (-424 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-113)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-509)) (-5 *2 (-315 (-549))) (-5 *1 (-932)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-509)) (-4 *4 (-1104)) (-5 *1 (-933 *4 *2)) (-4 *2 (-424 *4))))) (((*1 *2 *3) - (-12 (-14 *4 (-645 (-1179))) (-14 *5 (-772)) - (-5 *2 - (-645 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567)))))) - (-5 *1 (-508 *4 *5)) - (-5 *3 - (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) - (-247 *4 (-410 (-567)))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-142 *3 *4 *2)) - (-4 *2 (-375 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-994 *4)) (-4 *2 (-375 *4)) - (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-690 *5)) (-4 *5 (-994 *4)) (-4 *4 (-559)) - (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-4 *4 (-994 *3)) (-5 *1 (-1238 *3 *4 *2)) - (-4 *2 (-1245 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) - (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *9 (-1067 *6 *7 *8)) - (-5 *2 - (-645 - (-2 (|:| -4178 (-645 *9)) (|:| -3526 *10) (|:| |ineq| (-645 *9))))) - (-5 *1 (-990 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1073 *6 *7 *8 *9)) - (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *9 (-1067 *6 *7 *8)) - (-5 *2 - (-645 - (-2 (|:| -4178 (-645 *9)) (|:| -3526 *10) (|:| |ineq| (-645 *9))))) - (-5 *1 (-1109 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1051)) (-4 *1 (-688 *3 *4 *5)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1144 *3 *4)) (-5 *1 (-995 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-365)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1051)) - (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5))))) + (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-643 (-1092 (-225)))) + (-5 *1 (-931))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) + (-5 *1 (-928)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) + (-5 *1 (-928)))) + ((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) + (-5 *1 (-930)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-946 (-225)) (-225))) (-5 *3 (-1092 (-225))) + (-5 *1 (-930))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-643 (-1 (-225) (-225)))) (-5 *3 (-1092 (-225))) + (-5 *1 (-928)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-643 (-1 (-225) (-225)))) (-5 *3 (-1092 (-225))) + (-5 *1 (-928)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) + (-4 *3 (-616 (-538))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) + (-4 *3 (-616 (-538))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-930))))) +(((*1 *2 *1) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092 (-225))) (-5 *1 (-930))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-225)))) (-5 *1 (-930))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-930))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-930))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-928)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1092 (-225))) (-5 *1 (-928)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1180)) (-5 *5 (-1092 (-225))) (-5 *2 (-928)) (-5 *1 (-929 *3)) + (-4 *3 (-616 (-538))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-5 *2 (-928)) (-5 *1 (-929 *3)) (-4 *3 (-616 (-538)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) + ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) + ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-470)))) + ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-928))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) - (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-898 *2 *4)) - (-4 *2 (-1245 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) - (-5 *2 (-2 (|:| -1344 *1) (|:| |gap| (-772)) (|:| -2642 *1))) - (-4 *1 (-1067 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -1344 *1) (|:| |gap| (-772)) (|:| -2642 *1))) - (-4 *1 (-1067 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-1272))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1245 *5)) - (-5 *1 (-808 *5 *2 *3 *6)) - (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) - (-4 *3 (-657 *2)) (-4 *6 (-657 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1245 *5)) - (-5 *1 (-808 *5 *2 *3 *6)) - (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) - (-4 *6 (-657 (-410 *2)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-381)) (-5 *1 (-1065))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-756))))) -(((*1 *1 *1) (-5 *1 (-1065)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) - (-5 *1 (-306))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-1161)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-748))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102))))) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-112)) + (-5 *1 (-927 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-112)) + (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200))))) -(((*1 *2 *1) (-12 (-5 *2 (-1122)) (-5 *1 (-844 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-753))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) - (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-4 *2 (-902 *5)) (-5 *1 (-693 *5 *2 *3 *4)) - (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422))))))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-567)) + (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-852) (-616 (-1180)))) + (-4 *5 (-795)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *2 (-953 *3 *5 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-794)) (-4 *4 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) - (-5 *1 (-452 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-945 (-225))))) - (-5 *2 (-645 (-1096 (-225)))) (-5 *1 (-930))))) -(((*1 *2) - (-12 (-5 *2 (-690 (-912 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) - (-14 *4 (-923)))) - ((*1 *2) - (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) - (-14 *4 - (-3 (-1175 *3) - (-1269 (-645 (-2 (|:| -2233 *3) (|:| -2188 (-1122))))))))) - ((*1 *2) - (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-923))))) + (-2 (|:| |det| *12) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) + (-5 *4 (-691 *12)) (-5 *5 (-643 (-410 (-949 *9)))) (-5 *6 (-643 (-643 *12))) + (-5 *7 (-773)) (-5 *8 (-549)) (-4 *9 (-13 (-308) (-147))) + (-4 *12 (-953 *9 *11 *10)) (-4 *10 (-13 (-852) (-616 (-1180)))) + (-4 *11 (-795)) + (-5 *2 + (-2 (|:| |eqzro| (-643 *12)) (|:| |neqzro| (-643 *12)) + (|:| |wcond| (-643 (-949 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *9)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *9))))))))) + (-5 *1 (-927 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-772)) (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-978 *4 *5 *3 *6)) (-4 *4 (-1051)) (-4 *5 (-794)) - (-4 *3 (-851)) (-4 *6 (-1067 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-410 (-1175 (-317 *3)))) (-4 *3 (-559)) - (-5 *1 (-1132 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312)))) - ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 *2)))) + (-12 (-5 *2 (-691 *7)) (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) + (-4 *6 (-795)) (-5 *1 (-927 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-691 *8)) (-5 *4 (-773)) (-4 *8 (-953 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) + (-4 *7 (-795)) + (-5 *2 + (-643 + (-2 (|:| |det| *8) (|:| |rows| (-643 (-549))) + (|:| |cols| (-643 (-549)))))) + (-5 *1 (-927 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-643 *8))) (-5 *3 (-643 *8)) (-4 *8 (-953 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) + (-4 *7 (-795)) (-5 *2 (-112)) (-5 *1 (-927 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) - (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) - (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) - (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) - (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2254 *4))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1102)) - (-4 *2 (-851))))) -(((*1 *1 *1 *1) (-4 *1 (-969)))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) - ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1272)))) - ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1272))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1049))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-308)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1102)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3693 (-772)) (|:| -2642 (-772)))) - (-5 *1 (-772)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| -3661 *4) (|:| -3380 (-567))))) - (-4 *4 (-1245 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-421 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1051)) - (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) - (-14 *3 (-645 (-1179)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1175 *7)) (-4 *5 (-1051)) - (-4 *7 (-1051)) (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) - (-4 *6 (-1245 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1051)) (-4 *7 (-1051)) - (-4 *4 (-1245 *5)) (-5 *2 (-1175 *7)) (-5 *1 (-504 *5 *4 *6 *7)) - (-4 *6 (-1245 *4))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3906 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) - (-5 *3 (-410 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-577 *7 *8))))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) + (-4 *6 (-795)) (-5 *2 (-643 (-643 (-549)))) (-5 *1 (-927 *4 *5 *6 *7)) + (-5 *3 (-549)) (-4 *7 (-953 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1219)) - (-4 *3 (-375 *4)) (-4 *5 (-375 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-877))) (-5 *1 (-486))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *3 *2)) - (-4 *3 (-13 (-1102) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1280))))) + (-12 (-5 *2 (-643 (-643 *6))) (-4 *6 (-953 *3 *5 *4)) + (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-852) (-616 (-1180)))) + (-4 *5 (-795)) (-5 *1 (-927 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-192))))) + (-643 + (-2 (|:| -3513 (-773)) + (|:| |eqns| + (-643 + (-2 (|:| |det| *7) (|:| |rows| (-643 (-549))) + (|:| |cols| (-643 (-549)))))) + (|:| |fgb| (-643 *7))))) + (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-773)) + (-5 *1 (-927 *4 *5 *6 *7))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1102))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1261 *2 *3 *4)) (-4 *2 (-1051)) (-14 *3 (-1179)) - (-14 *4 *2)))) -(((*1 *2 *3 *2) (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-264)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271)))) - ((*1 *2 *1 *3) + (-5 *3 + (-643 + (-2 (|:| -3513 (-773)) + (|:| |eqns| + (-643 + (-2 (|:| |det| *7) (|:| |rows| (-643 (-549))) + (|:| |cols| (-643 (-549)))))) + (|:| |fgb| (-643 *7))))) + (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) (-5 *2 (-773)) + (-5 *1 (-927 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) + (-4 *6 (-795)) (-5 *2 (-643 *3)) (-5 *1 (-927 *4 *5 *6 *3)) + (-4 *3 (-953 *4 *6 *5))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *2 (-1274)) (-5 *1 (-1271)))) - ((*1 *2 *1) + (-2 (|:| -1748 (-691 (-410 (-949 *4)))) (|:| |vec| (-643 (-410 (-949 *4)))) + (|:| -3513 (-773)) (|:| |rows| (-643 (-549))) (|:| |cols| (-643 (-549))))) + (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) + (-4 *6 (-795)) + (-5 *2 + (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *4))))))) + (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -3260 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-1271)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))) + (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *4))))))) + (-5 *3 (-643 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-953 *4 *6 *5)) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) + (-5 *1 (-927 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) - (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-410 (-954 (-169 (-567)))))) - (-5 *4 (-645 (-1179))) (-5 *2 (-645 (-645 (-169 *5)))) - (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849)))))) + (-12 (-5 *3 (-691 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) + (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) + (-5 *2 + (-643 + (-2 (|:| -3513 (-773)) + (|:| |eqns| + (-643 + (-2 (|:| |det| *8) (|:| |rows| (-643 (-549))) + (|:| |cols| (-643 (-549)))))) + (|:| |fgb| (-643 *8))))) + (-5 *1 (-927 *5 *6 *7 *8)) (-5 *4 (-773))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) + (-4 *6 (-795)) (-4 *7 (-953 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-643 *7)) (|:| |n0| (-643 *7)))) + (-5 *1 (-927 *4 *5 *6 *7)) (-5 *3 (-643 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-953 *4 *6 *5)) + (-5 *1 (-927 *4 *5 *6 *2)) (-4 *5 (-13 (-852) (-616 (-1180)))) + (-4 *6 (-795))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) + (-5 *2 (-643 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)) + (-4 *7 (-953 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-852) (-616 (-1180)))) + (-4 *6 (-795)) (-5 *2 (-410 (-949 *4))) (-5 *1 (-927 *4 *5 *6 *3)) + (-4 *3 (-953 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-691 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) + (-5 *2 (-691 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) + (-5 *2 (-643 (-410 (-949 *4)))) (-5 *1 (-927 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-691 *11)) (-5 *4 (-643 (-410 (-949 *8)))) (-5 *5 (-773)) + (-5 *6 (-1162)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-953 *8 *10 *9)) + (-4 *9 (-13 (-852) (-616 (-1180)))) (-4 *10 (-795)) + (-5 *2 + (-2 + (|:| |rgl| + (-643 + (-2 (|:| |eqzro| (-643 *11)) (|:| |neqzro| (-643 *11)) + (|:| |wcond| (-643 (-949 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *8)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *8)))))))))) + (|:| |rgsz| (-549)))) + (-5 *1 (-927 *8 *9 *10 *11)) (-5 *7 (-549))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1162)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) + (-5 *2 + (-643 + (-2 (|:| |eqzro| (-643 *7)) (|:| |neqzro| (-643 *7)) + (|:| |wcond| (-643 (-949 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *4)))))))))) + (-5 *1 (-927 *4 *5 *6 *7)) (-4 *7 (-953 *4 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-410 (-954 *5))) (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) - (-5 *1 (-1131 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-295 (-410 (-954 *5)))) (-5 *4 (-1179)) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) - (-5 *1 (-1131 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-295 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)))) + (-12 + (-5 *3 + (-643 + (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) + (|:| |wcond| (-643 (-949 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) + (-5 *4 (-1162)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-953 *5 *7 *6)) + (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) (-5 *2 (-549)) + (-5 *1 (-927 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-691 *8)) (-4 *8 (-953 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) + (-4 *6 (-13 (-852) (-616 (-1180)))) (-4 *7 (-795)) + (-5 *2 + (-643 + (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) + (|:| |wcond| (-643 (-949 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) + (-5 *1 (-927 *5 *6 *7 *8)) (-5 *4 (-643 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) - (-5 *1 (-1131 *5)))) + (-12 (-5 *3 (-691 *8)) (-5 *4 (-643 (-1180))) (-4 *8 (-953 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) + (-4 *7 (-795)) + (-5 *2 + (-643 + (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) + (|:| |wcond| (-643 (-949 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) + (-5 *1 (-927 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-410 (-954 *4)))) (-4 *4 (-13 (-308) (-147))) - (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1131 *4)))) + (-12 (-5 *3 (-691 *7)) (-4 *7 (-953 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) + (-4 *5 (-13 (-852) (-616 (-1180)))) (-4 *6 (-795)) + (-5 *2 + (-643 + (-2 (|:| |eqzro| (-643 *7)) (|:| |neqzro| (-643 *7)) + (|:| |wcond| (-643 (-949 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *4)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *4)))))))))) + (-5 *1 (-927 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-691 *9)) (-5 *5 (-922)) (-4 *9 (-953 *6 *8 *7)) + (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) + (-4 *8 (-795)) + (-5 *2 + (-643 + (-2 (|:| |eqzro| (-643 *9)) (|:| |neqzro| (-643 *9)) + (|:| |wcond| (-643 (-949 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *6)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *6)))))))))) + (-5 *1 (-927 *6 *7 *8 *9)) (-5 *4 (-643 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 (-1180))) (-5 *5 (-922)) + (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) + (-5 *2 + (-643 + (-2 (|:| |eqzro| (-643 *9)) (|:| |neqzro| (-643 *9)) + (|:| |wcond| (-643 (-949 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *6)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *6)))))))))) + (-5 *1 (-927 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-295 (-410 (-954 *5))))) (-5 *4 (-645 (-1179))) - (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) - (-5 *1 (-1131 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-295 (-410 (-954 *4))))) - (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) - (-5 *1 (-1131 *4))))) + (-12 (-5 *3 (-691 *8)) (-5 *4 (-922)) (-4 *8 (-953 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) + (-4 *7 (-795)) + (-5 *2 + (-643 + (-2 (|:| |eqzro| (-643 *8)) (|:| |neqzro| (-643 *8)) + (|:| |wcond| (-643 (-949 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1269 (-410 (-949 *5)))) + (|:| -2190 (-643 (-1269 (-410 (-949 *5)))))))))) + (-5 *1 (-927 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 *9)) (-5 *5 (-1162)) + (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) + (-5 *1 (-927 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-691 *9)) (-5 *4 (-643 (-1180))) (-5 *5 (-1162)) + (-4 *9 (-953 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) + (-4 *7 (-13 (-852) (-616 (-1180)))) (-4 *8 (-795)) (-5 *2 (-549)) + (-5 *1 (-927 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-691 *8)) (-5 *4 (-1162)) (-4 *8 (-953 *5 *7 *6)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-852) (-616 (-1180)))) + (-4 *7 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-691 *10)) (-5 *4 (-643 *10)) (-5 *5 (-922)) (-5 *6 (-1162)) + (-4 *10 (-953 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) + (-4 *8 (-13 (-852) (-616 (-1180)))) (-4 *9 (-795)) (-5 *2 (-549)) + (-5 *1 (-927 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-691 *10)) (-5 *4 (-643 (-1180))) (-5 *5 (-922)) (-5 *6 (-1162)) + (-4 *10 (-953 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) + (-4 *8 (-13 (-852) (-616 (-1180)))) (-4 *9 (-795)) (-5 *2 (-549)) + (-5 *1 (-927 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-691 *9)) (-5 *4 (-922)) (-5 *5 (-1162)) (-4 *9 (-953 *6 *8 *7)) + (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-852) (-616 (-1180)))) + (-4 *8 (-795)) (-5 *2 (-549)) (-5 *1 (-927 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1269 (-645 (-567)))) (-5 *1 (-483)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3))))) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-365)) (-4 *2 (-1245 *4)) + (-5 *1 (-926 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-947 *2 *3)) - (-4 *3 (-1245 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1269 *5)) (-4 *5 (-793)) (-5 *2 (-112)) - (-5 *1 (-846 *4 *5)) (-14 *4 (-772))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-755))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1204) (-961))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *3) - (-12 (-5 *2 (-1159 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-1051))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *2 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) - (-5 *1 (-176 *3))))) + (-12 (-4 *1 (-924)) (-5 *2 (-2 (|:| -4386 (-643 *1)) (|:| -2572 *1))) + (-5 *3 (-643 *1))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-643 *1)) (-4 *1 (-924))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1102)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1102))))) -(((*1 *2 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) - (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) - (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2)) (-4 *2 (-308)))) - ((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) - (-4 *2 (-688 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1055 *2 *3 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1037)) (-5 *1 (-754))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-966 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) + (-12 (-5 *2 (-643 (-949 *4))) (-5 *3 (-643 (-1180))) (-4 *4 (-455)) + (-5 *1 (-921 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) - (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-875)) - (-5 *5 (-923)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1273)))) + (-12 (-5 *2 (-643 (-949 *4))) (-5 *3 (-643 (-1180))) (-4 *4 (-455)) + (-5 *1 (-921 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2 *3) (-12 (-5 *3 (-974)) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2) (-12 (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-922))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-908 (-549))) (-5 *1 (-920)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-908 (-549))) (-5 *1 (-920))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *2)) + (-4 *2 (-953 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *5 (-308)) (-5 *1 (-919 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-471)) - (-5 *1 (-1273)))) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *6 *4 *5)) (-5 *1 (-919 *4 *5 *6 *2)) + (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-408 *2)) (-4 *2 (-308)) (-5 *1 (-917 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *4 (-645 (-264))) - (-5 *2 (-471)) (-5 *1 (-1273))))) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147))) + (-5 *2 (-51)) (-5 *1 (-918 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-408 (-949 *6))) (-5 *5 (-1180)) (-5 *3 (-949 *6)) + (-4 *6 (-13 (-308) (-147))) (-5 *2 (-51)) (-5 *1 (-918 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-408 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-917 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-917 *3)) (-4 *3 (-308))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1174 *3)) (-5 *1 (-917 *3)) (-4 *3 (-308))))) +(((*1 *1 *1) (-12 (-5 *1 (-917 *2)) (-4 *2 (-308))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1245 (-410 (-549)))) (-5 *1 (-916 *3 *2)) + (-4 *2 (-1245 (-410 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1175 (-567))) (-5 *2 (-567)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) + (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *3)) + (-4 *3 (-1245 (-410 *4)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-567)) (-5 *1 (-204))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-613 *4)) (-5 *6 (-1179)) - (-4 *4 (-13 (-433 *7) (-27) (-1204))) - (-4 *7 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) - (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1102))))) + (-12 (-5 *3 (-643 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549))))) + (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *5)) + (-4 *5 (-1245 (-410 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1051)) (-4 *5 (-1245 *4)) (-5 *2 (-1 *6 (-645 *6))) - (-5 *1 (-1263 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1260 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1204) (-433 *3))) - (-14 *4 (-1179)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-4 *2 (-13 (-27) (-1204) (-433 *3) (-10 -8 (-15 -2504 ($ *4))))) - (-4 *4 (-849)) - (-4 *5 - (-13 (-1247 *2 *4) (-365) (-1204) - (-10 -8 (-15 -3592 ($ $)) (-15 -3670 ($ $))))) - (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-985 *5)) (-14 *7 (-1179))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *2 - (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1161)) (|:| |prob| (-1161)))))) - (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) - (-14 *6 (-1179)) (-14 *7 *3)))) -(((*1 *1) (-5 *1 (-1087)))) -(((*1 *2 *3) - (-12 (-4 *4 (-911)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-421 (-1175 *7))) - (-5 *1 (-908 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) + (-12 (-4 *3 (-1245 (-410 (-549)))) + (-5 *2 (-2 (|:| |den| (-549)) (|:| |gcdnum| (-549)))) (-5 *1 (-916 *3 *4)) + (-4 *4 (-1245 (-410 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-911)) (-4 *5 (-1245 *4)) (-5 *2 (-421 (-1175 *5))) - (-5 *1 (-909 *4 *5)) (-5 *3 (-1175 *5))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1063 *2 *3)) - (-4 *3 (-1245 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1161)) (-5 *2 (-214 (-505))) (-5 *1 (-838))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) - (-5 *2 (-645 (-945 *4))) (-5 *1 (-1215)) (-5 *3 (-945 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1193 *2)) (-4 *2 (-365))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) - (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1102)) - (-4 *2 (-851))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-929))))) + (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-549)) (-5 *1 (-916 *4 *3)) + (-4 *3 (-1245 (-410 *4)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1159 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2031 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1037)) (-5 *1 (-306))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1229 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) - (-5 *2 (-410 (-954 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1229 *4)) (-4 *4 (-1051)) (-4 *4 (-559)) - (-5 *2 (-410 (-954 *4)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-437)) (-4 *5 (-1102)) - (-5 *1 (-1108 *5 *4)) (-4 *4 (-433 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-748))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-410 (-567))) - (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-951 *7 *5 *6)) - (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-308))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219))))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539))))) -(((*1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) - (-14 *4 (-645 (-1179))))) - ((*1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) - (-14 *4 (-645 (-1179))))) - ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-4 *2 (-344 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-5 *3 (-549)) (-4 *4 (-1245 (-410 *3))) (-5 *2 (-922)) + (-5 *1 (-916 *4 *5)) (-4 *5 (-1245 (-410 *4)))))) (((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) - (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + (|partial| -12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) + (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) + (-4 *4 (-13 (-560) (-1041 (-549)))) + (-5 *2 (-2 (|:| -4203 (-773)) (|:| -2546 *8))) + (-5 *1 (-914 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1175 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) - (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-951 *8 *6 *7)) (-4 *6 (-794)) - (-5 *2 - (-2 (|:| |upol| (-1175 *8)) (|:| |Lval| (-645 *8)) - (|:| |Lfact| - (-645 (-2 (|:| -3661 (-1175 *8)) (|:| -2618 (-567))))) - (|:| |ctpol| *8))) - (-5 *1 (-743 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))) + (|partial| -12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) + (-4 *4 (-1245 (-410 (-549)))) (-4 *5 (-1245 (-410 *4))) + (-4 *6 (-344 (-410 (-549)) *4 *5)) + (-5 *2 (-2 (|:| -4203 (-773)) (|:| -2546 *6))) (-5 *1 (-915 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-951 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) - (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) - (-4 *7 (-851)) (-4 *8 (-951 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) - (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) + (-12 (-5 *3 (-335 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1245 *5)) + (-4 *7 (-1245 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) + (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-112)) + (-5 *1 (-914 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-335 (-410 (-549)) *4 *5 *6)) (-4 *4 (-1245 (-410 (-549)))) + (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 (-410 (-549)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-915 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-455)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1174 *6)) (-4 *6 (-953 *5 *3 *4)) (-4 *3 (-795)) (-4 *4 (-852)) + (-4 *5 (-913)) (-5 *1 (-460 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-913))))) +(((*1 *2 *3) + (-12 (-5 *2 (-408 (-1174 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1174 *1)) + (-4 *4 (-455)) (-4 *4 (-560)) (-4 *4 (-1104)))) + ((*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-408 (-1174 *1))) (-5 *1 (-315 *4)) (-5 *3 (-1174 *1)) + (-4 *4 (-455)) (-4 *4 (-560)) (-4 *4 (-1104)))) + ((*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *2 (-408 (-1174 *1))) (-5 *3 (-1174 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) - (-4 *2 (-675 *3))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-562))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-645 (-1179))) (-4 *2 (-172)) - (-4 *4 (-238 (-2498 *5) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -2188 *3) (|:| -2618 *4)) - (-2 (|:| -2188 *3) (|:| -2618 *4)))) - (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) - (-4 *7 (-951 *2 *4 (-865 *5)))))) + (|partial| -12 (-5 *2 (-643 (-1174 *5))) (-5 *3 (-1174 *5)) (-4 *5 (-166 *4)) + (-4 *4 (-548)) (-5 *1 (-149 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-1245 *4)) + (-4 *4 (-352)) (-5 *1 (-360 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-643 (-1174 (-549)))) (-5 *3 (-1174 (-549))) + (-5 *1 (-575)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-643 (-1174 *1))) (-5 *3 (-1174 *1)) (-4 *1 (-913))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-691 *1)) (-4 *1 (-352)) (-5 *2 (-1269 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-691 *1)) (-4 *1 (-145)) (-4 *1 (-913)) + (-5 *2 (-1269 *1))))) +(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-352))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-913))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-852)) (-4 *5 (-913)) (-4 *6 (-795)) + (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-408 (-1174 *8))) (-5 *1 (-910 *5 *6 *7 *8)) + (-5 *4 (-1174 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) + (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5))))) (((*1 *2) - (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-345 *3 *4)) (-14 *3 (-923)) - (-14 *4 (-923)))) + (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-913)) (-5 *1 (-460 *3 *4 *2 *5)) + (-4 *5 (-953 *2 *3 *4)))) ((*1 *2) - (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-1175 *3)))) - ((*1 *2) - (-12 (-5 *2 (-960 (-1122))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-923))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-4 *1 (-905 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) - (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1040 (-567)) (-640 (-567)) (-455))) - (-5 *2 (-844 *4)) (-5 *1 (-1255 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1204) (-433 *3))) (-14 *5 (-1179)) - (-14 *6 *4)))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) - (-5 *1 (-989 *3 *4 *5 *6)) (-4 *6 (-951 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) - (-4 *4 (-13 (-1102) (-34)))))) -(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-911))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1167 *4 *5)) - (-14 *4 (-923)) (-4 *5 (-1051))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-929))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1161)) (-5 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-822))))) -(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-559)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-971 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *6 *5)) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-5 *1 (-926 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-331))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *3 (-172)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-172))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) + (-12 (-4 *3 (-795)) (-4 *4 (-852)) (-4 *2 (-913)) (-5 *1 (-910 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-913)) (-5 *1 (-911 *2 *3)) (-4 *3 (-1245 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-892 *4 *5)) (-4 *5 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1169))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-308)) - (-5 *2 (-772)) (-5 *1 (-458 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) + (-12 (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) + (-5 *2 (-408 (-1174 *7))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) + (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) - (-5 *2 - (-645 - (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4)))) - (|:| |geneigvec| (-645 (-690 (-410 (-954 *4)))))))) - (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4))))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1042))))) -(((*1 *2 *3) - (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-241)) (-5 *3 (-1161)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-241)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) - (-5 *1 (-1239 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1175 *4)) - (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849)))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) + (-12 (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-953 *4 *5 *6)) + (-5 *2 (-408 (-1174 *7))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-1174 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-913)) (-4 *5 (-1245 *4)) (-5 *2 (-408 (-1174 *5))) + (-5 *1 (-911 *4 *5)) (-5 *3 (-1174 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-643 (-1174 *7))) (-5 *3 (-1174 *7)) + (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-913)) (-4 *5 (-795)) (-4 *6 (-852)) + (-5 *1 (-910 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-643 (-1174 *5))) (-5 *3 (-1174 *5)) + (-4 *5 (-1245 *4)) (-4 *4 (-913)) (-5 *1 (-911 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-643 (-1174 *7))) (-5 *3 (-1174 *7)) + (-4 *7 (-953 *5 *6 *4)) (-4 *5 (-913)) (-4 *6 (-795)) (-4 *4 (-852)) + (-5 *1 (-910 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-643 *6)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) ((*1 *1) (-4 *1 (-548))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-905 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-643 (-773)))) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-905 *3))) (-4 *3 (-1104)) (-5 *1 (-908 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1104)) (-5 *2 (-1100 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1104)) (-5 *2 (-1100 (-643 *4))) (-5 *1 (-908 *4)) + (-5 *3 (-643 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1104)) (-5 *2 (-1100 (-1100 *4))) (-5 *1 (-908 *4)) + (-5 *3 (-1100 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) (((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-645 *6))))) + (-12 (-5 *2 (-1100 (-1100 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-643 (-773))) + (-5 *1 (-908 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1104)) (-5 *2 (-643 (-773))) + (-5 *1 (-908 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-1100 *3)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-907 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-908 *4)) (-4 *4 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-908 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-907 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-4 *1 (-907 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1145 *4 *2)) (-14 *4 (-922)) + (-4 *2 (-13 (-1052) (-10 -7 (-6 (-4427 "*"))))) (-5 *1 (-906 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-643 *3)) (|:| |image| (-643 *3)))) + (-5 *1 (-905 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-643 *3))) (-4 *3 (-1104)) (-5 *1 (-905 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-974)) (-5 *1 (-905 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-905 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-4 *1 (-1041 (-549))) (-4 *1 (-299)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-4 *1 (-1041 (-549))) (-4 *1 (-299)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1104))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) + (-12 (-5 *2 (-1100 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) (-4 *3 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-905 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1104))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-773)) (-4 *1 (-231 *4)) (-4 *4 (-1052)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1052)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-773)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) + (-4 *4 (-1245 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1245 *2)))) + ((*1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 *4)) (-5 *3 (-643 (-773))) (-4 *1 (-903 *4)) + (-4 *4 (-1104)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-903 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *1 (-903 *3)) (-4 *3 (-1104)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1104))))) +(((*1 *2 *3) + (-12 (-5 *3 (-771)) (-5 *2 - (-2 (|:| -4188 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) + (-5 *1 (-568)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) + (-12 (-5 *3 (-771)) (-5 *4 (-1066)) (-5 *2 - (-2 (|:| |poly| *6) (|:| -1374 (-410 *6)) - (|:| |special| (-410 *6)))) - (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-898 *3 *4)) - (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| -4335 *3) (|:| -4347 *3))) (-5 *1 (-898 *3 *5)) - (-4 *3 (-1245 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) - (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) - (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) - (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) - (-4 *8 (-1067 *5 *6 *7)) (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *1 *2) (-12 (-5 *1 (-1205 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-1205 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-645 (-1205 *2))) (-5 *1 (-1205 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-645 (-1175 *13))) (-5 *3 (-1175 *13)) - (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) - (-5 *7 (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| *13))))) - (-5 *8 (-645 (-772))) (-5 *9 (-1269 (-645 (-1175 *10)))) - (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-951 *10 *11 *12)) - (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13))))) -(((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-916 *3)) (-4 *3 (-308))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-951 *4 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-520))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) - (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756))))) -(((*1 *2 *3) - (-12 (-5 *2 (-645 (-1175 (-567)))) (-5 *1 (-191)) (-5 *3 (-567))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) - (-4 *7 (-951 *3 *5 *6)) - (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *8) (|:| |radicand| *8))) - (-5 *1 (-955 *5 *6 *3 *7 *8)) (-5 *4 (-772)) - (-4 *8 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) (-15 -4306 (*7 $)))))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-752))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2304 *4))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *3) - (-12 (-5 *3 (-690 *2)) (-4 *4 (-1245 *2)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1051))))) -(((*1 *2 *3) - (-12 (-4 *1 (-911)) (-5 *2 (-421 (-1175 *1))) (-5 *3 (-1175 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) - (-5 *1 (-665 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1289 *3 *4)) - (-4 *3 (-851)) (-4 *4 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1175 *4)) (-5 *1 (-531 *4)) - (-4 *4 (-351))))) -(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) - (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1245 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| -3661 *4) (|:| -3380 (-567))))) - (-4 *4 (-1245 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1067 *6 *7 *8)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1110 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -3526 *9)))) - (-5 *5 (-112)) (-4 *8 (-1067 *6 *7 *4)) (-4 *9 (-1073 *6 *7 *4 *8)) - (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) - (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -3526 *9)))) - (-5 *1 (-1110 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) + (-5 *1 (-568)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-789)) (-5 *3 (-1066)) + (-5 *4 + (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) + (|:| |extra| (-1038)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-789)) (-5 *3 (-1066)) + (-5 *4 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1159 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2031 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-562))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) - (-5 *1 (-906 *4))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) - (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) - (-14 *6 (-645 (-1179))) + (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)) + (|:| |extra| (-1038)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-802)) (-5 *3 (-1066)) + (-5 *4 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-810)) (-5 *2 - (-645 (-1148 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) - (-5 *1 (-629 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) - ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) - (-5 *2 (-645 *4)) (-5 *1 (-1116 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-745 *3)) (-4 *3 (-172))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-923)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) - (-5 *2 (-1274)) (-5 *1 (-1270))))) -(((*1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| -3661 (-1175 *6)) (|:| -2618 (-567))))) - (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) - (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5))))) -(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))))) + (-5 *1 (-807)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-810)) (-5 *4 (-1066)) + (-5 *2 + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))))) + (-5 *1 (-807)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-841)) (-5 *3 (-1066)) + (-5 *4 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) + (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-841)) (-5 *3 (-1066)) + (-5 *4 + (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) + (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) + (|:| |ub| (-643 (-844 (-225)))))) + (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1245 *2)) - (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-1245 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) - (-4 *3 (-412 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *3 (-1245 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) - (-4 *4 (-412 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *3 (-172)))) + (-12 (-5 *3 (-843)) + (-5 *2 + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))))) + (-5 *1 (-842)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-843)) (-5 *4 (-1066)) + (-5 *2 + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))))) + (-5 *1 (-842)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-898)) (-5 *3 (-1066)) + (-5 *4 + (-2 (|:| |pde| (-643 (-315 (-225)))) + (|:| |constraints| + (-643 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) + (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) + (|:| |dFinish| (-691 (-225)))))) + (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) + (|:| |tol| (-225)))) + (-5 *2 (-2 (|:| -3071 (-380)) (|:| |explanations| (-1162)))))) ((*1 *2 *3) - (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1051)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1102)))) + (-12 (-5 *3 (-901)) + (-5 *2 + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))))) + (-5 *1 (-900)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) - (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1102))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1269 *5))) (-5 *4 (-567)) (-5 *2 (-1269 *5)) - (-5 *1 (-1031 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-1179))) (-5 *1 (-1183))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-410 (-567)))) - (-5 *2 (-2 (|:| -1380 (-1159 *4)) (|:| -1394 (-1159 *4)))) - (-5 *1 (-1165 *4)) (-5 *3 (-1159 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) - (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-923)))) - ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051))))) + (-12 (-5 *3 (-901)) (-5 *4 (-1066)) + (-5 *2 + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))))) + (-5 *1 (-900))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-773)) (-4 *4 (-365)) (-5 *1 (-899 *2 *4)) (-4 *2 (-1245 *4))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-5 *1 (-899 *2 *3)) (-4 *2 (-1245 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567)))) - ((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-645 (-772))) - (-5 *1 (-906 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760))))) + (-12 (-4 *1 (-898)) + (-5 *3 + (-2 (|:| |pde| (-643 (-315 (-225)))) + (|:| |constraints| + (-643 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) + (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) + (|:| |dFinish| (-691 (-225)))))) + (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) + (|:| |tol| (-225)))) + (-5 *2 (-1038))))) +(((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-538))) ((*1 *1) (-4 *1 (-724))) ((*1 *1) (-4 *1 (-728))) + ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104)))) + ((*1 *1) (-12 (-5 *1 (-896 *2)) (-4 *2 (-852))))) (((*1 *2 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) - (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051)))) - ((*1 *2 *3) - (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) - (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) + (-5 *2 (-643 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4424 "*"))) (-4 *2 (-1051))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-923)) (-4 *1 (-1247 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-793)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1250 *3)) (-4 *3 (-1051))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -1916 *3)))) - (-5 *4 (-772)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-532))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-1175 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *4 (-613 $)) $)) - (-15 -4306 ((-1127 *4 (-613 $)) $)) - (-15 -2504 ($ (-1127 *4 (-613 $)))))))))) -(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-967)))) - ((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-991)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1102) (-34))) (-5 *1 (-1142 *2 *3)) - (-4 *3 (-13 (-1102) (-34)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-410 (-954 *4))) (-5 *3 (-1179)) - (-4 *4 (-13 (-559) (-1040 (-567)) (-147))) (-5 *1 (-573 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-539))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-62 *3)) (-14 *3 (-1179)))) - ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-69 *3)) (-14 *3 (-1179)))) - ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-72 *3)) (-14 *3 (-1179)))) - ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1274)))) - ((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1274)) (-5 *1 (-400)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1161)) (-5 *4 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) - ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-1140)))) + (-12 (-5 *2 (-643 (-2 (|:| |k| (-896 *3)) (|:| |c| *4)))) + (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) + (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-674 *3))) (-5 *1 (-896 *3)) (-4 *3 (-852))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) + (-14 *4 (-643 (-1180))))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1274)) (-5 *1 (-1140))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1040 (-567)))) - (-4 *7 (-1245 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) - (-4 *2 (-344 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1159 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1219))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) - (-15 -4306 ((-1127 *3 (-613 $)) $)) - (-15 -2504 ($ (-1127 *3 (-613 $)))))))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)))) - ((*1 *1) (-4 *1 (-1154)))) + (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1219)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3)) (-4 *3 (-852))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-645 - (-2 (|:| -1471 (-772)) - (|:| |eqns| - (-645 - (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) - (|:| |cols| (-645 (-567)))))) - (|:| |fgb| (-645 *7))))) - (-4 *7 (-951 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) (-5 *2 (-772)) - (-5 *1 (-926 *4 *5 *6 *7))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-645 - (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 *2)) - (|:| |logand| (-1175 *2))))) - (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-365)) (-5 *1 (-588 *2))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-645 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-567))))) - (-4 *2 (-559)) (-5 *1 (-421 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-567)) - (|:| -1444 (-645 (-2 (|:| |irr| *4) (|:| -3451 (-567))))))) - (-4 *4 (-1245 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) + (-12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-643 *5)) (-5 *1 (-894 *4 *5)) + (-4 *5 (-1219))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-893 *3)) (-4 *3 (-1104)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-894 *4 *3)) (-4 *3 (-1219))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-5 *2 (-112)) + (-5 *1 (-891 *4 *5)) (-4 *5 (-1104)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-990 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *3)) (-4 *3 (-1073 *4 *5 *6 *7)))) + (-12 (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-894 *5 *3)) + (-4 *3 (-1219)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1067 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1109 *5 *6 *7 *8 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3) - (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) - (-5 *1 (-1190 *4)) (-5 *3 (-645 (-645 *4)))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1219)) (-5 *2 (-772)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1102)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) - (-4 *3 (-433 *4)))) - ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548)))) - ((*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) - (-4 *3 (-798 *4)))) - ((*1 *2) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-993 *3 *4)) - (-4 *3 (-994 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-998 *3 *4)) - (-4 *3 (-999 *4)))) - ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1013 *3)) (-4 *3 (-1014)))) - ((*1 *2) (-12 (-4 *1 (-1051)) (-5 *2 (-772)))) - ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1061 *3)) (-4 *3 (-1062))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1051)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-394))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-643 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1104)) (-4 *6 (-1219)) + (-5 *2 (-112)) (-5 *1 (-894 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1062)) (-4 *3 (-1204)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1179)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) + (|partial| -12 (-5 *2 (-2 (|:| -2902 (-113)) (|:| |arg| (-643 (-893 *3))))) + (-5 *1 (-893 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-112)) (-5 *1 (-613 *4)) - (-4 *4 (-1102)))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-643 (-893 *4))) (-5 *1 (-893 *4)) + (-4 *4 (-1104))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-225))) (-5 *1 (-304)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-893 *3)) (|:| |den| (-893 *3)))) + (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1180)) (-5 *3 (-112)) (-5 *1 (-893 *4)) (-4 *4 (-1104))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-51)) (-5 *1 (-893 *4)) (-4 *4 (-1104))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-643 (-1180))) (|:| |pred| (-51)))) + (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-51))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-643 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1104)) (-5 *2 (-112)) (-5 *1 (-888 *3 *4 *5)) (-4 *3 (-1104)) + (-4 *5 (-668 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-891 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(((*1 *1) + (-12 (-4 *3 (-1104)) (-5 *1 (-888 *2 *3 *4)) (-4 *2 (-1104)) + (-4 *4 (-668 *3)))) + ((*1 *1) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1104)) (-4 *2 (-1104)) + (-5 *1 (-891 *4 *2))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-893 *4)) (-4 *4 (-1104)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1104))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1104)) (-4 *6 (-889 *5)) (-5 *2 (-888 *5 *6 (-643 *6))) + (-5 *1 (-890 *5 *6 *4)) (-5 *3 (-643 *6)) (-4 *4 (-616 (-893 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1104)) (-5 *2 (-643 (-294 *3))) (-5 *1 (-890 *5 *3 *4)) + (-4 *3 (-1041 (-1180))) (-4 *3 (-889 *5)) (-4 *4 (-616 (-893 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1104)) (-5 *2 (-643 (-294 (-949 *3)))) (-5 *1 (-890 *5 *3 *4)) + (-4 *3 (-1052)) (-3746 (-4 *3 (-1041 (-1180)))) (-4 *3 (-889 *5)) + (-4 *4 (-616 (-893 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1104)) (-5 *2 (-891 *5 *3)) (-5 *1 (-890 *5 *3 *4)) + (-3746 (-4 *3 (-1041 (-1180)))) (-3746 (-4 *3 (-1052))) (-4 *3 (-889 *5)) + (-4 *4 (-616 (-893 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-1180)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-113)) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1102)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1102)) (-5 *2 (-112)))) + (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1104)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1104)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1104)) (-5 *2 (-112)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-5 *2 (-112)) (-5 *1 (-889 *5 *3 *4)) - (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) + (-12 (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-890 *5 *3 *4)) (-4 *3 (-889 *5)) + (-4 *4 (-616 (-893 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-4 *6 (-888 *5)) (-4 *5 (-1102)) - (-5 *2 (-112)) (-5 *1 (-889 *5 *6 *4)) (-4 *4 (-615 (-894 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-645 (-945 (-225))))) (-5 *2 (-645 (-225))) - (-5 *1 (-471))))) -(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1) (-5 *1 (-633)))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3))))) + (-12 (-5 *3 (-643 *6)) (-4 *6 (-889 *5)) (-4 *5 (-1104)) (-5 *2 (-112)) + (-5 *1 (-890 *5 *6 *4)) (-4 *4 (-616 (-893 *5)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-891 *4 *5)) (-5 *3 (-891 *4 *6)) (-4 *4 (-1104)) + (-4 *5 (-1104)) (-4 *6 (-668 *5)) (-5 *1 (-888 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1104)) (-5 *2 (-891 *3 *4)) (-5 *1 (-888 *3 *4 *5)) + (-4 *3 (-1104)) (-4 *5 (-668 *4))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1104)) (-5 *2 (-891 *3 *5)) (-5 *1 (-888 *3 *4 *5)) + (-4 *3 (-1104)) (-4 *5 (-668 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *3 (-643 (-549))) (-5 *1 (-886))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-643 (-549)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) + ((*1 *2 *3) (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1157 (-643 (-549)))) (-5 *1 (-886)) (-5 *3 (-549))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-880 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-882 *2)) (-4 *2 (-1219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *1 (-885 *2)) (-4 *2 (-1219))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-643 (-1185))) (-5 *1 (-883))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-241)) (-5 *3 (-1162)))) + ((*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-241)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-876))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1219)) (-4 *3 (-1219))))) +(((*1 *2 *1) + (-12 (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-117 *3)) (-14 *3 (-549)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-174 (-549))) (-5 *1 (-767 *3)) (-4 *3 (-407)))) + ((*1 *2 *1) + (-12 (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-873 *3)) (-14 *3 (-549)))) + ((*1 *2 *1) + (-12 (-14 *3 (-549)) (-5 *2 (-174 (-410 (-549)))) (-5 *1 (-874 *3 *4)) + (-4 *4 (-872 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) + ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) + ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) + ((*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-1157 (-549)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1245 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-713 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *2 (-1245 *3)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1052)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-717 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549))))) +(((*1 *2 *1) (-12 (-4 *1 (-872 *3)) (-5 *2 (-549))))) +(((*1 *1 *1) (-4 *1 (-872 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1174 (-549))) (-5 *3 (-549)) (-4 *1 (-872 *4))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-773)) (-4 *5 (-365)) (-5 *2 (-410 *6)) + (-5 *1 (-869 *5 *4 *6)) (-4 *4 (-1262 *5)) (-4 *6 (-1245 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-773)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) + (-14 *6 (-1180)) (-14 *7 *5) (-5 *2 (-410 (-1238 *6 *5))) + (-5 *1 (-870 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-773)) (-5 *4 (-1259 *5 *6 *7)) (-4 *5 (-365)) + (-14 *6 (-1180)) (-14 *7 *5) (-5 *2 (-410 (-1238 *6 *5))) + (-5 *1 (-870 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-773)) (-4 *5 (-365)) (-5 *2 (-174 *6)) + (-5 *1 (-869 *5 *4 *6)) (-4 *4 (-1262 *5)) (-4 *6 (-1245 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) + (-5 *2 (-643 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-442))) (-5 *1 (-867))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-865))))) +(((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) + ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1219)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-773)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) + ((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) +(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) +(((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-865))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865))))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-299)))) + ((*1 *1 *1) (-4 *1 (-299))) ((*1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) - (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) + (-5 *4 (-315 (-168 (-380)))) (-5 *1 (-331)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) - (-5 *4 (-317 (-381))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-380))) + (-5 *1 (-331)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) - (-5 *4 (-317 (-567))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-169 (-381))))) + (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-549))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-381)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-168 (-380))))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-567)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-380)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-169 (-381))))) - (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-549)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-168 (-380))))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-380)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-549)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-168 (-380)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-380))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-549))) (-5 *1 (-331)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) - (-5 *4 (-317 (-695))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-696))) + (-5 *1 (-331)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) - (-5 *4 (-317 (-700))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-701))) + (-5 *1 (-331)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1179)) (-5 *3 (-645 (-954 (-567)))) - (-5 *4 (-317 (-702))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-695)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-700)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-317 (-702)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-695))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-700))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-1269 (-702))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-949 (-549)))) (-5 *4 (-315 (-703))) + (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-696)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-701)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-315 (-703)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-696)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-701)))) (-5 *1 (-331)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-1161)) (-5 *1 (-331)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4422)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) - (-4 *3 (-1102)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-907 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) - (-5 *1 (-906 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-923)) (-5 *2 (-112)) (-5 *1 (-1103 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *6 (-1245 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) - (-5 *5 (-1 (-421 *7) *7)) - (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *7 (-1245 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *6 (-1245 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) - (-5 *5 (-1 (-421 *7) *7)) - (-4 *6 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-4 *7 (-1245 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) - (-4 *6 (-1245 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) - (-4 *6 (-1245 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-752))))) -(((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1274)) (-5 *1 (-394)))) - ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-394))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1254 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1179)) - (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1200)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1200))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) - (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1245 *3)) (-5 *1 (-402 *3 *2)) - (-4 *3 (-13 (-365) (-147)))))) -(((*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-968 *3)) (-4 *3 (-1102))))) -(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *1 *2) (-12 (-5 *2 (-923)) (-4 *1 (-370)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) - (-4 *4 (-351)))) - ((*1 *2 *1) - (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1102)) - (-14 *4 - (-1 (-112) (-2 (|:| -2188 *2) (|:| -2618 *3)) - (-2 (|:| -2188 *2) (|:| -2618 *3))))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-624 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -4347 *4) (|:| |sol?| (-112))) - (-567) *4)) - (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *1 (-577 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1159 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1227)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1102)) (-4 *5 (-1102)) - (-4 *6 (-1102)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) - (-4 *3 (-559))))) -(((*1 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1175 *1)) (-4 *1 (-1014))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-2 (|:| -2025 (-1179)) (|:| -2265 (-440))))) - (-5 *1 (-1183))))) -(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) - (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) (-4 *1 (-951 *4 *5 *3)))) + (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-315 (-703)))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-696))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-703))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-696))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-691 (-703))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-696))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-701))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-315 (-703))) (-5 *1 (-331)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-1162)) (-5 *1 (-331)))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-865)))) + ((*1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-865))) ((*1 *1 *1 *1) (-5 *1 (-865))) + ((*1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + ((*1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-299)))) + ((*1 *1 *1) (-4 *1 (-299))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865)))) + ((*1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1162)) (-5 *1 (-192)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-865))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-852)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-821 *3)) (|:| |rm| (-821 *3)))) + (-5 *1 (-821 *3)) (-4 *3 (-852)))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-773))) + ((*1 *1 *1 *1) (-5 *1 (-865)))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-864)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-864))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-128))) (-5 *3 (-128))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-553))) (-5 *3 (-553))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *2 (-693 (-1228))) (-5 *3 (-1228))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-863)) (-5 *3 (-129)) (-5 *2 (-773))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-51))) (-5 *2 (-1275)) (-5 *1 (-861))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-38 (-410 (-549)))) + (-4 *2 (-172))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-773)) (-5 *1 (-858 *2)) (-4 *2 (-172))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1052)) + (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) + (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) + (-4 *3 (-854 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) + (-5 *1 (-768 *3 *4)) (-4 *3 (-710 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1051)) (-5 *2 (-2 (|:| -3693 *1) (|:| -2642 *1))) - (-4 *1 (-1245 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1067 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) + (-12 (-4 *3 (-365)) (-4 *3 (-1052)) + (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1052)) + (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) + (-4 *3 (-854 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-560)) (-4 *3 (-1052)) + (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-560)) (-4 *5 (-1052)) + (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) + (-4 *3 (-854 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-560)) (-4 *3 (-1052)) + (-5 *2 (-2 (|:| -2152 *1) (|:| -3303 *1))) (-4 *1 (-854 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-560)) (-4 *5 (-1052)) + (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-855 *5 *3)) + (-4 *3 (-854 *5))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-650 *5)) (-4 *5 (-1052)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-854 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-691 *3)) (-4 *1 (-421 *3)) (-4 *3 (-172)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1052)) (-5 *1 (-855 *2 *3)) + (-4 *3 (-854 *2))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1052)) (-5 *1 (-855 *5 *2)) + (-4 *2 (-854 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1052)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) + (-4 *1 (-854 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *3 (-1052)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) + (-4 *1 (-854 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-768 *2 *3)) (-4 *2 (-710 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-854 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *1) + (-12 (-4 *1 (-407)) (-3746 (|has| *1 (-6 -4416))) + (-3746 (|has| *1 (-6 -4408))))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-852)))) + ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-852)))) ((*1 *1) (-4 *1 (-846))) + ((*1 *1 *1 *1) (-4 *1 (-852)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) + (-14 *4 (-773))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) + (-14 *4 (-773))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1269 *5)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-847 *4 *5)) + (-14 *4 (-773))))) +(((*1 *2) (-12 (-5 *2 (-844 (-549))) (-5 *1 (-537)))) + ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1104))))) +(((*1 *2) (-12 (-5 *2 (-844 (-549))) (-5 *1 (-537)))) + ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1104)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-844 *3)) (-4 *3 (-1104))))) +(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1038)) (-5 *1 (-842)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-315 (-380)))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) + (-5 *1 (-842))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-843)) (-5 *4 (-1066)) (-5 *2 (-1038)) (-5 *1 (-842)))) + ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1038)) (-5 *1 (-842)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-643 (-380))) (-5 *5 (-643 (-844 (-380)))) + (-5 *6 (-643 (-315 (-380)))) (-5 *3 (-315 (-380))) (-5 *2 (-1038)) + (-5 *1 (-842)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-380))) (-5 *5 (-643 (-844 (-380)))) + (-5 *2 (-1038)) (-5 *1 (-842)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1067 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1147 *6 *7 *8 *3 *4)) (-4 *4 (-1111 *6 *7 *8 *3)))) + (-12 (-5 *3 (-315 (-380))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) + (-5 *1 (-842)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *1 (-1214 *3)) - (-4 *3 (-976))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1037)) (-5 *1 (-752))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) -(((*1 *1 *2) - (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) - (-4 *3 (-13 (-407) (-1204))))) - ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204)))))) -(((*1 *2) - (-12 (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *4 (-1245 *3)) - (-5 *2 - (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1245 (-567))) - (-5 *2 - (-2 (|:| -4374 (-690 (-567))) (|:| |basisDen| (-567)) - (|:| |basisInv| (-690 (-567))))) - (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) - ((*1 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) - (-5 *2 - (-2 (|:| -4374 (-690 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-690 *4)))) - (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 *4)) - (-5 *2 - (-2 (|:| -4374 (-690 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-690 *4)))) - (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5))))) + (-12 (-5 *3 (-643 (-315 (-380)))) (-5 *4 (-643 (-380))) (-5 *2 (-1038)) + (-5 *1 (-842))))) (((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| -2191 (-624 *4 *5)) (|:| -3845 (-410 *5)))) - (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) - (-14 *3 (-923)) (-4 *4 (-1051)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-455)) (-4 *3 (-1051)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1245 *3))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) - (-5 *1 (-757))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-455)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-979 *3 *4 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))) -(((*1 *2 *3) - (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1051))) (-5 *2 (-1161)) - (-5 *1 (-827 *4)))) + (-12 (-4 *1 (-841)) + (-5 *3 + (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) + (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) + (|:| |ub| (-643 (-844 (-225)))))) + (-5 *2 (-1038)))) + ((*1 *2 *3) + (-12 (-4 *1 (-841)) + (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) + (-5 *2 (-1038))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-214 (-505))) (-5 *1 (-839))))) +(((*1 *2 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1104)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)))) + ((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-690 *4 *5 *6 *3)) + (-4 *3 (-688 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052)))) + ((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052))))) +(((*1 *2 *2) + (-12 (-4 *2 (-172)) (-4 *2 (-1052)) (-5 *1 (-716 *2 *3)) (-4 *3 (-650 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1052))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-643 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1104)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-643 *4))) (-4 *4 (-1104)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-643 *4))) (-5 *1 (-114 *4)) + (-4 *4 (-1104)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-650 *3)) (-4 *3 (-1052)) + (-5 *1 (-716 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-836 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-650 *3)) (-4 *3 (-1052)) + (-5 *1 (-716 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-836 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-113)) (-4 *4 (-1052)) (-5 *1 (-716 *4 *2)) (-4 *2 (-650 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-836 *2)) (-4 *2 (-1052))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-363 (-113))) (-4 *2 (-1052)) (-5 *1 (-716 *2 *4)) + (-4 *4 (-650 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-363 (-113))) (-5 *1 (-836 *2)) (-4 *2 (-1052))))) +(((*1 *2) (-12 (-5 *2 (-834 (-549))) (-5 *1 (-537)))) + ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1104))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-1275)) (-5 *1 (-833))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-824)) (-5 *4 (-51)) (-5 *2 (-1275)) (-5 *1 (-833))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-51)) (-5 *1 (-833))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-831))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-112)) (-5 *1 (-831))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-112)) (-5 *1 (-831))))) +(((*1 *2 *3) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-831)) (-5 *3 (-1162))))) +(((*1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-831))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-831))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-51)) (-5 *1 (-831))))) +(((*1 *2 *3) (-12 (-5 *3 (-825)) (-5 *2 (-51)) (-5 *1 (-831))))) +(((*1 *1 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-830 *2 *3)) (-4 *2 (-710 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-710 *3)) (-5 *1 (-830 *2 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-1162)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-823)) (-5 *3 (-112)) (-5 *2 (-1162)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-823)) (-5 *3 (-825)) (-5 *2 (-1275)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-823)) (-5 *3 (-825)) (-5 *4 (-112)) (-5 *2 (-1275)))) + ((*1 *2 *3) + (-12 (-5 *3 (-315 *4)) (-4 *4 (-13 (-823) (-1052))) (-5 *2 (-1162)) + (-5 *1 (-829 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1051))) - (-5 *2 (-1161)) (-5 *1 (-827 *5)))) + (-12 (-5 *3 (-315 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-1052))) + (-5 *2 (-1162)) (-5 *1 (-829 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1051))) - (-5 *2 (-1274)) (-5 *1 (-827 *5)))) + (-12 (-5 *3 (-825)) (-5 *4 (-315 *5)) (-4 *5 (-13 (-823) (-1052))) + (-5 *2 (-1275)) (-5 *1 (-829 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-829) (-1051))) (-5 *2 (-1274)) (-5 *1 (-827 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1161)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1161)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1274)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1274))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-916 *3)) (-4 *3 (-308))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-97))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1175 *1)) (-5 *4 (-1179)) (-4 *1 (-27)) - (-5 *2 (-645 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1175 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *2 (-645 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-645 *6)) (-4 *1 (-978 *3 *4 *5 *6)) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) - (-4 *3 (-559))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2304 *4))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) + (-12 (-5 *3 (-825)) (-5 *4 (-315 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-823) (-1052))) (-5 *2 (-1275)) (-5 *1 (-829 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-827))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-828)) (-5 *3 (-643 (-1180))) (-5 *1 (-827))))) +(((*1 *1) (-5 *1 (-826)))) +(((*1 *1) (-5 *1 (-826)))) +(((*1 *1) (-5 *1 (-826)))) +(((*1 *1) (-5 *1 (-826)))) +(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-825))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1162)) (|:| -3973 (-1162)))) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-826)) (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-825))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-826)) (-5 *1 (-825))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-826)) (-5 *1 (-825))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1123)) (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1162)) (-5 *4 (-1123)) (-5 *2 (-112)) (-5 *1 (-824))))) +(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-824))))) +(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-824))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-824))))) +(((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-824))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-674 *3)) (-4 *3 (-852)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-679 *3)) (-4 *3 (-852)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821 *3)) (-4 *3 (-852))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-643 *4)) (-4 *4 (-365)) (-5 *2 (-1269 *4)) + (-5 *1 (-816 *4 *3)) (-4 *3 (-660 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-365)) (-5 *2 (-691 *4)) (-5 *1 (-816 *4 *5)) + (-4 *5 (-660 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-773)) (-4 *5 (-365)) (-5 *2 (-691 *5)) + (-5 *1 (-816 *5 *6)) (-4 *6 (-660 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-645 (-1179))) (-4 *5 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-954 *5)))))) (-5 *1 (-771 *5)))) + (-12 (-5 *3 (-643 (-949 *5))) (-5 *4 (-643 (-1180))) (-4 *5 (-560)) + (-5 *2 (-643 (-643 (-294 (-410 (-949 *5)))))) (-5 *1 (-772 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-954 *4))) (-4 *4 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-954 *4)))))) (-5 *1 (-771 *4)))) + (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-560)) + (-5 *2 (-643 (-643 (-294 (-410 (-949 *4)))))) (-5 *1 (-772 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-690 *7)) + (-12 (-5 *3 (-691 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4374 (-645 *6))) - *7 *6)) - (-4 *6 (-365)) (-4 *7 (-657 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2190 (-643 *6))) *7 *6)) + (-4 *6 (-365)) (-4 *7 (-660 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1269 *6) "failed")) - (|:| -4374 (-645 (-1269 *6))))) - (-5 *1 (-814 *6 *7)) (-5 *4 (-1269 *6))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-757))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) - (-5 *1 (-891 *4 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1037))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1102)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-1200))))) -(((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1274)) - (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) -(((*1 *1 *2 *2) - (-12 + (|:| -2190 (-643 (-1269 *6))))) + (-5 *1 (-815 *6 *7)) (-5 *4 (-1269 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-5 *2 - (-3 (|:| I (-317 (-567))) (|:| -1676 (-317 (-381))) - (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1178)))) - (-5 *1 (-1178))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1161)) - (-5 *3 (-225)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-752))))) + (-2 (|:| A (-691 *5)) + (|:| |eqs| + (-643 + (-2 (|:| C (-691 *5)) (|:| |g| (-1269 *5)) (|:| -3687 *6) + (|:| |rh| *5)))))) + (-5 *1 (-815 *5 *6)) (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) + (-4 *6 (-660 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-660 *5)) + (-5 *2 (-2 (|:| -1748 (-691 *6)) (|:| |vec| (-1269 *5)))) + (-5 *1 (-815 *5 *6)) (-5 *3 (-691 *6)) (-5 *4 (-1269 *5))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1179)) (-4 *5 (-615 (-894 (-567)))) - (-4 *5 (-888 (-567))) - (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) - (-4 *3 (-13 (-27) (-1204) (-433 *5)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1161)) (-5 *2 (-381)) (-5 *1 (-787))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1218)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1102)) - (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) - (-5 *1 (-1078 *3 *4 *2)) - (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1102)) (-5 *1 (-1168 *3 *2)) (-4 *3 (-1102))))) + (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-1 (-643 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *6 (-1245 *5)) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-657 (-410 *7))) (-5 *4 (-1 (-643 *6) *7)) + (-5 *5 (-1 (-408 *7) *7)) + (-4 *6 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *7 (-1245 *6)) (-5 *2 (-643 (-410 *7))) (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-1 (-643 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *6 (-1245 *5)) (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-658 *7 (-410 *7))) (-5 *4 (-1 (-643 *6) *7)) + (-5 *5 (-1 (-408 *7) *7)) + (-4 *6 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *7 (-1245 *6)) (-5 *2 (-643 (-410 *7))) (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-657 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-643 (-410 *5))) (-5 *1 (-814 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-27)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-658 *5 (-410 *5))) (-4 *5 (-1245 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-643 (-410 *5))) (-5 *1 (-814 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-27)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-643 (-410 *6))) (-5 *1 (-814 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-643 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) + (-5 *2 (-643 (-2 (|:| |poly| *6) (|:| -3687 *3)))) + (-5 *1 (-811 *5 *6 *3 *7)) (-4 *3 (-660 *6)) (-4 *7 (-660 (-410 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-643 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *6 (-1245 *5)) + (-5 *2 (-643 (-2 (|:| |poly| *6) (|:| -3687 (-658 *6 (-410 *6)))))) + (-5 *1 (-814 *5 *6)) (-5 *3 (-658 *6 (-410 *6)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-643 *7) *7 (-1174 *7))) (-5 *5 (-1 (-408 *7) *7)) + (-4 *7 (-1245 *6)) (-4 *6 (-13 (-365) (-147) (-1041 (-410 (-549))))) + (-5 *2 (-643 (-2 (|:| |frac| (-410 *7)) (|:| -3687 *3)))) + (-5 *1 (-811 *6 *7 *3 *8)) (-4 *3 (-660 *7)) (-4 *8 (-660 (-410 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-643 (-2 (|:| |frac| (-410 *6)) (|:| -3687 (-658 *6 (-410 *6)))))) + (-5 *1 (-814 *5 *6)) (-5 *3 (-658 *6 (-410 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *7 (-1245 *5)) (-4 *4 (-726 *5 *7)) + (-5 *2 (-2 (|:| -1748 (-691 *6)) (|:| |vec| (-1269 *5)))) + (-5 *1 (-813 *5 *6 *7 *4 *3)) (-4 *6 (-660 *5)) (-4 *3 (-660 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-657 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-812 *4 *2)) + (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-658 *2 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-812 *4 *2)) + (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) + (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-657 (-410 *6))) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-2 (|:| -2190 (-643 (-410 *6))) (|:| -1748 (-691 *5)))) + (-5 *1 (-812 *5 *6)) (-5 *4 (-643 (-410 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-658 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) + (-5 *1 (-812 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-658 *6 (-410 *6))) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-2 (|:| -2190 (-643 (-410 *6))) (|:| -1748 (-691 *5)))) + (-5 *1 (-812 *5 *6)) (-5 *4 (-643 (-410 *6)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-1245 *4)) + (-5 *1 (-811 *4 *3 *2 *5)) (-4 *2 (-660 *3)) (-4 *5 (-660 (-410 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) + (-4 *5 (-1245 *4)) (-5 *1 (-811 *4 *5 *2 *6)) (-4 *2 (-660 *5)) + (-4 *6 (-660 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-643 *5) *6)) + (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *6 (-1245 *5)) + (-5 *2 (-643 (-2 (|:| -4384 *5) (|:| -3687 *3)))) (-5 *1 (-811 *5 *6 *3 *7)) + (-4 *3 (-660 *6)) (-4 *7 (-660 (-410 *6)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1102)) - (-4 *3 (-1102))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1179)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) - (-4 *3 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-4 *7 (-1219)))) + (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) + (-5 *2 (-643 (-2 (|:| |deg| (-773)) (|:| -3687 *5)))) + (-5 *1 (-811 *4 *5 *3 *6)) (-4 *3 (-660 *5)) (-4 *6 (-660 (-410 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2 *3 *5)) + (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) + (-4 *5 (-660 (-410 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1245 *4)) (-5 *1 (-809 *4 *2 *3 *5)) + (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) + (-4 *5 (-660 (-410 *2))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) - (-4 *3 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *2 (-1214 (-928))) - (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1096 (-225))) (-5 *6 (-567)) (-5 *7 (-1161)) - (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) - (-5 *2 (-1214 (-928))) (-5 *1 (-319)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1096 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1161)) - (-5 *2 (-1214 (-928))) (-5 *1 (-319))))) + (-12 (-4 *2 (-1245 *4)) (-5 *1 (-809 *4 *2 *5 *3)) + (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-660 *2)) + (-4 *3 (-660 (-410 *2)))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1051)) (-5 *2 (-1269 *4)) - (-5 *1 (-1180 *4)))) + (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) + (-5 *2 (-643 (-2 (|:| -4204 *5) (|:| -3646 *5)))) (-5 *1 (-809 *4 *5 *3 *6)) + (-4 *3 (-660 *5)) (-4 *6 (-660 (-410 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *4 (-1245 *5)) + (-5 *2 (-643 (-2 (|:| -4204 *4) (|:| -3646 *4)))) (-5 *1 (-809 *5 *4 *3 *6)) + (-4 *3 (-660 *4)) (-4 *6 (-660 (-410 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *5 (-1245 *4)) + (-5 *2 (-643 (-2 (|:| -4204 *5) (|:| -3646 *5)))) (-5 *1 (-809 *4 *5 *6 *3)) + (-4 *6 (-660 *5)) (-4 *3 (-660 (-410 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-923)) (-5 *2 (-1269 *3)) (-5 *1 (-1180 *3)) - (-4 *3 (-1051))))) + (-12 (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *4 (-1245 *5)) + (-5 *2 (-643 (-2 (|:| -4204 *4) (|:| -3646 *4)))) (-5 *1 (-809 *5 *4 *6 *3)) + (-4 *6 (-660 *4)) (-4 *3 (-660 (-410 *4)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1175 *7)) - (-4 *5 (-1051)) (-4 *7 (-1051)) (-4 *2 (-1245 *5)) - (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1219))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1223)) (-4 *5 (-1245 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) - (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) + (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1245 *5)) + (-5 *1 (-809 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) + (-4 *3 (-660 *2)) (-4 *6 (-660 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-410 *2))) (-4 *2 (-1245 *5)) (-5 *1 (-809 *5 *2 *3 *6)) + (-4 *5 (-13 (-365) (-147) (-1041 (-410 (-549))))) (-4 *3 (-660 *2)) + (-4 *6 (-660 (-410 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114)))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) - ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-863)))) + (-12 (-5 *3 (-657 *4)) (-4 *4 (-344 *5 *6 *7)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *6 (-1245 *5)) (-4 *7 (-1245 (-410 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) + (-5 *1 (-808 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-806 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1205) (-963)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-5 *1 (-806 *4 *2)) (-4 *2 (-13 (-29 *4) (-1205) (-963)))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) + (|:| |expense| (-380)) (|:| |accuracy| (-380)) + (|:| |intermediateResults| (-380)))) + (-5 *1 (-805))))) (((*1 *1 *2) - (-12 (-5 *2 (-1284 (-1179) *3)) (-4 *3 (-1051)) (-5 *1 (-1291 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1284 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *1 (-1293 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-594)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-627)))) + (-12 + (-5 *2 + (-643 + (-2 + (|:| -4292 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (|:| -2254 + (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) + (|:| |expense| (-380)) (|:| |accuracy| (-380)) + (|:| |intermediateResults| (-380))))))) + (-5 *1 (-805))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-643 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))) + (-5 *1 (-563)))) ((*1 *2 *1) - (-12 (-4 *3 (-1102)) - (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) - (-5 *1 (-1078 *3 *4 *2)) - (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))))) + (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-643 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-1102)) (-5 *1 (-1168 *2 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3) - (-12 (-4 *4 (-794)) - (-4 *5 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *6 (-559)) - (-5 *2 (-2 (|:| -1992 (-954 *6)) (|:| -3871 (-954 *6)))) - (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-951 (-410 (-954 *6)) *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-1102)) - (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) - (-5 *1 (-1078 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) - (-5 *1 (-1078 *3 *4 *2)) - (-4 *2 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) + (-12 + (-5 *2 + (-643 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225))))) + (-5 *1 (-805))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-805))))) +(((*1 *1) (-5 *1 (-805)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1180)) (-4 *6 (-13 (-308) (-1041 (-549)) (-641 (-549)) (-147))) + (-4 *4 (-13 (-29 *6) (-1205) (-963))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2190 (-643 *4)))) + (-5 *1 (-803 *6 *4 *3)) (-4 *3 (-660 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) - (-5 *2 (-112)) (-5 *1 (-639 *4 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-645 (-1179))) (-4 *2 (-172)) - (-4 *3 (-238 (-2498 *4) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *3)) - (-2 (|:| -2188 *5) (|:| -2618 *3)))) - (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) - (-4 *7 (-951 *2 *3 (-865 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) + (-12 (-4 *1 (-802)) + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-1038))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))) +(((*1 *1 *1) (-4 *1 (-243))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *2)) + (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-3960 (-12 (-5 *1 (-294 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) + ((*1 *1 *1) (-4 *1 (-476))) + ((*1 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-352)) (-5 *1 (-531 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) +(((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) + ((*1 *1 *1 *1) (-4 *1 (-795)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-380) (-380))) (-5 *4 (-380)) + (-5 *2 + (-2 (|:| -3826 *4) (|:| -1704 *4) (|:| |totalpts| (-549)) + (|:| |success| (-112)))) + (-5 *1 (-791)) (-5 *5 (-549))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) + (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-549)) + (-5 *6 (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380)))) + (-5 *7 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) + (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-549)) + (-5 *6 (-2 (|:| |try| (-380)) (|:| |did| (-380)) (|:| -1576 (-380)))) + (-5 *7 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) (-5 *3 (-1269 (-380))) + (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) + (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) + (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-549)) (-5 *6 (-1 (-1275) (-1269 *5) (-1269 *5) (-380))) + (-5 *3 (-1269 (-380))) (-5 *5 (-380)) (-5 *2 (-1275)) (-5 *1 (-790))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-789)) (-5 *2 (-1038)) + (-5 *3 + (-2 (|:| |fn| (-315 (-225))) (|:| -1607 (-643 (-1092 (-844 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-789)) (-5 *2 (-1038)) + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-788))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-788))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-922)) (-5 *1 (-788))))) +(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1162)) (-5 *1 (-788))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-922)) (-5 *1 (-788))))) +(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1162)) (-5 *1 (-788))))) (((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351)))) - ((*1 *1) (-4 *1 (-370))) + (|partial| -12 (-5 *3 (-949 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-949 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-172)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) - (-4 *4 (-351)))) - ((*1 *1 *1) (-4 *1 (-548))) ((*1 *1) (-4 *1 (-548))) - ((*1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *1) (-12 (-5 *2 (-907 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) - (-4 *4 (-1102)))) - ((*1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-548)) (-4 *2 (-559))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1100 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2) - (-12 (-4 *3 (-1223)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-131)) - (-4 *3 (-793))))) -(((*1 *2 *3) - (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) + (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1096 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-306)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) - (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1102)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1051)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-863)) (-5 *1 (-1175 *3)) (-4 *3 (-1051))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) - (-14 *4 (-645 (-1179))))) + (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1219)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) - (-14 *4 (-645 (-1179))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3)) (-4 *3 (-851))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) - (-5 *2 (-645 (-645 (-645 (-945 *3)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-823))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-1167 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1271)))) - ((*1 *2 *1) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-1271))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-235 *3)) - (-4 *3 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1014)) (-5 *2 (-863))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2070 (-567)) (|:| -1444 (-645 *3)))) - (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) - (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-923)) - (-14 *4 (-923)))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) - (-14 *4 - (-3 (-1175 *3) - (-1269 (-645 (-2 (|:| -2233 *3) (|:| -2188 (-1122))))))))) - ((*1 *2) - (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) - (-14 *4 (-923))))) -(((*1 *2 *3) - (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1245 *4)) (-5 *1 (-811 *4 *2)) - (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))))) + (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1245 *4)) - (-5 *1 (-811 *4 *2)) - (-4 *4 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567)))))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-753))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1102)) (-4 *4 (-1219)) (-5 *2 (-112)) - (-5 *1 (-1159 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-756)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) - (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1102)) (-5 *2 (-772))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 (-1269 *4))) (-4 *4 (-1051)) (-5 *2 (-690 *4)) - (-5 *1 (-1031 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-1161)) (-5 *1 (-787))))) -(((*1 *1 *1) (-4 *1 (-630))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004) (-1204)))))) -(((*1 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-923))) (-5 *1 (-1272))))) -(((*1 *2) - (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) - ((*1 *2 *2) - (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1051))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-559))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1175 *6)) (-4 *6 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-1175 *7)) (-5 *1 (-322 *4 *5 *6 *7)) - (-4 *7 (-951 *6 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) - ((*1 *2 *2) - (-12 (-5 *2 (-645 (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1051)) (-4 *5 (-794)) (-4 *3 (-851)) - (-4 *6 (-1067 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -1952 *1) (|:| |upper| *1))) - (-4 *1 (-978 *4 *5 *3 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-308) (-1040 (-567)) (-640 (-567)) (-147))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1204) (-961)))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -4347 *7) (|:| |sol?| (-112))) - (-567) *7)) - (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) - (-5 *3 (-410 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-577 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1272))))) -(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) + (|partial| -12 (-5 *3 (-410 (-949 (-168 *4)))) (-4 *4 (-560)) + (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-410 (-949 (-168 *5)))) (-5 *4 (-922)) (-4 *5 (-560)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) - (-4 *4 (-351))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-548))))) -(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-281))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1208 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1179))) (-4 *6 (-455)) - (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) - (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1159 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1161)) (-5 *2 (-645 (-1184))) (-5 *1 (-1138))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-750))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-928)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-945 (-225)) (-225))) (-5 *3 (-1096 (-225))) - (-5 *1 (-929))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-645 (-1175 *7))) (-5 *3 (-1175 *7)) - (-4 *7 (-951 *5 *6 *4)) (-4 *5 (-911)) (-4 *6 (-794)) - (-4 *4 (-851)) (-5 *1 (-908 *5 *6 *4 *7))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1102))))) -(((*1 *2 *1) - (-12 (-5 *2 (-863)) (-5 *1 (-1159 *3)) (-4 *3 (-1102)) - (-4 *3 (-1219))))) + (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) + (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-560)) (-4 *4 (-852)) + (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-560)) + (-4 *5 (-852)) (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) + (-5 *1 (-787 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1159 (-1159 *4))) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4)) - (-4 *4 (-1051))))) -(((*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1184))) (-5 *1 (-1184))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3414 *1) (|:| -4409 *1) (|:| |associate| *1))) - (-4 *1 (-559))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) - (-5 *2 (-645 (-1179))) (-5 *1 (-1078 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *9 (-1073 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1071 *5 *6 *7 *8 *9)))) + (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 *2)) + (-5 *2 (-380)) (-5 *1 (-787 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1067 *5 *6 *7)) - (-4 *9 (-1111 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) - (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1147 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3)) (-4 *3 (-1219)) (-4 *3 (-851)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1219)) - (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-4 *3 (-1102)) - (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)))) + (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) + (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1051)) (-4 *6 (-951 *5 *4 *2)) - (-4 *2 (-851)) (-5 *1 (-952 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *6)) (-15 -4294 (*6 $)) - (-15 -4306 (*6 $))))))) + (|partial| -12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 *2)) + (-5 *2 (-380)) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) + (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-559)) - (-5 *2 (-1179)) (-5 *1 (-1045 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1102)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-397)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-1199))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1161)) (-4 *1 (-392))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) - (-4 *8 (-951 *7 *5 *6)) - (-5 *2 (-2 (|:| -2618 (-772)) (|:| -1344 *3) (|:| |radicand| *3))) - (-5 *1 (-955 *5 *6 *7 *8 *3)) (-5 *4 (-772)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *8)) (-15 -4294 (*8 $)) (-15 -4306 (*8 $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) + (|partial| -12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) + (-4 *4 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) + (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-690 (-410 (-954 (-567))))) - (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1033))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) + (-12 (-5 *2 (-168 (-380))) (-5 *1 (-787 *3)) (-4 *3 (-616 (-380))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-922)) (-5 *2 (-168 (-380))) (-5 *1 (-787 *3)) + (-4 *3 (-616 (-380))))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-907 *3))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) - (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) - (-4 *2 (-1219))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) - (-4 *2 (-1260 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) - (-4 *5 (-1245 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) - (-4 *2 (-1260 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) - (-5 *1 (-545 *4 *2)) (-4 *2 (-1260 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1159 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) - (-5 *1 (-1155 *4))))) -(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-410 (-567))))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1096 (-225))) - (-5 *2 (-1271)) (-5 *1 (-258))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(((*1 *2 *3) - (-12 (-5 *2 (-645 (-1161))) (-5 *1 (-830)) (-5 *3 (-1161))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) - (-5 *2 (-1037)) (-5 *1 (-750))))) -(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1219)) (-5 *2 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1270)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1271))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1112))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1063 (-1026 *3) (-1175 (-1026 *3)))) - (-5 *1 (-1026 *3)) (-4 *3 (-13 (-849) (-365) (-1024)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1102)) (-4 *5 (-1102)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4423)) (-4 *1 (-492 *3)) - (-4 *3 (-1219))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-923)) - (-5 *2 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) - (-5 *1 (-348 *4)) (-4 *4 (-351))))) -(((*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) - (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -1676)))) - (-5 *2 (-1037)) (-5 *1 (-749))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) - (-5 *2 (-1037)) (-5 *1 (-746))))) -(((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1175 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + (-12 (-5 *3 (-168 *4)) (-4 *4 (-172)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-168 *5)) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1245 (-169 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-923)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) - ((*1 *2 *1) - (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1245 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) (-5 *1 (-416 *3 *2 *4 *5)) - (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1040 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1245 *2)) (-4 *2 (-994 *3)) - (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) - (-14 *6 (-1269 *5)))) + (-12 (-5 *3 (-949 (-168 *4))) (-4 *4 (-172)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-923)) (-4 *5 (-1051)) - (-4 *2 (-13 (-407) (-1040 *5) (-365) (-1204) (-285))) - (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1175 (-498))) (-5 *3 (-645 (-613 (-498)))) - (-5 *1 (-498)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1175 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-923)) (-4 *4 (-351)) - (-5 *1 (-531 *4)))) + (-12 (-5 *3 (-949 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-172)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1245 *4)) - (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1245 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)))) - ((*1 *1 *1) (-4 *1 (-1062)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1212 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *5 (-1067 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224)))))) -(((*1 *2) (-12 (-5 *2 (-1149 (-1161))) (-5 *1 (-394))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) - ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) - (-4 *2 (-172))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) - (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1290 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1051))))) -(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-559)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1245 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-1269 (-690 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) - (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 (-690 *3))))) + (-12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1179))) (-4 *5 (-365)) - (-5 *2 (-1269 (-690 (-410 (-954 *5))))) (-5 *1 (-1088 *5)) - (-5 *4 (-690 (-410 (-954 *5)))))) + (-12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1179))) (-4 *5 (-365)) - (-5 *2 (-1269 (-690 (-954 *5)))) (-5 *1 (-1088 *5)) - (-5 *4 (-690 (-954 *5))))) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) - (-5 *2 (-1269 (-690 *4))) (-5 *1 (-1088 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-471))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) - (-5 *1 (-1190 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *1 (-1245 *4)) (-4 *4 (-1051)) - (-5 *2 (-1269 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1260 *4)) - (-4 *4 (-38 (-410 (-567)))) - (-5 *2 (-1 (-1159 *4) (-1159 *4) (-1159 *4))) (-5 *1 (-1262 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1204))))) - ((*1 *1 *1 *1) (-4 *1 (-794)))) -(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-1096 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-1096 (-225)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-5 *2 (-645 *1)) (-4 *1 (-1136 *3))))) -(((*1 *1 *1) (-4 *1 (-559)))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-112)) - (-5 *1 (-891 *4 *5)) (-4 *5 (-1102)))) + (-12 (-5 *3 (-410 (-949 (-168 *4)))) (-4 *4 (-560)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-894 *5)) (-4 *5 (-1102)) (-5 *2 (-112)) - (-5 *1 (-892 *5 *3)) (-4 *3 (-1219)))) + (-12 (-5 *3 (-410 (-949 (-168 *5)))) (-5 *4 (-922)) (-4 *5 (-560)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 (-380))) + (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-894 *5)) (-4 *5 (-1102)) - (-4 *6 (-1219)) (-5 *2 (-112)) (-5 *1 (-892 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1204) (-1004))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 (-410 *2))) - (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) - (-4 *3 (-344 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1223)) - (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1223)) - (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-2 (|:| -3661 (-1175 *6)) (|:| -2618 (-567))))) - (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) - (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-112)) (-5 *1 (-894 *4)) - (-4 *4 (-1102))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-923)) (-5 *2 (-471)) (-5 *1 (-1270))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-923)) - (-4 *2 (-1102))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-613 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) (-5 *5 (-1175 *2)) - (-4 *2 (-13 (-433 *6) (-27) (-1204))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-613 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1179))) - (-5 *5 (-410 (-1175 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1204))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1102))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-381)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *3) + (-12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-315 (-168 *4))) (-4 *4 (-560)) (-4 *4 (-852)) + (-4 *4 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-315 (-168 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) + (-4 *5 (-616 (-380))) (-5 *2 (-168 (-380))) (-5 *1 (-787 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-380)) (-5 *1 (-787 *3)) (-4 *3 (-616 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-922)) (-5 *2 (-380)) (-5 *1 (-787 *3)) (-4 *3 (-616 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-949 *4)) (-4 *4 (-1052)) (-4 *4 (-616 *2)) (-5 *2 (-380)) + (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-949 *5)) (-5 *4 (-922)) (-4 *5 (-1052)) (-4 *5 (-616 *2)) + (-5 *2 (-380)) (-5 *1 (-787 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-410 (-949 *4))) (-4 *4 (-560)) (-4 *4 (-616 *2)) (-5 *2 (-380)) + (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-616 *2)) + (-5 *2 (-380)) (-5 *1 (-787 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-315 *4)) (-4 *4 (-560)) (-4 *4 (-852)) (-4 *4 (-616 *2)) + (-5 *2 (-380)) (-5 *1 (-787 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-315 *5)) (-5 *4 (-922)) (-4 *5 (-560)) (-4 *5 (-852)) + (-4 *5 (-616 *2)) (-5 *2 (-380)) (-5 *1 (-787 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-38 (-410 (-549)))) + (-4 *2 (-172))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-773)) (-5 *1 (-785 *2)) (-4 *2 (-38 (-410 (-549)))) + (-4 *2 (-172))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1052))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-643 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-560)) + (-4 *3 (-1052))))) +(((*1 *2 *1 *1) (-12 - (-5 *3 - (-2 (|:| |pde| (-645 (-317 (-225)))) - (|:| |constraints| - (-645 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-772)) (|:| |boundaryType| (-567)) - (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) - (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1161)) - (|:| |tol| (-225)))) - (-5 *2 (-112)) (-5 *1 (-210))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-455)) (-4 *4 (-559)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4059 *4))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) - ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1219)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-923)) - (-4 *4 (-1051))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-923)) (-5 *1 (-787))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) - (-4 *5 (-375 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-4 *2 (-1102)) (-5 *1 (-213 *4 *2)) - (-14 *4 (-923)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051))))) + (-5 *2 (-2 (|:| -4188 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) + (-5 *1 (-783 *3)) (-4 *3 (-560)) (-4 *3 (-1052))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) + (-4 *3 (-560)) (-4 *3 (-1052))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2304 *3) (|:| |coef1| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) + (-12 (-5 *2 (-2 (|:| -4188 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) + (-4 *3 (-560)) (-4 *3 (-1052))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-4 *6 (-888 *5)) (-5 *2 (-887 *5 *6 (-645 *6))) - (-5 *1 (-889 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-894 *5))))) + (-12 (-5 *3 (-691 (-410 (-549)))) + (-5 *2 + (-643 + (-2 (|:| |outval| *4) (|:| |outmult| (-549)) + (|:| |outvect| (-643 (-691 *4)))))) + (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-643 *4)) (-5 *1 (-781 *4)) + (-4 *4 (-13 (-365) (-850)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-691 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-172)) (-4 *2 (-1245 *4)) (-5 *1 (-177 *4 *2 *3)) + (-4 *3 (-726 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-889 *5 *3 *4)) - (-4 *3 (-1040 (-1179))) (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5))))) + (-12 (-5 *3 (-691 (-410 (-949 *5)))) (-5 *4 (-1180)) (-5 *2 (-949 *5)) + (-5 *1 (-293 *5)) (-4 *5 (-455)))) + ((*1 *2 *3) + (-12 (-5 *3 (-691 (-410 (-949 *4)))) (-5 *2 (-949 *4)) (-5 *1 (-293 *4)) + (-4 *4 (-455)))) + ((*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1245 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-949 (-168 (-410 (-549))))) + (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-5 *2 (-645 (-295 (-954 *3)))) - (-5 *1 (-889 *5 *3 *4)) (-4 *3 (-1051)) - (-1736 (-4 *3 (-1040 (-1179)))) (-4 *3 (-888 *5)) - (-4 *4 (-615 (-894 *5))))) + (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *4 (-1180)) + (-5 *2 (-949 (-168 (-410 (-549))))) (-5 *1 (-766 *5)) + (-4 *5 (-13 (-365) (-850))))) + ((*1 *2 *3) + (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *2 (-949 (-410 (-549)))) + (-5 *1 (-781 *4)) (-4 *4 (-13 (-365) (-850))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-5 *2 (-891 *5 *3)) (-5 *1 (-889 *5 *3 *4)) - (-1736 (-4 *3 (-1040 (-1179)))) (-1736 (-4 *3 (-1051))) - (-4 *3 (-888 *5)) (-4 *4 (-615 (-894 *5)))))) + (-12 (-5 *3 (-691 (-410 (-549)))) (-5 *4 (-1180)) + (-5 *2 (-949 (-410 (-549)))) (-5 *1 (-781 *5)) (-4 *5 (-13 (-365) (-850)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-643 (-773))) + (-5 *1 (-780 *3 *4 *5 *6 *7)) (-4 *3 (-1245 *6)) (-4 *7 (-953 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1179)) - (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1179)) - (-5 *5 (-1096 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301))))) + (-12 (-4 *6 (-1245 *9)) (-4 *7 (-795)) (-4 *8 (-852)) (-4 *9 (-308)) + (-4 *10 (-953 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-643 (-1174 *10))) + (|:| |dterm| (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-643 *6)) (|:| |nlead| (-643 *10)))) + (-5 *1 (-780 *6 *7 *8 *9 *10)) (-5 *3 (-1174 *10)) (-5 *4 (-643 *6)) + (-5 *5 (-643 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1295 *5 *6 *7)) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-954 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-1048 *5 *6))) (-5 *1 (-1295 *5 *6 *7)) - (-14 *6 (-645 (-1179))) (-14 *7 (-645 (-1179))))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-954 *4))) - (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-645 (-1048 *4 *5))) (-5 *1 (-1295 *4 *5 *6)) - (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179)))))) + (-12 (-4 *4 (-352)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) (-5 *2 (-643 *3)) + (-5 *1 (-779 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) (-14 *7 (-922))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *5 (-559)) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| (-112)) (|:| -1708 *4)))) + (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1162)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-4 *4 (-1068 *6 *7 *8)) (-5 *2 (-1275)) (-5 *1 (-778 *6 *7 *8 *4 *5)) + (-4 *5 (-1074 *6 *7 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))))) + ((*1 *1 *1) (-5 *1 (-380))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *3 (-1068 *5 *6 *7)) + (-5 *2 (-643 (-2 (|:| |val| *3) (|:| -1708 *4)))) + (-5 *1 (-778 *5 *6 *7 *3 *4)) (-4 *4 (-1074 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *2 (-1068 *4 *5 *6)) + (-5 *1 (-778 *4 *5 *6 *2 *3)) (-4 *3 (-1074 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-380)))) + ((*1 *1 *1 *1) (-4 *1 (-548))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) + ((*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-773))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-494)) (-5 *4 (-957)) (-5 *2 (-693 (-536))) (-5 *1 (-536)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-957)) (-4 *3 (-1104)) (-5 *2 (-693 *1)) (-4 *1 (-769 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-769 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 - (-2 (|:| |minor| (-645 (-923))) (|:| -4178 *3) - (|:| |minors| (-645 (-645 (-923)))) (|:| |ops| (-645 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-923)) (-4 *3 (-657 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1051)) (-5 *1 (-715 *4 *2)) - (-4 *2 (-649 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1051))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) - (-5 *2 (-1037)) (-5 *1 (-754))))) + (-643 + (-2 (|:| |outval| (-168 *4)) (|:| |outmult| (-549)) + (|:| |outvect| (-643 (-691 (-168 *4))))))) + (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-494)) (-5 *4 (-956)) (-5 *2 (-692 (-536))) - (-5 *1 (-536)))) + (-12 (-5 *3 (-691 (-168 (-410 (-549))))) (-5 *2 (-643 (-168 *4))) + (-5 *1 (-766 *4)) (-4 *4 (-13 (-365) (-850)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-763)))) +(((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *1 *1 *1) (-4 *1 (-763)))) +(((*1 *1 *1 *1) (-4 *1 (-763)))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-949 (-549)))) (-5 *1 (-439)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-956)) (-4 *3 (-1102)) (-5 *2 (-692 *1)) - (-4 *1 (-768 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1051)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) - (-4 *3 (-1245 *4)) - (-4 *5 (-13 (-407) (-1040 *4) (-365) (-1204) (-285)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *1 (-588 *2)) (-4 *2 (-1040 *3)) - (-4 *2 (-365)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) - (-4 *2 (-13 (-433 *4) (-1004) (-1204))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1094 *2)) (-4 *2 (-13 (-433 *4) (-1004) (-1204))) - (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-1179)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 *1)) (-4 *1 (-961))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1215))))) -(((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) - ((*1 *1 *1) (-4 *1 (-1062)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1175 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) - (-4 *3 (-365))))) -(((*1 *1 *1) (-5 *1 (-1065)))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-420 *4))))) + (-12 (-5 *3 (-1180)) (-5 *4 (-691 (-225))) (-5 *2 (-1106)) (-5 *1 (-761)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-691 (-549))) (-5 *2 (-1106)) (-5 *1 (-761))))) +(((*1 *2 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761))))) +(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-761))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-168 (-225))) (-5 *6 (-1162)) (-5 *4 (-225)) + (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1162)) (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *2 (-1038)) + (-5 *1 (-760))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1162)) (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *2 (-1038)) + (-5 *1 (-760))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-168 (-225))) (-5 *5 (-549)) (-5 *6 (-1162)) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-168 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-760))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-759))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-759))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) + (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-759))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) + (-5 *2 (-1038)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) + (-5 *2 (-1038)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1038)) + (-5 *1 (-758))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) + (-5 *2 (-1038)) (-5 *1 (-758))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) + (-5 *1 (-758))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) + (-5 *2 (-1038)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-168 (-225)))) (-5 *2 (-1038)) + (-5 *1 (-758))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-691 (-168 (-225)))) + (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-112)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-757))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) + (-5 *2 (-1038)) (-5 *1 (-757)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) + (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-691 (-225))) (-5 *4 (-225)) + (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) + (-5 *1 (-757))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-757))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-168 (-225)))) + (-5 *2 (-1038)) (-5 *1 (-756))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-168 (-225)))) + (-5 *2 (-1038)) (-5 *1 (-756))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-168 (-225)))) (-5 *2 (-1038)) + (-5 *1 (-756))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-756))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-756))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-756))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *3 (-549)) + (-5 *2 (-1038)) (-5 *1 (-756))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-643 (-112))) (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) + (-5 *7 (-225)) (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-756))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) - (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1037)) (-5 *1 (-755))))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1221))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-613 *3)) (-4 *3 (-1102))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1262 *4 *2)) - (-4 *4 (-38 (-410 (-567))))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-979 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) + (-12 (-5 *4 (-691 (-549))) (-5 *5 (-112)) (-5 *7 (-691 (-225))) + (-5 *3 (-549)) (-5 *6 (-225)) (-5 *2 (-1038)) (-5 *1 (-756))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-643 (-112))) (-5 *7 (-691 (-225))) (-5 *8 (-691 (-549))) + (-5 *3 (-549)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1038)) + (-5 *1 (-756))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) + (-5 *1 (-755))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 + *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) + (-12 (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) + (-5 *7 (-691 (-549))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-549)) + (-5 *2 (-1038)) (-5 *1 (-755))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 + *8) + (-12 (-5 *5 (-691 (-225))) (-5 *6 (-112)) (-5 *7 (-691 (-549))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-549)) + (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-755))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-112)) (-5 *2 (-1038)) + (-5 *1 (-755))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1038)) + (-5 *1 (-755))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1038)) + (-5 *1 (-755))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1038)) + (-5 *1 (-755))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-549)) (-5 *5 (-112)) (-5 *6 (-691 (-225))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-225)) + (-5 *2 (-1038)) (-5 *1 (-755))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) + (-5 *1 (-754))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1162)) (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) + (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) + (-5 *7 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *6 (-225)) + (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1162)) (-5 *5 (-691 (-225))) (-5 *6 (-225)) + (-5 *7 (-691 (-549))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) + (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) + (-5 *1 (-754))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) + (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) + (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) + (-5 *1 (-754))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-691 (-225))) (-5 *6 (-691 (-549))) (-5 *3 (-549)) + (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) + (-5 *1 (-754))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-754))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) + (-5 *1 (-753))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) + (-5 *1 (-753))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-691 (-225))) (-5 *5 (-691 (-549))) (-5 *6 (-225)) + (-5 *3 (-549)) (-5 *2 (-1038)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) (-5 *2 (-1038)) + (-5 *1 (-753))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-753))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 + *4) + (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) (-5 *6 (-677 (-225))) + (-5 *3 (-225)) (-5 *2 (-1038)) (-5 *1 (-752))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *5 (-1162)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1038)) + (-5 *1 (-752))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) (-5 *4 (-225)) (-5 *2 (-1038)) + (-5 *1 (-752))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-549)) (-5 *5 (-691 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 G JACOBG JACGEP)))) + (-5 *4 (-225)) (-5 *2 (-1038)) (-5 *1 (-751))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1038)) + (-5 *1 (-751)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-62 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-391)) + (-5 *2 (-1038)) (-5 *1 (-751))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-751))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1038)) + (-5 *1 (-751))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-691 (-225))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) + (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-751))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-549)) (-5 *5 (-1162)) (-5 *6 (-691 (-225))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) + (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-751))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-751))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 FCN)))) + (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-751))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-750))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) (-5 *2 (-1038)) (-5 *1 (-750))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 G)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-549)) (-5 *5 (-691 (-225))) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *3 (-225)) + (-5 *2 (-1038)) (-5 *1 (-750))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) + (-5 *1 (-750))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-749))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-749))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-749))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-1162)) (-5 *5 (-691 (-225))) (-5 *2 (-1038)) + (-5 *1 (-749))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *2 (-1038)) (-5 *1 (-749))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1038)) + (-5 *1 (-748))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-549)) (-5 *4 (-691 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1038)) + (-5 *1 (-748))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-549)) + (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 -3496)))) (-5 *2 (-1038)) + (-5 *1 (-748))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1038)) + (-5 *1 (-747))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-691 (-225))) (-5 *4 (-549)) (-5 *5 (-112)) (-5 *2 (-1038)) + (-5 *1 (-747))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-746 *3)) (-4 *3 (-172))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 *6)) (-5 *3 (-549)) (-4 *6 (-308)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-4 *7 (-852)) + (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-4 *8 (-308)) (-5 *2 (-643 (-773))) + (-5 *1 (-744 *6 *7 *8 *9)) (-5 *5 (-773))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) - (-4 *5 (-1051)) (-5 *2 (-112)) (-5 *1 (-1031 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1051)) - (-5 *2 (-112)) (-5 *1 (-1031 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1102))))) + (-12 (-5 *3 (-549)) (-5 *4 (-408 *2)) (-4 *2 (-953 *7 *5 *6)) + (-5 *1 (-744 *5 *6 *7 *2)) (-4 *5 (-795)) (-4 *6 (-852)) (-4 *7 (-308))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-5 *5 (-643 (-643 *8))) + (-4 *7 (-852)) (-4 *8 (-308)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) + (-5 *2 + (-2 (|:| |upol| (-1174 *8)) (|:| |Lval| (-643 *8)) + (|:| |Lfact| (-643 (-2 (|:| -4164 (-1174 *8)) (|:| -2564 (-549))))) + (|:| |ctpol| *8))) + (-5 *1 (-744 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-643 *7)) (-5 *5 (-643 (-643 *8))) (-4 *7 (-852)) (-4 *8 (-308)) + (-4 *6 (-795)) (-4 *9 (-953 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| (-643 (-2 (|:| -4164 (-1174 *9)) (|:| -2564 (-549))))))) + (-5 *1 (-744 *6 *7 *8 *9)) (-5 *3 (-1174 *9))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-549)) (-4 *6 (-795)) (-4 *7 (-852)) (-4 *8 (-308)) + (-4 *9 (-953 *8 *6 *7)) + (-5 *2 (-2 (|:| -2182 (-1174 *9)) (|:| |polval| (-1174 *8)))) + (-5 *1 (-744 *6 *7 *8 *9)) (-5 *3 (-1174 *9)) (-5 *4 (-1174 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) - (-5 *1 (-268))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-439))))) + (-12 (-4 *5 (-795)) (-4 *4 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) + (-5 *1 (-744 *5 *4 *6 *3)) (-4 *3 (-953 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1223)) (-4 *3 (-1245 *4)) - (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-643 (-2 (|:| -4164 (-1174 *6)) (|:| -2564 (-549))))) + (-4 *6 (-308)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-549)) + (-5 *1 (-744 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1040 (-567))) - (-4 *4 (-559)) (-5 *2 (-1175 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-613 *1)) (-4 *1 (-1051)) (-4 *1 (-303)) - (-5 *2 (-1175 *1))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851))))) -(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-369 *3))))) + (-12 (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-308)) (-5 *2 (-408 *3)) + (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-953 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-741 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-740))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-738 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1104)))) + ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1104))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *2 *5)) (-4 *4 (-1051)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303)))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-773)))) ((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-613 *3)) - (-4 *3 (-13 (-433 *5) (-27) (-1204))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-147) (-640 (-567)))) - (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1102))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548))))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) (-5 *2 (-773)))) + ((*1 *2 *1) + (-12 (-5 *2 (-773)) (-5 *1 (-737 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-728))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-560)) (-4 *2 (-953 *3 *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) + (-5 *3 (-410 (-949 *6))) (-4 *5 (-795)) + (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 (-949 *6))) (-4 *6 (-560)) + (-4 *2 (-953 (-410 (-949 *6)) *5 *4)) (-5 *1 (-734 *5 *4 *6 *2)) + (-4 *5 (-795)) (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *2)) (-4 *2 (-953 (-410 (-949 *6)) *5 *4)) + (-5 *1 (-734 *5 *4 *6 *2)) (-4 *5 (-795)) + (-4 *4 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) (-4 *6 (-560))))) +(((*1 *2 *3) + (-12 (-4 *4 (-795)) (-4 *5 (-13 (-852) (-10 -8 (-15 -4402 ((-1180) $))))) + (-4 *6 (-560)) (-5 *2 (-2 (|:| -2805 (-949 *6)) (|:| -2236 (-949 *6)))) + (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-953 (-410 (-949 *6)) *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-549)) + (-14 *6 (-773)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-135 *5 *6 *8)) + (-5 *1 (-136 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *9)) (-4 *9 (-1052)) (-4 *5 (-852)) (-4 *6 (-795)) + (-4 *8 (-1052)) (-4 *2 (-953 *9 *7 *5)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-795)) (-4 *4 (-953 *8 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1245 *5)) + (-5 *1 (-729 *5 *2)) (-4 *5 (-365))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -3493 (-408 *3)) (|:| |special| (-408 *3)))) + (-5 *1 (-729 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-724)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-728)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-1191 *3))))) + (-12 (-5 *2 (-773)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) + (-14 *4 (-643 (-1180))))) + ((*1 *1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) + (-14 *4 (-643 (-1180))))) + ((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-338 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-726 *2 *3)) (-4 *3 (-1245 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) + (-12 (-5 *3 (-1269 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) + (-4 *1 (-726 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1245 *5)) (-5 *2 (-691 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-922)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-724)) (-5 *2 (-773))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) + ((*1 *1 *1) (|partial| -4 *1 (-724)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-560)))) + ((*1 *1 *1) (|partial| -4 *1 (-724)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-365))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-713 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) - (-5 *2 (-772)))) + (-12 (-5 *2 (-1250 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) + (-14 *4 (-1180)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) - (-5 *2 (-772)))) + (-12 (-4 *2 (-1104)) (-5 *1 (-715 *3 *2 *4)) (-4 *3 (-852)) + (-14 *4 + (-1 (-112) (-2 (|:| -2563 *3) (|:| -2564 *2)) + (-2 (|:| -2563 *3) (|:| -2564 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-370)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352)))) ((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-727))))) -(((*1 *2 *3) - (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4)) - (-5 *3 (-645 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)))) (-4 *3 (-559)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) - (-4 *2 - (-13 (-365) (-303) - (-10 -8 (-15 -4294 ((-1127 *3 (-613 $)) $)) - (-15 -4306 ((-1127 *3 (-613 $)) $)) - (-15 -2504 ($ (-1127 *3 (-613 $)))))))))) -(((*1 *1) (-5 *1 (-471)))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-351)) (-5 *2 (-1175 *4)) - (-5 *1 (-531 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1064)))) - ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1064))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548))))) -(((*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4347 *6) (|:| |sol?| (-112))) (-567) - *6)) - (-4 *6 (-365)) (-4 *7 (-1245 *6)) - (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1161)) (-5 *1 (-306))))) + (-12 (-4 *2 (-852)) (-5 *1 (-715 *2 *3 *4)) (-4 *3 (-1104)) + (-14 *4 + (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *3)) + (-2 (|:| -2563 *2) (|:| -2564 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-714 *3 *2)) (-4 *2 (-1245 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-5 *2 (-1269 *3)) (-5 *1 (-714 *3 *4)) + (-4 *4 (-1245 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1167 3 *3)) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) - ((*1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1161)) (-5 *1 (-1200))))) -(((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-923)) (-5 *1 (-1103 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1052)) (-5 *1 (-714 *3 *4)) + (-4 *4 (-1245 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1052)) (-5 *2 (-1269 *3)) (-5 *1 (-714 *3 *4)) + (-4 *4 (-1245 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1052)) (-5 *2 (-961 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) + (-4 *4 (-1245 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1052)) (-5 *2 (-961 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) + (-4 *4 (-1245 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) + (-12 (-4 *2 (-352)) (-4 *2 (-1052)) (-5 *1 (-714 *2 *3)) (-4 *3 (-1245 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712))))) +(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712))))) +(((*1 *2 *3) (-12 (-5 *3 (-865)) (-5 *2 (-1162)) (-5 *1 (-712))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-643 (-1174 *13))) (-5 *3 (-1174 *13)) + (-5 *4 (-643 *12)) (-5 *5 (-643 *10)) (-5 *6 (-643 *13)) + (-5 *7 (-643 (-643 (-2 (|:| -3480 (-773)) (|:| |pcoef| *13))))) + (-5 *8 (-643 (-773))) (-5 *9 (-1269 (-643 (-1174 *10)))) (-4 *12 (-852)) + (-4 *10 (-308)) (-4 *13 (-953 *10 *11 *12)) (-4 *11 (-795)) + (-5 *1 (-709 *11 *12 *10 *13))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-643 *11)) (-5 *5 (-643 (-1174 *9))) (-5 *6 (-643 *9)) + (-5 *7 (-643 *12)) (-5 *8 (-643 (-773))) (-4 *11 (-852)) (-4 *9 (-308)) + (-4 *12 (-953 *9 *10 *11)) (-4 *10 (-795)) (-5 *2 (-643 (-1174 *12))) + (-5 *1 (-709 *10 *11 *9 *12)) (-5 *3 (-1174 *12))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-643 (-1174 *11))) (-5 *3 (-1174 *11)) + (-5 *4 (-643 *10)) (-5 *5 (-643 *8)) (-5 *6 (-643 (-773))) + (-5 *7 (-1269 (-643 (-1174 *8)))) (-4 *10 (-852)) (-4 *8 (-308)) + (-4 *11 (-953 *8 *9 *10)) (-4 *9 (-795)) (-5 *1 (-709 *9 *10 *8 *11))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1180)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-704 *3 *5 *6 *7)) + (-4 *3 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-708 *3 *5 *6)) + (-4 *3 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-1 *6 *5)) (-5 *1 (-708 *4 *5 *6)) + (-4 *4 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1175 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) - (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-954 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) - (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1161)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-264))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1219)) (-4 *3 (-1051)) - (-5 *2 (-690 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1051)) (-4 *3 (-851)) - (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1051)) (-4 *4 (-851)) - (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-707 *3 *4)) + (-4 *3 (-1219)) (-4 *4 (-1219))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-643 (-1180))) (-5 *3 (-1180)) (-5 *1 (-538)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1180)) (-5 *1 (-706 *3)) (-4 *3 (-616 (-538))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-643 (-1180))) (-5 *2 (-1180)) (-5 *1 (-706 *3)) + (-4 *3 (-616 (-538)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-705 *3)) + (-4 *3 (-616 (-538))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1180)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-705 *3)) + (-4 *3 (-616 (-538)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-704 *4 *5 *6 *7)) + (-4 *4 (-616 (-538))) (-4 *5 (-1219)) (-4 *6 (-1219)) (-4 *7 (-1219))))) +(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-703)))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-703))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-690 *3 *4 *5 *6)) + (-4 *6 (-688 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2152 *3) (|:| -3303 *3))) (-5 *1 (-702 *3)) + (-4 *3 (-308))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-308)) (-5 *1 (-702 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-549)))) + ((*1 *2 *1) (-12 (-5 *2 (-549)) (-5 *1 (-701))))) +(((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) + ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701)))) + ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-701))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) + ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701))))) +(((*1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701)))) + ((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-701))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-1 (-225) (-225) (-225) (-225))) + (-5 *2 (-1 (-946 (-225)) (-225) (-225))) (-5 *1 (-699))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) + (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) + (-5 *1 (-699))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1092 (-225))) (-5 *6 (-643 (-262))) (-5 *2 (-1136 (-225))) + (-5 *1 (-699)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-225))) + (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-699)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1136 (-225))) (-5 *3 (-1 (-946 (-225)) (-225) (-225))) + (-5 *4 (-1092 (-225))) (-5 *5 (-643 (-262))) (-5 *1 (-699))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-2 (|:| |deg| (-773)) (|:| -2975 *5)))) (-4 *5 (-1245 *4)) + (-4 *4 (-352)) (-5 *2 (-643 *5)) (-5 *1 (-216 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-2 (|:| -4164 *5) (|:| -4380 (-549))))) (-5 *4 (-549)) + (-4 *5 (-1245 *4)) (-5 *2 (-643 *5)) (-5 *1 (-698 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-549)) (-5 *2 (-643 (-2 (|:| -4164 *3) (|:| -4380 *4)))) + (-5 *1 (-698 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-698 *2)) (-4 *2 (-1245 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1219)) (-4 *2 (-1104)))) + ((*1 *1 *1) (-12 (-4 *1 (-697 *2)) (-4 *2 (-1104))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-645 (-1179))) (|:| |pred| (-52)))) - (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-960 (-183 (-139)))) (-5 *1 (-334)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1218))) (-5 *1 (-607))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) - (-5 *2 - (-2 (|:| -2233 *4) (|:| -3554 *4) (|:| |totalpts| (-567)) - (|:| |success| (-112)))) - (-5 *1 (-790)) (-5 *5 (-567))))) -(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))) + (-12 (-4 *1 (-697 *3)) (-4 *3 (-1104)) + (-5 *2 (-643 (-2 (|:| -2254 *3) (|:| -2125 (-773)))))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-773)) (-4 *6 (-1104)) (-4 *7 (-903 *6)) (-5 *2 (-691 *7)) + (-5 *1 (-694 *6 *7 *3 *4)) (-4 *3 (-374 *7)) + (-4 *4 (-13 (-374 *6) (-10 -7 (-6 -4425))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *4 (-643 (-1180))) + (-5 *2 (-691 (-315 (-225)))) (-5 *1 (-205)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1104)) (-4 *6 (-903 *5)) (-5 *2 (-691 *6)) + (-5 *1 (-694 *5 *6 *3 *4)) (-4 *3 (-374 *6)) + (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-773)) (-4 *6 (-1104)) (-4 *3 (-903 *6)) (-5 *2 (-691 *3)) + (-5 *1 (-694 *6 *3 *7 *4)) (-4 *7 (-374 *3)) + (-4 *4 (-13 (-374 *6) (-10 -7 (-6 -4425))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1104)) (-4 *3 (-903 *5)) (-5 *2 (-691 *3)) + (-5 *1 (-694 *5 *3 *6 *4)) (-4 *6 (-374 *3)) + (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1104)) (-4 *2 (-903 *4)) (-5 *1 (-694 *4 *2 *5 *3)) + (-4 *5 (-374 *2)) (-4 *3 (-13 (-374 *4) (-10 -7 (-6 -4425))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1104)) (-4 *2 (-903 *5)) (-5 *1 (-694 *5 *2 *3 *4)) + (-4 *3 (-374 *2)) (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1104)) (-4 *3 (-903 *5)) (-5 *2 (-1269 *3)) + (-5 *1 (-694 *5 *3 *6 *4)) (-4 *6 (-374 *3)) + (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4425))))))) +(((*1 *1 *2) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865)))))) +(((*1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-615 (-865)))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-691 *4)) (-5 *3 (-773)) (-4 *4 (-1052)) (-5 *1 (-692 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-1052)) (-5 *1 (-692 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-4 *3 (-172)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-690 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-549)) (-4 *3 (-172)) (-4 *5 (-374 *3)) (-4 *6 (-374 *3)) + (-5 *1 (-690 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-549)) (-4 *3 (-172)) (-4 *5 (-374 *3)) (-4 *6 (-374 *3)) + (-5 *1 (-690 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-549)) (-4 *4 (-172)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4)) + (-5 *1 (-690 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1052)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-549)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1052)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-686 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-686 *4 *5 *6)) (-4 *4 (-1104))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 (-317 (-225)))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-686 *4 *5 *6)) (-4 *5 (-1104))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-686 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1104)) (-4 *4 (-1104)) (-4 *6 (-1104)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-686 *5 *4 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-685 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1 *5)) + (-5 *1 (-685 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-685 *4 *3)) (-4 *4 (-1104)) + (-4 *3 (-1104))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-773) *2)) (-5 *4 (-773)) (-4 *2 (-1104)) + (-5 *1 (-680 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-773) *3)) (-4 *3 (-1104)) (-5 *1 (-684 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-684 *2)) (-4 *2 (-1104))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-684 *2)) (-4 *2 (-1104)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-643 *5) (-643 *5))) (-5 *4 (-549)) (-5 *2 (-643 *5)) + (-5 *1 (-684 *5)) (-4 *5 (-1104))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-684 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-643 (-1220))) (-5 *3 (-1220)) (-5 *1 (-683))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) + (-4 *2 (-1104)) (-5 *1 (-682 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-681 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-681 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-773)) (-4 *2 (-1104)) (-5 *1 (-680 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-1095 (-949 (-549)))) (-5 *2 (-331)) + (-5 *1 (-333)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-677 *3)) (-4 *3 (-1052)) (-4 *3 (-1104))))) +(((*1 *1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-677 *3)) (-4 *3 (-1052)) (-4 *3 (-1104))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1052)) (-4 *2 (-1104))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-773)) (-5 *1 (-677 *2)) (-4 *2 (-1104))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-677 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1269 (-773))) (-5 *1 (-677 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (-4 *1 (-676 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-676 *3)) (-4 *3 (-1219)) (-5 *2 (-773))))) +(((*1 *2 *3) + (-12 (-5 *3 (-821 *4)) (-4 *4 (-852)) (-5 *2 (-112)) (-5 *1 (-674 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-821 *3)) (-4 *3 (-852)) (-5 *1 (-674 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-821 *3)) (-4 *3 (-852)) (-5 *1 (-674 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-922)) (-4 *5 (-852)) + (-5 *2 (-58 (-643 (-674 *5)))) (-5 *1 (-674 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *5)) (-5 *4 (-922)) (-4 *5 (-852)) (-5 *2 (-643 (-674 *5))) + (-5 *1 (-674 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 *7)) (-4 *7 (-852)) + (-4 *8 (-953 *5 *6 *7)) (-4 *5 (-560)) (-4 *6 (-795)) (-5 *2 - (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) - (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) - (-5 *1 (-306))))) -(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-241))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1037)) (-5 *1 (-749))))) + (-2 (|:| |particular| (-3 (-1269 (-410 *8)) "failed")) + (|:| -2190 (-643 (-1269 (-410 *8)))))) + (-5 *1 (-671 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *6 (-13 (-374 *5) (-10 -7 (-6 -4426)))) + (-4 *4 (-13 (-374 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-112)) + (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-691 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) (-5 *2 (-112)) + (-5 *1 (-670 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-643 (-1174 *4))) (-5 *3 (-1174 *4)) (-4 *4 (-913)) + (-5 *1 (-665 *4))))) +(((*1 *1 *1) (-4 *1 (-664)))) +(((*1 *1 *1 *1) (-4 *1 (-664)))) +(((*1 *1 *1 *1) (-4 *1 (-664)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-662 *4 *2)) + (-4 *2 (-660 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-660 *3)) (-4 *3 (-1052)) (-4 *3 (-365)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-773)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-662 *5 *2)) + (-4 *2 (-660 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-662 *4 *2)) + (-4 *2 (-660 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-308) (-147))) - (-4 *2 (-951 *4 *6 *5)) (-5 *1 (-926 *4 *5 *6 *2)) - (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-5 *2 (-1269 *3)) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1245 *3))))) -(((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-923)) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) - (-12 (-4 *4 (-365)) (-5 *2 (-834 (-923))) (-5 *1 (-329 *3 *4)) - (-4 *3 (-330 *4)))) - ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-923)))) - ((*1 *2) - (-12 (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-923)))))) -(((*1 *1) (-4 *1 (-969)))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) - (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) - (-4 *5 (-375 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 (-567)) (-14 *5 (-772)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-772)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-772)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-772)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-772)))) - ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567)) - (-14 *4 (-772)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-245 (-1161))) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-851) - (-10 -8 (-15 -1882 ((-1161) $ *3)) (-15 -4079 ((-1274) $)) - (-15 -3841 ((-1274) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-991)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-851) - (-10 -8 (-15 -1882 ((-1161) $ (-1179))) (-15 -4079 ((-1274) $)) - (-15 -3841 ((-1274) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1184)) (-5 *1 (-250)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1102)) (-4 *2 (-1219)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1245 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-1245 *2)) - (-4 *4 (-1245 (-410 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1161)) (-5 *1 (-505)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-52)) (-5 *1 (-633)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-645 (-894 *4))) (-5 *1 (-894 *4)) - (-4 *4 (-1102)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-1102)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-907 *4)) (-5 *1 (-906 *4)) - (-4 *4 (-1102)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-923)) (-4 *2 (-365)) - (-5 *1 (-995 *4 *2)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1012 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) (-4 *2 (-1051)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-1055 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1051)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-923)) (-4 *4 (-1102)) - (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) - (-5 *1 (-1078 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-923)) (-4 *4 (-1102)) - (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) - (-5 *1 (-1079 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1105 *3 *4 *5 *6 *7)) - (-4 *3 (-1102)) (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) - (-4 *7 (-1102)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) - (-4 *4 (-1102)) (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)))) - ((*1 *1 *1 *1) (-4 *1 (-1146))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-410 *1)) (-4 *1 (-1245 *2)) (-4 *2 (-1051)) - (-4 *2 (-365)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-410 *1)) (-4 *1 (-1245 *3)) (-4 *3 (-1051)) - (-4 *3 (-559)))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-365) (-147) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *5 (-1245 *4)) (-5 *2 (-643 (-657 (-410 *5)))) (-5 *1 (-661 *4 *5)) + (-5 *3 (-657 (-410 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-660 *2)) (-4 *2 (-1052)) (-4 *2 (-365))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-653 *3)) (-4 *3 (-1219))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-653 *3)) (-4 *3 (-1219)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-653 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))) + (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 *4)))) (-4 *3 (-1104)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-651 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1247 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) + (-12 (-5 *3 (-549)) (-4 *1 (-388 *4)) (-4 *4 (-1104)) (-5 *2 (-773)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1257 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) + (-12 (-5 *3 (-549)) (-4 *2 (-23)) (-5 *1 (-651 *4 *2 *5)) (-4 *4 (-1104)) + (-14 *5 *2)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1104)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-363 *2)) (-4 *2 (-1104)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-4 *1 (-388 *2)) (-4 *2 (-1104)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) - (-4 *4 (-870 *3)))) + (-12 (-5 *3 (-549)) (-4 *2 (-1104)) (-5 *1 (-651 *2 *4 *5)) (-4 *4 (-23)) + (-14 *5 *4)))) +(((*1 *1 *1) (-12 (-4 *1 (-374 *2)) (-4 *2 (-1219)))) + ((*1 *2 *2) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3)))) ((*1 *1 *1) - (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-567)) (-4 *1 (-1231 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-1260 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1231 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1260 *2))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-331))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-923)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-264))))) -(((*1 *1) (-4 *1 (-351)))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *1 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)) - (-4 *2 (-455)))) - ((*1 *1 *1) - (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1223)) (-4 *3 (-1245 *2)) - (-4 *4 (-1245 (-410 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *3 (-455)))) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-374 *2)) (-4 *2 (-1219)))) ((*1 *1 *1) - (-12 (-4 *1 (-951 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1166 *3 *2)) - (-4 *2 (-1245 *3))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) - ((*1 *1 *1 *1) (-4 *1 (-455))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-567))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1245 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-772))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) - (-5 *1 (-918 *3 *4 *5 *2)) (-4 *2 (-951 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-4 *2 (-951 *6 *4 *5)) - (-5 *1 (-918 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-308)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1175 *6)) (-4 *6 (-951 *5 *3 *4)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-918 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1175 *7))) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-308)) (-5 *2 (-1175 *7)) (-5 *1 (-918 *4 *5 *6 *7)) - (-4 *7 (-951 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-923))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-971 *3 *2)) - (-4 *2 (-1245 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) - (-4 *6 (-1051)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1031 *6)) - (-5 *3 (-645 (-690 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1051)) - (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1031 *4)) - (-5 *3 (-645 (-690 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) - (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) - (-5 *3 (-645 (-690 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-923)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1051)) - (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1031 *5)) - (-5 *3 (-645 (-690 *5)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (|has| *4 (-6 (-4424 "*"))) - (-4 *4 (-1051)) (-5 *1 (-1030 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) - (|has| *4 (-6 (-4424 "*"))) (-4 *4 (-1051)) (-5 *1 (-1030 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550)))))) -(((*1 *1 *1 *1) (-5 *1 (-162))) - ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1159 *7))) (-4 *6 (-851)) - (-4 *7 (-951 *5 (-534 *6) *6)) (-4 *5 (-1051)) - (-5 *2 (-1 (-1159 *7) *7)) (-5 *1 (-1128 *5 *6 *7))))) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-645 *3)) (-5 *5 (-923)) (-4 *3 (-1245 *4)) - (-4 *4 (-308)) (-5 *1 (-463 *4 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3 *4)) (-4 *3 (-1102)) - (-4 *4 (-1102))))) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) - (|:| -3582 *6))) - (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219))))) + (-12 (-5 *2 (-112)) (-5 *1 (-651 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-23)) + (-14 *5 *4)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-549) (-549))) (-5 *1 (-363 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-773) (-773))) (-4 *1 (-388 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-651 *3 *4 *5)) + (-4 *3 (-1104))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-363 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-651 *3 *4 *5)) (-4 *4 (-23)) + (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1104))))) +(((*1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1219))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1104)) (-4 *2 (-1219))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1179))) (-4 *6 (-365)) - (-5 *2 (-645 (-295 (-954 *6)))) (-5 *1 (-541 *5 *6 *7)) - (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-365)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))) -(((*1 *1 *1) (-5 *1 (-1065)))) -(((*1 *2 *3) (-12 (-5 *3 (-954 (-225))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1181 (-410 (-567)))) - (-5 *1 (-190))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1159 *2)) (-4 *2 (-1219))))) -(((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) - (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |k| (-895 *3)) (|:| |c| *4)))) - (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) - (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-923)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-895 *3)) (-4 *3 (-851))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) - (-5 *2 (-1037)) (-5 *1 (-755))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1223)) - (-4 *6 (-1245 (-410 *5))) + (-12 (-5 *3 (-691 *1)) (-5 *4 (-1269 *1)) (-4 *1 (-641 *5)) (-4 *5 (-1052)) + (-5 *2 (-2 (|:| -1748 (-691 *5)) (|:| |vec| (-1269 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-691 *1)) (-4 *1 (-641 *4)) (-4 *4 (-1052)) (-5 *2 (-691 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 *5)) (-4 *5 (-365)) + (-4 *5 (-560)) (-5 *2 (-1269 *5)) (-5 *1 (-640 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-641 *5)) (-3746 (-4 *5 (-365))) + (-4 *5 (-560)) (-5 *2 (-1269 (-410 *5))) (-5 *1 (-640 *5 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1269 *5)) (-4 *5 (-641 *4)) (-4 *4 (-560)) + (-5 *2 (-1269 *4)) (-5 *1 (-640 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 *5)) (-4 *5 (-641 *4)) (-4 *4 (-560)) (-5 *2 (-112)) + (-5 *1 (-640 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-844 *3))) (-4 *3 (-13 (-27) (-1205) (-424 *5))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-344 *4 *5 *6))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-394))))) -(((*1 *1) (-5 *1 (-130)))) + (-3 (-844 *3) + (-2 (|:| |leftHandLimit| (-3 (-844 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-844 *3) #1#))) + "failed")) + (-5 *1 (-638 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1162)) + (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-844 *3)) + (-5 *1 (-638 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-844 (-949 *5)))) (-4 *5 (-455)) + (-5 *2 + (-3 (-844 (-410 (-949 *5))) + (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-949 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-844 (-410 (-949 *5))) #2#))) + #3="failed")) + (-5 *1 (-639 *5)) (-5 *3 (-410 (-949 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-455)) + (-5 *2 + (-3 (-844 *3) + (-2 (|:| |leftHandLimit| (-3 (-844 *3) #2#)) + (|:| |rightHandLimit| (-3 (-844 *3) #2#))) + #3#)) + (-5 *1 (-639 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-294 (-410 (-949 *6)))) (-5 *5 (-1162)) + (-5 *3 (-410 (-949 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) + (-5 *1 (-639 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-4 *5 (-365)) (-5 *2 (-645 (-1213 *5))) - (-5 *1 (-1277 *5)) (-5 *4 (-1213 *5))))) + (|partial| -12 (-5 *4 (-294 (-834 *3))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-834 *3)) + (-5 *1 (-638 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-834 (-949 *5)))) (-4 *5 (-455)) + (-5 *2 (-834 (-410 (-949 *5)))) (-5 *1 (-639 *5)) (-5 *3 (-410 (-949 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-410 (-949 *5)))) (-5 *3 (-410 (-949 *5))) (-4 *5 (-455)) + (-5 *2 (-834 *3)) (-5 *1 (-639 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-634))))) +(((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-1104)))) + ((*1 *1 *1) (-5 *1 (-634)))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) + (-5 *2 (-484 *4 *5)) (-5 *1 (-633 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-643 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-643 (-1180))) + (-4 *5 (-455)) (-5 *1 (-633 *4 *5))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-643 (-484 *4 *5))) (-5 *3 (-866 *4)) (-14 *4 (-643 (-1180))) + (-4 *5 (-455)) (-5 *1 (-633 *4 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-247 *5 *6))) (-4 *6 (-455)) + (-5 *2 (-247 *5 *6)) (-14 *5 (-643 (-1180))) (-5 *1 (-633 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *1 (-262)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-946 (-225)) (-946 (-225)))) (-5 *3 (-643 (-262))) + (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-643 (-1180))) + (-4 *6 (-455)) (-5 *2 (-1269 *6)) (-5 *1 (-633 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-951 *5 *6 *7)) (-4 *5 (-455)) - (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-452 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1051) (-718 (-410 (-567))))) - (-4 *5 (-851)) (-5 *1 (-1285 *4 *5 *2)) (-4 *2 (-1290 *5 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) - (-5 *1 (-1074 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1161)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) (-5 *2 (-1274)) - (-5 *1 (-1110 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1051)) (-14 *3 (-645 (-1179))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1051) (-851))) - (-14 *3 (-645 (-1179))))) - ((*1 *1 *1) - (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-1102)))) - ((*1 *1 *1) - (-12 (-14 *2 (-645 (-1179))) (-4 *3 (-172)) - (-4 *5 (-238 (-2498 *2) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -2188 *4) (|:| -2618 *5)) - (-2 (|:| -2188 *4) (|:| -2618 *5)))) - (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851)) - (-4 *7 (-951 *3 *5 (-865 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-851)))) - ((*1 *1 *1) - (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) - ((*1 *1 *1) - (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1051)) - (-4 *3 (-727)))) - ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1292 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-847))))) + (-12 (-5 *2 (-643 (-484 *3 *4))) (-14 *3 (-643 (-1180))) (-4 *4 (-455)) + (-5 *1 (-633 *3 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-643 (-484 *5 *6))) (-5 *4 (-866 *5)) (-14 *5 (-643 (-1180))) + (-5 *2 (-484 *5 *6)) (-5 *1 (-633 *5 *6)) (-4 *6 (-455)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-484 *5 *6))) (-5 *4 (-866 *5)) (-14 *5 (-643 (-1180))) + (-5 *2 (-484 *5 *6)) (-5 *1 (-633 *5 *6)) (-4 *6 (-455))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2434 (-690 (-410 (-954 *4)))) - (|:| |vec| (-645 (-410 (-954 *4)))) (|:| -1471 (-772)) - (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) - (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) - (-5 *2 - (-2 (|:| |partsol| (-1269 (-410 (-954 *4)))) - (|:| -4374 (-645 (-1269 (-410 (-954 *4))))))) - (-5 *1 (-926 *4 *5 *6 *7)) (-4 *7 (-951 *4 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) - ((*1 *1 *1 *1) (-4 *1 (-455)))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) - (-4 *3 (-369 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1204) (-1004)))))) -(((*1 *1 *1) (-12 (-5 *1 (-916 *2)) (-4 *2 (-308))))) + (-12 (-5 *3 (-643 (-484 *4 *5))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) + (-5 *2 (-643 (-247 *4 *5))) (-5 *1 (-633 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *2 (-1245 *4)) (-5 *1 (-810 *4 *2 *3 *5)) - (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) - (-4 *5 (-657 (-410 *2)))))) + (-12 (-14 *4 (-643 (-1180))) (-4 *5 (-455)) + (-5 *2 (-2 (|:| |glbase| (-643 (-247 *4 *5))) (|:| |glval| (-643 (-549))))) + (-5 *1 (-633 *4 *5)) (-5 *3 (-643 (-247 *4 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-484 *4 *5))) (-14 *4 (-643 (-1180))) (-4 *5 (-455)) + (-5 *2 (-2 (|:| |gblist| (-643 (-247 *4 *5))) (|:| |gvlist| (-643 (-549))))) + (-5 *1 (-633 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-5 *2 (-1269 *3)) (-5 *1 (-713 *3 *4)) - (-4 *4 (-1245 *3))))) + (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) + ((*1 *1 *1) (-4 *1 (-632)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) + ((*1 *1 *1) (-4 *1 (-632)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) + ((*1 *1 *1) (-4 *1 (-632)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) + ((*1 *1 *1) (-4 *1 (-632)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) + ((*1 *1 *1) (-4 *1 (-632)))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-631 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1005) (-1205))))) + ((*1 *1 *1) (-4 *1 (-632)))) +(((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-424 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) + (-4 *5 (-424 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) + (-4 *5 (-13 (-424 *4) (-1005))))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-298 *4)) (-4 *4 (-299)))) + ((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-113)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *5 (-1104)) (-5 *2 (-112)) (-5 *1 (-423 *4 *5)) + (-4 *4 (-424 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) + (-4 *5 (-424 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) + (-4 *5 (-13 (-424 *4) (-1005) (-1205)))))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1159 *4))) (-5 *1 (-286 *4 *5)) - (-5 *3 (-1159 *4)) (-4 *5 (-1260 *4))))) + (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-643 (-1180))) + (-5 *2 (-643 (-1149 *5 (-534 (-866 *6)) (-866 *6) (-782 *5 (-866 *6))))) + (-5 *1 (-630 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1274)) (-5 *1 (-832))))) -(((*1 *1) (-5 *1 (-581))) - ((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-864)))) - ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1274)) (-5 *1 (-864)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1161)) (-5 *4 (-863)) (-5 *2 (-1274)) (-5 *1 (-864)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-1159 *4)) - (-4 *4 (-1102)) (-4 *4 (-1219))))) + (-12 (-5 *3 (-643 (-782 *5 (-866 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) + (-14 *6 (-643 (-1180))) (-5 *2 (-643 (-1049 *5 *6))) (-5 *1 (-630 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-643 (-949 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-450 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-450 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-643 (-782 *3 (-866 *4)))) (-4 *3 (-455)) + (-14 *4 (-643 (-1180))) (-5 *1 (-630 *3 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-643 (-949 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-643 (-782 *3 (-866 *4)))) (-4 *3 (-455)) + (-14 *4 (-643 (-1180))) (-5 *1 (-630 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-1179))) (-4 *4 (-13 (-308) (-147))) - (-4 *5 (-13 (-851) (-615 (-1179)))) (-4 *6 (-794)) - (-5 *2 (-645 (-410 (-954 *4)))) (-5 *1 (-926 *4 *5 *6 *7)) - (-4 *7 (-951 *4 *6 *5))))) -(((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-4 *1 (-723))) - ((*1 *1) (-4 *1 (-727))) - ((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) - ((*1 *1) (-12 (-5 *1 (-895 *2)) (-4 *2 (-851))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) - (-5 *3 (-645 (-567))))) + (-12 (-5 *3 (-643 (-949 *4))) (-4 *4 (-455)) (-5 *2 (-112)) + (-5 *1 (-362 *4 *5)) (-14 *5 (-643 (-1180))))) ((*1 *2 *3) - (-12 (-5 *2 (-1159 (-645 (-567)))) (-5 *1 (-885)) - (-5 *3 (-645 (-567)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-951 *3 *4 *5))))) + (-12 (-5 *3 (-643 (-782 *4 (-866 *5)))) (-4 *4 (-455)) + (-14 *5 (-643 (-1180))) (-5 *2 (-112)) (-5 *1 (-630 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1051))))) -(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 *4)) (-4 *4 (-351)) (-5 *2 (-112)) - (-5 *1 (-359 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1159 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1051)) - (-5 *3 (-410 (-567))) (-5 *1 (-1163 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-365) (-849))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1444 (-421 *3)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1102)) (-5 *2 (-1161))))) + (-12 (-5 *3 (-643 *4)) (-4 *4 (-852)) (-5 *2 (-643 (-666 *4 *5))) + (-5 *1 (-629 *4 *5 *6)) (-4 *5 (-13 (-172) (-719 (-410 (-549))))) + (-14 *6 (-922))))) (((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-645 (-171))))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1051)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1179))))) - ((*1 *2 *1) - (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1051) (-851))) (-14 *4 (-645 (-1179))))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1051)))) - ((*1 *2 *1) - (-12 (-14 *3 (-645 (-1179))) (-4 *5 (-238 (-2498 *3) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -2188 *4) (|:| -2618 *5)) - (-2 (|:| -2188 *4) (|:| -2618 *5)))) - (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851)) - (-4 *7 (-951 *2 *5 (-865 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1102)))) - ((*1 *2 *1) - (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1051)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1051)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) - (-4 *3 (-727)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)))) - ((*1 *2 *1) - (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) - (-4 *2 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1067 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-539))) - ((*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1060)))) - ((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) - ((*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-1060))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-757))))) -(((*1 *2) - (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) - (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-951 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-911)) - (-5 *1 (-908 *2 *3 *4 *5)) (-4 *5 (-951 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-911)) (-5 *1 (-909 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-5 *2 (-643 (-2 (|:| |k| (-674 *3)) (|:| |c| *4)))) + (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) + (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-643 (-294 *4))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-852)) + (-4 *4 (-13 (-172) (-719 (-410 (-549))))) (-14 *5 (-922))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1954 (-643 (-2 (|:| |irr| *10) (|:| -2558 (-549))))))) + (-5 *6 (-643 *3)) (-5 *7 (-643 *8)) (-4 *8 (-852)) (-4 *3 (-308)) + (-4 *10 (-953 *3 *9 *8)) (-4 *9 (-795)) + (-5 *2 + (-2 (|:| |polfac| (-643 *10)) (|:| |correct| *3) + (|:| |corrfact| (-643 (-1174 *3))))) + (-5 *1 (-627 *8 *9 *3 *10)) (-5 *4 (-643 (-1174 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-773)) (-5 *5 (-643 *3)) (-4 *3 (-308)) (-4 *6 (-852)) + (-4 *7 (-795)) (-5 *2 (-112)) (-5 *1 (-627 *6 *7 *3 *8)) + (-4 *8 (-953 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *6 (-1068 *3 *4 *5)) + (-5 *1 (-626 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1074 *3 *4 *5 *6)) + (-4 *2 (-1112 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-560)) (-5 *1 (-625 *2 *3)) (-4 *3 (-1245 *2))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-624 *4 *2)) (-4 *2 (-13 (-1205) (-963) (-29 *4)))))) +(((*1 *1) (-5 *1 (-619)))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549))))) + (-4 *5 (-1245 *4)) (-5 *2 (-1174 (-410 *5))) (-5 *1 (-617 *4 *5)) + (-5 *3 (-410 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-408 *6) *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-147) (-27) (-1041 (-549)) (-1041 (-410 (-549))))) + (-5 *2 (-1174 (-410 *6))) (-5 *1 (-617 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1104)) (-4 *2 (-1104)) + (-5 *1 (-614 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-613 *4)) (-5 *1 (-614 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1205)))) + ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-852)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1104))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-643 *1)) (-4 *1 (-299)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-613 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-113)) (-5 *3 (-643 *5)) (-5 *4 (-773)) (-4 *5 (-1104)) + (-5 *1 (-613 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-613 *3)) (-4 *3 (-1104))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-612 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-612 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-961 (-184 (-139)))) (-5 *1 (-334)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-608))))) (((*1 *2 *1) (-12 (-5 *2 - (-645 + (-643 (-2 - (|:| -2025 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| -4292 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -2265 + (|:| -2254 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -14801,3511 +11795,4533 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1159 (-225))) + (-3 (|:| |str| (-1157 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2031 + (|:| -1607 (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") + (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-562)))) + (-5 *1 (-563)))) ((*1 *2 *1) - (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1219)) - (-5 *2 (-645 *4))))) + (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-643 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-509)) (-5 *2 (-645 (-967))) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1159 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) - (-5 *3 (-567)) (-5 *2 (-1037)) (-5 *1 (-752))))) + (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1272)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1272))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-645 *5) *6)) - (-4 *5 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *6 (-1245 *5)) - (-5 *2 (-645 (-2 (|:| -3562 *5) (|:| -4178 *3)))) - (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) - (-4 *7 (-657 (-410 *6)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1051)) (-4 *3 (-793)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1102)))) - ((*1 *2 *1) - (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) - (-4 *6 (-238 (-2498 *3) (-772))) - (-14 *7 - (-1 (-112) (-2 (|:| -2188 *5) (|:| -2618 *6)) - (-2 (|:| -2188 *5) (|:| -2618 *6)))) - (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-851)) (-4 *8 (-951 *4 *6 (-865 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2)) - (-4 *3 (-1051)))) - ((*1 *1 *1) - (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-793)) - (-4 *4 (-851))))) + (-12 (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1219)) (-5 *2 (-643 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-606 *4 *3)) (-4 *4 (-1104)) + (-4 *3 (-1219)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-606 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1104)) (-4 *2 (-852))))) +(((*1 *2 *1) + (-12 (-4 *1 (-606 *2 *3)) (-4 *3 (-1219)) (-4 *2 (-1104)) (-4 *2 (-852))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-374 *2)) + (-4 *4 (-374 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4426)) (-4 *1 (-606 *3 *2)) (-4 *3 (-1104)) + (-4 *2 (-1219))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4426)) (-4 *1 (-606 *3 *4)) (-4 *3 (-1104)) + (-4 *4 (-1219)) (-5 *2 (-1275))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-643 (-613 *2))) (-5 *4 (-643 (-1180))) + (-4 *2 (-13 (-424 (-168 *5)) (-1005) (-1205))) (-4 *5 (-560)) + (-5 *1 (-602 *5 *6 *2)) (-4 *6 (-13 (-424 *5) (-1005) (-1205)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-168 *5)) (-5 *1 (-602 *4 *5 *3)) + (-4 *5 (-13 (-424 *4) (-1005) (-1205))) + (-4 *3 (-13 (-424 (-168 *4)) (-1005) (-1205)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *2 (-13 (-424 (-168 *4)) (-1005) (-1205))) + (-5 *1 (-602 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-1005) (-1205)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-4 *2 (-13 (-424 *4) (-1005) (-1205))) + (-5 *1 (-602 *4 *2 *3)) (-4 *3 (-13 (-424 (-168 *4)) (-1005) (-1205)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-168 *5)) (-4 *5 (-13 (-424 *4) (-1005) (-1205))) (-4 *4 (-560)) + (-4 *2 (-13 (-424 (-168 *4)) (-1005) (-1205))) (-5 *1 (-602 *4 *5 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1029 (-844 (-549)))) + (-5 *3 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *4)))) (-4 *4 (-1052)) + (-5 *1 (-598 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1029 (-844 (-549)))) (-5 *1 (-598 *3)) (-4 *3 (-1052))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *3)))) (-5 *1 (-598 *3)) + (-4 *3 (-1052))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1052))))) +(((*1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1052))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1157 (-2 (|:| |k| (-549)) (|:| |c| *6)))) + (-5 *4 (-1029 (-844 (-549)))) (-5 *5 (-1180)) (-5 *7 (-410 (-549))) + (-4 *6 (-1052)) (-5 *2 (-865)) (-5 *1 (-598 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-410 (-549))) (-5 *1 (-598 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) +(((*1 *1 *1) + (-12 (-5 *1 (-598 *2)) (-4 *2 (-38 (-410 (-549)))) (-4 *2 (-1052))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) - (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3023)) (-5 *2 (-112)) (-5 *1 (-618)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1554)) (-5 *2 (-112)) (-5 *1 (-618)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1883)) (-5 *2 (-112)) (-5 *1 (-618)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3353)) (-5 *2 (-112)) (-5 *1 (-692 *4)) - (-4 *4 (-614 (-863))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112)) - (-5 *1 (-692 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)) (-5 *1 (-877)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-877)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-972))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1153))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1280))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-607))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-1279))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1139)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1161))) (-5 *2 (-112)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1184)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1184))))) -(((*1 *1 *1 *1) (-4 *1 (-762)))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) - (-5 *1 (-756))))) + (-12 (-5 *4 (-643 *3)) (-4 *3 (-1112 *5 *6 *7 *8)) + (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *8 (-1068 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-594 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1102)) (-4 *4 (-1102)) - (-4 *6 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6))))) + (-12 (-5 *3 (-643 (-549))) (-5 *4 (-905 (-549))) (-5 *2 (-691 (-549))) + (-5 *1 (-593)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-549))) (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-593)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-549))) (-5 *4 (-643 (-905 (-549)))) + (-5 *2 (-643 (-691 (-549)))) (-5 *1 (-593))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-549))) (-5 *2 (-773)) (-5 *1 (-593))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1205) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-949 *5))) (-5 *4 (-1180)) (-4 *5 (-147)) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-315 *5)) + (-5 *1 (-592 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-645 (-1179))) (-4 *5 (-455)) - (-5 *2 - (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) - (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5)))))) -(((*1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1870 (-783 *3)) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -1870 *1) (|:| |coef2| *1))) - (-4 *1 (-1067 *3 *4 *5))))) + (-12 (-5 *3 (-586 *2)) (-4 *2 (-13 (-29 *4) (-1205))) (-5 *1 (-588 *4 *2)) + (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-586 (-410 (-949 *4)))) + (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *2 (-315 *4)) + (-5 *1 (-592 *4))))) (((*1 *2 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-591 *4)) (-4 *4 (-352))))) +(((*1 *2 *2) (-12 (-5 *1 (-590 *2)) (-4 *2 (-548))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-590 *2)) (-4 *2 (-548))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-590 *3)) (-4 *3 (-548))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-773)) (-5 *1 (-590 *2)) (-4 *2 (-548))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-773)) (-5 *1 (-590 *2)) (-4 *2 (-548)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3097 *3) (|:| -2564 (-773)))) (-5 *1 (-590 *3)) + (-4 *3 (-548))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-773)) (-5 *2 (-112)) (-5 *1 (-590 *3)) (-4 *3 (-548))))) +(((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2221 (-645 (-225))))) - (-5 *2 (-381)) (-5 *1 (-268)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1269 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306))))) + (-643 + (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 *2)) + (|:| |logand| (-1174 *2))))) + (-5 *4 (-643 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) + (-5 *1 (-586 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-586 *2)) (-4 *2 (-365))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-643 + (-2 (|:| |scalar| (-410 (-549))) (|:| |coeff| (-1174 *3)) + (|:| |logand| (-1174 *3))))) + (-5 *1 (-586 *3)) (-4 *3 (-365))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-586 *3)) (-4 *3 (-365))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-365))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-585))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-582))))) +(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-128))) (-5 *1 (-582))))) +(((*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-693 (-582))) (-5 *1 (-582))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-538) (-643 (-538)))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-643 (-538)))) (-5 *1 (-113)))) + ((*1 *1) (-5 *1 (-581)))) +(((*1 *1) (-5 *1 (-581)))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-580)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1180)) + (-4 *4 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1205) (-963) (-1142) (-29 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) - (-5 *1 (-811 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-5 *2 (-2 (|:| -4374 (-645 (-410 *6))) (|:| -2434 (-690 *5)))) - (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) + (-2 (|:| |ir| (-586 (-410 *6))) (|:| |specpart| (-410 *6)) + (|:| |polypart| *6))) + (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-625 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -3541 *4) (|:| |sol?| (-112))) (-549) *4)) + (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *1 (-577 *4 *5))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 (-1 (-3 (-2 (|:| -2318 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1245 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-643 (-410 *7))) (-4 *7 (-1245 *6)) + (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) - (-5 *1 (-811 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1245 *5)) - (-4 *5 (-13 (-365) (-147) (-1040 (-567)) (-1040 (-410 (-567))))) - (-5 *2 (-2 (|:| -4374 (-645 (-410 *6))) (|:| -2434 (-690 *5)))) - (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1204) (-1004)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1269 (-567))) (-5 *3 (-567)) (-5 *1 (-1112)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1269 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) - (-5 *1 (-1112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) - (-4 *5 (-13 (-1040 (-567)) (-455) (-640 (-567)))) - (-5 *2 (-2 (|:| -2140 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *5)))))) -(((*1 *1 *1) (-5 *1 (-539)))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-577 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1179)) - (-4 *5 (-13 (-455) (-147) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-2 (|:| -3906 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *5)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *3 (-645 (-264))) - (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471)))) - ((*1 *2 *1) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-471))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1122)))) -(((*1 *1) (-5 *1 (-1084)))) -(((*1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-863))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863))))) -(((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) - (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3) - (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) - (-5 *1 (-673 *4))))) -(((*1 *1) (-5 *1 (-331)))) -(((*1 *1 *2) - (-12 (-5 *2 (-923)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1051)) - (-4 *4 (-1219)))) - ((*1 *1 *2) - (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) - (-4 *5 (-238 (-2498 *3) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -2188 *2) (|:| -2618 *5)) - (-2 (|:| -2188 *2) (|:| -2618 *5)))) - (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) - (-4 *7 (-951 *4 *5 (-865 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-945 (-225))) (-5 *1 (-1215))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1274)) (-5 *1 (-823))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) + (-5 *2 (-2 (|:| -2318 (-410 *6)) (|:| |coeff| (-410 *6)))) + (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -3541 *7) (|:| |sol?| (-112))) (-549) *7)) + (-5 *6 (-643 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-577 *7 *8))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2318 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-643 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1245 *7)) (-5 *3 (-410 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-577 *7 *8))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3541 *6) (|:| |sol?| (-112))) (-549) *6)) + (-4 *6 (-365)) (-4 *7 (-1245 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) + (-2 (|:| -2318 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2318 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-365)) (-4 *7 (-1245 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) + (-2 (|:| -2318 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-643 *6) "failed") (-549) *6 *6)) + (-4 *6 (-365)) (-4 *7 (-1245 *6)) + (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -3541 *6) (|:| |sol?| (-112))) (-549) *6)) + (-4 *6 (-365)) (-4 *7 (-1245 *6)) + (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2318 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-365)) (-4 *7 (-1245 *6)) + (-5 *2 (-2 (|:| |answer| (-586 (-410 *7))) (|:| |a0| *6))) + (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-586 *3) *3 (-1180))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1180))) + (-4 *3 (-285)) (-4 *3 (-632)) (-4 *3 (-1041 *4)) (-4 *3 (-424 *7)) + (-5 *4 (-1180)) (-4 *7 (-616 (-893 (-549)))) (-4 *7 (-455)) + (-4 *7 (-889 (-549))) (-4 *7 (-1104)) (-5 *2 (-586 *3)) + (-5 *1 (-576 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-455)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *2)) + (-4 *2 (-285)) (-4 *2 (-424 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-4 *4 (-1104)) (-5 *1 (-576 *4 *2)) + (-4 *2 (-424 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 *6)) (-5 *4 (-1180)) (-4 *6 (-424 *5)) (-4 *5 (-1104)) + (-5 *2 (-643 (-613 *6))) (-5 *1 (-576 *5 *6))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-643 (-613 *6))) (-5 *4 (-1180)) (-5 *2 (-613 *6)) + (-4 *6 (-424 *5)) (-4 *5 (-1104)) (-5 *1 (-576 *5 *6))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-12 (-5 *3 (-643 (-613 *5))) (-4 *4 (-1104)) (-5 *2 (-613 *5)) + (-5 *1 (-576 *4 *5)) (-4 *5 (-424 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-643 (-613 *5))) (-5 *3 (-1180)) (-4 *5 (-424 *4)) + (-4 *4 (-1104)) (-5 *1 (-576 *4 *5))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-147))) + (-5 *2 (-2 (|:| -2318 (-410 (-949 *5))) (|:| |coeff| (-410 (-949 *5))))) + (-5 *1 (-573 *5)) (-5 *3 (-410 (-949 *5)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 (-410 (-949 *6)))) + (-5 *3 (-410 (-949 *6))) (-4 *6 (-13 (-560) (-1041 (-549)) (-147))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) - (-5 *1 (-205))))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-410 (-949 *4))) (-5 *3 (-1180)) + (-4 *4 (-13 (-560) (-1041 (-549)) (-147))) (-5 *1 (-573 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-586 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1205) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-147))) + (-5 *2 (-586 (-410 (-949 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-949 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1219)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) - (-4 *3 (-675 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) - (-5 *2 (-567)) (-5 *1 (-1116 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1033))))) + (|partial| -12 (-5 *2 (-549)) (-5 *1 (-572 *3)) (-4 *3 (-1041 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-643 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-365) (-147) (-1041 (-549)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-571 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-821)) (-14 *5 (-1179)) (-5 *2 (-645 (-1242 *5 *4))) - (-5 *1 (-1116 *4 *5)) (-5 *3 (-1242 *5 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-4 *1 (-969)))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) + (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1041 (-549)))) (-4 *5 (-1245 *4)) + (-5 *2 (-2 (|:| -2318 (-410 *5)) (|:| |coeff| (-410 *5)))) + (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) + (-4 *3 (-13 (-365) (-147) (-1041 (-549)))) (-5 *1 (-571 *3 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-1095 *3)) (-4 *3 (-1219)) (-5 *2 (-567))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) (-4 *6 (-455)) - (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) - (-4 *5 (-13 (-365) (-849)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) -(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822))))) -(((*1 *2 *3) - (-12 (-5 *3 (-929)) + (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-616 (-893 (-549)))) + (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) + (-4 *3 (-632)) (-4 *3 (-13 (-27) (-1205) (-424 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1180)) (-5 *4 (-844 *2)) (-4 *2 (-1142)) + (-4 *2 (-13 (-27) (-1205) (-424 *5))) (-4 *5 (-616 (-893 (-549)))) + (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) + (-5 *1 (-570 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1180)) (-4 *5 (-616 (-893 (-549)))) + (-4 *5 (-889 (-549))) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) + (-4 *3 (-632)) (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-1041 (-549)) (-455) (-641 (-549)))) + (-5 *2 (-2 (|:| -2489 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-613 *4)) (-5 *6 (-1180)) (-4 *4 (-13 (-424 *7) (-27) (-1205))) + (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2190 (-643 *4)))) + (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1180))) + (-4 *2 (-13 (-424 *5) (-27) (-1205))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1104))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1205))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) - (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-929)) (-5 *4 (-410 (-567))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1104))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1205))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) + (-4 *6 (-1104))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1205))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) + (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1104))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) + (-4 *7 (-1245 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2317 *3))) + (-5 *1 (-566 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-365)) (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) - (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3) - (-12 + (-2 (|:| |answer| (-410 *6)) (|:| -2317 (-410 *6)) + (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) + (-5 *1 (-567 *5 *6)) (-5 *3 (-410 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-549)) (-5 *3 (-773)) (-5 *1 (-565))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) +(((*1 *2 *3) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-565)) (-5 *3 (-549))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) +(((*1 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-565)) (-5 *3 (-549))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-643 (-643 *4))) (-5 *2 (-643 *4)) (-4 *4 (-308)) + (-5 *1 (-179 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-643 *8)) + (-5 *4 + (-643 + (-2 (|:| -2190 (-691 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-691 *7))))) + (-5 *5 (-773)) (-4 *8 (-1245 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-352)) (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) - (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) - (-5 *1 (-153)) (-5 *3 (-645 (-945 (-225)))))) - ((*1 *2 *3) - (-12 + (-2 (|:| -2190 (-691 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-691 *7)))) + (-5 *1 (-501 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-565))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-613 *4)) (-5 *6 (-1174 *4)) + (-4 *4 (-13 (-424 *7) (-27) (-1205))) + (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2190 (-643 *4)))) + (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1174 *4))) + (-4 *4 (-13 (-424 *7) (-27) (-1205))) + (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2190 (-643 *4)))) + (-5 *1 (-564 *7 *4 *3)) (-4 *3 (-660 *4)) (-4 *3 (-1104))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-613 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1180))) (-5 *5 (-1174 *2)) + (-4 *2 (-13 (-424 *6) (-27) (-1205))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1104)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1180))) + (-5 *5 (-410 (-1174 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1205))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *1 (-564 *6 *2 *7)) (-4 *7 (-1104))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-5 *6 (-1174 *3)) + (-4 *3 (-13 (-424 *7) (-27) (-1205))) + (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 - (-2 (|:| |brans| (-645 (-645 (-945 (-225))))) - (|:| |xValues| (-1096 (-225))) (|:| |yValues| (-1096 (-225))))) - (-5 *1 (-153)) (-5 *3 (-645 (-645 (-945 (-225))))))) - ((*1 *1 *2) (-12 (-5 *2 (-645 (-1096 (-381)))) (-5 *1 (-264)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))) -(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-1200))))) -(((*1 *1 *1) (-4 *1 (-243))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-2836 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1219))) - (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1219))))) - ((*1 *1 *1) (-4 *1 (-476))) - ((*1 *2 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1245 *3)) (-4 *3 (-1051))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-4 *1 (-969)))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-1183)) (-5 *1 (-1182))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-751))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866)))))) -(((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) - (-5 *1 (-947 *4 *5)) (-4 *5 (-1245 *4))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1037)) - (-5 *1 (-747))))) -(((*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) - ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172))))) + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1104)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-643 *3)) (-5 *6 (-410 (-1174 *3))) + (-4 *3 (-13 (-424 *7) (-27) (-1205))) + (-4 *7 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-564 *7 *3 *8)) (-4 *8 (-1104))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1205))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) + (-4 *7 (-1104)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) + (-4 *3 (-13 (-424 *6) (-27) (-1205))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) + (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-564 *6 *3 *7)) + (-4 *7 (-1104))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-613 *3)) (-5 *5 (-1174 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1205))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) + (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1174 *3))) + (-4 *3 (-13 (-424 *6) (-27) (-1205))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-147) (-641 (-549)))) (-5 *2 (-586 *3)) + (-5 *1 (-564 *6 *3 *7)) (-4 *7 (-1104))))) (((*1 *2 *3) - (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1096 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) - (-5 *1 (-715 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3))))) -(((*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1102))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *1)) (-4 *1 (-1067 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1) (-4 *1 (-969))) ((*1 *1 *1) (-5 *1 (-1122)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) - (-4 *9 (-951 *8 *6 *7)) - (-5 *2 (-2 (|:| -1916 (-1175 *9)) (|:| |polval| (-1175 *8)))) - (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1175 *9)) (-5 *4 (-1175 *8))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) - (-14 *4 (-645 (-1179))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) - (-4 *6 (-455))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-5 *2 (-2 (|:| -2025 *3) (|:| -2265 *4)))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) - (-4 *5 (-1245 *4)) - (-5 *2 (-2 (|:| -3906 (-410 *5)) (|:| |coeff| (-410 *5)))) - (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) -(((*1 *2 *1) (-12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 - (-645 - (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1175 *3)) - (|:| |logand| (-1175 *3))))) - (-5 *1 (-588 *3)) (-4 *3 (-365))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4423)) (-4 *1 (-1012 *3)) - (-4 *3 (-1219))))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1157 (-225))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1607 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-563))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-410 (-567))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1157 (-225))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1607 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-563))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-643 + (-2 + (|:| -4292 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2254 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1157 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1607 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-563))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-563))))) +(((*1 *1) (-5 *1 (-563)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-562 *2)) (-4 *2 (-548))))) +(((*1 *2 *3) (-12 (-5 *2 (-408 *3)) (-5 *1 (-562 *3)) (-4 *3 (-548))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1180)) (-5 *6 (-643 (-613 *3))) (-5 *5 (-613 *3)) + (-4 *3 (-13 (-27) (-1205) (-424 *7))) + (-4 *7 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-561 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-586 *3)) (-5 *1 (-561 *5 *3)) + (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1180)) + (-4 *4 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1180)) (-5 *5 (-643 *3)) + (-4 *3 (-13 (-27) (-1205) (-424 *6))) + (-4 *6 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| (-643 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-561 *6 *3))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1180)) + (-4 *5 (-13 (-455) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-2 (|:| -2318 *3) (|:| |coeff| *3))) (-5 *1 (-561 *5 *3)) + (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1947 *1) (|:| -4412 *1) (|:| |associate| *1))) + (-4 *1 (-560))))) +(((*1 *1 *1) (-4 *1 (-560)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-560)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-560)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-410 (-549))) (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))))) + ((*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205)))))) +(((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-13 (-407) (-1205)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-558 *3)) (-4 *3 (-13 (-407) (-1205))) (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-557))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-557))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-557))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1245 *5)) + (-4 *5 (-13 (-27) (-424 *4))) (-4 *4 (-13 (-560) (-1041 (-549)))) + (-4 *7 (-1245 (-410 *6))) (-5 *1 (-556 *4 *5 *6 *7 *2)) + (-4 *2 (-344 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-424 *5))) + (-4 *5 (-13 (-560) (-1041 (-549)))) (-4 *8 (-1245 (-410 *7))) + (-5 *2 (-586 *3)) (-5 *1 (-556 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1245 *6)) (-4 *6 (-13 (-27) (-424 *5))) + (-4 *5 (-13 (-560) (-1041 (-549)))) (-4 *8 (-1245 (-410 *7))) + (-5 *2 (-586 *3)) (-5 *1 (-556 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1174 *3) (-1174 *3))) + (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-560)) (-5 *2 (-586 *3)) + (-5 *1 (-555 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *1 *1 *1) (-4 *1 (-548)))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-549) #1="failed") *5)) (-4 *5 (-1052)) + (-5 *2 (-549)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1245 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-549) #1#) *4)) (-4 *4 (-1052)) (-5 *2 (-549)) + (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) - (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) - (-5 *5 (-1236 (-410 (-567)))) (-5 *6 (-410 (-567))) - (-4 *8 (-13 (-27) (-1204) (-433 *7))) - (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-410 (-567)))) - (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1204) (-433 *8))) - (-4 *8 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1051)) (-4 *1 (-1252 *4 *3)) - (-4 *3 (-1229 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1098)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1257 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-757))))) + (|partial| -12 (-5 *5 (-1 (-3 (-549) #1#) *4)) (-4 *4 (-1052)) (-5 *2 (-549)) + (-5 *1 (-546 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1245 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-773))) + (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1245 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-410 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-559)) - (-4 *4 (-1051)) (-4 *2 (-1260 *4)) (-5 *1 (-1263 *4 *5 *6 *2)) - (-4 *6 (-657 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 *2))) - (-5 *2 (-894 *3)) (-5 *1 (-1078 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-888 *3) (-615 *2)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1175 *4))) (-5 *3 (-1175 *4)) - (-4 *4 (-911)) (-5 *1 (-664 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1219))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1161)) (-5 *3 (-567)) (-5 *1 (-1065))))) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) + (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-773)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-1245 *4)) (-5 *1 (-542 *4 *2 *5 *6)) + (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-773)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-756))))) -(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1051)) - (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-951 *2 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1270)))) - ((*1 *1 *1) (-5 *1 (-1270)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1239 *3 *2)) - (-4 *2 (-1245 *3))))) + (-12 (-5 *3 (-643 *6)) (-5 *4 (-643 (-1180))) (-4 *6 (-365)) + (-5 *2 (-643 (-294 (-949 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) + (-4 *7 (-13 (-365) (-850)))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-643 (-949 *6))) (-5 *4 (-643 (-1180))) (-4 *6 (-455)) + (-5 *2 (-643 (-643 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) + (-4 *5 (-13 (-365) (-850)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *5)) (-4 *5 (-455)) (-5 *2 (-643 *6)) + (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-949 *5)) (-4 *5 (-455)) (-5 *2 (-643 *6)) + (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-538)))) + ((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-539 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-5 *2 (-538)) (-5 *1 (-539 *4)) (-4 *4 (-1219))))) +(((*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-538))) (-5 *1 (-538))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-538))))) +(((*1 *1 *1) (-5 *1 (-538)))) +(((*1 *2 *1) (-12 (-5 *2 (-1162)) (-5 *1 (-538))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-538))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-538))) (-5 *2 (-1180)) (-5 *1 (-538))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-643 (-538))) (-5 *1 (-538))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-691 *6)) (-5 *5 (-1 (-408 (-1174 *6)) (-1174 *6))) + (-4 *6 (-365)) + (-5 *2 + (-643 + (-2 (|:| |outval| *7) (|:| |outmult| (-549)) + (|:| |outvect| (-643 (-691 *7)))))) + (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-850)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *5)) (-4 *5 (-365)) (-5 *2 (-643 *6)) + (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-850)))))) (((*1 *2 *3) - (-12 (-5 *3 (-410 (-954 *4))) (-4 *4 (-308)) - (-5 *2 (-410 (-421 (-954 *4)))) (-5 *1 (-1044 *4))))) + (-12 (-5 *3 (-691 *4)) (-4 *4 (-365)) (-5 *2 (-1174 *4)) + (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-850)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1204) (-433 *4))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-728) (-25)))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-728) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-532)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-532))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-922)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1174 *1)) + (-4 *1 (-330 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1174 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1245 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1040 *4) (-640 *4))) - (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *5))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-316 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-455) (-1040 *5) (-640 *5))) (-5 *5 (-567)) - (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1236 (-567))) - (-4 *7 (-13 (-27) (-1204) (-433 *6))) - (-4 *6 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1179)) (-5 *5 (-295 *3)) (-5 *6 (-1236 (-567))) - (-4 *3 (-13 (-27) (-1204) (-433 *7))) - (-4 *7 (-13 (-559) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-52)) - (-5 *1 (-462 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-567)) (-4 *4 (-1051)) (-4 *1 (-1231 *4 *3)) - (-4 *3 (-1260 *4)))) + (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4))))) +(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) + ((*1 *2 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1269 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1269 *4)) (-4 *4 (-421 *3)) (-4 *3 (-308)) (-4 *3 (-560)) + (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-922)) (-4 *4 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *4)))) + ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1269 *1)) (-4 *1 (-330 *3)))) + ((*1 *2) + (-12 (-4 *3 (-172)) (-4 *4 (-1245 *3)) (-5 *2 (-1269 *1)) + (-4 *1 (-413 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-1229 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1051)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-192)))) + (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) + (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-5 *2 (-1269 *6)) + (-5 *1 (-418 *3 *4 *5 *6 *7)) (-4 *6 (-413 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-421 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-301)))) + (-12 (-5 *3 (-922)) (-5 *2 (-1269 (-1269 *4))) (-5 *1 (-531 *4)) + (-4 *4 (-352))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1159 (-225))) (-5 *2 (-645 (-1161))) (-5 *1 (-306))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1245 (-410 (-567)))) - (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) - (-5 *1 (-915 *3 *4)) (-4 *4 (-1245 (-410 *3))))) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-358 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1245 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-915 *4 *3)) - (-4 *3 (-1245 (-410 *4)))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) - (-5 *2 (-1037)) (-5 *1 (-752))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2304 *3) (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) + (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-531 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-922)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-922)) (-5 *1 (-531 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1269 *4)) (-5 *3 (-549)) (-4 *4 (-352)) (-5 *1 (-531 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1123)) (-4 *4 (-352)) (-5 *1 (-531 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1269 *4)) (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-531 *4))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1269 *5)) (-5 *3 (-773)) (-5 *4 (-1123)) (-4 *5 (-352)) + (-5 *1 (-531 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-1269 (-690 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-690 *4)) (-4 *5 (-657 *4))))) + (-12 (-5 *3 (-773)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4)) (-4 *4 (-352))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 *4)) (-4 *4 (-352)) (-5 *2 (-1174 *4)) (-5 *1 (-531 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) + (-4 *4 (-352)) (-5 *2 (-1275)) (-5 *1 (-531 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-128)))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-553)))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1228)))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-550)))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1225)))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-551)))))) +(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-693 (-1226)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-129)) (-5 *2 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-528))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1220))) (-5 *1 (-527))))) (((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) - (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4178 (-645 *9)) (|:| -3526 *4) (|:| |ineq| (-645 *9)))) - (-5 *1 (-990 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) - (-4 *4 (-1073 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) - (-4 *8 (-851)) (-4 *9 (-1067 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4178 (-645 *9)) (|:| -3526 *4) (|:| |ineq| (-645 *9)))) - (-5 *1 (-1109 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) - (-4 *4 (-1073 *6 *7 *8 *9))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4422)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) - (-4 *2 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *3)) - (-4 *3 (-1219)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1102)) - (-5 *1 (-738 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1142 *3 *4)) (-4 *3 (-13 (-1102) (-34))) - (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1161)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1102)) - (-4 *4 (-1102)))) + (-12 (-4 *3 (-365)) (-4 *4 (-374 *3)) (-4 *5 (-374 *3)) + (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520))))) +(((*1 *2 *1) (-12 (-5 *2 (-1138)) (-5 *1 (-520))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-328 *3)))) ((*1 *1 *2) - (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1102)) (-4 *3 (-1102))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) - (-4 *4 (-615 (-539))) (-4 *5 (-1219)) (-4 *6 (-1219)) - (-4 *7 (-1219))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-894 *6))) - (-5 *5 (-1 (-891 *6 *8) *8 (-894 *6) (-891 *6 *8))) (-4 *6 (-1102)) - (-4 *8 (-13 (-1051) (-615 (-894 *6)) (-1040 *7))) - (-5 *2 (-891 *6 *8)) (-4 *7 (-1051)) (-5 *1 (-943 *6 *7 *8))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-1274)) (-5 *1 (-832))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-824)) (-5 *1 (-823))))) -(((*1 *2) - (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567))))) + (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-519 *3 *4)) (-14 *4 (-549))))) +(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) + ((*1 *2 *1) + (-12 (-5 *2 (-773)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-549))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-549)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) ((*1 *2 *2) - (-12 (-5 *2 (-923)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1279))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-748))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-951 *4 *5 *6)) (-4 *6 (-615 (-1179))) - (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *2 (-1168 (-645 (-954 *4)) (-645 (-295 (-954 *4))))) - (-5 *1 (-507 *4 *5 *6 *7))))) + (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) (-14 *4 (-549))))) +(((*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-852))))) +(((*1 *1) (-5 *1 (-509)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) + (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-549)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-773)) + (-4 *5 (-172)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) + (-5 *3 (-643 (-866 *4))) (-14 *4 (-643 (-1180))) (-14 *5 (-773)) + (-5 *1 (-508 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1037)) - (-5 *1 (-755))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-851)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *1 (-982 *3)) (-4 *3 (-1051)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1073 *4 *5 *6 *7)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1073 *4 *5 *6 *3)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-645 *1)) - (-4 *1 (-1073 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1212 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *2 (-1067 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1247 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793))))) -(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1183))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1042))))) -(((*1 *1) (-5 *1 (-331)))) -(((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-1182)))) - ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-1182))))) + (-12 (-14 *4 (-643 (-1180))) (-14 *5 (-773)) + (-5 *2 + (-643 + (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549)))))) + (-5 *1 (-508 *4 *5)) + (-5 *3 + (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549)))))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) + (-12 (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4374 (-645 *4)))) - (-5 *1 (-1126 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) - (-5 *2 (-1037)) (-5 *1 (-756))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-440)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-951 *4 *5 *6)) - (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-452 *4 *5 *6 *7))))) + (-507 (-410 (-549)) (-239 *4 (-773)) (-866 *3) (-247 *3 (-410 (-549))))) + (-14 *3 (-643 (-1180))) (-14 *4 (-773)) (-5 *1 (-508 *3 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) + (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) + (-5 *1 (-508 *4 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-507 (-410 (-549)) (-239 *5 (-773)) (-866 *4) (-247 *4 (-410 (-549))))) + (-14 *4 (-643 (-1180))) (-14 *5 (-773)) (-5 *2 (-112)) + (-5 *1 (-508 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-303 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1092 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-304)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-112)) + (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *5 *6 *7)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *7 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-645 (-945 (-225))))) (-5 *3 (-645 (-875))) - (-5 *1 (-471))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1179)) (-5 *2 (-613 *6)) - (-4 *6 (-433 *5)) (-4 *5 (-1102)) (-5 *1 (-576 *5 *6))))) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) + (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1236 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-1270)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1270)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1161)) (-5 *1 (-1271)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1271))))) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *2)) + (-4 *2 (-953 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *3 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) + (-5 *2 + (-2 (|:| |mval| (-691 *4)) (|:| |invmval| (-691 *4)) + (|:| |genIdeal| (-507 *4 *5 *6 *7)))) + (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-691 *3)) (|:| |invmval| (-691 *3)) + (|:| |genIdeal| (-507 *3 *4 *5 *6)))) + (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6)) + (-4 *6 (-953 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-4 *2 (-365)) (-4 *3 (-795)) (-4 *4 (-852)) (-5 *1 (-507 *2 *3 *4 *5)) + (-4 *5 (-953 *2 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) + (-5 *2 (-416 *4 (-410 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1269 *6)) (-4 *6 (-13 (-413 *4 *5) (-1041 *4))) + (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *3 (-308)) + (-5 *1 (-416 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) + (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-953 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-643 *6)) (-4 *6 (-852)) (-4 *4 (-365)) (-4 *5 (-795)) + (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-953 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-507 *3 *4 *5 *2)) + (-4 *2 (-953 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-567)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-985 *2)) (-4 *2 (-1204))))) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *6 (-616 (-1180))) + (-4 *4 (-365)) (-4 *5 (-795)) (-4 *6 (-852)) + (-5 *2 (-1169 (-643 (-949 *4)) (-643 (-294 (-949 *4))))) + (-5 *1 (-507 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1275)) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-852) + (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) + (-15 -2143 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1275)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-852) + (-10 -8 (-15 -4231 ((-1162) $ (-1180))) (-15 -4049 (*2 $)) + (-15 -2143 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-505))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *6 (-1245 *5)) + (-5 *2 (-1174 (-1174 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1245 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-691 (-1174 *8))) + (-4 *5 (-1052)) (-4 *8 (-1052)) (-4 *6 (-1245 *5)) (-5 *2 (-691 *6)) + (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1245 *6))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1174 *7)) + (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *2 (-1245 *5)) + (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1174 *7)) (-4 *5 (-1052)) (-4 *7 (-1052)) + (-4 *2 (-1245 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1245 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1052)) (-4 *7 (-1052)) (-4 *4 (-1245 *5)) + (-5 *2 (-1174 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1245 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-645 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) - (-5 *1 (-452 *3 *4 *5 *6))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1102))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-588 *3) *3 (-1179))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1179))) - (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1040 *4)) (-4 *3 (-433 *7)) - (-5 *4 (-1179)) (-4 *7 (-615 (-894 (-567)))) (-4 *7 (-455)) - (-4 *7 (-888 (-567))) (-4 *7 (-1102)) (-5 *2 (-588 *3)) - (-5 *1 (-576 *7 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) - (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-4 *7 (-994 *4)) (-4 *2 (-688 *7 *8 *9)) - (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) - (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) - (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) - (-4 *2 (-688 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1051)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) - ((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1190 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1096 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1135 (-225))) - (-5 *1 (-698))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1245 (-567))) (-5 *1 (-489 *3))))) + (-2 (|:| -2190 (-691 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-691 *3)))) + (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *4 (-1245 *3)) + (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) + (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) + (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) + (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1067 *4 *5 *6)) - (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-5 *1 (-979 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *5 (-1223)) (-4 *6 (-1245 *5)) - (-4 *7 (-1245 (-410 *6))) (-5 *2 (-645 (-954 *5))) - (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1223)) - (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *4 (-365)) - (-5 *2 (-645 (-954 *4)))))) + (-12 (-5 *2 (-691 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) + (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-773)) (-4 *3 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) + (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-413 *3 *4))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-691 *2)) (-5 *4 (-549)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *5 (-1245 *2)) + (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-413 *2 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-691 *2)) (-5 *4 (-773)) + (-4 *2 (-13 (-308) (-10 -8 (-15 -4401 ((-408 $) $))))) (-4 *5 (-1245 *2)) + (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-413 *2 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-773)) (-4 *5 (-352)) (-4 *6 (-1245 *5)) + (-5 *2 + (-643 + (-2 (|:| -2190 (-691 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-691 *6))))) + (-5 *1 (-501 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2190 (-691 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-691 *6)))) + (-4 *7 (-1245 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1212 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) - (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-112)))) + (-12 + (-5 *2 + (-643 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-549))))) + (-5 *1 (-408 *3)) (-4 *3 (-560)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-773)) (-4 *3 (-352)) (-4 *5 (-1245 *3)) + (-5 *2 (-643 (-1174 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1245 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-494))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) + (-4 *4 (-374 *3)) (-4 *5 (-374 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-492 *3)) + (-4 *3 (-1219))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) + (-4 *4 (-1219)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) + (-4 *4 (-1219)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) (-4 *3 (-1104)) + (-5 *2 (-773)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1212 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -3526 *4)))) - (-5 *1 (-1110 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (-567)) (-5 *2 (-112))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-365)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) - (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1245 *2)) - (-4 *5 (-1245 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) - (-4 *6 (-344 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) - (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) - (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) - (-4 *1 (-337 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-492 *4)) + (-4 *4 (-1219)) (-5 *2 (-773))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-374 *3)) + (-4 *5 (-374 *3)) (-5 *2 (-643 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1102)) (-4 *2 (-1102)))) - ((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-441 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) - ((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-967)))) - ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1077 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1117)))) - ((*1 *1 *1) (-5 *1 (-1179)))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-945 *3) (-945 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-365) (-1204) (-1004)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-381)) (-5 *1 (-1065))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-905 *3)) (-4 *3 (-1102)) (-5 *2 (-1104 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-645 *4))) (-5 *1 (-906 *4)) - (-5 *3 (-645 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1102)) (-5 *2 (-1104 (-1104 *4))) (-5 *1 (-906 *4)) - (-5 *3 (-1104 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1104 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) - (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1270)))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-1271))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1051)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1245 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559))))) -(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-112))))) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-492 *3)) (-4 *3 (-1219)) + (-5 *2 (-643 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-490))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-549))) (-5 *2 (-549)) (-5 *1 (-489 *4)) + (-4 *4 (-1245 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1245 (-549))) (-5 *1 (-489 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1245 (-549))) (-5 *1 (-489 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1245 (-549)))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-487 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-878))) (-5 *1 (-486))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-509))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-878))) (-5 *1 (-486))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-549))) (-5 *1 (-247 *3 *4)) (-14 *3 (-643 (-1180))) + (-4 *4 (-1052)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-549))) (-14 *3 (-643 (-1180))) (-5 *1 (-457 *3 *4 *5)) + (-4 *4 (-1052)) (-4 *5 (-238 (-4389 *3) (-773))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-549))) (-5 *1 (-484 *3 *4)) (-14 *3 (-643 (-1180))) + (-4 *4 (-1052))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-549)) (-5 *2 (-112)) (-5 *1 (-483))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-483))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-866 *5))) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) + (-5 *2 (-2 (|:| |dpolys| (-643 (-247 *5 *6))) (|:| |coords| (-643 (-549))))) + (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-643 (-247 *5 *6))) (-4 *7 (-455))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-643 (-484 *4 *5))) (-5 *3 (-643 (-866 *4))) + (-14 *4 (-643 (-1180))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) + (-4 *6 (-455))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-365)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-577 *5 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1161)) - (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1037)) - (-5 *1 (-751))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -1448 (-645 *3)) (|:| -1425 (-645 *3)))) - (-5 *1 (-1220 *3)) (-4 *3 (-1102))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-772)) (-5 *3 (-945 *4)) (-4 *1 (-1136 *4)) - (-4 *4 (-1051)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-772)) (-5 *4 (-945 (-225))) (-5 *2 (-1274)) - (-5 *1 (-1271))))) + (-12 (-5 *4 (-643 (-866 *5))) (-14 *5 (-643 (-1180))) (-4 *6 (-455)) + (-5 *2 (-643 (-643 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) + (-5 *3 (-643 (-247 *5 *6))) (-4 *7 (-455))))) +(((*1 *1) (-5 *1 (-471)))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) + (-5 *4 (-643 (-922))) (-5 *5 (-643 (-262))) (-5 *1 (-471)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) + (-5 *4 (-643 (-922))) (-5 *1 (-471)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471)))) + ((*1 *1 *1) (-5 *1 (-471)))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *1 (-471))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-471))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-946 (-225))) (-5 *4 (-876)) (-5 *5 (-922)) (-5 *2 (-1275)) + (-5 *1 (-471)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-471)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *4 (-876)) (-5 *5 (-922)) + (-5 *2 (-1275)) (-5 *1 (-471))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-946 (-225))) (-5 *2 (-1275)) (-5 *1 (-471))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-4 *4 (-1102)) - (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4))))) + (-12 (-5 *2 (-643 (-643 (-946 (-225))))) (-5 *3 (-643 (-876))) + (-5 *1 (-471))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381)))) - (-5 *1 (-804))))) -(((*1 *2 *3) - (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1270))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) - (-14 *5 (-1179)) (-5 *2 (-567)) (-5 *1 (-1116 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) - (-4 *1 (-1067 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1143 *3 *4)) (-4 *3 (-13 (-1102) (-34))) - (-4 *4 (-13 (-1102) (-34)))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1204)))))) -(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144))))) + (-12 (-5 *3 (-643 (-643 (-946 (-225))))) (-5 *2 (-643 (-225))) + (-5 *1 (-471))))) +(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1269 (-1269 (-549)))) (-5 *1 (-469))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1175 *5))) (-5 *3 (-1175 *5)) - (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1245 *5)) - (-4 *5 (-1245 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1175 (-567)))) (-5 *3 (-1175 (-567))) - (-5 *1 (-575)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-645 (-1175 *1))) (-5 *3 (-1175 *1)) - (-4 *1 (-911))))) -(((*1 *2 *2) - (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1245 *4)) - (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1245 *5)) (-14 *6 (-923)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1288 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) - ((*1 *1 *1) (-12 (-4 *1 (-1288 *2)) (-4 *2 (-365)) (-4 *2 (-370))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-567))) (-5 *4 (-907 (-567))) - (-5 *2 (-690 (-567))) (-5 *1 (-592)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) - (-5 *1 (-592)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-907 (-567)))) - (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1269 (-645 (-2 (|:| -2233 *4) (|:| -2188 (-1122)))))) - (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1175 *1)) (-5 *3 (-1179)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1175 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-954 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1175 *2)) (-5 *4 (-1179)) (-4 *2 (-433 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-559)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-4 *1 (-1014)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1175 *1)) (-5 *3 (-923)) (-5 *4 (-863)) - (-4 *1 (-1014)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-923)) (-4 *4 (-13 (-849) (-365))) - (-4 *1 (-1070 *4 *2)) (-4 *2 (-1245 *4))))) + (-12 (-5 *2 (-1269 (-1269 (-549)))) (-5 *3 (-922)) (-5 *1 (-469))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-852)) (-4 *5 (-795)) (-4 *6 (-560)) + (-4 *7 (-953 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1041 (-410 (-549))) (-365) + (-10 -8 (-15 -4378 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1051))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) - (-5 *1 (-990 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-645 *7)) (-4 *7 (-1073 *3 *4 *5 *6)) (-4 *3 (-455)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1067 *3 *4 *5)) - (-5 *1 (-1109 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) - (-4 *4 (-1245 *2))))) + (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) + (-14 *6 + (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *2)) + (-2 (|:| -2563 *5) (|:| -2564 *2)))) + (-4 *2 (-238 (-4389 *3) (-773))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-852)) (-4 *7 (-953 *4 *2 (-866 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *2 (-820 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-847)) (-5 *1 (-1292 *3 *2)) (-4 *3 (-1051))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-894 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1102)) - (-4 *5 (-1219)) (-5 *1 (-892 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-894 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1102)) - (-4 *5 (-1219)) (-5 *1 (-892 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-894 *5)) (-5 *3 (-645 (-1179))) - (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1102)) (-4 *6 (-1219)) - (-5 *1 (-892 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1219)) (-4 *4 (-1102)) - (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1219)) (-4 *4 (-1102)) - (-5 *1 (-939 *4 *2 *5)) (-4 *2 (-433 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1219)) - (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1179)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1219)) - (-5 *2 (-317 (-567))) (-5 *1 (-940 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1179))) (-5 *3 (-1 (-112) (-645 *6))) - (-4 *6 (-13 (-433 *5) (-888 *4) (-615 (-894 *4)))) (-4 *4 (-1102)) - (-4 *5 (-13 (-1051) (-888 *4) (-615 (-894 *4)))) - (-5 *1 (-1078 *4 *5 *6))))) + (-12 (-14 *3 (-643 (-1180))) (-4 *4 (-172)) (-4 *5 (-238 (-4389 *3) (-773))) + (-14 *6 + (-1 (-112) (-2 (|:| -2563 *2) (|:| -2564 *5)) + (-2 (|:| -2563 *2) (|:| -2564 *5)))) + (-4 *2 (-852)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-953 *4 *5 (-866 *3)))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-643 (-1180))) (-4 *2 (-172)) (-4 *4 (-238 (-4389 *5) (-773))) + (-14 *6 + (-1 (-112) (-2 (|:| -2563 *3) (|:| -2564 *4)) + (-2 (|:| -2563 *3) (|:| -2564 *4)))) + (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-852)) + (-4 *7 (-953 *2 *4 (-866 *5)))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-643 (-1180))) (-4 *2 (-172)) (-4 *3 (-238 (-4389 *4) (-773))) + (-14 *6 + (-1 (-112) (-2 (|:| -2563 *5) (|:| -2564 *3)) + (-2 (|:| -2563 *5) (|:| -2564 *3)))) + (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-852)) + (-4 *7 (-953 *2 *3 (-866 *4)))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-643 *3)) (-5 *5 (-922)) (-4 *3 (-1245 *4)) (-4 *4 (-308)) + (-5 *1 (-463 *4 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-922)) (-4 *5 (-308)) (-4 *3 (-1245 *5)) + (-5 *2 (-2 (|:| |plist| (-643 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) + (-5 *4 (-643 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-643 *5)) (-4 *5 (-1245 *3)) (-4 *3 (-308)) (-5 *2 (-112)) + (-5 *1 (-458 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1269 (-645 *3))) (-4 *4 (-308)) - (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439))))) -(((*1 *1 *2) - (-12 + (|partial| -12 (-5 *5 (-1269 (-643 *3))) (-4 *4 (-308)) (-5 *2 (-643 *3)) + (-5 *1 (-458 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-773)) (-4 *4 (-308)) (-4 *6 (-1245 *4)) + (-5 *2 (-1269 (-643 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-643 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-308)) (-5 *2 (-773)) + (-5 *1 (-458 *5 *3))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2190 (-643 *1)))) (-4 *1 (-369 *3)))) + ((*1 *2) + (|partial| -12 (-5 *2 - (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) - (|:| |genIdeal| (-507 *3 *4 *5 *6)))) - (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1112)) (-5 *3 (-567))))) -(((*1 *2 *1) (-12 (-5 *2 (-1161)) (-5 *1 (-823))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) - (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-1282 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1067 *5 *6 *7)) (-4 *5 (-559)) - (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1282 *5 *6 *7 *8))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1181 (-410 (-567)))) (-5 *1 (-190))))) -(((*1 *2 *3) - (-12 (-5 *3 (-894 *4)) (-4 *4 (-1102)) (-5 *2 (-645 *5)) - (-5 *1 (-892 *4 *5)) (-4 *5 (-1219))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) - ((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1051)) (-4 *3 (-1245 *4)) (-4 *2 (-1260 *4)) - (-5 *1 (-1263 *4 *3 *5 *2)) (-4 *5 (-657 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) - (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) + (-2 (|:| |particular| (-456 *3 *4 *5 *6)) + (|:| -2190 (-643 (-456 *3 *4 *5 *6))))) + (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) + (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3)))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1223)) (-4 *5 (-1245 (-410 *2))) - (-4 *2 (-1245 *4)) (-5 *1 (-343 *3 *4 *2 *5)) - (-4 *3 (-344 *4 *2 *5)))) + (|partial| -12 (-4 *3 (-560)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2190 (-643 *1)))) (-4 *1 (-369 *3)))) ((*1 *2) - (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1223)) - (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) - (-5 *2 (-690 (-225))) (-5 *1 (-268))))) -(((*1 *2 *3) (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1159 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2031 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-562))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *1 *2) (-12 (-5 *2 (-1122)) (-5 *1 (-331))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-548)))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-567)) - (-5 *6 - (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381)))) - (-5 *7 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) - (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) - (-5 *1 (-789)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-567)) - (-5 *6 - (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2074 (-381)))) - (-5 *7 (-1 (-1274) (-1269 *5) (-1269 *5) (-381))) - (-5 *3 (-1269 (-381))) (-5 *5 (-381)) (-5 *2 (-1274)) - (-5 *1 (-789))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-645 *7)) (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *8)) (-4 *8 (-1073 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) - (-5 *2 (-1037)) (-5 *1 (-757))))) -(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1051)) (-4 *2 (-688 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1245 *4)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1161))) (-5 *2 (-1274)) (-5 *1 (-241))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-645 (-945 *3))))) + (-5 *2 + (-2 (|:| |particular| (-456 *3 *4 *5 *6)) + (|:| -2190 (-643 (-456 *3 *4 *5 *6))))) + (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) + (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1269 (-1180))) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) + (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) + (-14 *6 (-643 (-1180))) (-14 *7 (-1269 (-691 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1180)) (-5 *3 (-1269 (-456 *4 *5 *6 *7))) + (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-643 *2)) + (-14 *7 (-1269 (-691 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-645 (-945 *3))) (-4 *3 (-1051)) (-4 *1 (-1136 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-645 (-945 *3))) (-4 *1 (-1136 *3)) (-4 *3 (-1051))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-978 *3 *4 *2 *5)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *5 (-1067 *3 *4 *2))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-794)) - (-4 *3 (-13 (-851) (-10 -8 (-15 -1322 ((-1179) $))))) (-4 *5 (-559)) - (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-951 (-410 (-954 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1051)) (-4 *5 (-794)) - (-4 *3 - (-13 (-851) - (-10 -8 (-15 -1322 ((-1179) $)) - (-15 -2722 ((-3 $ "failed") (-1179)))))) - (-5 *1 (-986 *4 *5 *3 *2)) (-4 *2 (-951 (-954 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-645 *6)) - (-4 *6 - (-13 (-851) - (-10 -8 (-15 -1322 ((-1179) $)) - (-15 -2722 ((-3 $ "failed") (-1179)))))) - (-4 *4 (-1051)) (-4 *5 (-794)) (-5 *1 (-986 *4 *5 *6 *2)) - (-4 *2 (-951 (-954 *4) *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-169 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) - (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3693 *3) (|:| -2642 *3))) (-5 *1 (-701 *3)) - (-4 *3 (-308))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-1078 *3 *4 *5))) (-4 *3 (-1102)) - (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) - (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3)))) - (-5 *1 (-1079 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306))))) + (-12 (-5 *2 (-1269 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1269 (-1180))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-922)) (-14 *5 (-643 (-1180))) (-14 *6 (-1269 (-691 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1180)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-922)) (-14 *5 (-643 *2)) (-14 *6 (-1269 (-691 *3))))) + ((*1 *1) + (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-922)) + (-14 *4 (-643 (-1180))) (-14 *5 (-1269 (-691 *2)))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-949 *4))) (-5 *1 (-420 *3 *4)) + (-4 *3 (-421 *4)))) + ((*1 *2) + (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-4 *3 (-365)) + (-5 *2 (-1174 (-949 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |k| (-1179)) (|:| |c| (-1291 *3))))) - (-5 *1 (-1291 *3)) (-4 *3 (-1051)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1293 *3 *4))))) - (-5 *1 (-1293 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1159 *4))) (-4 *4 (-365)) - (-4 *4 (-1051)) (-5 *2 (-1159 *4)) (-5 *1 (-1163 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-1197))))) -(((*1 *2 *3) (-12 (-5 *3 (-945 *2)) (-5 *1 (-984 *2)) (-4 *2 (-1051))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-248))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-1 (-225) (-225) (-225) (-225))) - (-5 *2 (-1 (-945 (-225)) (-225) (-225))) (-5 *1 (-698))))) + (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1004))) (-5 *1 (-277 *3 *2)) - (-4 *3 (-559))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-410 (-567)))) - (-5 *2 (-2 (|:| -2524 (-1159 *4)) (|:| -2533 (-1159 *4)))) - (-5 *1 (-1165 *4)) (-5 *3 (-1159 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) - (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-954 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) - ((*1 *2 *3) - (-12 (-5 *3 (-954 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) - ((*1 *2 *3) (-12 (-5 *3 (-954 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1014)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 *1)) (-4 *1 (-1014)) (-5 *2 (-645 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1245 *4)) (-5 *2 (-645 *1)) - (-4 *1 (-1070 *4 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) - (-5 *1 (-263 *2)) (-4 *2 (-1219)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1179)) (-5 *2 (-52)) - (-5 *1 (-264))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1242 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1179)) - (-5 *2 (-567)) (-5 *1 (-1116 *4 *5))))) + (-12 (-4 *4 (-172)) (-5 *2 (-1174 (-949 *4))) (-5 *1 (-420 *3 *4)) + (-4 *3 (-421 *4)))) + ((*1 *2) + (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-4 *3 (-365)) + (-5 *2 (-1174 (-949 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) (((*1 *2 *1) - (-12 (-4 *2 (-951 *3 *5 *4)) (-5 *1 (-989 *3 *4 *5 *2)) - (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794))))) + (-12 (-5 *2 (-1174 (-410 (-949 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) + (-4 *3 (-560)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3788 (-114)) (|:| |arg| (-645 (-894 *3))))) - (-5 *1 (-894 *3)) (-4 *3 (-1102)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-894 *4))) - (-5 *1 (-894 *4)) (-4 *4 (-1102))))) -(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1051)) (-4 *2 (-793)))) - ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-772)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-645 *6)) (-4 *1 (-951 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-951 *4 *5 *3)) (-4 *4 (-1051)) (-4 *5 (-794)) - (-4 *3 (-851)) (-5 *2 (-772))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1245 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-13 (-455) (-147))) - (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) - (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1175 *7)) (-5 *3 (-567)) (-4 *7 (-951 *6 *4 *5)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) - (-5 *1 (-322 *4 *5 *6 *7))))) + (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) (((*1 *2 *1) - (-12 (-4 *4 (-1102)) (-5 *2 (-891 *3 *5)) (-5 *1 (-887 *3 *4 *5)) - (-4 *3 (-1102)) (-4 *5 (-667 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-618)))) + (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) +(((*1 *2) + (-12 (-5 *2 (-410 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-979 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1245 *2)) (-4 *2 (-1223)) (-5 *1 (-148 *2 *4 *3)) - (-4 *3 (-1245 (-410 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1102)) (-4 *2 (-1051)))) - ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-559))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-410 (-954 *5)) (-1168 (-1179) (-954 *5)))) - (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-954 *5))))) - (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-954 *5))))))) -(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) - ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1179))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1161)) (-5 *3 (-775)) (-5 *1 (-114))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-945 (-225))) (-5 *4 (-875)) (-5 *5 (-923)) - (-5 *2 (-1274)) (-5 *1 (-471)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-945 (-225))) (-5 *2 (-1274)) (-5 *1 (-471)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-645 (-945 (-225)))) (-5 *4 (-875)) (-5 *5 (-923)) - (-5 *2 (-1274)) (-5 *1 (-471))))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) + (-5 *2 (-643 (-949 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-643 (-949 *4))) (-5 *1 (-420 *3 *4)) + (-4 *3 (-421 *4)))) + ((*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-643 (-949 *3))))) + ((*1 *2) + (-12 (-5 *2 (-643 (-949 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-560)) + (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-643 (-1180))) + (-14 *6 (-1269 (-691 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1269 (-456 *4 *5 *6 *7))) (-5 *2 (-643 (-949 *4))) + (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-560)) (-4 *4 (-172)) (-14 *5 (-922)) + (-14 *6 (-643 (-1180))) (-14 *7 (-1269 (-691 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *1)) (-4 *1 (-455)))) + ((*1 *1 *1 *1) (-4 *1 (-455)))) (((*1 *2 *3) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-773)) + (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-773)) (|:| -2182 *4))) (-5 *5 (-773)) + (-4 *4 (-953 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-795)) (-4 *8 (-852)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) + (-5 *1 (-453 *6 *7 *8 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-317 (-225))) (|:| -2221 (-645 (-225))) - (|:| |lb| (-645 (-844 (-225)))) - (|:| |cf| (-645 (-317 (-225)))) - (|:| |ub| (-645 (-844 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-645 (-317 (-225)))) - (|:| -2221 (-645 (-225))))))) - (-5 *2 (-645 (-1161))) (-5 *1 (-268))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-690 *3)) (-4 *3 (-1051)) (-5 *1 (-691 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-645 (-1205 *3))) (-5 *1 (-1205 *3)) (-4 *3 (-1102))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1179)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) - (-4 *4 (-1102)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1179)) (-4 *1 (-433 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1051)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1292 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-847))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -3526 *8))) - (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-990 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -3526 *8))) - (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) - (-5 *1 (-1109 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1037)) (-5 *1 (-759))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1260 *3))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-795)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) + (-5 *2 (-112)) (-5 *1 (-453 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1159 *4) (-1159 *4))) (-5 *2 (-1159 *4)) - (-5 *1 (-1294 *4)) (-4 *4 (-1219)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-645 (-1159 *5)) (-645 (-1159 *5)))) (-5 *4 (-567)) - (-5 *2 (-645 (-1159 *5))) (-5 *1 (-1294 *5)) (-4 *5 (-1219))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-971 *4 *2)) - (-4 *2 (-1245 *4))))) + (-12 (-5 *3 (-549)) (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) + (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *7 (-953 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-906 (-567))) (-5 *1 (-919)))) - ((*1 *2) (-12 (-5 *2 (-906 (-567))) (-5 *1 (-919))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1175 (-567))) (-5 *1 (-944)) (-5 *3 (-567))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-559))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1102)) (-5 *1 (-931 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1179)) (-5 *2 (-317 (-567))) (-5 *1 (-932))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1102)))) - ((*1 *2 *1) - (-12 (-4 *1 (-999 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1010 *3)) (-4 *3 (-1040 (-410 (-567))))))) + (-12 (-5 *3 (-643 *7)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *2 (-1275)) (-5 *1 (-453 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-549)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-773)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-795)) (-4 *4 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-852)) + (-5 *1 (-453 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-549)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-773)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-795)) (-4 *4 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-852)) + (-5 *1 (-453 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) - (-5 *2 - (-645 - (-2 (|:| |eigval| (-3 (-410 (-954 *4)) (-1168 (-1179) (-954 *4)))) - (|:| |eigmult| (-772)) - (|:| |eigvec| (-645 (-690 (-410 (-954 *4)))))))) - (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-954 *4))))))) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-1275)) + (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1179)))) - (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-926 *4 *5 *6 *3)) - (-4 *3 (-951 *4 *6 *5))))) + (-12 (-4 *4 (-455)) (-4 *5 (-795)) (-4 *6 (-852)) (-5 *2 (-549)) + (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-953 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-643 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-773)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-795)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-852)) + (-5 *1 (-453 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-954 *4))) (-5 *3 (-645 (-1179))) (-4 *4 (-455)) - (-5 *1 (-920 *4))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-795)) (-4 *2 (-953 *4 *5 *6)) (-5 *1 (-453 *4 *5 *6 *2)) + (-4 *4 (-455)) (-4 *6 (-852))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-643 (-2 (|:| |totdeg| (-773)) (|:| -2182 *3)))) (-5 *4 (-773)) + (-4 *3 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) (-4 *7 (-852)) + (-5 *1 (-453 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-455)) (-4 *4 (-795)) (-4 *5 (-852)) (-5 *1 (-453 *3 *4 *5 *2)) + (-4 *2 (-953 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1245 *4)) (-5 *1 (-808 *4 *2 *3 *5)) - (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *3 (-657 *2)) - (-4 *5 (-657 (-410 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1245 *4)) (-5 *1 (-808 *4 *2 *5 *3)) - (-4 *4 (-13 (-365) (-147) (-1040 (-410 (-567))))) (-4 *5 (-657 *2)) - (-4 *3 (-657 (-410 *2)))))) -(((*1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-760))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1102)) (-4 *2 (-1102)) - (-5 *1 (-612 *2 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-928)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096 (-225))) (-5 *1 (-929))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532))))) -(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1189))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-793)) - (-5 *2 (-645 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1051)) (-4 *4 (-1102)) - (-5 *2 (-645 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1159 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1051)))) - ((*1 *2 *1) - (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1051)) - (-4 *4 (-727)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1051)) (-5 *2 (-645 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1260 *3)) (-4 *3 (-1051)) (-5 *2 (-1159 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826))))) -(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567))))) -(((*1 *2 *1) + (-12 (-5 *4 (-643 *3)) (-4 *3 (-953 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-795)) + (-4 *7 (-852)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-453 *5 *6 *7 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-645 - (-2 (|:| |var| (-1179)) (|:| |fn| (-317 (-225))) - (|:| -2031 (-1096 (-844 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))) - (-5 *1 (-562)))) - ((*1 *2 *1) - (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-5 *2 (-645 *3)))) - ((*1 *2 *1) + (-643 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-773)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-795)) (-4 *6 (-953 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-852)) + (-5 *1 (-453 *4 *3 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 - (-645 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225))))) - (-5 *1 (-804))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) - ((*1 *1 *1) (|partial| -4 *1 (-723)))) -(((*1 *2 *2 *2) + (-643 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-773)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-795)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-852)) + (-5 *1 (-453 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| -4374 (-690 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-690 *3)))) - (-4 *3 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *4 (-1245 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-748))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4423)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) + (-643 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-795)) (-4 *3 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) + (-5 *1 (-453 *4 *5 *6 *3))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-455)) (-4 *3 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) + (-5 *1 (-453 *4 *3 *5 *6)) (-4 *6 (-953 *4 *3 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-455)) (-4 *3 (-795)) (-4 *5 (-852)) (-5 *2 (-112)) + (-5 *1 (-453 *4 *3 *5 *6)) (-4 *6 (-953 *4 *3 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-5 *2 (-112)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 (-169 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) (-5 *2 (-112)) - (-5 *1 (-1208 *4 *3)) (-4 *3 (-13 (-27) (-1204) (-433 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-957)) (-5 *2 (-645 (-645 (-945 (-225))))))) - ((*1 *2 *1) (-12 (-4 *1 (-976)) (-5 *2 (-645 (-645 (-945 (-225)))))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1001 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1102)) (-4 *4 (-13 (-1051) (-888 *3) (-615 (-894 *3)))) - (-5 *2 (-645 (-1078 *3 *4 *5))) (-5 *1 (-1079 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-888 *3) (-615 (-894 *3))))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1087))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-773)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-795)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-852)) + (-5 *2 (-112)) (-5 *1 (-453 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-643 *7)) (-5 *3 (-549)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-455)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *4)) (-5 *3 (-923)) (-4 *4 (-1051)) - (-5 *1 (-1030 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-923)) (-4 *4 (-1051)) - (-5 *1 (-1030 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004)))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)))) - ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *1 (-453 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1112))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-945 *5)) (-5 *3 (-772)) (-4 *5 (-1051)) - (-5 *1 (-1167 *4 *5)) (-14 *4 (-923))))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) + (-5 *3 (-643 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) + (-5 *3 (-643 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) + (-5 *3 (-643 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) + (-5 *3 (-643 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-923)) (-5 *2 (-1175 *4)) (-5 *1 (-359 *4)) - (-4 *4 (-351))))) + (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-795)) (-4 *6 (-852)) + (-4 *7 (-953 *4 *5 *6)) (-5 *2 (-643 (-643 *7))) (-5 *1 (-452 *4 *5 *6 *7)) + (-5 *3 (-643 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-795)) (-4 *7 (-852)) + (-4 *8 (-953 *5 *6 *7)) (-5 *2 (-643 (-643 *8))) (-5 *1 (-452 *5 *6 *7 *8)) + (-5 *3 (-643 *8))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) + (-12 (-5 *2 (-643 *6)) (-4 *6 (-953 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-795)) + (-4 *5 (-852)) (-5 *1 (-451 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-559) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4))))) - ((*1 *1 *1) (-5 *1 (-381))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306))))) -(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276))))) + (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-308)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-643 *7)) (-5 *3 (-1162)) (-4 *7 (-953 *4 *5 *6)) (-4 *4 (-308)) + (-4 *5 (-795)) (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-953 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-795)) + (-4 *6 (-852)) (-5 *1 (-451 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-449)) (-5 *3 (-549))))) (((*1 *2 *2) - (-12 (-5 *2 (-945 *3)) (-4 *3 (-13 (-365) (-1204) (-1004))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052)))) + ((*1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052))))) +(((*1 *2 *3) + (-12 (-5 *2 (-549)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052))))) +(((*1 *2 *3) + (-12 (-5 *2 (-549)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1052))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-448 *3)) (-4 *3 (-1052))))) +(((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052))))) +(((*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052)))) + ((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-448 *3)) (-4 *3 (-1052))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1102)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1102)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1102)) - (-5 *1 (-113 *4)))) + (-12 (-5 *3 (-773)) (-5 *4 (-549)) (-5 *1 (-448 *2)) (-4 *2 (-1052))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-408 *6)) (-4 *6 (-1245 *5)) (-4 *5 (-1052)) + (-5 *2 (-643 *6)) (-5 *1 (-447 *5 *6))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-922)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-922)) (-5 *4 (-773)) (-5 *1 (-445 *2)) + (-4 *2 (-1245 (-549))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *1 (-445 *2)) + (-4 *2 (-1245 (-549))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *5 (-773)) + (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-922)) (-5 *4 (-643 (-773))) (-5 *5 (-773)) + (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1245 (-549))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-922)) (-5 *4 (-408 *2)) (-4 *2 (-1245 *5)) (-5 *1 (-447 *5 *2)) + (-4 *5 (-1052))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-2 (|:| -4164 *4) (|:| -4380 (-549))))) + (-4 *4 (-1245 (-549))) (-5 *2 (-738 (-773))) (-5 *1 (-445 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1102)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1051)) - (-5 *1 (-715 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1051)) (-5 *1 (-837 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-410 (-954 *3))) (-5 *1 (-456 *3 *4 *5 *6)) - (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) + (-12 (-5 *3 (-408 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1052)) + (-5 *2 (-738 (-773))) (-5 *1 (-447 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1052)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1245 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1104 *4)) (-4 *4 (-1102)) (-5 *2 (-1 *4)) - (-5 *1 (-1019 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381)))) + (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-773)) (-4 *5 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *5 *3 *6)) + (-4 *3 (-1245 *5)) (-4 *6 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) + (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) + (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *2 (-13 (-407) (-1041 *4) (-365) (-1205) (-285))) + (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-922)) (-4 *5 (-1052)) + (-4 *2 (-13 (-407) (-1041 *5) (-365) (-1205) (-285))) + (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1245 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-5 *2 (-549)) (-5 *1 (-446 *4 *3 *5)) + (-4 *3 (-1245 *4)) (-4 *5 (-13 (-407) (-1041 *4) (-365) (-1205) (-285)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1100 (-773))) (-5 *6 (-773)) + (-5 *2 + (-2 (|:| |contp| (-549)) + (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) + (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2978 (-549)) (|:| -1954 (-643 *3)))) (-5 *1 (-445 *3)) + (-4 *3 (-1245 (-549)))))) +(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408 *3)) (-4 *3 (-560)))) + ((*1 *2 *3) + (-12 (-5 *3 (-643 (-2 (|:| -4164 *4) (|:| -4380 (-549))))) + (-4 *4 (-1245 (-549))) (-5 *2 (-773)) (-5 *1 (-445 *4))))) +(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549))))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-643 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-549))))) + (-4 *2 (-560)) (-5 *1 (-408 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1096 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1049))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *1 *2) (-12 + (-5 *3 + (-2 (|:| |contp| (-549)) + (|:| -1954 (-643 (-2 (|:| |irr| *4) (|:| -2558 (-549))))))) + (-4 *4 (-1245 (-549))) (-5 *2 (-408 *4)) (-5 *1 (-445 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-440)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-440))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-440))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-440))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-440))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -4342 "void"))) (-5 *1 (-439))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *1) (-5 *1 (-439)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1041 (-48))) (-4 *4 (-13 (-560) (-1041 (-549)))) + (-4 *5 (-424 *4)) (-5 *2 (-408 (-1174 (-48)))) (-5 *1 (-438 *4 *5 *3)) + (-4 *3 (-1245 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 - (-645 - (-2 - (|:| -2025 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) - (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) - (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -2265 - (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) - (|:| |expense| (-381)) (|:| |accuracy| (-381)) - (|:| |intermediateResults| (-381))))))) - (-5 *1 (-804))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) - (-4 *3 (-1102))))) + (-3 (|:| |overq| (-1174 (-410 (-549)))) (|:| |overan| (-1174 (-48))) + (|:| -3041 (-112)))) + (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) + (-5 *2 (-408 (-1174 (-410 (-549))))) (-5 *1 (-438 *4 *5 *3)) + (-4 *3 (-1245 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-4 *5 (-424 *4)) (-5 *2 (-408 *3)) + (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1245 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) (((*1 *2) - (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -4374 (-645 *1)))) - (-4 *1 (-369 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-456 *3 *4 *5 *6)) - (|:| -4374 (-645 (-456 *3 *4 *5 *6))))) - (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-923)) - (-14 *5 (-645 (-1179))) (-14 *6 (-1269 (-690 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1136 *3)) (-4 *3 (-1051)) (-5 *2 (-772))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1161)) (-5 *1 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1067 *5 *6 *7)) - (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) - (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) - (-5 *1 (-979 *5 *6 *7 *8)) (-5 *4 (-645 *8))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) - (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-225)) (-5 *2 (-1037)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1144 *4 *2)) (-14 *4 (-923)) - (-4 *2 (-13 (-1051) (-10 -7 (-6 (-4424 "*"))))) - (-5 *1 (-904 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175))))) -(((*1 *2 *1) - (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) - (-14 *4 *2) (-4 *5 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-923)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-923)))) - ((*1 *2) - (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) - (-5 *2 (-923)))) - ((*1 *2 *3) - (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) - (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) (-4 *5 (-365)) - (-5 *2 (-772)) (-5 *1 (-668 *5)))) + (-12 (-4 *3 (-13 (-560) (-1041 (-549)))) (-5 *2 (-1275)) (-5 *1 (-436 *3 *4)) + (-4 *4 (-424 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-560) (-1041 (-549)))) (-5 *2 (-410 (-549))) + (-5 *1 (-436 *4 *3)) (-4 *3 (-424 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4423)))) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4423)))) (-5 *2 (-772)) - (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) (-4 *4 (-375 *3)) - (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) - (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) - (-4 *3 (-688 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1055 *3 *4 *5 *6 *7)) (-4 *5 (-1051)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) - (-5 *2 (-772))))) -(((*1 *1 *1 *1) (-5 *1 (-863)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) - ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) - (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-951 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) - (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 *7))) - (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1175 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-455)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-421 *1)) (-4 *1 (-951 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) - (-5 *1 (-981 *4 *5 *6 *3)) (-4 *3 (-951 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) - (-4 *7 (-951 *6 *4 *5)) (-5 *2 (-421 (-1175 (-410 *7)))) - (-5 *1 (-1174 *4 *5 *6 *7)) (-5 *3 (-1175 (-410 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1223)))) - ((*1 *2 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1248 *4 *3)) - (-4 *3 (-13 (-1245 *4) (-559) (-10 -8 (-15 -1870 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1048 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-14 *5 (-645 (-1179))) + (-12 (-5 *4 (-613 *3)) (-4 *3 (-424 *5)) (-4 *5 (-13 (-560) (-1041 (-549)))) + (-5 *2 (-1174 (-410 (-549)))) (-5 *1 (-436 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-434 *3 *2)) (-4 *2 (-424 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))) + (-4 *2 (-13 (-852) (-21)))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-549))))) + (-4 *2 (-13 (-852) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-586 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1205) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-1104)) (-5 *2 (-773))))) +(((*1 *1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-1104)) (-4 *2 (-370))))) +(((*1 *1) (-12 (-4 *1 (-429 *2)) (-4 *2 (-370)) (-4 *2 (-1104))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-426 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1205) (-424 *3))) + (-14 *4 (-1180)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-4 *2 (-13 (-27) (-1205) (-424 *3) (-10 -8 (-15 -4378 ($ *4))))) + (-4 *4 (-850)) + (-4 *5 + (-13 (-1248 *2 *4) (-365) (-1205) + (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) + (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-986 *5)) (-14 *7 (-1180))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-4 *3 (-13 (-27) (-1205) (-424 *6) (-10 -8 (-15 -4378 ($ *7))))) + (-4 *7 (-850)) + (-4 *8 + (-13 (-1248 *3 *7) (-365) (-1205) + (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) (-5 *2 - (-645 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) - (-5 *1 (-1295 *4 *5 *6)) (-14 *6 (-645 (-1179)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1179)) (-5 *1 (-676 *3)) (-4 *3 (-1102))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1245 (-169 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1245 (-169 *2)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-923)) (-5 *1 (-787))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1040 (-567))) (-4 *4 (-559)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) - (-4 *5 (-1260 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1231 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) - (-4 *5 (-1229 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1252 *4 *5)) - (-4 *6 (-985 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-285))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *1) (-5 *1 (-381))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1102)) - (-4 *3 (-1114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-951 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1269 *4)) (-5 *3 (-567)) (-4 *4 (-351)) - (-5 *1 (-531 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1102)) - (-5 *1 (-683 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1051)) - (-5 *1 (-691 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *3 (-1051)) (-5 *1 (-715 *3 *4)) - (-4 *4 (-649 *3)))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) + (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1162)) (-4 *9 (-986 *8)) + (-14 *10 (-1180))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-4 *3 (-13 (-27) (-1205) (-424 *6) (-10 -8 (-15 -4378 ($ *7))))) + (-4 *7 (-850)) + (-4 *8 + (-13 (-1248 *3 *7) (-365) (-1205) + (-10 -8 (-15 -4242 ($ $)) (-15 -4244 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) + (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1162)) (-4 *9 (-986 *8)) + (-14 *10 (-1180))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 + (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1162)) (|:| |prob| (-1162)))))) + (-5 *1 (-426 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1205) (-424 *5))) + (-14 *6 (-1180)) (-14 *7 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-1104)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-794)) (-4 *2 (-1052)))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-1104))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1180)) (-5 *3 (-643 *1)) (-4 *1 (-424 *4)) (-4 *4 (-1104)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1180)) (-4 *1 (-424 *3)) (-4 *3 (-1104))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1104)) + (-5 *2 (-2 (|:| -4386 (-549)) (|:| |var| (-613 *1)))) (-4 *1 (-424 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-408 *3)) (-4 *3 (-560)) (-5 *1 (-422 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1051)) - (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-923)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1051)))) + (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1224)) + (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1051)))) - ((*1 *1 *1 *1) (-5 *1 (-863))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1102)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1004)) (-5 *2 (-410 (-567))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1114)) (-5 *2 (-923)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *4 (-1051)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051)) (-4 *2 (-365))))) -(((*1 *1 *2) (-12 (-5 *1 (-1028 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1051)) (-5 *1 (-1241 *3 *2)) (-4 *2 (-1245 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1104 (-772))) (-5 *6 (-772)) - (-5 *2 - (-2 (|:| |contp| (-567)) - (|:| -1444 (-645 (-2 (|:| |irr| *3) (|:| -3451 (-567))))))) - (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) + (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1269 *4)) (-5 *3 (-1269 *1)) (-4 *4 (-172)) + (-4 *1 (-372 *4 *5)) (-4 *5 (-1245 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-413 *3 *4)) + (-4 *4 (-1245 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-421 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-420 *3 *2)) (-4 *3 (-421 *2)))) + ((*1 *2) (-12 (-4 *1 (-421 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-420 *3 *2)) (-4 *3 (-421 *2)))) + ((*1 *2) (-12 (-4 *1 (-421 *2)) (-4 *2 (-172))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -3262 (-645 *7)))) - (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-1196 *4 *5)) - (-4 *4 (-1102)) (-4 *5 (-1102))))) -(((*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1102)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1236 *3)) (-4 *3 (-1219))))) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-691 *4)) (-5 *1 (-420 *3 *4)) + (-4 *3 (-421 *4)))) + ((*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-691 *4)) (-5 *1 (-420 *3 *4)) + (-4 *3 (-421 *4)))) + ((*1 *2) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-691 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-172)) (-5 *2 (-691 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-4 *1 (-905 *3))))) + (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1041 *4)) (-4 *3 (-308)) + (-4 *4 (-994 *3)) (-4 *5 (-1245 *4)) (-4 *6 (-413 *4 *5)) + (-14 *7 (-1269 *6)) (-5 *1 (-418 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1269 *6)) (-4 *6 (-413 *4 *5)) (-4 *4 (-994 *3)) + (-4 *5 (-1245 *4)) (-4 *3 (-308)) (-5 *1 (-418 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *1) + (-12 (-4 *2 (-308)) (-4 *3 (-994 *2)) (-4 *4 (-1245 *3)) + (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-413 *3 *4) (-1041 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-410 (-954 *5)))) (-5 *4 (-645 (-1179))) - (-4 *5 (-559)) (-5 *2 (-645 (-645 (-954 *5)))) (-5 *1 (-1188 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1120)) (-5 *1 (-1117))))) -(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1190 *5))))) -(((*1 *1) - (-12 (-4 *1 (-407)) (-1736 (|has| *1 (-6 -4413))) - (-1736 (|has| *1 (-6 -4405))))) - ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1102)) (-4 *2 (-851)))) - ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851))) - ((*1 *2 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851))))) -(((*1 *2 *1) - (-12 (-5 *2 (-692 (-874 (-968 *3) (-968 *3)))) (-5 *1 (-968 *3)) - (-4 *3 (-1102))))) + (-12 (-5 *3 (-773)) (-5 *4 (-1269 *2)) (-4 *5 (-308)) (-4 *6 (-994 *5)) + (-4 *2 (-13 (-413 *6 *7) (-1041 *6))) (-5 *1 (-416 *5 *6 *7 *2)) + (-4 *7 (-1245 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)) + (-5 *1 (-412 *3 *4 *5)) (-4 *3 (-413 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) + (-5 *2 (-691 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1269 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1245 *4)) (-5 *2 (-691 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-413 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) + (-5 *2 (-691 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 (-567))))) - (-5 *1 (-363 *3)) (-4 *3 (-1102)))) + (-12 (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 (-549))))) (-5 *1 (-363 *3)) + (-4 *3 (-1104)))) ((*1 *2 *1) - (-12 (-4 *1 (-388 *3)) (-4 *3 (-1102)) - (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -4272 (-772))))))) + (-12 (-4 *1 (-388 *3)) (-4 *3 (-1104)) + (-5 *2 (-643 (-2 (|:| |gen| *3) (|:| -4375 (-773))))))) ((*1 *2 *1) - (-12 (-5 *2 (-645 (-2 (|:| -3661 *3) (|:| -2618 (-567))))) - (-5 *1 (-421 *3)) (-4 *3 (-559))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) (-4 *1 (-496))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) + (-12 (-5 *2 (-643 (-2 (|:| -4164 *3) (|:| -2564 (-549))))) (-5 *1 (-408 *3)) + (-4 *3 (-560))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-408 *3)) (-4 *3 (-560))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-549)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-408 *4)) (-4 *4 (-560))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-408 *2)) (-4 *2 (-560))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-549)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-408 *2)) (-4 *2 (-560))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-380))) (-5 *1 (-262)))) + ((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560))))) +(((*1 *1 *1) (-12 (-5 *1 (-408 *2)) (-4 *2 (-560))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4416)) (-4 *1 (-407)))) + ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922))))) +(((*1 *2 *3) + (-12 (-5 *3 (-549)) (|has| *1 (-6 -4416)) (-4 *1 (-407)) (-5 *2 (-922))))) +(((*1 *2 *3) + (-12 (-5 *3 (-549)) (|has| *1 (-6 -4416)) (-4 *1 (-407)) (-5 *2 (-922))))) +(((*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-773)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-773))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-773)))) + ((*1 *1 *1) (-4 *1 (-405)))) +(((*1 *1 *2) + (-12 (-5 *2 (-410 *4)) (-4 *4 (-1245 *3)) (-4 *3 (-13 (-365) (-147))) + (-5 *1 (-402 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1245 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-365) (-147))) + (-5 *2 (-643 (-2 (|:| -2564 (-773)) (|:| -4204 *4) (|:| |num| *4)))) + (-5 *1 (-402 *3 *4)) (-4 *4 (-1245 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-398))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-643 (-643 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-643 (-3 (|:| |array| (-643 *3)) (|:| |scalar| (-1180))))) + (-5 *6 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-643 (-643 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-643 (-3 (|:| |array| (-643 *3)) (|:| |scalar| (-1180))))) + (-5 *6 (-643 (-1180))) (-5 *3 (-1180)) (-5 *2 (-1106)) (-5 *1 (-398)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-643 (-1180))) (-5 *5 (-1183)) (-5 *3 (-1180)) (-5 *2 (-1106)) + (-5 *1 (-398))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-396))))) +(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-394))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1275)) (-5 *1 (-394)))) + ((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-394))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-394))))) +(((*1 *2) (-12 (-5 *2 (-1150 (-1162))) (-5 *1 (-394))))) +(((*1 *2) (-12 (-5 *2 (-1150 (-1162))) (-5 *1 (-394))))) +(((*1 *2 *1) + (-12 (-5 *2 (-865)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773)) + (-4 *5 (-172))))) +(((*1 *2 *1) + (-12 (-5 *2 (-865)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-773)) (-14 *4 (-773)) + (-4 *5 (-172))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1162)) (-4 *1 (-392))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1162))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1104))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1104)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-388 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-1104)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) - (-4 *3 (-1067 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1073 *6 *7 *8 *3)))) + (-12 (-5 *3 (-643 (-410 (-949 (-549))))) (-5 *4 (-643 (-1180))) + (-5 *2 (-643 (-643 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-850) (-365))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-645 *4)) - (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -3526 *4)))))) - (-5 *1 (-1147 *5 *6 *7 *3 *4)) (-4 *4 (-1111 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1037)) (-5 *3 (-1179)) (-5 *1 (-192))))) + (-12 (-5 *3 (-410 (-949 (-549)))) (-5 *2 (-643 *4)) (-5 *1 (-382 *4)) + (-4 *4 (-13 (-850) (-365)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-949 (-168 (-549))))) (-5 *2 (-643 (-168 *4))) + (-5 *1 (-381 *4)) (-4 *4 (-13 (-365) (-850))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-643 (-410 (-949 (-168 (-549)))))) (-5 *4 (-643 (-1180))) + (-5 *2 (-643 (-643 (-168 *5)))) (-5 *1 (-381 *5)) + (-4 *5 (-13 (-365) (-850)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-410 (-949 (-168 (-549)))))) + (-5 *2 (-643 (-643 (-294 (-949 (-168 *4)))))) (-5 *1 (-381 *4)) + (-4 *4 (-13 (-365) (-850))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-294 (-410 (-949 (-168 (-549))))))) + (-5 *2 (-643 (-643 (-294 (-949 (-168 *4)))))) (-5 *1 (-381 *4)) + (-4 *4 (-13 (-365) (-850))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-410 (-949 (-168 (-549))))) + (-5 *2 (-643 (-294 (-949 (-168 *4))))) (-5 *1 (-381 *4)) + (-4 *4 (-13 (-365) (-850))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-410 (-949 (-168 (-549)))))) + (-5 *2 (-643 (-294 (-949 (-168 *4))))) (-5 *1 (-381 *4)) + (-4 *4 (-13 (-365) (-850)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-549)) (-5 *1 (-380))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-225)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-225)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-380)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-410 (-549))) (-5 *1 (-380))))) +(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-380))) + ((*1 *1) (-5 *1 (-380)))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1) + (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-643 (-1180))) (-14 *3 (-643 (-1180))) + (-4 *4 (-390)))) + ((*1 *1 *1) (-5 *1 (-380))) ((*1 *1) (-5 *1 (-380)))) +(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-380)))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) + ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) + ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380)))) + ((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-380))))) +(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1275)) (-5 *1 (-380))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-377 *4 *2)) + (-4 *2 (-13 (-374 *4) (-10 -7 (-6 -4426))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-674 *3)) (-4 *3 (-852)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-374 *3)) (-4 *3 (-1219)) (-4 *3 (-852)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-374 *4)) (-4 *4 (-1219)) + (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-549)) (|has| *1 (-6 -4426)) (-4 *1 (-374 *3)) (-4 *3 (-1219))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4426)) (-4 *1 (-374 *2)) (-4 *2 (-1219)) (-4 *2 (-852)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-374 *3)) + (-4 *3 (-1219))))) +(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1269 *1)) (-4 *1 (-369 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1174 *3))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) + ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-643 (-1269 *4))) (-5 *1 (-368 *3 *4)) + (-4 *3 (-369 *4)))) + ((*1 *2) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) + (-5 *2 (-643 (-1269 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-1174 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-560)) (-5 *2 (-1174 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172))))) +(((*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-560)) (-4 *2 (-172))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1162)) (-4 *1 (-367 *2 *4)) (-4 *2 (-1104)) (-4 *4 (-1104)))) + ((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1162)) (-4 *1 (-367 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104))))) +(((*1 *1 *1) (-4 *1 (-173))) + ((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-1104))))) +(((*1 *2 *1) + (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) (-5 *2 (-1162))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-367 *3 *2)) (-4 *3 (-1104)) (-4 *2 (-1104))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-1051)) (-4 *2 (-1245 *4)) - (-5 *1 (-447 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-410 (-1175 (-317 *5)))) (-5 *3 (-1269 (-317 *5))) - (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1132 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1245 *5)) - (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1245 *6)) - (-14 *7 (-923))))) -(((*1 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702)))) - ((*1 *2 *2) (-12 (-5 *2 (-923)) (-5 *1 (-702))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *3 (-1067 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) - (-4 *1 (-1073 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248))))) -(((*1 *2 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) - (-4 *7 (-1067 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) - (-5 *1 (-979 *4 *5 *6 *7)) (-5 *3 (-645 *7))))) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) + (-4 *2 + (-13 (-405) + (-10 -7 (-15 -4378 (*2 *4)) (-15 -2188 ((-922) *2)) + (-15 -2190 ((-1269 *2) (-922))) (-15 -4360 (*2 *2))))) + (-5 *1 (-359 *2 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-352)) (-5 *2 (-961 (-1174 *4))) (-5 *1 (-358 *4)) + (-5 *3 (-1174 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) (-4 *1 (-496))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4422)) (-4 *1 (-492 *4)) - (-4 *4 (-1219)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-690 *5)) (-4 *5 (-1051)) (-5 *1 (-1056 *3 *4 *5)) - (-14 *3 (-772)) (-14 *4 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-645 (-1142 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1102) (-34))) (-4 *5 (-13 (-1102) (-34))) - (-5 *1 (-1143 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-645 (-1142 *3 *4))) (-4 *3 (-13 (-1102) (-34))) - (-4 *4 (-13 (-1102) (-34))) (-5 *1 (-1143 *3 *4))))) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1174 *3)) (-4 *3 (-352)) (-5 *1 (-358 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) - (-5 *2 (-690 *4)))) + (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922)) (-5 *2 (-1174 *4)) (-5 *1 (-358 *4)) (-4 *4 (-352))))) +(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352))))) +(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352))))) +(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-358 *3)) (-4 *3 (-352))))) +(((*1 *2 *1) (-12 (-4 *1 (-352)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-358 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 (-909 *3)) (|:| -2563 (-1123)))))) + (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1095 *2)) (-4 *2 (-1219))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) - (-5 *2 (-1037)) (-5 *1 (-756))))) + (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))) + (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) (-14 *4 (-3 (-1174 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123)))))) + (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) (((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *1 *1) (-12 (-4 *1 (-1260 *2)) (-4 *2 (-1051))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) (-4 *1 (-496))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-645 *3)) (-4 *3 (-1111 *5 *6 *7 *8)) - (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *8 (-1067 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-593 *5 *6 *7 *8 *3))))) -(((*1 *1) (-5 *1 (-144))) + (-12 (-5 *2 (-691 (-909 *3))) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) + (-14 *4 (-922)))) + ((*1 *2) + (-12 (-5 *2 (-691 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) + (-14 *4 + (-3 (-1174 *3) (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123))))))))) + ((*1 *2) + (-12 (-5 *2 (-691 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) + (-4 *4 (-352)) (-5 *2 (-773)) (-5 *1 (-349 *4)))) + ((*1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-354 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) + ((*1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-355 *3 *4)) (-4 *3 (-352)) + (-14 *4 + (-3 (-1174 *3) (-1269 (-643 (-2 (|:| -3826 *3) (|:| -2563 (-1123))))))))) + ((*1 *2) + (-12 (-5 *2 (-773)) (-5 *1 (-356 *3 *4)) (-4 *3 (-352)) (-14 *4 (-922))))) +(((*1 *2) + (-12 (-4 *1 (-352)) + (-5 *2 (-643 (-2 (|:| -4164 (-549)) (|:| -2564 (-549)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-352)) (-5 *3 (-549)) (-5 *2 (-1192 (-922) (-773)))))) +(((*1 *1) (-4 *1 (-352)))) +(((*1 *2) + (-12 (-4 *1 (-352)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922)) + (-5 *2 + (-3 (-1174 *4) (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123))))))) + (-5 *1 (-349 *4)) (-4 *4 (-352))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-922)) + (-5 *2 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) + (-5 *1 (-349 *4)) (-4 *4 (-352))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) + (-4 *4 (-352)) (-5 *2 (-691 *4)) (-5 *1 (-349 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) + (-5 *2 (-1269 (-643 (-2 (|:| -3826 *4) (|:| -2563 (-1123)))))) + (-5 *1 (-349 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 *4)) (-4 *4 (-352)) (-5 *2 (-961 (-1123))) + (-5 *1 (-349 *4))))) +(((*1 *2) + (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-346 *3 *4)) (-14 *3 (-922)) + (-14 *4 (-922)))) + ((*1 *2) + (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-347 *3 *4)) (-4 *3 (-352)) + (-14 *4 (-1174 *3)))) + ((*1 *2) + (-12 (-5 *2 (-961 (-1123))) (-5 *1 (-348 *3 *4)) (-4 *3 (-352)) + (-14 *4 (-922))))) +(((*1 *2) + (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) + (-5 *2 (-773)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-773))))) +(((*1 *2) + (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) + (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1224)) (-4 *5 (-1245 *3)) (-4 *6 (-1245 (-410 *5))) + (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) + (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-262)))) - ((*1 *1 *2) (-12 (-5 *2 (-1135 (-225))) (-5 *1 (-264))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) + (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) + (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-1224)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) + (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1051)) (-4 *3 (-1102)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2618 (-567)))) (-4 *1 (-433 *3)))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1224)) (-4 *3 (-1245 *4)) + (-4 *5 (-1245 (-410 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-894 *3)) (|:| -2618 (-894 *3)))) - (-5 *1 (-894 *3)) (-4 *3 (-1102)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1051)) - (-4 *7 (-951 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -2618 (-567)))) - (-5 *1 (-952 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-365) - (-10 -8 (-15 -2504 ($ *7)) (-15 -4294 (*7 $)) - (-15 -4306 (*7 $)))))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) - (-4 *4 (-267 *3)) (-4 *5 (-794))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1175 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) - (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-951 *6 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559))))) + (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) + (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) + (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1269 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) + (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-5 *2 (-691 (-410 *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-645 (-52))) (-5 *1 (-894 *3)) (-4 *3 (-1102))))) -(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-954 *6))) (-5 *4 (-645 (-1179))) - (-4 *6 (-13 (-559) (-1040 *5))) (-4 *5 (-559)) - (-5 *2 (-645 (-645 (-295 (-410 (-954 *6)))))) (-5 *1 (-1041 *5 *6))))) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) + (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) + (-5 *2 (-2 (|:| |num| (-1269 *4)) (|:| |den| *4)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1269 *3)) (-4 *3 (-1245 *4)) (-4 *4 (-1224)) + (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1245 (-410 *3)))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *1 *1) (-4 *1 (-496))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1179)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) - (-4 *3 (-615 (-539))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1179)) (-5 *2 (-1 (-225) (-225) (-225))) - (-5 *1 (-704 *3)) (-4 *3 (-615 (-539)))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271)))) - ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1271))))) -(((*1 *1 *2) - (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1102)) (-5 *1 (-907 *3))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1224)) + (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) + (-5 *2 (-2 (|:| |num| (-691 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1269 (-317 (-225)))) (|:| |yinit| (-645 (-225))) - (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-381)) (-5 *1 (-205))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1102)) (-5 *1 (-103 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1142 *2 *3)) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1042))))) -(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))) -(((*1 *2 *3) - (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -2742 *5)))) - (-4 *5 (-1245 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) - (-5 *1 (-216 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-645 (-2 (|:| -3661 *5) (|:| -3380 (-567))))) - (-5 *4 (-567)) (-4 *5 (-1245 *4)) (-5 *2 (-645 *5)) - (-5 *1 (-697 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1870 *3))) - (-5 *1 (-971 *4 *3)) (-4 *3 (-1245 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-375 *2)) - (-4 *4 (-375 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *1 *1) (-4 *1 (-496))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1219)) (-5 *1 (-1134 *4 *2)) - (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4422) (-6 -4423)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-851)) (-4 *3 (-1219)) (-5 *1 (-1134 *3 *2)) - (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4422) (-6 -4423))))))) -(((*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1040 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *4 *2 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))) + (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1205) (-1005))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) + (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1224)) + (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3))))) (((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) - (-5 *1 (-990 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6)))) + (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 (-410 *2))) (-4 *2 (-1245 *4)) + (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) ((*1 *2) - (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) - (-4 *6 (-1067 *3 *4 *5)) (-5 *2 (-1274)) - (-5 *1 (-1109 *3 *4 *5 *6 *7)) (-4 *7 (-1073 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1051)) - (-4 *2 (-455)))) + (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1224)) + (-4 *4 (-1245 (-410 *2))) (-4 *2 (-1245 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1245 *4)) (-4 *4 (-1224)) + (-4 *6 (-1245 (-410 *5))) + (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) + (-4 *1 (-344 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *5 (-1224)) (-4 *6 (-1245 *5)) + (-4 *7 (-1245 (-410 *6))) (-5 *2 (-643 (-949 *5))) + (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-645 *4)) (-4 *4 (-1245 (-567))) (-5 *2 (-645 (-567))) - (-5 *1 (-489 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1051)) (-4 *2 (-455)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-951 *3 *4 *2)) (-4 *3 (-1051)) (-4 *4 (-794)) - (-4 *2 (-851)) (-4 *3 (-455))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-706 *3 *4)) (-4 *3 (-1219)) (-4 *4 (-1219))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) - (-4 *2 (-13 (-308) (-10 -8 (-15 -1466 ((-421 $) $))))) - (-4 *5 (-1245 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5))))) + (-12 (-5 *3 (-1180)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1224)) + (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) (-4 *4 (-365)) + (-5 *2 (-643 (-949 *4)))))) (((*1 *2) - (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-420 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1191 (-645 *4))) (-4 *4 (-851)) - (-5 *2 (-645 (-645 *4))) (-5 *1 (-1190 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1051)) - (-5 *1 (-1031 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-567)) (-5 *2 (-1274)) (-5 *1 (-906 *4)) - (-4 *4 (-1102)))) - ((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-906 *3)) (-4 *3 (-1102))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1245 (-169 *2)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1219)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1219)) - (-14 *4 (-567))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) - (-4 *4 (-172))))) -(((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *1 *1) (-4 *1 (-496))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) + (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) (-4 *6 (-1245 (-410 *5))) + (-5 *2 (-643 (-643 *4))) (-5 *1 (-343 *3 *4 *5 *6)) + (-4 *3 (-344 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1224)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-643 (-643 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-433 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1179)))) - ((*1 *1 *1) (-4 *1 (-160)))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-312)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-972)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-996)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1038)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1075))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-923)) (-4 *3 (-365)) - (-14 *4 (-995 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1245 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) - ((*1 *1 *1) (|partial| -4 *1 (-723))) - ((*1 *1 *1) (|partial| -4 *1 (-727))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1070 *3 *2)) (-4 *3 (-13 (-849) (-365))) - (-4 *2 (-1245 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1159 *3)) (-4 *3 (-1051)) (-5 *1 (-1163 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) + (-14 *4 (-643 (-1180))) (-4 *5 (-390)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-643 (-1180))) + (-14 *4 (-643 (-1180))) (-4 *5 (-390))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-365)) (-4 *3 (-1245 *4)) (-4 *5 (-1245 (-410 *3))) + (-4 *1 (-338 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-549)) (-4 *2 (-365)) (-4 *4 (-1245 *2)) + (-4 *5 (-1245 (-410 *4))) (-4 *1 (-338 *2 *4 *5 *6)) + (-4 *6 (-344 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-365)) (-4 *3 (-1245 *2)) (-4 *4 (-1245 (-410 *3))) + (-4 *1 (-338 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) + (-4 *1 (-338 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) + (-4 *1 (-338 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1245 *2))))) + (-12 (-4 *1 (-338 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1245 *3)) + (-4 *5 (-1245 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) - (-5 *2 (-1175 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1042)) (-5 *3 (-381))))) -(((*1 *2) - (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1223)) (-4 *4 (-1245 *3)) - (-4 *5 (-1245 (-410 *4))) (-5 *2 (-690 (-410 *4)))))) + (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) + (-5 *2 (-1269 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-365)) (-4 *4 (-1245 *3)) (-4 *5 (-1245 (-410 *4))) + (-5 *2 (-1269 *6)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-875 (-1185) (-773)))) (-5 *1 (-334))))) +(((*1 *2 *1) (-12 (-5 *2 (-961 (-773))) (-5 *1 (-334))))) +(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1260 *4)) (-5 *1 (-1262 *4 *2)) - (-4 *4 (-38 (-410 (-567))))))) + (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1102)) (-4 *3 (-902 *5)) (-5 *2 (-690 *3)) - (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) - (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4422))))))) -(((*1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1141))) ((*1 *1 *1 *1) (-4 *1 (-1141)))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1245 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) - (-4 *10 (-951 *9 *7 *8)) + (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1180)) (-5 *4 (-949 (-549))) (-5 *2 (-331)) (-5 *1 (-333))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-852))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1095 (-949 (-549)))) (-5 *3 (-949 (-549))) (-5 *1 (-331)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1095 (-949 (-549)))) (-5 *1 (-331))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331))))) +(((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331))))) +(((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-1162))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-331))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-331))))) +(((*1 *1 *2) (-12 (-5 *2 (-315 (-168 (-380)))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-549))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-380))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-696))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-703))) (-5 *1 (-331)))) + ((*1 *1 *2) (-12 (-5 *2 (-315 (-701))) (-5 *1 (-331)))) + ((*1 *1) (-5 *1 (-331)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-331))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-331))) (-5 *1 (-331))))) +(((*1 *1) (-5 *1 (-331)))) +(((*1 *1) (-5 *1 (-331)))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-865))) (-5 *1 (-331))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-643 (-1180))) (-5 *2 (-1180)) (-5 *1 (-331))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |deter| (-645 (-1175 *10))) - (|:| |dterm| - (-645 (-645 (-2 (|:| -4167 (-772)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) - (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1175 *10)) (-5 *4 (-645 *6)) - (-5 *5 (-645 *10))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) - ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) - ((*1 *1 *1) (-4 *1 (-849))) - ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-172)) (-4 *2 (-1062)))) - ((*1 *1 *1) (-4 *1 (-1062))) ((*1 *1 *1) (-4 *1 (-1141)))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1004))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1260 *3)) - (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1231 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1229 *3)) - (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1252 *3 *4)) (-4 *5 (-985 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1164 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1159 *3)) (-4 *3 (-38 (-410 (-567)))) - (-5 *1 (-1165 *3))))) -(((*1 *2 *2) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") + (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") + (|:| |Goto| "goto") (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-331))))) +(((*1 *2 *1) (-12 (-5 *2 - (-645 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-794)) (-4 *6 (-951 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) - (-5 *1 (-452 *3 *4 *5 *6))))) + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1180)) (|:| |arrayIndex| (-643 (-949 (-549)))) + (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1180)) (|:| |rand| (-865)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1179)) (|:| |thenClause| (-331)) + (|:| |elseClause| (-331)))) + (|:| |returnBranch| + (-2 (|:| -3827 (-112)) + (|:| -3826 (-2 (|:| |ints2Floats?| (-112)) (|:| -3674 (-865)))))) + (|:| |blockBranch| (-643 (-331))) (|:| |commentBranch| (-643 (-1162))) + (|:| |callBranch| (-1162)) + (|:| |forBranch| + (-2 (|:| -1607 (-1095 (-949 (-549)))) (|:| |span| (-949 (-549))) + (|:| -3653 (-331)))) + (|:| |labelBranch| (-1123)) + (|:| |loopBranch| (-2 (|:| |switch| (-1179)) (|:| -3653 (-331)))) + (|:| |commonBranch| + (-2 (|:| -3973 (-1180)) (|:| |contents| (-643 (-1180))))) + (|:| |printBranch| (-643 (-865))))) + (-5 *1 (-331))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-331))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-331))))) +(((*1 *2 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-331))))) +(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1174 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3 *2 *4 *5 *6)) (-4 *3 (-1102)) (-4 *4 (-1102)) - (-4 *5 (-1102)) (-4 *6 (-1102)) (-4 *2 (-1102))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1161)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) - (-5 *2 (-1037)) (-5 *1 (-758))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-772)) (-4 *5 (-1051)) (-4 *2 (-1245 *5)) - (-5 *1 (-1263 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1260 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-559) (-1040 (-567)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1204) (-433 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-559) (-1040 (-567)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1208 *3 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1179)) - (-4 *4 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *1 (-1208 *4 *2)) (-4 *2 (-13 (-27) (-1204) (-433 *4)))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1037)) - (-5 *1 (-749))))) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) + (-5 *2 (-1174 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1174 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1052)) (-4 *3 (-794))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-773)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1052)) (-4 *4 (-794)) + (-4 *3 (-172))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-549)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1104)) (-4 *2 (-131))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-131))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1104)) (-4 *3 (-131)) (-4 *3 (-794))))) +(((*1 *2 *3) + (-12 (-5 *3 (-549)) (-4 *4 (-795)) (-4 *5 (-852)) (-4 *2 (-1052)) + (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-953 *2 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1174 *7)) (-5 *3 (-549)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) + (-4 *5 (-852)) (-4 *6 (-1052)) (-5 *1 (-322 *4 *5 *6 *7))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) - (-5 *2 (-1269 (-567))) (-5 *1 (-1296 *4))))) + (-12 (-5 *3 (-1174 *6)) (-4 *6 (-1052)) (-4 *4 (-795)) (-4 *5 (-852)) + (-5 *2 (-1174 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-953 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1174 *7)) (-4 *7 (-953 *6 *4 *5)) (-4 *4 (-795)) (-4 *5 (-852)) + (-4 *6 (-1052)) (-5 *2 (-1174 *6)) (-5 *1 (-322 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1174 *9)) (-5 *4 (-643 *7)) (-5 *5 (-643 *8)) (-4 *7 (-852)) + (-4 *8 (-1052)) (-4 *9 (-953 *8 *6 *7)) (-4 *6 (-795)) (-5 *2 (-1174 *8)) + (-5 *1 (-322 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *1 (-1040 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-907 *3)) (-4 *3 (-1102))))) + (-12 (-5 *2 (-410 (-549))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) + (-14 *4 (-1180)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) + (-5 *6 (-549)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) + (-5 *6 (-549)) (-5 *7 (-1162)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) + (-5 *6 (-225)) (-5 *7 (-549)) (-5 *2 (-1215 (-930))) (-5 *1 (-319)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-315 (-549))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1092 (-225))) + (-5 *6 (-225)) (-5 *7 (-549)) (-5 *8 (-1162)) (-5 *2 (-1215 (-930))) + (-5 *1 (-319))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-294 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) + (-4 *5 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-113)) (-5 *5 (-643 *7)) (-4 *7 (-424 *6)) + (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-643 (-294 *7))) (-5 *4 (-643 (-113))) (-5 *5 (-294 *7)) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-643 (-294 *8))) (-5 *4 (-643 (-113))) (-5 *5 (-294 *8)) + (-5 *6 (-643 *8)) (-4 *8 (-424 *7)) (-4 *7 (-13 (-560) (-616 (-538)))) + (-5 *2 (-51)) (-5 *1 (-318 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-643 *7)) (-5 *4 (-643 (-113))) (-5 *5 (-294 *7)) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) + (-5 *1 (-318 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-643 *8)) (-5 *4 (-643 (-113))) (-5 *6 (-643 (-294 *8))) + (-4 *8 (-424 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-560) (-616 (-538)))) + (-5 *2 (-51)) (-5 *1 (-318 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-294 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) + (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-4 *3 (-424 *6)) + (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-4 *3 (-424 *6)) + (-4 *6 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-113)) (-5 *5 (-294 *3)) (-5 *6 (-643 *3)) (-4 *3 (-424 *7)) + (-4 *7 (-13 (-560) (-616 (-538)))) (-5 *2 (-51)) (-5 *1 (-318 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-315 *3)) (-4 *3 (-560)) (-4 *3 (-1104))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-567)) (|has| *1 (-6 -4423)) (-4 *1 (-1257 *3)) - (-4 *3 (-1219))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-894 *4)) (-4 *4 (-1102)) (-5 *1 (-891 *4 *3)) - (-4 *3 (-1102))))) + (-12 (-5 *2 (-549)) (-5 *1 (-315 *3)) (-4 *3 (-560)) (-4 *3 (-1104))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-773))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-308)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2572 *1))) + (-4 *1 (-308))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-643 *1)) (-4 *1 (-308))))) +(((*1 *2 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-850)) (-5 *1 (-305 *3))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-295 (-834 *3))) - (-4 *5 (-13 (-455) (-1040 (-567)) (-640 (-567)))) - (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) - (-4 *3 (-13 (-27) (-1204) (-433 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-834 (-954 *5)))) (-4 *5 (-455)) - (-5 *2 (-834 (-410 (-954 *5)))) (-5 *1 (-638 *5)) - (-5 *3 (-410 (-954 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-295 (-410 (-954 *5)))) (-5 *3 (-410 (-954 *5))) - (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923)))) - ((*1 *1 *1 *1) (-5 *1 (-1224))) ((*1 *1 *1 *1) (-5 *1 (-1225))) - ((*1 *1 *1 *1) (-5 *1 (-1226))) ((*1 *1 *1 *1) (-5 *1 (-1227)))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1006 *3)) (-14 *3 (-567))))) + (-12 (-5 *3 (-643 (-225))) (-5 *4 (-773)) (-5 *2 (-691 (-225))) + (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-410 (-549))) (-5 *2 (-225)) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-315 (-380))) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-315 (-380))) (-5 *1 (-304))))) (((*1 *2 *3) - (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) - (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-951 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1245 (-567)))))) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-380)) (|:| |stability| (-380)) + (|:| |expense| (-380)) (|:| |accuracy| (-380)) + (|:| |intermediateResults| (-380)))) + (-5 *2 (-1038)) (-5 *1 (-304))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-559) (-1040 (-567)))) (-4 *5 (-433 *4)) - (-5 *2 (-421 (-1175 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) - (-4 *3 (-1245 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) - (-5 *1 (-989 *2 *3 *4 *5)) (-4 *5 (-951 *2 *4 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1274)) (-5 *1 (-381)))) - ((*1 *2) (-12 (-5 *2 (-1274)) (-5 *1 (-381))))) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1157 (-225))) + (|:| |notEvaluated| "Internal singularities not yet evaluated"))) + (|:| -1607 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1038)) (-5 *1 (-304))))) (((*1 *2 *3) - (-12 (-5 *3 (-1269 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) - (-5 *1 (-1296 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 + (-5 *3 + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))))) + (-5 *2 (-1038)) (-5 *1 (-304)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3071 (-380)) (|:| -3973 (-1162)) + (|:| |explanations| (-643 (-1162))) (|:| |extra| (-1038)))) + (-5 *2 (-1038)) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1162)) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-302)))) + ((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-302)))) + ((*1 *2 *3) (-12 (-5 *3 (-1092 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-302)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1157 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-302)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-643 (-1162))) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-1162)) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-302)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1162)) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-1269 (-315 (-380)))) + (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-315 (-380))) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1269 (-701))) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-701)) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-2 (|:| -3542 (-410 (-549))) (|:| -3541 (-410 (-549)))))) + (-5 *2 (-643 (-225))) (-5 *1 (-304))))) +(((*1 *2 *2) (-12 (-5 *2 (-1092 (-844 (-225)))) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-315 (-225))) (-5 *2 (-315 (-410 (-549)))) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 (-315 (-225)))) + (-5 *2 + (-2 (|:| |additions| (-549)) (|:| |multiplications| (-549)) + (|:| |exponentiations| (-549)) (|:| |functionCalls| (-549)))) + (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))) + (-5 *2 (-380)) (-5 *1 (-268)))) + ((*1 *2 *3) (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *2 (-380)) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-225)) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-410 (-549))) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-549))) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1092 (-844 (-380)))) (-5 *2 (-1092 (-844 (-225)))) + (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-844 (-380))) (-5 *2 (-844 (-225))) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-315 (-380))) (-5 *2 (-315 (-225))) (-5 *1 (-304))))) +(((*1 *2 *3) (-12 (-5 *3 (-380)) (-5 *2 (-225)) (-5 *1 (-304))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -1916 *4))) (-5 *5 (-772)) - (-4 *4 (-951 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) + (-12 (-5 *3 (-949 (-410 (-549)))) (-5 *4 (-1180)) + (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-643 (-225))) (-5 *1 (-302))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-1157 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-225))) (-5 *4 (-643 (-1180))) + (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1269 (-315 (-225)))) (-5 *4 (-643 (-1180))) + (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1180)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-225))) (-5 *4 (-643 (-1180))) + (-5 *5 (-1092 (-844 (-225)))) (-5 *2 (-1157 (-225))) (-5 *1 (-302))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-225))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) + (-5 *2 (-643 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-315 (-225))) (-5 *4 (-1180)) (-5 *5 (-1092 (-844 (-225)))) + (-5 *2 (-643 (-225))) (-5 *1 (-302))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-112)) (-5 *1 (-302))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-299)) (-4 *2 (-1219)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-643 (-613 *1))) (-5 *3 (-643 *1)) (-4 *1 (-299)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-643 (-294 *1))) (-4 *1 (-299)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-299))))) +(((*1 *1 *1 *1) (-4 *1 (-299))) ((*1 *1 *1) (-4 *1 (-299)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-613 *1))) (-4 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-613 *1))) (-4 *1 (-299))))) +(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-643 (-113)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-299)) (-5 *3 (-1180)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-299)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-613 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1041 (-549))) + (-4 *4 (-560)) (-5 *2 (-1174 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-613 *1)) (-4 *1 (-1052)) (-4 *1 (-299)) (-5 *2 (-1174 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-312)) (-5 *1 (-297)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 (-1162))) (-5 *3 (-1162)) (-5 *2 (-312)) (-5 *1 (-297))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1052)) (-4 *4 (-1245 *3)) (-5 *1 (-164 *3 *4 *2)) + (-4 *2 (-1245 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1219))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-728)) (-4 *2 (-1219))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-728)) (-4 *2 (-1219))))) +(((*1 *2 *1) + (-12 (-5 *2 (-643 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-560)) + (-4 *3 (-1219))))) +(((*1 *2 *3) + (-12 (-4 *4 (-455)) (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-452 *6 *7 *8 *4))))) + (-643 + (-2 (|:| |eigval| (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4)))) + (|:| |eigmult| (-773)) (|:| |eigvec| (-643 (-691 (-410 (-949 *4)))))))) + (-5 *1 (-293 *4)) (-5 *3 (-691 (-410 (-949 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-455)) + (-5 *2 + (-643 + (-2 (|:| |eigval| (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4)))) + (|:| |geneigvec| (-643 (-691 (-410 (-949 *4)))))))) + (-5 *1 (-293 *4)) (-5 *3 (-691 (-410 (-949 *4))))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-410 (-949 *6)) (-1169 (-1180) (-949 *6)))) (-5 *5 (-773)) + (-4 *6 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *6))))) (-5 *1 (-293 *6)) + (-5 *4 (-691 (-410 (-949 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-410 (-949 *5)) (-1169 (-1180) (-949 *5)))) + (|:| |eigmult| (-773)) (|:| |eigvec| (-643 *4)))) + (-4 *5 (-455)) (-5 *2 (-643 (-691 (-410 (-949 *5))))) (-5 *1 (-293 *5)) + (-5 *4 (-691 (-410 (-949 *5))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-410 (-949 *5)) (-1169 (-1180) (-949 *5)))) (-4 *5 (-455)) + (-5 *2 (-643 (-691 (-410 (-949 *5))))) (-5 *1 (-293 *5)) + (-5 *4 (-691 (-410 (-949 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-691 (-410 (-949 *4)))) (-4 *4 (-455)) + (-5 *2 (-643 (-3 (-410 (-949 *4)) (-1169 (-1180) (-949 *4))))) + (-5 *1 (-293 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1088))) (-5 *1 (-292))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-1106))) (-5 *1 (-292))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1106)) (-5 *1 (-292))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-643 (-968))) (-5 *1 (-292))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-968))) (-5 *1 (-292))))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *1) (-5 *1 (-292)))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-549)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1219)) (-4 *4 (-374 *2)) + (-4 *5 (-374 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4426)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1104)) + (-4 *2 (-1219))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-365)) (-5 *2 (-643 (-1157 *4))) (-5 *1 (-286 *4 *5)) + (-5 *3 (-1157 *4)) (-4 *5 (-1262 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1262 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1236 (-549))) (-4 *1 (-283 *3)) (-4 *3 (-1219)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-549)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-235 *3)) + (-4 *3 (-1104)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-281))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1106)) (-5 *1 (-281))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-410 (-549))) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4))) + (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *4 *2))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-643 (-613 *2))) (-5 *4 (-1180)) + (-4 *2 (-13 (-27) (-1205) (-424 *5))) + (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-455)) (-5 *1 (-1210 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1204)))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1293 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) - (-4 *2 (-172)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1286 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1051)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-820 *4)) (-4 *1 (-1286 *4 *2)) (-4 *4 (-851)) - (-4 *2 (-1051)))) + (-12 (-4 *3 (-13 (-560) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-278 *3 *2)) + (-4 *2 (-13 (-27) (-1205) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-560) (-1041 (-549)) (-641 (-549)))) + (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1205) (-424 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1180)) (-4 *5 (-13 (-560) (-1041 (-549)) (-641 (-549)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-643 (-613 *3))) (|:| |vals| (-643 *3)))) + (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1205) (-424 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) + (-4 *3 (-13 (-424 *4) (-1005)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-643 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-424 *4) (-1005))) (-4 *4 (-560)) (-5 *1 (-277 *4 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-424 *3) (-1005)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-424 *3) (-1005))) (-5 *1 (-277 *3 *2)) (-4 *3 (-560))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-549))) (-5 *1 (-276))))) +(((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-276))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) + (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) + (|:| |ub| (-643 (-844 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-643 (-315 (-225)))) (|:| -3869 (-643 (-225))))))) + (-5 *2 (-643 (-1162))) (-5 *1 (-268))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1038)) (-5 *3 (-1180)) (-5 *1 (-268))))) +(((*1 *2 *3) (-12 (-5 *3 (-315 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))) +(((*1 *2 *2) (-12 (-5 *2 (-643 (-315 (-225)))) (-5 *1 (-268))))) +(((*1 *2 *2) (-12 (-5 *2 (-643 (-315 (-225)))) (-5 *1 (-268))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *4 (-773)) (-5 *2 (-691 (-225))) + (-5 *1 (-268))))) +(((*1 *2 *3) (-12 (-5 *3 (-643 (-315 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))) +(((*1 *2 *2) (-12 (-5 *2 (-315 (-225))) (-5 *1 (-268))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-315 (-225))) (-5 *1 (-268))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-315 (-225))) (|:| -3869 (-643 (-225))) + (|:| |lb| (-643 (-844 (-225)))) (|:| |cf| (-643 (-315 (-225)))) + (|:| |ub| (-643 (-844 (-225)))))) + (-5 *1 (-268))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-643 *4)) + (-5 *1 (-268))))) +(((*1 *2 *1) + (-12 (-4 *3 (-233)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-267 *4)) + (-4 *6 (-795)) (-5 *2 (-1 *1 (-773))) (-4 *1 (-254 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1052)) (-4 *3 (-852)) (-4 *5 (-267 *3)) (-4 *6 (-795)) + (-5 *2 (-1 *1 (-773))) (-4 *1 (-254 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-773)) (-4 *1 (-267 *2)) (-4 *2 (-852))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-113)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1051)) (-5 *1 (-1292 *2 *3)) (-4 *3 (-847))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2)) (-14 *2 (-923)))) - ((*1 *1 *1 *1) (-5 *1 (-1224))) ((*1 *1 *1 *1) (-5 *1 (-1225))) - ((*1 *1 *1 *1) (-5 *1 (-1226))) ((*1 *1 *1 *1) (-5 *1 (-1227)))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1269 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) - (-5 *1 (-668 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-365)) - (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4423)))) - (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4423)))) - (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) - (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) + (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-773)))) + ((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) + (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-773)))) + ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-852)) (-5 *2 (-773))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *2 (-51)) + (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *1 (-264 *2)) + (-4 *2 (-1219))))) +(((*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *1) (-5 *1 (-144))) + ((*1 *1 *2) (-12 (-5 *2 (-1136 (-225))) (-5 *1 (-262)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-262)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-643 (-262))) (-5 *1 (-263))))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) + (-5 *2 + (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) + (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-928)) (-5 *4 (-410 (-549))) + (-5 *2 + (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) + (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-5 *1 (-153)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) - (-5 *1 (-1130 *3 *2)) (-4 *3 (-1245 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928))))) -(((*1 *2 *3) - (-12 (-5 *3 (-567)) (|has| *1 (-6 -4413)) (-4 *1 (-407)) - (-5 *2 (-923))))) -(((*1 *2 *3) (-12 (-5 *3 (-1161)) (-5 *2 (-1274)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1219)) (-5 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772)))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) + (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-5 *1 (-153)) (-5 *3 (-643 (-946 (-225)))))) ((*1 *2 *3) - (-12 (-4 *4 (-1051)) - (-4 *2 (-13 (-407) (-1040 *4) (-365) (-1204) (-285))) - (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1245 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1102)))) - ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) - ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1219)) (-4 *2 (-1051)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) - ((*1 *1 *1) (-5 *1 (-863))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-945 (-225))) (-5 *2 (-225)) (-5 *1 (-1215)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1219)) (-4 *2 (-1051))))) -(((*1 *1 *1) - (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1051))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1067 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559))))) -(((*1 *2 *3) - (-12 (-5 *3 (-954 *5)) (-4 *5 (-1051)) (-5 *2 (-247 *4 *5)) - (-5 *1 (-946 *4 *5)) (-14 *4 (-645 (-1179)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) - (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-1067 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-645 *3)) (-4 *3 (-1067 *4 *5 *6)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-559)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-979 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) - (-4 *7 (-1067 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) - (-4 *6 (-851)) (-5 *1 (-979 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1182))))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) + (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-5 *1 (-153)) (-5 *3 (-643 (-643 (-946 (-225))))))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-262))))) +(((*1 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262))))) +(((*1 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-380)) (-5 *1 (-262))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-262))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-410 (-549))))) (-5 *1 (-262)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 (-1092 (-380)))) (-5 *1 (-262))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-262))) (-5 *4 (-1180)) (-5 *2 (-112)) (-5 *1 (-262))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1272)) + (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 (-1 (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1272)) (-5 *1 (-256 *3)) + (-4 *3 (-13 (-616 (-538)) (-1104))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-880 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) + (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1272)) (-5 *1 (-256 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-945 (-225)) (-225))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-880 *5)) (-5 *4 (-1095 (-380))) + (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1272)) (-5 *1 (-256 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-882 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) + (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-882 *5)) (-5 *4 (-1095 (-380))) + (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1273)) + (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1273)) (-5 *1 (-256 *3)) + (-4 *3 (-13 (-616 (-538)) (-1104))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-885 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) + (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-945 (-225)) (-225) (-225))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *3 (-885 *5)) (-5 *4 (-1095 (-380))) + (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1273)) (-5 *1 (-256 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *5 (-643 (-262))) + (-5 *2 (-1272)) (-5 *1 (-257)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1272)) + (-5 *1 (-257)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1272)) (-5 *1 (-257)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1272)) + (-5 *1 (-257)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) + (-5 *1 (-257)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) + (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) (-5 *2 (-1273)) + (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) + (-5 *2 (-1273)) (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1273)) (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) + (-5 *2 (-1273)) (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-1180)) (-5 *5 (-643 (-262))) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-560) (-852) (-1041 (-549)))) (-5 *2 (-1272)) + (-5 *1 (-258 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1272)) (-5 *1 (-261)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-643 (-225))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) + (-5 *1 (-261)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *2 (-1272)) (-5 *1 (-261)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-643 (-946 (-225)))) (-5 *4 (-643 (-262))) (-5 *2 (-1272)) + (-5 *1 (-261)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-643 (-225))) (-5 *2 (-1273)) (-5 *1 (-261)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-643 (-225))) (-5 *4 (-643 (-262))) (-5 *2 (-1273)) + (-5 *1 (-261))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-259))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-259))))) +(((*1 *2 *2) (-12 (-5 *2 (-549)) (-5 *1 (-259))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1092 (-225))) + (-5 *2 (-1273)) (-5 *1 (-259))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-168 (-225)) (-168 (-225)))) (-5 *4 (-1092 (-225))) + (-5 *5 (-112)) (-5 *2 (-1273)) (-5 *1 (-259))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-946 (-225)) (-225) (-225))) + (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-257))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-882 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) + (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) + (-5 *1 (-256 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-882 *5)) (-5 *4 (-1095 (-380))) + (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) + (-5 *1 (-256 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *5 (-645 (-264))) (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) + (-5 *1 (-256 *3)) (-4 *3 (-13 (-616 (-538)) (-1104))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-884 (-1 (-225) (-225) (-225)))) (-5 *4 (-1096 (-381))) - (-5 *2 (-1135 (-225))) (-5 *1 (-256)))) + (-12 (-5 *4 (-1095 (-380))) (-5 *2 (-1136 (-225))) (-5 *1 (-256 *3)) + (-4 *3 (-13 (-616 (-538)) (-1104))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-885 *6)) (-5 *4 (-1095 (-380))) (-5 *5 (-643 (-262))) + (-4 *6 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) + (-5 *1 (-256 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-885 *5)) (-5 *4 (-1095 (-380))) + (-4 *5 (-13 (-616 (-538)) (-1104))) (-5 *2 (-1136 (-225))) + (-5 *1 (-256 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-881 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) - (-5 *1 (-260 *6)))) + (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-881 *5)) (-5 *4 (-1094 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) - (-5 *1 (-260 *5)))) + (-12 (-5 *3 (-882 (-1 (-225) (-225)))) (-5 *4 (-1092 (-380))) + (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-946 (-225)) (-225))) (-5 *4 (-1092 (-380))) + (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) - (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) - (-4 *3 (-13 (-615 (-539)) (-1102))))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1094 (-381))) (-5 *2 (-1135 (-225))) (-5 *1 (-260 *3)) - (-4 *3 (-13 (-615 (-539)) (-1102))))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1092 (-380))) + (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-884 *6)) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) - (-4 *6 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) - (-5 *1 (-260 *6)))) + (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-884 *5)) (-5 *4 (-1094 (-381))) - (-4 *5 (-13 (-615 (-539)) (-1102))) (-5 *2 (-1135 (-225))) - (-5 *1 (-260 *5))))) -(((*1 *1 *1) (-5 *1 (-225))) + (-12 (-5 *3 (-1 (-946 (-225)) (-225) (-225))) (-5 *4 (-1092 (-380))) + (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) + (-5 *5 (-643 (-262))) (-5 *2 (-1136 (-225))) (-5 *1 (-257)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-885 (-1 (-225) (-225) (-225)))) (-5 *4 (-1092 (-380))) + (-5 *2 (-1136 (-225))) (-5 *1 (-257))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-222 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-255 *3)))) + ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) + (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-643 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1052)) (-4 *3 (-852)) + (-4 *5 (-267 *3)) (-4 *6 (-795)) (-5 *2 (-643 (-773))))) + ((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) + (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-643 (-773)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1052)) (-4 *4 (-852)) + (-4 *5 (-267 *4)) (-4 *6 (-795)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1052)) (-4 *4 (-852)) (-4 *5 (-795)) + (-4 *2 (-267 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1052)) (-4 *3 (-852)) + (-4 *4 (-267 *3)) (-4 *5 (-795))))) +(((*1 *1 *1) + (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1052)) (-4 *3 (-852)) + (-4 *4 (-267 *3)) (-4 *5 (-795))))) +(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249))))) +(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) + ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) +(((*1 *2 *1) (-12 (-5 *2 (-184 (-249))) (-5 *1 (-248))))) +(((*1 *1 *2) (-12 (-5 *2 (-184 (-249))) (-5 *1 (-248))))) +(((*1 *2 *1) (-12 (-5 *2 (-1275)) (-5 *1 (-248))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-773)) + (-4 *3 (-13 (-728) (-370) (-10 -7 (-15 ** (*3 *3 (-549)))))) + (-5 *1 (-246 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-245 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-244 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-549)) (-5 *1 (-241)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-549)) (-5 *1 (-241))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-1275)) (-5 *1 (-241)))) + ((*1 *2 *3) (-12 (-5 *3 (-643 (-1162))) (-5 *2 (-1275)) (-5 *1 (-241))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1162)) (-5 *3 (-549)) (-5 *1 (-241))))) +(((*1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-241))))) +(((*1 *1 *2) (-12 (-5 *2 (-1269 *4)) (-4 *4 (-1219)) (-4 *1 (-238 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-294 (-949 (-549)))) + (-5 *2 + (-2 (|:| |varOrder| (-643 (-1180))) + (|:| |inhom| (-3 (-643 (-1269 (-773))) "failed")) + (|:| |hom| (-643 (-1269 (-773)))))) + (-5 *1 (-236))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-4 *1 (-235 *3)))) + ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1104))))) +(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1205)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-168 (-225))) (-5 *1 (-226))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1180)) + (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-4 *7 (-13 (-1205) (-29 *6))) (-5 *1 (-224 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1174 *6)) (-5 *4 (-844 *6)) + (-4 *6 (-13 (-1205) (-29 *5))) + (-4 *5 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-224 *5 *6))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1205) (-29 *6))) + (-4 *6 (-13 (-455) (-1041 (-549)) (-641 (-549)))) (-5 *1 (-224 *6 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1162)) (-4 *4 (-13 (-455) (-1041 (-549)) (-641 (-549)))) + (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1205) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1052)) (-14 *3 (-643 (-1180))))) ((*1 *1 *1) - (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1179))) - (-14 *3 (-645 (-1179))) (-4 *4 (-390)))) - ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-772)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-851)) - (-4 *4 (-1051)) (-4 *4 (-172)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1286 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1051)) - (-4 *3 (-172))))) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) + (-14 *3 (-643 (-1180)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1052)) + (-14 *4 (-643 (-1180))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1052) (-852))) + (-14 *4 (-643 (-1180)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-315 *3)) (-4 *3 (-13 (-1052) (-852))) (-5 *1 (-223 *3 *4)) + (-14 *4 (-643 (-1180)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1052) (-852))) + (-14 *3 (-643 (-1180)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1180)) (-5 *6 (-112)) + (-4 *7 (-13 (-308) (-147) (-1041 (-549)) (-641 (-549)))) + (-4 *3 (-13 (-1205) (-963) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-643 (-844 *3))) (|:| |fail| "failed") + (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-410 (-549))) (-5 *1 (-217))))) +(((*1 *2 *3) + (-12 (-4 *4 (-352)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-773)) (-4 *4 (-352)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1245 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-352)) (-5 *2 (-643 (-2 (|:| |deg| (-773)) (|:| -2975 *3)))) + (-5 *1 (-216 *4 *3)) (-4 *3 (-1245 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-351)) + (-12 (-5 *4 (-112)) (-4 *5 (-352)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1444 (-645 (-2 (|:| |irr| *3) (|:| -3451 (-567))))))) + (|:| -1954 (-643 (-2 (|:| |irr| *3) (|:| -2558 (-549))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1245 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) - (-4 *7 (-1245 *6)) - (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) - (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7))))) -(((*1 *1) (-5 *1 (-157)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1245 (-410 *2))) + (-4 *2 (-1245 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-773)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)) (-4 *2 (-1104))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-643 (-315 (-225)))) + (|:| |constraints| + (-643 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-773)) + (|:| |boundaryType| (-549)) (|:| |dStart| (-691 (-225))) + (|:| |dFinish| (-691 (-225)))))) + (|:| |f| (-643 (-643 (-315 (-225))))) (|:| |st| (-1162)) + (|:| |tol| (-225)))) + (-5 *2 (-112)) (-5 *1 (-210))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) - (-4 *3 (-1067 *5 *6 *7)) - (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -3526 *4)))) - (-5 *1 (-1074 *5 *6 *7 *3 *4)) (-4 *4 (-1073 *5 *6 *7 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1067 *2 *3 *4)) (-4 *2 (-1051)) (-4 *3 (-794)) - (-4 *4 (-851)) (-4 *2 (-455))))) + (-12 (-5 *4 (-643 (-315 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-210))))) +(((*1 *2 *2) (-12 (-5 *2 (-315 (-225))) (-5 *1 (-210))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-894 *4)) - (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1102)) (-4 *3 (-166 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-645 (-1096 (-844 (-381))))) - (-5 *2 (-645 (-1096 (-844 (-225))))) (-5 *1 (-306)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) - (-4 *4 (-1245 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1245 *3)) - (-5 *2 (-1269 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1269 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1269 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559)) - (-4 *3 (-1102)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *6)) (-4 *6 (-1067 *3 *4 *5)) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-539)))) - ((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1219)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1245 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-894 *3))) (-5 *1 (-894 *3)) (-4 *3 (-1102)))) - ((*1 *1 *2) - (-12 (-5 *2 (-954 *3)) (-4 *3 (-1051)) (-4 *1 (-1067 *3 *4 *5)) - (-4 *5 (-615 (-1179))) (-4 *4 (-794)) (-4 *5 (-851)))) - ((*1 *1 *2) - (-2836 - (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) - (-12 (-1736 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) - (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))) - (-12 (-5 *2 (-954 (-567))) (-4 *1 (-1067 *3 *4 *5)) - (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179)))) - (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851))))) - ((*1 *1 *2) - (-12 (-5 *2 (-954 (-410 (-567)))) (-4 *1 (-1067 *3 *4 *5)) - (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1179))) (-4 *3 (-1051)) - (-4 *4 (-794)) (-4 *5 (-851)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -3526 *8))) - (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1073 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1161)) - (-5 *1 (-1071 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -3526 *8))) - (-4 *7 (-1067 *4 *5 *6)) (-4 *8 (-1111 *4 *5 *6 *7)) (-4 *4 (-455)) - (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1161)) - (-5 *1 (-1147 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1184)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1199)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1199)))) - ((*1 *2 *3) - (-12 (-5 *3 (-781 *4 (-865 *5))) - (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *5 (-645 (-1179))) - (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1295 *4 *5 *6)) - (-14 *6 (-645 (-1179))))) - ((*1 *2 *3) - (-12 (-5 *3 (-954 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) - (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) - ((*1 *2 *3) - (-12 (-5 *3 (-781 *4 (-865 *6))) - (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1179))) - (-5 *2 (-954 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) - (-14 *5 (-645 (-1179))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1175 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1024))) - (-5 *2 (-1175 (-1026 (-410 *4)))) (-5 *1 (-1295 *4 *5 *6)) - (-14 *5 (-645 (-1179))) (-14 *6 (-645 (-1179))))) - ((*1 *2 *3) (-12 - (-5 *3 (-1148 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) - (-4 *4 (-13 (-849) (-308) (-147) (-1024))) (-14 *6 (-645 (-1179))) - (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1295 *4 *5 *6)) - (-14 *5 (-645 (-1179)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1100 *2)) (-4 *2 (-1102))))) -(((*1 *2 *1) (-12 (-5 *2 (-1274)) (-5 *1 (-823))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1102)) - (-4 *2 (-131))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-822))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4422)) (-4 *1 (-151 *3)) - (-4 *3 (-1219)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1219)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1212 *4 *5 *3 *2)) (-4 *4 (-559)) - (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1067 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-772)) (-5 *1 (-1216 *2)) (-4 *2 (-1219))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1219)) (-4 *2 (-851)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1219)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-970 *2)) (-4 *2 (-851)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1136 *2)) (-4 *2 (-1051)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 *1)) (-4 *1 (-1136 *3)) (-4 *3 (-1051)))) - ((*1 *1 *2) - (-12 (-5 *2 (-645 (-1167 *3 *4))) (-5 *1 (-1167 *3 *4)) - (-14 *3 (-923)) (-4 *4 (-1051)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-923)) (-4 *3 (-1051))))) -(((*1 *2 *1 *1) + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-380)) (-5 *1 (-205))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-380)) (-5 *1 (-205))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-380)) (-5 *1 (-205))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-380)) (-5 *1 (-205))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1269 (-315 (-225)))) (|:| |yinit| (-643 (-225))) + (|:| |intvals| (-643 (-225))) (|:| |g| (-315 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380)))) + (-5 *1 (-205))))) +(((*1 *2 *3) + (-12 (-5 *3 (-691 (-315 (-225)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-380)) (|:| |stabilityFactor| (-380)))) + (-5 *1 (-205))))) +(((*1 *2 *3) (-12 (-5 *3 (-691 (-315 (-225)))) (-5 *2 (-380)) (-5 *1 (-205))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-205)))) + ((*1 *2 *2 *3) (-12 (-5 *3 (-643 (-380))) (-5 *2 (-380)) (-5 *1 (-205))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-549)) (-5 *1 (-204))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-643 (-225))) (-5 *1 (-204))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -2902 (-113)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1038)) (-5 *3 (-1180)) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-380)) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| -1870 (-783 *3)) (|:| |coef1| (-783 *3)) - (|:| |coef2| (-783 *3)))) - (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1051)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-559)) (-4 *3 (-1051)) (-4 *4 (-794)) (-4 *5 (-851)) - (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1067 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1037)) - (-5 *1 (-756))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-509)) (-5 *3 (-645 (-967))) (-5 *1 (-292))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1146)) (-5 *2 (-144))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1040 (-567)))) - (-4 *5 (-1245 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1018 *4 *5)) - (-5 *3 (-410 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1051)) (-4 *3 (-851)) - (-4 *4 (-267 *3)) (-4 *5 (-794))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1051)) - (-14 *4 (-645 (-1179))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1051) (-851))) - (-14 *4 (-645 (-1179)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-602 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1219)) (-5 *1 (-1159 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| "There is a singularity at the lower end point") + (|:| |upperSingular| "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1180)) (|:| |fn| (-315 (-225))) + (|:| -1607 (-1092 (-844 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) (-5 *2 - (-2 (|:| A (-690 *5)) - (|:| |eqs| - (-645 - (-2 (|:| C (-690 *5)) (|:| |g| (-1269 *5)) (|:| -4178 *6) - (|:| |rh| *5)))))) - (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1269 *5)) - (-4 *6 (-657 *5)))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *3) (-12 (-5 *2 (-408 (-1174 (-549)))) (-5 *1 (-191)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-643 (-1174 (-549)))) (-5 *1 (-191)) (-5 *3 (-549))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-643 (-549))) (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 (-549))) (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1182 (-410 (-549)))) (-5 *2 (-410 (-549))) (-5 *1 (-190))))) +(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) +(((*1 *2 *3) (-12 (-5 *2 (-1182 (-410 (-549)))) (-5 *1 (-190)) (-5 *3 (-549))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1269 (-691 *4))) (-4 *4 (-172)) + (-5 *2 (-1269 (-691 (-949 *4)))) (-5 *1 (-189 *4))))) +(((*1 *1) (-5 *1 (-187)))) +(((*1 *1) (-5 *1 (-187)))) +(((*1 *1) (-5 *1 (-187)))) +(((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187))))) +(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-643 (-112)))))) +(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-643 (-867)))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-1185))) (-5 *1 (-184 *3)) (-4 *3 (-186))))) +(((*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-693 (-183))) (-5 *1 (-183))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-676 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1219)) (-5 *2 (-773)) (-5 *1 (-182 *4 *3)) (-4 *3 (-676 *4))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1219)) (-5 *1 (-182 *3 *2)) (-4 *2 (-676 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-850))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1954 (-408 *3)))) (-5 *1 (-181 *4 *3)) + (-4 *3 (-1245 (-168 *4)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1245 (-168 *2)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-168 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-850))) + (-4 *3 (-1245 *2))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1245 (-168 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-365) (-850))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1245 (-168 *2)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-850))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1245 (-168 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-408 *3)) (-5 *1 (-181 *4 *3)) + (-4 *3 (-1245 (-168 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-365) (-850))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1245 (-168 *3)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-850))) + (-5 *2 (-643 (-2 (|:| -1954 (-643 *3)) (|:| -1704 *5)))) + (-5 *1 (-181 *5 *3)) (-4 *3 (-1245 (-168 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-365) (-850))) + (-5 *2 (-643 (-2 (|:| -1954 (-643 *3)) (|:| -1704 *4)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-643 (-168 *4))) (-5 *1 (-155 *3 *4)) + (-4 *3 (-1245 (-168 (-549)))) (-4 *4 (-13 (-365) (-850))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-168 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) - (-5 *2 (-2 (|:| -2434 (-690 *6)) (|:| |vec| (-1269 *5)))) - (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1269 *5))))) + (-12 (-4 *4 (-13 (-365) (-850))) (-5 *2 (-643 (-168 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1245 (-168 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-643 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1205) (-1005)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1205) (-1005)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1205) (-1005)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1205) (-1005)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1205) (-1005)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1205) (-1005)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-946 *3) (-946 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-365) (-1205) (-1005)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) + (-5 *1 (-176 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) + (-5 *1 (-176 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) + (-5 *1 (-176 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) + (-5 *1 (-176 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) + (-5 *1 (-176 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) + (-5 *1 (-176 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-946 *3)) (-4 *3 (-13 (-365) (-1205) (-1005))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-109))) (-5 *1 (-175))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1157 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-1157 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1063)) (-4 *3 (-1205)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *1 *1 *1) (-5 *1 (-161))) + ((*1 *1 *2) (-12 (-5 *2 (-549)) (-5 *1 (-161))))) +(((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180)))) + ((*1 *1 *1) (-4 *1 (-160)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *1 (-158 *4 *2)) (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1095 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1180))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-643 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2))))) +(((*1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-560))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-560))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-560))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-560))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-560))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *2)) (-4 *2 (-424 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-560))))) +(((*1 *2 *2) (-12 (-4 *3 (-560)) (-5 *1 (-158 *3 *2)) (-4 *2 (-424 *3))))) +(((*1 *1) (-5 *1 (-157)))) +(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-157))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-225)) + (-5 *2 + (-2 (|:| |brans| (-643 (-643 (-946 *4)))) (|:| |xValues| (-1092 *4)) + (|:| |yValues| (-1092 *4)))) + (-5 *1 (-153)) (-5 *3 (-643 (-643 (-946 *4))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) + (-5 *2 + (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) + (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-928)) (-5 *4 (-410 (-549))) + (-5 *2 + (-2 (|:| |brans| (-643 (-643 (-946 (-225))))) + (|:| |xValues| (-1092 (-225))) (|:| |yValues| (-1092 (-225))))) + (-5 *1 (-153))))) +(((*1 *1 *2) + (-12 (-5 *2 (-922)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) + (-14 *5 (-996 *3 *4))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1219))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1143 *2 *3)) (-4 *2 (-13 (-1102) (-34))) - (-4 *3 (-13 (-1102) (-34)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1269 *5)) (-5 *3 (-772)) (-5 *4 (-1122)) (-4 *5 (-351)) - (-5 *1 (-531 *5))))) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-151 *2)) (-4 *2 (-1219)) + (-4 *2 (-1104))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) + (|:| |c2| (-410 *5)) (|:| |deg| (-773)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1245 *2)) (-4 *2 (-1224)) (-5 *1 (-148 *2 *4 *3)) + (-4 *3 (-1245 (-410 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-410 *6)) (-4 *5 (-1224)) (-4 *6 (-1245 *5)) + (-5 *2 (-2 (|:| -2564 (-773)) (|:| -4386 *3) (|:| |radicand| *6))) + (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-773)) (-4 *7 (-1245 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) + (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-773)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1245 (-410 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1224)) (-4 *5 (-1245 *4)) + (-5 *2 (-2 (|:| -4386 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) + (-4 *3 (-1245 (-410 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-144))))) +(((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-144)))) + ((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-144))))) +(((*1 *1) (-5 *1 (-144)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 (-144))) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-141))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-840))) (-5 *1 (-140))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-184 (-139)))) (-5 *1 (-140))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-184 (-139)))) (-5 *1 (-140))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-643 (-549))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) + (-14 *4 (-773)) (-4 *5 (-172))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172))))) +(((*1 *1) + (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-549)) (-14 *3 (-773)) (-4 *4 (-172))))) (((*1 *2 *1) - (-12 (-14 *3 (-645 (-1179))) (-4 *4 (-172)) - (-4 *5 (-238 (-2498 *3) (-772))) - (-14 *6 - (-1 (-112) (-2 (|:| -2188 *2) (|:| -2618 *5)) - (-2 (|:| -2188 *2) (|:| -2618 *5)))) - (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-951 *4 *5 (-865 *3)))))) -(((*1 *1) (-5 *1 (-292)))) -((-1302 . 732126) (-1303 . 731839) (-1304 . 731723) (-1305 . 731605) - (-1306 . 731133) (-1307 . 730966) (-1308 . 730750) (-1309 . 730632) - (-1310 . 730453) (-1311 . 730343) (-1312 . 730261) (-1313 . 730151) - (-1314 . 729798) (-1315 . 729260) (-1316 . 728773) (-1317 . 728721) - (-1318 . 728650) (-1319 . 728553) (-1320 . 728500) (-1321 . 728440) - (-1322 . 724773) (-1323 . 724660) (-1324 . 724442) (-1325 . 724414) - (-1326 . 724171) (-1327 . 723972) (-1328 . 723763) (-1329 . 723566) - (-1330 . 721221) (-1331 . 721170) (-1332 . 720417) (-1333 . 720290) - (-1334 . 720153) (-1335 . 720067) (-1336 . 719751) (-1337 . 719323) - (-1338 . 719254) (-1339 . 719160) (-1340 . 719108) (-1341 . 719056) - (-1342 . 718473) (-1343 . 718251) (-1344 . 717893) (-1345 . 717797) - (-1346 . 717507) (-1347 . 717455) (-1348 . 717353) (-1349 . 717237) - (-1350 . 717114) (-1351 . 716934) (-1352 . 716854) (-1353 . 716716) - (-1354 . 716632) (-1355 . 716410) (-1356 . 715914) (-1357 . 715810) - (-1358 . 715708) (-1359 . 715512) (-1360 . 715389) (-1361 . 715285) - (-1362 . 714718) (-1363 . 714573) (-1364 . 714453) (-1365 . 714315) - (-1366 . 714079) (-1367 . 713517) (-1368 . 713032) (-1369 . 712623) - (-1370 . 712268) (-1371 . 712094) (-1372 . 711976) (-1373 . 711842) - (-1374 . 711764) (-1375 . 711670) (-1376 . 711591) (-1377 . 710375) - (-1378 . 710065) (-1379 . 709806) (-1380 . 709131) (-1381 . 709036) - (-1382 . 708872) (-1383 . 708770) (-1384 . 708602) (-1385 . 708494) - (-1386 . 708382) (-1387 . 708287) (-1388 . 708096) (-1389 . 707966) - (-1390 . 707584) (-1391 . 707243) (-1392 . 707033) (-1393 . 706737) - (-1394 . 706062) (-1395 . 705959) (-1396 . 705829) (-1397 . 705517) - (-1398 . 705458) (-1399 . 705408) (-1400 . 705300) (-1401 . 705221) - (-1402 . 704929) (-1403 . 704846) (-1404 . 704745) (-1405 . 704511) - (-1406 . 703836) (-1407 . 703758) (-1408 . 703562) (-1409 . 703503) - (-1410 . 703424) (-1411 . 703369) (-1412 . 703209) (-1413 . 703091) - (-1414 . 703005) (-1415 . 702419) (-1416 . 702251) (-1417 . 702041) - (-1418 . 701478) (-1419 . 701421) (-1420 . 701366) (-1421 . 701287) - (-1422 . 701153) (-1423 . 701022) (-1424 . 700944) (-1425 . 700887) - (-1426 . 700628) (-1427 . 700318) (-1428 . 700265) (-1429 . 700147) - (-1430 . 700023) (-1431 . 699460) (-1432 . 699246) (-1433 . 699187) - (-1434 . 699027) (-1435 . 698928) (-1436 . 698763) (-1437 . 698689) - (-1438 . 698623) (-1439 . 698382) (-1440 . 698305) (-1441 . 697745) - (-1442 . 697690) (-1443 . 697127) (-1444 . 696787) (-1445 . 696684) - (-1446 . 696406) (-1447 . 696263) (-1448 . 696206) (-1449 . 696134) - (-1450 . 695983) (-1451 . 695900) (-1452 . 695828) (-1453 . 695757) - (-1454 . 695641) (-1455 . 695408) (-1456 . 694846) (-1457 . 694612) - (-1458 . 694528) (-1459 . 694471) (** . 691477) (-1461 . 691449) - (-1462 . 691381) (-1463 . 691176) (-1464 . 691096) (-1465 . 691026) - (-1466 . 689753) (-1467 . 689682) (-1468 . 689120) (-1469 . 689043) - (-1470 . 689009) (-1471 . 687759) (-1472 . 687700) (-1473 . 687563) - (-1474 . 687338) (-1475 . 687091) (-1476 . 686982) (-1477 . 686910) - (-1478 . 686502) (-1479 . 686403) (-1480 . 685857) (-1481 . 685295) - (-1482 . 685041) (-1483 . 684859) (-1484 . 684257) (-1485 . 684157) - (-1486 . 684105) (-1487 . 684038) (-1488 . 683505) (-1489 . 683411) - (-1490 . 683288) (-1491 . 683201) (-1492 . 682639) (-1493 . 682432) - (-1494 . 682380) (-1495 . 682285) (-1496 . 682084) (-1497 . 681935) - (-1498 . 681879) (-1499 . 681676) (-1500 . 681581) (-1501 . 681426) - (-1502 . 681282) (-1503 . 680938) (-1504 . 680759) (-1505 . 680197) - (-1506 . 680114) (-1507 . 680013) (-1508 . 679960) (-1509 . 679864) - (-1510 . 679618) (-1511 . 679497) (-1512 . 678902) (-1513 . 678828) - (-1514 . 678776) (-1515 . 678707) (-1516 . 678196) (-1517 . 678146) - (-1518 . 678094) (-1519 . 677976) (-1520 . 677865) (-1521 . 677815) - (-1522 . 677473) (-1523 . 677362) (-1524 . 677279) (-1525 . 677101) - (-1526 . 676833) (-1527 . 676183) (-1528 . 676029) (-1529 . 675799) - (-1530 . 675651) (-1531 . 675579) (-1532 . 675520) (-1533 . 675383) - (-1534 . 675280) (-1535 . 675011) (-1536 . 674929) (-1537 . 674834) - (-1538 . 674746) (-1539 . 674289) (-1540 . 674101) (-1541 . 673685) - (-1542 . 673600) (-1543 . 673441) (-1544 . 673042) (-1545 . 672715) - (-1546 . 672570) (-1547 . 672507) (-1548 . 672352) (-1549 . 672159) - (-1550 . 672034) (-1551 . 671919) (-1552 . 671744) (-1553 . 671667) - (-1554 . 671639) (-1555 . 671570) (-1556 . 671448) (-1557 . 671284) - (-1558 . 671231) (-1559 . 671093) (-1560 . 670995) (-1561 . 670747) - (-1562 . 670284) (-1563 . 670028) (-1564 . 669905) (-1565 . 669787) - (-1566 . 669564) (-1567 . 668975) (-1568 . 668877) (-1569 . 668722) - (-1570 . 668630) (-1571 . 668460) (-1572 . 668407) (-1573 . 668333) - (-1574 . 668279) (-1575 . 668130) (-1576 . 667874) (-1577 . 667800) - (-1578 . 667594) (-1579 . 667297) (-1580 . 667035) (-1581 . 666378) - (-1582 . 666250) (-1583 . 665914) (-1584 . 665769) (-1585 . 665611) - (-1586 . 665544) (-1587 . 665406) (-1588 . 665322) (-1589 . 664935) - (-1590 . 664392) (-1591 . 664355) (-1592 . 664267) (-1593 . 664214) - (-1594 . 664126) (-1595 . 662830) (-1596 . 662719) (-1597 . 662444) - (-1598 . 662230) (-1599 . 662103) (-1600 . 662012) (-1601 . 661896) - (-1602 . 661826) (-1603 . 661450) (-1604 . 661397) (-1605 . 661314) - (-1606 . 661235) (-1607 . 661180) (-1608 . 660944) (-1609 . 660839) - (-1610 . 660729) (-1611 . 660584) (-1612 . 659432) (-1613 . 659259) - (-1614 . 659158) (-1615 . 658807) (-1616 . 658728) (-1617 . 657991) - (-1618 . 657850) (-1619 . 657525) (-1620 . 657223) (-1621 . 656735) - (-1622 . 656625) (-1623 . 656551) (-1624 . 656482) (-1625 . 656324) - (-1626 . 656208) (-1627 . 656072) (-1628 . 655967) (-1629 . 655874) - (-1630 . 655791) (-1631 . 655312) (-1632 . 655196) (-1633 . 654995) - (-1634 . 654879) (-1635 . 654633) (-1636 . 654475) (-1637 . 654403) - (-1638 . 654330) (-1639 . 654168) (-1640 . 654062) (-1641 . 653931) - (-1642 . 653861) (-1643 . 653489) (-1644 . 653417) (-1645 . 653302) - (-1646 . 652656) (-1647 . 651898) (-1648 . 651824) (-1649 . 651430) - (-1650 . 651149) (-1651 . 650797) (-1652 . 650488) (-1653 . 650405) - (-1654 . 650185) (-1655 . 650133) (-1656 . 649167) (-1657 . 648789) - (-1658 . 648704) (-1659 . 648465) (-1660 . 648399) (-1661 . 648340) - (-1662 . 648257) (-1663 . 647863) (-1664 . 647707) (-1665 . 647560) - (-1666 . 647457) (-1667 . 647304) (-1668 . 647139) (-1669 . 647111) - (-1670 . 647055) (-1671 . 646905) (-1672 . 646694) (-1673 . 646599) - (-1674 . 646409) (-1675 . 646381) (-1676 . 646303) (-1677 . 646181) - (-1678 . 644983) (-1679 . 644913) (-1680 . 644861) (-1681 . 644747) - (-1682 . 644586) (-1683 . 644359) (-1684 . 644258) (-1685 . 644162) - (-1686 . 644108) (-1687 . 643953) (-1688 . 643882) (-1689 . 643810) - (-1690 . 643546) (-1691 . 643381) (-1692 . 643207) (-1693 . 643148) - (-1694 . 643092) (-1695 . 642493) (-1696 . 641854) (-1697 . 641724) - (-1698 . 641600) (-1699 . 641505) (-1700 . 641374) (-1701 . 641246) - (-1702 . 640972) (-1703 . 640920) (-1704 . 640847) (-1705 . 640773) - (-1706 . 640711) (-1707 . 640460) (-1708 . 640377) (-1709 . 638922) - (-1710 . 638804) (-1711 . 638692) (-1712 . 638582) (-1713 . 638526) - (-1714 . 638387) (-1715 . 638331) (-1716 . 638227) (-1717 . 638139) - (-1718 . 638055) (-1719 . 637968) (-1720 . 637897) (-1721 . 637776) - (-1722 . 637601) (-1723 . 637438) (-1724 . 637307) (-1725 . 636933) - (-1726 . 635443) (-1727 . 635338) (-1728 . 635260) (-1729 . 635082) - (-1730 . 634988) (-1731 . 634844) (-1732 . 634629) (-1733 . 634491) - (-1734 . 634311) (-1735 . 634061) (-1736 . 633944) (-1737 . 633417) - (-1738 . 633349) (-1739 . 633167) (-1740 . 632919) (-1741 . 632724) - (-1742 . 632544) (-1743 . 632414) (-1744 . 632357) (-1745 . 632262) - (-1746 . 632203) (-1747 . 632117) (-1748 . 631980) (-1749 . 631907) - (-1750 . 631810) (-1751 . 631733) (-1752 . 630997) (-1753 . 630943) - (-1754 . 630027) (-1755 . 629975) (-1756 . 629909) (-1757 . 629715) - (-1758 . 629643) (-1759 . 629555) (-1760 . 629499) (-1761 . 629420) - (-1762 . 629257) (-1763 . 629160) (-1764 . 629025) (-1765 . 628951) - (-1766 . 628830) (-1767 . 628733) (-1768 . 628374) (-1769 . 628303) - (-1770 . 628244) (-1771 . 627806) (-1772 . 627778) (-1773 . 627685) - (-1774 . 627557) (-1775 . 627416) (-1776 . 627364) (-1777 . 627311) - (-1778 . 627282) (-1779 . 627184) (-1780 . 626889) (-1781 . 626654) - (-1782 . 626623) (-1783 . 626416) (-1784 . 626225) (-1785 . 626110) - (-1786 . 625082) (-1787 . 624864) (-1788 . 624564) (-1789 . 624533) - (-1790 . 624335) (-1791 . 624192) (-1792 . 624085) (-1793 . 624051) - (-1794 . 620388) (-1795 . 620170) (-1796 . 619526) (-1797 . 619272) - (-1798 . 619157) (-1799 . 619120) (-1800 . 619041) (-1801 . 618885) - (-1802 . 618811) (-1803 . 618732) (-1804 . 617190) (-1805 . 616880) - (-1806 . 616773) (-1807 . 616499) (-1808 . 616417) (-1809 . 615245) - (-1810 . 615193) (-1811 . 615105) (-1812 . 615051) (-1813 . 614979) - (-1814 . 614822) (-1815 . 614699) (-1816 . 614555) (-1817 . 614467) - (-1818 . 614352) (-1819 . 614163) (-1820 . 613916) (-1821 . 613698) - (-1822 . 613340) (-1823 . 613253) (-1824 . 613123) (-1825 . 613021) - (-1826 . 612880) (-1827 . 612711) (-1828 . 612656) (-1829 . 612538) - (-1830 . 612380) (-1831 . 612293) (-1832 . 611845) (-1833 . 610708) - (-1834 . 610656) (-1835 . 610264) (-1836 . 610111) (-1837 . 610046) - (-1838 . 609851) (-1839 . 609729) (-1840 . 609633) (-1841 . 609508) - (-1842 . 609480) (-1843 . 609430) (-1844 . 609377) (-1845 . 609295) - (-1846 . 609069) (-1847 . 608930) (-1848 . 608546) (-1849 . 608429) - (-1850 . 608335) (-1851 . 608261) (-1852 . 608229) (-1853 . 608128) - (-1854 . 607987) (-1855 . 607799) (-1856 . 607740) (-1857 . 607465) - (-1858 . 607336) (-1859 . 607243) (-1860 . 607193) (-1861 . 607065) - (-1862 . 606941) (-1863 . 606864) (-1864 . 606673) (-1865 . 606605) - (-1866 . 606521) (-1867 . 606462) (-1868 . 606205) (-1869 . 605528) - (-1870 . 604426) (-1871 . 604343) (-1872 . 604315) (-1873 . 603720) - (-1874 . 603567) (-1875 . 603114) (-1876 . 603086) (-1877 . 602957) - (-1878 . 602891) (-1879 . 602838) (-1880 . 602734) (-1881 . 602138) - (-1882 . 596970) (-1883 . 596942) (-1884 . 596611) (-1885 . 596509) - (-1886 . 596331) (-1887 . 596136) (-1888 . 596084) (-1889 . 596034) - (-1890 . 595821) (-1891 . 595748) (-1892 . 595529) (-1893 . 595405) - (-1894 . 595285) (-1895 . 594847) (-1896 . 594748) (-1897 . 594617) - (-1898 . 594532) (-1899 . 594310) (-1900 . 594257) (-1901 . 594141) - (-1902 . 593846) (-1903 . 593750) (-1904 . 593637) (-1905 . 593530) - (-1906 . 593456) (-1907 . 593208) (-1908 . 593151) (-1909 . 593087) - (-1910 . 592955) (-1911 . 592887) (-1912 . 592607) (-1913 . 592550) - (-1914 . 592480) (-1915 . 592375) (-1916 . 592277) (-1917 . 592218) - (-1918 . 592190) (-1919 . 591905) (-1920 . 591801) (-1921 . 591522) - (-1922 . 591434) (-1923 . 591350) (-1924 . 591295) (-1925 . 591200) - (-1926 . 590935) (-1927 . 590408) (-1928 . 590306) (-1929 . 590244) - (-1930 . 590131) (-1931 . 590060) (-1932 . 589923) (-1933 . 589867) - (-1934 . 589664) (-1935 . 589431) (-1936 . 589179) (-1937 . 589110) - (-1938 . 589025) (-1939 . 588918) (-1940 . 588859) (-1941 . 588609) - (-1942 . 588536) (-1943 . 588358) (-1944 . 588234) (-1945 . 588182) - (-1946 . 588098) (-1947 . 588047) (-1948 . 587864) (-1949 . 587769) - (-1950 . 587737) (-1951 . 587640) (-1952 . 587540) (-1953 . 587456) - (-1954 . 586948) (-1955 . 586790) (-1956 . 586598) (-1957 . 586446) - (-1958 . 586274) (-1959 . 586116) (-1960 . 586030) (-1961 . 585957) - (-1962 . 585883) (-1963 . 585644) (-1964 . 585000) (-1965 . 584944) - (-1966 . 584849) (-1967 . 584575) (-1968 . 583865) (-1969 . 583734) - (-1970 . 583302) (-1971 . 583234) (-1972 . 583068) (-1973 . 583015) - (-1974 . 582916) (-1975 . 582751) (-1976 . 582323) (-1977 . 582243) - (-1978 . 582158) (-1979 . 581566) (-1980 . 581465) (-1981 . 581394) - (-1982 . 581293) (-1983 . 581032) (-1984 . 580898) (-1985 . 580510) - (-1986 . 580135) (-1987 . 580104) (-1988 . 580027) (-1989 . 579953) - (-1990 . 579872) (-1991 . 579754) (-1992 . 579653) (-1993 . 579486) - (-1994 . 579433) (-1995 . 579334) (-1996 . 579220) (-1997 . 579140) - (-1998 . 578439) (-1999 . 578353) (-2000 . 578271) (-2001 . 578205) - (-2002 . 578087) (-2003 . 577895) (-2004 . 577800) (-2005 . 577630) - (-2006 . 577524) (-2007 . 577417) (-2008 . 577321) (-2009 . 577238) - (-2010 . 577180) (-2011 . 577120) (-2012 . 576995) (-2013 . 575212) - (-2014 . 575152) (-2015 . 575033) (-2016 . 574867) (-2017 . 574743) - (-2018 . 574601) (-2019 . 574494) (-2020 . 574337) (-2021 . 574110) - (-2022 . 573989) (-2023 . 573848) (-2024 . 573758) (-2025 . 573604) - (-2026 . 573533) (-2027 . 573269) (-2028 . 573191) (-2029 . 573117) - (-2030 . 572989) (-2031 . 572850) (-2032 . 572798) (-2033 . 572273) - (-2034 . 572214) (-2035 . 572056) (-2036 . 571824) (-2037 . 571750) - (-2038 . 571595) (-2039 . 571522) (-2040 . 571401) (-2041 . 571314) - (-2042 . 570983) (-2043 . 570915) (-2044 . 570856) (-2045 . 570731) - (-2046 . 570620) (-2047 . 570142) (-2048 . 570054) (-2049 . 569958) - (-2050 . 569892) (-2051 . 569701) (-2052 . 569277) (-2053 . 569083) - (-2054 . 568977) (-2055 . 568903) (-2056 . 568775) (-2057 . 568713) - (-2058 . 568605) (-2059 . 568512) (-2060 . 568432) (-2061 . 568239) - (-2062 . 568187) (-2063 . 568101) (-2064 . 567684) (-2065 . 567390) - (-2066 . 567311) (-2067 . 567228) (-2068 . 567029) (-2069 . 566462) - (-2070 . 566378) (-2071 . 566288) (-2072 . 566235) (-2073 . 566180) - (-2074 . 566124) (-2075 . 565965) (-2076 . 565864) (-2077 . 565378) - (-2078 . 565194) (-2079 . 565128) (-2080 . 564697) (-2081 . 564532) - (-2082 . 564433) (-2083 . 564206) (-2084 . 564138) (-2085 . 563983) - (-2086 . 563868) (-2087 . 563736) (-2088 . 563668) (-2089 . 563561) - (-2090 . 562999) (-2091 . 562928) (-2092 . 562390) (-2093 . 562238) - (-2094 . 562182) (-2095 . 562129) (-2096 . 562043) (-2097 . 561987) - (-2098 . 561873) (-2099 . 561699) (-2100 . 561665) (-2101 . 561347) - (-2102 . 560868) (-2103 . 560746) (-2104 . 560690) (-2105 . 560499) - (-2106 . 560404) (-2107 . 560132) (-2108 . 560079) (-2109 . 559978) - (-2110 . 559474) (-2111 . 559397) (-2112 . 558833) (-2113 . 558489) - (-2114 . 558392) (-2115 . 558264) (-2116 . 558170) (-2117 . 558093) - (-2118 . 557967) (-2119 . 557345) (-2120 . 557279) (-2121 . 557201) - (-2122 . 556908) (-2123 . 556793) (-2124 . 556727) (-2125 . 556352) - (-2126 . 556287) (-2127 . 556048) (-2128 . 555489) (-2129 . 555303) - (-2130 . 555191) (-2131 . 555132) (-2132 . 555044) (-2133 . 554811) - (-2134 . 554740) (-2135 . 554670) (-2136 . 554472) (-2137 . 554276) - (-2138 . 553522) (-2139 . 553210) (-2140 . 553111) (-2141 . 552552) - (-2142 . 552500) (-2143 . 552420) (-2144 . 552109) (-2145 . 551996) - (-2146 . 551858) (-2147 . 551686) (-2148 . 551547) (-2149 . 551419) - (-2150 . 551285) (-2151 . 551232) (-2152 . 551177) (-2153 . 551114) - (-2154 . 551000) (-2155 . 550934) (-2156 . 550900) (-2157 . 550793) - (-2158 . 550189) (-2159 . 550039) (-2160 . 549875) (-2161 . 549473) - (-2162 . 549409) (-2163 . 549274) (-2164 . 549219) (-2165 . 549149) - (-2166 . 548373) (-2167 . 548300) (-2168 . 548137) (-2169 . 548027) - (-2170 . 547604) (-2171 . 546606) (-2172 . 546373) (-2173 . 546293) - (-2174 . 546159) (-2175 . 546062) (-2176 . 544944) (-2177 . 544692) - (-2178 . 544637) (-2179 . 544535) (-2180 . 544468) (-2181 . 544416) - (-2182 . 544324) (-2183 . 544181) (-2184 . 544121) (-2185 . 543984) - (-2186 . 543901) (-2187 . 543683) (-2188 . 543356) (-2189 . 543304) - (-2190 . 543230) (-2191 . 543135) (-2192 . 542997) (-2193 . 542888) - (-2194 . 542748) (-2195 . 542557) (-2196 . 542504) (-2197 . 542423) - (-2198 . 542288) (-2199 . 542257) (-2200 . 542147) (-2201 . 540369) - (-2202 . 540238) (-2203 . 539922) (-2204 . 537141) (-2205 . 537058) - (-2206 . 536973) (-2207 . 536873) (-2208 . 536210) (-2209 . 536077) - (-2210 . 535953) (-2211 . 535903) (-2212 . 535684) (-2213 . 535600) - (-2214 . 534738) (-2215 . 534620) (-2216 . 534554) (-2217 . 533818) - (-2218 . 533447) (-2219 . 533201) (-2220 . 532808) (-2221 . 532683) - (-2222 . 532629) (-2223 . 532401) (-2224 . 532285) (-2225 . 532230) - (-2226 . 532150) (-2227 . 532067) (-2228 . 531828) (-2229 . 531277) - (-2230 . 531249) (-2231 . 531196) (-2232 . 531051) (-2233 . 530739) - (-2234 . 530687) (-2235 . 530440) (-2236 . 530384) (-2237 . 530356) - (-2238 . 530174) (-2239 . 529970) (-2240 . 529715) (-2241 . 529318) - (-2242 . 529265) (-2243 . 529161) (-2244 . 529107) (-2245 . 529008) - (-2246 . 528803) (-2247 . 528427) (-2248 . 528272) (-2249 . 528211) - (-2250 . 528056) (-2251 . 528003) (-2252 . 527947) (-2253 . 527742) - (-2254 . 527039) (-2255 . 526836) (-2256 . 526676) (-2257 . 526518) - (-2258 . 526445) (-2259 . 526321) (-2260 . 526126) (-2261 . 525903) - (-2262 . 525766) (-2263 . 525628) (-2264 . 525524) (-2265 . 524322) - (-2266 . 523792) (-2267 . 523587) (-2268 . 523474) (-2269 . 523402) - (-2270 . 523308) (-2271 . 523084) (-2272 . 523031) (-2273 . 522947) - (-2274 . 522669) (-2275 . 522583) (-2276 . 522453) (-2277 . 522349) - (-2278 . 522033) (-2279 . 521949) (-2280 . 521800) (-2281 . 521747) - (-2282 . 521606) (-2283 . 521507) (-2284 . 521434) (-2285 . 521013) - (-2286 . 520795) (-2287 . 520697) (-2288 . 520346) (-2289 . 518769) - (-2290 . 518626) (-2291 . 518423) (-2292 . 518277) (-2293 . 518163) - (-2294 . 518111) (-2295 . 517925) (-2296 . 517857) (-2297 . 517615) - (-2298 . 517562) (-2299 . 517496) (-2300 . 517378) (-2301 . 517205) - (-2302 . 517081) (-2303 . 516937) (-2304 . 516550) (-2305 . 516479) - (-2306 . 516426) (-2307 . 516332) (-2308 . 516133) (-2309 . 515952) - (-2310 . 515844) (-2311 . 515789) (-2312 . 515697) (-2313 . 515603) - (-2314 . 515554) (-2315 . 515335) (-2316 . 515211) (-2317 . 515159) - (-2318 . 515030) (-2319 . 514725) (-2320 . 514298) (-2321 . 514224) - (-2322 . 513926) (-2323 . 513633) (-2324 . 513583) (-2325 . 513488) - (-2326 . 513410) (-2327 . 513344) (-2328 . 512964) (-2329 . 512628) - (-2330 . 512515) (-2331 . 512456) (-2332 . 512090) (-2333 . 511932) - (-2334 . 511680) (-2335 . 511069) (-2336 . 510950) (-2337 . 510891) - (-2338 . 510839) (-2339 . 510677) (-2340 . 510513) (-2341 . 510409) - (-2342 . 510289) (-2343 . 510048) (-2344 . 508983) (-2345 . 508931) - (-2346 . 508836) (-2347 . 508772) (-2348 . 508698) (-2349 . 508556) - (-2350 . 508479) (-2351 . 508427) (-2352 . 508331) (-2353 . 508035) - (-2354 . 508006) (-2355 . 507687) (-2356 . 507183) (-2357 . 507080) - (-2358 . 506927) (-2359 . 506617) (-2360 . 506407) (-2361 . 506355) - (-2362 . 506278) (-2363 . 505911) (-2364 . 505772) (-2365 . 505692) - (-2366 . 505521) (-2367 . 504703) (-2368 . 504375) (-2369 . 504275) - (-2370 . 504223) (-2371 . 503887) (-2372 . 503780) (-2373 . 503684) - (-2374 . 503632) (-2375 . 503566) (-2376 . 503450) (-2377 . 503353) - (-2378 . 503038) (-2379 . 501815) (-2380 . 501500) (-2381 . 500160) - (-2382 . 499987) (-2383 . 499851) (-2384 . 499781) (-2385 . 499695) - (-2386 . 499612) (-2387 . 499121) (-2388 . 498913) (-2389 . 498798) - (-2390 . 498764) (-2391 . 498641) (-2392 . 498542) (-2393 . 498447) - (-2394 . 497980) (-2395 . 497646) (-2396 . 497568) (-2397 . 497467) - (-2398 . 497202) (-2399 . 497114) (-2400 . 497059) (-2401 . 496638) - (-2402 . 496576) (-2403 . 496460) (-2404 . 496208) (-2405 . 496117) - (-2406 . 496083) (-2407 . 495988) (-2408 . 495841) (-2409 . 495077) - (-2410 . 494914) (-2411 . 494768) (-2412 . 494678) (-2413 . 494585) - (-2414 . 494485) (-2415 . 494342) (-2416 . 494163) (-2417 . 494077) - (-2418 . 493718) (-2419 . 493610) (-2420 . 493354) (-2421 . 493295) - (-2422 . 493142) (-2423 . 493000) (-2424 . 492948) (-2425 . 492875) - (-2426 . 492762) (-2427 . 492690) (-2428 . 492637) (-2429 . 492541) - (-2430 . 492254) (-2431 . 492128) (-2432 . 492031) (-2433 . 491982) - (-2434 . 491878) (-2435 . 491846) (-2436 . 491730) (-2437 . 491653) - (-2438 . 491250) (-2439 . 491149) (-2440 . 491121) (-2441 . 490963) - (-2442 . 490630) (-2443 . 490533) (-2444 . 490433) (-2445 . 490288) - (-2446 . 489855) (-2447 . 489222) (-2448 . 488782) (-2449 . 488497) - (-2450 . 488441) (-2451 . 488388) (-2452 . 488113) (-2453 . 488046) - (-2454 . 487987) (-2455 . 487847) (-2456 . 487704) (-2457 . 487640) - (-2458 . 487448) (-2459 . 487200) (-2460 . 487114) (-2461 . 487054) - (-2462 . 486967) (-2463 . 486715) (-2464 . 486663) (-2465 . 486611) - (-2466 . 486579) (-2467 . 486416) (-2468 . 486138) (-2469 . 485992) - (-2470 . 485879) (-2471 . 485719) (-2472 . 485578) (-2473 . 485435) - (-2474 . 485310) (-2475 . 485006) (-2476 . 484924) (-2477 . 484779) - (-2478 . 483918) (-2479 . 483823) (-2480 . 483691) (-2481 . 483596) - (-2482 . 483469) (-2483 . 483344) (-2484 . 483278) (-2485 . 482565) - (-2486 . 481569) (-2487 . 481482) (-2488 . 481036) (-2489 . 481004) - (-2490 . 480831) (-2491 . 480675) (-2492 . 480540) (-2493 . 480310) - (-2494 . 480141) (-2495 . 479997) (-2496 . 479837) (-2497 . 479777) - (-2498 . 479410) (-2499 . 479349) (-2500 . 479263) (-2501 . 479208) - (-2502 . 478693) (-2503 . 478623) (-2504 . 460048) (-2505 . 459953) - (-2506 . 459812) (-2507 . 459590) (-2508 . 459424) (-2509 . 459393) - (-2510 . 449943) (-2511 . 449811) (-2512 . 449714) (-2513 . 449647) - (-2514 . 449502) (-2515 . 449348) (-2516 . 446527) (-2517 . 446441) - (-2518 . 446369) (-2519 . 446274) (-2520 . 445845) (-2521 . 445788) - (-2522 . 445759) (-2523 . 445673) (-2524 . 444944) (-2525 . 444847) - (-2526 . 444778) (-2527 . 444700) (-2528 . 444519) (-2529 . 444418) - (-2530 . 444288) (-2531 . 444158) (-2532 . 443936) (-2533 . 443207) - (-2534 . 442966) (-2535 . 442791) (-2536 . 442689) (-2537 . 442611) - (-2538 . 442393) (-2539 . 442313) (-2540 . 442254) (-2541 . 442096) - (-2542 . 442062) (-2543 . 442034) (-2544 . 441963) (-2545 . 441287) - (-2546 . 441189) (-2547 . 441110) (-2548 . 440040) (-2549 . 439971) - (-2550 . 439761) (-2551 . 439534) (-2552 . 439500) (-2553 . 439285) - (-2554 . 439257) (-2555 . 438693) (-2556 . 438620) (-2557 . 438349) - (-2558 . 438296) (-2559 . 438212) (-2560 . 438109) (-2561 . 437457) - (-2562 . 437332) (-2563 . 437211) (-2564 . 437145) (-2565 . 436581) - (-2566 . 436452) (-2567 . 436332) (-2568 . 436255) (-2569 . 435949) - (-2570 . 435920) (-2571 . 435823) (-2572 . 435705) (-2573 . 435602) - (-2574 . 435470) (-2575 . 435354) (-2576 . 434790) (-2577 . 434682) - (-2578 . 434516) (-2579 . 434298) (-2580 . 434115) (-2581 . 434044) - (-2582 . 433935) (-2583 . 433804) (-2584 . 433667) (-2585 . 433419) - (-2586 . 433361) (-2587 . 433304) (-2588 . 432630) (-2589 . 431895) - (-2590 . 431842) (-2591 . 431703) (-2592 . 431601) (-2593 . 431077) - (-2594 . 431011) (-2595 . 430843) (-2596 . 430714) (-2597 . 430572) - (-2598 . 430490) (-2599 . 429816) (-2600 . 429535) (-2601 . 429466) - (-2602 . 429395) (-2603 . 429366) (-2604 . 428862) (-2605 . 428718) - (-2606 . 427876) (-2607 . 427782) (-2608 . 426980) (-2609 . 426914) - (-2610 . 426177) (-2611 . 425918) (-2612 . 425836) (-2613 . 425659) - (-2614 . 425606) (-2615 . 425290) (-2616 . 425194) (-2617 . 421585) - (-2618 . 421117) (-2619 . 421047) (-2620 . 420981) (-2621 . 420419) - (-2622 . 420112) (-2623 . 419902) (-2624 . 419737) (-2625 . 419653) - (-2626 . 419271) (-2627 . 419009) (-2628 . 418843) (-2629 . 418658) - (-2630 . 418565) (-2631 . 418319) (-2632 . 417757) (-2633 . 417668) - (-2634 . 417553) (-2635 . 417342) (-2636 . 417244) (-2637 . 416960) - (-2638 . 416880) (-2639 . 416682) (-2640 . 416550) (-2641 . 416425) - (-2642 . 416217) (-2643 . 416077) (-2644 . 416018) (-2645 . 415919) - (-2646 . 415847) (-2647 . 415621) (-2648 . 415416) (-2649 . 415388) - (-2650 . 415317) (-2651 . 415251) (-2652 . 415036) (-2653 . 414854) - (-2654 . 414636) (-2655 . 414573) (-2656 . 414485) (-2657 . 413847) - (-2658 . 413661) (-2659 . 413575) (-2660 . 413282) (-2661 . 413229) - (-2662 . 413141) (-2663 . 413107) (-2664 . 412596) (-2665 . 412403) - (-2666 . 412330) (-2667 . 412186) (-2668 . 412109) (-2669 . 411956) - (-2670 . 411548) (-2671 . 411388) (-2672 . 411270) (-2673 . 411211) - (-2674 . 411001) (-2675 . 410973) (-2676 . 410799) (-2677 . 410749) - (-2678 . 410572) (-2679 . 410285) (-2680 . 410214) (-2681 . 410034) - (-2682 . 409896) (-2683 . 409780) (-2684 . 409293) (-2685 . 409091) - (-2686 . 406250) (-2687 . 405939) (-2688 . 405811) (-2689 . 405758) - (-2690 . 405501) (-2691 . 405432) (-2692 . 405138) (-2693 . 405043) - (-2694 . 404959) (-2695 . 404820) (-2696 . 404724) (-2697 . 404548) - (-2698 . 404301) (-2699 . 404023) (-2700 . 403863) (-2701 . 403645) - (-2702 . 403407) (-2703 . 403303) (-2704 . 403131) (-2705 . 402740) - (-2706 . 402407) (-2707 . 402160) (-2708 . 402017) (-2709 . 401820) - (-2710 . 401618) (-2711 . 401484) (-2712 . 401398) (-2713 . 401195) - (-2714 . 401023) (-2715 . 400867) (-2716 . 400664) (-2717 . 400393) - (-2718 . 400309) (-2719 . 400253) (-2720 . 400095) (-2721 . 400018) - (-2722 . 399500) (-2723 . 399398) (-2724 . 399222) (-2725 . 399050) - (-2726 . 398995) (-2727 . 398717) (-2728 . 398491) (-2729 . 398296) - (-2730 . 398171) (-2731 . 398076) (-2732 . 397982) (-2733 . 397516) - (-2734 . 396290) (-2735 . 396171) (-2736 . 396016) (-2737 . 395863) - (-2738 . 395691) (-2739 . 395639) (-2740 . 395556) (-2741 . 395225) - (-2742 . 395128) (-2743 . 394841) (-2744 . 394520) (-2745 . 394468) - (-2746 . 394340) (-2747 . 394147) (-2748 . 393805) (-2749 . 393733) - (-2750 . 393541) (-2751 . 393389) (-2752 . 393339) (-2753 . 393283) - (-2754 . 393130) (-2755 . 392633) (-2756 . 391331) (-2757 . 390448) - (-2758 . 389608) (-2759 . 389550) (-2760 . 389343) (-2761 . 389170) - (-2762 . 389099) (-2763 . 388872) (-2764 . 388809) (-2765 . 388732) - (-2766 . 388683) (-2767 . 388475) (-2768 . 388387) (-2769 . 388263) - (-2770 . 388160) (-2771 . 388015) (-2772 . 387874) (-2773 . 387773) - (-2774 . 387707) (-2775 . 387320) (-2776 . 386774) (-2777 . 385431) - (-2778 . 385360) (-2779 . 385202) (-2780 . 385124) (-2781 . 385039) - (-2782 . 384902) (-2783 . 384418) (-2784 . 384347) (-2785 . 384136) - (-2786 . 384036) (-2787 . 383957) (-2788 . 383854) (-2789 . 383773) - (-2790 . 383629) (-2791 . 383577) (-2792 . 383194) (-2793 . 382775) - (-2794 . 382615) (-2795 . 382529) (-2796 . 382350) (-2797 . 382267) - (-2798 . 382151) (-2799 . 382028) (-2800 . 381864) (-2801 . 381697) - (-2802 . 381564) (-2803 . 381427) (-2804 . 381036) (-2805 . 380717) - (-2806 . 380576) (-2807 . 380483) (-2808 . 380244) (-2809 . 380192) - (-2810 . 380163) (-2811 . 379992) (-2812 . 379683) (-2813 . 379561) - (-2814 . 379495) (-2815 . 379430) (-2816 . 379352) (-2817 . 379300) - (-2818 . 379027) (-2819 . 378804) (-2820 . 378663) (-2821 . 378448) - (-2822 . 377864) (-2823 . 377812) (-2824 . 377742) (-2825 . 377714) - (-2826 . 377515) (-2827 . 377441) (-2828 . 377323) (-2829 . 376981) - (-2830 . 376878) (-2831 . 376801) (-2832 . 376705) (-2833 . 376599) - (-2834 . 376528) (-2835 . 376120) (-2836 . 375948) (-2837 . 375786) - (-2838 . 375691) (-2839 . 375567) (-2840 . 375466) (-2841 . 375399) - (-2842 . 375300) (-2843 . 375204) (-2844 . 375033) (-2845 . 374965) - (-2846 . 374913) (-2847 . 374704) (-12 . 374532) (-2849 . 374479) - (-2850 . 374396) (-2851 . 374323) (-2852 . 374179) (-2853 . 374075) - (-2854 . 373935) (-2855 . 373801) (-2856 . 372969) (-2857 . 372861) - (-2858 . 372763) (-2859 . 372657) (-2860 . 372574) (-2861 . 371934) - (-2862 . 371897) (-2863 . 371687) (-2864 . 371599) (-2865 . 371255) - (-2866 . 371182) (-2867 . 370672) (-2868 . 370319) (-2869 . 370221) - (-2870 . 370147) (-2871 . 370061) (-2872 . 369746) (-2873 . 368668) - (-2874 . 368545) (-2875 . 368417) (-2876 . 368359) (-2877 . 368212) - (-2878 . 368071) (-2879 . 368022) (-2880 . 367912) (-2881 . 367768) - (-2882 . 367570) (-2883 . 367518) (-2884 . 367273) (-2885 . 367113) - (-2886 . 366923) (-2887 . 366839) (-2888 . 366768) (-2889 . 366496) - (-2890 . 366317) (-2891 . 366221) (-2892 . 366133) (-2893 . 366096) - (-2894 . 365650) (-2895 . 365512) (-2896 . 365300) (-2897 . 365232) - (-2898 . 365132) (-2899 . 365038) (-2900 . 364786) (-2901 . 364661) - (-2902 . 364482) (-2903 . 364354) (-2904 . 364244) (-2905 . 364086) - (-2906 . 364025) (-2907 . 363798) (-2908 . 363518) (-2909 . 363463) - (-2910 . 363386) (-2911 . 363314) (-2912 . 363262) (-2913 . 359255) - (-2914 . 359045) (-2915 . 358993) (-2916 . 358922) (-2917 . 358827) - (-2918 . 358741) (-2919 . 358643) (-2920 . 358494) (-2921 . 358349) - (-2922 . 358249) (-2923 . 357977) (-2924 . 357880) (-2925 . 357537) - (-2926 . 357361) (-2927 . 357209) (-2928 . 357013) (-2929 . 356917) - (-2930 . 356709) (-2931 . 356261) (-2932 . 356217) (-2933 . 355538) - (-2934 . 355342) (-2935 . 355120) (* . 350853) (-2937 . 349123) - (-2938 . 349015) (-2939 . 348791) (-2940 . 348648) (-2941 . 348570) - (-2942 . 348480) (-2943 . 348365) (-2944 . 348246) (-2945 . 348133) - (-2946 . 347744) (-2947 . 347482) (-2948 . 347345) (-2949 . 347225) - (-2950 . 347153) (-2951 . 347026) (-2952 . 346804) (-2953 . 346730) - (-2954 . 346616) (-2955 . 346270) (-2956 . 346217) (-2957 . 345557) - (-2958 . 345383) (-2959 . 343156) (-2960 . 343058) (-2961 . 342752) - (-2962 . 342599) (-2963 . 342479) (-2964 . 342355) (-2965 . 342242) - (-2966 . 342127) (-2967 . 342023) (-2968 . 341751) (-2969 . 341665) - (-2970 . 341582) (-2971 . 341422) (-2972 . 341321) (-2973 . 340945) - (-2974 . 340888) (-2975 . 340765) (-2976 . 340669) (-2977 . 340598) - (-2978 . 340325) (-2979 . 340268) (-2980 . 340189) (-2981 . 340137) - (-2982 . 339904) (-2983 . 339531) (-2984 . 339341) (-2985 . 338471) - (-2986 . 338240) (-2987 . 338110) (-2988 . 337887) (-2989 . 337787) - (-2990 . 337657) (-2991 . 337522) (-2992 . 337402) (-2993 . 337303) - (-2994 . 337275) (-2995 . 337028) (-2996 . 336941) (-2997 . 336872) - (-2998 . 336702) (-2999 . 336628) (-3000 . 336576) (-3001 . 336510) - (-3002 . 336283) (-3003 . 336135) (-3004 . 336084) (-3005 . 335876) - (-3006 . 335717) (-3007 . 335661) (-3008 . 335281) (-3009 . 335228) - (-3010 . 334341) (-3011 . 334211) (-3012 . 334130) (-3013 . 334058) - (-3014 . 333974) (-3015 . 333800) (-3016 . 333713) (-3017 . 333224) - (-3018 . 333168) (-3019 . 333140) (-3020 . 333037) (-3021 . 332630) - (-3022 . 332560) (-3023 . 332532) (-3024 . 332395) (-3025 . 332312) - (-3026 . 332134) (-3027 . 332078) (-3028 . 331983) (-3029 . 331868) - (-3030 . 331788) (-3031 . 331581) (-3032 . 331431) (-3033 . 331072) - (-3034 . 330936) (-3035 . 330682) (-3036 . 330580) (-3037 . 330497) - (-3038 . 330219) (-3039 . 330117) (-3040 . 329812) (-3041 . 329714) - (-3042 . 329601) (-3043 . 329448) (-3044 . 329395) (-3045 . 328209) - (-3046 . 327971) (-3047 . 327894) (-3048 . 327768) (-3049 . 327615) - (-3050 . 327560) (-3051 . 327362) (-3052 . 326935) (-3053 . 326720) - (-3054 . 325538) (-3055 . 324722) (-3056 . 324536) (-3057 . 324469) - (-3058 . 324308) (-3059 . 324001) (-3060 . 323781) (-3061 . 323701) - (-3062 . 323648) (-3063 . 323545) (-3064 . 321338) (-3065 . 320802) - (-3066 . 320581) (-3067 . 320525) (-3068 . 320437) (-3069 . 320330) - (-3070 . 320189) (-3071 . 320161) (-3072 . 319882) (-3073 . 319589) - (-3074 . 319537) (-3075 . 319288) (-3076 . 319070) (-3077 . 318969) - (-3078 . 318856) (-9 . 318828) (-3080 . 318648) (-3081 . 318482) - (-3082 . 318426) (-3083 . 318297) (-3084 . 318057) (-3085 . 317924) - (-3086 . 317854) (-3087 . 316990) (-8 . 316962) (-3089 . 316803) - (-3090 . 316660) (-3091 . 316572) (-3092 . 315896) (-3093 . 315799) - (-3094 . 310461) (-3095 . 310337) (-3096 . 310237) (-7 . 310209) - (-3098 . 309974) (-3099 . 309946) (-3100 . 309888) (-3101 . 309000) - (-3102 . 308579) (-3103 . 308502) (-3104 . 308460) (-3105 . 308358) - (-3106 . 308190) (-3107 . 308053) (-3108 . 307824) (-3109 . 307607) - (-3110 . 307503) (-3111 . 307332) (-3112 . 305904) (-3113 . 305816) - (-3114 . 305692) (-3115 . 305599) (-3116 . 305473) (-3117 . 305122) - (-3118 . 304791) (-3119 . 304638) (-3120 . 304509) (-3121 . 304416) - (-3122 . 304339) (-3123 . 304176) (-3124 . 304083) (-3125 . 303873) - (-3126 . 303721) (-3127 . 303580) (-3128 . 303195) (-3129 . 303020) - (-3130 . 302923) (-3131 . 302895) (-3132 . 302469) (-3133 . 302326) - (-3134 . 302168) (-3135 . 301949) (-3136 . 301915) (-3137 . 301827) - (-3138 . 301443) (-3139 . 301214) (-3140 . 300968) (-3141 . 300789) - (-3142 . 300637) (-3143 . 300186) (-3144 . 300025) (-3145 . 299941) - (-3146 . 299743) (-3147 . 299657) (-3148 . 297689) (-3149 . 297600) - (-3150 . 297534) (-3151 . 297357) (-3152 . 297218) (-3153 . 296975) - (-3154 . 295194) (-3155 . 295048) (-3156 . 294722) (-3157 . 294651) - (-3158 . 294545) (-3159 . 294442) (-3160 . 294276) (-3161 . 294172) - (-3162 . 293873) (-3163 . 293725) (-3164 . 293637) (-3165 . 293464) - (-3166 . 293363) (-3167 . 293312) (-3168 . 293180) (-3169 . 292958) - (-3170 . 292814) (-3171 . 292595) (-3172 . 292345) (-3173 . 292290) - (-3174 . 292022) (-3175 . 291963) (-3176 . 291934) (-3177 . 291861) - (-3178 . 291628) (-3179 . 290447) (-3180 . 290293) (-3181 . 290047) - (-3182 . 289889) (-3183 . 289711) (-3184 . 289588) (-3185 . 289195) - (-3186 . 289043) (-3187 . 288993) (-3188 . 288702) (-3189 . 288599) - (-3190 . 288418) (-3191 . 288330) (-3192 . 288204) (-3193 . 288013) - (-3194 . 287836) (-3195 . 287680) (-3196 . 287462) (-3197 . 287374) - (-3198 . 287136) (-3199 . 287070) (-3200 . 286971) (-3201 . 286676) - (-3202 . 286523) (-3203 . 286470) (-3204 . 286044) (-3205 . 285979) - (-3206 . 285880) (-3207 . 285453) (-3208 . 285036) (-3209 . 284909) - (-3210 . 284821) (-3211 . 284643) (-3212 . 284587) (-3213 . 284444) - (-3214 . 284237) (-3215 . 283273) (-3216 . 283201) (-3217 . 283103) - (-3218 . 282948) (-3219 . 282767) (-3220 . 282693) (-3221 . 281942) - (-3222 . 281890) (-3223 . 281574) (-3224 . 281346) (-3225 . 281201) - (-3226 . 281099) (-3227 . 280931) (-3228 . 280509) (-3229 . 280425) - (-3230 . 280250) (-3231 . 280154) (-3232 . 280024) (-3233 . 279738) - (-3234 . 279575) (-3235 . 279029) (-3236 . 278727) (-3237 . 277535) - (-3238 . 277466) (-3239 . 277068) (-3240 . 276994) (-3241 . 276814) - (-3242 . 276603) (-3243 . 276322) (-3244 . 276236) (-3245 . 275960) - (-3246 . 275898) (-3247 . 275673) (-3248 . 275539) (-3249 . 275453) - (-3250 . 275400) (-3251 . 275290) (-3252 . 275236) (-3253 . 275120) - (-3254 . 274952) (-3255 . 274833) (-3256 . 274712) (-3257 . 274610) - (-3258 . 274279) (-3259 . 273656) (-3260 . 273377) (-3261 . 273218) - (-3262 . 273161) (-3263 . 273093) (-3264 . 272929) (-3265 . 272741) - (-3266 . 272524) (-3267 . 272457) (-3268 . 272385) (-3269 . 272330) - (-3270 . 272153) (-3271 . 272046) (-3272 . 272018) (-3273 . 271958) - (-3274 . 271648) (-3275 . 271375) (-3276 . 271232) (-3277 . 271151) - (-3278 . 271070) (-3279 . 270955) (-3280 . 270905) (-3281 . 270735) - (-3282 . 270541) (-3283 . 270453) (-3284 . 270311) (-3285 . 270277) - (-3286 . 269470) (-3287 . 269347) (-3288 . 269276) (-3289 . 269036) - (-3290 . 268953) (-3291 . 268618) (-3292 . 268496) (-3293 . 268406) - (-3294 . 268332) (-3295 . 268279) (-3296 . 268227) (-3297 . 268149) - (-3298 . 267800) (-3299 . 267744) (-3300 . 267691) (-3301 . 267109) - (-3302 . 266996) (-3303 . 266947) (-3304 . 266890) (-3305 . 266775) - (-3306 . 266523) (-3307 . 266244) (-3308 . 266170) (-3309 . 266136) - (-3310 . 266023) (-3311 . 265878) (-3312 . 265720) (-3313 . 265622) - (-3314 . 265408) (-3315 . 265305) (-3316 . 265190) (-3317 . 265117) - (-3318 . 264861) (-3319 . 264693) (-3320 . 264563) (-3321 . 264401) - (-3322 . 264131) (-3323 . 264004) (-3324 . 263972) (-3325 . 263796) - (-3326 . 263690) (-3327 . 263605) (-3328 . 263467) (-3329 . 263411) - (-3330 . 263337) (-3331 . 263270) (-3332 . 263204) (-3333 . 263081) - (-3334 . 262882) (-3335 . 262750) (-3336 . 262593) (-3337 . 262147) - (-3338 . 262024) (-3339 . 261886) (-3340 . 261368) (-3341 . 261239) - (-3342 . 261187) (-3343 . 260940) (-3344 . 260610) (-3345 . 260524) - (-3346 . 260443) (-3347 . 260316) (-3348 . 260238) (-3349 . 260141) - (-3350 . 260064) (-3351 . 260011) (-3352 . 259928) (-3353 . 259869) - (-3354 . 259773) (-3355 . 259381) (-3356 . 259326) (-3357 . 259274) - (-3358 . 259116) (-3359 . 259016) (-3360 . 258918) (-3361 . 258841) - (-3362 . 258740) (-3363 . 258661) (-3364 . 258588) (-3365 . 258384) - (-3366 . 257463) (-3367 . 257410) (-3368 . 256999) (-3369 . 256808) - (-3370 . 256716) (-3371 . 256630) (-3372 . 256553) (-3373 . 256410) - (-3374 . 256337) (-3375 . 256284) (-3376 . 256213) (-3377 . 255878) - (-3378 . 255698) (-3379 . 255649) (-3380 . 253535) (-3381 . 253377) - (-3382 . 253049) (-3383 . 252989) (-3384 . 252598) (-3385 . 252412) - (-3386 . 252359) (-3387 . 252302) (-3388 . 252172) (-3389 . 251984) - (-3390 . 251597) (-3391 . 251442) (-3392 . 251230) (-3393 . 251120) - (-3394 . 251013) (-3395 . 250960) (-3396 . 250742) (-3397 . 250630) - (-3398 . 250423) (-3399 . 250313) (-3400 . 250247) (-3401 . 250147) - (-3402 . 250048) (-3403 . 249890) (-3404 . 248954) (-3405 . 248901) - (-3406 . 248815) (-3407 . 248427) (-3408 . 248244) (-3409 . 248192) - (-3410 . 248132) (-3411 . 248036) (-3412 . 247870) (-3413 . 247679) - (-3414 . 247490) (-3415 . 247431) (-3416 . 247070) (-3417 . 246897) - (-3418 . 246811) (-3419 . 246719) (-3420 . 246600) (-3421 . 246339) - (-3422 . 246287) (-3423 . 246129) (-3424 . 246098) (-3425 . 245994) - (-3426 . 245881) (-3427 . 245783) (-3428 . 245647) (-3429 . 245555) - (-3430 . 245485) (-3431 . 244888) (-3432 . 244708) (-3433 . 244638) - (-3434 . 244561) (-3435 . 244465) (-3436 . 243852) (-3437 . 243824) - (-3438 . 243720) (-3439 . 243598) (-3440 . 243488) (-3441 . 243402) - (-3442 . 243304) (-3443 . 242925) (-3444 . 242828) (-3445 . 242724) - (-3446 . 242121) (-3447 . 241694) (-3448 . 241179) (-3449 . 241079) - (-3450 . 240955) (-3451 . 240847) (-3452 . 240765) (-3453 . 240495) - (-3454 . 240421) (-3455 . 240129) (-3456 . 240028) (-3457 . 239565) - (-3458 . 239503) (-3459 . 239385) (-3460 . 239272) (-3461 . 238982) - (-3462 . 238908) (-3463 . 238381) (-3464 . 238307) (-3465 . 238204) - (-3466 . 237923) (-3467 . 237835) (-3468 . 237616) (-3469 . 237530) - (-3470 . 237431) (-3471 . 237331) (-3472 . 237131) (-3473 . 236767) - (-3474 . 236666) (-3475 . 236468) (-3476 . 236081) (-3477 . 235881) - (-3478 . 235511) (-3479 . 235457) (-3480 . 235389) (-3481 . 235191) - (-3482 . 234954) (-3483 . 234846) (-3484 . 234738) (-3485 . 234644) - (-3486 . 234405) (-3487 . 234334) (-3488 . 233998) (-3489 . 233844) - (-3490 . 233748) (-3491 . 233647) (-3492 . 233525) (-3493 . 233472) - (-3494 . 233420) (-3495 . 233315) (-3496 . 233152) (-3497 . 233044) - (-3498 . 232787) (-3499 . 232406) (-3500 . 232219) (-3501 . 231627) - (-3502 . 231516) (-3503 . 231393) (-3504 . 231235) (-3505 . 231141) - (-3506 . 231083) (-3507 . 231020) (-3508 . 230939) (-3509 . 230887) - (-3510 . 230834) (-3511 . 230293) (-3512 . 230114) (-3513 . 229854) - (-3514 . 229794) (-3515 . 229698) (-3516 . 229545) (-3517 . 229513) - (-3518 . 229430) (-3519 . 229303) (-3520 . 229143) (-3521 . 229066) - (-3522 . 228992) (-3523 . 228869) (-3524 . 228817) (-3525 . 228721) - (-3526 . 228659) (-3527 . 228501) (-3528 . 227711) (-3529 . 227523) - (-3530 . 227334) (-3531 . 227248) (-3532 . 227167) (-3533 . 226826) - (-3534 . 226725) (-3535 . 226440) (-3536 . 225866) (-3537 . 225720) - (-3538 . 225576) (-3539 . 225416) (-3540 . 225285) (-3541 . 225071) - (-3542 . 224997) (-3543 . 224945) (-3544 . 224824) (-3545 . 224796) - (-3546 . 223979) (-3547 . 223927) (-3548 . 223742) (-3549 . 223613) - (-3550 . 223301) (-3551 . 223199) (-3552 . 223064) (-3553 . 222889) - (-3554 . 222580) (-3555 . 222552) (-3556 . 222450) (-3557 . 222332) - (-3558 . 222279) (-3559 . 222094) (-3560 . 221840) (-3561 . 221362) - (-3562 . 220945) (-3563 . 220755) (-3564 . 220660) (-3565 . 220536) - (-3566 . 220462) (-3567 . 220213) (-3568 . 219895) (-3569 . 219814) - (-3570 . 219625) (-3571 . 219258) (-3572 . 219137) (-3573 . 218655) - (-3574 . 218560) (-3575 . 218477) (-3576 . 218395) (-3577 . 216263) - (-3578 . 216160) (-3579 . 216012) (-3580 . 215840) (-3581 . 215744) - (-3582 . 215671) (-3583 . 215594) (-3584 . 215452) (-3585 . 215424) - (-3586 . 215274) (-3587 . 215135) (-3588 . 215083) (-3589 . 215002) - (-3590 . 214865) (-3591 . 214671) (-3592 . 212509) (-3593 . 212475) - (-3594 . 212372) (-3595 . 212256) (-3596 . 211774) (-3597 . 211678) - (-3598 . 211058) (-3599 . 210996) (-3600 . 210922) (-3601 . 209830) - (-3602 . 209416) (-3603 . 208782) (-3604 . 208624) (-3605 . 208139) - (-3606 . 208002) (-3607 . 207395) (-3608 . 207210) (-3609 . 206115) - (-3610 . 206047) (-3611 . 205864) (-3612 . 205502) (-3613 . 204827) - (-3614 . 204398) (-3615 . 203863) (-3616 . 203741) (-3617 . 203232) - (-3618 . 203053) (-3619 . 202838) (-3620 . 202769) (-3621 . 202674) - (-3622 . 202555) (-3623 . 202487) (-3624 . 202220) (-3625 . 202078) - (-3626 . 202007) (-3627 . 201892) (-3628 . 201800) (-3629 . 201730) - (-3630 . 201480) (-3631 . 201135) (-3632 . 200980) (-3633 . 199578) - (-3634 . 199469) (-3635 . 199221) (-3636 . 196806) (-3637 . 196575) - (-3638 . 196258) (-3639 . 196129) (-3640 . 196041) (-3641 . 195924) - (-3642 . 195850) (-3643 . 195605) (-3644 . 194975) (-3645 . 194792) - (-3646 . 194706) (-3647 . 194622) (-3648 . 194569) (-3649 . 194404) - (-3650 . 194053) (-3651 . 194001) (-3652 . 193761) (-3653 . 193461) - (-3654 . 193034) (-3655 . 192426) (-3656 . 191965) (-3657 . 191583) - (-3658 . 191298) (-3659 . 191132) (-3660 . 191000) (-3661 . 185486) - (-3662 . 185333) (-3663 . 185206) (-3664 . 185104) (-3665 . 185026) - (-3666 . 184940) (-3667 . 184807) (-3668 . 184712) (-3669 . 184659) - (-3670 . 177716) (-3671 . 177323) (-3672 . 177156) (-3673 . 177016) - (-3674 . 176962) (-3675 . 176815) (-3676 . 176760) (-3677 . 176320) - (-3678 . 176242) (-3679 . 176043) (-3680 . 175602) (-3681 . 175500) - (-3682 . 175291) (-3683 . 175218) (-3684 . 175048) (-3685 . 174849) - (-3686 . 174630) (-3687 . 174544) (-3688 . 174431) (-3689 . 174359) - (-3690 . 174024) (-3691 . 173941) (-3692 . 173874) (-3693 . 173624) - (-3694 . 173501) (-3695 . 173345) (-3696 . 173293) (-3697 . 173244) - (-3698 . 173102) (-3699 . 173050) (-3700 . 172970) (-3701 . 172783) - (-3702 . 172695) (-3703 . 172537) (-3704 . 172424) (-3705 . 172319) - (-3706 . 172258) (-3707 . 172150) (-3708 . 172097) (-3709 . 171978) - (-3710 . 171882) (-3711 . 171769) (-3712 . 171674) (-3713 . 171504) - (-3714 . 171435) (-3715 . 171367) (-3716 . 171314) (-3717 . 171220) - (-3718 . 171186) (-3719 . 170971) (-3720 . 170918) (-3721 . 170822) - (-3722 . 170659) (-3723 . 170571) (-3724 . 170499) (-3725 . 170443) - (-3726 . 170324) (-3727 . 170262) (-3728 . 169784) (-3729 . 169495) - (-3730 . 169404) (-3731 . 169246) (-3732 . 169158) (-3733 . 169030) - (-3734 . 168935) (-3735 . 168832) (-3736 . 168695) (-3737 . 168640) - (-3738 . 168556) (-3739 . 168285) (-3740 . 168038) (-3741 . 167587) - (-3742 . 167463) (-3743 . 167282) (-3744 . 167144) (-3745 . 167066) - (-3746 . 166774) (-3747 . 165512) (-3748 . 165462) (-3749 . 165377) - (-3750 . 165139) (-3751 . 165007) (-3752 . 164954) (-3753 . 164792) - (-3754 . 164661) (-3755 . 164402) (-3756 . 164285) (-3757 . 164204) - (-3758 . 163670) (-3759 . 163280) (-3760 . 163164) (-3761 . 162366) - (-3762 . 162335) (-3763 . 162276) (-3764 . 160647) (-3765 . 160214) - (-3766 . 159630) (-3767 . 159503) (-3768 . 159429) (-3769 . 158841) - (-3770 . 158758) (-3771 . 158675) (-3772 . 157816) (-3773 . 157683) - (-3774 . 157649) (-3775 . 157552) (-3776 . 157500) (-3777 . 157398) - (-3778 . 157310) (-3779 . 157219) (-3780 . 157139) (-3781 . 157070) - (-3782 . 157021) (-3783 . 155725) (-3784 . 155640) (-3785 . 155259) - (-3786 . 154889) (-3787 . 154567) (-3788 . 154488) (-3789 . 154418) - (-3790 . 154193) (-3791 . 154140) (-3792 . 152960) (-3793 . 152603) - (-3794 . 152436) (-3795 . 152407) (-3796 . 152107) (-3797 . 151942) - (-3798 . 151815) (-3799 . 151745) (-3800 . 151686) (-3801 . 151613) - (-3802 . 151367) (-3803 . 151309) (-3804 . 151215) (-3805 . 151099) - (-3806 . 151015) (-3807 . 150819) (-3808 . 150712) (-3809 . 150569) - (-3810 . 149752) (-3811 . 149657) (-3812 . 149407) (-3813 . 149261) - (-3814 . 149162) (-3815 . 148942) (-3816 . 148862) (-3817 . 148833) - (-3818 . 148432) (-3819 . 148207) (-3820 . 148136) (-3821 . 148057) - (-3822 . 147936) (-3823 . 147817) (-3824 . 146513) (-3825 . 146440) - (-3826 . 146176) (-3827 . 146081) (-3828 . 145962) (-3829 . 145803) - (-3830 . 145685) (-3831 . 145588) (-3832 . 145370) (-3833 . 145277) - (-3834 . 145225) (-3835 . 145091) (-3836 . 144992) (-3837 . 144728) - (-3838 . 142962) (-3839 . 142825) (-3840 . 142509) (-3841 . 142087) - (-3842 . 141983) (-3843 . 141844) (-3844 . 141761) (-3845 . 141594) - (-3846 . 141267) (-3847 . 141235) (-3848 . 141132) (-3849 . 141025) - (-3850 . 140952) (-3851 . 140610) (-3852 . 140495) (-3853 . 140342) - (-3854 . 140199) (-3855 . 139837) (-3856 . 139742) (-3857 . 139483) - (-3858 . 139427) (-3859 . 139350) (-3860 . 139264) (-3861 . 139169) - (-3862 . 138327) (-3863 . 138056) (-3864 . 137609) (-3865 . 137530) - (-3866 . 137387) (-3867 . 137328) (-3868 . 137188) (-3869 . 136520) - (-3870 . 136377) (-3871 . 136308) (-3872 . 136235) (-3873 . 135275) - (-3874 . 134892) (-3875 . 134800) (-3876 . 134673) (-3877 . 134458) - (-3878 . 134278) (-3879 . 132217) (-3880 . 132145) (-3881 . 132090) - (-3882 . 130942) (-3883 . 130876) (-3884 . 130844) (-3885 . 130748) - (-3886 . 130675) (-3887 . 130491) (-3888 . 130290) (-3889 . 130065) - (-3890 . 129955) (-3891 . 129884) (-3892 . 129460) (-3893 . 129233) - (-3894 . 129167) (-3895 . 129090) (-3896 . 128788) (-3897 . 128477) - (-3898 . 127904) (-3899 . 127854) (-3900 . 127772) (-3901 . 127519) - (-3902 . 127456) (-3903 . 127393) (-3904 . 127186) (-3905 . 124930) - (-3906 . 124875) (-3907 . 124753) (-3908 . 124378) (-3909 . 124273) - (-3910 . 124187) (-3911 . 123874) (-3912 . 123780) (-3913 . 123634) - (-3914 . 123602) (-3915 . 123489) (-3916 . 123337) (-3917 . 122846) - (-3918 . 122698) (-3919 . 122599) (-3920 . 122446) (-3921 . 122369) - (-3922 . 122195) (-3923 . 121963) (-3924 . 121910) (-3925 . 121839) - (-3926 . 121784) (-3927 . 120486) (-3928 . 120452) (-3929 . 120323) - (-3930 . 120250) (-3931 . 120153) (-3932 . 119632) (-3933 . 119564) - (-3934 . 119439) (-3935 . 119097) (-3936 . 118845) (-3937 . 118687) - (-3938 . 118586) (-3939 . 118443) (-3940 . 118384) (-3941 . 118306) - (-3942 . 118250) (-3943 . 118176) (-3944 . 118055) (-3945 . 117962) - (-3946 . 117640) (-3947 . 117411) (-3948 . 117356) (-3949 . 117185) - (-3950 . 117049) (-3951 . 116948) (-3952 . 116742) (-3953 . 116212) - (-3954 . 116160) (-3955 . 116017) (-3956 . 115811) (-3957 . 115666) - (-3958 . 115427) (-3959 . 115147) (-3960 . 115079) (-3961 . 114936) - (-3962 . 114836) (-3963 . 114783) (-3964 . 114716) (-3965 . 114662) - (-3966 . 114216) (-3967 . 114128) (-3968 . 114050) (-3969 . 113879) - (-3970 . 113800) (-3971 . 113712) (-3972 . 113383) (-3973 . 113017) - (-3974 . 112759) (-3975 . 112631) (-3976 . 112575) (-3977 . 112477) - (-3978 . 112386) (-3979 . 112306) (-3980 . 112223) (-3981 . 111678) - (-3982 . 111533) (-3983 . 111481) (-3984 . 111385) (-3985 . 111270) - (-3986 . 111179) (-3987 . 111080) (-3988 . 110877) (-3989 . 110527) - (-3990 . 110327) (-3991 . 110254) (-3992 . 110159) (-3993 . 110019) - (-3994 . 109904) (-3995 . 109823) (-3996 . 109689) (-3997 . 109588) - (-3998 . 109238) (-3999 . 109204) (-4000 . 109096) (-4001 . 109007) - (-4002 . 108851) (-4003 . 108814) (-4004 . 108691) (-4005 . 108538) - (-4006 . 108471) (-4007 . 108185) (-4008 . 108090) (-4009 . 107448) - (-4010 . 107264) (-4011 . 107108) (-4012 . 106998) (-4013 . 106927) - (-4014 . 106839) (-4015 . 106756) (-4016 . 105883) (-4017 . 105817) - (-4018 . 105736) (-4019 . 104651) (-4020 . 104538) (-4021 . 104244) - (-4022 . 104108) (-4023 . 104002) (-4024 . 103903) (-4025 . 103784) - (-4026 . 101928) (-4027 . 101832) (-4028 . 101752) (-4029 . 101620) - (-4030 . 101174) (-4031 . 101043) (-4032 . 100699) (-4033 . 100634) - (-4034 . 100416) (-4035 . 100364) (-4036 . 100177) (-4037 . 100029) - (-4038 . 98441) (-4039 . 98338) (-4040 . 97847) (-4041 . 97798) - (-4042 . 97726) (-4043 . 97611) (-4044 . 97558) (-4045 . 97272) - (-4046 . 97109) (-4047 . 96715) (-4048 . 96619) (-4049 . 96495) - (-4050 . 96414) (-4051 . 96331) (-4052 . 96147) (-4053 . 96068) - (-4054 . 95972) (-4055 . 95763) (-4056 . 95153) (-4057 . 94994) - (-4058 . 94917) (-4059 . 94817) (-4060 . 94303) (-4061 . 94151) - (-4062 . 94019) (-4063 . 93834) (-4064 . 93394) (-4065 . 93328) - (-4066 . 93234) (-4067 . 93093) (-4068 . 92936) (-4069 . 92733) - (-4070 . 92659) (-4071 . 92564) (-4072 . 92466) (-4073 . 92285) - (-4074 . 91799) (-4075 . 91692) (-4076 . 91641) (-4077 . 91526) - (-4078 . 91452) (-4079 . 90698) (-4080 . 90155) (-4081 . 90009) - (-4082 . 89865) (-4083 . 89814) (-4084 . 89668) (-4085 . 89505) - (-4086 . 89075) (-4087 . 89009) (-4088 . 88879) (-4089 . 88718) - (-4090 . 88549) (-4091 . 88494) (-4092 . 88438) (-4093 . 88360) - (-4094 . 88290) (-4095 . 88071) (-4096 . 87937) (-4097 . 87840) - (-4098 . 87773) (-4099 . 87570) (-4100 . 87475) (-4101 . 87422) - (-4102 . 87361) (-4103 . 87201) (-4104 . 87146) (-4105 . 86770) - (-4106 . 86563) (-4107 . 86467) (-4108 . 85881) (-4109 . 85765) - (-4110 . 85669) (-4111 . 85618) (-4112 . 84739) (-4113 . 84564) - (-4114 . 84509) (-4115 . 84088) (-4116 . 84028) (-4117 . 83732) - (-4118 . 83655) (-4119 . 83578) (-4120 . 83286) (-4121 . 83229) - (-4122 . 83124) (-4123 . 82976) (-4124 . 82877) (-4125 . 82760) - (-4126 . 82675) (-4127 . 82502) (-4128 . 82471) (-4129 . 82290) - (-4130 . 82237) (-4131 . 82156) (-4132 . 82097) (-4133 . 81761) - (-4134 . 81509) (-4135 . 81413) (-4136 . 81311) (-4137 . 81158) - (-4138 . 81014) (-4139 . 80943) (-4140 . 80611) (-4141 . 79165) - (-4142 . 79113) (-4143 . 79017) (-4144 . 78943) (-4145 . 78915) - (-4146 . 78804) (-4147 . 78698) (-4148 . 78582) (-4149 . 78501) - (-4150 . 78231) (-4151 . 78072) (-4152 . 77982) (-4153 . 77839) - (-4154 . 73679) (-4155 . 73564) (-4156 . 73512) (-4157 . 73446) - (-4158 . 73414) (-4159 . 73333) (-4160 . 73305) (-4161 . 73221) - (-4162 . 73092) (-4163 . 73014) (-4164 . 72940) (-4165 . 72791) - (-4166 . 72739) (-4167 . 72628) (-4168 . 72554) (-4169 . 72258) - (-4170 . 72087) (-4171 . 71929) (-4172 . 71756) (-4173 . 71496) - (-4174 . 71422) (-4175 . 71367) (-4176 . 71064) (-4177 . 70982) - (-4178 . 70772) (-4179 . 70678) (-4180 . 70556) (-4181 . 70494) - (-4182 . 70442) (-4183 . 70279) (-4184 . 70228) (-4185 . 70046) - (-4186 . 69916) (-4187 . 69815) (-4188 . 69759) (-4189 . 69725) - (-4190 . 69012) (-4191 . 68883) (-4192 . 68831) (-4193 . 68675) - (-4194 . 68615) (-4195 . 68511) (-4196 . 68458) (-4197 . 67715) - (-4198 . 67543) (-4199 . 67316) (-4200 . 67086) (-4201 . 63787) - (-4202 . 63458) (-4203 . 63227) (-4204 . 63129) (-4205 . 62950) - (-4206 . 62885) (-4207 . 62791) (-4208 . 62679) (-4209 . 62328) - (-4210 . 62235) (-4211 . 62201) (-4212 . 61999) (-4213 . 61904) - (-4214 . 61244) (-4215 . 60867) (-4216 . 60808) (-4217 . 60364) - (-4218 . 60263) (-4219 . 60211) (-4220 . 60177) (-4221 . 59918) - (-4222 . 59762) (-4223 . 58992) (-4224 . 58625) (-4225 . 58551) - (-4226 . 58418) (-4227 . 58322) (-4228 . 58245) (-4229 . 58194) - (-4230 . 57820) (-4231 . 57459) (-4232 . 57308) (-4233 . 57011) - (-4234 . 56849) (-4235 . 56518) (-4236 . 56293) (-4237 . 56138) - (-4238 . 56078) (-4239 . 55931) (-4240 . 55520) (-4241 . 55401) - (-4242 . 55239) (-4243 . 55168) (-4244 . 54922) (-4245 . 54598) - (-4246 . 54528) (-4247 . 54479) (-4248 . 54342) (-4249 . 54269) - (-4250 . 54190) (-4251 . 54116) (-4252 . 53943) (-4253 . 53725) - (-4254 . 53652) (-4255 . 53410) (-4256 . 53359) (-4257 . 53140) - (-4258 . 53043) (-4259 . 52942) (-4260 . 52865) (-4261 . 52578) - (-4262 . 52499) (-4263 . 52214) (-4264 . 52053) (-4265 . 51907) - (-4266 . 51694) (-4267 . 51624) (-4268 . 51558) (-4269 . 51479) - (-4270 . 51289) (-4271 . 51016) (-4272 . 49816) (-4273 . 49721) - (-4274 . 49563) (-4275 . 45021) (-4276 . 44893) (-4277 . 44738) - (-4278 . 44393) (-4279 . 44242) (-4280 . 44148) (-4281 . 43992) - (-4282 . 43850) (-4283 . 43687) (-4284 . 43213) (-4285 . 43161) - (-4286 . 42981) (-4287 . 42929) (-4288 . 42877) (-4289 . 42805) - (-4290 . 42705) (-4291 . 42528) (-4292 . 42430) (-4293 . 42115) - (-4294 . 41413) (-4295 . 41163) (-4296 . 40644) (-4297 . 40538) - (-4298 . 40419) (-4299 . 40166) (-4300 . 40047) (-4301 . 39886) - (-4302 . 39802) (-4303 . 39707) (-4304 . 39624) (-4305 . 39562) - (-4306 . 38883) (-4307 . 37451) (-4308 . 37132) (-4309 . 35951) - (-4310 . 35671) (-4311 . 35539) (-4312 . 35457) (-4313 . 35353) - (-4314 . 35035) (-4315 . 34697) (-4316 . 34244) (-4317 . 33952) - (-4318 . 33787) (-4319 . 33628) (-4320 . 33522) (-4321 . 33303) - (-4322 . 33207) (-4323 . 33041) (-4324 . 32823) (-4325 . 32763) - (-4326 . 32467) (-4327 . 32107) (-4328 . 32017) (-4329 . 31764) - (-4330 . 31682) (-4331 . 31390) (-4332 . 31316) (-4333 . 31084) - (-4334 . 30999) (-4335 . 30661) (-4336 . 30560) (-4337 . 30472) - (-4338 . 30377) (-4339 . 30270) (-4340 . 30157) (-4341 . 30004) - (-4342 . 29885) (-4343 . 29616) (-4344 . 29524) (-4345 . 29234) - (-4346 . 29054) (-4347 . 28716) (-4348 . 28312) (-4349 . 28179) - (-4350 . 28120) (-4351 . 27785) (-4352 . 27606) (-4353 . 27549) - (-4354 . 27360) (-4355 . 27147) (-4356 . 27078) (-4357 . 26972) - (-4358 . 26755) (-4359 . 26669) (-4360 . 26526) (-4361 . 26366) - (-4362 . 26258) (-4363 . 26139) (-4364 . 12051) (-4365 . 11685) - (-4366 . 11544) (-4367 . 11492) (-4368 . 11377) (-4369 . 11068) - (-4370 . 10753) (-4371 . 10507) (-4372 . 10421) (-4373 . 10341) - (-4374 . 9475) (-4375 . 9271) (-4376 . 9139) (-4377 . 9081) - (-4378 . 9032) (-4379 . 9004) (-4380 . 8810) (-4381 . 8704) - (-4382 . 7737) (-4383 . 3674) (-4384 . 3387) (-4385 . 3141) - (-4386 . 3114) (-4387 . 3032) (-4388 . 2933) (-4389 . 2881) - (-4390 . 2829) (-4391 . 2735) (-4392 . 2555) (-4393 . 2337) - (-4394 . 2276) (-4395 . 2109) (-4396 . 1996) (-4397 . 1886) - (-4398 . 1784) (-4399 . 1457) (-4400 . 1273) (-4401 . 687) - (-4402 . 30))
\ No newline at end of file + (-12 (-5 *2 (-643 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) + (-14 *4 (-773)) (-4 *5 (-172))))) +(((*1 *1 *2) + (-12 (-5 *2 (-643 *5)) (-4 *5 (-172)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-549)) + (-14 *4 (-773))))) +(((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-134))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-773)) (-5 *2 (-1275))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-129))))) +(((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-129))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-129))))) +(((*1 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-128))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1104)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-126 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1104))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-852)) (-5 *1 (-121 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-852))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) + ((*1 *2 *2) (-12 (-5 *2 (-773)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1245 (-549)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-119 *2)) (-4 *2 (-1219))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-365) (-1041 (-410 *2)))) (-5 *2 (-549)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1245 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *1 (-114 *2)) (-4 *2 (-1104))))) +(((*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-1104))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-643 (-1 *4 (-643 *4)))) (-4 *4 (-1104)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1104)) (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-643 (-1 *4 (-643 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-643 (-968))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1162) (-775))) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1162)) (-5 *1 (-113))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-113)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1162)) (-5 *3 (-775)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1162) (-775))) (-5 *1 (-113))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-643 (-968))) (-5 *1 (-109))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1219))))) +(((*1 *2) (-12 (-5 *2 (-643 (-1180))) (-5 *1 (-105))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1180)) + (-5 *2 + (-2 (|:| |zeros| (-1157 (-225))) (|:| |ones| (-1157 (-225))) + (|:| |singularities| (-1157 (-225))))) + (-5 *1 (-105))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4427 "*"))) (-4 *5 (-374 *2)) (-4 *6 (-374 *2)) + (-4 *2 (-1052)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) + (-4 *4 (-688 *2 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4427 "*"))) (-4 *5 (-374 *2)) (-4 *6 (-374 *2)) + (-4 *2 (-1052)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1245 *2)) + (-4 *4 (-688 *2 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1052)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) + (-4 *3 (-1245 *4)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1052)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) + (-4 *3 (-1245 *4)) (-4 *5 (-374 *4)) (-4 *6 (-374 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *1 (-103 *3)) (-4 *3 (-1104))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-103 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1104))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-643 *2) *2 *2 *2)) (-4 *2 (-1104)) (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1104)) (-5 *1 (-103 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-408 *3)) (-5 *1 (-100 *4 *3)) + (-4 *3 (-1245 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-643 *3)) (-4 *3 (-1245 *5)) (-4 *5 (-13 (-455) (-147))) + (-5 *2 (-408 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-549))) (-4 *3 (-1052)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1052)) (-5 *1 (-99 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97))))) +(((*1 *2 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1162)) (-5 *2 (-380)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1275)) (-5 *1 (-97))))) +(((*1 *2 *2) (-12 (-5 *2 (-380)) (-5 *1 (-97))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-1162)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-380)) (-5 *3 (-1162)) (-5 *1 (-97))))) +(((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1104)) (-5 *1 (-91 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-365)) (-4 *5 (-560)) + (-5 *2 + (-2 (|:| |minor| (-643 (-922))) (|:| -3687 *3) + (|:| |minors| (-643 (-643 (-922)))) (|:| |ops| (-643 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-660 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-1269 (-691 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-691 *4)) (-4 *5 (-660 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-560)) + (-5 *2 (-2 (|:| -1748 (-691 *5)) (|:| |vec| (-1269 (-643 (-922)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-660 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *1 (-58 *3)) (-4 *3 (-1219)))) + ((*1 *1 *2) (-12 (-5 *2 (-643 *3)) (-4 *3 (-1219)) (-5 *1 (-58 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-549)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-374 *4)) + (-4 *5 (-374 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-549)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1219)) (-4 *5 (-374 *4)) + (-4 *3 (-374 *4))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-643 (-1180))) (-4 *4 (-1104)) + (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-643 (-1078 *4 *5 *2))) (-4 *4 (-1104)) + (-4 *5 (-13 (-1052) (-889 *4) (-616 (-893 *4)))) + (-4 *2 (-13 (-424 *5) (-889 *4) (-616 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-643 (-1078 *5 *6 *2))) (-5 *4 (-922)) (-4 *5 (-1104)) + (-4 *6 (-13 (-1052) (-889 *5) (-616 (-893 *5)))) + (-4 *2 (-13 (-424 *6) (-889 *5) (-616 (-893 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1106)) (-5 *3 (-775)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-51))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-421 *3))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-421 *3))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 (-691 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-421 *3))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-643 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) +(((*1 *2) + (-12 (-4 *3 (-560)) (-5 *2 (-643 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-421 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-773)) (-5 *1 (-43 *4 *3)) (-4 *3 (-421 *4))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-113)) (-5 *4 (-773)) (-4 *5 (-13 (-455) (-1041 (-549)))) + (-4 *5 (-560)) (-5 *1 (-41 *5 *2)) (-4 *2 (-424 *5)) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *5 (-613 $)) $)) + (-15 -3398 ((-1128 *5 (-613 $)) $)) + (-15 -4378 ($ (-1128 *5 (-613 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) + (-15 -3398 ((-1128 *3 (-613 $)) $)) + (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) + (-15 -3398 ((-1128 *3 (-613 $)) $)) + (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-455) (-1041 (-549)))) (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) + (-15 -3398 ((-1128 *3 (-613 $)) $)) + (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-560)) (-5 *2 (-1174 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) + (-15 -3398 ((-1128 *4 (-613 $)) $)) + (-15 -4378 ($ (-1128 *4 (-613 $)))))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) + (-15 -3398 ((-1128 *3 (-613 $)) $)) + (-15 -4378 ($ (-1128 *3 (-613 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) + (-15 -3398 ((-1128 *3 (-613 $)) $)) + (-15 -4378 ($ (-1128 *3 (-613 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-643 *2)) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) + (-15 -3398 ((-1128 *4 (-613 $)) $)) + (-15 -4378 ($ (-1128 *4 (-613 $))))))) + (-4 *4 (-560)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-643 (-613 *2))) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *4 (-613 $)) $)) + (-15 -3398 ((-1128 *4 (-613 $)) $)) + (-15 -4378 ($ (-1128 *4 (-613 $))))))) + (-4 *4 (-560)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-560)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-365) (-299) + (-10 -8 (-15 -3399 ((-1128 *3 (-613 $)) $)) + (-15 -3398 ((-1128 *3 (-613 $)) $)) + (-15 -4378 ($ (-1128 *3 (-613 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-773)) (-4 *4 (-365)) (-4 *5 (-1245 *4)) (-5 *2 (-1275)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1245 (-410 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1245 (-48)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)) + (-5 *2 (-2 (|:| -4292 *3) (|:| -2254 *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-773)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-549)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1041 *4)) + (-4 *3 (-560))))) +(((*1 *2 *3) + (-12 (-5 *3 (-643 *5)) (-4 *5 (-424 *4)) (-4 *4 (-560)) (-5 *2 (-865)) + (-5 *1 (-32 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1174 *2)) (-4 *2 (-424 *4)) (-4 *4 (-560)) + (-5 *1 (-32 *4 *2))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-949 (-549))) (-5 *3 (-1180)) (-5 *4 (-1092 (-410 (-549)))) + (-5 *1 (-30))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1174 *1)) (-5 *4 (-1180)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1174 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-643 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1180)) (-4 *4 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-560)) (-5 *2 (-643 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1174 *1)) (-5 *3 (-1180)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1174 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-29 *3)) (-4 *3 (-560)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-560))))) +((-1303 . 723675) (-1304 . 723279) (-1305 . 723158) (-1306 . 723056) + (-1307 . 722943) (-1308 . 722826) (-1309 . 722757) (-1310 . 722703) + (-1311 . 722568) (-1312 . 722492) (-1313 . 722336) (-1314 . 722108) + (-1315 . 721144) (-1316 . 720897) (-1317 . 720612) (-1318 . 720327) + (-1319 . 720042) (-1320 . 719721) (-1321 . 719629) (-1322 . 719537) + (-1323 . 719445) (-1324 . 719353) (-1325 . 719261) (-1326 . 719169) + (-1327 . 719074) (-1328 . 718979) (-1329 . 718887) (-1330 . 718795) + (-1331 . 718703) (-1332 . 718611) (-1333 . 718519) (-1334 . 718417) + (-1335 . 718315) (-1336 . 718213) (-1337 . 718121) (-1338 . 718070) + (-1339 . 718018) (-1340 . 717948) (-1341 . 717524) (-1342 . 717329) + (-1343 . 717302) (-1344 . 717179) (-1345 . 717056) (-1346 . 716912) + (-1347 . 716742) (-1348 . 716618) (-1349 . 716379) (-1350 . 716306) + (-1351 . 716165) (-1352 . 716114) (-1353 . 716065) (-1354 . 715995) + (-1355 . 715860) (-1356 . 715725) (-1357 . 715497) (-1358 . 715249) + (-1359 . 715069) (-1360 . 714898) (-1361 . 714821) (-1362 . 714747) + (-1363 . 714592) (-1364 . 714437) (-1365 . 714251) (-1366 . 714068) + (-1367 . 713891) (-1368 . 713834) (-1369 . 713778) (-1370 . 713722) + (-1371 . 713648) (-1372 . 713571) (-1373 . 713540) (-1374 . 713471) + (-1375 . 713326) (-1376 . 713217) (-1377 . 713147) (-1378 . 713073) + (-1379 . 712999) (-1380 . 712947) (-1381 . 712895) (-1382 . 712843) + (-1383 . 712720) (-1384 . 712398) (-1385 . 712327) (-1386 . 712246) + (-1387 . 712125) (-1388 . 712044) (-1389 . 711963) (-1390 . 711806) + (-1391 . 711655) (-1392 . 711577) (-1393 . 711519) (-1394 . 711446) + (-1395 . 711381) (-1396 . 711316) (-1397 . 711254) (-1398 . 711181) + (-1399 . 711065) (-1400 . 711013) (-1401 . 710958) (-1402 . 710906) + (-1403 . 710854) (-1404 . 710826) (-1405 . 710798) (-1406 . 710770) + (-1407 . 710726) (-1408 . 710655) (-1409 . 710603) (-1410 . 710554) + (-1411 . 710502) (-1412 . 710450) (-1413 . 710334) (-1414 . 710218) + (-1415 . 710126) (-1416 . 710034) (-1417 . 709911) (-1418 . 709845) + (-1419 . 709779) (-1420 . 709720) (-1421 . 709692) (-1422 . 709664) + (-1423 . 709636) (-1424 . 709608) (-1425 . 709498) (-1426 . 709446) + (-1427 . 709394) (-1428 . 709342) (-1429 . 709290) (-1430 . 709238) + (-1431 . 709186) (-1432 . 709158) (-1433 . 709055) (-1434 . 709003) + (-1435 . 708837) (-1436 . 708653) (-1437 . 708442) (-1438 . 708327) + (-1439 . 708094) (-1440 . 707995) (-1441 . 707901) (-1442 . 707786) + (-1443 . 707388) (-1444 . 707170) (-1445 . 707121) (-1446 . 707093) + (-1447 . 707017) (-1448 . 706918) (-1449 . 706819) (-1450 . 706720) + (-1451 . 706621) (-1452 . 706522) (-1453 . 706423) (-1454 . 706265) + (-1455 . 706189) (-1456 . 706022) (-1457 . 705964) (-1458 . 705906) + (-1459 . 705597) (-1460 . 705343) (-1461 . 705259) (-1462 . 705126) + (-1463 . 705068) (-1464 . 705016) (-1465 . 704961) (-1466 . 704909) + (-1467 . 704835) (-1468 . 704761) (-1469 . 704680) (-1470 . 704599) + (-1471 . 704544) (-1472 . 704470) (-1473 . 704396) (-1474 . 704322) + (-1475 . 704245) (-1476 . 704190) (-1477 . 704131) (-1478 . 704031) + (-1479 . 703931) (-1480 . 703831) (-1481 . 703731) (-1482 . 703631) + (-1483 . 703531) (-1484 . 703431) (-1485 . 703316) (-1486 . 703201) + (-1487 . 703086) (-1488 . 702971) (-1489 . 702856) (-1490 . 702741) + (-1491 . 702623) (-1492 . 702547) (-1493 . 702471) (-1494 . 702084) + (-1495 . 701738) (-1496 . 701636) (-1497 . 701374) (-1498 . 701272) + (-1499 . 701067) (-1500 . 700954) (-1501 . 700852) (-1502 . 700695) + (-1503 . 700606) (-1504 . 700512) (-1505 . 700432) (-1506 . 700358) + (-1507 . 700280) (-1508 . 700221) (-1509 . 700162) (-1510 . 700060) + (-7 . 700032) (-8 . 700004) (-9 . 699976) (-1514 . 699857) (-1515 . 699775) + (-1516 . 699693) (-1517 . 699611) (-1518 . 699529) (-1519 . 699447) + (-1520 . 699353) (-1521 . 699283) (-1522 . 699213) (-1523 . 699122) + (-1524 . 699028) (-1525 . 698946) (-1526 . 698864) (-1527 . 698373) + (-1528 . 697820) (-1529 . 697610) (-1530 . 697535) (-1531 . 697281) + (-1532 . 697054) (-1533 . 696844) (-1534 . 696714) (-1535 . 696633) + (-1536 . 696484) (-1537 . 696129) (-1538 . 695837) (-1539 . 695545) + (-1540 . 695253) (-1541 . 694961) (-1542 . 694902) (-1543 . 694795) + (-1544 . 694367) (-1545 . 694269) (-1546 . 694109) (-1547 . 693910) + (-1548 . 693774) (-1549 . 693674) (-1550 . 693574) (-1551 . 693480) + (-1552 . 693421) (-1553 . 693086) (-1554 . 692985) (-1555 . 692866) + (-1556 . 692650) (-1557 . 692469) (-1558 . 692309) (-1559 . 692104) + (-1560 . 691682) (-1561 . 691573) (-1562 . 691458) (-1563 . 691389) + (-1564 . 691320) (-1565 . 691251) (-1566 . 691185) (-1567 . 691060) + (-1568 . 690843) (-1569 . 690765) (-1570 . 690715) (-1571 . 690644) + (-1572 . 690501) (-1573 . 690360) (-1574 . 690279) (-1575 . 690198) + (-1576 . 690142) (-1577 . 690086) (-1578 . 690013) (-1579 . 689873) + (-1580 . 689820) (-1581 . 689761) (-1582 . 689702) (-1583 . 689547) + (-1584 . 689495) (-1585 . 689377) (-1586 . 689259) (-1587 . 689141) + (-1588 . 689008) (-1589 . 688727) (-1590 . 688591) (-1591 . 688535) + (-1592 . 688479) (-1593 . 688420) (-1594 . 688361) (-1595 . 688305) + (-1596 . 688249) (-1597 . 688052) (-1598 . 685710) (-1599 . 685583) + (-1600 . 685437) (-1601 . 685309) (-1602 . 685257) (-1603 . 685205) + (-1604 . 685153) (-1605 . 681114) (-1606 . 681019) (-1607 . 680880) + (-1608 . 680671) (-1609 . 680569) (-1610 . 680467) (-1611 . 679551) + (-1612 . 679474) (-1613 . 679345) (-1614 . 679218) (-1615 . 679141) + (-1616 . 679064) (-1617 . 678937) (-1618 . 678810) (-1619 . 678644) + (-1620 . 678517) (-1621 . 678390) (-1622 . 678173) (-1623 . 677735) + (-1624 . 677369) (-1625 . 677262) (-1626 . 677043) (-1627 . 676974) + (-1628 . 676915) (-1629 . 676834) (-1630 . 676723) (-1631 . 676657) + (-1632 . 676591) (-1633 . 676517) (-1634 . 676445) (-1635 . 676068) + (-1636 . 676016) (-1637 . 675957) (-1638 . 675868) (-1639 . 675779) + (-1640 . 675687) (-1641 . 675595) (-1642 . 675503) (-1643 . 675411) + (-1644 . 675319) (-1645 . 675227) (-1646 . 675135) (-1647 . 675043) + (-1648 . 674951) (-1649 . 674859) (-1650 . 674767) (-1651 . 674675) + (-1652 . 674583) (-1653 . 674491) (-1654 . 674399) (-1655 . 674307) + (-1656 . 674215) (-1657 . 674123) (-1658 . 674031) (-1659 . 673939) + (-1660 . 673847) (-1661 . 673755) (-1662 . 673663) (-1663 . 673571) + (-1664 . 673479) (-1665 . 673387) (-1666 . 673223) (-1667 . 673113) + (-1668 . 672869) (-1669 . 672580) (-1670 . 672384) (-1671 . 672227) + (-1672 . 672066) (-1673 . 672014) (-1674 . 671952) (-1675 . 671900) + (-1676 . 671837) (-1677 . 671784) (-1678 . 671595) (-1679 . 671441) + (-1680 . 671361) (-1681 . 671281) (-1682 . 671201) (-1683 . 671071) + (-1684 . 670839) (-1685 . 670811) (-1686 . 670783) (-1687 . 670755) + (-1688 . 670675) (-1689 . 670598) (-1690 . 670521) (-1691 . 670440) + (-1692 . 670380) (-1693 . 670222) (-1694 . 670029) (-1695 . 669544) + (-1696 . 669302) (-1697 . 669040) (-1698 . 668939) (-1699 . 668858) + (-1700 . 668777) (-1701 . 668707) (-1702 . 668637) (-1703 . 668478) + (-1704 . 668174) (-1705 . 667944) (-1706 . 667820) (-1707 . 667761) + (-1708 . 667699) (-1709 . 667637) (-1710 . 667572) (-1711 . 667510) + (-1712 . 667231) (-1713 . 667021) (-1714 . 666747) (-1715 . 666207) + (-1716 . 665693) (-1717 . 665548) (-1718 . 665481) (-1719 . 665400) + (-1720 . 665319) (-1721 . 665217) (-1722 . 665143) (-1723 . 665062) + (-1724 . 664988) (-1725 . 664779) (-1726 . 664566) (-1727 . 664476) + (-1728 . 664409) (-1729 . 664273) (-1730 . 664206) (-1731 . 664124) + (-1732 . 664043) (-1733 . 663941) (-1734 . 663741) (-1735 . 663673) + (-1736 . 663431) (-1737 . 663180) (-1738 . 662938) (-1739 . 662696) + (-1740 . 662628) (-1741 . 662292) (-1742 . 661291) (-1743 . 661071) + (-1744 . 660990) (-1745 . 660916) (-1746 . 660842) (-1747 . 660768) + (-1748 . 660664) (-1749 . 660591) (-1750 . 660523) (-1751 . 660313) + (-1752 . 660261) (-1753 . 660206) (-1754 . 660115) (-1755 . 660027) + (-1756 . 658270) (-1757 . 658191) (-1758 . 657446) (-1759 . 657329) + (-1760 . 657122) (-1761 . 656960) (-1762 . 656798) (-1763 . 656637) + (-1764 . 656498) (-1765 . 656404) (-1766 . 656306) (-1767 . 656212) + (-1768 . 656097) (-1769 . 656012) (-1770 . 655914) (-1771 . 655718) + (-1772 . 655627) (-1773 . 655533) (-1774 . 655466) (-1775 . 655413) + (-1776 . 655360) (-1777 . 655307) (-1778 . 654169) (-1779 . 653659) + (-1780 . 653580) (-1781 . 653521) (-1782 . 653493) (-1783 . 653465) + (-1784 . 653406) (-1785 . 653293) (-1786 . 652916) (-1787 . 652863) + (-1788 . 652752) (-1789 . 652699) (-1790 . 652646) (-1791 . 652590) + (-1792 . 652534) (-1793 . 652369) (-1794 . 652299) (-1795 . 652204) + (-1796 . 652109) (-1797 . 652014) (-1798 . 651962) (-1799 . 651903) + (-1800 . 651829) (-1801 . 651777) (-1802 . 651620) (-1803 . 651463) + (-1804 . 651310) (-1805 . 650552) (-1806 . 650299) (-1807 . 649988) + (-1808 . 649636) (-1809 . 649419) (-1810 . 649156) (-1811 . 648780) + (-1812 . 648596) (-1813 . 648462) (-1814 . 648296) (-1815 . 648130) + (-1816 . 647996) (-1817 . 647862) (-1818 . 647728) (-1819 . 647594) + (-1820 . 647463) (-1821 . 647332) (-1822 . 647201) (-1823 . 646818) + (-1824 . 646691) (-1825 . 646563) (-1826 . 646311) (-1827 . 646187) + (-1828 . 645935) (-1829 . 645811) (-1830 . 645559) (-1831 . 645435) + (-1832 . 645150) (-1833 . 644877) (-1834 . 644604) (-1835 . 644306) + (-1836 . 644204) (-1837 . 644059) (-1838 . 643918) (-1839 . 643767) + (-1840 . 643606) (-1841 . 643518) (-1842 . 643490) (-1843 . 643408) + (-1844 . 643311) (-1845 . 642843) (-1846 . 642492) (-1847 . 642059) + (-1848 . 641918) (-1849 . 641848) (-1850 . 641778) (-1851 . 641708) + (-1852 . 641617) (-1853 . 641526) (-1854 . 641435) (-1855 . 641344) + (-1856 . 641253) (-1857 . 641167) (-1858 . 641081) (-1859 . 640995) + (-1860 . 640909) (-1861 . 640823) (-1862 . 640749) (-1863 . 640644) + (-1864 . 640418) (-1865 . 640340) (-1866 . 640265) (-1867 . 640172) + (-1868 . 640068) (-1869 . 639972) (-1870 . 639803) (-1871 . 639726) + (-1872 . 639649) (-1873 . 639558) (-1874 . 639467) (-1875 . 639267) + (-1876 . 639112) (-1877 . 638957) (-1878 . 638802) (-1879 . 638647) + (-1880 . 638492) (-1881 . 638337) (-1882 . 638270) (-1883 . 638115) + (-1884 . 637960) (-1885 . 637805) (-1886 . 637650) (-1887 . 637495) + (-1888 . 637340) (-1889 . 637185) (-1890 . 637030) (-1891 . 636956) + (-1892 . 636882) (-1893 . 636827) (-1894 . 636772) (-1895 . 636717) + (-1896 . 636662) (-1897 . 636591) (-1898 . 636386) (-1899 . 636285) + (-1900 . 636094) (-1901 . 636001) (-1902 . 635864) (-1903 . 635727) + (-1904 . 635590) (-1905 . 635522) (-1906 . 635406) (-1907 . 635290) + (-1908 . 635174) (-1909 . 635121) (-1910 . 634924) (-1911 . 634839) + (-1912 . 634531) (-1913 . 634476) (-1914 . 633824) (-1915 . 633509) + (-1916 . 633225) (-1917 . 633106) (-1918 . 632987) (-1919 . 632928) + (-1920 . 632869) (-1921 . 632817) (-1922 . 632765) (-1923 . 632713) + (-1924 . 632660) (-1925 . 632607) (-1926 . 632548) (-1927 . 632435) + (-1928 . 632322) (-1929 . 632264) (-1930 . 632206) (-1931 . 632156) + (-1932 . 632021) (-1933 . 631971) (-1934 . 631908) (-1935 . 631848) + (-1936 . 631251) (-1937 . 631191) (-1938 . 631024) (-1939 . 630932) + (-1940 . 630819) (-1941 . 630735) (-1942 . 630620) (-1943 . 630529) + (-1944 . 630438) (-1945 . 630249) (-1946 . 630194) (-1947 . 630007) + (-1948 . 629884) (-1949 . 629811) (-1950 . 629738) (-1951 . 629618) + (-1952 . 629545) (-1953 . 629472) (-1954 . 629132) (-1955 . 629059) + (-1956 . 628839) (-1957 . 628506) (-1958 . 628322) (-1959 . 628178) + (-1960 . 627817) (-1961 . 627649) (-1962 . 627481) (-1963 . 627225) + (-1964 . 626969) (-1965 . 626774) (-1966 . 626579) (-1967 . 625985) + (-1968 . 625909) (-1969 . 625770) (-1970 . 625363) (-1971 . 625235) + (-1972 . 625075) (-1973 . 624756) (-1974 . 624274) (-1975 . 623792) + (-1976 . 623288) (-1977 . 623220) (-1978 . 623149) (-1979 . 623078) + (-1980 . 622905) (-1981 . 622786) (-1982 . 622667) (-1983 . 622591) + (-1984 . 622515) (-1985 . 622240) (-1986 . 622125) (-1987 . 622073) + (-1988 . 622021) (-1989 . 621969) (-1990 . 621917) (-1991 . 621865) + (-1992 . 621723) (-1993 . 621549) (-1994 . 621316) (-1995 . 621128) + (-1996 . 621100) (-1997 . 621072) (-1998 . 621044) (-1999 . 621016) + (-2000 . 620988) (-2001 . 620960) (-2002 . 620932) (-2003 . 620880) + (-2004 . 620790) (-2005 . 620740) (-2006 . 620671) (-2007 . 620602) + (-2008 . 620497) (-2009 . 620126) (-2010 . 619975) (-2011 . 619824) + (-2012 . 619619) (-2013 . 619497) (-2014 . 619422) (-2015 . 619344) + (-2016 . 619269) (-2017 . 619191) (-2018 . 619113) (-2019 . 619038) + (-2020 . 618960) (-2021 . 618726) (-2022 . 618571) (-2023 . 618272) + (-2024 . 618117) (-2025 . 617791) (-2026 . 617651) (-2027 . 617511) + (-2028 . 617430) (-2029 . 617349) (-2030 . 617084) (-2031 . 616351) + (-2032 . 616214) (-2033 . 616123) (-2034 . 615986) (-2035 . 615918) + (-2036 . 615849) (-2037 . 615761) (-2038 . 615673) (-2039 . 615502) + (-2040 . 615428) (-2041 . 615284) (-2042 . 614824) (-2043 . 614444) + (-2044 . 613680) (-2045 . 613536) (-2046 . 613392) (-2047 . 613230) + (-2048 . 612992) (-2049 . 612851) (-2050 . 612704) (-2051 . 612465) + (-2052 . 612229) (-2053 . 611990) (-2054 . 611798) (-2055 . 611675) + (-2056 . 611471) (-2057 . 611248) (-2058 . 611009) (-2059 . 610868) + (-2060 . 610730) (-2061 . 610591) (-2062 . 610338) (-2063 . 610082) + (-2064 . 609925) (-2065 . 609771) (-2066 . 609530) (-2067 . 609245) + (-2068 . 609107) (-2069 . 609020) (-2070 . 608354) (-2071 . 608178) + (-2072 . 607996) (-2073 . 607820) (-2074 . 607638) (-2075 . 607459) + (-2076 . 607280) (-2077 . 607093) (-2078 . 606711) (-2079 . 606532) + (-2080 . 606353) (-2081 . 606166) (-2082 . 605784) (-2083 . 604791) + (-2084 . 604407) (-2085 . 604023) (-2086 . 603905) (-2087 . 603748) + (-2088 . 603606) (-2089 . 603488) (-2090 . 603306) (-2091 . 603182) + (-2092 . 602892) (-2093 . 602602) (-2094 . 602318) (-2095 . 602034) + (-2096 . 601755) (-2097 . 601667) (-2098 . 601582) (-2099 . 601483) + (-2100 . 601384) (-2101 . 601160) (-2102 . 601060) (-2103 . 600957) + (-2104 . 600879) (-2105 . 600554) (-2106 . 600262) (-2107 . 600189) + (-2108 . 599804) (-2109 . 599776) (-2110 . 599577) (-2111 . 599403) + (-2112 . 599162) (-2113 . 599107) (-2114 . 599031) (-2115 . 598660) + (-2116 . 598545) (-2117 . 598468) (-2118 . 598395) (-2119 . 598314) + (-2120 . 598233) (-2121 . 598152) (-2122 . 598051) (-2123 . 597992) + (-2124 . 597773) (-2125 . 597534) (-2126 . 597410) (-2127 . 597286) + (-2128 . 597059) (-2129 . 597006) (-2130 . 596951) (-2131 . 596619) + (-2132 . 596295) (-2133 . 596107) (-2134 . 595916) (-2135 . 595752) + (-2136 . 595417) (-2137 . 595250) (-2138 . 595009) (-2139 . 594681) + (-2140 . 594489) (-2141 . 594272) (-2142 . 594099) (-2143 . 593677) + (-2144 . 593450) (-2145 . 593179) (-2146 . 593041) (-2147 . 592900) + (-2148 . 592422) (-2149 . 592299) (-2150 . 592063) (-2151 . 591809) + (-2152 . 591559) (-2153 . 591264) (-2154 . 591123) (-2155 . 590779) + (-2156 . 590638) (-2157 . 590445) (-2158 . 590252) (-2159 . 590077) + (-2160 . 589803) (-2161 . 589368) (-2162 . 589340) (-2163 . 589266) + (-2164 . 589105) (-2165 . 588942) (-2166 . 588781) (-2167 . 588614) + (-2168 . 588561) (-2169 . 588508) (-2170 . 588379) (-2171 . 588319) + (-2172 . 588266) (-2173 . 588196) (-2174 . 588136) (-2175 . 588077) + (-2176 . 588017) (-2177 . 587958) (-2178 . 587898) (-2179 . 587839) + (-2180 . 587780) (-2181 . 587638) (-2182 . 587543) (-2183 . 587452) + (-2184 . 587336) (-2185 . 587242) (-2186 . 587144) (-2187 . 587050) + (-2188 . 586909) (-2189 . 586644) (-2190 . 585787) (-2191 . 585631) + (-2192 . 585262) (-2193 . 585206) (-2194 . 585154) (-2195 . 585051) + (-2196 . 584966) (-2197 . 584878) (-2198 . 584732) (-2199 . 584583) + (-2200 . 584293) (-2201 . 584215) (-2202 . 584140) (-2203 . 584087) + (-2204 . 584034) (-2205 . 584003) (-2206 . 583940) (-2207 . 583821) + (-2208 . 583732) (-2209 . 583612) (-2210 . 583317) (-2211 . 583123) + (-2212 . 582935) (-2213 . 582790) (-2214 . 582645) (-2215 . 582359) + (-2216 . 581914) (-2217 . 581880) (-2218 . 581843) (-2219 . 581806) + (-2220 . 581769) (-2221 . 581732) (-2222 . 581701) (-2223 . 581670) + (-2224 . 581639) (-2225 . 581605) (-2226 . 581571) (-2227 . 581516) + (-2228 . 581340) (-2229 . 581105) (-2230 . 580870) (-2231 . 580640) + (-2232 . 580588) (-2233 . 580533) (-2234 . 580463) (-2235 . 580374) + (-2236 . 580305) (-2237 . 580233) (-2238 . 580003) (-2239 . 579951) + (-2240 . 579896) (-2241 . 579865) (-2242 . 579759) (-2243 . 579533) + (-2244 . 579222) (-2245 . 579047) (-2246 . 578864) (-2247 . 578592) + (-2248 . 578519) (-2249 . 578454) (-2250 . 578426) (-2251 . 578376) + (-2252 . 576953) (-2253 . 575805) (-2254 . 574667) (-2255 . 574189) + (-2256 . 573625) (-2257 . 572897) (-2258 . 572334) (-2259 . 571704) + (-2260 . 571125) (-2261 . 571051) (-2262 . 570999) (-2263 . 570947) + (-2264 . 570873) (-2265 . 570818) (-2266 . 570766) (-2267 . 570714) + (-2268 . 570662) (-2269 . 570592) (-2270 . 570144) (-2271 . 569937) + (-2272 . 569687) (-2273 . 569352) (-2274 . 569097) (-2275 . 568794) + (-2276 . 568590) (-2277 . 568300) (-2278 . 567750) (-2279 . 567612) + (-2280 . 567409) (-2281 . 567128) (-2282 . 567042) (-2283 . 566707) + (-2284 . 566565) (-2285 . 566273) (-2286 . 566052) (-2287 . 565926) + (-2288 . 565801) (-2289 . 565654) (-2290 . 565510) (-2291 . 565394) + (-2292 . 565263) (-2293 . 564890) (-2294 . 564630) (-2295 . 564355) + (-2296 . 564115) (-2297 . 563785) (-2298 . 563440) (-2299 . 563032) + (-2300 . 562609) (-2301 . 562412) (-2302 . 562137) (-2303 . 561969) + (-2304 . 561768) (-2305 . 561546) (-2306 . 561391) (-2307 . 561205) + (-2308 . 561102) (-2309 . 561074) (-2310 . 560895) (-2311 . 560821) + (-2312 . 560760) (-2313 . 560707) (-2314 . 560638) (-2315 . 560568) + (-2316 . 560449) (-2317 . 560271) (-2318 . 560216) (-2319 . 559970) + (-2320 . 559880) (-2321 . 559690) (-2322 . 559617) (-2323 . 559547) + (-2324 . 559482) (-2325 . 559427) (-2326 . 559336) (-2327 . 559043) + (-2328 . 558715) (-2329 . 558641) (-2330 . 558319) (-2331 . 558112) + (-2332 . 558026) (-2333 . 557940) (-2334 . 557854) (-2335 . 557768) + (-2336 . 557682) (-2337 . 557596) (-2338 . 557510) (-2339 . 557424) + (-2340 . 557338) (-2341 . 557252) (-2342 . 557166) (-2343 . 557080) + (-2344 . 556994) (-2345 . 556908) (-2346 . 556822) (-2347 . 556736) + (-2348 . 556650) (-2349 . 556564) (-2350 . 556478) (-2351 . 556392) + (-2352 . 556306) (-2353 . 556220) (-2354 . 556134) (-2355 . 556048) + (-2356 . 555962) (-2357 . 555876) (-2358 . 555773) (-2359 . 555684) + (-2360 . 555474) (-2361 . 555415) (-2362 . 555359) (-2363 . 555270) + (-2364 . 555158) (-2365 . 555070) (-2366 . 554922) (-2367 . 554751) + (-2368 . 554598) (-2369 . 554445) (-2370 . 554271) (-2371 . 554061) + (-2372 . 553937) (-2373 . 553729) (-2374 . 553637) (-2375 . 553545) + (-2376 . 553409) (-2377 . 553314) (-2378 . 553219) (-2379 . 551703) + (-2380 . 551579) (-2381 . 551489) (-2382 . 551394) (-2383 . 551312) + (-2384 . 551003) (-2385 . 550807) (-2386 . 550712) (-2387 . 550604) + (-2388 . 550186) (-2389 . 550158) (-2390 . 549993) (-2391 . 549916) + (-2392 . 549727) (-2393 . 549547) (-2394 . 549123) (-2395 . 548971) + (-2396 . 548791) (-2397 . 548618) (-2398 . 548356) (-2399 . 548104) + (-2400 . 547293) (-2401 . 547124) (-2402 . 546905) (-2403 . 546063) + (-2404 . 545931) (-2405 . 545799) (-2406 . 545667) (-2407 . 545535) + (-2408 . 545403) (-2409 . 545271) (-2410 . 545076) (-2411 . 544882) + (-2412 . 544739) (-2413 . 544424) (-2414 . 544309) (-2415 . 543969) + (-2416 . 543809) (-2417 . 543670) (-2418 . 543531) (-2419 . 543402) + (-2420 . 543317) (-2421 . 543265) (-2422 . 542784) (-2423 . 541520) + (-2424 . 541405) (-2425 . 541276) (-2426 . 540969) (-2427 . 540718) + (-2428 . 540643) (-2429 . 540568) (-2430 . 540493) (-2431 . 540434) + (-2432 . 540363) (-2433 . 540310) (-2434 . 540248) (-2435 . 540177) + (-2436 . 539814) (-2437 . 539527) (-2438 . 539416) (-2439 . 539323) + (-2440 . 539230) (-2441 . 539143) (-2442 . 538923) (-2443 . 538703) + (-2444 . 538285) (-2445 . 538013) (-2446 . 537870) (-2447 . 537777) + (-2448 . 537634) (-2449 . 537482) (-2450 . 537328) (-2451 . 537257) + (-2452 . 537048) (-2453 . 536870) (-2454 . 536660) (-2455 . 536482) + (-2456 . 536448) (-2457 . 536414) (-2458 . 536383) (-2459 . 536265) + (-2460 . 535950) (-2461 . 535672) (-2462 . 535551) (-2463 . 535424) + (-2464 . 535339) (-2465 . 535266) (-2466 . 535176) (-2467 . 535105) + (-2468 . 535049) (-2469 . 534993) (-2470 . 534937) (-2471 . 534866) + (-2472 . 534795) (-2473 . 534724) (-2474 . 534645) (-2475 . 534567) + (-2476 . 534482) (-2477 . 534222) (-2478 . 534133) (-2479 . 533835) + (-2480 . 533737) (-2481 . 533659) (-2482 . 533581) (-2483 . 533438) + (-2484 . 533359) (-2485 . 533287) (-2486 . 533084) (-2487 . 533028) + (-2488 . 532840) (-2489 . 532741) (-2490 . 532623) (-2491 . 532502) + (-2492 . 532359) (-2493 . 532216) (-2494 . 532076) (-2495 . 531936) + (-2496 . 531793) (-2497 . 531666) (-2498 . 531536) (-2499 . 531412) + (-2500 . 531288) (-2501 . 531182) (-2502 . 531076) (-2503 . 530973) + (-2504 . 530823) (-2505 . 530670) (-2506 . 530517) (-2507 . 530373) + (-2508 . 530219) (-2509 . 530142) (-2510 . 530062) (-2511 . 529907) + (-2512 . 529827) (-2513 . 529747) (-2514 . 529667) (-2515 . 529564) + (-2516 . 529505) (-2517 . 529443) (-2518 . 529268) (-2519 . 529115) + (-2520 . 528962) (-2521 . 528788) (-2522 . 528596) (-2523 . 528297) + (-2524 . 528102) (-2525 . 527987) (-2526 . 527861) (-2527 . 527784) + (-2528 . 527652) (-2529 . 527346) (-2530 . 527163) (-2531 . 526618) + (-2532 . 526398) (-2533 . 526224) (-2534 . 526054) (-2535 . 525955) + (-2536 . 525856) (-2537 . 525638) (-2538 . 525536) (-2539 . 525463) + (-2540 . 525387) (-2541 . 525308) (-2542 . 525011) (-2543 . 524912) + (-2544 . 524750) (-2545 . 524516) (-2546 . 524074) (-2547 . 523944) + (-2548 . 523804) (-2549 . 523495) (-2550 . 523193) (-2551 . 522877) + (-2552 . 522471) (-2553 . 522403) (-2554 . 522335) (-2555 . 522267) + (-2556 . 522172) (-2557 . 522064) (-2558 . 521956) (-2559 . 521854) + (-2560 . 521752) (-2561 . 521650) (-2562 . 521572) (-2563 . 521248) + (-2564 . 520780) (-2565 . 520153) (-2566 . 520089) (-2567 . 519970) + (-2568 . 519851) (-2569 . 519743) (-2570 . 519635) (-2571 . 519479) + (-2572 . 518877) (-2573 . 518590) (-2574 . 518422) (-2575 . 518300) + (-2576 . 517902) (-2577 . 517666) (-2578 . 517465) (-2579 . 517257) + (-2580 . 517064) (-2581 . 516794) (-2582 . 516615) (-2583 . 516546) + (-2584 . 516470) (-2585 . 516329) (-2586 . 516126) (-2587 . 515982) + (-2588 . 515732) (-2589 . 515424) (-2590 . 515068) (-2591 . 514909) + (-2592 . 514703) (-2593 . 514543) (-2594 . 514470) (-2595 . 514351) + (-2596 . 514232) (-2597 . 514072) (-2598 . 513892) (-2599 . 513709) + (-2600 . 513611) (-2601 . 513513) (-2602 . 513412) (-2603 . 513308) + (-2604 . 513182) (-2605 . 513056) (-2606 . 512927) (-2607 . 512795) + (-2608 . 512697) (-2609 . 512599) (-2610 . 512498) (-2611 . 512397) + (-2612 . 512231) (-2613 . 512065) (-2614 . 511871) (-2615 . 511705) + (-2616 . 511537) (-2617 . 511366) (-2618 . 511201) (-2619 . 511036) + (-2620 . 510936) (-2621 . 510744) (-2622 . 510643) (-2623 . 510448) + (-2624 . 510198) (-2625 . 509953) (-2626 . 509631) (-2627 . 509243) + (-2628 . 509042) (-2629 . 508778) (-2630 . 508235) (-2631 . 507941) + (-2632 . 507804) (-2633 . 507558) (-2634 . 507354) (-2635 . 507247) + (-2636 . 507146) (-2637 . 507036) (-2638 . 506926) (-2639 . 506798) + (-2640 . 506691) (-2641 . 506587) (-2642 . 506431) (-2643 . 506297) + (-2644 . 506163) (-2645 . 506053) (-2646 . 505934) (-2647 . 505757) + (-2648 . 505623) (-2649 . 505486) (-2650 . 505355) (-2651 . 505245) + (-2652 . 505123) (-2653 . 504998) (-2654 . 504897) (-2655 . 504713) + (-2656 . 504539) (-2657 . 504340) (-2658 . 504166) (-2659 . 504050) + (-2660 . 503925) (-2661 . 503797) (-2662 . 503678) (-2663 . 503453) + (-2664 . 503282) (-2665 . 503111) (-2666 . 502934) (-2667 . 502782) + (-2668 . 502505) (-2669 . 502113) (-2670 . 501982) (-2671 . 501777) + (-2672 . 501594) (-2673 . 501410) (-2674 . 501281) (-2675 . 501177) + (-2676 . 501036) (-2677 . 500904) (-2678 . 500790) (-2679 . 500642) + (-2680 . 500503) (-2681 . 500402) (-2682 . 500298) (-2683 . 500191) + (-2684 . 500081) (-2685 . 499980) (-2686 . 499873) (-2687 . 499766) + (-2688 . 499653) (-2689 . 499546) (-2690 . 499433) (-2691 . 499302) + (-2692 . 499153) (-2693 . 498615) (-2694 . 498472) (-2695 . 498322) + (-2696 . 498199) (-2697 . 498095) (-2698 . 497991) (-2699 . 497884) + (-2700 . 497746) (-2701 . 497639) (-2702 . 497508) (-2703 . 497352) + (-2704 . 497079) (-2705 . 496932) (-2706 . 496729) (-2707 . 496628) + (-2708 . 496474) (-2709 . 496354) (-2710 . 496225) (-2711 . 496130) + (-2712 . 496042) (-2713 . 495954) (-2714 . 495866) (-2715 . 495778) + (-2716 . 495690) (-2717 . 495596) (-2718 . 495508) (-2719 . 495420) + (-2720 . 495332) (-2721 . 495244) (-2722 . 495156) (-2723 . 495068) + (-2724 . 494980) (-2725 . 494892) (-2726 . 494804) (-2727 . 494716) + (-2728 . 494578) (-2729 . 494440) (-2730 . 494320) (-2731 . 494200) + (-2732 . 494059) (-2733 . 493971) (-2734 . 493883) (-2735 . 493795) + (-2736 . 493707) (-2737 . 493569) (-2738 . 493431) (-2739 . 493343) + (-2740 . 493255) (-2741 . 493167) (-2742 . 493079) (-2743 . 492991) + (-2744 . 492903) (-2745 . 492812) (-2746 . 492718) (-2747 . 492624) + (-2748 . 492527) (-2749 . 492477) (-2750 . 492427) (-2751 . 492374) + (-2752 . 492120) (-2753 . 492071) (-2754 . 492021) (-2755 . 491987) + (-2756 . 491922) (-2757 . 491885) (-2758 . 491748) (-2759 . 491510) + (-2760 . 491439) (-2761 . 491253) (-2762 . 491004) (-2763 . 490846) + (-2764 . 490319) (-2765 . 490120) (-2766 . 489905) (-2767 . 489743) + (-2768 . 489344) (-2769 . 489177) (-2770 . 488102) (-2771 . 487979) + (-2772 . 487762) (-2773 . 487631) (-2774 . 487500) (-2775 . 487342) + (-2776 . 487238) (-2777 . 487179) (-2778 . 487120) (-2779 . 487014) + (-2780 . 486908) (-2781 . 485990) (-2782 . 483861) (-2783 . 483045) + (-2784 . 481240) (-2785 . 481172) (-2786 . 481104) (-2787 . 481036) + (-2788 . 480968) (-2789 . 480900) (-2790 . 480822) (-2791 . 480420) + (-2792 . 480064) (-2793 . 479882) (-2794 . 479353) (-2795 . 479177) + (-2796 . 478955) (-2797 . 478733) (-2798 . 478511) (-2799 . 478292) + (-2800 . 478073) (-2801 . 477854) (-2802 . 477635) (-2803 . 477416) + (-2804 . 477197) (-2805 . 477096) (-2806 . 476363) (-2807 . 476308) + (-2808 . 476253) (-2809 . 476198) (-2810 . 476143) (-2811 . 475993) + (-2812 . 475700) (-2813 . 475451) (-2814 . 475423) (-2815 . 475373) + (-2816 . 474781) (-2817 . 474247) (-2818 . 473798) (-2819 . 473636) + (-2820 . 473455) (-2821 . 473166) (-2822 . 472778) (-2823 . 471902) + (-2824 . 471560) (-2825 . 471391) (-2826 . 471168) (-2827 . 470917) + (-2828 . 470567) (-2829 . 469549) (-2830 . 469234) (-2831 . 469022) + (-2832 . 468455) (-2833 . 467939) (-2834 . 466161) (-2835 . 465689) + (-2836 . 465090) (-2837 . 464840) (-2838 . 464706) (-2839 . 464491) + (-2840 . 464438) (-2841 . 464385) (-2842 . 464333) (-2843 . 464281) + (-2844 . 464189) (-2845 . 464118) (-2846 . 464044) (-2847 . 463973) + (-2848 . 463920) (-2849 . 463849) (-2850 . 463796) (-2851 . 463743) + (-2852 . 463690) (-2853 . 463637) (-2854 . 463584) (-2855 . 463531) + (-2856 . 463478) (-2857 . 463425) (-2858 . 463372) (-2859 . 463319) + (-2860 . 463266) (-2861 . 463213) (-2862 . 463160) (-2863 . 463107) + (-2864 . 463036) (-2865 . 462965) (-2866 . 462893) (-2867 . 462821) + (-2868 . 462746) (-2869 . 462693) (-2870 . 462640) (-2871 . 462587) + (-2872 . 462534) (-2873 . 462481) (-2874 . 462428) (-2875 . 462375) + (-2876 . 462322) (-2877 . 462269) (-2878 . 462216) (-2879 . 462163) + (-2880 . 462110) (-2881 . 462057) (-2882 . 462004) (-2883 . 461952) + (-2884 . 461900) (-2885 . 461847) (-2886 . 461794) (-2887 . 461703) + (-2888 . 461650) (-2889 . 461622) (-2890 . 461594) (-2891 . 461566) + (-2892 . 461538) (-2893 . 461460) (-2894 . 461400) (-2895 . 461348) + (-2896 . 461296) (-2897 . 461244) (-2898 . 461192) (-2899 . 461140) + (-2900 . 460364) (-2901 . 460287) (-2902 . 460210) (-2903 . 460144) + (-2904 . 460077) (-2905 . 460010) (-2906 . 459953) (-2907 . 459877) + (-2908 . 459809) (-2909 . 459738) (-2910 . 459667) (-2911 . 459601) + (-2912 . 459514) (-2913 . 459442) (-2914 . 459335) (-2915 . 459149) + (-2916 . 458980) (-2917 . 458800) (-2918 . 458209) (-2919 . 458046) + (-2920 . 457468) (-2921 . 457398) (-2922 . 457323) (-2923 . 456957) + (-2924 . 456278) (-2925 . 456100) (-2926 . 456028) (-2927 . 455888) + (-2928 . 455698) (-2929 . 455591) (-2930 . 455484) (-2931 . 455368) + (-2932 . 455252) (-2933 . 455136) (-2934 . 454858) (-2935 . 454707) + (-2936 . 454563) (-2937 . 454489) (-2938 . 454403) (-2939 . 454329) + (-2940 . 454255) (-2941 . 454181) (-2942 . 454037) (-2943 . 453886) + (-2944 . 453711) (-2945 . 453560) (-2946 . 453409) (-2947 . 453282) + (-2948 . 452893) (-2949 . 452607) (-2950 . 452321) (-2951 . 451910) + (-2952 . 451624) (-2953 . 451551) (-2954 . 451404) (-2955 . 451298) + (-2956 . 451224) (-2957 . 451154) (-2958 . 451075) (-2959 . 450998) + (-2960 . 450921) (-2961 . 450769) (-2962 . 450666) (-2963 . 450569) + (-2964 . 450472) (-2965 . 450312) (-2966 . 450225) (-2967 . 450138) + (-2968 . 450051) (-2969 . 449992) (-2970 . 449933) (-2971 . 449800) + (-2972 . 449741) (-2973 . 449571) (-2974 . 449483) (-2975 . 449386) + (-2976 . 449352) (-2977 . 449321) (-2978 . 449237) (-2979 . 449181) + (-2980 . 449119) (-2981 . 449085) (-2982 . 449051) (-2983 . 449017) + (-2984 . 448983) (-2985 . 448949) (-2986 . 446196) (-2987 . 446162) + (-2988 . 446128) (-2989 . 446094) (-2990 . 445982) (-2991 . 445948) + (-2992 . 445896) (-2993 . 445862) (-2994 . 445765) (-2995 . 445703) + (-2996 . 445612) (-2997 . 445521) (-2998 . 445466) (-2999 . 445414) + (-3000 . 445362) (-3001 . 445310) (-3002 . 445258) (-3003 . 444833) + (-3004 . 444667) (-3005 . 444614) (-3006 . 444545) (-3007 . 444492) + (-3008 . 444262) (-3009 . 444106) (-3010 . 443585) (-3011 . 443444) + (-3012 . 443410) (-3013 . 443355) (-3014 . 442644) (-3015 . 442329) + (-3016 . 441824) (-3017 . 441746) (-3018 . 441694) (-3019 . 441642) + (-3020 . 441458) (-3021 . 441406) (-3022 . 441354) (-3023 . 441278) + (-3024 . 441216) (-3025 . 440998) (-3026 . 440743) (-3027 . 440676) + (-3028 . 440582) (-3029 . 440488) (-3030 . 440305) (-3031 . 440223) + (-3032 . 440101) (-3033 . 439979) (-3034 . 439833) (-3035 . 439173) + (-3036 . 438466) (-3037 . 438362) (-3038 . 438261) (-3039 . 438160) + (-3040 . 438049) (-3041 . 437881) (-3042 . 437675) (-3043 . 437582) + (-3044 . 437505) (-3045 . 437449) (-3046 . 437378) (-3047 . 437258) + (-3048 . 437157) (-3049 . 437059) (-3050 . 436979) (-3051 . 436899) + (-3052 . 436822) (-3053 . 436751) (-3054 . 436680) (-3055 . 436609) + (-3056 . 436538) (-3057 . 436467) (-3058 . 436396) (-3059 . 436303) + (-3060 . 436108) (-3061 . 435864) (-3062 . 435492) (-3063 . 435323) + (-3064 . 435207) (-3065 . 434703) (-3066 . 434321) (-3067 . 434075) + (-3068 . 433646) (-3069 . 433554) (-3070 . 433457) (-3071 . 430167) + (-3072 . 429347) (-3073 . 429234) (-3074 . 429160) (-3075 . 429068) + (-3076 . 428874) (-3077 . 428680) (-3078 . 428609) (-3079 . 428538) + (-3080 . 428457) (-3081 . 428376) (-3082 . 428251) (-3083 . 428117) + (-3084 . 428036) (-3085 . 427962) (-3086 . 427797) (-3087 . 427638) + (-3088 . 427407) (-3089 . 427259) (-3090 . 427155) (-3091 . 427051) + (-3092 . 426966) (-3093 . 426598) (-3094 . 426517) (-3095 . 426430) + (-3096 . 426349) (-3097 . 426103) (-3098 . 425883) (-3099 . 425696) + (-3100 . 425374) (-3101 . 425081) (-3102 . 424788) (-3103 . 424478) + (-3104 . 424161) (-3105 . 424032) (-3106 . 423844) (-3107 . 423371) + (-3108 . 423289) (-3109 . 423073) (-3110 . 422857) (-3111 . 422598) + (-3112 . 422174) (-3113 . 421660) (-3114 . 421530) (-3115 . 421256) + (-3116 . 421077) (-3117 . 420962) (-3118 . 420858) (-3119 . 420803) + (-3120 . 420726) (-3121 . 420656) (-3122 . 420583) (-3123 . 420528) + (-3124 . 420455) (-3125 . 420400) (-3126 . 420045) (-3127 . 419637) + (-3128 . 419484) (-3129 . 419331) (-3130 . 419250) (-3131 . 419097) + (-3132 . 418944) (-3133 . 418809) (-3134 . 418674) (-3135 . 418539) + (-3136 . 418404) (-3137 . 418269) (-3138 . 418134) (-3139 . 418078) + (-3140 . 417925) (-3141 . 417814) (-3142 . 417703) (-3143 . 417635) + (-3144 . 417525) (-3145 . 417422) (-3146 . 413271) (-3147 . 412823) + (-3148 . 412396) (-3149 . 411779) (-3150 . 411178) (-3151 . 410960) + (-3152 . 410782) (-3153 . 410522) (-3154 . 410111) (-3155 . 409817) + (-3156 . 409374) (-3157 . 409196) (-3158 . 408803) (-3159 . 408410) + (-3160 . 408225) (-3161 . 408018) (-3162 . 407797) (-3163 . 407491) + (-3164 . 407292) (-3165 . 406663) (-3166 . 406506) (-3167 . 406115) + (-3168 . 406063) (-3169 . 406014) (-3170 . 405962) (-3171 . 405913) + (-3172 . 405861) (-3173 . 405715) (-3174 . 405663) (-3175 . 405517) + (-3176 . 405465) (-3177 . 405319) (-3178 . 405267) (-3179 . 404892) + (-3180 . 404840) (-3181 . 404791) (-3182 . 404739) (-3183 . 404690) + (-3184 . 404638) (-3185 . 404589) (-3186 . 404537) (-3187 . 404488) + (-3188 . 404436) (-3189 . 404387) (-3190 . 404321) (-3191 . 404203) + (-3192 . 403041) (-3193 . 402624) (-3194 . 402516) (-3195 . 402273) + (-3196 . 402123) (-3197 . 401973) (-3198 . 401806) (-3199 . 399591) + (-3200 . 399327) (-3201 . 399173) (-3202 . 399027) (-3203 . 398881) + (-3204 . 398662) (-3205 . 398530) (-3206 . 398455) (-3207 . 398380) + (-3208 . 398245) (-3209 . 398115) (-3210 . 397985) (-3211 . 397858) + (-3212 . 397731) (-3213 . 397604) (-3214 . 397477) (-3215 . 397374) + (-3216 . 397274) (-3217 . 397180) (-3218 . 397050) (-3219 . 396899) + (-3220 . 396520) (-3221 . 396405) (-3222 . 396162) (-3223 . 395699) + (-3224 . 395386) (-3225 . 394817) (-3226 . 394246) (-3227 . 393231) + (-3228 . 392687) (-3229 . 392374) (-3230 . 392036) (-3231 . 391705) + (-3232 . 391385) (-3233 . 391332) (-3234 . 391205) (-3235 . 390700) + (-3236 . 389557) (-3237 . 389502) (-3238 . 389447) (-3239 . 389371) + (-3240 . 389252) (-3241 . 389177) (-3242 . 389102) (-3243 . 389024) + (-3244 . 388799) (-3245 . 388740) (-3246 . 388681) (-3247 . 388578) + (-3248 . 388475) (-3249 . 388372) (-3250 . 388269) (-3251 . 388188) + (-3252 . 388114) (-3253 . 388080) (-3254 . 388046) (-3255 . 387949) + (-3256 . 387852) (-3257 . 387824) (-3258 . 387796) (-3259 . 387578) + (-3260 . 387300) (-3261 . 387150) (-3262 . 387020) (-3263 . 386890) + (-3264 . 386790) (-3265 . 386613) (-3266 . 386453) (-3267 . 386353) + (-3268 . 386176) (-3269 . 386016) (-3270 . 385857) (-3271 . 385718) + (-3272 . 385568) (-3273 . 385438) (-3274 . 385308) (-3275 . 385161) + (-3276 . 385034) (-3277 . 384931) (-3278 . 384824) (-3279 . 384727) + (-3280 . 384562) (-3281 . 384414) (-3282 . 383999) (-3283 . 383899) + (-3284 . 383796) (-3285 . 383708) (-3286 . 383628) (-3287 . 383478) + (-3288 . 383348) (-3289 . 383296) (-3290 . 383206) (-3291 . 383094) + (-3292 . 382781) (-3293 . 382600) (-3294 . 380989) (-3295 . 380356) + (-3296 . 380296) (-3297 . 380178) (-3298 . 380060) (-3299 . 379916) + (-3300 . 379761) (-3301 . 379600) (-3302 . 379439) (-3303 . 379231) + (-3304 . 379042) (-3305 . 378887) (-3306 . 378729) (-3307 . 378571) + (-3308 . 378416) (-3309 . 378276) (-3310 . 377850) (-3311 . 377722) + (-3312 . 377594) (-3313 . 377466) (-3314 . 377323) (-3315 . 377180) + (-3316 . 377038) (-3317 . 376893) (-3318 . 376140) (-3319 . 375980) + (-3320 . 375792) (-3321 . 375635) (-3322 . 375395) (-3323 . 375148) + (-3324 . 374901) (-3325 . 374690) (-3326 . 374551) (-3327 . 374340) + (-3328 . 374050) (-3329 . 373839) (-3330 . 373700) (-3331 . 373489) + (-3332 . 373183) (-3333 . 373038) (-3334 . 372896) (-3335 . 372672) + (-3336 . 372530) (-3337 . 372305) (-3338 . 372106) (-3339 . 371949) + (-3340 . 371619) (-3341 . 371459) (-3342 . 371299) (-3343 . 371139) + (-3344 . 370967) (-3345 . 370795) (-3346 . 370620) (-3347 . 370268) + (-3348 . 370074) (-3349 . 369912) (-3350 . 369838) (-3351 . 369764) + (-3352 . 369690) (-3353 . 369616) (-3354 . 369542) (-3355 . 369468) + (-3356 . 369344) (-3357 . 369170) (-3358 . 369046) (-3359 . 368960) + (-3360 . 368894) (-3361 . 368828) (-3362 . 368762) (-3363 . 368696) + (-3364 . 368630) (-3365 . 368564) (-3366 . 368498) (-3367 . 368432) + (-3368 . 368366) (-3369 . 368300) (-3370 . 368234) (-3371 . 368168) + (-3372 . 368102) (-3373 . 368036) (-3374 . 367970) (-3375 . 367904) + (-3376 . 367838) (-3377 . 367772) (-3378 . 367706) (-3379 . 367640) + (-3380 . 367574) (-3381 . 367508) (-3382 . 367442) (-3383 . 367376) + (-3384 . 367310) (-3385 . 367244) (-3386 . 366595) (-3387 . 365946) + (-3388 . 365818) (-3389 . 365695) (-3390 . 365572) (-3391 . 365431) + (-3392 . 365276) (-3393 . 365132) (-3394 . 364957) (-3395 . 364347) + (-3396 . 364223) (-3397 . 364098) (-3398 . 363419) (-3399 . 362720) + (-3400 . 362619) (-3401 . 362563) (-3402 . 362507) (-3403 . 362451) + (-3404 . 362395) (-3405 . 362336) (-3406 . 362271) (-3407 . 362162) + (-3408 . 362053) (-3409 . 361944) (-3410 . 361664) (-3411 . 361589) + (-3412 . 361362) (-3413 . 361280) (-3414 . 361201) (-3415 . 361122) + (-3416 . 361043) (-3417 . 360963) (-3418 . 360884) (-3419 . 360790) + (-3420 . 360689) (-3421 . 360620) (-3422 . 360570) (-3423 . 359876) + (-3424 . 359225) (-3425 . 358431) (-3426 . 358349) (-3427 . 358244) + (-3428 . 358151) (-3429 . 358058) (-3430 . 357983) (-3431 . 357908) + (-3432 . 357833) (-3433 . 357777) (-3434 . 357721) (-3435 . 357654) + (-3436 . 357587) (-3437 . 357524) (-3438 . 357132) (-3439 . 356637) + (-3440 . 356177) (-3441 . 355922) (-3442 . 355731) (-3443 . 355387) + (-3444 . 355089) (-3445 . 354919) (-3446 . 354787) (-3447 . 354646) + (-3448 . 353563) (-3449 . 353407) (-3450 . 353237) (-3451 . 351843) + (-3452 . 351705) (-3453 . 351559) (-3454 . 351328) (-3455 . 351058) + (-3456 . 350998) (-3457 . 350941) (-3458 . 350884) (-3459 . 350671) + (-3460 . 350531) (-3461 . 350423) (-3462 . 350305) (-3463 . 350238) + (-3464 . 350164) (-3465 . 350049) (-3466 . 349792) (-3467 . 349690) + (-3468 . 349492) (-3469 . 349176) (-3470 . 348702) (-3471 . 348595) + (-3472 . 348487) (-3473 . 348336) (-3474 . 348194) (-3475 . 347775) + (-3476 . 347525) (-3477 . 346848) (-3478 . 346693) (-3479 . 346578) + (-3480 . 346467) (-3481 . 345644) (-3482 . 345591) (-3483 . 345538) + (-3484 . 345342) (-3485 . 344063) (-3486 . 343612) (-3487 . 342216) + (-3488 . 341360) (-3489 . 341310) (-3490 . 341260) (-3491 . 341210) + (-3492 . 341142) (-3493 . 341066) (-3494 . 340875) (-3495 . 340802) + (-3496 . 340726) (-3497 . 340653) (-3498 . 340535) (-3499 . 340483) + (-3500 . 340403) (-3501 . 340323) (-3502 . 340243) (-3503 . 340191) + (-3504 . 339944) (-3505 . 339641) (-3506 . 339556) (-3507 . 339471) + (-3508 . 339409) (-3509 . 339019) (-3510 . 338746) (-3511 . 337871) + (-3512 . 337295) (-3513 . 336057) (-3514 . 335247) (-3515 . 334995) + (-3516 . 334743) (-3517 . 334316) (-3518 . 334070) (-3519 . 333824) + (-3520 . 333578) (-3521 . 333332) (-3522 . 333086) (-3523 . 332840) + (-3524 . 332593) (-3525 . 332346) (-3526 . 332099) (-3527 . 331852) + (-3528 . 331422) (-3529 . 331304) (-3530 . 330455) (-3531 . 330423) + (-3532 . 330075) (-3533 . 329848) (-3534 . 329748) (-3535 . 329648) + (-3536 . 327877) (-3537 . 327763) (-3538 . 326708) (-3539 . 326615) + (-3540 . 325691) (-3541 . 325356) (-3542 . 325021) (-3543 . 324916) + (-3544 . 324829) (-3545 . 324800) (-3546 . 324743) (-3547 . 324663) + (-3548 . 324591) (-3549 . 324516) (-3550 . 324441) (-3551 . 324409) + (-3552 . 324377) (-3553 . 324345) (-3554 . 324313) (-3555 . 324281) + (-3556 . 324249) (-3557 . 324217) (-3558 . 324185) (-3559 . 324156) + (-3560 . 324043) (-3561 . 323930) (-3562 . 323817) (-3563 . 323704) + (-3564 . 322615) (-3565 . 322493) (-3566 . 322356) (-3567 . 322222) + (-3568 . 322088) (-3569 . 321791) (-3570 . 321494) (-3571 . 321146) + (-3572 . 320916) (-3573 . 320686) (-3574 . 320573) (-3575 . 320460) + (-3576 . 315179) (-3577 . 310806) (-3578 . 310494) (-3579 . 310339) + (-3580 . 309811) (-3581 . 309478) (-3582 . 309281) (-3583 . 309084) + (-3584 . 308887) (-3585 . 308690) (-3586 . 308574) (-3587 . 308448) + (-3588 . 308332) (-3589 . 308216) (-3590 . 308121) (-3591 . 308026) + (-3592 . 307913) (-3593 . 307707) (-3594 . 306550) (-3595 . 306455) + (-3596 . 306339) (-3597 . 306244) (-3598 . 305995) (-3599 . 305882) + (-3600 . 305664) (-3601 . 305545) (-3602 . 305244) (-3603 . 304513) + (-3604 . 303930) (-3605 . 303449) (-3606 . 303201) (-3607 . 302953) + (-3608 . 302466) (-3609 . 301852) (-3610 . 301404) (-3611 . 301247) + (-3612 . 301101) (-3613 . 300775) (-3614 . 300617) (-3615 . 300474) + (-3616 . 300331) (-3617 . 300188) (-3618 . 299907) (-3619 . 299685) + (-3620 . 299158) (-3621 . 298943) (-3622 . 298728) (-3623 . 298340) + (-3624 . 298160) (-3625 . 297948) (-3626 . 297638) (-3627 . 297444) + (-3628 . 297269) (-3629 . 296123) (-3630 . 295751) (-3631 . 295548) + (-3632 . 295342) (-3633 . 294499) (-3634 . 294470) (-3635 . 294401) + (-3636 . 294330) (-3637 . 294163) (-3638 . 294134) (-3639 . 294105) + (-3640 . 294049) (-3641 . 293896) (-3642 . 293836) (-3643 . 293140) + (-3644 . 291962) (-3645 . 291901) (-3646 . 291576) (-3647 . 291504) + (-3648 . 291447) (-3649 . 291390) (-3650 . 291333) (-3651 . 291276) + (-3652 . 291201) (-3653 . 290609) (-3654 . 290249) (-3655 . 290174) + (-3656 . 290114) (-3657 . 289996) (-3658 . 289045) (-3659 . 288918) + (-3660 . 288705) (-3661 . 288630) (-3662 . 288574) (-3663 . 288520) + (-3664 . 288466) (-3665 . 288357) (-3666 . 288044) (-3667 . 287936) + (-3668 . 287833) (-3669 . 287672) (-3670 . 287571) (-3671 . 287473) + (-3672 . 287335) (-3673 . 287197) (-3674 . 287059) (-3675 . 286797) + (-3676 . 286587) (-3677 . 286449) (-3678 . 286160) (-3679 . 286007) + (-3680 . 285728) (-3681 . 285506) (-3682 . 285353) (-3683 . 285200) + (-3684 . 285047) (-3685 . 284894) (-3686 . 284741) (-3687 . 284531) + (-3688 . 284411) (-3689 . 284020) (-3690 . 283685) (-3691 . 283340) + (-3692 . 282989) (-3693 . 282644) (-3694 . 282299) (-3695 . 281912) + (-3696 . 281525) (-3697 . 281138) (-3698 . 280767) (-3699 . 280037) + (-3700 . 279686) (-3701 . 279232) (-3702 . 278803) (-3703 . 278186) + (-3704 . 277585) (-3705 . 277193) (-3706 . 276857) (-3707 . 276465) + (-3708 . 276129) (-3709 . 275907) (-3710 . 275380) (-3711 . 275165) + (-3712 . 274950) (-3713 . 274734) (-3714 . 274554) (-3715 . 274338) + (-3716 . 274158) (-3717 . 273770) (-3718 . 273590) (-3719 . 273378) + (-3720 . 273288) (-3721 . 273198) (-3722 . 273107) (-3723 . 273020) + (-3724 . 272930) (-3725 . 272849) (-3726 . 272660) (-3727 . 272604) + (-3728 . 272523) (-3729 . 272442) (-3730 . 272361) (-3731 . 272226) + (-3732 . 272091) (-3733 . 271967) (-3734 . 271846) (-3735 . 271728) + (-3736 . 271592) (-3737 . 271459) (-3738 . 271340) (-3739 . 271081) + (-3740 . 270796) (-3741 . 270724) (-3742 . 270632) (-3743 . 270540) + (-3744 . 270454) (-3745 . 270356) (-3746 . 270239) (-3747 . 270098) + (-3748 . 270041) (-3749 . 269984) (-3750 . 269924) (-3751 . 269527) + (-3752 . 269003) (-3753 . 268725) (-3754 . 268304) (-3755 . 268191) + (-3756 . 267749) (-3757 . 267517) (-3758 . 267314) (-3759 . 267132) + (-3760 . 267002) (-3761 . 266796) (-3762 . 266589) (-3763 . 266398) + (-3764 . 265833) (-3765 . 265577) (-3766 . 265286) (-3767 . 264992) + (-3768 . 264695) (-3769 . 264395) (-3770 . 264265) (-3771 . 264132) + (-3772 . 263996) (-3773 . 263857) (-3774 . 262640) (-3775 . 262332) + (-3776 . 261968) (-3777 . 261871) (-3778 . 261630) (-3779 . 261334) + (-3780 . 261038) (-3781 . 260777) (-3782 . 260602) (-3783 . 260523) + (-3784 . 260435) (-3785 . 260334) (-3786 . 260239) (-3787 . 260157) + (-3788 . 260085) (-3789 . 259284) (-3790 . 259212) (-3791 . 258880) + (-3792 . 258808) (-3793 . 258476) (-3794 . 258404) (-3795 . 257955) + (-3796 . 257883) (-3797 . 257778) (-3798 . 257703) (-3799 . 257628) + (-3800 . 257556) (-3801 . 257213) (-3802 . 257083) (-3803 . 257006) + (-3804 . 256457) (-3805 . 256314) (-3806 . 256171) (-3807 . 255687) + (-3808 . 255356) (-3809 . 255143) (-3810 . 254888) (-3811 . 254538) + (-3812 . 254313) (-3813 . 254088) (-3814 . 253863) (-3815 . 253638) + (-3816 . 253425) (-3817 . 253212) (-3818 . 253060) (-3819 . 252876) + (-3820 . 252771) (-3821 . 252648) (-3822 . 252540) (-3823 . 252432) + (-3824 . 252105) (-3825 . 251839) (-3826 . 251527) (-3827 . 251222) + (-3828 . 250912) (-3829 . 250177) (-3830 . 249582) (-3831 . 249405) + (-3832 . 249260) (-3833 . 249105) (-3834 . 248982) (-3835 . 248877) + (-3836 . 248762) (-3837 . 248663) (-3838 . 248179) (-3839 . 248069) + (-3840 . 247959) (-3841 . 247849) (-3842 . 246762) (-3843 . 246247) + (-3844 . 246180) (-3845 . 246106) (-3846 . 245233) (-3847 . 245159) + (-3848 . 245103) (-3849 . 245047) (-3850 . 245015) (-3851 . 244929) + (-3852 . 244897) (-3853 . 244811) (-3854 . 244387) (-3855 . 243963) + (-3856 . 243406) (-3857 . 242294) (-3858 . 240570) (-3859 . 239008) + (-3860 . 238212) (-3861 . 237708) (-3862 . 237216) (-3863 . 236808) + (-3864 . 236148) (-3865 . 236073) (-3866 . 236001) (-3867 . 235929) + (-3868 . 235887) (-3869 . 235765) (-3870 . 235711) (-3871 . 235650) + (-3872 . 235596) (-3873 . 235493) (-3874 . 235053) (-3875 . 234613) + (-3876 . 234173) (-3877 . 233651) (-3878 . 233486) (-3879 . 233321) + (-3880 . 233010) (-3881 . 232923) (-3882 . 232833) (-3883 . 232475) + (-3884 . 232358) (-3885 . 232277) (-3886 . 232118) (-3887 . 232004) + (-3888 . 231929) (-3889 . 231077) (-3890 . 229891) (-3891 . 229791) + (-3892 . 229691) (-3893 . 229360) (-3894 . 229281) (-3895 . 229205) + (-3896 . 229098) (-3897 . 228940) (-3898 . 228832) (-3899 . 228696) + (-3900 . 228560) (-3901 . 228437) (-3902 . 228341) (-3903 . 228192) + (-3904 . 228096) (-3905 . 227941) (-3906 . 227786) (-3907 . 227121) + (-3908 . 226456) (-3909 . 225728) (-3910 . 225175) (-3911 . 224622) + (-3912 . 224069) (-3913 . 223403) (-3914 . 222737) (-3915 . 222071) + (-3916 . 221517) (-3917 . 220963) (-3918 . 220409) (-3919 . 219856) + (-3920 . 219303) (-3921 . 218750) (-3922 . 218197) (-3923 . 217644) + (-3924 . 217091) (-3925 . 216987) (-3926 . 216398) (-3927 . 216292) + (-3928 . 216216) (-3929 . 216073) (-3930 . 215980) (-3931 . 215887) + (-3932 . 215794) (-3933 . 215695) (-3934 . 215589) (-3935 . 215465) + (-3936 . 215341) (-3937 . 214974) (-3938 . 214851) (-3939 . 214749) + (-3940 . 214385) (-3941 . 213851) (-3942 . 213775) (-3943 . 213699) + (-3944 . 213606) (-3945 . 213423) (-3946 . 213327) (-3947 . 213251) + (-3948 . 213158) (-3949 . 213065) (-3950 . 212902) (-3951 . 212351) + (-3952 . 211800) (-3953 . 209003) (-3954 . 208830) (-3955 . 207414) + (-3956 . 206852) (-3957 . 206653) (-12 . 206481) (-3959 . 206309) + (-3960 . 206137) (-3961 . 205965) (-3962 . 205793) (-3963 . 205621) + (-3964 . 205449) (-3965 . 205334) (-3966 . 205064) (-3967 . 205001) + (-3968 . 204938) (-3969 . 204875) (-3970 . 204597) (-3971 . 204330) + (-3972 . 204277) (-3973 . 203634) (-3974 . 203583) (-3975 . 203390) + (-3976 . 203317) (-3977 . 203237) (-3978 . 203124) (-3979 . 202934) + (-3980 . 202570) (-3981 . 202298) (-3982 . 202247) (-3983 . 202196) + (-3984 . 202126) (-3985 . 202007) (-3986 . 201978) (-3987 . 201876) + (-3988 . 201754) (-3989 . 201700) (-3990 . 201523) (-3991 . 201462) + (-3992 . 201281) (-3993 . 201220) (-3994 . 201148) (-3995 . 200673) + (-3996 . 200298) (-3997 . 196695) (-3998 . 196642) (-3999 . 196514) + (-4000 . 196364) (-4001 . 196311) (-4002 . 196170) (-4003 . 194109) + (-4004 . 184870) (-4005 . 184719) (-4006 . 184649) (-4007 . 184598) + (-4008 . 184548) (-4009 . 184497) (-4010 . 184446) (-4011 . 184248) + (-4012 . 184105) (-4013 . 183991) (-4014 . 183870) (-4015 . 183752) + (-4016 . 183640) (-4017 . 183522) (-4018 . 183417) (-4019 . 183336) + (-4020 . 183232) (-4021 . 182295) (-4022 . 182075) (-4023 . 181838) + (-4024 . 181756) (-4025 . 181409) (-4026 . 181335) (-4027 . 181240) + (-4028 . 181166) (-4029 . 180964) (-4030 . 180873) (-4031 . 180757) + (-4032 . 180644) (-4033 . 180553) (-4034 . 180462) (-4035 . 180372) + (-4036 . 180282) (-4037 . 180192) (-4038 . 180104) (-4039 . 177742) + (-4040 . 177674) (-4041 . 177620) (-4042 . 177495) (-4043 . 177431) + (-4044 . 177306) (-4045 . 177187) (-4046 . 176419) (-4047 . 176358) + (-4048 . 176239) (-4049 . 175487) (-4050 . 175434) (-4051 . 175306) + (-4052 . 175242) (-4053 . 175188) (-4054 . 175079) (-4055 . 173777) + (-4056 . 173695) (-4057 . 173605) (-4058 . 173547) (-4059 . 173297) + (-4060 . 173212) (-4061 . 173137) (-4062 . 173052) (-4063 . 172995) + (-4064 . 172779) (-4065 . 172637) (-4066 . 171917) (-4067 . 171362) + (-4068 . 170807) (-4069 . 170252) (-4070 . 169532) (-4071 . 168865) + (-4072 . 168301) (-4073 . 167737) (-4074 . 167473) (-4075 . 167031) + (-4076 . 166696) (-4077 . 166352) (-4078 . 166045) (-4079 . 165912) + (-4080 . 165779) (-4081 . 165463) (-4082 . 165370) (-4083 . 165277) + (-4084 . 165184) (-4085 . 165091) (-4086 . 164998) (-4087 . 164905) + (-4088 . 164812) (-4089 . 164719) (-4090 . 164626) (-4091 . 164533) + (-4092 . 164440) (-4093 . 164347) (-4094 . 164254) (-4095 . 164161) + (-4096 . 164068) (-4097 . 163975) (-4098 . 163882) (-4099 . 163789) + (-4100 . 163696) (-4101 . 163603) (-4102 . 163510) (-4103 . 163417) + (-4104 . 163324) (-4105 . 163231) (-4106 . 163138) (-4107 . 162953) + (-4108 . 162638) (-4109 . 161067) (-4110 . 160912) (-4111 . 160774) + (-4112 . 160631) (-4113 . 160428) (-4114 . 158473) (-4115 . 158345) + (-4116 . 158220) (-4117 . 158092) (-4118 . 157868) (-4119 . 157644) + (-4120 . 157516) (-4121 . 157313) (-4122 . 157134) (-4123 . 156607) + (-4124 . 156080) (-4125 . 155799) (-4126 . 155381) (-4127 . 154854) + (-4128 . 154669) (-4129 . 154526) (-4130 . 154026) (-4131 . 153384) + (-4132 . 153328) (-4133 . 153234) (-4134 . 153113) (-4135 . 153042) + (-4136 . 152968) (-4137 . 152737) (-4138 . 152112) (-4139 . 151680) + (-4140 . 151598) (-4141 . 151456) (-4142 . 150978) (-4143 . 150856) + (-4144 . 150734) (-4145 . 150594) (-4146 . 150407) (-4147 . 150291) + (-4148 . 150030) (-4149 . 149961) (-4150 . 149762) (-4151 . 149603) + (-4152 . 149448) (-4153 . 149341) (-4154 . 149290) (-4155 . 148906) + (-4156 . 148378) (-4157 . 148156) (-4158 . 147934) (-4159 . 147693) + (-4160 . 147602) (-4161 . 145850) (-4162 . 145261) (-4163 . 145182) + (-4164 . 139713) (-4165 . 138922) (-4166 . 138543) (-4167 . 138471) + (-4168 . 138205) (-4169 . 138030) (-4170 . 137540) (-4171 . 137118) + (-4172 . 136678) (-4173 . 135814) (-4174 . 135690) (-4175 . 135563) + (-4176 . 135454) (-4177 . 135302) (-4178 . 135188) (-4179 . 135049) + (-4180 . 134967) (-4181 . 134885) (-4182 . 134777) (-4183 . 134357) + (-4184 . 133933) (-4185 . 133858) (-4186 . 133592) (-4187 . 133325) + (-4188 . 132942) (-4189 . 132241) (-4190 . 132181) (-4191 . 132106) + (-4192 . 132031) (-4193 . 131908) (-4194 . 131656) (-4195 . 131569) + (-4196 . 131493) (-4197 . 131417) (-4198 . 131321) (-4199 . 127345) + (-4200 . 126163) (-4201 . 125499) (-4202 . 125312) (-4203 . 123096) + (-4204 . 122770) (-4205 . 122389) (-4206 . 121945) (-4207 . 121710) + (-4208 . 121462) (-4209 . 121371) (-4210 . 119924) (-4211 . 119845) + (-4212 . 119739) (-4213 . 118255) (-4214 . 117849) (-4215 . 117446) + (-4216 . 117344) (-4217 . 117262) (-4218 . 117104) (-4219 . 115805) + (-4220 . 115723) (-4221 . 115644) (-4222 . 115289) (-4223 . 115232) + (-4224 . 115160) (-4225 . 115103) (-4226 . 115046) (-4227 . 114916) + (-4228 . 114712) (-4229 . 114343) (-4230 . 113921) (-4231 . 108799) + (-4232 . 108196) (-4233 . 107568) (-4234 . 107353) (-4235 . 107138) + (-4236 . 106970) (-4237 . 106755) (-4238 . 106587) (-4239 . 106419) + (-4240 . 106251) (-4241 . 106083) (-4242 . 103940) (-4243 . 103668) + (-4244 . 96793) (** . 93827) (-4246 . 93407) (-4247 . 93159) (-4248 . 93102) + (-4249 . 92604) (-4250 . 89779) (-4251 . 89629) (-4252 . 89465) + (-4253 . 89301) (-4254 . 89205) (-4255 . 89087) (-4256 . 88963) + (-4257 . 88820) (-4258 . 88649) (-4259 . 88522) (-4260 . 88377) + (-4261 . 88224) (-4262 . 88064) (-4263 . 87549) (-4264 . 87458) + (-4265 . 86789) (-4266 . 86595) (-4267 . 86499) (-4268 . 86189) + (-4269 . 85013) (-4270 . 84806) (-4271 . 83629) (-4272 . 83554) + (-4273 . 82373) (-4274 . 78780) (-4275 . 78416) (-4276 . 78139) + (-4277 . 78047) (-4278 . 77954) (-4279 . 77677) (-4280 . 77584) + (-4281 . 77491) (-4282 . 77398) (-4283 . 77014) (-4284 . 76943) + (-4285 . 76851) (-4286 . 76693) (-4287 . 76339) (-4288 . 76181) + (-4289 . 76073) (-4290 . 76044) (-4291 . 75977) (-4292 . 75823) + (-4293 . 75664) (-4294 . 75270) (-4295 . 75195) (-4296 . 75089) + (-4297 . 75017) (-4298 . 74939) (-4299 . 74866) (-4300 . 74793) + (-4301 . 74720) (-4302 . 74648) (-4303 . 74576) (-4304 . 74503) + (-4305 . 74262) (-4306 . 73922) (-4307 . 73774) (-4308 . 73701) + (-4309 . 73628) (-4310 . 73555) (-4311 . 73301) (-4312 . 73157) + (-4313 . 71821) (-4314 . 71627) (-4315 . 71356) (-4316 . 71208) + (-4317 . 71060) (-4318 . 70820) (-4319 . 70625) (-4320 . 70355) + (-4321 . 70159) (-4322 . 70130) (-4323 . 70029) (-4324 . 69928) + (-4325 . 69827) (-4326 . 69726) (-4327 . 69625) (-4328 . 69524) + (-4329 . 69423) (-4330 . 69322) (-4331 . 69221) (-4332 . 69120) + (-4333 . 69005) (-4334 . 68890) (-4335 . 68839) (-4336 . 68722) + (-4337 . 68664) (-4338 . 68563) (-4339 . 68462) (-4340 . 68361) + (-4341 . 68245) (-4342 . 68216) (-4343 . 67484) (-4344 . 67359) + (-4345 . 67234) (-4346 . 67094) (-4347 . 66976) (-4348 . 66851) + (-4349 . 66696) (-4350 . 65713) (-4351 . 64854) (-4352 . 64800) + (-4353 . 64746) (-4354 . 64538) (-4355 . 64164) (-4356 . 63750) + (-4357 . 63389) (-4358 . 63028) (-4359 . 62875) (-4360 . 62573) + (-4361 . 62417) (-4362 . 62091) (-4363 . 62020) (-4364 . 61949) + (-4365 . 61737) (-4366 . 60930) (-4367 . 60724) (-4368 . 60350) + (-4369 . 59830) (-4370 . 59562) (-4371 . 59078) (-4372 . 58594) + (-4373 . 58468) (-4374 . 57254) (-4375 . 56063) (-4376 . 55490) + (-4377 . 55272) (-4378 . 36855) (-4379 . 36669) (-4380 . 34569) + (-4381 . 32393) (-4382 . 32245) (-4383 . 32063) (-4384 . 31654) + (-4385 . 31353) (-4386 . 31002) (-4387 . 30834) (-4388 . 30666) + (-4389 . 30302) (-4390 . 16365) (-4391 . 15245) (* . 11028) (-4393 . 10772) + (-4394 . 10586) (-4395 . 9624) (-4396 . 9355) (-4397 . 8720) (-4398 . 7438) + (-4399 . 6179) (-4400 . 5299) (-4401 . 4033) (-4402 . 382) (-4403 . 280) + (-4404 . 160) (-4405 . 30))
\ No newline at end of file |